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ABSTRACT

The need for large-size detectors for long-range active interrogation (Al) detection has
generated interest in water-based detector technologies. AI is done using external
radiation sources to induce fission and to detect, identify, and characterize special nuclear
material (SNM) through the gamma rays and neutrons emitted. Long-range applications
require detectors with a large solid angle and an ability to significantly suppress low-
energy background from linear electron accelerators. Water Cherenkov Detectors (WCD)
were selected because of their transportability, scalability, and an inherent energy
threshold.

The main objective of this thesis was to design a large-size WCD capable of detecting
gamma rays and to demonstrate particle energy discrimination ability. WCD was
modeled in detail using Geant4 for optimization purposes. The experimental detector is
composed of an aluminum body with a high efficiency (98.5%) diffuse reflector.
Cherenkov photons are detected with six 8" hemispherical Hamamatsu photomultiplier
tubes (PMT). PMTs are calibrated using two monoenergetic LEDs.

The detector was shown to successfully detect gamma rays of energies above the
Cherenkov threshold. The detector was able to discriminate between various sources,
such as 6 0Co and 232Th, even though WCD are known for their poor energy resolution.
The detector design and analysis was completed, and it was demonstrated both
computationally and experimentally that it is possible to use WCD to detect and
characterize gamma rays.

One of the accomplishments of this thesis was demonstration of event reconstruction
capability of the detector system. A full-detector model was created using Geant4
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simulation toolkit. The performance of the detector was predicted using the model and
then experimentally verified. The qualitative agreement between the model and the
experiment was observed. The event reconstruction was an important part of the detector
performance analysis. Post-experimental data processing was done using ROOT.

Thesis Supervisor: Richard Lanza

Title: Senior Researcher in Nuclear Science and Engineering
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1. Introduction into the current state of the problem: remote

detection of special nuclear material

The nuclear industry has been trying to revitalize itself by promoting nuclear

energy as a solution to carbon emissions, as a safe and reliable source of power, and a

way to decrease the nation's dependence on foreign oil. The opposition to nuclear power

has traditionally raised concerns over reactor safety and waste disposal, which have

largely been political and to a lesser degree technical issues. Moreover, the nuclear

industry is often referred to as "dirty and dangerous" because of the possibility of terrorist

groups using nuclear materials as radiological or nuclear weapons. A common belief is

that the expansion of the nuclear industry would inevitably lead to clandestine weapon

production facilities by the so-called "threshold" states - those that chose not to use their

nuclear capabilities towards weapons production - using their civilian nuclear power

program as a cover.' Even though the transfer of assembled nuclear weapons has not yet

been recorded in the history of terrorism, but rather the transfer of technology, the nuclear

materials could be acquired by a terrorist group and smuggled into the country or

detonated in or near large port cities. In the face of political and social opposition created

by these risks, the development and advancement of the nuclear industry is critically

dependent upon the capabilities of nuclear detection and control to discourage potential

proliferators.
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1.1.The new players on nuclear arena

The threats of nuclear terrorism and proliferation have become the focus of the

political and social arena in the 21 t' century. After the end of Cold War, the possibility of

nuclear war decreased significantly. On the other hand, nuclear technologies, materials,

and expertise have been spreading around the globe in the past few decades, increasing

the possibility of a nuclear terrorist attack. In fact, the 2010 Nuclear Posture Review

indicated that "today's most immediate and extreme danger is nuclear terrorism."2 The

non-state groups, for example al Qaeda and Aum Shinrikyo (currently known as Aleph),

are seeking to obtain key nuclear weapons components.3 Nuclear proliferation has

become a growing concern; the active involvement of Iran and the Democratic People's

Republic of Korea (DPRK) in nuclear programs and their aspirations to become nuclear

weapons states created international pressure towards the two countries to comply with

the Nonproliferation Treaty (NPT). 4

The best way to manage a problem is to prevent it, in this case by knowing what

is being done at nuclear facilities, such as power plants or enrichment plants, and by

monitoring materials entering the country. The ultimate question is not whether the

possession of special nuclear material (SNM) is being sought by terrorist organizations,

but rather how they could be prevented from acquiring and using them. The problem of

material accounting has been a driving force in the development of detectors for

measuring penetrating radiation from fission and radioactive decay. The ability to find

