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Abstract 

Multiplexed bead-based flow cytometric immunoassays are a powerful experimental tool for investigating 

cellular communication networks, yet their widespread adoption is limited in part by challenges in robust 

quantitative analysis of the measurements. Here we report our application of mixed-effects modeling for 

the normalization and statistical analysis of bead-based immunoassay data. Our dataset consisted of 

bead-based immunoassay measurements of 16 phospho-proteins in lysates of HepG2 cells treated with 

ligands that regulate acute phase protein secretion. Mixed-effects modeling (MEM) provided estimates for 

the effects of both the technical and biological sources of variance, and normalization was achieved by 

subtracting the technical effects from the measurements. This approach allowed us to detect ligand 

effects on signaling with greater precision and sensitivity and to more accurately characterize the HepG2 

cell signaling network using constrained fuzzy logic. MEM analysis of our data was vital for ascertaining 

that IL-1α and TGF-α treatment increased the activities of more pathways than IL-6 and TNF-α and that 

TGF-α and TNF-α increased p38 MAPK and c-Jun N-terminal kinase (JNK) phospho-protein levels in a 

synergistic manner. Moreover, we used MEM-based technical effect estimates to reveal the substantial 

variance contributed by batch effects along with the absence of loading order and assay plate position 

effects. We conclude that mixed-effects modeling enabled additional insights to be gained from our data 

and we discuss how this methodology can play an important role in enhancing the value of experiments 

employing multiplexed bead-based immunoassays.
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Introduction 

Cells adapt to their environments primarily through the activities of receptor-mediated signal transduction 

networks (1). These networks consist mainly of proteins, such as kinases, phosphatases, adaptor 

proteins and transcription factors, whose activities often depend on post-translational modifications such 

as phosphorylation. Signal transduction activities are therefore commonly inferred by measuring the 

levels of post-translationally modified proteins. However, interpreting these measurements to infer how 

cells functionally respond to their environment is not straightforward because these adaptations result 

from the dynamic integration of numerous signals. To address this complexity, “systems” approaches to 

studying cell signaling have emerged, which feature a stereotypical workflow that includes perturbing the 

system experimentally, measuring the responses of as many of its components as practical and applying 

mathematical models to infer how the network transduces the information (2).  

The systems approach to biology depends vitally on high-throughput measurements. One high-

throughput method for measuring multiple phosphorylated proteins in a single sample is multiplexed 

bead-based immunoassays (3). These assays combine features of sandwich enzyme-linked 

immunosorbant assays (ELISA) and flow cytometry. The core components of the assay are microsphere 

beads labeled with two fluorescent dyes that are excited by the same wavelength of light but emit at 

different wavelengths (4). By coating groups of beads with different ratios of the dyes, the identity of the 

beads can be distinguished. Beads with the same dye ratio comprise a single “bead classifier” (5) and 

each bead classifier is conjugated to a capture reagent, such as an antibody, which is specific for a single 

analyte such as a unique phospho-protein (3). A second reporter fluorophore-conjugated antibody, which 

binds to a distinct epitope on the analyte, is used to quantify the number of analytes bound to each bead. 

The analyte is therefore bound by two antibodies in a “sandwich”-like manner, akin to a sandwich ELISA. 

Multiplexing is achieved by mixing each cell lysate with multiple bead classifiers and their corresponding 

detection antibodies. The unbound antibodies are washed away and the bead suspensions are analyzed 

in a specialized flow cytometer that interrogates each bead with two lasers, one for detecting the bead 

dyes and another for detecting the fluorescence emitted by the reporter fluorophore (4). The assay output 

is the median fluorescence intensity (MFI) per bead for each bead classifier. In addition to measuring 

phospho-proteins, bead-based assays can be used to measure diverse analytes such as secreted 

proteins (e.g., cytokines) and nucleic acids (3). 

Multiplexed bead-based immunoassays are favorable compared to singleplex assays such as 

immunoblots because they save time and sample volume and confer data that are internally consistent by 

sample. However, as with any experimental technique, each observation is a function of multiple sources 

of variation. These sources of variation stem from both biological and technical factors. Biological factors 

reflect the applied treatments or properties of the sample that are of interest in the experiment. Technical 

factors, which stem from the technical or logistical properties of the experiment, are usually not of primary 

interest. Indeed, they are generally a nuisance because they can inflate the observed experimental error 
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and/or confound the treatment effects, thus reducing the precision, sensitivity and specificity of the assay. 

Some of the most notorious technical effects are batch effects, which can contribute variance whose 

magnitude matches or exceeds the observed treatment effects (6). Strategies exist for mitigating the 

impact of technical factors. First, the experimental design should feature the randomization of both the 

assignment of treatments to experimental units (which are the basic entities being studied, see the 

Supplementary Information for more detail) and the order in which individual runs of the experiment are 

performed (7). Second, in situations for which randomization is unfeasible, blocking strategies are 

employed to prevent the confounding of treatment factors with technical factors (7). Finally, normalization 

of the data is performed to remove unwanted systematic variance introduced by technical factors (8, 9). 

Since numerous technical factors could plausibly affect multiplexed bead-based immunoassay data 

(Table 1), the experimental design and normalization strategies should be carefully considered for any 

experiment involving these assays.  

In addition to managing the technical factors, quantitative frameworks for analyzing the effects of the 

biological factors of interest are also needed. The establishment of such frameworks is in its infancy for 

bead-based immunoassays. For experiments seeking to detect differences among phospho-protein levels 

across different treatments, statistical analyses relying on classic techniques such as t-tests (10, 11), 

analysis of variance (12-14) or their nonparametric equivalents (15) have most typically been used. 

Recently, an intriguing algorithm called “significance analysis of xMAP cytokine bead arrays” (SAxCyB) 

was shown to increase the sensitivity and accuracy of statistical inferences for bead-based cytokine 

measurements (16). We have developed logic- and regression-based methods to infer signal transduction 

networks from multiplexed bead-based immunoassay (“network-level” models) (2). However, none of 

these methods distinguishes between biological and technical sources of variance in the data, such that 

normalization must be performed separately from the downstream analysis. This is a potentially severe 

flaw given that considering all sources of variance globally within the same model has numerous 

advantages (17), most notably that it can be important for drawing correct inferences (9). 

Mixed-effects models are emerging as a standard method for normalizing and analyzing many types of 

high-throughput data such as microarrays (9, 18), quantitative real-time polymerase chain reaction (19), 

nucleic acid bead arrays (20), large-scale immunoblotting (21), peptide antigen arrays (22) and genetic 

screens (23). Mixed-effects models, and the related hierarchical or multilevel models that represent a 

subset of mixed-effects models (24), extend classic regression and analysis of variance methods by 

incorporating both fixed- and random-effect terms. The models are generally fitted numerically according 

to the restricted maximum likelihood (REML) criterion (25), which requires specialized but readily 

available software to implement. Mixed-effects models can accommodate many types of experimental 

designs, grouped (correlated) observations, hierarchical error structures, and missing data (24-26), all of 

which are commonly present in high-throughput datasets. Moreover, the error estimates and inferences 

about the fixed effects tend to be more robust than if analyzed using techniques such as t-tests because 
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statistical power for error estimation is “borrowed” across samples (24). Mixed-effects models are 

therefore ideally suited for serving as a rigorous and broadly applicable statistical framework for 

normalizing and analyzing high-throughput data. 

Here we report our use of linear mixed-effects modeling for normalizing and analyzing multiplexed bead-

based immunoassay data. We apply mixed-effects modeling to a new dedicated experimental study of 

multi-pathway phospho-protein signaling in hepatocytes treated with inflammatory cytokines that elicit 

acute phase protein secretion (27). We use a mixed-effects model to: 1) normalize the data and show the 

benefits of such normalization for deriving insights arising from the actual biological effects and 2) 

estimate the various technical effects and examine their relative contributions to the observed 

measurement variation. These diverse kinds of benefits enhance the appeal of multiplexed bead-based 

immunoassays as a measurement method. 

