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We forecast the constraints on modified theories of gravity from the cosmic microwave background

(CMB) anisotropies bispectrum that arises from correlations between lensing and the Integrated Sachs-

Wolfe effect. In models of modified gravity the evolution of the metric potentials is generally altered and

the contribution to the CMB bispectrum signal can differ significantly from the one expected in the

standard cosmological model. We adopt a parametrized approach and focus on three different classes of

models: Linder’s growth index, Chameleon-type models, and fðRÞ theories. We show that the constraints

on the parameters of the models will significantly improve with future CMB bispectrum measurements.

DOI: 10.1103/PhysRevD.86.063517 PACS numbers: 98.80.Es, 95.30.Sf, 98.80.Jk

I. INTRODUCTION

Cosmic acceleration is one of the major challenges faced
by modern cosmology and understanding the very nature
of what is sourcing it is the main focus of upcoming and
future cosmological experiments. Several approaches to
the phenomenon of cosmic acceleration have been pro-
posed in the literature, including modifications of the laws
of gravity on large scales in order to allow for self-
accelerating solutions in matter-only universes. Well-
known examples of modified theories of gravity are fðRÞ
models [1–5], or the more general scalar–tensor theories
[6–9], the Dvali-Gabadadze-Porrati (DGP) model [10,11],
and its further extensions such as degravitation [12]. In the
past years several authors have analyzed constraints on
modified gravity, or more generally departures from the
cosmological standard model, both using current data sets
as well as doing forecasts for future surveys [13–28] In this
paper we focus on certain classes of modified gravity and
adopt a parametrized approach to forecast the constraints
achievable from measurements of the CMB bispectrum
from future experiments.

Future high-resolution CMB maps will have the ability
of detecting higher-order correlations in the temperature
distribution at high significance (see e.g., Ref. [29] and
references therein). While the CMB anisotropy distribution
is generally expected to be Gaussian to high accuracy,
small non-Gaussianities could be produced in the early
universe, during inflation (commonly referred to as pri-
mordial non-Gaussianities, see e.g., [30]) as well as be
sourced, at a much later epoch, by the interaction of
CMB photons with the local universe. For instance, the
lensing of CMB photons by dark matter structure produces
a clear non-Gaussian signal in the CMB trispectrum (the
Fourier transform of the four-point correlation function),
which can be used to constrain the amplitude of the lensing
potential. Such a signal, already discovered by the recent
ACT [31] and SPT [32] experiments, helps in further
constraining cosmological models.

In this paper we study the implications of another non-
Gaussian signal expected in the CMB, i.e., the one arising
from cross-correlations between lensing and the Integrated
Sachs-Wolfe effect (ISW), which affects the CMB bispec-
trum, i.e., the three-point correlation function.
The signature of the lensing-ISW (L-ISW hereafter)

correlations in the CMB bispectrum has already been
discussed by several authors (see e.g., Refs. [33–43])
Assuming the standard cosmological scenario, �CDM,
the L-ISW bispectrum should be detected at the signifi-
cance level of 4–5 standard deviations. In Refs. [35,37,38]
the possibility of constraining cosmological parameters
through this detection has been considered; in particular,
it has been shown that an accurate measurement of the
L-ISW will help in constraining the equation of state and
the fractional density of dark energy. Here we shall analyze
the potential of the L-ISW signal to constrain modified
theories of gravity. In the latter, the evolution of the metric
potentials can generally differ significantly from the
�CDM prediction, therefore it is natural to expect that
the L-ISW bispectrum would provide valuable constraints
on these theories.
The paper is organized as follows. In Sec. II we present

the set of modified gravity models considered for our
analysis and in Sec. III we review the L-ISW bispectrum.
In Sec. IV we describe the analysis method and in Sec. V
we present our results. We conclude in Sec. VII.

II. PARAMETRIZED MODIFIED GRAVITY

Many models of modified gravity have been proposed as
alternatives to �CDM, and analysing them one by one is
impractical. The idea behind parametrized versions of
modified gravity is exactly that of encompassing several
models into a single framework. The parametrizations that
we consider for our analysis cover a fairly large sample of
theories and allow us to draw quite general conclusions
about the constraining power of the data considered.
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In our analysis we fix the background to that of the
�CDM model of cosmology. The latter is currently in
very good agreement with all observables constraining
the expansion history, and many models of modified grav-
ity can mimic it while introducing significant modifications
at the level of perturbations. Therefore, fixing the back-
ground to �CDM, allows us to isolate the effects of
departures at the level of growth of structure, where we
expect the most significant deviations.

