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ABSTRACT

Previous studies of nanoporous gold have found that, during the coarsening process,
the genus per characteristic volume of nanoporous gold has remained constant.
Using a rolling-ball type algorithm, in which a test probe rolls over the surface to
identify atoms, several test structures and a small-scale nanoporous structure were
meshed. The genus was then calculated for each of these meshed structures. It was
found that an algorithm that accounts for periodic boundary conditions is required
for an accurate genus calculation.
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1. INTRODUCTION

1.1. Brief Overview Of Nanoporous Metals

Techniques for creating

nanoporous metals have been

known for centuries. Known by

goldsmiths as depletion gilding,

the technique was mainly used to

create a nearly pure gold surface

from a less expensive gold alloy.

Early Andean goldsmiths used

the technique to created Figure 1. Body plaque from an early Andean
cemetery in Panama. Golden appearance was

patterned surfaces on the pieces enhanced by depletion gilding 2.

they createdi. In the medieval

Europe, jewelry makers would create nanoporous sheets of precious metals out of

impure sheets'. Nanoporous metals are predominantly created by a technique

known as dealloying, where a less noble metal from an alloy is selectively dissolved

by an electrolyte solution. This dealloying process leaves behind a nanoporous

network of ligaments that is mostly made of the more noble metalii. This technique

has been used to create nanoporous structures of a variety of metals, most notably

gold, platinum, and copperiv-v-vi-vii. The phenomenon is also observed in the corrosion

of several commonly used alloy systems, namely brass, stainless steel, and Cu-Al

alloystviiJ-x.
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Nanoporous metals created by dealloying of alloys with a more noble metal

concentration above a certain threshold are found to have bicontinuous structures,

where the unbroken networks of high purity ligaments and pores completely

interpenetratexxi. Above this

threshold, the pore networks do

not interconnect and the less

noble metal dissolves much

less10. The pore and void

networks created by dealloying

have characteristic lengths on
Figure 2. Scanning electron micrographs of

the order of 1-100nm. Although nanoporous gold made from the selective
dealloying of an Ag-Au alloy4 .

having dimensions of this order

technically makes the dealloyed structures mesoporous materials, which have pore

size greater than 2nm and less than 50nm, or macroporous, which have a pore size

greater than 50nm, dealloyed structures are referred to as nanoporous materials

due to the wide variety of phenomena that are observed in materials with

nanometer-scale dimensionsxii.

These nanoporous metal networks were found to have a variety of desirable

properties that make them suitable for wide variety of potential applications. Like

many materials with dimensions in the nanometer regime, nanoporous metals were

found to have a very strong surface plasmon resonance effect, which makes them

very interesting for numerous sensing applicationsxiii. While few studies document
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how this property could be utilized in sensors made of np-Au, numerous studies

document its effect in gold nanoparticlesxiv.

Nanoporous metals have an extremely high surface area, which makes them

attractive for many applications, such as electrodes, catalysts, and sensors. In a

study by K. Hu et al., a sensor system, comprised of gold nanoparticles coupled to

reporter DNA anchored to a np-Au electrode, showed a drastically increased

sensitivity and sensitivityxv. R.G. Mitsunori Hieda et al. increased the sensitivity of a

quartz crystal microbalance, which are useful in a wide range of sensing

applications, by replacing the traditional electrode with a np-Auxvi. Many studies

report drastically increased mass activity for nanoporous metal catalysts, due

mainly to a higher active areaxviixviii-xix-xx. Np-Au was found to have a measureable

surface-chemistry-driven actuation, due to the high surface area available for

adsorptionxxi.

Nanoporous metals

were found to have very high

strengths, similar to the

theoretical strength of gold,

despite being very

porousxxii-xxiii-xxiv. The high

strength observed in

nanoporous metals was
Figure 3. Gold nanopillar used in mechanical

explained by dislocation study of metals with nanometer-scale dimensions.
Found that strength approached theoretical limit

starvation, which occurs when due to dislocation starving23.
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the ligament radius is below a critical radius 23,24. This makes nanoporous metal

foams very attractive for applications requiring both lightweight and high strength.

Due to it numerous desirable properties and potential applications, uncovering the

mechanism by which nanoporous metals develop and identifying key differences in

structure is particularly important.