Materials and Methods 

Cells, reagents and experimental protocol 
Human hepatoma HepG2 cells were maintained at 5% CO2 and 37oC in Eagle’s Minimum Essential 

Medium (EMEM; American Type Culture Collection) supplemented with 1% penicillin and streptomycin 

(Life Technologies) and 10% fetal bovine serum (Hyclone). For experiments, the cells were seeded in 24-

well plates at a density of 1500 cells/mm2 in the morning, allowed to settle for 4-6 hours and serum 

starved overnight. On the following morning, the cells were subjected to a medium exchange, DMSO 

(Sigma) or dexamethasone (1 μM, Sigma) for 4 hours, after which combinations of recombinant 

interleukin-6 (IL-6), interleukin-1α (IL-1α), transforming growth factor-α (TGF-α) and/or tumor necrosis 

factor-α (TNF-α) (Peprotech) or their vehicle (0.1% BSA) were spiked into the medium. The 

concentrations of the ligands were 200 ng/mL for IL-6, IL-1α and TGF-α and 300 ng/mL for TNF-α. These 

concentrations were selected because they elicited maximal phospho-protein levels in dose-response 

experiments (data not shown). After 30 min, the media was aspirated, the cells were washed with ice-cold 

phosphate-buffered saline (Life Technologies), snap frozen with liquid N2 and stored at -80oC. The cells 

were lysed with 140 μL of Bio-Plex Phospho-protein lysis buffer (Bio-Rad) and processed according to the 

manufacturer’s protocol.  

Acute phase protein secretion was measured in a separate experiment. In this case, we followed the 

protocol as above except the cells were treated for 24 hr with selected combinations of different doses of 

IL-6 and IL-1α (5, 10 and 200 ng/mL) or vehicle in the presence or absence of ~8 hr pretreatment with 

dexamethasone (1 μM). The culture media were collected in microfuge tubes, snap frozen in N2 and 

stored at -20oC until assayed for acute phase protein levels. 

Multiplexed bead-based flow cytometric immunoassays 
We used Bio-Plex assays (Bio-Rad) to simultaneously measure the relative levels of 16 phospho-proteins 

in each sample. The assay was performed according to the manufacturer’s instructions. We randomly 

assigned the samples to the wells of a 96-well filter plate and loaded them in order by column (i.e., wells 
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A1 through H1, A2 through H2, till well H12). The 16 phospho-proteins, with the specific phospho-sites in 

parentheses, were Akt (Ser473), c-Jun (Ser63), cAMP-response element binding protein (CREB; 

Ser133), extracellular-signal-regulated kinase (ERK; isoform 1 - Thr202/Tyr204 and isoform 2 - 

Thr185/Tyr187), glycogen synthase kinase (GSK)-3α/β (Ser21/Ser9), heat shock protein 27 (Hsp27; 

Ser78), IκB-α (Ser32/Ser36), insulin receptor substrate (IRS)-1 (Ser636/Ser639), c-Jun N-terminal kinase 

(JNK; Thr183/Thr185), mitogen-activated protein kinase kinase 1 (MEK1; Ser217/Ser221), p38 mitogen-

activated protein kinase (p38 MAPK; Thr180/Tyr182), p53 (Ser15), p70 ribosomal protein S6 kinase (p70 

S6k, Thr421/Ser424), p90 ribosomal protein S6 kinase (p90 RSK; Thr359/Thr363), signal transducer and 

activator of transcription 3 (STAT3; Tyr305) and S6 ribosomal protein (S6RP; Ser235/Ser236). These 

proteins were chosen because they were known to be responsive to the ligands and because their assay 

reagents were reported by the manufacturer to not cross-react. 

The secreted acute phase proteins were measured using the Bio-Plex Pro Human Acute Phase Assay 

Panel (Bio-Rad) according to the manufacturer’s instructions. 

Statistical modeling 
A glossary of the terminology used to describe elements of the model is presented in the Supplementary 

Information. Because the error in protein assays tends to be multiplicative (21), we first log-transformed 

the raw data from the Bio-Plex instrument in order to stabilize the variance as a function of the signal 

magnitude. We then proposed the following linear mixed-effects model, which included terms 

representing all sources of variance in the experiment for which we could account: 

 

the terms of which are defined in Table 2. The random-effect terms were specified to account for the 

sources of variance listed in Table 1 although we emphasize that the model terms generally accounted 

for aggregate effects of the specific sources of variance (i.e., they are “lumped” parameters). For 

example, ωl, the between-well or between-sample main effect, represented the sum of effects of all the 

factors listed in the “Between well or sample” column of Table 1. However, some terms did account for 

distinct technical factors, such as the (tδ)ij term, which accounted for the day-specific differences in the 

concentrations and/or specific activities of the ligands (Table 2, “Between Day” column). We note the 

special case of kh (the “Kit” or analyte main effect), which accounted for both biological and technical 

factors; specifically, kh represented the effects of the analytes as well as their corresponding assay kits, 

with the analyte effects presumably caused by their different total protein abundances and the assay kit 

effects presumably caused by differences in antibody properties such as binding affinities.  

We note that the model above incorporates all known sources of variance and is therefore a single 

“global” model. We note that this global approach might be counterintuitive because usually one thinks of 

the signals (analytes) as independent response variables. Furthermore, precedence exists for fitting 

separate models to each gene in the analysis of microarray and genetic screen data in order to facilitate 

        ghijllijhjjhiighhgghijl tktktkvkvy  
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computationally-tractable analysis (e.g., 18, 23).  Indeed, univariate statistical methods are commonly 

used for analyzing multiplexed bead-based data (10, 13, 16), which is akin to fitting separate models for 

each phospho-protein analyte. Doing so, however, sacrifices the numerous benefits of the global 

approach. First, a principal advantage of specifying a global model is that the effects are estimated in 

context of one another, which can strengthen the validity of the associated inferences (9). Second, the 

global modeling approach provides the maximum degrees of freedom for estimation of effects, especially 

once nonsignificant terms are eliminated through variable selection. In addition, the global modeling 

approach accounts for the degrees of freedom allocated for normalization (17). Therefore, we 

implemented the global approach by defining the response variable as the log-transformed MFI values 

from the Bio-Plex instrument and we classified each phospho-protein analyte as a predictor variable, 

represented by the kh term in the algebraic model. We then evaluated whether a treatment significantly 

affected the levels of an analyte by examining the corresponding treatment-by-kit interaction term. 

Once the model terms were determined, we classified each term as fixed or random (Table 2, 

Supplementary Information). The distinction between fixed and random effects lies in the inferences to be 

made. Terms are assigned as fixed if they represent factors whose levels featured in the experiment are 

of specific interest and the inferences about those factors are restricted to those levels (25, 26). Random-

effect terms are used to represent factors whose levels are considered to be randomly sampled from a 

population of theoretically infinite size and the inferences about that factor apply to the population of its 

levels (25, 26). In practice, terms for continuous factors -- i.e., those whose levels can assume any value 

such as ligand doses -- are almost always set as fixed effects (25). Also, factors corresponding to 

experimental treatments and that are of interest are usually specified as fixed-effect terms while nuisance 

factors are usually considered as random-effect terms (25). We followed these guidelines in specifying 

the terms in our model: Terms associated with biological (treatment) factors were considered fixed, 

whereas technical factors (Day and Well) were assigned as random effects (Table 2). There was one 

special case: Terms associated with DMSO treatments, which we considered a technical factor, were 

assigned as fixed effects because the concentration of DMSO is a continuous variable. In the case of an 

interaction term containing both fixed and random effect terms, the interaction term must be random (25); 

thus, interaction terms involving the factor “Day” were random.  

The algebraic model was translated into a computational model, with each term described in Table 2. The 

model was implemented using the “lme4” package (version 0.999375-42) in the software R (version 

2.14.0), which employs the restricted maximum likelihood criterion to optimize the effect estimates. We 

also fitted the model using the maximum likelihood criterion for computing the Akaike Information Criterion 

and the Bayesian Information Criterion (28). Plots and additional analyses were performed in Excel 

(Microsoft) and Matlab (The MathWorks). In general, mixed-effects models provide different types of 

estimates for the fixed and random effects. For fixed-effect terms, the model estimates the effects with 

their uncertainties as model coefficients with standard errors, respectively. For the random effects, the 
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model estimates the variance of the population from which the levels of the random-effect terms were 

drawn. Therefore, an additional advantage of specifying a term as a random effect is that only a single 

parameter is estimated for that term no matter how many levels the corresponding factor includes. We 

can still obtain effect “estimates” for the levels of a random factor, known as the best linear unbiased 

predictors (BLUPs) (25, 26), and we used these to normalize the data. Further details on the distinction 

between estimating fixed-effects parameters and the random effects are provided elsewhere (28). 