A. Linder model

In Ref. [44] Linder introduced a simple parametrization
of the growth of density perturbations in the linear regime,
via a single parameter, the growth index � (which we will
denote with �L), defined through

gðaÞ ¼ e
R

a

0
dlna½�mðaÞ�L�1�: (1)

The idea is that of capturing independently the information
from the expansion and the growth history, respectively, in
�m and �L. Since in our analysis we fix the background to
�CDM,�mðaÞ is determined by that and the only parame-
ter of interest will be �L.

In the cosmological concordance model, �CDM, as
well as in vanilla-type dark energy models, �L is to good
approximation constant and equal to �L � 6=11. While it
can generally be a function of time and scale, in several
models of modified gravity it can still be approximated by
a number, which often differs significantly from the
�CDM value. For instance in the braneworld gravity of
the DGPmodel, �L � 0:68 to good approximation over the
whole history [44]. Things are more complicated for
scalar-tensor models where often the time- and scale-
dependence of �L cannot be neglected. However, �L re-
mains a powerful trigger parameter, since any deviation of
it from � 6=11 would indicate a breakdown of the cosmo-
logical concordance model.

As a starting point for our analysis, we assume �L �
const. and forecast constraints on this simple one parame-
ter model.

B. Chameleon-type models

Chameleon-type theories correspond to gravity plus a
scalar degree of freedom which is conformally coupled to
matter fields, and has therefore a profile and a mass which
depend on the local density of matter. The common action
for such theories is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

P

2
R� 1

2
g��ðr��Þðr��Þ � Vð�Þ

�

þ Sið�i; e
��ið�Þ=MPg��Þ; (2)

where � is the scalar d.o.f., �i is the i th matter field, and
�ið�Þ is the coupling of �i to �. We will limit ourselves to
cases in which the coupling is a linear function of the scalar

field, i.e., �ið�Þ / �i�. A well-known example of the
latter are fðRÞ theories as we discuss in Sec. II C.
The free parameters of these theories are the mass scale

of the scalar field and the couplings �i. Since we consider
constraints from late-time cosmology, we are interested
only in the coupling to dark matter, and therefore drop
the index i.
While the modifications enter through the coupling of

the scalar field to matter, and therefore change the energy-
momentum conservation equations, it is possible to keep
the latter unchanged and effectively absorb the modifica-
tions of the evolution of perturbations in the Poisson and
anisotropy equations. The latter are commonly parame-
trized with two functions � and �, as follows:

k2� ¼ � a2

2M2
P

�ða; kÞ��; (3)

�

�
¼ �ða; kÞ; (4)

where �� � �	þ 3 aH
k ð�þ PÞv is the comoving density

perturbation and � and � are the scalar metric perturba-
tions in conformal Newtonian gauge (with the convention
	 g00 ¼ �2a2� and 	gij ¼ �2a2�	ij). Furthermore, for

Chameleon-type theories � and � are well represented by
the parametrization introduced in Ref. [45]

�ða;kÞ¼ 1þ�1

2
1k

2as

1þ
2
1k

2as
; �ða;kÞ¼ 1þ�2


2
2k

2as

1þ
2
2k

2as
; (5)

where the parameters �i can be thought of as dimension-
less couplings, 
i as dimensional length-scales, and s is
determined by the time evolution of the characteristic
length-scale of the theory, i.e., the mass of the scalar
d.o.f. As shown in Ref. [17], in the case of Chameleon-
type theories the parameters f�i; 


2
i g are related in the

following way:

�1 ¼ 
2
2


2
1

¼ 2� �2


2
2


2
1

(6)

and 1 & s & 4, so that effectively the degrees of freedom
are one coupling and a time-evolving length scale.

C. fðRÞ theories
As it becomes clear in the Einstein frame, fðRÞ theories

are a subclass of the models described by action (2),

corresponding to a universal fixed coupling �i ¼
ffiffiffiffiffiffiffiffi
2=3

p
�.

