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We provide a summary of theoretical concepts and results relating to con
vex analysis, convex optimization and duality theory. In particular, we 
selectively list without proofs definitions and propositions of the author’s 
book “Convex Optimization Theory,” Athena Scientific, 2009. The propo
sition numbers have been preserved from this book. 

CHAPTER 1: Basic Concepts of Convex Analysis 

Section 1.1. Convex Sets and Functions 

Definition 1.1.1: A subset C of �n is called convex if 

αx + (1  − α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1]. 

Proposition 1.1.1: 

(a) The intersection ∩i∈I Ci of any collection {Ci | i ∈ I} of convex 
sets is convex. 

(b) The vector sum C1 + C2 of two convex sets C1 and C2 is convex. 

(c) The set λC is convex for any convex set C and scalar λ. Fur
thermore, if C is a convex set and λ1, λ2 are positive scalars, 
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(λ1 + λ2)C = λ1C + λ2C. 

(d) The closure and the interior of a convex set are convex. 

(e) The image and the inverse image of a convex set under an affine 
function are convex. 

A hyperplane is a set of the form {x | a′x = b}, where  a is a nonzero 
vector and b is a scalar. A halfspace is a set specified by a single linear 
inequality, i.e., a set of the form {x | a′x ≤ b}, where  a is a nonzero vector 
and b is a scalar. A set is said to be polyhedral if it is nonempty and it has 
the form {x | a′ x ≤ bj, j  = 1, . . . , r}, where a1, . . . , ar and b1, . . . , br arej 
some vectors in �n and scalars, respectively. A set C is said to be a cone 
if for all x ∈ C and λ >  0, we have λx ∈ C. 

Definition 1.1.2: Let C be a convex subset of �n. We  say  that  a  
function f : C �→ � is convex if 

f αx + (1  − α)y ≤ αf(x) +  (1  − α)f(y), ∀ x, y ∈ C, ∀ α ∈ [0, 1]. 

A convex function f : C � αx + (1  −→ � is called strictly convex if f 
α)y < αf(x) + (1  − α)f(y) for all x, y ∈ C with x =	 y, and  all  α ∈ (0, 1). 
A function f : C �→ �, where  C is a convex set, is called concave if the 
function (−f) is  convex.  

The epigraph of a function f : X � ,∞], where X ⊂ �→ [−∞ n, is  
defined to be the subset of �n+1 given by 

epi(f) =  (x, w) | x ∈ X, w ∈ �, f(x) ≤ w . 

The effective domain of f is defined to be the set 

dom(f) =  x ∈ X | f(x) < ∞ . 

We say that f is proper if f(x) < ∞ for at least one x ∈ X and f(x) > −∞ 
for all x ∈ X , and we say that f improper if it is not proper. 

nDefinition 1.1.3: Let C be a convex subset of � . We say that an 
extended real-valued function f : C � ,∞] is  convex → [−∞ if epi(f) is  
a convex subset of �n+1. 
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Definition 1.1.4: Let C and X be subsets of �n such that C is 
nonempty and convex, and C ⊂ X . We say that an extended real-
valued function f : X �→ [−∞,∞] is  convex over C if f becomes 
convex when the domain of f is restricted to C, i.e., if the function 
f̃ : C �→ [−∞,∞], defined by f̃(x) =  f(x) for all x ∈ C, is  convex.  

We say that a function f : X � [−∞,∞] is  closed if epi(f) is  → a 
closed set. We say that f is lower semicontinuous at a vector x ∈ X if 
f(x) ≤ lim infk→∞ f(xk) for every sequence {xk} ⊂  X with xk → x. We  
say that f is lower semicontinuous if it is lower semicontinuous at each 
point x in its domain X . We  say  that  f is upper semicontinuous if −f is 
lower semicontinuous. 

Proposition 1.1.2: For a function f : �n �→ [−∞,∞], the following 
are equivalent: 

(i) The level set Vγ = 
{ 
x | f(x) ≤ γ 

} 
is closed for every scalar γ. 

(ii) f is lower semicontinuous. 

(iii) epi(f) is  closed.  

Proposition 1.1.3: Let f : X �→ [−∞,∞] be a function. If dom(f) 
is closed and f is lower semicontinuous at each x ∈ dom(f), then f is 
closed. 

Proposition 1.1.4: Let f : �m �→ (−∞,∞] be a given function, let 
A be an m × n matrix, and let F : �n �→ (−∞,∞] be the function 

F (x) =  f(Ax), x ∈ �n . 

If f is convex, then F is also convex, while if f is closed, then F is 
also closed. 

Proposition 1.1.5: Let fi : �n �→ (−∞,∞], i = 1, . . . , m, be  given  
functions, let γ1, . . . , γm be positive scalars, and let F : �n �→ (−∞,∞] 
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be the function 

F (x) =  γ1f1(x) +  · · · + γmfm(x), x ∈ �n . 

If f1, . . . , fm are convex, then F is also convex, while if f1, . . . , fm are 
closed, then F is also closed. 

Proposition 1.1.6: Let fi : �n �→ (−∞,∞] be given functions for 
i ∈ I, where  I is an arbitrary index set, and let f : �n �→ (−∞,∞] be  
the function given by 

f(x) =  sup  
i∈I 

fi(x). 

If fi, i ∈ I, are convex, then f is also convex, while if fi, i ∈ I, are  
closed, then f is also closed. 

Proposition 1.1.7: Let C be a nonempty convex subset of �n and 
let f : �n �→ �  be differentiable over an open set that contains C. 

(a) f is convex over C if and only if 

f(z) ≥ f(x) +  ∇f(x)′(z − x), ∀ x, z ∈ C. 

(b) f is strictly convex over C if and only if the above inequality is 
strict whenever x 	= z. 

Proposition 1.1.8: Let C be a nonempty convex subset of �n and 
let f : �n �→ �  be convex and differentiable over an open set that 
contains C. Then a vector x ∗ ∈ C minimizes f over C if and only if 

∇f(x ∗)′(z − x ∗) ≥ 0, ∀ z ∈ C. 

Proposition 1.1.9: (Projection Theorem) Let C be a nonempty 
closed convex subset of �n, and  let  z be a vector in �n. There  exists  
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a unique vector that minimizes ‖z−x‖ over x ∈ C, called the projection 
of z on C. Furthermore, a vector x ∗ is the projection of z on C if and 
only if 

(z − x ∗)′(x − x ∗) ≤ 0, ∀ x ∈ C. 

Proposition 1.1.10: Let C be a nonempty convex subset of �n and 
let f : � �n → �  be twice continuously differentiable over an open set 
that contains C. 

(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then  f is convex 
over C. 

(b) If	 ∇2f(x) is positive definite for all x ∈ C, then  f is strictly 
convex over C. 

(c) If	 C is open and f is convex over C, then  ∇2f(x) is positive 
semidefinite for all x ∈ C. 

Section 1.2. Convex and Affine Hulls 

The convex hull of a set X , denoted conv(X), is the intersection of all 
convex sets containing X . A  convex combination of elements of X is a 

mvector of the form i=1 αixi, where  m is a positive integer, x1, . . . , xm 

belong to X , and  α1, . . . , αm are scalars such that 

m 

αi ≥ 0, i = 1, . . . , m,  αi = 1. 
i=1 

The convex hull conv(X) is equal to the set of all convex combinations of 
elements of X . Also,  for  any  set  S and linear transformation A, we  have  
conv(AS) =  A conv(S). From this it follows that for any sets S1, . . . , Sm, 
we have conv(S1 + · · · + Sm) =  conv(S1) +  · · · + conv(Sm). 

If X is a subset of �n, the  affine hull of X , denoted aff(X), is the 
intersection of all affine sets containing X . Note  that  aff(X) is  itself  an  
affine set and that it contains conv(X). The dimension of aff(X) is defined 
to be the dimension of the subspace parallel to aff(X). It can be shown that 
aff(X) = aff  conv(X) = aff  cl(X) . For a convex set C, the  dimension of 
C is defined to be the dimension of aff(C). 

Given a nonempty subset X of �n, a  nonnegative combination of 
elements of X is a vector of the form m

i=1 αixi, where  m is a positive 
integer, x1, . . . , xm belong to X , and  α1, . . . , αm are nonnegative scalars. If 

m
the scalars αi are all positive, i=1 αixi is said to be a positive combination. 

5 



The cone generated by X , denoted cone(X), is the set of all nonnegative 
combinations of elements of X . 

Proposition 1.2.1: (Caratheodory’s Theorem) Let X be a non-
empty subset of �n. 

(a) Every nonzero vector from cone(X) can be represented as a pos
itive combination of linearly independent vectors from X . 

(b) Every vector from conv(X) can be represented as a convex com
bination of no more than n + 1 vectors from X . 

Proposition 1.2.2: The convex hull of a compact set is compact. 

Section 1.3. Relative Interior and Closure 

Let C be a nonempty convex set. We say that x is a relative interior point 
of C if x ∈ C and there exists an open sphere S centered at x such that 
S ∩ aff(C) ⊂ C, i.e., x is an interior point of C relative to the affine hull of 
C. The set of all relative interior points of C is called the relative interior 
of C, and is denoted by ri(C). The set C is said to be relatively open if 
ri(C) =  C. The vectors in cl(C) that are not relative interior points are 
said to be relative boundary points of C, and their collection is called the 
relative boundary of C. 

Proposition 1.3.1: (Line Segment Principle) Let C be a nonempty 
convex set. If x ∈ ri(C) and  x ∈ cl(C), then all points on the line seg
ment connecting x and x, except possibly x,  belong to ri(C). 

Proposition 1.3.2: (Nonemptiness of Relative Interior) Let C 
be a nonempty convex set. Then: 

(a) ri(C) is a nonempty convex set, and has the same affine hull as 
C. 

(b) If m is the dimension of aff(C) and  m >  0, there exist vectors 
x0, x1, . . . , xm ∈ ri(C) such that x1 − x0, . . . , xm − x0 span the 
subspace parallel to aff(C). 
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Proposition 1.3.3: (Prolongation Lemma) Let C be a nonempty 
convex set. A vector x is a relative interior point of C if and only if 
every line segment in C having x as one endpoint can be prolonged 
beyond x without leaving C [i.e., for every x ∈ C, there  exists  a  γ > 0 
such that x + γ(x − x) ∈ C]. 

Proposition 1.3.4: Let X be a nonempty convex subset of �n, let  
f : X �→ � be a concave function, and let X∗ be the set of vectors 
where f attains a minimum over X , i.e., 

X∗ = 

{ 

x ∗ ∈ X 
∣ ∣ ∣ f(x ∗) =  inf  

x∈X 
f(x) 

} 

. 

If X∗ contains a relative interior point of X , then  f must be constant 
over X , i.e., X∗ = X . 

Proposition 1.3.5: Let C be a nonempty convex set. 

(a) cl(C) = cl  
( 
ri(C) 

) 
. 

(b) ri(C) =  ri  
( 
cl(C) 

) 
. 

(c) Let C be another nonempty convex set. Then the following three 
conditions are equivalent: 

(i) C and C have the same relative interior. 

(ii) C and C have the same closure. 

(iii) ri(C) ⊂ C ⊂ cl(C). 

Proposition 1.3.6: Let C be a nonempty convex subset of �n and 
let A be an m × n matrix. 

(a) We have A · ri(C) =  ri(A · C). 

(b) We have A · cl(C) ⊂ cl(A · C). Furthermore, if C is bounded, 
then A · cl(C) =  cl(A · C). 
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Proposition 1.3.7: Let C1 and C2 be nonempty convex sets. We 
have 

ri(C1 + C2) =  ri(C1) + ri(C2), cl(C1) + cl(C2) ⊂ cl(C1 + C2). 

Furthermore, if at least one of the sets C1 and C2 is bounded, then 

cl(C1) +  cl(C2) =  cl(C1 + C2). 

Proposition 1.3.8: Let C1 and C2 be nonempty convex sets. We 
have 

ri(C1) ∩ ri(C2) ⊂ ri(C1 ∩ C2), cl(C1 ∩ C2) ⊂ cl(C1) ∩ cl(C2). 