Variable selection and data normalization 
In conducting the statistical modeling, we sought the simplest model that fit the data well. We started with 

the fully specified global model (the “full” model) and simplified it by removing terms through variable 

selection. The performance of the resulting models was assessed using several metrics including the 

Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), the Pearson correlation 

between the fitted values and the observed data (rfit), model predictivity as assessed by the Pearson 

correlation between the observed and predicted values from leave-one-out cross-validation (rLOOCV), 

Gaussian distribution of the residuals as assessed by the Shapiro-Wilk test (PSW) and a signal-to-noise 

ratio (SNR) defined as the ratio of standard deviations of the model fits to the residuals (21). We 

eliminated terms from the model if their 95% highest probability density (HPD) intervals encompassed 

zero, unless their inclusion was merited by hierarchy principle considerations [i.e., lower-level terms that 

are the basis for significant higher-order interaction terms should be retained in the model even if they 

themselves are not statistically significant (7)]. The HPD intervals were calculated via Markov Chain 

Monte Carlo (MCMC) sampling implemented in the “pvals.fnc” function in the “languageR” package 

(version 1.2). Variable selection was iteratively performed as above until all the terms were significant, at 

which point outliers were removed. Observations were assigned as outliers and eliminated if their 

residuals caused the distribution of residuals to clearly depart from Gaussian  (7, 26). After outlier 

removal, a final round of variable selection was performed to obtain the final model. 

Once the final model was obtained, we normalized the data by subtracting the technical effects from each 

observation in the dataset according to the following equation: 

 

Note that the DMSO effect was subtracted from observations featuring either DMSO or dexamethasone 

treatments, because DMSO was the vehicle for dexamethasone. 

We compared the final model to a regression model that incorporated only the fixed effects terms from 

the mixed-effects model. The regression model was computed using the ‘lm’ function in R. 

Constrained fuzzy logic modeling 
We modeled two datasets using constrained fuzzy logic (cFL): The raw data and the normalized back-

transformed data in which the data was log-transformed, normalized and then taken to the power of ten to 

reverse the log transformation. We scaled the MFI values from both the raw data and the normalized 

      lijhjjghhgghijlghijl tkvkkvyy  *
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back-transformed data for each analyte under each condition between zero and one by dividing the 

relative-fold increase of the signal value in the stimulated versus unstimulated condition by the maximum 

relative-fold increase observed for that analyte across all conditions. A cFL model was trained to both 

datasets (raw and normalized back-transformed) using previously described methods (29). Briefly, a prior 

knowledge network (PKN) was constructed from literature-curated molecular pathways and interactions 

known to exist between the ligands used in the experiments and the measured analytes. After structural 

processing of the PKN to compress nodes that were neither measured nor perturbed, the network was 

converted into a cFL model. The topology and parameters of this model were trained simultaneously 

using a genetic algorithm that, for each interaction, chooses one of a predefined set of mathematical 

functions to relate the input and output species, including the possibility that they do not relate. Finally, a 

heuristic reduction and refinement step was carried out to remove interactions that were not necessary to 

fit the data. The resulting trained models contained only interactions that were consistent with the data 

and were thus used as a tool to determine if the data was consistent with the PKN.   

Data presentation and statistical significance testing 
The boxplots presented in this paper were defined as follows. A red horizontal line represents the median 

while the horizontal edges of the boxplots represent the 25th and 75th quartiles such that the box spans 

the interquartile range. The whiskers extend 1.5× the interquartile range from the boxplot edges, while 

values outside of the whiskers are denoted as red “+” symbols. 

Several methods were used to test for statistical significance. For the mixed-effects and regression 

models, we tested the null hypothesis that each term’s effect was equal to zero. In the case of the mixed-

effects models, the HPD interval software described above provided both an empirically derived P-value 

estimate as well as a t-test-based estimate for each term. For the regression model, the test of statistical 

significance was a t-test (7). In addition, we tested whether the deviation of the Well effect means for 

each row and column were statistically different from zero using an empirical test. Specifically, we 

randomly shuffled the Well effects relative to their actual well addresses and recomputed the row- and 

column-specific means 10,000 times. We then estimated the probabilities of the observed means by 

determining their locations within the 10,000 resampled means. For all tests, the level of significance was 

set at 0.05 and adjusted for multiple comparisons by controlling the false discovery rate (30). 

Results 

Hepatocyte inflammatory signaling experiment 
We studied hepatocyte intracellular signal transduction leading to acute phase protein secretion. We 

modeled this scenario in vitro using HepG2 cells exposed to combinations of the inflammatory cytokines 

IL-6, IL-1α, and TNF-α, in addition to the stress-responsive glucocorticoid hormone analog 

dexamethasone and the growth factor TGF-α (Figure 1A). We measured the levels of 16 phospho-

proteins that operate as part of receptor-mediated signaling pathways downstream of the applied ligands 

using Bio-Plex multiplexed bead-based immunoassays (Figure 1A). The design featured a full factorial of 
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dexamethasone, IL-6, TNF-α and TGF-α treatments, as well as IL-1α applied in a factorial manner with 

dexamethasone and IL-6 (Figure 1B, Supplementary Spreadsheet file, “Arrayed data” worksheet). Ligand 

vehicle and DMSO controls were also included (Figures 1B and 1C). One replicate of each condition was 

performed on each of three different days with the exceptions of the vehicle control, DMSO control and 

the dexamethasone conditions, which were applied twice as within-day biological replicates on each day 

(Figure 1C). For the Bio-Plex assay, we also performed technical replicates. One of the between-day 

biological replicates from each condition was randomly chosen to be applied twice to the assay plate 

(Figures 1B and 1C). Hence, each condition had a total of at least four replicates: Three between-day 

replicates and one technical replicate. The DMSO and vehicle conditions featured seven total replicates: 

Two within-day biological replicates collected on each of the three days and one technical replicate. The 

dexamethasone condition had eight total replicates: Two within-day biological replicates collected on 

each of the three days and two technical replicates. We therefore assayed a total of 86 samples, 

composed of 19 different experimental conditions. To round out the Bio-Plex assay 96-well plate, we 

added duplicates of positive and negative control lysates for each analyte supplied by the manufacturer. 

Each of these controls behaved as expected (data not shown) and they were not included in the mixed-

effects model analysis. 

Model building and performance 
Preliminary analysis of the raw data exhibited considerable variability. In general, each analyte presented 

a typical range of signal (MFI) as indicated by the heterogeneity of color between columns in the heat 

map in Figure 1B. In all cases, the principal putative downstream signals of the ligands applied in the 

experiment showed increased phosphorylation after 30 min. For example, TGF-α treatment markedly 

increased phospho-Akt levels, while IL-1α treatment increased phospho-IκB-α and phospho-JNK levels 

(Figure 1B). However, reliably identifying treatment effects was difficult by visual inspection alone. 

Furthermore, additional preliminary plots of the raw data showed that the Day factor contributed 

substantial variance. These analyses revealed that the data could benefit from normalization to remove 

unwanted technical variance and from statistical analysis to detect subtle but significant effects. We 

proceeded to accomplish these tasks using mixed-effects modeling. 