Therefore they can also be described by the parametriza-
tion in (5). It can be easily seen that the fixed coupling

�i ¼
ffiffiffiffiffiffiffiffi
2=3

p
� gives �1 ¼ 4=3 and �2 ¼ 1=2. Furthermore,

viable fðRÞ models that closely mimic �CDM have s� 4
[17]; therefore, using (6), the number of free parameters in
Eqs. (5) can be effectively reduced to one length scale, e.g.,
the length scale 
1.
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The latter is directly related to the mass scale of the
scalar degree of freedom introduced by these theories and
represented by fR � df=dR, known as the scalaron.
Specifically, 
1 sets the inverse mass scale of the scalaron
today, i.e., 
1 ¼ 1=m0

fR
. The results in the literature are

usually presented in terms of a parameter B0 which is
related to 
1 as follows [46]:

B0 ¼ 2H2
0


2
1

c2
: (7)

Studying this particular subclass is interesting because
somemodels belonging to this category have been shown to
be cosmologically viable and pass local tests of gravity [47].

III. THE LENSING-ISW BISPECTRUM

As it is well known, if the expansion of the Universe is
not matter-dominated (i.e., �m � 1), the time variation of
the gravitational potential provides an additional source of
CMB anisotropies; restricting to the linear regime, this
effect is known as the Integrated Sachs Wolfe (ISW) effect
[48], given by

	T

T
ðnÞjISW ¼

Z
d�ð _�½ð�0 � �Þn; �� þ _�½ð�0 � �Þn; ��Þ;

(8)

where n is a direction in the sky, � is conformal time, �0 is
the time today, and the dot denotes differentiation with
respect to �. This adds a secondary anisotropy to the
primordial signal and a significant contribution from it
is expected at late times, when the Universe starts
accelerating.

Furthermore, the weak gravitational lensing by matter
density fluctuations between us and the last scattering
surface shifts the observed direction of photons. In prac-
tice, the temperature anisotropy measured by an observer
in the direction n is actually the anisotropy in the direction
(nþr�ðnÞ), i.e.,

	 ~TðnÞ ¼ 	Tðnþr�ðnÞÞ; (9)

where 	 ~TðnÞ is the lensed anisotropy and 	TðnÞ is the
unlensed one (primordial plus ISW). The deflection angle
is written in terms of the lensing potential �, which is a
weighted integral of the Weyl potential �þ� over the
line of sight:

�ðnÞ ¼
Z ��

0
d�gð�Þ½ð�þ�Þðn; �Þ�: (10)

Here � is the comoving distance from the observer and
gð�Þ ¼ ð�� � �Þ=ð���Þ with �� the distance at the last
scattering surface.

The Weyl potential enters both in the ISW and the
lensing kernel, therefore the two effects are correlated
and they contribute a nonzero third-order statistic in the
CMB, i.e., the L-ISW bispectrum. As usual, it is conve-

nient to consider an expansion in spherical harmonics of
the temperature field:

	T

T
ðnÞ ¼ X1

‘¼2

X‘
m¼�‘

a‘mY‘mðnÞ (11)

as well as of the lensing potential, �ðnÞ ¼P
‘;m�‘mY‘mðnÞ. By Taylor-expanding Eq. (9) in the lens-

ing potential, and applying the above harmonic expan-
sions, one obtains the following relation between the
lensed and unlensed multipole coefficients, (to first order
in the lensing multipoles):

~a‘1m1
� a‘1m1

þ X
‘2m2‘m

f‘1‘2‘a
�
‘2m2

��
‘m

‘1 ‘2 ‘

m1 m2 m

 !
;

(12)

where the coefficient f‘1‘2‘ is given by

f‘1‘2‘ ¼
��‘1ð‘1 þ 1Þ þ ‘2ð‘2 þ 1Þ þ ‘ð‘þ 1Þ

2

�
�‘1‘2‘;

(13)

with

�‘1‘2‘3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

s
‘1 ‘2 ‘3

0 0 0

 !
:

(14)

Then, the angle-averaged CMB bispectrum generated by
the lensing-ISW correlation is given by