Furthermore, if the sets ri(C1) and  ri(C2) have a nonempty intersec
tion, then 

ri(C1 ∩ C2) =  ri(C1) ∩ ri(C2), cl(C1 ∩ C2) =  cl(C1) ∩ cl(C2). 

Proposition 1.3.9: Let C be a nonempty convex subset of �m, and  
let A be an m × n matrix. If A−1 · ri(C) is nonempty, then 

ri(A−1 · C) =  A−1 · ri(C), cl(A−1 · C) =  A−1 · cl(C), 

where A−1 denotes inverse image of the corresponding set under A. 

Proposition 1.3.10: Let C be a convex subset of �n+m. For  x ∈ �n, 
denote 

Cx = {y | (x, y) ∈ C}, 
and let 

D = {x | Cx 	= Ø}. 
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Then 
ri(C) =  

{ 
(x, y) | x ∈ ri(D), y  ∈ ri(Cx) 

} 
. 

Proposition 1.3.11: If f : �n �→ �  is convex, then it is continuous. 
More generally, if f : �n �→ (−∞, ∞] is a proper convex function, 
then f , restricted to dom(f), is continuous over the relative interior of 
dom(f). 

Proposition 1.3.12: If C is a closed interval of the real line, and 
f : C �→ �  is closed and convex, then f is continuous over C. 

The closure of the epigraph of a function f : X �→ [−∞, ∞] can  be  
seen to be a legitimate epigraph of another function. This function, called 
the closure of f and denoted cl f : �n �→ [−∞, ∞], is given by 

(cl f)(x) = inf  w | (x, w) ∈ cl epi(f) , x ∈ �n. 

The closure of the convex hull of the epigraph of f is the epigraph of some 
function, denoted cľ f called the convex closure of f . It can be seen that 
cľ f is the closure of the function F : �n �→ [−∞, ∞] given  by  

F (x) = inf  w | (x, w) ∈ conv epi(f) , x ∈ �n . (B.0) 

It is easily shown that F is convex, but it need not be closed and its 
domain may be strictly contained in dom(cľ f) (it can be seen though that 
the closures of the domains of F and cľ f coincide). 

Proposition 1.3.13: Let f : X �→ [−∞, ∞] be a function. Then 

inf 
x∈X 

f(x) =  inf  
x∈X 

(cl f)(x) =  inf  
x∈�n 

(cl f)(x) =  inf  
x∈�n 

F (x) =  inf  
x∈�n 

(čl f)(x), 

where F is given by Eq. (B.0). Furthermore, any vector that attains 
the infimum of f over X also attains the infimum of cl f , F , and  ̌cl f . 
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Proposition 1.3.14: Let f : �n �→ [−∞,∞] be a function. 

(a) cl f is the greatest closed function majorized by f , i.e., if g : 
�n �→ [−∞,∞] is closed and satisfies g(x) ≤ f(x) for all x ∈ �n , 
then g(x) ≤ (cl f)(x) for all x ∈ �n. 

(b) čl f is the greatest closed and convex function majorized by f , 
i.e., if g : �n �→ [−∞,∞] is closed and convex, and satisfies 
g(x) ≤ f(x) for all x ∈ �n, then  g(x) ≤ (čl f)(x) for all x ∈ �n . 

Proposition 1.3.15: Let f : �n �→ [−∞,∞] be a convex function. 
Then: 

(a) We have 

cl 
( 
dom(f) 

) 
= cl  

( 
dom(cl f) 

) 
, ri 

( 
dom(f) 

) 
= ri  

( 
dom(cl f) 

) 
, 

(cl f)(x) =  f(x), ∀ x ∈ ri 
( 
dom(f) 

) 
. 

Furthermore, cl f is proper if and only if f is proper. 

(b) If x ∈ ri 
( 
dom(f) 

) 
, we  have  

(cl f)(y) = lim 
α↓0 

f 
( 
y + α(x − y) 

) 
, ∀ y ∈ �n . 

Proposition 1.3.16: Let f : �m �→ [−∞,∞] be a convex function 
and A be an m × n matrix such that the range of A contains a point 
in ri 

( 
dom(f) 

) 
. The function F defined by 

F (x) =  f(Ax), 

is convex and 

(cl F )(x) = (cl  f)(Ax), ∀ x ∈ �n. 

Proposition 1.3.17: Let fi : �n �→ [−∞,∞], i = 1, . . . , m, be  con
vex functions such that 
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i=1ri 

( 
dom(fi) 

) 	= Ø. 

The function F defined by 

F (x) =  f1(x) +  · · · + fm(x), 

is convex and 

(cl F )(x) = (cl  f1)(x) +  · · · + (cl  fm)(x), ∀ x ∈ �n. 

Section 1.4. Recession Cones 

Given a nonempty convex set C, we say that a vector d is a direction of 
recession of C if x + αd ∈ C for all x ∈ C and α ≥ 0. The set of all 
directions of recession is a cone containing the origin, called the recession 
cone of C, and denoted by RC . 

Proposition 1.4.1: (Recession Cone Theorem) Let C be a nonem
pty closed convex set. 

(a) The recession cone RC is closed and convex. 

(b) A vector d belongs to RC if and only if there exists a vector 
x ∈ C such that x + αd ∈ C for all α ≥ 0. 

Proposition 1.4.2: (Properties of Recession Cones) Let C be 
a nonempty closed convex set. 

(a) RC contains a nonzero direction if and only if C is unbounded. 

(b) RC = Rri(C). 

(c) For any collection of closed convex sets Ci, i ∈ I, where  I is an 
arbitrary index set and ∩i∈I Ci 	= Ø, we  have  

R∩i∈I Ci = ∩i∈I RCi . 

(d) Let W be a compact and convex subset of �m, and  let  A be an 
m × n matrix. The recession cone of the set 
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V = {x ∈ C | Ax ∈ W } 

(assuming this set is nonempty) is RC ∩ N(A), where N(A) is  the  
nullspace of A. 

Given a convex set C the lineality space of C, denoted by LC , is  the  
set of directions of recession d whose opposite, −d, are also directions of 
recession: 

LC = RC ∩ (−RC ). 

Proposition 1.4.3: (Properties of Lineality Space) Let C be a 
nonempty closed convex subset of �n . 

(a) LC is a subspace of �n . 

(b) LC = Lri(C). 

(c) For any collection of closed convex sets Ci, i ∈ I, where  I is an 
arbitrary index set and ∩i∈I Ci 	= Ø, we  have  

L∩i∈I Ci = ∩i∈I LCi . 

(d) Let W be a compact and convex subset of �m, and  let  A be an 
m × n matrix. The lineality space of the set 

V = {x ∈ C | Ax ∈ W } 

(assuming it is nonempty) is LC ∩ N(A), where N(A) is  the  
nullspace of A. 

Proposition 1.4.4: (Decomposition of a Convex Set) Let C be 
a nonempty convex subset of �n. Then, for every subspace S that is 
contained in the lineality space LC , we  have  

C = S + (C ∩ S⊥). 

The notion of direction of recession of a convex function f can be 
described in terms of its epigraph via the following proposition. 
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Proposition 1.4.5: Let f : �n →� (−∞, ∞] be a closed proper convex 
function and consider the level sets 

Vγ = x | f(x) ≤ γ , γ ∈ �. 

Then: 

(a) All the	 nonempty level sets Vγ have the same recession cone, 
denoted Rf , and  given  by  

Rf = d | (d, 0) ∈ Repi(f) , 

where Repi(f) is the recession cone of the epigraph of f . 

(b) If one nonempty level set Vγ is compact, then all of these level 
sets are compact. 

For a closed proper convex function f : �n �→ (−∞, ∞], the (com
mon) recession cone Rf of the nonempty level sets is called the recession 
cone of f . A vector d ∈ Rf is called a direction of recession of f . 

The lineality space of the recession cone Rf of a closed proper convex 
function f is denoted by Lf , and is the subspace of all d ∈ �n such that 
both d and −d are directions of recession of f , i.e., 

Lf = Rf ∩ (−Rf ). 

We have that d ∈ Lf if and only if 

f(x + αd) =  f(x), ∀ x ∈ dom(f), ∀ α ∈ �. 

Consequently, any d ∈ Lf is called a direction in which f is constant , and  
Lf is called the constancy space of f . 

Proposition 1.4.6: Let f : �n →� (−∞, ∞] be a closed proper convex 
function. Then the recession cone and constancy space of f are given 
in terms of its recession function by 

Rf = d | rf (d) ≤ 0 , Lf = d | rf (d) =  rf (−d) = 0  . 
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Proposition 1.4.7: Let f : �n →� (−∞,∞] be a closed proper convex 
nfunction. Then, for all x ∈ dom(f) and  d ∈ � , 

f(x + αd) − f(x) f(x + αd) − f(x) 
rf (d) = sup  = lim . 

α→∞α>0 α α 

Proposition 1.4.8: (Recession Function of a Sum) Let fi : 
n → (−∞,∞], i = 1, . . . , m, be closed proper convex functions such 

that the function f = f1 + · · · + fm is proper. Then 

rf (d) =  rf1 (d) +  · · · + rfm (d), ∀ d ∈ �n . 

nA sequence of nonempty closed sets {Ck} in � with Ck+1 ⊂ Ck for 
all k (such a sequence is said to be nested . We are concerned with the 
question whether ∩∞ 

k=0Ck is nonempty. 

Definition 1.4.1: Let {Ck} be a nested sequence of nonempty closed 
convex sets. We say that {xk} is an asymptotic sequence of {Ck} if 
xk 	 for all k, and  = 0,  xk ∈ Ck 

xk d ‖xk‖ → ∞, → ,‖xk‖ ‖d‖

where d is some nonzero common direction of recession of the sets Ck, 

d 	 d ∈ ∩∞ 
k=0 .= 0, RCk 

A special case is when all the sets Ck are equal. In particular, for 
a nonempty closed convex C, we  say  that  {xk} ⊂  C is an asymptotic 
sequence of C if {xk} is asymptotic for the sequence {Ck}, where  Ck ≡ C. 

Given any unbounded sequence {xk} such that xk ∈ Ck for each k, 
there exists a subsequence {xk}k∈K that is asymptotic for the corresponding 
subsequence {Ck}k∈K. In fact, any limit point of xk/‖xk‖ is a common 
direction of recession of the sets Ck. 

14 



Definition 1.4.2: Let {Ck} be a nested sequence of nonempty closed 
convex sets. We say that an asymptotic sequence {xk} is retractive if 
for the direction d corresponding to {xk} as per Definition 1.4.1, there 
exists an index k such that 

xk − d ∈ Ck, ∀ k ≥ k. 

We say that the sequence {Ck} is retractive if all its asymptotic se
quences are retractive. In the special case Ck ≡ C, we  say  that  the set 
C is retractive if all its asymptotic sequences are retractive. 

A closed halfspace is retractive. Intersections and Cartesian products 
(involving a finite number of sets) preserve retractiveness. In particular, if 
{C1}, . . . , {Cr} are retractive nested sequences of nonempty closed convex k k 
sets, the sequences {Nk} and {Tk} are retractive, where 

Nk = Ck 
1 ∩ Ck 

2 ∩ · · · ∩ Ck
r , Tk = Ck 

1 × Ck 
2 × · · · × Ck

r , ∀ k, 

and we assume that all the sets Nk are nonempty. A simple consequence 
is that a polyhedral set is retractive, since it is the nonempty intersection 
of a finite number of closed halfspaces. 

Proposition 1.4.9: A polyhedral set is retractive. 

The importance of retractive sequences is motivated by the following 
proposition. 

Proposition 1.4.10: A retractive nested sequence of nonempty closed 
convex sets has nonempty intersection. 

Proposition 1.4.11: Let {Ck} be a nested sequence of nonempty 
closed convex sets. Denote 

R = ∩∞ 
k=0RCk , L = ∩∞ 

k=0LCk . 

(a) If R = L, then  {Ck} is retractive, and ∩∞ 
k=0 Ck is nonempty. 