We constructed a “full model” that contained terms representing all the sources of variance for which we 

could account. The full model contained 304 fixed-effects terms and 8 random-effect terms with a total of 

167 levels (Table 2; Supplementary spreadsheet file, “Full model” worksheet). We then evaluated the 

performance of the full model using the metrics listed in the Materials and Methods (Table 3, Figure 2A-

D). We found that the full model performed well, as indicated by the very strong correlation (r = 0.99) 

observed between the model fit and data (Table 3, Figure 2A). However, the effect estimates for many 

terms were not statistically significant (Supplementary spreadsheet file, “Full model” worksheet), which 

suggested that they could be eliminated without detrimentally affecting model performance. Indeed, 

eliminating these terms markedly lowered the BIC but only marginally affected the goodness-of-fit (Table 

3). In the second-to-last step of the variable selection, we eliminated six outliers on the basis that these 
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values caused the residuals to depart from Gaussian distribution, as shown by the points deviating from 

the red dashed line at each end of the curve in the normal probability plot (Figure 2D, red arrows). Four 

outliers were measurements involving phospho-IκB-α, three of which were from DMSO-treated samples 

and the other from a TGF-α-treated sample. The other two outliers were measurements of phospho-

STAT3 in response to IL-6 and IL-6 plus TNF-α. Interestingly, measurements of phospho-IκB-α and 

phospho-STAT3 represented 13 of the top 15 residuals with respect to magnitude. Upon removal of the 

outliers, the distribution of the residuals approached Gaussian, as indicated by the closer alignment of the 

data to the red dashed line in the normal probability plot (Figure 2H) and an increase in the P-value in the 

Shapiro-Wilk test (Table 3).  

The final model featured 62 fixed-effect terms and five random-effect terms containing 149 levels 

(Supplementary spreadsheet file, “Full model” worksheets), yet performed almost equivalently to the full 

model with respect to goodness-of-fit (Figure 2E) and predictivity (Table 3, rLOOCV) and better with respect 

to parsimony and residual behavior (Table 3, Figure 2D vs. 2H). The residuals for both the full and final 

models were homogeneously distributed as a function of the model fits (Figure 2B and 2F), which 

validated our assumption of variance homogeneity for the log-transformed MFI data. The random effects 

were also approximately normally distributed (Supplementary Figure 1). 

Normalization increases the observed precision and sensitivity of the multiplexed bead-based 
immunoassay data and the accuracy of downstream biological analysis 
With the final model in hand, we normalized the data by subtracting the effect estimates of the technical 

factors from the observed data (Supplementary Spreadsheet file, “sm8 analysis” worksheet). The 

normalized data was clearly less variable, due chiefly to the removal of the Kit main effects and terms 

involving Day (Figure 3). Next, we used the model effect estimates to investigate the ligand effects on 

each analyte (Figure 4; Supplementary Spreadsheet file, “sm8 analysis” worksheet). We observed that IL-

1α and TGF-α treatments markedly increased the levels of most phospho-proteins whereas IL-6 and 

TNF-α treatments increased the levels of only a few phospho-proteins (STAT3 for IL-6 and IκB-α, JNK, 

and c-Jun for TNF-α) (Figure 4); the capability of modeling-based normalization to discern truly significant 

activations can be appreciated by comparison to Figure 1B. Such subtle treatment effects were not 

apparent for dexamethasone (Figure 4), which suggested that the effects observed for the other ligands 

were real. In addition, we plotted the same data except with the Day and Well effects added. We 

observed that the Day and Well effects contributed considerable variability as indicated by the elongated 

boxplots (Figure 4, right panels). The additional variability blurred the distinction of phospho-protein levels 

from the untreated versus treated conditions seen with the normalized data.  

By eliminating systematic variance in the data, the normalization should benefit its downstream analysis. 

We evaluated our expectation with three analyses. First, we found that the coefficients of variation (CV) 

calculated from the replicates of each experimental condition (Supplementary Spreadsheet file, “sm8 

analysis” worksheet) were generally reduced for the normalized data, as indicated by the data points 



Mixed-effects modeling of multiplexed bead-based assay data                                              Clarke et al. 
 

12 
 

located mostly below the line of unity (Figure 5A). Specifically, 62% of the CV’s calculated from the 

normalized data were lower than those calculated from the log-transformed data, with a maximum CV of 

8% as compared with a maximum of 15%, respectively (Figure 5A). Second, we estimated the Pearson 

correlation coefficients between all pairs of distinct signals (e.g., phospho-Akt vs. phospho-ERK, etc.) 

using both the log-transformed and normalized data. We found stronger correlation coefficients and lower 

P-values for the normalized data as indicated by the concentration of points above and below the line of 

unity in each plot, respectively (Figure 5B).  

Third, we evaluated the sensitivity of the mixed-effects model for discriminating statistically significant 

terms. Specifically, we compared the mixed-effects model to a regression model that contained the same 

fixed-effects terms as the final model but that lacked the random-effect terms associated with the Day and 

Well factors. Removing the random-effect terms shifted the variance of those terms into the residual 

variance of the regression model. The residual variance in part determines the standard errors of the 

effect estimates. If the residual variance is higher, then the standard errors will be as well, with the 

consequence of reducing the probability of detecting differences between means. Accordingly, we 

observed that several terms were statistically significant in the mixed-effects model but not in the 

regression model (Supplementary spreadsheet file, “Compare models” worksheet). One example was the 

three-way interaction terms of TNF-α ×TGF-α × phospho-JNK and TNF-α × TGF-α × phospho-p38 MAPK 

(Table 4), which indicated non-additive effects of TNF-α and TGF-α on these analytes. We observed that 

the effect estimates were similar but that the standard errors for these estimates were almost double for 

the regression model (Table 4, Supplementary spreadsheet file, “Compare models” worksheet), which 

reflected the larger variability observed in the merely log-transformed data compared to the normalized 

data (compare boxplot lengths in the top vs. bottom panels of Figure 5C).  

Finally, we evaluated the effect of data normalization on the interpretations gleaned from a network-level 

modeling technique, constrained fuzzy logic (cFL), which seeks to deduce multi-pathway influences 

among protein signals (29). We applied cFL modeling to explore the hepatocyte signaling network 

underlying the secretion of acute phase proteins. The principal ligands involved in acute phase protein 

secretion are IL-6, IL-1α and glucocorticoid hormones (of which dexamethasone is a synthetic analog), 

which prompt the secretion of proteins such as fibrinogen, serum amyloid A and haptoglobin 

(Supplementary Figure 2). While IL-6 and IL-1α function through fairly well characterized signaling 

pathways, the mechanisms by which other modulatory ligands act are less clear. 

Glucocorticoid hormones can directly regulate transcription by translocating into the cell, binding steroid 

receptors and then binding DNA (31). However, glucocorticoid hormones may also regulate signaling 

events via membrane-bound glucocorticoid receptors (15, 32). Therefore, we evaluated the possibility 

that dexamethasone influenced the levels of the phospho-proteins in our system. To test this notion, we 

trained cFL models using a prior knowledge network in which we introduced edges connecting a node 

representing dexamethasone to nodes representing the measured phospho-proteins (Supplementary 
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Figure 3A). We note that a family of models, which are essentially equivalent with respect to goodness-of-

fit, is typically produced (29). If the edges were consistent with the data, then the cFL algorithm would 

retain the edges in the resulting family of fitted models. This approach assumed that the data faithfully 

reflected the biology – if it did not then the approach would become vulnerable to false positives or false 

negatives. By extracting technical sources of variance, normalizing the data helps to ensure that the data 

is at least predominantly a function of the biological sources of variance. To evaluate the effect of 

technical variance in data used for cFL modeling, we compared cFL models trained using either the raw 

or normalized back-transformed data. When the cFL models were fit to the raw data (Supplementary 

Figure 3B), we observed edges between dexamethasone and the phospho-proteins in many of the 

models, which was indicated by the thicknesses of the edges (Figure 6). In the case of cFL models fit to 

the normalized back-transformed data (Supplementary Figure 3C), few of the models contained edges 

between dexamethasone and the signals, indicated by the faint lines between dexamethasone and four of 

the downstream signals (Figure 6). Qualitatively distinct results of the cFL modeling were therefore 

obtained according to whether the models were fit to the raw or normalized back-transformed data, 

indicating the significant impact that technical variance in the data can have on cFL modeling. 