B‘1‘2‘3 ¼
X

m1m2m3

‘1 ‘2 ‘3

m1 m2 m3

 !
h~a‘1m1

~a‘2m2
~a‘3m3

i

¼ f‘1‘2‘3C
T�
‘2

CTT
‘3

þ 5 perm . . . ; (15)

where CTT
‘ is the temperature (primordial plus ISW) power

spectrum and CT�
‘ is the cross temperature-lensing angular

power spectrum, CT�
‘ ¼ h��

‘ma‘mi, which depends on the

Weyl potential and its first time-derivative (see e.g.,
Ref. [35]). In deriving (15) we have implicitly assumed
the statistical isotropy of the Universe and have averaged
the three-point correlation function (in harmonic space)
over the orientation of triangles by mean of rotational
invariance. Numerical codes evolving perturbations typi-
cally work with the reduced bispectrum, defined via

B‘1‘2‘3 ¼ �‘1‘2‘3b‘1‘2‘3 : (16)

In Fig. 1 we plot different theoretical predictions forCT�
‘

and the reduced bispectrum b‘1‘2‘3 computed with the

publicly available code MGCAMB [49]. As can be seen,
the L-ISW bispectrum is clearly sensitive to modifications
of gravity and in principle can be used to put constraints on
models of modified gravity. In the next section we describe
the analysis method that we have used to forecast the latter
for Planck-like experiments.
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IV. FUTURE CONSTRAINTS FROM
CMB: METHOD

We shall estimate the potential of upcoming L-ISW bis-
pectrummeasurements fromCMBPlanck-like experiments
to constrain the modified gravity theories described in the
previous section. We perform a likelihood analysis from the
power spectrum, L-ISW bispectrum and their combination
in order to compare the parametrized models of Sec. II to a
fiducial model, chosen to reproduce a �CDM cosmology.
We fix the cosmological parameters according to the
WMAP 7-year data best fit [50] and vary only the parame-
ters entering the parametrizations described in Sec. II.
Spanning over the parameter space, we calculate the power
spectrum and L-ISW bispectrum using MGCAMB and
build the likelihoods as described in the following.

Each theoretical model is then compared to the fiducial
model with a simple �2 function which assumes that the
power spectrum and bispectrum can be safely described as

Gaussian variables [35,38]. For the standard CTT
‘ tempera-

ture anisotropy power spectrum we have

�2
s ¼

X1000
‘

�
CTT;th
‘ � CTT;fid

‘

s
‘

�
2
; (17)

where the uncertainty s is given by

s
‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð2‘þ 1Þ

s
CTT
‘ ; (18)

We do not include any covariance noise matrix in Eq. (18),
effectively assuming s to be cosmic-variance limited up
to ‘ ¼ 1000, which is a good approximation for future
Planck-like experiments.
For the bispectrum we have

�2
b ¼

Xlmax

‘1;‘2;‘3¼2

"
Bth
‘1‘2‘3

� Bfid
‘1‘2‘3

b
‘1‘2‘3

#
2

; (19)

where the sum is over all possible combinations of ‘1, ‘2, ‘3
with (‘1 � ‘2 � ‘3), ‘1 þ ‘2 þ ‘3 even and we set ‘max ¼
1000, which roughly corresponds to the maximum multi-
pole for which the experimental noise of a Planck-like
experiment is fully dominated by cosmic variance (since
at higher multipoles the contamination from foreground
point sources starts to be relevant).
The uncertainty b

‘1‘2‘3
is given by

ðb
‘1‘2‘3

Þ2 ¼ n‘1‘2‘3C
TT
‘1
CTT
‘2
CTT
‘3
; (20)

where n‘1‘2‘3 is 6 for equilateral configurations ð‘1 ¼
‘2 ¼ ‘3Þ, 2 for isoscele ones (with two multipoles equal),
and 1 for the scalene ones (when all the multipoles are
different). There is no noise covariance matrix in the CTT

‘ .

In the analysis we assume a sky coverage of fsky ¼ 0:65.

This very conservative assumption increases the above
variances by a term 1=fsky.