Furthermore, 
∩∞ 

k=0Ck = L + C̃, 
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where C̃ is some nonempty and compact set. 

(b) Let X be a retractive closed convex set. Assume that all the sets 
Ck = X ∩ Ck are nonempty, and that 

RX ∩ R ⊂ L.


Then, {Ck} is retractive, and ∩∞ 
k=0 Ck is nonempty.


Proposition 1.4.12: (Existence of Solutions of Convex Quad
ratic Programs) Let Q be a symmetric positive semidefinite n × n 
matrix, let c and a1, . . . , ar be vectors in �n, and  let  b1, . . . , br be 
scalars. Assume that the optimal value of the problem 

minimize x′Qx + c′x


subject to aj 
′ x ≤ bj , j  = 1, . . . , r, 


is finite. Then the problem has at least one optimal solution. 

The conditions of Prop. 1.4.11 can be translated to conditions guar
anteeing the closedness of the image, AC, of a closed convex set C under 
a linear transformation A. 

Proposition 1.4.13: Let X and C be nonempty closed convex sets 
in �n, and  let  A be an m×n matrix with nullspace denoted by N(A). 
If X is a retractive closed convex set and 

RX ∩ RC ∩ N(A) ⊂ LC , 

then A(X ∩ C) is a closed set. 

A special case is the following. 

Proposition 1.4.14: Let C1, . . . , Cm be nonempty closed convex sub
sets of �n such that the equality d1 + · · · + dm = 0 for some vectors 
di ∈ RCi implies that di ∈ LCi for all i = 1, . . . , m. Then  C1 + · · ·+Cm 

is a closed set. 

When specialized to just two sets, the above proposition implies that 
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if C1 and −C2 are closed convex sets, then C1 − C2 is closed if there is no 
common nonzero direction of recession of C1 and C2, i.e. 

RC1 ∩ RC2 = {0}. 

This is true in particular if either C1 or C2 is bounded, in which case either 
RC1 = {0} or RC2 = {0}, respectively. 

Some other conditions asserting the closedness of vector sums can be 
derived from Prop. 1.4.13. For example, we can show that the vector sum 
of a finite number of polyhedral sets is closed, since it can be viewed as the 
image of their Cartesian product (clearly a polyhedral set) under a linear 
transformation . Another useful result is that if X is a polyhedral set, and 
C is a closed convex set, then X + C is closed if every direction of recession 
of X whose opposite is a direction of recession of C lies also in the lineality 
space of C. 

Section 1.5. Hyperplanes 

A hyperplane in �n is a set of the form {x | a′x = b}, where  a is nonzero 
vector in �n and b is a scalar. The sets 

{x | a′x ≥ b}, {x | a′x ≤ b}, 

are called the closed halfspaces associated with the hyperplane (also referred 
to as the positive and negative halfspaces , respectively). The sets 

{x | a′x > b}, {x | a′x < b}, 

are called the open halfspaces associated with the hyperplane. 

Proposition 1.5.1: (Supporting Hyperplane Theorem) Let C 
be a nonempty convex subset of �n and let x be a vector in �n. If  
x is not an interior point of C, there exists a hyperplane that passes 
through x and contains C in one of its closed halfspaces, i.e., there 
exists a vector a 	= 0  such  that  

a′x ≤ a′x, ∀ x ∈ C. 

Proposition 1.5.2: (Separating Hyperplane Theorem) Let C1 

and C2 be two nonempty convex subsets of �n. If  C1 and C2 are 
disjoint, there exists a hyperplane that separates them, i.e., there exists 
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a vector a 	= 0  such  that  

a′x1 ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2. 

Proposition 1.5.3: (Strict Separation Theorem) Let C1 and 
C2 be two disjoint nonempty convex sets. There exists a hyperplane 
that strictly separates C1 and C2 under any one of the following five 
conditions: 

(1) C2 − C1 is closed. 

(2) C1 is closed and C2 is compact. 

(3) C1 and C2 are polyhedral. 

(4) C1 and C2 are closed, and 

RC1 ∩ RC2 = LC1 ∩ LC2 , 

where RCi and LCi denote the recession cone and the lineality 
space of Ci, i = 1, 2. 

(5) C1 is closed, C2 is polyhedral, and RC1 ∩ RC2 ⊂ LC1 . 

The notion of direction of recession of a convex function f can be 
described in terms of its epigraph via the following proposition. 

Proposition 1.5.4: The closure of the convex hull of a set C is the 
intersection of the closed halfspaces that contain C. In  particular,  
a closed convex set is the intersection of the closed halfspaces that 
contain it. 

Let C1 and C2 be two subsets of �n . We say that a hyperplane 
properly separates C1 and C2 if it separates C1 and C2, and does not fully 
contain both C1 and C2. If  C is a subset of �n and x is a vector in �n, we  
say that a hyperplane properly separates C and x if it properly separates 
C and the singleton set {x}. 
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Proposition 1.5.5: (Proper Separation Theorem) Let C be a 
nnonempty convex subset of � and let x be a vector in �n. There  

exists a hyperplane that properly separates C and x if and only if 
∈ ri(C).x /

Proposition 1.5.6: (Proper Separation of Two Convex Sets) 
Let C1 and C2 be two nonempty convex subsets of �n. There  exists  a  
hyperplane that properly separates C1 and C2 if and only if 

ri(C1) ∩ ri(C2) =  Ø. 

Proposition 1.5.7: (Polyhedral Proper Separation Theorem) 
nLet C and P be two nonempty convex subsets of � such that P is 

polyhedral. There exists a hyperplane that separates C and P , and  
does not contain C if and only if 

ri(C) ∩ P = Ø. 

Consider hyperplanes in �n+1 and associate them with nonzero vec
ntors of the form (μ, β), where μ ∈ � and β ∈ �. We  say  that  such  a  

hyperplane is vertical if β = 0.  

Proposition 1.5.8: (Nonvertical Hyperplane Theorem) Let C 
be a nonempty convex subset of �n+1 that contains no vertical lines. 
Let the vectors in �n+1 be denoted by (u, w), where u ∈ �n and 
w ∈ �. Then: 

(a)	 C is contained in a closed halfspace corresponding to a nonverti
cal hyperplane, i.e., there exist a vector μ ∈ �n, a scalar β = 0,  	
and a scalar γ such that 

μ′u + βw ≥ γ, ∀ (u, w) ∈ C. 
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(b) If (u, w) does  not  belong  to  cl(C), there exists a nonvertical hy
perplane strictly separating (u, w) and  C. 

Section 1.6. Conjugate Functions 

Consider an extended real-valued function f : �n � , ∞]. The conju→ [−∞
gate function of f is the function f� : � � , ∞] defined by n → [−∞

nf�(y) =  sup  x′y − f(x) , y ∈ � . (B.1) 
x∈�n 

Proposition 1.6.1: (Conjugacy Theorem) Let f : �n �→ [−∞, ∞] 
be a function, let f� be its conjugate, and consider the double conju
gate f��. Then: 

(a) We have 
f(x) ≥ f��(x), ∀ x ∈ �n . 

(b) If f is convex, then properness of any one of the functions f , f�, 
and f�� implies properness of the other two. 

(c) If f is closed proper convex, then 

f(x) =  f��(x), ∀ x ∈ �n. 

(d) The conjugates of f and its convex closure čl f are equal. Fur
thermore, if čl f is proper, then 

(čl f)(x) =  f��(x), ∀ x ∈ �n . 

Given a nonempty set X , consider the indicator function of X , defined 
by 

0  if  x ∈ X ,
δX (x) =  ∞ if x /∈ X . 

The conjugate of δX is given by 

σX (y) =  sup  y′x 
x∈X 

and is called the support function of X . 
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Let C be a convex cone. The conjugate of its indicator function δC 

is its support function, 

σC (y) =  sup  y′x. 
x∈C 

The support/conjugate function σC is the indicator function δC∗ of the 
cone 

C∗ = {y | y′x ≤ 0, ∀ x ∈ C}, 

called the polar cone of C. By the Conjugacy Theorem [Prop. 1.6.1(c)] C∗ 

is equal to cl δC . Thus  the  polar  cone  of  C∗ is cl(C). In particular, if C is 
closed, the polar of its polar is equal to the original. This is a special case 
of the Polar Cone Theorem, given in Section 2.2. 

CHAPTER 2: Basic Concepts of Polyhedral Convexity 

Section 2.1. Extreme Points 

In this chapter, we discuss polyhedral sets, i.e., nonempty sets specified by 
systems of a finite number of affine inequalities 

aj 
′ x ≤ bj, j = 1, . . . , r,  

where a1, . . . , ar are vectors in �n, and  b1, . . . , br are scalars. 
Given a nonempty convex set C, a vector x ∈ C is said to be an 

extreme point of C if it does not lie strictly between the endpoints of any 
line segment contained in the set, i.e., if there do not exist vectors y ∈ C 
and z ∈ C, with  y 	 x and z = x, and  a  scalar  α ∈ (0, 1) such that 
x = αy + (1  − α)z. 

Proposition 2.1.1: Let C be a convex subset of �n, and  let  H be a 
hyperplane that contains C in one of its closed halfspaces. Then the 
extreme points of C ∩ H are precisely the extreme points of C that 
belong to H . 

nProposition 2.1.2: A nonempty closed convex subset of � has at 
least one extreme point if and only if it does not contain a line, i.e., 
a set of the form {x + αd | α ∈ �}, where  x and d are vectors in �n 

with d 	= 0.  
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Proposition 2.1.3: Let C be a nonempty closed convex subset of �n. 
Assume that for some m×n matrix A of rank n and some b ∈ �m, we  
have 

Ax ≥ b, ∀ x ∈ C. 

Then C has at least one extreme point. 

Proposition 2.1.4: Let P be a polyhedral subset of �n . 

(a) If P has the form 

P = 
{ 
x | a′ 

j x ≤ bj , j  = 1, . . . , r  
} 
, 

where aj ∈ �n, bj ∈ �, j = 1, . . . , r, then a vector v ∈ P is an 
extreme point of P if and only if the set 

Av = 
{ 
aj | a′ 

j v = bj , j  ∈ {1, . . . , r} 
} 

contains n linearly independent vectors. 

(b) If P has the form 

P = {x | Ax = b, x ≥ 0}, 

where A is an m × n matrix and b is a vector in �m, then  a  
vector v ∈ P is an extreme point of P if and only if the columns 
of A corresponding to the nonzero coordinates of v are linearly 
independent. 

(c) If P has the form 

P = {x | Ax = b, c ≤ x ≤ d}, 

where A is an m × n matrix, b is a vector in �m, and  c, d are 
vectors in �n, then a vector v ∈ P is an extreme point of P if 
and only if the columns of A corresponding to the coordinates 
of v that lie strictly between the corresponding coordinates of c 
and d are linearly independent. 

Proposition 2.1.5: A polyhedral set in �n of the form 
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{ 
x | a′ 

j x ≤ bj , j  = 1, . . . , r  
} 

has an extreme point if and only if the set {aj | j = 1, . . . , r} contains 
n linearly independent vectors. 

Section 2.2. Polar Cones 

We return to the notion of polar cone of nonempty set C, denoted by C∗ , 
and given by 

C∗ = {y | y′x ≤ 0, ∀ x ∈ C}. 

Proposition 2.2.1: 

(a) For any nonempty set C, we  have  

C∗ = 
( 
cl(C) 

)∗ 
= 

( 
conv(C) 

)∗ 
= 

( 
cone(C) 

)∗ 
. 

(b) (Polar Cone Theorem) For any nonempty cone C, we  have  

(C∗)∗ = cl  
( 
conv(C) 

) 
. 

In particular, if C is closed and convex, we have (C∗)∗ = C. 

Section 2.3. Polyhedral Sets and Functions 

We recall that a polyhedral cone C ⊂ �n has the form 

C = {x | a′ 
j x ≤ 0, j  = 1, . . . , r}, 

where a1, . . . , ar are some vectors in �n, and  r is a positive integer. We 
nsay that a cone C ⊂ � is finitely generated , if it is generated by a finite 

set of vectors, i.e., if it has the form ⎧ ⎫ 
r ⎨ ∣ ⎬ ∑ ( ) ∣

C = cone  { } μj aj, μj ≥ 0, j  = 1, . . . , r  a1, . . . , ar = x ∣ x = , ⎩ ⎭ 
j=1 

where a1, . . . , ar are some vectors in �n, and  r is a positive integer. 