SNM using an advanced detection setup and to identify its origin using nuclear forensics

is an effective countermeasure against an attacker, preventing them from even

considering bringing a weapon into the country. Nuclear detection and forensics have a

role of discouraging nuclear terrorism by increasing the chance of failure of a terrorist

plot.
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1.2.Comparison of SNM

SNM is a broad term for fissile materials which by definition can sustain an

explosive chain reaction. SNM includes m..U, 23 5 U, 23 9Pu, and 3'Np. Of these, 235U is the

only naturally occurring isotope. The other isotopes can be produced in a nuclear reactor

or by using an accelerator. The IAEA definition of a "significant quatity" of SNM is the

amount of fissile material required to make one nuclear weapon equivalent to first

generation, which amounts to 25 kg of uranium 90% enriched in 235U or 8 kg of 239p 5

Globally, the stockpiles of highly enriched uranium (HEU) and separated plutonium are

estimated to be 1670+300 and 500 metric tons, respectively.6

What is considered a significant amount of SNM for a proliferator, and what is

the best way to "import" it into the country? The answer depends on the capabilities of

the nuclear actorsa and the capabilities of the U.S. to address the threat.7 Building a

weapon is not as difficult as it was a few decades ago due to the extensive knowledge

base and the wider availability of experts on the subject. The size of the device that can

be constructed depends on the type and enrichment level of the acquired SNM.

Investment in weapon-grade uranium (WGU) or plutonium (WGP) may not be necessary

since a weapon can be produced with much lower enrichment levels. For example, the

critical size of a bare sphere of 20% enriched uranium is 21.1 cm in radius and 746.3 kg.8

This is shown on Figure 1-1 along with other examples. The device made with such

uranium would not be compact or easy to fit into an artillery shell, but delivery to a port

as a sea cargo or smuggling by land is feasible.

a Nuclear actors is a comprehensive term for nations, rogue regimes and terrorist groups as
defined by Hynes et al.
b TEU stands for twenty-foot equivalent unit (container), a measure used for capacity in container
transportation.
c Such gamma rays are characteristic of 2m5U photopeak and are easily attenuated by lead
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1.3. Susceptibility to SNM smuggling

In his testimony before a Senate subcommittee in 2002, Capt. W. Schubert, the

Maritime Administrator for the US Transportation Security Administration, stated that

U.S. seaports experience particular "susceptibility of container shipments as a delivery

system for an enemy's weapons, with over 12 million TEU's/yearb arriving at our

shores."9 In 2003, the Megaport Initiative aimed at internationally enhanced "detection

capabilities for special nuclear and other radioactive materials in containerized cargo

transiting the global maritime shipping netwNork"') was launched. However, even if the

search was completed at the port of embarkation, this does not prevent a transfer mid-sea

or at an intermediate stop en route. As part of the initiative, active interrogation standoff

systems are currently under development.

1.4.New methods for the detection of new threats: an overview of

passive and active techniques

In order to provide adequate protection against nuclear material misuse, seaport

detection systems are envisioned to be one piece of a multilayered defense." The two

primary approaches to detecting SNM are passive detection and active interrogation.

Passive techniques' 2 rely on the detection of radiation naturally emitted by SNM. Active

interrogation 13-17 uses external radiation sources (for example, gamma or neutron beams)

to induce fission to detect, identify, and characterize SNM. The choice of a particular

b TEU stands for twenty-foot equivalent unit (container), a measure used for capacity in container
transportation.
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technique depends on the range of detection as well as the type of SNM, requiring an

optimization between usability and performance issues.
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Figure 1-1. Critical masses of 233 U in 238U and 2 3 5 U in 238U for a bare metal sphere. Figure
is taken from Forsberg et al.
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Passive techniques are simple and safe in use, but only perform well when the

detector can be placed in the vicinity of the suspicious object surrounded with a minimum

amount of shielding. For example, characteristic gamma radiation of HEU not

contaminated with impurities such as 232U is 0.186 MeVc, making shielding rather

straightforward for the smuggler and complicating the detection of above-background

levels with a low false positive rate. In addition, there is a significant self-shielding

associated with non-irradiated nuclear materials.

Ziock et al. have reported one important example of successful long-range passive

detection of fissile materials.' 2 A combination of imaging and detection allowed for the

detection of isolated radioactive objects by estimating the local background signal. The

detector used a one-dimensional coded aperture based on 19-element uniformly

redundant array (URA) pattern.