1.2. Nanoporous Metal Morphology

Nanoporous metal foams

have a complicated morphology

that is normally described by a

variety of geometric and

topological parameters.

Nanoporous metal foams are

always open-cell foams, that is to

say that the pores form an

interconnected network' 11 .

While nanoporous metals are

sometimes described as foams, Figure 4. Nanoporous gold structure, digitally
reconstructed from transmission electron

their structure is distinctly micrographs. Not the rings present in ligaments25.

different from foams. Nanoporous metals can have many more ligaments connecting

at a single node than what is typically observed in foamsxxv. Nanoporous metals also

have different topological properties, namely they may have rings present in the

middle of ligaments25 .
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Interestingly, nanoporous metals maintain the crystallinity of their native

crystal after dealloying, though the resultant structure is highly strainedxvi. This

means that crystal domains can exist that are much larger than the characteristic

dimensions of the nanoporous structure, which has interesting ramifications for the

properties of the material 25 .

Nanoporous metals have a wide distribution of ligament and pore sizes,

which can have drastic effects on the properties of the material. In a study by Rosner

et al., nanoporous metal samples were digitally reconstructed from topological

mappings produced using transmission electron tomography. They found that there

is a very wide distribution in ligament in pore sizes 25 .As a result of this wide

distribution, estimates of

specific surface area, a

very critical property for

many sensing

applications, cannot rely

on the average size of

ligaments and pores, as

these estimates may be

very incorrect 25 . This

study also revealed the
Figure 5. Image from transmission electron micrograph

presence of enclosed depicting enclosed bubbles in ligaments25 .

bubbles within the
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nanoporous metal structure, which has interesting ramifications for the mechanism

by which coarsening proceeds, which will be discussed later 2s.

Both the topological genus and the surface curvature of nanoporous metals

are two properties, which are closely connected with explanations for the

coarsening mechanism

of nanoporous metals. - ---3 0.2
V V G sudwae., gvSt- 3 =OA

02M ---------------- ----- --- --
While few experimental 0115

studies examine the
0.1

genus of nanoporous
0.05 A Nooconserved

metals, many o conserved

computational studies 0
0 50 100 150 200 250

look into the time Chacteristic length, l/Sy

Figure 6. Genus per characteristic volume vs.
evolution of the characteristic length for simulations from Kwon et al.

Since characteristic length varies with time, this also
topological genus. In a shows time evolution of genus per characteristic

volume. Not how the quantity is constant 27.
study by Kwon et al., it

was noted that the characteristic genus of bicontinuous structures simulated using

finite difference analysis was time invariant, which would be interesting to confirm

via molecular dynamics simulationsxxvii. For surface curvatures, some studies have

found a zero net curvature for samples at equilibrium, while other studies have

found positive mean curvatures 2 6 ,xxiii.

1.3. Theories for the Structural Evolution of Nanoporous Gold

Despite the fact that nanoporous metals have been known to exist for

decades, little work was done to investigate the mechanism by which the
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nanoporous network forms until the early 2000's. Several studies noted the

morphology of alloys during the early stages of dealloying, namely the fact that

small islands of the more noble metal formed on the surface of the alloys, but they

could only conjecture at the underlying mechanisms by which those morphologies

evolved, due to the lack of equipment with the necessary spatio-temporal resolution

for experimentsxxix. More recent studies, which rely primarily on simulation, have

attempted to identify the mechanism by which these nanoporous structures form.

Two potential theories have arisen due to these computational studies: one based

on surface-diffusion and one based on local plasticity in the material.

1.3.1. Surface-Diffusion-Based Theory for Porosity Evolution and Coarsening

The most widely accepted model for the evolution of nanoporous materials is

based on the diffusion of gold surface atoms during the dissolution process. Herring

originally mentioned this theory, but he was unable to prove his hypothesis, due to

the lack of the necessary

computational or

experimental capabilitiesxxx.

Erlebacher et al. supported a

surface-diffusion-based

hypothesis and proposed a

mechanism to explain the

structural evolution of Figure 7. Transmission electron micrograph of
gold islands formed during early stages of

nanoporous metals. dealloying of an Ag-Au alloy29.
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GLAND I

Ag-Au At.0

Figure 8. Schematic of the mechanism by which gold-rich clusters form during
the dissolution of silver from an Ag-Au alloy. The mechanism was originally
proposed by Forty in the late 1970's, but he lacked the proper computational or
experimental capabilities to observe the mechanism 29.