Analysis of the technical sources of variance 
The mixed-effects model algorithm provides “estimates” of the random effects in the form of BLUPs (26, 

28). These estimates provide a means to analyze how the data were affected by the technical factors, 

which could lead to important insights into quality control and experimental design strategies for 

multiplexed bead-based immunoassay experiments. We first compared the effects of the technical factors 

relative to each other and to the biological effects. To do so, we calculated the percentage variance of the 

technical and biological factors on each observation using the following formula: 

100%
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ij

ij
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where %ij is the percent variance contributed by the ith effect to the total variance of observation j. We 

then summed the percent variances associated with the biological factors for each observation and 

plotted them against the percent variances contributed by each technical factor (Figure 7, Supplementary 

Spreadsheet file, “Var_contrib” worksheet). In general, the biological factors contributed most of the 

variance to each observation, indicated by the grouping of the data in the lower right quadrants of the 

plots (Figure 7). However, the plots reveal a number of cases in which the technical factors contributed as 

much or more variance than the biological factors, as indicated by data points in the center and upper left 

quadrants of the plots (Figure 7). In general, we observed that the Day factor contributed proportionally 

the highest amount of variance among the three technical factors because the distribution of points in the 

Day plot was shifted upward compared to those in the Well and DMSO plots (Figure 7). 
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Next, we searched for additional technical factors that may have affected the assay but for which we did 

not account in the model. In particular, we were concerned about order and position effects in the assay 

plate. Order effects arise if the sequence in which the samples are loaded onto the assay plate 

contributes systematic variance. Position effects refer to the row and column effects that are sometimes 

observed in plate-based assays (33). Because we randomly assigned samples to wells on the assay 

plate, any order or position effects, if present, should manifest themselves as patterns in either the Well 

effects or the residuals. In accordance with the randomization of sample assignments to the wells, we 

observed no obvious patterns in the assignment of samples to the assay plate (Figure 8A). We then 

plotted the Well effects and residuals as a function of loading order and plate row and column and 

searched for patterns and substantial deviations from zero. Both the Well effects and residuals were 

independent of loading order (Figure 8B) and the residuals were independent of the plate rows and 

column (Figure 8C and 8D, right panels). Some variation was observed for the Well effects as a function 

of the rows and columns but these deviations were not statistically significant (P > 0.05 after correction for 

the false discovery rate; Figure 8C and 8D, left panels). The Well effects’ variation with position relative to 

the residuals is reasonable because the sample sizes associated with the Well effects were considerably 

smaller than for the residuals (N = 9-12 for rows and N = 6-8 for columns for the Well effects versus N = 

144-192 for rows and N = 96-128 for columns for the residuals). We conclude that our data were free of 

order- and position-related technical effects. 

Discussion 

We report here the use of mixed-effects modeling to normalize and statistically analyze multiplexed bead-

based immunoassay data. Specifically, we fitted a single global model to the data that included terms 

representing each of the biological and technical factors for which we could account. The model provided 

estimates of the effects associated with these factors. We then normalized the data by subtracting the 

technical effects, which left as remainder the intercept, the biological effects and the residual error. We 

used this normalized data for further analyses. 

Benefits of processing bead-based assay data using mixed-effects models 
We found that the mixed-effects model offered exceptional insight to our data. By deconvoluting the 

biological and technical effects, we could analyze them in isolation. Removing the technical effects via 

normalization led to inferences about the biological effects that were of higher confidence owing to 

improved precision and sensitivity (Figures 4 and 5, Table 4). This was particularly true for interaction 

effects such as those between TNF-α and TGF-α in promoting JNK and p38 MAPK phosphorylation. The 

significant interaction term indicates a synergistic non-additive effect of TNF-α and TGF-α on the 

phospho-levels of these proteins. Functionally important synergy between these two ligands has been 

previously found in human mesenchymal stem cells for secretion of hepatocyte growth factor (HGF) and 

vascular endothelial growth factor (34, 35). In the case of HGF secretion, the synergy was dependent on 

p38 MAPK signaling (34). Analogous synergy between TNF-α and TGF-α in our hepatic systems is likely 

physiological important because both TNF receptor and epidermal growth factor receptor signaling 
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regulate acute phase protein secretion (27, 36). Synergistic and antagonistic relationships have been 

typically evaluated using methods incorporating Bliss independence or Loewe additivity, which are widely 

featured in drug combination studies (37). Applying these methods to evaluate synergy between TNF-α 

and TGF-α would require a separate set of dose-response experiments and our results motivate further 

investigation in this regard. 

We note that the data featured in this paper were generated from experiments in which saturating doses 

of ligands were used, which elicited biological effects of maximal magnitude. Even with these maximal 

effects, the technical effects still contributed proportionally substantial variance in many cases (Figure 7), 

such that the analysis benefitted from normalization. We expect that the analysis of experiments with 

treatments featuring submaximal doses of ligands or small-molecule inhibitors, such as dose-response 

experiments, would especially benefit from normalization using mixed-effects models because the 

biological and technical effects would be expected to exhibit lesser and similar magnitudes, respectively, 

to those observed in the experiment reported in this paper. 

Normalizing the data with mixed-effects models can benefit downstream analysis of the data using 

mechanistically oriented network-level modeling methods such as those based on differential equations 

or logic models (38, 39) or data-driven statistical frameworks (e.g., principal components analysis, partial 

least squares regression, clustering, etc.) (40). Such models are used to integrate the data from large 

multivariate datasets to infer network topologies, to quantify the strength of connections between network 

nodes and to predict the effects of perturbations (2, 38, 40, 41). The biological relevance of the model 

predictions is intimately linked to the degree to which the data is a function of the biology, which can be 

compromised by the presence of technical effects. Here we observed that cFL models fit to raw and 

normalized back-transformed data gave qualitatively different outputs in which fewer edges between 

dexamethasone and measured signaling nodes were observed in the models from the normalized data 

(Figure 6). These results have opposing biological interpretations: Model outputs based on the raw data 

implied that dexamethasone somehow promoted the phosphorylation of certain signaling proteins 

whereas outputs based on the normalized back-transformed data implied that dexamethasone did not 

regulate signaling.  

We cannot definitively conclude that more physiologically correct cFL models resulted from using the 

normalized data, but they do match our expectations from known biology and our data. Specifically, 

despite the existence of evidence for glucocorticoid hormones being able to regulate cell signaling (15, 

32), their principal mode of action is direct transcriptional regulation (31), such that we expected 

dexamethasone to have little to no effect on phospho-protein levels. Accordingly, we observed that 

dexamethasone treatment for four hours did not alter phospho-protein levels (Figure 4). The apparent 

discrepancy between the data (Figure 4) and the cFL models (Figure 6) with respect to dexamethasone 

arose because the cFL algorithm is sensitive to the increase in signal upon stimulation compared to its 

vehicle control, which in this case involved the signals in response to dexamethasone and DMSO being 
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compared (Supplementary Figure 3B, dex = 1 column). Variance induced by the technical factors caused 

slight increases in some signals in the dexamethasone-treated samples compared with DMSO 

(Supplementary Figure 3B). In contrast, the plot in Figure 4 featured all of the observations grouped 

according to whether they were treated with dexamethasone. The ability to rigorously normalize the data 

allows us to retain the sensitivity of the cFL algorithm while defending against possible false positive 

results caused by technical variance. We note that normalizing the data by mixed-effects modeling could 

precede the other types of network-level models such that it represents a general strategy for improving 

data quality. 

Mixed-effects modeling of the data presents an additional possible benefit for network-level modeling. 

Mixed-effects models provide an estimate of the residual variance, which if all other sources of variance 

are accounted for in the model, represents an estimate of the random experimental error or noise. This 

residual variance estimate could be used for sensitivity analyses of the network-level model to random 

error. Specifically, the model could be fit to synthetic datasets generated by Monte Carlo sampling of the 

distribution of residuals in order to determine how experimental error propagates through the modeling 

algorithm and affects the predictions. 

We used the mixed-effects modeling approach to obtain insights into the properties of the technical 

factors. We compared the model-based estimates of the technical effects and observed that the Day 

factor contributed the most variance (Figure 7). This result has two important implications: First, assay 

reproducibility should be evaluated with experiments performed on different days (or in different batches) 

and second, the experimental design and analysis should guard against potential batch effects (c.f. 6). 

We expand on these thoughts in the subsection below on experimental design. Furthermore, we found 

little to no evidence that additional technical factors such as order or position were present in our 

experiments. This result instills further confidence in the robustness of multiplexed bead-based 

immunoassays. 