Active interrogation systems have been receiving special attention from the

Department of Defense because of their superior detection and material characterization

capabilities over passive systems. Background radiation significantly limits the sensitivity

of passive detectors, which rely on naturally emitted radiation from SNM. On the other

hand, substantial shielding would be required to attenuate high-energy interrogating

gammas and emitted fission neutrons and gammas. Active interrogation systems are thus

more effective because they use gamma rays or neutron beams to induce desired nuclear

reactions. Figure 1-2 illustrates the approach used in active interrogation. Both gamma

and neutron beams are capable of inducing fission in SNM, and the choice of one over

the other depends on application. Interrogating radiation is collimated into a beam and

directed onto an object of interest. The response of the SNM is then measured by the

detectors. Detailed descriptions of active interrogation systems along with interrogation

methods are provided in Chapter 2.

' Such gamma rays are characteristic of 2 35 U photopeak and are easily attenuated by lead
shielding. Decay of m2U results in the thorium decay chain final radioactive nuclide in which is
20 8TI, producing 2.62 MeV gamma rays that are significantly harder to attenuate by shielding.
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Figure 1-2. Schematic describing an active interrogation technique. A gamma or neutron

beam is directed onto an object of interest, inducing fissions if SNM is present. Detectors

are used to measure the increase in radiation intensity.

Examples of beam-induced nuclear reactions include fission and nuclear

fluorescence resonance. In addition to enhanced penetration abilities, high-energy

gammas are able to induce signature (y,n) and (y,f) reactions with 2 3 5U and 2 3 9 Pu

making it faster to detect SNM.14 The gamma rays produced as a consequence of delayed

fl decay of fission products have high yields and characteristic high energies, which

distinguish them from background photons.' 7 It is interesting to note that the energy

spectrum of these gammas is typically a continuum-like spectrum in the energy range of

3 to 10 MeV rather than characteristic spectral lines.
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1.5.Motivation for this thesis: detectors for active interrogation

applications

Currently, the detectors used in nuclear security applications suffer from three

main problems: high background radiation, operational difficulties, and shortage of

detector medium supply. Background radiation includes terrestrial and cosmogenic

neutrons and gamma rays, which can significantly impact the sensitivity of the detector

and must be reduced as much as possible. All detectors inevitably suffer from

background radiation, and the goal is to reduce it as much as possible. Ease of operation

of most detectors in the field is limited. For example, high purity Ge detectors require

cryogenic cooling, and liquid scintillators can be hazardous. In active interrogation

applications, scalability of the detectors and their ability to recover quickly from radiation

flash near pulsed systems, for example electron accelerators, is also important.

Existing SNM detection systems used in Radiation Portal Monitors (RPM) are

generally scintillators for detecting photons and 3He tube'8 for detecting neutrons.

Radiation detection equipment needs to be capable of detecting both gammas and

neutrons. This is because the two types of radiation require very different shielding,

making it harder for SNM to be concealed. 3He detectors are widely used because of the

high thermal neutron cross section (5330 b) 18 which also has 1/v behavior, which means

that 3He tubes exhibit strong neutron energy dependence. The dependence of cross

section on energy allows embedding the detectors in moderating materials to maximize

their counting efficiency. One of the main drawbacks of such detectors is their high cost

due to the limited supply of 3He. Presently, there are no good alternative options for 3He

detectors. Scintillators, which convert the energy of incident radiation into detectable

light, can be organic, such as aromatic hydrocarbon compounds, or inorganic, such as

Na! or CsI doped with Tl.' 9 Plastic scintillators are generally expensive to build and

cannot easily be doped with neutron-capturing additives such Gd or 6Li without a

substantial reduction in light output.2 0 Liquid scintillators can be toxic, posing operational
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hazards. In application to active interrogation techniques that rely on prompts radiation

counting, one of the main limitations of scintillators is their sensitivity to gamma bursts

near the output of a linear accelerator. Pulsed electron linear accelerators are typically

used as radiation sources for high-energy gamma rays, which induce large signals in

nearby scintillators that may take very long times, up to minutes, to decay.

SNM detection requires a simple, low cost, scalable, non-hazardous system with

an inherent threshold for the detection of both gammas and neutrons. Finding a detector

that meets all of these requirements is a challenge. In this thesis, the limitations of

current detectors are addressed by investigating Cherenkov counters for the detection of

gamma rays and in the energy range applicable to national security needs.