To explain the formation of these nanoporous structures during dissolution,

Erlebacher et al. used Ag-Au as a representative alloy. Starting with the bulk

material, the electrolyte solution selectively dissolved the silver atoms, leaving

behind a layer of gold atoms 3.At this solid-electrolyte boundary, the gold adatoms

have an extremely low solubility, on the order of 107, which results in a rapid,

spontaneous phase separation of the system into an island of gold atoms and the

electrolyte solution4. This phase separation occurs so rapidly because the gold

adatom concentration at the interface lies in the spinodal region of the solubility

curve3. The separation results in a passivated gold-rich surface and a native alloy

surface exposed to the electrolyte solution 4. Silver atoms in the exposed native alloy

will then dissolve, and the process continues 4. As more and more layers are exposed

to the electrolyte solution, the spinodal decomposition of the gold adatoms occurs

on an increasingly non-uniform surface, which, after complete dealloying, will result

in a nanoporous structure4. Kinetic Monte Carlo simulations using this surface-

diffusion-based mechanism have produced nanoporous structures that resemble
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the np-Au produced experimentally 4. The computational model discounted the

notion that diffusion through the bulk of the material could produce the nanoporous

structure, because bulk diffusion occurs at too long of a time-scale to produce

nanoporous structures created experimentally 4.

While a surface-diffusion-based model can adequately explain structural

evolution during the dissolution process, there are several key criticisms of a

surface-diffusion-based model for

coarsening, due to disparities

between the models and

experimental evidence. For an on-

lattice surface diffusion model, the

number of lattice sites, and thus the Figure 9. Nanoporous gold created

volume of the sample, would remain through kinetic Monte Carlo simulation4 .

constant; therefore there would be no volume change during dealloying. However,

experimentally produced nanoporous metals report a volume change of up to

30%xi. For a model based only on surface diffusion, enclosed voids would not

form, but voids have been observed experimentally25 . Lastly, a surface-diffusion-

based model would predict that high curvature regions would quickly smooth out,

because curvature is big driving force in surface diffusion. However, high curvature

regions associated with ligament pinch-off have been observed in np-Au samplesmxxii.
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Figure 10. Cartoon illustrating the effect of Rayleigh instabilities. If some
unstable surface is subject to some deformation of wavelength A, then the
amplitude of the deformation will spontaneously increase until separate bubbles
are formed, due to the reduction in surface energy of the system.

To explain the presence of enclosed voids and high curvature regions,

Erlebacher et al. proposed a new surface-diffusion-based model, which accounts for

the presence of enclosed voids and high-curvature regions by accounting for the

effects of Rayleigh instabilities on the structural evolution of nanoporous metals.

Previously, surface-diffusion based models only examined driving forces associated

with smoothing out high-curvature regions33. They did not account for the pulling

away of material from saddle-point curvature ligamentsxxxiii. At these saddle-point

type nodes, material will gradually pull away from the node until pinch-off occurs 33.

The kinetics of this pulling-away are controlled by Rayleigh type instabilities 33. In a

Rayleigh-type instability, a structure, classically a cylinder, perturbed by some

critical wavelength, Xcrit, will cause the structure to break up into a series of

droplets, due to the effect of reducing the overall surface energy of the system.

Applied to np-Au, Rayleigh-type instabilities can cause either ligament pinch-off or

void formation 32. This type of coarsening will result in the effect of reducing the

effect of the topological genus for the observed system.
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1.3.3. Plasticity-Based Theory of Coarsening

Plasticity-based theories for the structural evolution attempt to explain the

presence of enclosed voids and ligament pinch-off with local plasticity that occurs at

nodes. Kolluri et al. used MD simulations to show that local plasticity at nodes can

cause the collapse of ligaments onto nearby ligamentsxxxiv. Dislocation glide across

the ligament cross-section causes ligament pinch-off, which is then immediately

followed by the collapse onto adjacent ligaments34. For spontaneous coarsening, the

reduction in surface energy compensates for the plastic work done by this network

restructuring34. This implies that there is a critical radius for a stable ligament 34.