We used the totality of the data for classifying measurements as outliers. By definition, an outlier is an 

observation whose value lies outside the typical range of values caused by the known sources of 

variance. By analyzing the complete dataset using a model that included all the sources of variance, we 

quantitatively established this typical range, which is less than what might be estimated by inspecting 

replicate measurements or boxplots in isolation. For example, a number of red “+” markers are featured in 

the boxplots of Figure 4, which represent data points that lie beyond the whiskers of the boxplot and are 

considered “outliers”. Here we eliminated observations whose residuals caused the distribution of 

residuals to substantially deviate from Gaussian distribution, which is an assumption that must be 

satisfied when using the model to make statistical inferences. Using this criterion, we removed a mere six 

observations out of a total of ~1,400. That so few observations were considered outliers demonstrates the 

internal consistency of our data. We do not know why those six observations were outlying and we 

acknowledge that it can be unfavorable to remove outliers from a dataset unless valid reasons exist to do 
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so. However, because each effect estimate was based on many degrees of freedom, removing the six 

outliers had little influence on these estimates (data not shown) but did ensure that the distribution of 

residuals approached Gaussian such that the statistical tests would be valid. Furthermore, we performed 

all analyses other than the statistical analysis with the outliers reinserted into the dataset and found that 

the interpretation remained unchanged. 

Mixed-effects models are advantageous compared to other methods of analysis. Experiments with 

random factors can be analyzed with analysis of variance (7). However, analysis of variance techniques 

for designs with random factors have important limitations, most notably that they can only accommodate 

balanced designs in which the same number of observations are allocated to each experimental 

treatment (25). Mixed-effects models offer a more flexible approach because they can handle missing 

data and unbalanced experimental designs (25, 42). Now that powerful software capable of fitting mixed-

effects models is widely available, we expect that they will replace analysis of variance as the method of 

choice for analyzing biological experiments. 

Implications for the design and conduct of experiments 
A key limitation of multiplexed bead-based immunoassays is their considerable cost. From a statistical 

perspective, experiments have three basic purposes: To estimate treatment effect magnitudes and their 

precision and to demonstrate reproducibility. Experiments should therefore be designed to maximize 

efficiency in which the minimum number of observations is used to achieve these goals. In practice, this 

implies that the number of replicates should be minimized. A tradeoff exists, however, because replicate 

observations are necessary for providing the statistical power necessary to robustly estimate precision 

and demonstrate reproducibility. Applying a statistical model to the data allows one to minimize the 

replicates while maintaining statistical power (24). We discuss in detail how the use of statistical models 

can lead to efficient experimental designs.  

Using a statistical model enables the use of three strategies for efficient experimental designs. First, 

statistical models enable the use of factorial designs, which involve combinatorially applying the treatment 

factors, rather than varying the factors one-at-a-time. Factorial designs are more efficient because they 

allow interaction effects to be estimated and because replication is inherently achieved due to each 

treatment being applied to multiple experimental units (7). Because the treatments are combinatorially 

applied, a statistical model is necessary to decouple the factor effects from one another. Second, 

statistical models can serve as the basis for estimating a priori the number of replicates necessary to 

achieve a desired level of precision (18, 43) such that excess replicates can be avoided. 

Third, statistical models enable the use of between-day biological replicates, which allows replicates to be 

used to simultaneously estimate variance, contribute degrees of freedom and assess reproducibility. A 

key concept for our argument is that of statistical independence. Two events are statistically independent 

if the probability of occurrence of one event does not affect the probability of occurrence of the other 
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event. In the case of observations in an experiment, statistical independence implies that the residuals of 

each observation are uncorrelated. A standard assumption of regression and mixed-effects models is that 

the residuals are independent.  

Despite mathematical clarity, defining independence in practice is not straightforward. In cell biology 

experiments, the minimum standard for classifying replicates as statistically independent is that they be 

within-day biological replicates (as opposed to technical replicates; see Figure 1C) (44). However, the 

threshold for independence becomes murky when certain technical sources of variance such as batch 

effects impinge on the experiment because they introduce systematic bias that ultimately correlates the 

measurements. To ensure the statistical independence of replicates, the experiment should be performed 

in the presence of primary threats to reproducibility such as batch effects.  

A downside to replicating experiments in the presence of technical sources of variance is introducing 

variability that can reduce precision and decrease the probability of finding statistically significant results. 

Biologists therefore typically attempt to stringently control sources of variance extraneous to the 

experiment. In particular, experiments are usually performed using within-day biological replicates in 

order to avoid introducing between-day variation. Reproducibility is then assessed by conducting a 

separate experiment on another day and comparing the results to those from the first experiment. If the 

results are sufficiently similar then the experiment is considered reproducible. Typically, the data from 

only one of the experiments is reported in a publication (as “representative” data).  

An alternative, more efficient approach depends on analyzing the data using a statistical model such as 

the mixed-effects model used in this study. By normalizing the variance contributed by the technical 

sources of variance, the use of statistical models allows the experiment to be performed using exclusively 

between-day biological replicates, such that replicates can be simultaneously used to estimate precision 

and evaluate reproducibility. The gains in efficiency with this approach can be illustrated with the following 

example. Suppose a biologist conducts an experiment in which three replicates of each treatment are 

desired. The typical strategy would involve performing one experiment with three within-day biological 

replicates and then repeating the experiment on a different day to ensure that the results were 

reproducible. Between the two experiments, six observations per treatment would be collected. The 

alternative approach would involve collecting a single replicate per treatment on each of three days to 

collect three between-day biological replicates. The variance introduced by performing the experiment on 

different days could be normalized using a statistical model containing terms adjusting for the between- 

day effects. The alternative approach is more efficient because it involves collecting half the number of 

observations per treatment (three vs. six) yet features one more between-day replicate to evaluate 

reproducibility (three vs. two). Furthermore, the data from the three between-day replicates would all be 

presented in a publication. Therefore, by purposefully performing between-day replicates, even if it is 

logistically unnecessary to do so, and using a statistical model to analyze the data, replication and 

reproducibility assessment can be achieved efficiently and without adversely affecting statistical power.  
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Caveats of using mixed-effects models for data normalization and analysis 
The mixed-effects modeling approach has some limitations that must be considered. First, to reliably 

estimate the variance components of the random-effect terms, considerable replication is required. For 

example, the confidence intervals for the variance estimates of the Day-by-Kit interactions were large 

(Supplementary spreadsheet file). Therefore, if one uses the model with the intent of rigorously estimating 

variance components, one must ensure sufficient replication. Second, the models do not distinguish the 

mechanisms underlying the technical factors. For example, we know that the specific batch of an 

experiment contributes significant variance but the model does not tell us why; we can propose a number 

of reasonable mechanisms (Table 1) but ultimately cannot prove their contributions. On the one hand, this 

feature is beneficial because known variance can still be captured without knowing its mechanisms. 

However it could also be possible to propose terms for the model that improve the appearance of the data 

but whose inclusion is not mechanistically justified. It is therefore important to justify each term in the 

model by considering the potential sources of variance in the experiment (e.g., Table 1). 

The linear mixed-effects modeling approach is powerful for the factorial design presented here. However, 

other common experimental designs, such as time courses and dose-response experiments, often 

feature nonlinearity that must be accommodated by the model. Linear mixed-effects models can still be a 

viable framework in such cases and several strategies are available for their implementation. First, in 

some cases, data transforms can sufficiently linearize the data. Second, the levels of continuous factors 

can be considered as distinct categorical factors, each with their own term in the linear model (21). Third, 

nonlinear mixed-effects models can also be used if the functional relationship between the predictor and 

response variables is known (e.g., 45). This approach would probably be best suited to dose-response 

data in which sigmoidal functional relationships are commonly observed. A related approach involves 

using splines in a mixed-effects modeling framework, also known as semiparametric regression (46). 

Finally, a sequential approach could be used in which a linear mixed-effects model is used to model and 

normalize the technical effects, after which a modeling framework that can handle nonlinearity (such as 

cFL) is used to model the normalized values (which correspond to the residuals of the first model). 

Sequential approaches have been used in several studies in order to ensure computational tractability of 

the modeling (18, 23). While this approach is appealing, it is important to recognize that estimates will 

likely be more accurate if the data is modeled using a single model (9). Our future work will seek to devise 

and test methods for handling nonlinear data. 

