LECTURE 16

LECTURE OUTLINE

• Conic programming
• Semidefinite programming
• Exact penalty functions
• Descent methods for convex/nondifferentiable optimization
• Steepest descent method

All figures are courtesy of Athena Scientific, and are used with permission.
LINEAR-CONIC FORMS

\[
\begin{align*}
\min_{Ax=b, \ x \in C} c'x & \iff \max_{c-A'\lambda \in \hat{C}} b'\lambda, \\
\min_{Ax-b \in C} c'x & \iff \max_{A'\lambda = c, \ \lambda \in \hat{C}} b'\lambda,
\end{align*}
\]

where \(x \in \mathbb{R}^n, \ \lambda \in \mathbb{R}^m, \ c \in \mathbb{R}^n, \ b \in \mathbb{R}^m, \ A : m \times n. \)

- Second order cone programming:

\[
\begin{align*}
\text{minimize} & \quad c'x \\
\text{subject to} & \quad A_i x - b_i \in C_i, \ i = 1, \ldots, m,
\end{align*}
\]

where \(c, b_i \) are vectors, \(A_i \) are matrices, \(b_i \) is a vector in \(\mathbb{R}^{n_i} \), and

\(C_i : \) the second order cone of \(\mathbb{R}^{n_i} \)

- The cone here is \(C = C_1 \times \cdots \times C_m \)

- The dual problem is

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{m} b_i'\lambda_i \\
\text{subject to} & \quad \sum_{i=1}^{m} A_i'\lambda_i = c, \lambda \quad i \in C_i, \ i = 1, \ldots, m,
\end{align*}
\]

where \(\lambda = (\lambda_1, \ldots, \lambda_m) \).
Consider the symmetric $n \times n$ matrices. Inner product $< X, Y > = \text{trace}(XY) = \sum_{i,j=1}^{n} x_{ij}y_{ij}$.

Let C be the cone of pos. semidefinite matrices.

C is self-dual, and its interior is the set of positive definite matrices.

Fix symmetric matrices D, A_1, \ldots, A_m, and vectors b_1, \ldots, b_m, and consider

minimize $< D, X >$
subject to $< A_i, X > = b_i, \ i = 1, \ldots, m, \ X \in C$

Viewing this as a linear-conic problem (the first special form), the dual problem (using also self-duality of C) is

$$
\text{maximize} \quad \sum_{i=1}^{m} b_i \lambda_i \\
\text{subject to} \quad D - (\lambda_1 A_1 + \cdots + \lambda_m A_m) \in C
$$

There is no duality gap if there exists primal feasible solution that is pos. definite, or there exists λ such that $D - (\lambda_1 A_1 + \cdots + \lambda_m A_m)$ is pos. definite.
EXAMPLE: MINIMIZE THE MAXIMUM EIGENVALUE

• Given $n \times n$ symmetric matrix $M(\lambda)$, depending on a parameter vector λ, choose λ to minimize the maximum eigenvalue of $M(\lambda)$.

• We pose this problem as

$$\begin{align*}
\text{minimize} & \quad z \\
\text{subject to} & \quad \text{maximum eigenvalue of } M(\lambda) \leq z,
\end{align*}$$

or equivalently

$$\begin{align*}
\text{minimize} & \quad z \\
\text{subject to} & \quad zI - M(\lambda) \in C,
\end{align*}$$

where I is the $n \times n$ identity matrix, and C is the semidefinite cone.

• If $M(\lambda)$ is an affine function of λ,

$$M(\lambda) = D + \lambda_1 M_1 + \cdots + \lambda_m M_m,$$

the problem has the form of the dual semidefinite problem, with the optimization variables being $(z, \lambda_1, \ldots, \lambda_m)$.
EXAMPLE: LOWER BOUNDS FOR DISCRETE OPTIMIZATION

• Quadr. problem with quadr. equality constraints

minimize \(x'Q_0 x + a'_0 x + b_0 \)
subject to \(x'Q_i x + a'_i x + b_i = 0, \quad i = 1, \ldots, m, \)
\(Q_0, \ldots, Q_m: \) symmetric (not necessarily \(\geq 0 \)).

• Can be used for discrete optimization. For example an integer constraint \(x_i \in \{0, 1\} \) can be expressed by \(x_i^2 - x_i = 0. \)

• The dual function is

\[q(\lambda) = \inf_{x \in \mathbb{R}^n} \{ x'Q(\lambda)x + a(\lambda)'x + b(\lambda) \}, \]

where

\[Q(\lambda) = Q_0 + \sum_{i=1}^{m} \lambda_i Q_i, \]

\[a(\lambda) = a_0 + \sum_{i=1}^{m} \lambda_i a_i, \quad b(\lambda) = b_0 + \sum_{i=1}^{m} \lambda_i b_i \]

• It turns out that the dual problem is equivalent to a semidefinite program ...
EXACT PENALTY FUNCTIONS

- We use Fenchel duality to derive an equivalence between a constrained convex optimization problem, and a penalized problem that is less constrained or is entirely unconstrained.