This theory of coarsening does not necessarily oppose the surface-diffusion-based

theory for coarsening proposed by Erlebacher et al., because both can occur

simultaneously within a nanoporous structure34. This type of coarsening, like that

proposed by Erlebacher et al., will result in the effect of reducing the effect of the

topological genus for the observed system.

3 rn

Figure 11. Successive images depicting a ligament collapse event in an MD
simulation. This collapse event is enabled by dislocation glide within the
ligaments35 .
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1.4. MD Overview and Creation of Nanoporous Structures

The nanoporous structures examined in this study were created through a

combination of conjugate gradient potential energy minimization (PEM) and

molecular dynamics (MD) simulations. To create the initial structure, points on an

evenly distributed lattice were subject to some random displacement. The total

potential energy of the system was then minimized by moving the atoms in the

opposite direction of the spatial gradient of potential energy, which was calculated

using an embedded atom potential for gold. The result was a foam-like structure34.

This structure was then relaxed at constant temperature and atomic motions during

coarsening were modeled using MD simulations.

In layman's terms, an

MD simulation finds the force
3

on each atom based on the I - Lennard-Jones
2 4

positions of other atoms in a 4r

structure. The calculated

forces, along with the velocity

and the current position of
.2

the atoms, are then used to 0 0.5 1 1.5 2 2.5 3
r/a

calculate new position of the Figure 12. Simple Lennard-Jones pair potential used in
early MD simulations to calculate forces acting on

atoms after some designated atoms 37 .

time step. In order to calculate the forces on the atoms, an inputted potential must

be used. Many different types of potentials exist, but for metallic systems, embedded
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atom method (EAM) potentials are most commonly used, due to their success in

predicting physical behavior. EAM potentials have the following basic form:

, EF (pe.?I) + 2 bR!~ 1

where Etot is the total potential energy, pi is the electron density of the system

without the at position Ri,, and < is an electrostatic pair potentialxxxv. Once the

energy of the system is calculated, the derivative of the energy can then be taken to

find force, one can solve Newtown's equations of motion to find position. For a more

detailed introduction to MD simulation, can be found in Ref. 36.

2. GENUS AND CURVATURE

The main focus of this study is to examine the topological genus and

curvature of nanoporous structures over time. As such, a detailed explanation of

both genus and curvature and how each is calculated using a point cloud is required

to understand the findings of this study.

2.1. Genus

Before strictly defining genus, it is helpful to review some of the basic

concepts of topology that are relevant to this investigation. In his investigation of

polyhedra, Euler discovered an interesting invariant of all convex polyhedra:

N - E F =2 (2)

where N is the number of vertices, E is the number of edges, and F is the number of

faces. In order to illustrate this concept, some sample figures are depicted in Figure
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Table 1. Lists the number of vertices (N), edges (E), and face (F) of some sample
surfaces of increasing complexity. As is shown in the last column for the given
examples, the quantity N-E-F is 2 for all polyhedra.

Shape N E F N-E+F
Square 5 8 5 2

Pyramid
Cube 8 12 6 2

Hexagonal 12 18 8 2
Prism

Dodecahedron 20 30 12 2

13 with the corresponding values for N, E,

and F in table 1. As you can plainly see in

each of the test cases, Euler's theorem

holds. This idea, that an invariant quantity

exists that links different features of

different features helped to spawn some of

the key ideas that led to the field of modern
Figure 13. Depictions of some

topology. When the quantity in equation 2 common polyhedra.

was extended to all polyhedra, the quantity known as the Euler characteristic was

developed:

N-E+F=X (3)

where ; is the Euler characteristic for a surface. The Euler characteristic is what is

known as a topological invariant. That is to say, regardless of the way in which one

partitions a surface into faces, the resulting Euler characteristic will always be the

same. The Euler characteristic will also be identical for homeomorphic surfaces.
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Rather than give a strict definition of homeomorphism, which requires

advanced topology concepts outside the required understanding for this study, I will

give some simple examples that illustrate the concept of homeomorphism. First, let

us consider all the shapes presented in Figure 13. If all of the shapes were made of

some moldable rubber, one could stretch any one starting shape into any other

shape. All of these shapes are homeomorphic to each other. Second, consider the

surfaces presented in Figure 14. All of these surfaces are also homeomorphic to each

other, because they can be

deformed into one another.