Proposition 2.3.1: (Farkas’ Lemma) Let a1, . . . , ar be vectors in 
�n . Then, {x | a′ 

j x ≤ 0, j  = 1, . . . , r} and cone 
( {a1, . . . , ar} 

) 
are 

closed cones that are polar to each other. 
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Proposition 2.3.2: (Minkowski-Weyl Theorem) A cone is poly
hedral if and only if it is finitely generated. 

Proposition 2.3.3: (Minkowski-Weyl Representation) A set  P 
is polyhedral if and only if there is a nonempty finite set {v1, . . . , vm}
and a finitely generated cone C such that P = conv  

( {v1, . . . , vm} 
) 
+C, 

i.e., 

P = 

⎧ ⎨ 

⎩ 
x 

∣ ∣ ∣ x = 
m ∑ 

j=1 

μj vj + y, 
m ∑ 

j=1 

μj = 1, μj ≥ 0, j  = 1, . . . , m,  y  ∈ C 

⎫ ⎬ 

⎭ 
. 

Proposition 2.3.4: (Algebraic Operations on Polyhedral Sets) 

(a) The intersection of polyhedral sets is polyhedral, if it is nonempty. 

(b) The Cartesian product of polyhedral sets is polyhedral. 

(c) The image of a polyhedral set under a linear transformation is a 
polyhedral set. 

(d) The vector sum of two polyhedral sets is polyhedral. 

(e) The inverse image of a polyhedral set under a linear transforma
tion is polyhedral. 

We say that a function f : �n �→ (−∞,∞] is  polyhedral if its epigraph 
is a polyhedral set in �n+1 . Note that a polyhedral function f is, by 
definition, closed, convex, and also proper [since f cannot take the value 
−∞, and  epi(f) is closed, convex, and nonempty (based on our convention 
that only nonempty sets can be polyhedral)]. 

Proposition 2.3.5: Let f : �n �→ (−∞,∞] be a convex function. 
Then f is polyhedral if and only if dom(f) is a polyhedral set and 

f(x) =  max  
j=1,...,m

{a′ 
jx + bj }, ∀ x ∈ dom(f), 

where aj are vectors in �n , bj are scalars, and m is a positive integer. 
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Proposition 2.3.6: The sum of two polyhedral functions f1 and f2, 
such that dom(f1) ∩ dom(f2) 	= Ø, is a polyhedral function. 

Proposition 2.3.7: If A is a matrix and g is a polyhedral function 
such that dom(g) contains a point in the range of A, the function f 
given by f(x) =  g(Ax) is  polyhedral.  

Section 2.4. Polyhedral Aspects of Optimization 

Polyhedral convexity plays a very important role in optimization. The 
following are two basic results related to linear programming, the mini
mization of a linear function over a polyhedral set. 

Proposition 2.4.1: Let C be a closed convex subset of �n that has 
at least one extreme point. A concave function f : C �→ �  that attains 
a minimum over C attains the minimum at some extreme point of C. 

Proposition 2.4.2: (Fundamental Theorem of Linear Pro
gramming) Let P be a polyhedral set that has at least one extreme 
point. A linear function that is bounded below over P attains a mini
mum  at some extreme  point of  P . 

CHAPTER 3: Basic Concepts of Convex Optimization 

Section 3.1. Constrained Optimization 

Let us consider the problem 

minimize f(x) 

subject to x ∈ X, 

where f : �n �→ (−∞, ∞] is a function and X is a nonempty subset of 
�n . Any vector x ∈ X ∩ dom(f) is  said  to  be a  feasible solution of the 
problem (we also use the terms feasible vector or feasible point). If there 
is at least one feasible solution, i.e., X ∩ dom(f) 	 Ø,= we say that the 

25 



problem is feasible; otherwise we say that the problem is infeasible. Thus,  
when f is extended real-valued, we view only the points in X ∩ dom(f) as  
candidates for optimality, and we view dom(f) as an implicit constraint set. 
Furthermore, feasibility of the problem is equivalent to infx∈X f(x) < ∞. 

We say that a vector x ∗ is a minimum of f over X if 

x ∗ ∈ X ∩ dom(f), and f(x ∗) =  inf  f(x). 
x∈X 

We also call x ∗ a minimizing point or minimizer or global minimum of f 
over X . Alternatively, we say that f attains a minimum over X at x ∗, and  
we indicate this by writing 

x ∗ ∈ arg min f(x). 
x∈X 

If x ∗ is known to be the unique minimizer of f over X , with slight abuse 
of notation, we also write 

x ∗ = arg  min  f(x). 
x∈X 

We use similar terminology for maxima. 
Given a subset X of �n and a function f : �n →� (−∞,∞], we say 

that a vector x ∗ is a local minimum of f over X if x ∗ ∈ X ∩ dom(f) and  
there exists some ε > 0 such that 

f(x ∗) ≤ f(x), ∀ x ∈ X with ‖x − x ∗‖ < ε.  

A local  minimum  x ∗ is said to be strict if there is no other local mini
mum within some open sphere centered at x ∗ . Local maxima are defined 
similarly. 

Proposition 3.1.1: If X is a convex subset of �n �and f : �n → 
(−∞,∞] is a convex function, then a local minimum of f over X is 
also a global minimum. If in addition f is strictly convex, then there 
exists at most one global minimum of f over X . 

3.2. Existence of Optimal Solutions 

Proposition 3.2.1: (Weierstrass’ Theorem) Consider a closed 
proper function f : �n �→ (−∞,∞], and assume that any one of the 
following three conditions holds: 

(1) dom(f) is bounded. 
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(2) There exists a scalar γ such that the level set 

{ 
x | f(x) ≤ γ 

} 

is nonempty and bounded. 

(3) f is coercive, i.e., if for every sequence {xk} such that ‖xk‖ →  ∞, 
we have limk→∞ f(xk) =  ∞.. 

Then the set of minima of f over �n is nonempty and compact. 

Proposition 3.2.2: Let X be a closed convex subset of �n, and  let  
f : �n �→ (−∞,∞] be a closed convex function with X ∩ dom(f) 	= Ø. 
The set of minima of f over X is nonempty and compact if and only 
if X and f have no common nonzero direction of recession. 

Proposition 3.2.3: (Existence of Solution, Sum of Functions) 
Let fi : �n �→ (−∞,∞], i = 1, . . . , m, be closed proper convex func
tions such that the function f = f1 + · · ·  + fm is proper. Assume that 
the recession function of a single function fi satisfies rfi (d) =  ∞ for 
all d 	= 0. Then the set of minima of f is nonempty and compact. 

Section 3.3. Partial Minimization of Convex Functions 

Functions obtained by minimizing other functions partially, i.e., with re
spect to some of their variables, are especially useful in the treatment of 
duality and minimax theory. It is then useful to be able to deduce prop
erties of the function obtained, such as convexity and closedness, from 
corresponding properties of the original. 

Proposition 3.3.1: Consider a function F : �n+m �→ (−∞,∞] and  
the function f : �n �→ [−∞,∞] defined by 

f(x) =  inf  
z∈�m 

F (x, z). 

Then: 
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(a) If F is convex, then f is also convex. 

(b) We have 

P 
( 
epi(F ) 

) ⊂ epi(f) ⊂ cl 
( 
P 

( 
epi(F ) 

) ) 
, 

where P (·) denotes projection on the space of (x, w), i.e., for any 
subset S of �n+m+1 , P (S) =  

{ 
(x, w) | (x, z, w) ∈ S 

} 
. 

Proposition 3.3.2: Let F : �n+m �→ (−∞, ∞] be a closed proper 
convex function, and consider the function f given by 

f(x) =  inf  
z∈�m 

F (x, z), x ∈ �n . 

Assume that for some x ∈ �n and γ ∈ � the set 

{ 
z | F (x, z) ≤ γ 

} 

is nonempty and compact. Then f is closed proper convex. Further
more, for each x ∈ dom(f), the set of minima in the definition of f(x) 
is nonempty and compact. 

Proposition 3.3.3: Let X and Z be nonempty convex sets of �n and 
�m, respectively, let F : X ×Z �→ � be a closed convex function, and 
assume that Z is compact. Then the function f given by 

f(x) =  inf  
z∈Z 

F (x, z), x ∈ X, 

is a real-valued convex function over X . 

Proposition 3.3.5: Let F : �n+m �→ (−∞, ∞] be a closed proper 
convex function, and consider the function f given by 

f(x) =  inf  
z∈�m 

F (x, z), x ∈ �n. 
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Assume that for some x ∈ �n and γ ∈ � the set 

{ 
z | F (x, z) ≤ γ 

} 

is nonempty and its recession cone is equal to its lineality space. Then 
f is closed proper convex. Furthermore, for each x ∈ dom(f), the set 
of minima in the definition of f(x) is  nonempty.  

Section 3.4. Saddle Point and Minimax Theory 

Let us consider a function φ : X × Z �→ �, where  X and Z are nonempty 
subsets of �n and �m, respectively. Of great interest is to derive conditions 
guaranteeing that 

sup inf φ(x, z) =  inf  sup φ(x, z), (B.2) 
z∈Z x∈X x∈X z∈Z 

and that the infima and the suprema above are attained. 

Definition 3.4.1: A pair of vectors x ∗ ∈ X and z ∗ ∈ Z is called a 
saddle point of φ if 

φ(x ∗ , z) ≤ φ(x ∗ , z  ∗) ≤ φ(x, z ∗), ∀ x ∈ X, ∀ z ∈ Z. 

Proposition 3.4.1: A pair  (x ∗ , z  ∗) is a saddle point of φ if and only 
if the minimax equality (B.2), and x ∗ is an optimal solution of the 
problem 

minimize sup 
z∈Z 

φ(x, z) 

subject to x ∈ X, 

while z ∗ is an optimal solution of the problem 

maximize inf 
x∈X 

φ(x, z) 

subject to z ∈ Z. 
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CHAPTER 4: Geometric Duality Framework 

Section 4.1. Min Common/Max Crossing Duality 

We introduce a geometric framework for duality analysis, which aims to 
capture the most essential characteristics of duality in two simple geomet
rical problems, defined by a nonempty subset M of �n+1 . 

(a)	 Min Common Point Problem: Consider all vectors that are common 
to M and the (n + 1)st axis. We want to find one whose (n + 1)st  
component is minimum. 

(b)	 Max Crossing Point Problem: Consider nonvertical hyperplanes that 
contain M in their corresponding “upper” closed halfspace, i.e., the 
closed halfspace whose recession cone contains the vertical halfline 
(0, w) | w ≥ 0 . We want to find the maximum crossing point of 

the (n +  1)st  axis  with such a  hyperplane.  

We refer to the two problems as the min common/max crossing (MC/MC) 
framework , and we will show that it can be used to develop much of the 
core theory of convex optimization in a unified way. 

Mathematically, the min common problem is 

minimize w 

subject to (0, w) ∈ M. 

Its optimal value is denoted by w ∗, i.e., 

w ∗ =  inf  w. 
(0,w)∈M 

nThe max crossing problem is to maximize over all μ ∈ � the maxi
mum crossing level corresponding to μ, i.e., 

maximize inf {w + μ′u}
(u,w)∈M (B.3) 

subject to μ ∈ �n . 

We also refer to this as the dual problem,  we denote by  q ∗ its optimal value, 

q ∗ = sup  q(μ), 
μ∈�n 

and we refer to q(μ) as  the  crossing or dual function. 

Proposition 4.1.1: The dual function q is concave and upper semi-
continuous. 
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The following proposition states that we always have q ∗ ≤ w ∗; we  
refer to this as weak duality. When  q ∗ = w ∗, we  say  that  strong duality 
holds or that there is no duality gap. 

Proposition 4.1.2: (Weak Duality Theorem) We have q ∗ ≤ w ∗ . 

