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Abstract

Objective: To test a method for performing electrical impedance myography (EIM) in the mouse hind limb for the
assessment of disease status in neuromuscular disease models.

Methods: An impedance measuring device consisting of a frame with electrodes embedded within an acrylic head was
developed. The head was rotatable such that data longitudinal and transverse to the major muscle fiber direction could be
obtained. EIM measurements were made with this device on 16 healthy mice and 14 amyotrophic lateral sclerosis (ALS)
animals. Repeatability was assessed in both groups.

Results: The technique was easy to perform and provided good repeatability in both healthy and ALS animals, with intra-
session repeatability (mean 6 SEM) of 5% 61% and 12% 62%, respectively. Significant differences between healthy and
ALS animals were also identified (e.g., longitudinal mean 50 kHz phase was 1860.6u for the healthy animals and 1461.0u for
the ALS animals, p = 0.0025).

Conclusions: With this simple device, the EIM data obtained is highly repeatable and can differentiate healthy from ALS
animals.

Significance: EIM can now be applied to mouse models of neuromuscular disease to assess disease status and the effects of
therapy.
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Introduction

Electrical impedance myography (EIM) is a technique in which

a high-frequency, low-intensity electrical current is applied via

surface electrodes to discrete areas of muscle and the resulting

voltages measured [1]. From these, the muscle’s electrical

characteristics, including its resistance, reactance, and phase are

calculated. Studies have shown the potential value of these EIM

values as biomarkers for assessing disease status and progression, in

amyotrophic lateral sclerosis [2], spinal muscular atrophy [3], and

myositis [4]; ongoing work suggests that it could also be potentially

useful as a diagnostic tool in helping to differentiate neuromus-

cular illness [5].

In addition to human studies, EIM has also been applied to rat

disease models [6–8]; such studies have been aimed at developing

a deeper knowledge of the relationship between EIM data and

underlying pathology. Perhaps more importantly, it can be used as

a tool to quickly evaluate drug efficacy during pre-clinical drug

development. In the rat, the technique has been performed on the

gastrocnemius muscle using a straightforward modification of the

human technique in which 4 discrete adhesive electrodes are

placed in a line on the skin overlying the muscle following the long

axis of the limb [6]. Excellent reproducibility can be achieved

using this simple approach.

For a variety of reasons, however, it would useful to be able to

study mouse neuromuscular disease models as well. Indeed, there

is an ever-increasing number of mouse models of neuromuscular

disease and a convenient, easily-applied, tool that does not require

animal sacrifice could find wide application. However, configuring

EIM for use in the mouse hind limb is not straightforward since

the mouse limb is considerably smaller than that of the rat (2 cm

circumference at mid calf for the mouse versus 6 cm for the rat)

and it is not possible simply to mimic the approach used in human

subjects using still smaller adhesive electrodes as was done in the
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rats. Moreover, it would be advantageous to also measure

electrical current flow in multiple directions, so as to assess the

muscle’s electrical anisotropy. Such measurements may provide

additional insight into muscle condition, including potentially

differentiating neurogenic from myopathic disease [5]. Although

such measurements were attempted previously using small metal

strips [9], the technique was very difficult to perform given the

mouse’s size.

Thus, in this study, we describe a new methodology for

performing EIM on the adult mouse hind limb using a fixed rigid

electrode array and provide results in both healthy animals and

those with ALS.

Methods

The Electrode Array
Figure 1 shows three different views of the device. Four stainless

steel strips placed in parallel were embedded within an acrylic

head, with each of the individual strips protruding slightly to help

ensure good contact with the skin. In particular, the electrode head

was an assembly of 5 flat laser-cut acrylic pieces and 4 flat water-

jet-cut stainless steel plates. The stainless steel plates were cut into

a stepped shape so they could be encased perpendicularly in the

stack of acrylic pieces, with their location entirely determined by

the location of mating slots in the acrylic pieces. The stainless steel

plates also had a zigzag pattern of notches around which a copper

wire was wound; the sharp edges of the notches ensured good

electrical contact with the copper wire, which connected to the

measurement equipment. The stainless steel plates were positioned

in the acrylic stack and permanently encased by adhering the

acrylic pieces together. Finally, the end of the stainless steel plates

that protruded slightly to serve as the contacting portion of the

electrode head was filed to remove any burrs or sharp edges. The

total footprint of the array was set at 3.95 by 6.85 mm, a

dimension based on measurements performed on the hind limbs of

multiple adult animals,. The two outer strips (to serve as current-

emitting electrodes) were 0.55 mm wide and 3.95 mm long; the

two inner strips (to serve as voltage-measuring electrodes) were

0.55 mm wide and 2.85 mm long. The strips were 0.55 mm apart

(measured from the center of each strip).