However, the surfaces in Figure

13 are not homeomorphic to

those in Figure 14, because the

surfaces in Figure 13 cannot be Figure 14. Two homeomorphic shapes, each
of which can be deformed to form the other,

deformed into the surfaces in though this is not require for

Figure 14 without cutting or homeomorphism.

sticking together two of the surfaces. It is important to note that, while two shapes

that can be deformed into the other are homeomorphic, this is not required for

homeomorphism. For two shapes to be homeomorphic, they only need a continuous

mapping and a continuous inverse. This basic idea of homeomorphism will help in

the comprehension of the idea of topological genus.

The topological genus is defined as the number of handles that a surface has,

or alternatively, as the maximum number of cuts one can make in a surface without

18



dividing the surface into two distinct pieces. In order to calculate the genus of a

surface, one can use the Poincare formula:

A - E+ F =-2 (4)

where g is the topological genus,
a) b)

and the quantity 2-2g is the Euler

characteristic for a surface. This

definition of genus stems from the
c)

concept of the Euler characteristic.

Starting with any convex

polyhedron, the Euler characteristic

for that surface is two. For every

handle that one adds to the surface Figure 15. Three different shapes with three
different genera. Shape (a) has a genus of

of that polyhedron, the overall Euler zero, (b) a genus of one, and (c) a genus of
two.

characteristic will be reduced by

two. One can then deform that polyhedron with handles into other homeomorphic

shapes. Some representative shapes and their corresponding genus are depicted in

Figure 15. Applying this concept to nanoporous metals, one could start with a

sphere and add handles onto its surface to create a shape that is homeomorphic to a

nanoporous metal. Since all the surfaces used in this study are comprised of

triangulated meshes, the Poincare formula can be further modified to simplify

calculation:
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1
N F = 2 - 2q (5)

This relationship arises from the face that every face has three edges, and that every

edge is shared by two triangles.

Equation 2 only holds for hollow surfaces, that is surfaces without any

interior. For every interior surface, which in the case of nanoporous metals would

be an enclosed bubble in a ligament, the overall topological genus is reduced by one.

This gives another alternative definition for the genus of surfaces:

Y = 11 - 1. (6)

where nh is the number of hole, and nb is the number of bubblesxxxvii. In terms of the

Euler characteristic, one could think that each disconnected polyhedron has an

Euler characteristic of two, and each handle on each of those polyhedra reduces the

overall Euler characteristic of the system by two. For a more comprehensive

introduction to topology, see Ref. 38.

2.2. Meshing Surfaces

In order to apply a triangulated mesh to the surfaces, the by L.M. Dupuy and

R.E. Rudd was implemented in MATLABxxxix. This algorithm is similar to that used

for finding the r-reduced surface of biological molecules in simulation 39.

Conceptually, the algorithm identifies surface triangles by rolling a test probe across

a surface. Whenever the test probe touches three atoms simultaneously, it creates a

surface triangle using those three atoms as the vertices of the triangle.
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In order to create a surface mesh, the first challenge is to identify the first

triangle of the mesh. In the paper by Dupuy and Rudd, they suggest a method for

completely automating the location of the first triangle; however, in order to reduce

the challenge of coding the algorithm in MATLAB, one of the atoms of the first

triangle was found manually using the AtomEye visualization package. Once the first

atom is selected, the atoms that form the first surface triangle must satisfy two

criteria: 1) the atoms must be sufficiently exposed to form a surface element with all

three atoms in contact with the probe sphere, and 2) there must be no atoms within

Rtot, which is the sum of the atomic radius and radius of the test probe used to

tessellate the surface.