Once the �2 functions are computed, we can build the
separate likelihoods for the power spectrum and bispec-
trum data, respectively:

L s;b ¼ exp

�
��2

s;b

2

�
: (21)

Neglecting the correlation between power spectrum and
bispectrum, we can further combine them in a total like-
lihood as follows:

L c ¼ LsLb ¼ exp

�
��2

b þ �2
s

2

�
: (22)

In the calculation of the likelihood from theCMBangular
power spectrum we do not include the lensing term that is
clearly correlated with L-ISW bispectrum. Furthermore,
when combining the two likelihoods like in (22), we are
neglecting correlations between power spectrum and
bispectrum data that could arise from the large-scale ISW
term. As we will see in the next section this is a good
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FIG. 1. Dependence of the cross temperature-lensing CT�
‘

angular spectra (top panel) and of the reduced bispectrum
(bottom panel) on modified gravity parameters for the different
models considered in the analysis. The solid curves correspond
to �CDM, the dotted and dashed curves to the Linder para-
metrisation with �L ¼ 0:645, the long-dashed curves to an f(R)
model with B0 ¼ 0:42, the short-dashed curves to a Chameleon
model (Cham �1) with �1 ¼ 1:3, B0 ¼ 0:50 s ¼ 2:0, and the
dotted line to a Chameleon model (Cham s) with �1 ¼ 1:3,
B0 ¼ 0:50, s ¼ 3:3.
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approximation since the bispectrumwill constrainmodified
gravity parameters with a much stronger significance than
power spectrum data alone. When computing the bispec-
trum we do not include the nonlinear Rees-Sciama term,
since that would require a modeling of nonlinearities in
modified gravity. The exclusion of the RS term is expected
to affect our results at most by�17%, and therefore should
not change our conclusions to a significant level.We plan to
investigate in a future work the nonlinear RS term in the
framework of modified gravity.

Finally, since we are modeling the (primordial plus
ISW) power spectrum as a Gaussian variable, we are
effectively neglecting any inflationary non-Gaussian sig-
nal; furthermore, we ignore contributions to the bispectrum
from the lensing-Sunyaev-Zel’dovich correlation. Both
signals could anyway be removed exploiting their different
angular dependence (see e.g., Ref. [51]).

For each theoretical model of Sec. II, while keeping the
cosmological parameters fixed to their WMAP 7-year val-
ues, we vary the modified gravity parameter(s) (one at a
time for the models that have more than one parameter),
and compute the power spectrum and the L-ISW reduced
bispectrum with MGCAMB; we then use Eq. (16) to
compute the L-ISW bispectrum from the reduced one.
We also choose a fiducial model, as discussed in the
following, and compute the corresponding power spectrum
and bispectrum. Once a sufficient number of spectra is
calculated, we compute the likelihood profiles and extract
the confidence levels on the parameter of interest.

For each parametrization, we choose a fiducial model
based on a set of parameters that are, for most of the cases,
the parameters that would reduce the cosmology to the
�CDM one. In the case of the Linder model this is
achieved by setting �L ¼ 0:555 [44]. For fðRÞ theories,
B0 ¼ 0 is the value giving � ¼ 1 ¼ �, which are the
values of these functions in �CDM. For chameleon theo-
ries the choice of the fiducial model is more complicated.
Let us start employing the dimensionless parameter B0 (7)
in place of the length-scale 
1, so that the parameters for
these models become ðB0; s; �1Þ. As a matter of fact, we
have three free parameters, no strong theoretical reasons to
fix two of them, and a complete degeneracy among the
parameters when trying to reproduce �CDM, i.e., if we fix
either B0 ¼ 0 or �1 ¼ 1. We therefore proceed by making
a somewhat arbitrary choice on the fiducial model, fixing
�1 ¼ 1, B0 ¼ 0:5, and s ¼ 2when studying the forecasted
constraints on �1 and �1 ¼ 1:3, B0 ¼ 0:5, s ¼ 2 when
studying the forecasted constraints at varying s.

In the case of Linder’s model we evaluate the likelihoods
in the range 0:475 � �L � 0:635, at steps of 0.002 for
values near the fiducial one and at steps of 0.01 for values
near the boundaries. In the case of fðRÞ we explore the
likelihood function in the range 0 � B0 � 0:7, varying B0

at steps of 0.1. In the chameleon case we use a step of 0.01
for �1 and of 0.2 for s.