The head of the device was affixed to a rotatable arm that could

be placed squarely over the animal’s gastrocnemius muscle. The

rotatable arm included an embedded plastic disc with angle

markers allowing the array to be consistently placed relative to the

long axis of the limb. The electrode wires extended through the

center and out the top of the rotatable arm where they connected

Figure 1. Multiple views of the device. A. The entire device, showing the rotatable arm used to change the direction of the electrode array, the
angle marker, and the removable weights; B. A close-up view of the tetrapolar electrode array; C. the entire animal setup with the device overlying
the gastrocnemius muscle.
doi:10.1371/journal.pone.0045004.g001
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Figure 2. The test-retest and Bland-Altman plots of phase at 50 kHz for healthy and ALS mice in the longitudinal configuration. ICC
values are 0.94 for healthy mice and 0.93 for ALS mice.
doi:10.1371/journal.pone.0045004.g002

Table 1. Repeatability Analyses at 50 kHz.

Resistance (V) Reactance (V) Phase (6)

Long Trans Long Trans Long Trans

Normal ICC 0.90 0.88 0.95 0.89 0.94 0.88

Diff% ± SEM 5% 61% 6% 61% 7% 62% 10% 62% 5% 61% 7% 62%

Bias 4.0% 4.0% 2.2% 3.7% 21.7% 20.1%

Precision 5.0% 8.1% 8.7% 12.5% 6.0% 9.5%

ALS ICC 0.76 0.79 0.83 0.84 0.93 0.88

Diff% ± SEM 9% 62% 8% 62% 17% 64% 14% 64% 12% 62% 11% 63%

Bias 21.2% 1.3% 21.7% 21.0% 21.9% 21.5%

Precision 12.4% 9.2% 24.6% 19.4% 14.7% 13.3%

Long, longitudinal; trans, transverse.
doi:10.1371/journal.pone.0045004.t001
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to an impedance-measuring device. In addition, a dowel pin

extension parallel to the rotatable arm allowed for the addition of

weights to ensure consistent contact pressure of the device against

the muscle with each measurement.

Impedance Measurement System
EIM measurements were performed with the Imp SFB7H

bioimpedance spectroscopy device (ImpediMed, San Diego, CA).

This device could perform measurements over the 4 kHz to

1 MHz range within just several seconds. For the analyses that

follow, however, only values from 20 kHz to 500 kHz were

included.

Animals
8 male and 8 female healthy Swiss-Webster mice, obtained from

Charles River Laboratories, of 18 weeks of age were used for the

reproducibility studies. In addition, 7 male and 7 female ALS

SOD1 G93A animals (strain B6SJL-Tg(SOD1*G93A)1Gur/J),

bred from animals obtained from Jackson Laboratories were also

studied at 18 weeks of age. Animals were housed 5 per cage with

access to food ad libitum. All studies were approved by the Beth

Israel Deaconess Medical Center Institutional Animal Care and

Use Committee (IACUC).

Animal Measurement Procedures
All EIM measurements were performed with the animals placed

under 1% isoflurane anesthesia delivered by nosecone with a

heating pad underneath the limb to maintain consistent temper-

ature. After the fur was clipped, a depilatory agent was applied to

the skin to remove all remaining fur; the skin was then cleaned

with 0.9% saline solution. The leg was then taped to the measuring

surface at an approximately 45 degree angle extending out from

the body (Figure 1 C). To assist in repeat placement of electrodes,

a pinpoint tattoo was placed close to the center of the

gastrocnemius muscle at a point approximately 2/3 of the distance

between the midpoint of the lumbar spine and the base of the heel

pad of each mouse.

For assessment of electrical anisotropy (directional dependence

of electrical current flow through the tissue), the electrode array

was placed both parallel (i.e., 0u named longitudinal configuration)

and perpendicularly (i.e., 90unamed transverse configuration) to

the major muscle fiber direction by rotating the device arm.

For assessment of technique repeatability, after an initial set of

measurements was made, the animal was removed from the set-

up, lifted up, and then replaced about 1–2 minutes later and new

adhesive tape applied; the array was then placed on the leg and the

measurements repeated.

Figure 3. Major multifrequency EIM parameters (± SEM) for healthy and ALS mice in both longitudinal (06) and transverse
configurations (906).
doi:10.1371/journal.pone.0045004.g003
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Data Analysis
For assessment of immediate repeatability of the testing system

in all 16 healthy and 14 ALS mice, the percent variation between

measurements, intra-class correlation (ICC) coefficients, and

Bland-Altman analyses [10] were calculated. Comparisons

between normal and ALS animals were made using unpaired t-

test at selected frequencies. For all analyzes, significance was taken

at p,0.05, two tailed. The three major impedance parameters

included: the resistance, a measure of opposition to current flow;

the reactance, a measure of the ability of the tissue to briefly store

and release charge; and the phase, a ratio of these two basic

impedance parameters calculated via the relationship phase =

arctan (reactance/resistance). All three measures have demon-

strated potential value in clinical studies [1].