- We consider the problem

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad x \in X, \quad g(x) \leq 0,
\end{align*}
\]

where \(g(x) = (g_1(x), \ldots, g_r(x)) \), \(X \) is a convex subset of \(\mathbb{R}^n \), and \(f : \mathbb{R}^n \to \mathbb{R} \) and \(g_j : \mathbb{R}^n \to \mathbb{R} \) are real-valued convex functions.

- We introduce a convex function \(P : \mathbb{R}^r \rightarrow \mathbb{R} \), called *penalty function*, which satisfies

\[
P(u) = 0, \quad \forall \ u \leq 0, \quad P(u) > 0, \quad \text{if} \ u_i > 0 \text{ for some } i
\]

- We consider solving, in place of the original, the “penalized” problem

\[
\begin{align*}
\text{minimize} & \quad f(x) + P(g(x)) \\
\text{subject to} & \quad x \in X,
\end{align*}
\]
FENCHEL DUALITY

• We have

\[
\inf_{x \in X} \{ f(x) + P(g(x)) \} = \inf_{u \in \mathbb{R}^r} \{ p(u) + P(u) \}
\]

where \(p(u) = \inf_{x \in X, g(x) \leq u} f(x) \) is the primal function.

• Assume \(-\infty < q^* \) and \(f^* < \infty \) so that \(p \) is proper (in addition to being convex).

• By Fenchel duality

\[
\inf_{u \in \mathbb{R}^r} \{ p(u) + P(u) \} = \sup_{\mu \geq 0} \{ q(\mu) - Q(\mu) \},
\]

where for \(\mu \geq 0 \),

\[
q(\mu) = \inf_{x \in X} \{ f(x) + \mu'g(x) \}
\]

is the dual function, and \(Q \) is the conjugate convex function of \(P \):

\[
Q(\mu) = \sup_{u \in \mathbb{R}^r} \{ u'\mu - P(u) \}
\]
PENALTY CONJUGATES

- **Important observation:** For Q to be flat for some $\mu > 0$, P must be nondifferentiable at 0.
• For the penalized and the original problem to have equal optimal values, Q must be “flat enough” so that some optimal dual solution μ^* minimizes Q, i.e., $0 \in \partial Q(\mu^*)$ or equivalently

$$\mu^* \in \partial P(0)$$

• True if $P(u) = c \sum_{j=1}^{r} \max\{0, u_j\}$ with $c \geq \|\mu^*\|$ for some optimal dual solution μ^*.
• Directional derivative of a proper convex f:

$$f'(x; d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha}, \quad x \in \text{dom}(f), \ d \in \mathbb{R}^n$$

- The ratio

$$\frac{f(x + \alpha d) - f(x)}{\alpha}$$

is monotonically nonincreasing as $\alpha \downarrow 0$ and converges to $f'(x; d)$.

- For all $x \in \text{ri}(\text{dom}(f))$, $f'(x; \cdot)$ is the support function of $\partial f(x)$.
STEEPEST DESCENT DIRECTION

• Consider unconstrained minimization of convex \(f : \mathbb{R}^n \rightarrow \mathbb{R} \).

• A descent direction \(d \) at \(x \) is one for which \(f'(x; d) < 0 \), where

\[
f'(x; d) = \lim_{\alpha \downarrow 0} \frac{f(x + \alpha d) - f(x)}{\alpha} = \sup_{g \in \partial f(x)} d'g
\]

is the directional derivative.

• Can decrease \(f \) by moving from \(x \) along descent direction \(d \) by small stepsize \(\alpha \).

• Direction of steepest descent solves the problem

\[
\begin{align*}
\text{minimize} & \quad f'(x; d) \\
\text{subject to} & \quad \|d\| \leq 1
\end{align*}
\]

• **Interesting fact:** The steepest descent direction is \(-g^*\), where \(g^* \) is the vector of minimum norm in \(\partial f(x) \):

\[
\min_{\|d\| \leq 1} f'(x; d) = \min_{\|d\| \leq 1} \max_{g \in \partial f(x)} d'g = \max_{g \in \partial f(x)} \min_{\|d\| \leq 1} d'g
\]

\[
= \max_{g \in \partial f(x)} (-\|g\|) = -\min_{g \in \partial f(x)} \|g\|
\]
STEEPEST DESCENT METHOD

- Start with any $x_0 \in \mathbb{R}^n$.
- For $k \geq 0$, calculate $-g_k$, the steepest descent direction at x_k and set

$$x_{k+1} = x_k - \alpha_k g_k$$

- **Difficulties:**
 - Need the entire $\partial f(x_k)$ to compute g_k.
 - Serious convergence issues due to discontinuity of $\partial f(x)$ (the method has no clue that $\partial f(x)$ may change drastically nearby).
- Example with α_k determined by minimization along $-g_k$: $\{x_k\}$ converges to nonoptimal point.