We remark that the mixed-effects model approach does not require the use of housekeeping protein 

measurements, which often serve as the basis for data normalization. However, including housekeeping 

protein measurements in the experiment could improve the interpretability of the model. The model 

requires that a single condition be used as the basis for comparison and its value is equal to the intercept. 

The effect estimates for all other terms are calculated relative to the intercept, which can distract the 

interpretability of those estimates. In our case, phospho-Akt was the basis for comparison such that the 

intercept was the average log MFI for phospho-Akt in the vehicle-treated condition. Treatment-by-Kit 
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interaction terms distinguished the differences in log MFI values of the remaining analytes from those of 

Akt. So if the log MFI of an analyte in response to a treatment was indistinguishable from that of phospho-

Akt, the term in the model would be nonsignificant, even if that treatment caused a change in the levels of 

the analyte. Such was the case for phospho-p38 MAPK in response to TGF-α, for example (Figure 4). If 

an unresponsive housekeeping protein was used as the basis for comparison instead, then the treatment-

by-kit interaction effect estimates should more closely align with expectations from visually inspecting the 

data and therefore be more intuitively interpretable. Nevertheless, this is a minor limitation and does not 

adversely affect the modeling results.  

In summary, we have implemented linear mixed-effects models for rigorously normalizing and analyzing 

multiplexed bead-based immunoassay data. Mixed-effects modeling of our data provided exceptional 

insights into the biological and technical factors influencing our data and improved its quality for 

downstream analyses. We also discussed how the models can serve a critical role in performing 

informative and efficient experimental designs, thus promoting the utility and feasibility of multiplexed 

bead-based immunoassays. Finally, the mixed-effects modeling approach reported here is generally 

applicable to all types of bead-based assay data, including those used to measure cytokines, secreted 

proteins, intracellular proteins, and nucleic acids. 
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Tables 

Table 1. Possible technical factors influencing multiplexed bead-based immunoassay data. 
Procedure step Levels at which the technical factors act 
 Between day or batch Between plate Between well or sample 
Seed cells Cell counting accuracy  Cell seeding accuracy (pipetting) 

Apply experimental 
treatments 

Concentrations and 
specific activities of 
reagents 

Timing of 
treatments and 
plate processing 

Order bias 

Media volumes per well 
(pipetting) 

Process cells 
(wash, freeze, and 
lyse) 

Lysis buffer reagent 
concentrations1 

 Number of adhered, healthy cells 
present at experiment’s end 

Lysis buffer volume (pipetting) 

Measure total 
protein 
concentrations, 
dilute samples to a 
common 
concentration 

 Accuracy of 
protein assay 
standards 

Accuracy of protein concentration 
measurements 

Accuracy of assay buffer dilution 
volume 

Perform the assay Bead concentrations1 

Antibody concentrations1 

Instrument calibration and 
performance1 

 Factors affecting the number of 
beads and antibody amounts:  

Effects introduced by multiple 
wash & rinse steps 

Resuspension volume (pipetting) 

Liquid evaporation 

Spillage, leakage, and/or 
clogging of the filter plates 

Bead carryover between wells (5) 
1 These between-day effects would pertain to cases in which the cell processing and assay themselves 
were performed on separate days. In our experiment, only the treatments were performed on separate 
days.
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Table 2. Specification of the full model. 
Algebraic 
model term1 

Variable or factor Effect type and 
assumption2 

Subscript range (main) or 
number of terms (interaction) 

Terms in the computational model3 

yghijl Response variable   log10(MFI) 
μ Mean MFI of phospho-Akt 

measurements from 
vehicle-treated samples 

 1 Intercept 

vg Vehicle main effects Fixed g = 1,2 (ligand vehicle)4, dmso 
kh Kit (analyte) main effect Fixed h = 1-16 (akt)4, erk, gsk, ikb, jnk, p38, p70, p90, 

cjun, creb, hsp27, irs, mek, p53, stat3, 
s6rp 

(vk)gh Vehicle × Kit interaction Fixed  15 dmso × 15 kits 
ti Treatment effects Fixed i = 1-17 Main: d, 6, L, N, G 

2-way interactions: d×6, d×L, d×N, d×G, 
6×L, 6×N, 6×G, N×G 
3-way interactions: d×6×L, d×6×N, 
d×6×G, d×N×G 

(kt)hi Treatment × Kit interactions Fixed 17 treatment effects × 15 kits = 
255 

Each treatment term × 15 kits 

δj Day main effect Random 
d~N(0,σd

2) 
j = 1-3 d1, d2, d3 

(kδ)hj Day × Kit interaction Random 
(kd)~N(0,σkd

2) 
3 days × 16 kits = 48 Each day term × each of the 16 Kit terms 

(tδ)ij Day × Treatments (main 
effects only) interaction 

Random 
(td)~N(0,σtd

2) 
3 days × 5 treatments × 2 levels 
of each treatment = 30 
 

Each day term × each of d, 6, L, N and G 

ωl Well (sample) effects Random 
w~N(0,σw

2) 
l = 1-86 Well addresses (e.g., A9, G12, etc.) 

εghijl Residual error Random 
e~N(0,σ2) 

  

1 The algebraic equation is a compact representation of the mixed-effects model that must be translated into a computationally readable form. While R can handle 
categorical variables specified in compact form (e.g., specifying a factor such as “Kit” and listing its constituents as levels in the data column), doing so precludes 
eliminating terms from within that factor during variable selection. We therefore explicitly specify each level of the factor as its own term in models subjected to 
variable selection. See the spreadsheet file in the Supplementary Information for more details. 
2 The random effects were assumed to be independent values of their respective variables that are normally distributed with mean of zero and variance as 
indicated. 
3 Legend: d = Dexamethasone, 6 = interleukin-6, L = interleukin-1α, N = tumor necrosis factor-α, G = transforming growth factor-α, d1= Day 1, d2 = Day 2, d3 = 
Day 3. 
4 Terms listed in brackets did not have their own terms in the computational model but instead served to estimate the intercept, relative to which the effects of the 
remaining terms were computed. 
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Table 3. Variable selection metrics. 
Model1 Modifications Selection criteria 

  AIC2 BIC2 rfit rLOOCV SNR PSW 
        

1 Full model -2653 -1016 0.992 0.989 9.2 <3×10-16 
2 Remove terms -2741 -1827 0.994 0.988 8.5 <3×10-16 
3 Remove terms -2772 -1988 0.993 0.990 8.5 <3×10-16 
4 Remove terms -2772 -2113 0.993 0.990 8.3 <3×10-16 
5 Remove terms -2807 -2426 0.993 0.990 8.1 <3×10-16 
6 Remove terms -2806 -2446 0.992 0.990 8.1 <3×10-16 
7 Remove outliers -2981 -2621 0.993 0.992 8.7 2.1×10-6 
8 Remove terms 

(“Final model”) 
-2983 -2628 0.993 0.992 8.7 2.1×10-6 

        
1 Eight iterations of variable selection were performed, each resulting in a different model. 
2 The AIC and BIC metrics were computed from models fit according to the maximum likelihood criterion 
instead of the restricted maximum likelihood criterion because the former is required for correct AIC and 
BIC estimates (28).  
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Table 4. Mixed-effects model estimates and statistics for three-way interactions involving TNF-α and 
TGF- α treatments. 
Model terms Model1 Coefficient Standard Error t-value P-value2 
N × G × JNK 1 0.098 0.032 3.10 0.002 
 2 0.087 0.062 1.42 0.157 
N × G × p38 1 0.125 0.028 4.41 <0.001 
 2 0.096 0.055 1.75 0.081 
1 Model 1 was the final mixed-effects model and Model 2 was a regression model equivalent to Model 1 
except that it lacked the random-effect terms. Model 2 was fit using the ‘lm’ function in R. 
2 The P-values for the two models were computed using different techniques, such that they are only 
roughly comparable. The P-values for the terms in Model 1 were both significant at the 0.05 level after 
correcting for multiple comparisons using the false discovery rate, whereas the P-values for Model 2 did 
not achieve significance.  
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Figure Legends 