Results

Reproducibility of the Technique in Healthy and Normal
Mice at 50 kHz

Table 1 provides a summary of percent difference, intra-class

correlation values and Bland-Altman analyses of EIM measure-

ments at 50 kHz for both healthy and ALS mice at both

longitudinal and transverse configurations. Figure 2 provides a

graphical example of those data for phase values. As can be seen,

excellent reproducibility was achieved with this technique. For

example, for healthy mice, the percent difference of means (6

SEM) between the first and second set of measurements for phase

was just 5% 61% in longitudinal configuration and just 7% 62%

in transverse configuration.

Differences between Normal and ALS Animals
Figure 3 shows the multifrequency resistance, reactance, and

phase data averaged across the group of 18-week-old healthy mice

and the 18-week-old ALS mice in both longitudinal and transverse

positions. For the transverse measurements, data was only

obtained from 11 ALS mice since in 3 the atrophy was sufficiently

severe such that the electrode array could not fit entirely over the

muscle in the transverse direction. For both directions, resistance

decreases at higher frequencies for both healthy and ALS mice,

although the frequency dependence is greater in the healthy

animal. Both reactance and phase show a peak in the healthy

mouse; however the peaks are no longer present in the ALS

mouse. These changes in the multifrequency spectrum are similar

to those observed in human ALS [11] and in the previous rat [8].

Table 2 shows the data at selected frequencies with the associated

p values. Consistent with those previous studies, the differences

between healthy and diseased muscle was most apparent at

frequencies below 100 kHz. Of note, the reactance showed much

greater differences than the resistance at these frequencies. This

finding is consistent with the reactance’s being highly dependent

on the cumulative area of the muscle fiber membranes and the

consequent charge storage capability. In contrast, at these

frequencies, the resistance is mainly dependent on extracellular

water content and is thus less sensitive to the muscle fiber atrophy.

The transverse-longitudinal differences can also be summarized

by calculated a normalized anisotropy difference at each

Table 2. Longitudinal and Transverse EIM Data in Normal and
ALS Mice at Selected Frequencies.

Longitudinal

20 kHz 50 kHz 100 kHz 300 kHz 500 kHz

Resistance
(V)

Normal 34169.5 28266.4 23564.7 17963.4 16163.1

ALS 303610.6 26568.9 22968.6 17868.4 15768.1

p value 0.0112 0.1191 0.5354 0.8931 0.6673

Reactance
(V)

Normal 7964.4 9264.6 8864.0 7062.9 6563.0

ALS 4964.8 6664.9 7164.1 6863.1 6763.0

p value 0.0001 0.0007 0.0067 0.6117 0.6199

Phase (6) Normal 1360.4 1860.6 2060.6 2160.7 2260.9

ALS 960.8 1461.0 1761.1 2161.1 2461.2

p value 0.0002 0.0025 0.0248 0.9936 0.2787

Transverse

20 kHz 50 kHz 100 kHz 300 kHz 500 kHz

Resistance
(V)

Normal 410613.0 33369.9 26368.0 18166.1 15665.5

ALS 390619.7 338617.8 285616.9 201617.8 167619.2

p value 0.3930 0.7649 0.2135 0.2270 0.5205

Reactance
(V)

Normal 10265.5 12665.6 12464.7 9463.6 8263.7

ALS 6865.7 9667.4 10867.5 10568.3 10068.2

p value 0.0003 0.0034 0.0672 0.1903 0.0410

Phase (6) Normal 1460.5 2160.6 2560.6 2860.8 2861.1

ALS 1060.6 1661.1 2161.4 2862.6 3263.5

p value ,0.0001 0.0003 0.0049 0.7187 0.1865

doi:10.1371/journal.pone.0045004.t002

Figure 4. Normalized multifrequency anisotropy differences (± SEM) of all 3 major EIM parameters (resistance, reactance, phase)
for healthy and ALS mice.
doi:10.1371/journal.pone.0045004.g004
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frequency. This is completed by subtracting the longitudinal from

the transverse measurement at each frequency, divided by the

mean value at that frequency. The resulting multifrequency curves

for both the normal and ALS animals is plotted in Figure 4, which

differ substantially, paralleling previously multifrequency anisot-

ropy changes in seen in ALS patients [12].