The feasible solutions of the max crossing problem are restricted by 
the horizontal directions of recession of M . This is the essence of the 
following proposition. 

Proposition 4.1.3: Assume that the set 

M = M + 
{ 
(0, w) | w ≥ 0 

} 

is convex. Then the set of feasible solutions of the max crossing prob
lem, 

{ 
μ | q(μ) > −∞ 

} 
, is contained in the cone 

{ 
μ | μ′d ≥ 0 for all d with (d, 0) ∈ R

M 

} 
, 

where R
M is the recession cone of M . 

Section 4.2. Some Special Cases 

There are several interesting special cases where the set M is the epigraph of 
some function. For example, consider the problem of minimizing a function 
f : �n � �→ [−∞, ∞]. We introduce a function F : �n+r → [−∞, ∞] of the  
pair (x, u), which satisfies 

f(x) =  F (x, 0), ∀ x ∈ �n , (B.4) 

Let the function p : �r �→ [−∞, ∞] be defined by 

p(u) =  inf  F (x, u). (B.5) 
x∈�n 

and consider the MC/MC framework with 

M = epi(p). 

The min common value w ∗ is the minimal value of f , since  

w ∗ = p(0) = inf F (x, 0) = inf f(x). 
x∈�n x∈�n 
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The max crossing problem (B.3) can be written as 

maximize q(μ) 
rsubject to μ ∈ � , 

where the dual function is 

q(μ) =  inf  {w + μ′u} = inf  p(u)+  μ′u =  inf  F (x, u)+  μ′u . 
(u,w)∈M u∈�r (x,u)∈�n+r 

(B.6) 
Note that from Eq. (B.6), an alternative expression for q is 

q(μ) =  − sup −μ′u − F (x, u) = −F �(0, −μ), 
(x,u)∈�n+r 

where F �	 is the conjugate of F , viewed as a function of (x, u). Since 

q ∗ = sup  q(μ) =  − inf F �(0, −μ) =  − inf F �(0, μ), 
μ∈�r μ∈�r μ∈�r 

the strong duality relation w ∗ = q ∗ can be written as 

inf F (x, 0) = − inf F �(0, μ). 
x∈�n μ∈�r 

Different choices of function F , as in Eqs. (B.4) and (B.5), yield 
corresponding MC/MC frameworks and dual problems. An example of 
this type is minimization with inequality constraints: 

minimize f(x) 
(B.7) 

subject to x ∈ X, g(x) ≤ 0, 

where X is a nonempty subset of �n �, f : X → � is a given function, and 
g(x) = 	 g1(x), . . . , gr(x) with gj : X � We → �  being given functions. 
introduce a “perturbed constraint set” of the form 

Cu = x ∈ X | g(x) ≤ u , u ∈ �r , (B.8) 

and the function { 
f(x) if  x ∈ Cu,

F (x, u) =  ∞ otherwise, 

which satisfies the condition F (x, 0) = f(x) for all x ∈ C0 [cf. Eq. (B.4)]. 
The function p of Eq. (B.5) is given by 

p(u) =  inf  F (x, u) =  inf  f(x), (B.9) 
x∈�n x∈X, g(x)≤u 

and is known as the primal function or perturbation function. It  captures  
the essential structure of the constrained minimization problem, relating to 
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duality and other properties, such as sensitivity. Consider now the MC/MC 
framework corresponding to M = epi(p). From Eq. (B.6), we obtain with 
some calculation 

infx∈X f(x) +  μ′g(x) if μ ≥ 0, 
q(μ) =  −∞ otherwise. 

The following proposition derives the primal and dual functions in 
the minimax framework. 

nProposition 4.2.1: Let X and Z be nonempty subsets of � and 
�m , respectively, and let φ : X × Z �→ �  be a function. Assume 
that (−cl̂ φ)(x, ·) is proper for all x ∈ X , and consider the MC/MC 
framework corresponding to M = epi(p), where p is given by 

mp(u) =  inf  sup φ(x, z) − u′z , u ∈ � . 
x∈X z∈Z 

Then the dual function is given by 

mq(μ) =  inf  (cl̂ φ)(x, μ), ∀ μ ∈ � . 
x∈X 

4.3. Strong Duality Theorem 

The following propositions give general results for strong duality. 

Proposition 4.3.1: (MC/MC Strong Duality) Consider the min 
common and max crossing problems, and assume the following: 

(1) Either w ∗ < ∞, or  else  w ∗ = ∞ and M contains no vertical lines. 

(2) The set 
M = M + (0, w) | w ≥ 0 

is convex. 

Then, we have q ∗ = w ∗ if and only if for every sequence (uk, wk) ⊂ 
M with uk → 0, there holds w ∗ ≤ lim infk→∞ wk. 
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Proposition 4.3.2: Consider the MC/MC framework, assuming that 
w ∗ < ∞. 

(a) Let M be closed and convex. Then q ∗ = w ∗ . Furthermore, the 
function 

p(u) =  inf  w | (u, w) ∈ M , u ∈ �n, 

is convex and its epigraph is the set 

M = M + (0, w) | w ≥ 0 . 

If in addition −∞ < w∗, then  p is closed and proper. 

(b) q ∗ is equal to the optimal value of the min common problem 
corresponding to cl conv(M) . 

(c) If M is of the form 

M = M̃ + 
{ 
(u, 0) | u ∈ C 

} 
, 

where M̃ is a compact set and C is a closed convex set, then 
q ∗ is equal to the optimal value of the min common problem 
corresponding to conv(M). 

Section 4.4. Existence of Dual Optimal Solutions 

The following propositions give general results for strong duality, as well 
existence of dual optimal solutions. 

Proposition 4.4.1: (MC/MC Existence of Max Crossing So
lutions) Consider the MC/MC framework and assume the following: 

(1) −∞ < w∗ . 

(2) The set 
M = M + (0, w) | w ≥ 0 

is convex. 

(3) The origin is a relative interior point of the set 

D = u | there exists w ∈ �  with (u, w) ∈ M}. 
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Then q ∗ = w ∗, and there exists at least one optimal solution of the 
max crossing problem. 

Proposition 4.4.2: Let the assumptions of Prop. 4.4.1 hold. Then 
Q∗, the set of optimal solutions of the max crossing problem, has the 
form 

Q∗ = 
( 
aff(D) 

)⊥ 
+ Q̃, 

where Q̃ is a nonempty, convex, and compact set. In particular, Q∗ is 
compact if and only if the origin is an interior point of D. 

Section 4.5. Duality and Polyhedral Convexity 

The following propositions address special cases where the set M has par
tially polyhedral structure. 

Proposition 4.5.1: Consider the MC/MC framework, and assume 
the following: 

(1) −∞ < w∗ . 

(2) The set M has the form 

M = M̃ − 
{ 
(u, 0) | u ∈ P 

} 
, 

where M̃ and P are convex sets. 

(3) Either ri( D̃) ∩ ri(P ) 	= Ø, or P is polyhedral and ri( D̃) ∩ P 	= Ø, 
where D̃ is the set given by 

D̃ = 
{ 
u | there exists w ∈ �  with (u, w) ∈ M̃}. 

Then q ∗ = w ∗, and  Q∗, the set of optimal solutions of the max crossing 
problem, is a nonempty subset of R∗ 

P , the polar cone of the recession 
cone of P . Furthermore,  Q∗ is compact if int( D̃) ∩ P 	= Ø. 

Proposition 4.5.2: Consider the MC/MC framework, and assume 
that: 
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(1) −∞ < w∗ . 

(2) The set M is defined in terms of a polyhedral set P , an  r × n 
matrix A, a vector b ∈ �r , and a convex function f : �n �→ 
(−∞,∞] as follows: 

M = 
{ 
(u, w) | Ax − b − u ∈ P for some (x, w) ∈ epi(f) 

} 
. 

(3) There is a vector x ∈ ri 
( 
dom(f) 

) 
such that Ax − b ∈ P . 

Then q ∗ = w ∗ and Q∗, the set of optimal solutions of the max crossing 
problem, is a nonempty subset of R∗ 

P , the polar cone of the recession 
cone of P . Furthermore,  Q∗ is compact if the matrix A has rank r and 
there is a vector x ∈ int 

( 
dom(f) 

) 
such that Ax − b ∈ P . 

CHAPTER 5: Duality and Optimization 

Section 5.1. Nonlinear Farkas’ Lemma 

A nonlinear version of Farkas’ Lemma captures the essence of convex pro-
ngramming duality. The lemma involves a nonempty convex set X ⊂ � , 

and functions f : X � : X → �, j = 1, . . . , r. We  denote  → � and gj �
g(x) =  g1(x), . . . , gr(x) , and use the following assumption. 

Assumption 5.1: The functions f and gj, j = 1, . . . , r, are convex, 
and 

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0. 

Proposition 5.1.1: (Nonlinear Farkas’ Lemma) Let Assumption 
5.1 hold and let Q∗ be the subset of �r given by 

Q∗ = 
{ 
μ | μ ≥ 0, f(x) +  μ′g(x) ≥ 0, ∀ x ∈ X 

} 
. 

Assume that one of the following two conditions holds: 

(1) There exists x ∈ X such that gj(x) < 0 for all j = 1, . . . , r. 
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(2) The functions gj, j = 1, . . . , r, are affine, and there exists x ∈ 
ri(X) such that g(x) ≤ 0. 

Then Q∗ is nonempty, and under condition (1) it is also compact. 

By selecting f and gj to be linear, and X to be the entire space in 
the Nonlinear Farkas’ Lemma, we obtain a version of Farkas’ Lemma (cf. 
Section 2.3) as a special case. 

Proposition 5.1.2: (Linear Farkas’ Lemma) Let A be an m × n 
matrix and c be a vector in �m . 

(a) The system Ay = c, y ≥ 0 has a solution if and only if 

A′x ≤ 0 ⇒ c′x ≤ 0. 

(b) The system Ay ≥ c has a solution if and only if 

A′x = 0, x ≥ 0 ⇒ c′x ≤ 0. 

Section 5.2. Linear Programming Duality 

One of the most important results in optimization is the linear program
ming duality theorem. Consider the problem 

minimize c′x 

subject to aj 
′ x ≥ bj , j  = 1, . . . , r,  

nwhere c ∈ � , aj ∈ �n, and  bj ∈ �, j = 1, . . . , r. We refer to this as the 
primal problem. We consider the dual problem 

maximize b′μ 
r 

subject to aj μj = c, μ ≥ 0, 
j=1 

which can be derived from the MC/MC duality framework in Section 4.2. 
We denote the primal and dual optimal values by f∗ and q ∗, respectively. 
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Proposition 5.2.1: (Linear Programming Duality Theorem) 

(a) If either f∗ or q ∗ is finite, then f∗ = q ∗ and both the primal and 
the dual problem have optimal solutions. 

(b) If f∗ = −∞, then  q ∗ = −∞. 

(c) If q ∗ = ∞, then  f∗ = ∞. 

Another related result is the following necessary and sufficient condi
tion for primal and dual optimality. 

Proposition 5.2.2: (Linear Programming Optimality Condi
tions) A pair of vectors (x ∗, μ∗) form a primal and dual optimal so
lution pair if and only if x ∗ is primal-feasible, μ∗ is dual-feasible, and 

μj 
∗(bj − aj

′ x ∗) = 0, ∀ j = 1, . . . , r.  

Section 5.3. Convex Programming Duality 

We first focus on the problem 

minimize f(x) 
(B.10) 

subject to x ∈ X, g(x) ≤ 0, 

Consider the Lagrangian function 

L(x, μ) =  f(x) +  μ′g(x), x ∈ X, μ ∈ �r , 

and the dual problem 

maximize inf L(x, μ) 
x∈X 

subject to μ ≥ 0. 

For this and other similar problems, we denote the primal and dual optimal 
values by f∗ and q ∗, respectively. 

Proposition 5.3.1: (Convex Programming Duality - Existence 
of Dual Optimal Solutions) Consider problem (B.10). Assume 
that f∗ is finite, and that one of the following two conditions holds: 
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(1) There exists x ∈ X such that gj(x) < 0 for all j = 1, . . . , r. 