Figure 1. Experimental design and raw data. A. A schematic view of the experiment. We investigated the 

cell signaling network of HepG2 cells by treating the cells with combinations of the ligands (green) 

including the inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1α 

(IL-1α), the glucocorticoid hormone analog dexamethasone (Dex) and the growth factor transforming 

growth factor-α (TGF-α). We used multiplexed bead-based immunoassays to measure the levels of 

phospho-proteins (blue) that function in intracellular signaling. The full names of the phospho-proteins are 

listed in the Materials and Methods section. B. Design matrix and raw data. The design matrix (at left) is 

shown with the columns pertaining to the replicate types, defined in panel C, shaded in orange. The filled 

boxes indicate the samples for which the corresponding treatments were applied. For the Day column, 

the unfilled boxes denote Day 1, the boxes filled grey denote Day 2 and the boxes filled black denote Day 

3. The raw data is presented on the right as a heat map with one column for each of the 16 phospho-

protein analytes and each row representing a single replicate of a particular condition. The colors 

represent MFI values spanning a from 68 to 26,103. C. Definition of replicate types. Our experiment 

featured three types of replicates: 1) Between-day biological replicates (“Day”), which we defined as cells 

independently treated with the same experimental perturbation but on different days (batches), 2) Within-

day biological replicates (“Biol”), which we defined as cells independently treated with the same 

experimental perturbation on the same day (i.e., in the same batch) and 3) Technical replicates (“Tech”), 

which we defined as biological samples that were divided and pipetted into separate wells in the Bio-Plex 

assay plate. These replicate types are subject to different types of variance: Technical replicates are 

subject to variance introduced in the assay process, within-day biological replicates are subject to both 

assay variance and variance introduced by the act of experimentally manipulating the cells and between-

day biological replicates are subject to the previous sources of variance in addition to batch effects.  

Figure 2. Model fits and residual analyses. A & E. Scatterplots of the fitted values from the models 

(“Model fits”; full model, A, and final model, E) and the observed data (“Data”). The diagonal line 

represents the line of unity. Note the close correspondence of the model fits to the observed data, 

suggesting that the model fit the data well. B & F. Scatterplots of the residuals and the model fits. The 

residuals were distributed evenly around zero and exhibited no functional dependence on the magnitude 

of the fitted values, thus supporting the assumptions of homogeneous variance and independence (full 

model, B, and final model, F). C, D, G and H. Histograms (C and G) and normal probability plots (D and 

H) of the residuals were plotted for the full (C and D) and final (G and H) models. The presence of outliers 

(identified in D by the red arrows) in the dataset used to fit the full model caused the residuals to deviate 

from Gaussian distribution. Eliminating these outliers and fitting the remaining data to the final model led 

to residuals that were approximately normally distributed (compare panels D & H). 

Figure 3. Normalization of the data using the final mixed-effects model. A. Heat maps showing the raw, 

log-transformed and normalized data. Two heat maps for the normalized data are shown, the one above 
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in which the colorbar was scaled to the entire matrix of values (“Scaled to matrix”) and the one below in 

which the colors were scaled to the values within each column (“Scaled to column”) in order to more 

clearly represent the treatment effects. The colorbars correspond to the MFI or log MFI values except that 

of the “Scaled to column” heat map, which represents log MFI values rescaled to 0 to 100. B. Boxplots of 

the log-transformed and normalized data grouped by analyte and by day (the three boxplots for each 

analyte represent in order the data from days 1, 2 and 3). Note that the boxplots of the normalized data 

are aligned at a log MFI of just under 4. The scaling of the data to this particular value was due to all the 

effects being computed relative to phospho-Akt (for the sole reason that it was alphabetically the first term 

in the Kit effects) such that the data was normalized relative to its average log MFI in the vehicle-treated 

condition (log MFI = 3.85, corresponding to MFI ~= 7,100). The details of the boxplot construction are 

presented in the Materials and Methods section. 

Figure 4. Ligand main effects on phospho-protein levels with and without technical variance. Boxplots of 

the normalized log MFI for each analyte were plotted as a function of the presence (turquoise) or absence 

(red) of each ligand shown at the far right. For the panels on the left, the plotted values were computed by 

summing the mixed-effects model estimates of the intercept, the residuals and the effects for the all the 

terms that included the ligand specific to that panel, thus representing normalized data. The panels on the 

right feature those same values except with the Day and Well effects added, thus representing 

nonnormalized data. The variability contributed by the Day and Well factors is indicated by the elongated 

boxplots in the right panels versus those in the left panels. The details of the boxplot construction are 

presented in the Materials and Methods section. 

Figure 5. The effect of normalization on the precision and sensitivity of multiplexed bead-based 

immunoassays. A. Scatterplot of the coefficients of variation (CVs) of replicate data for both log-

transformed and normalized data. Each data point represents a CV calculated from the replicates of a 

particular observation, with N = 4, 7 or 8 depending on the condition (see text for details). B. Scatterplots 

of the Pearson correlation coefficients (left) and corresponding P-values (right) for each pair of analytes 

from the log-transformed (left) and normalized data (right; N = 162 = 256 points per plot). C. Illustration of 

the effect of data normalization on testing for statistical significance. The upper and lower panels feature 

boxplots from the log-transformed and normalized data, respectively, that show the effect of TNF-α and 

TGF-α factorial treatments on MFIs for Akt, JNK and p38 MAPK. Akt is shown because it is the basis for 

comparison in the mixed-effects model. N = the number of observations contributing to the corresponding 

boxplot above. The boxplots for the normalized data are generally shorter than those for the log-

transformed data and thus indicate reduced variability. The details of the boxplot construction are 

presented in the Materials and Methods section. 

Figure 6. Constrained fuzzy logic models trained to raw and normalized data. The cFL model algorithm 

takes as input a prior knowledge network and experimental data and evaluates which edges are required 

to best fit the data. The green nodes represent the ligands applied in the experiment, the blue nodes 
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represent measured phospho-proteins and the white nodes represent molecules that were neither 

measured nor perturbed but whose retention in the model was necessary for logical consistency. The 

thickness of an edge is proportional to the number of models within the family of trained models in which 

the edge was retained and thus reflects the likelihood that the connection the edge represents exists in 

reality. CFL models trained to the raw data indicated that several edges between dexamethasone and 

phospho-proteins were consistent with the data. In contrast, cFL models trained to the normalized back-

transformed data contained only edges of very low confidence between dexamethasone and four of the 

phospho-proteins. 

Figure 7. The contributions of the biological and technical factors to the total explained variance. 

Scatterplots show the percent contributions to the total explained variance by the biological (treatment) 

and the individual technical factors (Day, Well, and DMSO) for each measurement (N=1376). Each plot 

features a scatter of points triangular in shape, which is expected because the sum of the percent 

variance contributions cannot exceed 100%. A data point in the lower right quadrant of a plot means that 

the biological factors contributed more variance than the indicated technical factor for that observation 

whereas the converse was true for a data point in the upper left quadrant.  

Figure 8. Evaluation of order and position as possible technical factors. A. Plots of the randomized 

assignment of samples to the wells of the Bio-Plex assay plate. A filled well denotes that its 

corresponding sample was treated with the ligand labeled above the plate. A well filled for multiple ligands 

simply denotes a sample that was treated with a combination of ligands. Note the absence of obvious 

patterns in the assignment of samples to the assay plate. B. The well effects (left) and residuals (right) 

were plotted as a function of sample loading order in the Bio-Plex assay plate. The samples were loaded 

in vertical order, i.e., from well A1 to H1, A2 to H2 and so forth until well H12. A single well effect and 16 

residuals were associated with each well, such that we used a bar chart to visualize the Well effects and 

boxplots to visualize the residuals. The details of the boxplot construction are presented in the Materials 

and Methods section. Note the lack of obvious patterns in the Well effects plot and the centering of the 

boxplots at zero in the residuals plot. C and D. Well effects (left) and residuals (right) were plotted as a 

function of plate column (C) and plate row (D) in the Bio-Plex assay plate. Scatterplots and boxplots were 

used to visualize the Well effects and residuals, respectively, because the Well effects featured only a few 

data points (N = 6-12) per group compared with the residuals (N = 96-192; see main text for more 

details). Position effects would be indicated by an obvious deviation of the average of the data points or 

boxplots from zero, which we did not observe here. 
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Figure 7
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Figure 8
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