Discussion

In this study we have developed and tested a relatively simple

device for performing EIM measurements on the calf of the mouse

hind limb. The device provides relatively good intra-session

reproducibility, both in healthy and in diseased animals, and can

also differentiate between the groups, greatly improving upon an

initial effort at obtaining these measurements [9]. Moreover, the

device is capable of performing measurements at both 0u and 90u
relative to the major muscle fiber direction.

The product used here was specifically designed and engineered

for this study and is not commercially available; however, if having

such a system were of sufficient general interest, it would be a

straightforward matter to create similar versions using this basic

design.

Although straightforward to perform, like any procedure, it did

take some practice to become fluid and consistent with its

application. It was critical to ensure that the array was sitting

precisely at the same angle when performing the measurements

and was clearly centered over the pinpoint tattoo. The moistening

of the animal’s skin with saline solution also needed to be

performed consistently by only applying a damp gauze pad

repeatedly to the limb. Finally, repeated application of the array

did cause irritation to the skin. Additional experience suggested

that the procedure should not be performed more than twice

weekly, lest irritation to the skin occur with secondary scabbing,

likely related to the repeat placement of the array and use of the

depilatory agent.

Several aspects of the results obtained here deserve further

discussion. First, the repeatability in normal animals was

somewhat better than that achieved in the advanced ALS animals.

Although the reasons for this are uncertain, several factors may

play a role including altered skin integrity in ALS [13], small limb

size (making the electrode array more sensitive to small differences

in placement), and lower impedance values for reactance and

phase, making identical absolute variations in parameters larger

when calculated as a percent. Second, the time between repeated

measurements was short and could not be expected to account for

other potential physiological variations to the measured imped-

ance, such as those due to exercise or hydration status, that could

contribute to reduced reproducibility in a real-world study. Third,

this study was only intended to introduce and evaluate the

reproducibility of the EIM technique in mice and was not meant

to assess EIM’s ability to monitor ALS progression in the SOD1

mouse model. In order to study this fully, it would be important to

compare EIM’s ability to monitor progression in mice with more

standard approaches such as measurement of body weight,

functional status, and motor unit number estimation. It does

remain possible, however, that EIM could specifically serve as a

potential replacement for the more challenging and time-

consuming technique of motor unit number estimation. Indeed,

the previous study in ALS rats suggested that EIM provided a

much more easily obtained, effective surrogate measure for motor

unit number estimation [8]. Whether this will also hold true in the

ALS mouse models remains to be determined.

At the frequencies of electrical current being applied here,

resistance mainly provides data on the extracellular milieu of the

muscle. For example, increasing endomysial fat will increase the

resistance values, whereas muscle edema would reduce it. The

reactance, in contrast, is mainly impacted by sarcolemmal surface

area and thus is especially sensitive to myocyte atrophy.

Accordingly, reactance shows the greatest alteration in denervat-

ing disorders where atrophy is most extreme. Since the phase is a

ratio of these two measures, it is a more non-specific parameter.

However, phase appears to be very sensitive in a variety of

contexts since myocyte atrophy is often accompanied by

alterations in the endomysium.

As suggested by this explanation of the EIM parameters, unlike

standard electromyography, in which the inherent electrical

activity of the muscles and nerves is measured, in EIM it is more

the histologic status of the tissue that is assessed. Accordingly,

EMG is best suited for showing situations in which resting

membrane potential stability and action potential morphology are

being altered such as in the evaluation of myotonic conditions or

nerve hyperexcitability. Standard needle EMG is also likely best

for evaluating conditions in which only selected muscles are

affected (e.g., due to an isolated nerve injury), since in EIM the

flow of electrical current cannot be confined to a single muscle. In

comparison, EIM is potentially useful in conditions in which the

alterations are histological and membrane stability and function is

thought to be stable, such as in disuse or muscle wasting, in which

EMG is typically normal, and in myopathies in which EMG

alterations can be very subtle. In most other conditions, however,

both EMG and EIM can be used, each offering something

different. For example, in ALS, EIM is very sensitive to alterations

in disease progression [14], whereas EMG is sensitive to disease

onset [15].

In summary, this approach provides a simple and reproducible

method for performing EIM in the mouse. Given the current and

expanding plethora of animal models of neuromuscular disease,

the ability to obtain rapid data on muscle condition may prove

valuable in a variety of contexts including assisting with the

identification of disease onset, disease severity, and monitoring the

effects of therapy. For example, it could serve a role in preclinical

drug testing such that the effect of therapy of muscular dystrophy

or motor neuron diseases could be assessed without animal

sacrifice and without performing time-consuming and often

inconsistent function tests. Moreover, this technology allows

further exploration of the relationship between different types of

muscle pathology and the surface impedance characteristics,

making it possible to expand further the application of EIM to

different disease models.
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