(2) The functions gj, j = 1, . . . , r, are affine, and there exists x ∈ 
ri(X) such that g(x) ≤ 0. 

Then q ∗ = f∗ and the set of optimal solutions of the dual problem is 
nonempty. Under condition (1) this set is also compact. 

Proposition 5.3.2: (Optimality Conditions) Consider problem 
(B.10). There holds q ∗ = f∗, and  (x ∗, μ∗) are a primal and dual 
optimal solution pair if and only if x ∗ is feasible, μ∗ ≥ 0, and 

x ∗ ∈ arg min 
x∈X 

L(x, μ∗), μ∗ 
j gj (x ∗) =  0, j  = 1, . . . , r.  

The analysis for problem (B.10) can be refined by making more spe
cific assumptions regarding available polyhedral structure in the constraint 
functions and the abstract constraint set X . Here is an extension of prob
lem (B.10) where there are additional linear equality constraints: 

minimize f(x) 
(B.11) 

subject to x ∈ X, g(x) ≤ 0, Ax = b, 

where X is a convex set, g(x) =  g1(x), . . . , gr(x) , f : X → �� and 
gj : X � , j = 1, . . . , r, are convex functions, A is an m × n matrix, and → �

mb ∈ � . The corresponding Lagrangian function is 

L(x, μ, λ) =  f(x) +  μ′g(x) +  λ′(Ax − b), 

and the dual problem is 

maximize inf L(x, μ, λ) 
x∈X 

subject to μ ≥ 0, λ ∈ �m . 

In the special case of a problem with just linear equality constraints: 

minimize f(x) 
(B.12) 

subject to x ∈ X, Ax = b, 

the Lagrangian function is 

L(x, λ) =  f(x) +  λ′(Ax − b), 
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and the dual problem is 

maximize inf L(x, λ) 
x∈X 

subject to λ ∈ �m . 

Proposition 5.3.3: (Convex Programming - Linear Equality 
Constraints) Consider problem (B.12). 

(a) Assume that f∗ is finite and that there exists x ∈ ri(X) such  
that Ax = b. Then  f∗ = q ∗ and there exists at least one dual 
optimal solution. 

(b) There holds f∗ = q ∗, and  (x ∗, λ∗) are a primal and dual optimal 
solution pair if and only if x ∗ is feasible and 

x ∗ ∈ arg min 
x∈X 

L(x, λ∗). 

Proposition 5.3.4: (Convex Programming - Linear Equality 
and Inequality Constraints) Consider problem (B.11). 

(a) Assume that f∗ is finite, that the functions gj are linear, and 
that there exists x ∈ ri(X) such that Ax = b and g(x) ≤ 0. Then 
q ∗ = f∗ and there exists at least one dual optimal solution. 

(b) There holds f∗ = q ∗, and  (x ∗, μ∗, λ∗) are a primal and dual 
optimal solution pair if and only if x ∗ is feasible, μ∗ ≥ 0, and 

x ∗ ∈ arg min 
x∈X 

L(x, μ∗, λ∗), μ∗ 
j gj(x ∗) =  0, j  = 1, . . . , r.  

Proposition 5.3.5: (Convex Programming - Linear Equality 
and Nonlinear Inequality Constraints) Consider problem (B.11). 
Assume that f∗ is finite, that there exists x ∈ X such that Ax = b 
and g(x) < 0, and that there exists x̃ ∈ ri(X) such that Ax̃ = b. Then  
q ∗ = f∗ and there exists at least one dual optimal solution. 
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Proposition 5.3.6: (Convex Programming - Mixed Polyhedral 
and Nonpolyhedral Constraints) Consider problem (B.11), where 
X is the intersection of a polyhedral set P and a convex set C, 

X = P ∩ C, 

g(x) =  
( 
g1(x), . . . , gr(x) 

)′ 
, the functions f : �n �→ � and gj : �n �→ �, 

j = 1, . . . , r, are defined over �n, A is an m × n matrix, and b ∈ �m. 
Assume that f∗ is finite and that for some r with 1 ≤ r ≤ r, the  
functions gj , j = 1, . . . , r, are polyhedral, and the functions f and gj , 
j = r + 1, . . . , r, are convex over C. Assume further that: 

(1) There exists a vector x̃ ∈ ri(C) in the  set  

P̃ = P ∩ 
{ 
x | Ax = b, gj(x) ≤ 0, j  = 1, . . . , r 

} 
. 

(2) There exists x ∈ P̃ ∩C such that gj(x) < 0 for all j = r+1, . . . , r. 

Then q ∗ = f∗ and there exists at least one dual optimal solution. 

We will now give a different type of result, which under some com
pactness assumptions, guarantees strong duality and that there exists an 
optimal primal solution (even if there may be no dual optimal solution). 

Proposition 5.3.7: (Convex Programming Duality - Existence 
of Primal Optimal Solutions) Assume that problem (B.10) is fea
sible, that the convex functions f and gj are closed, and that the 
function 

F (x, 0) = 

{ 
f(x) if  g(x) ≤ 0, x ∈ X , 
∞ otherwise, 

has compact level sets. Then f∗ = q ∗ and the set of optimal solutions 
of the primal problem is nonempty and compact. 

We now consider another important optimization framework, the 
problem 

minimize f1(x) +  f2(Ax) 
(B.13) 

subject to x ∈ �n , 

where A is an m × n matrix, f1 : �n � ,∞] and  f2 : �m → (−∞,∞]→ (−∞ �
are closed convex functions. We assume that there exists a feasible solution. 

41 



{ }	 { } 

( ) 

Proposition 5.3.8: (Fenchel Duality) ( ( )) ( ) 
(a) If	 f∗ is finite and A · ri dom(f1) ∩ ri dom(f2) 	= Ø, then  

f∗ = q ∗ and there exists at least one dual optimal solution. 

(b) There holds f∗ = q ∗, and  (x ∗, λ∗) is a primal and dual optimal 
solution pair if and only if 

x ∗ ∈ arg min f1(x) − x′A′λ∗ and Ax∗ ∈ arg min f2(z)+  z′λ∗ . 
x∈�n z∈�n 

(B.14) 

An important special case of Fenchel duality involves the problem 

minimize f(x) 
(B.15) 

subject to x ∈ C, 

where f : �n �→ (−∞, ∞] is a closed proper convex function and C is a 
closed convex cone in �n.  This is known  as  a  conic program, and  some  of  its  
special cases (semidefinite programming, second order cone programming) 
have many practical applications. 

Proposition 5.3.9: (Conic Duality Theorem) Assume that the 
optimal value of the primal conic problem (B.15) is finite, and that 
ri dom(f) ∩ ri(C) 	 Ø.= Then, there is no duality gap and that the 
dual problem 

minimize f�(λ) 

subject to λ ∈ Ĉ, 

where f� is the conjugate of f and 

Ĉ = −C∗ = {λ | λ′x ≥ 0, ∀ x ∈ C}. 

has an optimal solution. 

Section 5.4. Subgradients and Optimality Conditions 

In this section we introduce the notion of a subgradient of a convex function 
at a point. Subgradients serve as a substitute for gradients when the func
tion is nondifferentiable: like gradients in differentiable cost minimization, 
they enter in optimality conditions and find wide use in algorithms. 

Let f : �n �→ (−∞, ∞] be a proper convex function. We say that a 
vector g ∈ �n is a subgradient of f at a point x ∈ dom(f) if  

f(z) ≥ f(x) +  g′(z − x), ∀ z ∈ �n. (B.16) 
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The set of all subgradients of f at x is called the subdifferential of f at 
x and is denoted by ∂f(x). By convention, ∂f(x) is  considered  empty  
for all x /∈ dom(f). Generally, ∂f(x) is closed and convex, since based 
on the subgradient inequality (B.16), it is the intersection of a collection 
of closed halfspaces. Note that we restrict attention to proper functions 
(subgradients are not useful and make no sense for improper functions). 

Note that g is a subgradient of f at x if and only if the hyperplane 
in �n+1 that has normal (−g, 1) and passes through x, f(x) supports 
the epigraph of f . From this geometric view, it is evident that there is 
a strong connection with the MC/MC framework. In particular, for any 
x ∈ dom(f), consider the x-translation of f , which is the function fx, whose  
epigraph is the epigraph of f translated so that x, f(x) is moved to the 
origin of �n+1: 

fx(d) =  f(x + d) − f(x), d ∈ �n . 

Then the subdifferential ∂f(x) is the set of all max crossing solutions for 
the MC/MC framework corresponding to the set 

M = epi(fx) =  epi(f) − x, f(x) . (B.17) 

Based on this fact, we can use the MC/MC theory to obtain results regard
ing the existence of subgradients, as in the following proposition. 

nProposition 5.4.1: Let f : � �→ (−∞,∞] be a proper convex func
tion. For every x ∈ ri dom(f) , 

∂f(x) =  S⊥ + G, 

where S is the subspace that is parallel to the affine hull of dom(f), 
and G is a nonempty convex and compact set. In particular, if x ∈ 
int dom(f) , then  ∂f(x) is nonempty and compact. 

Proof: The result follows by applying Props. 4.4.1 and 4.4.2 to the set M 
given by Eq. (B.17). Q.E.D. 

It follows from the preceding proposition that if f is real-valued, then 
∂f(x) is nonempty and compact for all x ∈ �n. If  f is extended real-valued, 
∂f(x) can be unbounded, and it can be empty not only for x /∈ dom(f), 
but also for some x in the boundary of dom(f). As an example, consider 
the function { √ − x if 0 ≤ x ≤ 1,f(x) =  ∞ otherwise. 
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Its subdifferential is ⎧ 
√ ⎨ −2
1 

x if 0 < x < 1, 
∂f(x) =  ⎩ − 2

1 ,∞ if x = 1,  
Ø if x ≤ 0 or 1  < x, 

so it is empty or unbounded at boundary points within dom(f) (the points 
0 and 1, respectively). 

An important property is that if f is differentiable at some x ∈ 
int dom(f) , its gradient ∇f(x) is the unique subgradient at x. Indeed, 
by Prop. 1.1.7(a), ∇f(x) satisfies the subgradient inequality (B.16), so it 
is a subgradient at x. To show uniqueness, note that if g is a subgradient 
at x, we  have  

nf(x) +  αg′d ≤ f(x + αd) =  f(x) +  α∇f(x)′d + o(|α|), ∀ α ∈ �, d ∈ � . 

By letting d = ∇f(x) − g, we  obtain  

( )′ ∥ ∥2 
0 ≤ α ∇f(x) − g d + o(|α|) =  α∥∇f(x) − g + o(|α|). 

In particular, we have 

∥ ∥2 o(|α|) ∥∇f(x) − g ≤ −  , ∀ α < 0,
α 

Taking α ↑ 0, we obtain ∇f(x) − g = 0.  
Let us also consider another important special case, where f is the 

indicator function of a convex set. 

Example 5.4.0: (Subdifferential of an Indicator Function) 

Let us derive the subdifferential of the indicator function of a nonempty con
vex set C: { 

0  if  x ∈ C,
δC (x) =  

∞ if x /∈ C. 

For all x /∈ C, we  have  ∂δC (x) =  Ø, by  convention.  For  x ∈ C, we  have  
g ∈ ∂δC (x) if and only if 

δC (z) ≥ δC (x) +  g ′(z − x), ∀ z ∈ C, 

or equivalently g ′(z−x) ≤ 0 for all z ∈ C. For  x ∈ C, the  set  of all  g satisfying 
this relation is called the normal cone of C at x and is denoted by NC (x): 

NC (x) =  g | g ′(z − x) ≤ 0, ∀ z ∈ C . 

Thus the normal cone NC (x) is  the  polar  cone  of  C−{x}, the  set  C translated 
so that x is moved to the origin. 
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Finally, let us show an important property of real-valued convex func
tions. 

Proposition 5.4.2: (Subdifferential Boundedness and Lips-
nchitz Continuity) Let f : � → �� be a real-valued convex function, 

and let X be a nonempty compact subset of �n . 