1.6.Objectives and significance of this thesis

The purpose of this research is to investigate the principles of design and

applicability of the use of water-based Cherenkov detectors for gamma detection and

their use in an active interrogation system. The work focuses on gamma interrogation of

SNM and photon-induced fission.

An optimization study of Cherenkov detector design was performed using the

Monte-Carlo-based code Geant4. The model was further refined and validated using

experimental benchmark data. The model was also used to predict performance and

scaling of these detectors for other large-scale applications.

The main objective of this research was to determine whether water Cherenkov

detectors are suitable for gamma detection. It was shown that the detector is sensitive for

gamma rays of energies as low as 1.1 MeV (60Co check source.)
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1.7.Overview of this thesis

The thesis is organized into eight chapters. The first chapter provides an overview

of the need for active interrogation systems. Currently employed active interrogation

techniques as well as long-range standoff active interrogation system specific to this

thesis are discussed in Chapter 2. Chapter 3 focuses on the physics of Cherenkov light

and detectors based on the phenomenon. Chapter 4 describes the computational model

created using the Geant4 code. Results of optimization studies are also explained in

Chapter 4. The experimental setup, data acquisition system and water filtration system

are described in Chapter 5. A description of detector calibration and its response to

various sources are provided in Chapter 6. Chapter 7 brings computational and

experimental results together in the form of event reconstruction and selection

methodology. Finally, the conclusions of this study and future recommendations are

summarized in Chapter 8.
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2. Overview of standoff interrogation systems

As was briefly mentioned in Chapter 1, active interrogation techniques are based

on the use of an external radiation source, for example neutrons or photons, to induce

fission or photofission, respectively. An active interrogation system would undergo the

following steps in order to detect and potentially characterize the SNM:

1. A linear accelerator (LINAC) produces a beam of electrons which are incident on

a production target.

2. Depending on the accelerator target, photons and secondary neutrons are

produced.

3. After going through a gamma or neutron "filter", the radiation is collimated into a

beam.

4. The beam is directed towards the interrogation target, inducing fission or

photofission if SNM is present. Note that the beam undergoes a spread as a

function of the square of the distance separating the LINAC and the target.

5. The products of induced (photo)fission reactions are emitted in 47 geometry. The

intensity of the feedback radiation decreases as the inverse of the square of the

distance separating the target and the detectors.

6. Large-size detectors are installed near the LINAC or away from the interrogation

setup to detect the radiation feedback from fission or photofission.

7. The response of the detectors may be used to determine whether the feedback is

from SNM or background.

23



8. Depending on the detector, the energy or timing (or both) of the detected particles

can be used to potentially characterize the material.

While the focus of this work is on the detection systems, it is important to review

the overall interrogation setup as well as induced fission and its products, prompt and

delayed, in order to understand the detector behavior in various scenarios.

2.1.Going active: comparison of background and SNM spectra

Detecting SNM at a distance is a challenge. One of the main difficulties

associated with long-range detection is the presence of background, which may mask

SNM signatures. Figures 2-1 and 2-2 show spectra taken with high-purity germanium

(HPGe) detector for unshielded HEU and weapons grade Pu (WGPu) at I m distance.

Note that the in the case of HEU, the radiation given off by the source is barely above the

background. In the case of WGPu, most of the characteristic radiation lies below 1 MeV,

making it practically impossible to detect WGPu at a distance using passive techniques.

2.2.Beam and induced photofission

The focus of this thesis is on detection of the feedback radiation from photon-

induced fission. Photons can undergo various interactions in matter, including

photoelectric effect, Compton scattering, and pair production.
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In addition, high-energy photons can undergo additional reactions, such as

ejection of a photoneutron (y,n), photofission (y,f), and double-neutron production (y,2n).

The six aforementioned reactions are illustrated in Figure 2-3.
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Figure 2-3. Gamma ray interactions. Figure is taken from Gozani.
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The energy of such interrogating photons is an important metric in active

interrogation applications. First, the interrogating beam must be energetic enough to

induce photofission. Table 2-1 summarizes the energy thresholds for select materials.

Note that photoneutrons can be created in all materials. Table 2-1 lists SNM isotopes as

well as elements frequently encountered in structural and background materials. Second,

the cross section of photoneutron ejection and photofission is energy-dependent. Figure

2-3 shows dependence of photofission cross section of 2 33U, 2 3sU, and 2 39 Pu on photon

energy. Note that for these isotopes, the cross section decreases when the energy of the

interrogating photon beam rises above 15 MeV. On the other hand, attenuation of gamma

rays is also energy dependent: higher energy photons are more penetrating. Thus, the

choice of beam energy in active interrogation application is about the trade-off between

the beam penetration abilities and the photofission cross section.