V. RESULTS & CONSTRAINTS

A. Linder model

In Table I and Fig. 2 we report the forecasted constraints
on �L from the power spectrum, the L-ISW bispectrum and
the combined analyses. As we can see, the power spectrum
and bispectrum data are somewhat complementary: the
CMB bispectrum is more powerful in constraining the �L

parameter in the region of values lower than those of the
fiducial one; on the contrary, the temperature anisotropy
spectrum is more efficient for larger values. The non-
Gaussian shape of the likelihood from the temperature
power spectrum can be easily understood by the fact that
even in the case of a small ISW signal (when �L ! 0) the
angular power spectrum is different from zero and still
provides a reasonable fit to the data. The bispectrum is,
on the contrary, not null only if the ISW is different from
zero and it therefore provides a much more reliable way to
detect it.
As we can see, power spectrum data provides solely an

upper limit for �L, leaving it practically unconstrained on
the lower tail. On the contrary, bispectrum data give a�5%
error on �L. When power spectrum and bispectrum data
are combined there is a substantial improvement in the
measurement.

B. Chameleon models

The forecasted constraints on Chameleon models from
the power spectrum, L-ISW bispectrum, and combined
analyses are reported in Table II and Fig. 3.

TABLE I. Forecasted constraints on �L of Linder model from
the power spectrum (S), bispectrum (B), and combined (C)
analyses.

Fiducial S 95% c.l. B 95% c.l. C 95% c.l.

�L 0.555 þ0:044
�

þ0:060
�0:056

þ0:034
�0:042

 0

 0.1
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 1

 0.45  0.5  0.55  0.6  0.65  0.7

L
ik

el
ih

oo
d

γL

Combined
Spectrum

Bispectrum

FIG. 2. Likelihood distribution function for the growth index
�L (1) from the analysis of power spectrum, bispectrum, and
combined data.
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As for the Linder model, the two data sets are comple-
mentary in constraining the Chameleon parameters. The
simple temperature power spectrum is more powerful in
constraining values of �1 � 0:75, i.e., the lower tail, while
the bispectrum data provide stronger constraints on the
higher tail, where the power spectrum data leave the pa-
rameter practically unconstrained. The same behavior is
seen for the likelihood distribution of the s parameter.
Small values of s (s < 2) can be better constrained by
temperature spectrum data. However, large values of s
are left unconstrained from the temperature spectrum
and, on the contrary, are significantly constrained when
using the bispectrum. This is related, as we already
explained when discussing constraints on �L, to the entity

of the ISW signal in the two tails; namely, the power
spectrum looses constraining power in the parameter range
where the ISW is suppressed and tends to zero.

C. fðRÞ theories
In Table III and Fig. 4 we report the forecasted con-

straints on fðRÞ models from the power spectrum, L-ISW
bispectrum and combined analyses. In this case, the con-
straints coming from the bispectrum are definitely tighter
than the ones from the temperature spectrum. Once again,
this is related to the ISW signal, which is suppressed
with respect to �CDM one for all the values of B0 in the
range 0<B0 < 3=2 (becoming null at B0 ¼ 3=2) [52].
Current constraints from ISW data from CMB-galaxy cor-
relations are of the order of B0 < 0:4 [26]. As we show, the
L-ISW bispectrum can clearly improve CMB constraints
on these theories, tightening the bounds by a factor of six.

VI. COMPARISON WITH CURRENTAND FUTURE
BOUNDS ON MODIFIED GRAVITY

Let us compare our findings with the constraints (existing
and forecasted) that can be found in the literature on the
same models of modified gravity. In Refs. [26] the authors
studied constraints on fðRÞ models from a combination of
current CMB ISW data and luminosity distances from Type
Ia supernovae, obtaining the bound B0 < 0:4 at 68% c.l.
Comparing with our analysis, we can see that the bispectrum
information considered in this paper is expected to give an
improvement of a factor�4. CMB weak lensing detections
that will be performed by the Planck satellite experiment via
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FIG. 3. Likelihood distribution function for Chameleon mod-
els from the power spectrum, bispectrum, and the combined
analyses. The top panel gives the likelihood of the parameter �1

when B0 and s are fixed to B0 ¼ 0:5 s ¼ 2; the bottom panel
gives the likelihood for s when B0 and �1 are fixed to B0 ¼ 0:5
and �1 ¼ 1:3.

TABLE II. Forecasted constraints at 1 standard deviation on
the Chameleon models parameters �1 and s coming from the
analysis of power spectrum (S), bispectrum (B), and combined
(C) datasets.

Fiducial S 68% c.l. B 68% c.l. C 68% c.l.