The first criterion can be confirmed with several mathematical relations. To

properly orient the first triangle, and all subsequent triangles, a point outside of the

surface is given. A properly oriented first triangle satisfies the following relation:

ASO . (AB x AC) > (7)

where A, B, and C are the locations of the atoms being tested, and So is the position of

the point outside of the surface. It is important to note that, for nanoporous

structures the segment ASo must not pass through the surface. Once the surface

element is properly oriented, one must then confirm that the circumscribed triangle

of the three points has a radius less then Rtot:

S> pit ABAC BC

2||AB x AC||
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where Re is the radius of the circle circumscribed about atoms A, B, and C. Once

atoms A, B, and C have passed this test, the circumcenter of the circumscribed

triangle is then found:

(AB2 - AB -AC )AC2AB + (AC - AB -AC )AB2ACAG =9
2||AB x AC||j2

where AG is the segment connecting atom A and the circumcenter G. Once this

position is found, the position of the test probe relative to the surface can be

calculated:

-? R1 (10)

AB x AC
AS - AG -+ B (11)

||AB x AC||

where h is the distance between the test probe, S, and G. Once S is known, criterion

two can be confirmed by calculating the distance between S and all other nearby

atoms. After the initial triangle is found, all other surface triangles can then be

found.

All other atoms within 2Rtot of A and B of the initial triangle were then

calculated. These atoms were stored as potential points for the third vertex of the

next surface triangle, where A and B are the other two vertices. The position of the

test probe is then calculated for each of the potential triplets of atoms as detailed

above. The rotation angle of the probe sphere about BC is then calculated:
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-HS.HS" (2o + 11,(12)

HS HS

(HS x HS"). AB (13)

sin a S" A B

where a" is the rotation angle, H is the midpoint of the segment AB, and S" is the

position of the test probe for the new triplet. The point that minimizes this rotation

angle a" is then selected as the third vertex for the new surface triangle. This

process is then repeated for all found segments until no new surface elements are

identified. In order to prevent the repeated storage of the same surface element,

measures are taken. First, each segment is stored with the position of the test probe

that was used to identify the segment. Second, once each segment is used to identify

a surface element, it is flagged as used.

2.3. Meshing with Periodic Boundary Conditions

In order to simulate a bulk material, many simulations rely on the usage of

periodic boundary conditions (PBC's). PBC's mimic the behavior of bulk material in

a clever way. The atoms near a periodic boundary influence the motion of atoms at

the opposite corresponding boundary. For example, if there is a simulation cell of

dimensions Lx, Ly, and Lz, then an atom at (xo, yo, zo) will feel a force from an atom at

position (xo, yo, Lz-zo) as if it were 2zo away. If an atom were to undergo a

displacement that would cause it to pass through a periodic boundary, then that

atom will appear at the opposite side of the simulation cell. That is to say, if an atom

at position (xo, yo, zo) were to undergo a displacement that would move it to a new
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position (xo, yo, -zo), then it would appear at the position (xo, yo, L-zo) in the

simulation cell.

PBC's pose a problem for meshing because, while atoms near a periodic

boundary may seem to be at a surface according to the position data in the

simulation file, they may have neighbors that lie across the periodic boundary. If

these atoms at the boundary were considered surface atoms rather than in contact

with the atoms across the

periodic boundary, then

the overall calculated .

genus could be less than A ,
the actual genus for the

observed volume. Figure

16 clearly illustrates this Lx

point. In order to allow I

the meshing program to Figure 16. Cartoon illustrating the effect of PBC's.
The dashed lines are periodic boundaries. Note how

account for PB C's, a atom A feels a force from atom B as if atom B were in

simple distance position B'.

minimization was performed.

According to PBC's, for every atom in a simulation cell, a virtual atom exists

at periodic intervals in each direction. For an atom at (xo, yo, zo), a virtual atom exists

at (xo+mLx, yo+nLy, zo+oLz), where m, n, and o are integers, and Lx, Ly, and Lz are the

dimensions of the simulation cell. In order to find the minimum distance between

any two atoms being examined in the meshing function, then the simulation cell
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length can be added or subtracted to each dimension, and the minimum point

corresponding to the minimum distance found by adjusting the positions by the

simulation cell lengths can be used for calculation. This will allow the meshing

algorithm to jump across periodic boundaries. It is important that, when data is

stored about each of the segments, the data for the atoms in their original positions

are used, to allow all checks to function properly. All code used for analysis of

structures is given in Appendix A.

3. RESULTS AND DISCUSSION

3.1. Simple Test Cases

Several meshing techniques were attempted before settling on the use of the

meshing algorithm described previously. In order validate the meshing technique

used in this study a variety of simple test structures were used, for which the value

for genus was already known. In order for the code to pass the validation, the

outputted mesh needed to yield the correct value for genus when the appropriate

values for the number of vertices and the number of faces were inputted into

Equation 5.