Table 2-1. Selected photonuclear energy thresholds.

Nuclide (y,f) [MeV] (y,n) [MeV] Notes

2H 2.22 From IAEA2

C 8.72 From IAEA

14N 10.55 From IAEA
160 15.66 From IAEA

27Al 13.06 From IAEA

5 6Fe 11.20 From IAEA

Th 5.40±0.22 6.44 From Koch et al. 24

237 2
Np 5.6±0.3 6.628 From Berman et al.

3U 5.7±0.3 (Berman) 5.74 (IAEA)

5U 5.31±0.25 (Koch) 5.30 (IA EA)

238U 5.08±0.15 (Koch) 6.15 (IAEA)

29Pu 5.8±0.2 (Berman) 5.65 (IAEA)
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2.3.Products of photofission and their signature classification in the

detector

A significant advantage of active interrogation detection of SNM over passive

methods is an abundant, energetic and time-dependent radiation feedback, in the form of

both gamma rays and neutrons. Regardless of the fissile or fissionable nucleus, the fission

or photofission process undergoes the same steps through a timeline as illustrated in

Figure 2-4. After the interrogating particles (photons or neutrons) initiate fission events

(original nucleus is shown as 23 U, but can be any other SNM nuclide), prompt neutrons

and gamma rays are released. Depending on the nucleus, there are on average 2-3 prompt

neutrons per fission and about 8 photons. In 0.1-100 seconds following the prompt

radiation release, delayed particles are emitted. The number of delayed emitted neutrons

is two orders of magnitude less than that of the prompt release. However, the number of

delayed gamma rays is nearly the same. Thus, detection of delayed gamma radiation

plays an important role in active interrogation applications.

It is interesting to note that photons of sufficiently high energy can induce

photoneutron emission in non-fissile materials, for example in structural components.

Some threshold energies are shown in Table 2-1. However, interrogation of non-fissile

materials will result in "prompt" radiation (y,n) release only. Delayed radiation is

characteristic only of fissile materials.
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Figure 2-5. Timeline of a fission process. Figure is adopted from Gozani.
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2.3.1. Prompt radiation

Prompt fission neutrons are those emitted 10-- 1013 seconds after the nucleus is

split. Prompt radiation feedback consists of energetic and abundant neutrons and gamma

rays. Measurement of prompt neutrons can provide information regarding the original

nucleus. While neutron detection is possible using Cherenkov counters, and some aspects

of neutron detection will be discussed in this thesis, the focus is on gamma ray detection.
10B detectors are used in addition to gamma Cherenkov detectors to provide information

about neutrons.

2.3.2. Delayed radiation

In the fission process, the original nucleus decays into fission fragments, which

are radioactive and have specific decay products. Even though the feedback from delayed

radiation is less energetic and abundant than from prompt radiation, the time signature

allows identification of SNM rather than mistake it for other materials, for example

structural components. While delayed neutrons can be a better representation of the

original nucleus, their rather low number makes detection difficult.

Walton et al.26 reported that when 2m8U, 2 3'U, and 23 2Th were bombarded with 20

MeV x-rays, "components of short-lived gamma rays, which are attributed to the decay

of isomers formed either in fission or, less likely, by other photoreactions, contributed

markedly to the gamma activity for times up to 800 gsec after the beam pulse." Gamma

ray emission rate per fission as was obtained experimentally by Walton et al. is shown in

Figure 2-6. The main difference between 2 3 5 U and the other two nuclides is that gamma

ray emission rate during first 200 Rsec is much higher for 2 35 U. Note that all three curves
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have similar shapes including early (before 600 psec) decay constant supporting the

suggestion that all three curves are associated with beta decay of fission fragments.

Griffin27 attempted to describe the behavior of delayed gammas from fission

fragments of 2 3 5U, with extension to other isotopes, using theoretical understanding of

beta decay. The theoretical results reproduce the shape of experimental curves obtained

by Walton et al.