(a) The set ∪x∈X ∂f(x) is nonempty and bounded. 

(b) The function f is Lipschitz continuous over X , i.e., there exists 
a scalar  L such that 

∣f(x) − f(z)∣ ≤ L ‖x − z‖, ∀ x, z ∈ X. 

Proof: (a) Nonemptiness follows from Prop. 5.4.1. To prove boundedness, 
assume the contrary, so that there exists a sequence {xk} ⊂  X , and  an  
unbounded sequence {gk} with 

gk ∈ ∂f(xk), 0 < ‖gk‖ < ‖gk+1‖, k  = 0, 1, . . . .  

We denote dk = gk/‖gk‖. Since  gk ∈ ∂f(xk), we have 

f(xk + dk) − f(xk) ≥ gk
′ dk = ‖gk‖. 

Since both {xk} and {dk} are bounded, they contain convergent subse
quences. We assume without loss of generality that {xk} and {dk} converge 
to some vectors. Therefore, by the continuity of f (cf. Prop. 1.3.11), the 
left-hand side of the preceding relation is bounded. Hence the right-hand 
side is also bounded, thereby contradicting the unboundedness of {gk}. 
(b) Let x and z be any two points in X . By the subgradient inequality 
(B.16), we have 

f(x) +  g′(z − x) ≤ f(z), ∀ g ∈ ∂f(x), 

so that 
f(x) − f(z) ≤ ‖g‖ · ‖x − z‖, ∀ g ∈ ∂f(x). 

By part (a), ∪y∈X ∂f(y) is bounded, so that for some constant L >  0, we 
have 

‖g‖ ≤ L, ∀ g ∈ ∂f(y), ∀ y ∈ X, (B.18) 

and therefore, 
f(x) − f(z) ≤ L ‖x − z‖. 
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By exchanging the roles of x and z, we similarly obtain 

f(z) − f(x) ≤ L ‖x − z‖, 

and by combining the preceding two relations, we see that 

∣f(x) − f(z)∣ ≤ L ‖x − z‖, 

showing that f is Lipschitz continuous over X . Q.E.D. 

Note that the proof of part (b) shows how to determine the Lipschitz 
constant L: it is the maximum subgradient norm, over all subgradients in 
∪x∈X ∂f(x) [cf. Eq. (B.18)]. 

5.4.1 Subgradients of Conjugate Functions 

We will now derive an important relation between the subdifferentials of a 
proper convex function f : �n �→ (−∞,∞] and its conjugate f�. Using  the  
definition of conjugacy, we have 

x′y ≤ f(x) +  f�(y), ∀ x ∈ �n, y  ∈ �n. 

This is known as the Fenchel inequality. A  pair  (x, y) satisfies this inequal
ity as an equation if and only if x attains the supremum in the definition 

f�(y) =  sup  y′z − f(z) . 
z∈�n 

Pairs of this type are connected with the subdifferentials of f and f�, as  
shown in the following proposition. 

Proposition 5.4.3: (Conjugate Subgradient Theorem) Let f : 
�n � be its conju→ (−∞,∞] be a proper convex function and let f� 

gate. The following two relations are equivalent for a pair of vectors 
(x, y): 

(i) x′y = f(x) +  f�(y). 

(ii) y ∈ ∂f(x). 

If in addition f is closed, the relations (i) and (ii) are equivalent to 

(iii) x ∈ ∂f�(y). 

Note that the closure assumption in condition (iii) of the Conjugate 
Subgradient Theorem is necessary, because by the Conjugacy Theorem 
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[Prop. 1.6.1(d)], the conjugate of f� is cl f , so  the  relation  x ∈ ∂f�(y) 
implies that 

x′y = (cl  f)(x) +  f�(y) 

[by the equivalence of conditions (i) and (ii)]. On the other hand, for 
x ∈ ∂f�(y), we may have (cl f)(x) < f(x) and hence x′y < f(x) +  f�(y) 
[for example, take f to be the indicator function of the interval (−1, 1), 
f�(y) =  |y|, x = 1,  and  y = 0].  

For an application of the Conjugate Subgradient Theorem, note that 
the necessary and sufficient optimality condition (B.14) in the Fenchel Du
ality Theorem can be equivalently written as 

A′λ∗ ∈ ∂f1(x ∗), λ∗ ∈ −∂f2(Ax∗). 

The following proposition gives some useful corollaries of the Conju
gate Subgradient Theorem: 

Proposition 5.4.4: Let f : �n �→ (−∞,∞] be a closed proper convex 
function and let f� be its conjugate. 

(a) f� is differentiable at a vector y ∈ int dom(f�) if and only if 
nthe supremum of x′y − f(x) over  x ∈ � is uniquely attained. 

(b) The set of minima of f is given by


arg min f(x) =  ∂f�(0),

x∈�n 

Proof: Both parts follow from the fact 

arg max x′y − f(x) = ∂f�(y), 
x∈�n 

which is a consequence of Prop. 5.4.3. Q.E.D. 

Proposition 5.4.4(a) can be used to characterize differentiability prop
erties of f� in terms of strict convexity properties of f , which guarantee 
the unique attainment of the supremum of x′y − f(x) over  x ∈ �n. This  
is the basis for the Legendre transformation, a precursor to the conjugacy 
transformation (see [Roc70], §26). Proposition 5.4.4(b) shows that the set 
of minima of f is nonempty and compact if and only if 0 ∈ int dom(f�) 
(cf. Prop. 5.4.1). 

The following example applies the Conjugate Subgradient Theorem 
to establish an important interpretation of dual optimal solutions within 
the MC/MC framework. 
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Example 5.4.1: (Sensitivity Interpretation of Dual Optimal 
Solutions) 

Consider the MC/MC framework for the case where the set M is the epigraph 
of a function p : �n �→ [−∞,∞]. Then the dual function is 

q(μ) =  inf  p(u) +  μ′ u = −p �(−μ), 
u∈�m 

where p � is the conjugate of p (cf. Section 4.2.1). Assume that p is proper 
convex, and that strong duality holds, i.e., 

p(0) = w ∗ = q ∗ = sup  − p �(−μ) . 
μ∈�m 

Let Q ∗ be the set of dual optimal solutions, i.e., 

Q ∗ = μ ∗ | p(0) + p �(−μ ∗ ) = 0  . 

Then it follows from Prop. 5.4.3 that μ ∗ ∈ Q ∗ if and only if −μ ∗ ∈ ∂p(0), i.e., 

∗ Q = −∂p(0). 

This leads to various sensitivity interpretations of dual optimal solutions 
(assuming strong duality holds). The most interesting case is when p is convex 
and differentiable at 0, in which case −∇p(0) is equal to the unique dual 
optimal solution μ ∗ . As an example, for the constrained optimization problem 

minimize f(x)


subject to x ∈ X, g(x) ≤ 0,


of Section 5.3, where 

p(u) =  inf  f(x), 
x∈X, g(x)≤u 

we have 

∗ ∂p(0) 
μj = − , j = 1, . . . , r,  

∂uj 

so μ ∗ 
j is the rate of improvement of the optimal primal cost as the jth con

straint gj(x) ≤ 0 is violated . 
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Example 5.4.2: (Subdifferential of a Support Function) 

Let us derive the subdifferential of the support function σX of a nonempty set 
X at a vector y. To  calculate  ∂σX (y), we introduce the closed proper convex 
function 

r(y) =  σX (y + y), y ∈ �n , 

and we note that ∂σX (y) =  ∂r(0). The conjugate of r is 

r �(x) =  sup  y ′ x − σX (y + y) , 
y∈�n 

or 
r �(x) = sup  (y + y)′ x − σX (y + y) − y ′ x, 

y∈�n 

and finally 
r �(x) =  δ(x) − y ′ x, 

where δ is the indicator function of cl conv(X) (cf. Example 1.6.1). Letting 
r = f ∗ in Prop. 5.4.4(b), we see that ∂r(0) is the set of minima of δ(x) − y ′ x, 
or equivalently ∂σX (y) is  the  set of maxima  of  y ′ x over x ∈ cl conv(X) . 

Example 5.4.3: (Subdifferential of a Real-Valued Polyhedral 
Function) 

Let us derive the subdifferential of a real-valued polyhedral function of the 
form 

f(x) =  max{a ′ 1x + b1, . . . , a  ′ rx + br }, 

where a1, . . . , ar ∈ �n and b1, . . . , br ∈ �. For  a  fixed  x ∈ �n, consider the 
set of “active” indices at x, that is, the ones that attain the maximum in the 
definition of f(x): 

Ax = j | aj 
′ x + bj = f(x) . 

Consider also the function 

r(x) =  max  aj 
′ x | j ∈ Ax , 

which is obtained by translating epi(f) so  that  x, f(x) is moved to the 
origin and the “inactive” functions aj 

′ x + bj , j /∈ Ax, are “discarded.” It is 
evident from the figure, and can also be easily shown algebraically, that 

∂f(x) =  ∂r(0). 

We now note that r is the support function of the finite set {aj | j ∈ Ax}, so 
from the result of Example 5.4.2, it follows that ∂r(0) is the convex hull of 
this set. Thus, 

∂f(x) = conv  {aj | j ∈ Ax} . 
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5.4.2 Subdifferential Calculus 

We now give generalizations of some of the basic theorems of ordinary 
differentiation. 

Proposition 5.4.5: (Chain Rule) Let f : �m �→ (−∞,∞] be a  
convex function, let A be an m × n matrix, and assume that the 
function F given by 

F (x) =  f(Ax) 

is proper. Then 

∂F (x) ⊃ A′∂f(Ax), ∀ x ∈ �n. 

Furthermore, if either f is polyhedral or else the range of A contains 
a point in the relative interior of dom(f), we have 

∂F (x) =  A′∂f(Ax), ∀ x ∈ �n . 

As a special case of Prop. 5.4.5, we obtain the following. 

Proposition 5.4.6: (Subdifferential of Sum of Functions) Let 
fi : �n �→ (−∞,∞], i = 1, . . . , m, be convex functions, and assume 
that the function F = f1 + · · · + fm is proper. Then 

∂F (x) ⊃ ∂f1(x) +  · · · + ∂fm(x), ∀ x ∈ �n . 

Furthermore, if ∩m 
i=1ri 

( 
dom(fi) 

) 	= Ø, we  have  

∂F (x) =  ∂f1(x) +  · · · + ∂fm(x), ∀ x ∈ �n. 

More generally, the same is true if for some m with 1 ≤ m ≤ m, the  
functions fi, i = 1, . . . ,m, are polyhedral and 

( 
∩m 

i=1 dom(fi) 
) 
∩ 

( 
∩m 

i=m+1 ri 
( 
dom(fi) 

) ) 
	= Ø. 

5.4.3 Optimality Conditions 

It can be seen from the definition of subgradient that a vector x ∗ minimizes 
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f over �n if and only if 0 ∈ ∂f(x ∗). We give the following generalization 
of this condition to constrained problems. 

Proposition 5.4.7: Let f : �n �→ (−∞, ∞] be a proper convex func
tion, let X be a nonempty convex subset of �n, and assume that one 
of the following four conditions holds: 

(1) ri 
( 
dom(f) 

) ∩ ri(X) 	= Ø. 

(2) f is polyhedral and dom(f) ∩ ri(X) 	= Ø. 

(3) X is polyhedral and ri 
( 
dom(f) 

) ∩ X 	= Ø. 

(4) f and X are polyhedral, and dom(f) ∩ X 	= Ø. 

Then, a vector x ∗ minimizes f over X if and only if there exists 
g ∈ ∂f(x ∗) such that −g belongs to the normal cone NX (x ∗), or 
equivalently, 

g′(x − x ∗) ≥ 0, ∀ x ∈ X. (B.19) 

When f is real-valued, the relative interior condition (1) of the pre
ceding proposition is automatically satisfied [we have dom(f) =  �n]. If in 
addition, f is differentiable, the optimality condition (B.19) reduces to the 
one of Prop. 1.1.8: 

∇f(x ∗)′(x − x ∗) ≥ 0, ∀ x ∈ X. 