The first and most simple test structure used was a cube with points on a

cubic lattice. Each point in the cubic lattice was subject to some random

displacement. This random displacement was included in order to prevent the

existence of degenerate surface elements. A degenerate surface element is one

where the test probe simultaneously touches four or more atoms. Using the above

algorithm, the resultant mesh would have intersecting surface elements if a

degenerate surface element were encountered, which would result in an incorrect
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value for the calculated genus. Such degenerate surface elements are exceedingly

uncommon in simulation, as such they were not accounted for when implementing

the algorithm describe above.

For the test structure, lattice

points were approximately 0.1 units

apart, with each side having a total

length of 1 unit. The points on the

lattice were subject to a random

displacement in each direction of

(0,0.001]. Using the Dupuy and Rudd

algorithm with an atomic radius of

0.048 units and a test probe radius Figure 17. Atomic view of the test

equal to the atomic radius, a mesh structure used.

with 602 vertices and 1200 faces was produced. The Dupuy and Rudd algorithm

successfully identified all the surface points for the test structure, which was one

validation of its efficacy. Using values for the number of vertices and faces of the

surface mesh, the calculated genus for the surface was found to be zero, which

matched the known value. An atomic view of the cubic test structure and the mesh

produced when using the Dupuy and Rudd algorithm are given in Figure MM. When

using this test structure, the convex hull of a mesh created using the Delaunay

triangulation method within MATLAB was also used, which also produced the

correct value for genus and successfully identified all surface points.
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Figure 18. Mesh produced from the Dupuy and Rudd algorithm viewed in
MATLAB. This mesh has 1200 triangular faces and 602 vertices. Plugging these
values into Equation 5 yields a genus of zero.

The second simple test structure used was a simple torus. In order to create

the torus test structure, points were placed on a cubic lattice and subject to a

random displacement, as in the first cube test structure. Then, points outside of an

inputted torus boundary were removed from the structure. For the test structure, a

cubic lattice with lattice parameter 0.05 units and a total side length of 1 unit was

used. The bounding torus had a ring radius, RT, of 0.5 units and an axial radius, Ra, of

0.2 units. Using the Dupuy and Rudd algorithm, a surface mesh with 1067 vertices

and 2134 faces was produced. Using these values, the calculated genus was found to

be one, which matched the known value. Atomic views of the torus test structure

and the mesh produced when using the Dupuy and Rudd algorithm are given in

Figure 19.
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2Ra

c)

Figure 19. a-b) Two different atomic views of the torus structure used, as well as
c) the mesh produced by the Dupuy and Rudd algorithm. In (a) and (b), what is
meant by the radius RT and Ra is clearly depicted.
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The Delaunay triangulation method was also attempted for this test

structure; however it failed to produce the correct results. A 3D mesh created using

Delaunay triangulation is a volumetric mesh where no point in the point cloud being

meshed is inside the sphere enclosing an element of the mesh. In order to create a

surface mesh, the convex hull of this volumetric mesh was then taken. Since the

convex hull of a surface is the envelope enclosing the surface, this method was

unable to identify handles, such as that present in the torus. There may have been a

way to create a Delaunay triangulation of the surface without using the convex hull

method. Regardless, this method would have difficulty identifying which atoms are

surface atoms, which made me abandon this meshing method in favor of the Dupuy

and Rudd algorithm.

3.2. Small Test Structure

Before meshing the nanoporous gold structures generated by Kolluri et al.,

which have hundreds of thousands of atoms with many ligaments, a smaller test

structure was first meshed. This was done in order to test the run time for a larger

scale structure with many surface atoms, to see if any errors arose when meshing

ligaments with irregular geometries, and to check the genus calculated from mesh

attributes against a genus found from visual inspection. This smaller test structure

was a porous copper sample with four ligaments and 10,000 atoms.

The structure was first meshed using the original Dupuy and Rudd algorithm.