�1 1.00 þ0:25
�0:17

þ0:10
�0:13

þ0:09
�0:10

s 2.00 þ0:55
�0:17

þ0:42
�0:28

þ0:30
�0:15

TABLE III. Forecasted constraints at 1 standard deviation on
fðRÞ theory parameter B0 coming from the analysis of power
spectrum (S), bispectrum (B), and combined (C) datasets.

Fiducial S 68% c.l. B 68% c.l. C 68% c.l.

B0 0 <0:61 <0:14 <0:10
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FIG. 4. Likelihood distribution function for the parameter B0

describing fðRÞ theories from the analysis of power spectrum,
bispectrum, and combined data.
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measurements of the CMB trispectrum are expected to
bound B0 to the �0:01 level (see e.g., Refs. [27,53]), i.e.,
about one order of magnitude better than the bounds we
forecast in this paper. An indication in the Planck bispectrum
of ISW-Lensing non-Gaussianity should therefore produce a
relevant signal in the trispectrum. Combining bispectrum
and trispectrum analyses could therefore be very helpful in
discriminating from a primordial, inflationary, signal. The
further inclusion of weak lensing data as those expected
from the Euclid satellite experiment will further constrain
B0 by one order of magnitude.

One advantage of the bispectrum data with respect to the
ISW data from cross correlations of CMBmaps with galaxy
surveys will be the independence from the galaxy bias. As
for the CMB trispectrum, it would certainly be useful to
combine the data with that from the CMB bispectrum since
the two data sets depend on different functions of the metric
potentials; the bispectrum depends on the derivative of the
potentials, while the lensing trispectrum only on their sum.
Therefore adding the bispectrum data could help in break-
ing some degeneracies, e.g., the one between the neutrino
mass and modified gravity parameters.

From this discussion, it is clear that the CMB bispectrum
will provide interesting bounds, competitive with those
coming from ISW-galaxy measurements while only mar-
ginally better than the constraints from CMB lensing tris-
pectrum data. In any case, combining the bispectrum data
with other CMB data sets, will definitely help improve the
bounds and break some degeneracies.

VII. CONCLUSIONS

High accuracy temperature maps of the CMB anisotropy
from ongoing and future experiments will provide an
unique opportunity to test non-Gaussianity. While some
of the signal could be primordial, a clear non-Gaussian
signal is expected from the correlation of lensing and the
Integrated Sachs-Wolfe effect. This signal provides a new
test of the cosmological scenario per se, and could further
be used to test alternatives to the cosmological constant in
the context of cosmic acceleration. In this paper we have
considered three different parametrizations of modified
gravity and investigated the improvement in constraining
their parameters by including the signal in the bispectrum
coming from lensing-ISW correlations. We have found that
in the case when all the cosmological parameters are fixed,

the bispectrum signal will be extremely useful providing a
significant improvement in the constraints on modified
theories of gravity. While the forecasted constraints have
been obtained with the assumption of the cosmological
concordance model as the fiducial one, we believe that
our results have little dependence on this choice, since
current data accepts only relatively small deviations from
the standard picture.
Moreover, we have assumed an ideal experiment, cos-

mic variance limited up to ‘� 1000 with a sky fraction
fsky ¼ 0:65. This is a good approximation for an experi-

ment such as Planck, which is expected to be cosmic
variance limited up to ‘� 1500. This amounts to neglect-
ing systematics in the detectors noise, experimental beams
and foreground removal that are present in the real world
and would, to some degree, weaken the constraints pre-
sented in this paper. However, one could for instance
include in the analysis polarization data, (that we have
not considered here), to compensate for the loss of con-
straining power due to systematics.
Finally, while the L-ISW bispectrum signal will be pre-

sumably detected by the Planck satellite mission at about
four standard deviations, the CMB lensing signal will be
detected at much higher statistical significance and could
also provide useful constraints on modified gravity theories
(see e.g., Ref. [54]). However, CMB lensing is not directly
sensitive to time variations in the gravitational potentials,
which instead enters directly in the L-ISW signal.
Measurements of the ISW signal through correlations of
CMB maps with galaxy surveys already provide interesting
constraints on the models presented here [26], however only
a marginal future improvement in this measurement is ex-
pected. As we have shown, the constraints coming from
observations of the L-ISW bispectrum, being sensitive to
both the spatial gradient and the time variation of the Weyl
potential, will be complementary to these other observations,
improving CMB bounds on modified theories of gravity.
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