5.4.4 Directional Derivatives 

For a proper convex function f : �n �→ (−∞, ∞], the directional derivative 
at any x ∈ dom(f) in a direction d ∈ �n, is defined by 

f(x + αd) − f(x)
f ′(x; d) = lim . (B.20) 

α↓0 α 

An important fact here is that the ratio in Eq. (B.20) is monotonically 
nonincreasing as α ↓ 0, so that the limit above is well-defined. To verify 
this, note that for any α >  0, the convexity of f implies that for all α ∈ 
(0, α), 

α α α ( ) 
f(x + αd) ≤ f(x + αd) +  1 − f(x) =  f(x) +  f(x + αd) − f(x) ,

α α α 

so that 

f(x + αd) − f(x) f(x + αd) − f(x)≤ , ∀ α ∈ (0, α). (B.21) 
α α 
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Thus the limit in Eq. (B.20) is well-defined (as a real number, or ∞, or  
−∞) and an alternative definition of f ′(x; d) is  

f(x + αd) − f(x)
f ′(x; d) =  inf 	 , d ∈ �n . (B.22) 

α>0 α 

It can be shown that f ′(x; ·) is convex for all x ∈ dom(f). For this, 
it is sufficient to prove that the set of all (d, w) such that f ′(x; d) < w  is 
convex, and the verification is straightforward using the convexity of f and 
Eq. (B.22). If x ∈ int dom(f) , we  have  f ′(x; d) < ∞ and f ′(x; −d) < ∞ 
[cf. Eq. (B.22)], so the convexity of f ′(x; ·) implies that 

1 1 
0 =  f ′(x; 0)  ≤ f ′(x; −d) +  f ′(x; d),

2 2 

or 
−f ′(x; −d) ≤ f ′(x; d), ∀ x ∈ int dom(f) , d  ∈ �n . 

This inequality, combined with f ′(x; d) < ∞ and f ′(x; −d) < ∞, shows  
that 

−∞ < f ′(x; d) < ∞, ∀ x ∈ int dom(f) , d  ∈ �n , 

i.e., f ′(x; ·) is real-valued. More generally, the same argument shows that 
f ′(x; d) is a real number for all x ∈ ri dom(f) and all d in the subspace 
that is parallel to aff dom(f) . 

The directional derivative is related to the support function of the 
subdifferential ∂f(x), as indicated in the following proposition. 

Proposition 5.4.8: (Support Function of the Subdifferential) 
Let f : �n �	 ·)→ (−∞,∞] be a proper convex function, and let (cl f ′)(x; 
be the closure of the directional derivative f ′(x; ·). 
(a) For all x ∈ dom(f) such that ∂f(x) is  nonempty,  (cl  f ′)(x; ·) is  

the support function of ∂f(x). 

(b) For all	 x ∈ ri dom(f) , f ′(x; ·) is closed and it is the support 
function of ∂f(x). 

Example 5.4.4: (Directional Derivative and Subdifferential of 
the Max Function) 

Let us derive the directional derivative of the function 

f(x) =  max  f1(x), . . . , fr (x) , 

where fj : �n � , j = 1, . . . , r, are convex functions. For x ∈ �n→ �	 , let  

Ax = j | fj (x) =  f(x) . 
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For any x, d ∈ �n, and  α >  0, we have 

f(x + αd) − f(x) fj (x + αd) − fj (x)
≥ , ∀ j ∈ Ax,

α α 

so by taking the limit as α ↓ 0, we obtain 

f ′(x; d) ≥ fj 
′(x; d), ∀ j ∈ Ax. (B.23) 

Consider a sequence {αk } with αk ↓ 0, and let xk = x + αk d. For  each  k, 
let j be an index such that j ∈ Axk for infinitely many k, and by restricting 
attention to the corresponding subsequence, assume without loss of generality 
that j ∈ Axk for all k. Then, 

f
j (xk) ≥ fj (xk), ∀ k, j, 

and by taking the limit as k → ∞, and using the continuity of fj , we have  

f (x) ≥ fj (x), ∀ j.
j 

It follows that j ∈ Ax, so  that  

′ f(x + αk d) − f(x) f
j (x + αkd) − f

j (x) 
′f (x; d) = lim = lim = f
j (x; d). 

k→∞ αk k→∞ αk 

Combining this relation with Eq. (B.23), we obtain 

f ′(x; d) = max  fj 
′ (x; d) | j ∈ Ax , ∀ x, d ∈ �n . 

Since by Prop. 5.4.8(b), fj 
′ (x; ·) are the support functions of ∂fj (x), the 

preceding equation shows that f ′(x; ·) is the support function of ∪j∈Ax ∂fj (x), 
and hence also of the closure of conv ∪j∈Ax ∂fj (x) . By Prop. 5.4.1, the sets 
∂fj (x) are compact, so that ∪j∈Ax ∂fj (x) is compact, and hence also by Prop. 
1.2.2, conv ∪j∈Ax ∂fj (x) is compact. On the other hand, by Prop. 5.4.8(b), 
f ′(x; ·) is also the support function of ∂f(x). We thus conclude that 

∂f(x) = conv  ∪j∈Ax ∂fj (x) . 

Let us finally note that in convex optimization algorithms, directional 
derivatives and subgradients arise typically in contexts where f is real-
valued. In this case there are no anomalies: the directional derivatives 
are real-valued, and they are the support functions of the corresponding 
nonempty and compact subdifferentials. 

Section 5.5. Minimax Theory 

We will now provide theorems regarding the validity of the minimax equal
ity and the existence of saddle points. These theorems are obtained by 
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specializing the MC/MC theorems of Chapter 4. We will assume through
out this section the following. 

Assumption 5.5.0: (Convexity/Concavity and Closedness) X 
and Z are nonempty convex subsets of �n and �m, respectively, and 
φ : X × Z � , z) :  X → � is convex and → � is a function such that φ(· �
closed for each z ∈ Z, and  −φ(x, ·) :  Z → �� is convex and closed for 
each x ∈ X . 

Proposition 5.5.1: Assume that the function p given by 

mp(u) =  inf  sup φ(x, z) − u′z , u ∈ � , 
x∈X z∈Z 

satisfies either p(0) < ∞, or  else  p(0) = ∞ and p(u) > −∞ for all 
u ∈ �m. Then  

sup inf φ(x, z) =  inf  sup φ(x, z) 
z∈Z x∈X x∈X z∈Z 

if and only if p is lower semicontinuous at u = 0.  

Proposition 5.5.2: Assume that 0 ∈ ri dom(p) and p(0) > −∞. 
Then 

sup inf φ(x, z) =  inf  sup φ(x, z), 
z∈Z x∈X x∈X z∈Z 

and the supremum over Z in the left-hand side is finite and is attained. 
Furthermore, the set of z ∈ Z attaining this supremum is compact if 
and only if 0 lies in the interior of dom(p). 

Proposition 5.5.3: (Classical Saddle Point Theorem) Let the 
sets X and Z be compact. Then the set of saddle points of φ is 
nonempty and compact. 

To formulate more general saddle point theorems, we consider the 
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functions t : �n �	 �→ (−∞, ∞] and  r : �m → (−∞, ∞] given  by  

supz∈Z φ(x, z) if  x ∈ X ,
t(x) =  ∞ if x /∈ X , 

and 

− infx∈X φ(x, z) if  z ∈ Z,r(z) =  ∞ if z /∈ Z. 

The next two propositions provide conditions for the minimax equal
ity to hold. These propositions are subsequently used to prove results about 
nonemptiness and compactness of the set of saddle points. 

Proposition 5.5.4: Assume that t is proper and that the level sets 
x | t(x) ≤ γ , γ ∈ �, are compact. Then


sup inf φ(x, z) =  inf  sup φ(x, z)

z∈Z x∈X x∈X z∈Z 

and the infimum over X in the right-hand side above is attained at a 
set of points that is nonempty and compact. 

Proposition 5.5.5: Assume that t is proper, and that the recession 
cone and the constancy space of t are equal. Then 

sup inf φ(x, z) =  inf  sup φ(x, z) 
z∈Z x∈X x∈X z∈Z 

and the infimum over X in the right-hand side above is attained. 

Proposition 5.5.6: Assume that either t is proper or r is proper. 

(a) If the level sets	 x | t(x) ≤ γ and z | r(z) ≤ γ , γ ∈ �, of  t 
and r are compact, the set of saddle points of φ is nonempty and 
compact. 

(b) If the recession cones of t and r are equal to the constancy spaces 
of t and r, respectively, the set of saddle points of φ is nonempty. 
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Proposition 5.5.7: (Saddle Point Theorem) The set of saddle 
points of φ is nonempty and compact under any one of the following 
conditions: 

(1) X and Z are compact. 

(2) Z is compact, and for some z ∈ Z, γ ∈ �, the  level  set  

{ 
x ∈ X | φ(x, z) ≤ γ 

} 

is nonempty and compact. 

(3) X is compact, and for some x ∈ X , γ ∈ �, the  level set  

{ 
z ∈ Z | φ(x, z) ≥ γ 

} 

is nonempty and compact. 

(4) For some x ∈ X , z ∈ Z, γ ∈ �, the  level  sets  

{ 
x ∈ X | φ(x, z) ≤ γ 

} 
, 

{ 
z ∈ Z | φ(x, z) ≥ γ 

} 
, 

are nonempty and compact. 

Section 5.6. Theorems of the Alternative 

Theorems of the alternative are important tools in optimization, which ad
dress the feasibility (possibly strict) of affine inequalities. These theorems 
can be viewed as special cases of MC/MC duality, as discussed in [Ber09]. 

Proposition 5.6.1: (Gordan’s Theorem) Let A be an m ×n ma
trix and b be a vector in �m . The following are equivalent: 

(i) There exists a vector x ∈ �n such that 

Ax < b. 

(ii) For every vector μ ∈ �m , 

A′μ = 0, b′μ ≤ 0, μ  ≥ 0 ⇒ μ = 0. 

(iii) Any polyhedral set of the form 
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{μ | A′μ = c, b′μ ≤ d, μ ≥ 0} , 

where c ∈ �n and d ∈ �, is  compact.  

Proposition 5.6.2: (Motzkin’s Transposition Theorem) Let A 
and B be p × n and q × n matrices, and let b ∈ �p and c ∈ �q be 
vectors. The system 

Ax < b, Bx ≤ c 

has a solution if and only if for all μ ∈ �p and ν ∈ �q, with  μ ≥ 0, 
ν ≥ 0, the following two conditions hold: 

A′μ + B′ν = 0  ⇒ b′μ + c′ν ≥ 0, 

A′μ + B′ν = 0, μ 	= 0  ⇒ b′μ + c′ν > 0. 

Proposition 5.6.3: (Stiemke’s Transposition Theorem) Let A 
be an m × n matrix, and let c be a vector in �m. The system 

Ax = c, x > 0 

has a solution if and only if 

A′μ ≥ 0 and  c′μ ≤ 0 ⇒ A′μ = 0  and  c′μ = 0. 

The theorems of Gordan and Stiemke can be used to provide necessary 
and sufficient conditions for the compactness of the primal and the dual 
optimal solution sets of linear programs. We say that the primal linear 
program 

minimize c′x 
(B.24) 

subject to aj 
′ x ≥ bj , j  = 1, . . . , r,  

is strictly feasible if there exists a primal-feasible vector x ∈ �n with a′ 
j x >  

bj for all j = 1, . . . , r.  Similarly, we say that the dual linear program 

maximize b′μ 
r ∑ (B.25) 

subject to aj μj = c, μ ≥ 0, 
j=1 
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is strictly feasible if there exists a dual-feasible vector μ with μ >  0. We 
have the following proposition. 

Proposition 5.6.4: Consider the primal and dual linear programs 
(B.24) and (B.25), and assume that their common optimal value is 
finite. Then: 

(a) The dual optimal solution set is compact if and only if the primal 
problem is strictly feasible. 

(b) Assuming that the set {a1, . . . , ar} contains n linearly indepen
dent vectors, the primal optimal solution set is compact if and 
only if the dual problem is strictly feasible. 
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