The mesh generated had 3129 vertices and 6326 faces. Both an atomic view of the

structure and the generated mesh are depicted in Figure 22. Interestingly, the genus
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for this surface mesh, calculated using Equation 5, is 18, which is different from the

genus of the structure without periodic boundary conditions. From visual

inspection, it is easy to see that the structure has a topological genus of three. This

can be easily found by finding the maximum number of cuts one can make without

separating the structure into multiple pieces. Typically, disparities between the

calculated genus and the actual genus of a structure result from gaps or self-

intersecting faces in the mesh. However, the generated mesh had not gaps or self-

intersections.

The disparity between the calculated genus and the genus from visual

inspection can be explained by the small sections of the structure near the

boundaries that have small regions that are one atom thick. An example of such a

section is shown in Figure 23a. It is important to note that there would be no

regions with atomic thickness in the actual structure, because such regions would

be at a very high energy and would quickly coarsen, either by the surface diffusion-

based mechanism or the plasticity-based mechanism outlined in the

introduction.Although these regions are actually connected to more matter at the

opposite periodic boundary, the Dupuy and Rudd algorithm treats these regions as

surface atoms. As such, it meshes both sides of these regions, resulting in a mesh

where regions thin down to a single point. This causes a net increase in the

topological genus.

To illustrate how a two-dimensional surface element would increase the

topological genus, consider a square pyramid with one of the sides cut out, similar to

Figure 23a. This shape is illustrated in Figure 23b. Such a surface would have six
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Figure 22. Atomic view of the small structure and the generated mesh. From a
visual inspection, one can note that three cuts in the structure can be made
without separating the structure into disparate pieces. Three possible cuts are
indicated by the solid yellow lines.
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Figure 23. a) An example of a 2D surface element of the mesh, and b) a cartoon
drawing of a surface with a 2D element. The circled dark element in (a) is 2D. The
red bordered element in (b) is 2D. In (b), note that it has 6 vertices, 13 edges, and
10 faces. Using Equation 4, the calculated genus would be -0.5. Using Equation 5,
the calculated genus would be 0.5.

vertice s, 13 edges, and 10 faces. There are two things to note from these values.

First, the genus for the surface, calculated using Equation 4, is -0.5, which does not

agree with the value of 0.5, calculated using Equation 5. Second, note that the genus

calculated using Equation 5 is positive, which explains the higher value for the

genus calculated using the generated mesh.

While it was previously known that the genus per unit volume for the

nanoporous gold structures using a mesh generated by the Dupuy and Rudd

algorithm would not be accurate, it was assumed that the calculated genus would be

an underestimate, because the mesh would not account for ligaments that connect

over periodic boundaries. However, meshing the results from the small structure

mesh show that the computed genus for a mesh generated by the Dupuy and Rudd

algorithm could also be higher than the actual genus, if there are regions near the

boundary with atomic thickness.

4. CONCLUSIONS
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After meshing several test structures and a small-scale nanoporous

structure, it was found the algorithm proposed in the Dupuy and Rudd paper is not

suitable for genus calculations for nanoporous metal structures with periodic

boundary conditions. The algorithm does aptly find all surface atoms within a cell

and create a high-quality mesh from those surface atoms, as evidenced by the

successful meshing of the test structures and the small-scale nanoporous structure.

However, the calculated genus per volume will be radically different from the true

genus per volume of the structure. These differences are the result of regions with

atomic thickness at the boundary and not accounting for the increased genus caused

by ligaments connecting over the boundary.

In order to accurately mesh the nanoporous gold structures, an algorithm

that accounts for periodic boundary conditions while meshing would be required. I

currently have a version of a function that accounts for periodic boundary

conditions, but the run-time is too long for these large-scale structures to produce

results in a timely fashion. Future work on this project would certainly include

improving the efficiency of this algorithm, in order to be able to produce results in a

timely fashion. This would allow for the meshing of many nanoporous structures,

which could then be used to study the time evolution of genus.

Other future work for this project would include further characterization of

the surface of the nanoporous structures over time. It would be very interesting to

examine the surface curvature of these structures, because surface curvature is a

major driving force for surface diffusion in a material. It may also be interesting to

quantify the surface area of the material over time, since the surface area of the
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material of particular interest in catalytic applications. It would also be interesting

to devise a way to find the number of pinch-off events that occur over time and

connect this quantity with the changes observed in the characteristic genus.
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