LECTURE 5

LECTURE OUTLINE

• Directions of recession of convex functions
• Local and global minima
• Existence of optimal solutions

All figures are courtesy of Athena Scientific, and are used with permission.
DIRECTIONS OF RECESSION OF A FN

- We aim to characterize directions of monotonic decrease of convex functions.

- Some basic geometric observations:
 - The “horizontal directions” in the recession cone of the epigraph of a convex function f are directions along which the level sets are unbounded.
 - Along these directions the level sets $\{x \mid f(x) \leq \gamma\}$ are unbounded and f is monotonically nondecreasing.

- These are the directions of recession of f.

![Diagram showing the recession cone, level sets, and epigraph of a convex function.](image-url)
RECESSION CONE OF LEVEL SETS

• **Proposition:** Let \(f : \mathbb{R}^n \mapsto (-\infty, \infty] \) be a closed proper convex function and consider the level sets \(V_\gamma = \{ x \mid f(x) \leq \gamma \} \), where \(\gamma \) is a scalar. Then:

 (a) All the nonempty level sets \(V_\gamma \) have the same recession cone:

 \[
 R_{V_\gamma} = \{ d \mid (d, 0) \in \text{Repi}(f) \}
 \]

 (b) If one nonempty level set \(V_\gamma \) is compact, then all level sets are compact.

Proof: (a) Just translate to math the fact that

\[R_{V_\gamma} = \text{the “horizontal” directions of recession of epi}(f) \]

(b) Follows from (a).
RECESSION CONE OF A CONVEX FUNCTION

- For a closed proper convex function $f : \mathbb{R}^n \mapsto (-\infty, \infty]$, the (common) recession cone of the nonempty level sets $V_\gamma = \{ x \mid f(x) \leq \gamma \}$, $\gamma \in \mathbb{R}$, is the recession cone of f, and is denoted by R_f.

- **Terminology:**
 - $d \in R_f$: a direction of recession of f.
 - $L_f = R_f \cap (-R_f)$: the lineality space of f.
 - $d \in L_f$: a direction of constancy of f.

- **Example:** For the pos. semidefinite quadratic

 \[f(x) = x'Qx + a'x + b, \]

 the recession cone and constancy space are

 \[R_f = \{ d \mid Qd = 0, a'd \leq 0 \}, \quad L_f = \{ d \mid Qd = 0, a'd = 0 \} \]
RECESSION FUNCTION

• Function $r_f : \mathbb{R}^n \mapsto (-\infty, \infty]$ whose epigraph is $R_{\text{epi}(f)}$ is the recession function of f.

• Characterizes the recession cone:

$$R_f = \{ d \mid r_f(d) \leq 0 \}, \quad L_f = \{ d \mid r_f(d) = r_f(-d) = 0 \}$$

since $R_f = \{ (d, 0) \in R_{\text{epi}(f)} \}$.

• Can be shown that

$$r_f(d) = \sup_{\alpha > 0} f(x + \alpha d) - f(x) = \lim_{\alpha \to \infty} f(x + \alpha d) - f(x)$$

• Thus $r_f(d)$ is the “asymptotic slope” of f in the direction d. In fact,

$$r_f(d) = \lim_{\alpha \to \infty} \nabla f(x + \alpha d)'d, \quad \forall \ x, d \in \mathbb{R}^n$$

if f is differentiable.

• Calculus of recession functions:

$$r_{f_1 + \cdots + f_m}(d) = r_{f_1}(d) + \cdots + r_{f_m}(d),$$

$$r_{\sup_{i \in I} f_i}(d) = \sup_{i \in I} r_{f_i}(d)$$
• y is a direction of recession in (a)-(d).
• This behavior is independent of the starting point x, as long as $x \in \text{dom}(f)$.
LOCAL AND GLOBAL MINIMA

• Consider minimizing $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ over a set $X \subset \mathbb{R}^n$

• x is feasible if $x \in X \cap \text{dom}(f)$

• x^* is a (global) minimum of f over X if x^* is feasible and $f(x^*) = \inf_{x \in X} f(x)$

• x^* is a local minimum of f over X if x^* is a minimum of f over a set $X \cap \{x \mid \|x - x^*\| \leq \epsilon\}$

Proposition: If X is convex and f is convex, then:

(a) A local minimum of f over X is also a global minimum of f over X.

(b) If f is strictly convex, then there exists at most one global minimum of f over X.

![Graph of convex function](image.png)
EXISTENCE OF OPTIMAL SOLUTIONS

- The set of minima of a proper $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ is the intersection of its nonempty level sets.

- The set of minima of f is nonempty and compact if the level sets of f are compact.

- (An Extension of the) Weierstrass’ Theorem: The set of minima of f over X is nonempty and compact if X is closed, f is lower semicontinuous over X, and one of the following conditions holds:

 (1) X is bounded.

 (2) Some set $\{x \in X \mid f(x) \leq \gamma\}$ is nonempty and bounded.

 (3) For every sequence $\{x_k\} \subset X$ s. t. $\|x_k\| \to \infty$, we have $\lim_{k \to \infty} f(x_k) = \infty$. (Coercivity property).

Proof: In all cases the level sets of $f \cap X$ are compact. Q.E.D.
Weierstrass’ Theorem specialized to convex functions: Let X be a closed convex subset of \mathbb{R}^n, and let $f : \mathbb{R}^n \mapsto (-\infty, \infty]$ be closed convex with $X \cap \text{dom}(f) \neq \emptyset$. The set of minima of f over X is nonempty and compact if and only if X and f have no common nonzero direction of recession.

Proof: Let $f^* = \inf_{x \in X} f(x)$ and note that $f^* < \infty$ since $X \cap \text{dom}(f) \neq \emptyset$. Let $\{\gamma_k\}$ be a scalar sequence with $\gamma_k \downarrow f^*$, and consider the sets

$$V_k = \{x \mid f(x) \leq \gamma_k\}.$$

Then the set of minima of f over X is

$$X^* = \bigcap_{k=1}^{\infty} (X \cap V_k).$$

The sets $X \cap V_k$ are nonempty and have $R_X \cap R_f$ as their common recession cone, which is also the recession cone of X^*, when $X^* \neq \emptyset$. It follows X^* is nonempty and compact if and only if $R_X \cap R_f = \{0\}$. Q.E.D.
EXISTENCE OF SOLUTION, SUM OF FNS

• Let \(f_i : \mathbb{R}^n \rightarrow (-\infty, \infty], i = 1, \ldots, m \), be closed proper convex functions such that the function

\[
f = f_1 + \cdots + f_m
\]

is proper. Assume that the recession function of a single function \(f_i \) satisfies \(r_{f_i}(d) = \infty \) for all \(d \neq 0 \). Then the set of minima of \(f \) is nonempty and compact.

• **Proof:** The set of minima of \(f \) is nonempty and compact if and only if \(R_f = \{0\} \), which is true if and only if \(r_f(d) > 0 \) for all \(d \neq 0 \). **Q.E.D.**

• **Example of application:** If one of the \(f_i \) is positive definite quadratic, the set of minima of the sum \(f \) is nonempty and compact.

• Also \(f \) has a unique minimum because the positive definite quadratic is strictly convex, which makes \(f \) strictly convex.
PROJECTION THEOREM

• Let C be a nonempty closed convex set in \mathbb{R}^n.
 (a) For every $z \in \mathbb{R}^n$, there exists a unique minimum of
 $$f(x) = \|z - x\|^2$$
 over all $x \in C$ (called the projection of z on C).
 (b) x^* is the projection of z if and only if
 $$(x - x^*)(z - x^*) \leq 0, \quad \forall x \in C$$

Proof: (a) f is strictly convex and has compact level sets.
(b) This is just the necessary and sufficient optimality condition
 $$\nabla f(x^*)(x - x^*) \geq 0, \quad \forall x \in C.$$