Recent studies by Beddingfield and Cecil 2 8 and Swanberg et al. 2 9 showed that it is

possible to identify SNM and to distinguish between different SNMs using delayed gamma

ray signatures. Beddingfield and Cecil developed a method of distinguishing between fissile

materials based on gamma ray intensity measures and their comparison with theoretical

calculations. Swanberg et al. used low-resolution gamma counters to detect beta-delayed

gamma rays from 2 35U and 2 39Pu neutron-induced fissions. The main difference between

their studies of beta-delayed gamma rays and others30 is their use of low-resolution

scintillators which do not allow for photopeak identification. Thus, broad features were used

for the analysis by examining energy spectra and temporal behavior.

Large-area Cherenkov detectors are designed for high-efficiency gamma detection

done mostly through Compton interactions. It is rather difficult to characterize material

with Cherenkov detectors because of the poor energy resolution of such detectors. Based

on the study by Swanberg et al., it may be possible to differentiate between various SNM;

however, the challenge is in long-distance away from the source which may smear any

characteristic spectral and temporal features of SNM. Nonetheless, it is possible to detect

SNM and to distinguish it from background.
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2.4.Detector specifications and requirements

The detectors for long-range active interrogation techniques have to possess

special features, including large area available for detection (large solid angle),

scalability, relatively low cost, robustness, transportability, and low operational hazards.

National security applications of detection have imposed additional demands on gamma

and neutron detection. For instance, a detector located near the LINAC must be able to

withstand significant radiation fluence without experiencing degradation from an intense

gamma background. In addition, there are currently many restrictions associated with

neutron detectors. Thus, alternative materials and detector designs must be pursued for

neutron detection.

2.4.1. Scintillator near beam

One of the main concerns about detectors in active interrogation applications is

using them in a high-intensity accelerator beam environment. First, most materials

exhibit radiation damage when they are operated near high-intensity beams. Second,

materials such as scintillators can experience a large light "flash" from such accelerators,

which can blind them for milliseconds or more. In active interrogation applications, fast

recovery from the LINAC is essential as timing can provide important information about

the target.

2.4.2. Shortage of He-3

3He is a byproduct of tritium production for nuclear weapons. Tritium decays into

3He through P~ decay with a half-life of 12.3 years. One of the major applications of 3He,
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besides the prediction of how much nuclear weaponry was produced in the world, is in

detection of neutrons. Currently, only the U.S. and Russia are producing significant

amounts of 3He, and the global amount of available 3He stock is about 20 kliter/year.3 '

Most SNM emits detectable quantities of neutrons indicating that prompt neutron

detection can have a significant impact on material characterization. In addition, most

detector systems must have an ability to discriminate between neutrons and gamma rays.

3He would be an ideal candidate for a neutron detection system in active interrogation

application, if it were not for its limited availability. National security applications

require a system that can detect neutrons, but be widely available to cover a large solid

angle. This means a safe, inexpensive, and readily available detector medium is required.

Practically, the only other commercially available option for large-area detection

is '0B and 6Li tubes. Compared to 3He detector, 1 B and 6Li have about 70% and 17% of

the absorption cross section of 3He, respectively. 10B detectors come in two most

common varieties: 10BF 3 gas-filled detectors and 10B-lined proportional counters. While

'0BF 3 detectors provide excellent neutron-gamma separation, the lower cross section of
10B and inability to operate at pressures close to atmospheric result in significantly lower

efficiency than 3He. In addition, '4BF 3 detectors operate at high voltages, and the gas is

toxic creating transportation and operation hazards. The efficiency of 10B-lined tubes is

even lower than '0BF 3 detectors. However, there are no operational or health hazards

associated with such tubes.

2.5.Cherenkov detectors

The focus of this research is on the development of non-traditional nuclear

security detectors based on existing expertise with Cherenkov high-energy particle

detectors. Cherenkov-type counters can fulfill the requirements of novel detection
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systems for active interrogation applications. Cherenkov detectors have the ability to

work in an intense low-energy background, for example near a linear accelerator.

Cherenkov light pulses are extremely short, often sub-nanosecond, and do not possess the

decay times associated with scintillators, which have very long decay times and as a

result are essentially blind during the pulse (time scale of microseconds) and often for a

long time afterward (time scale of milliseconds). Cherenkov detectors have inherent low

energy sensitivity cutoff due to the threshold nature of Cherenkov light. In many active

interrogation systems using electron accelerators, the bulk of the background from

scattering is often below the threshold of the Cherenkov detector. In addition, such

detectors can use almost any medium as a detector body, as long as light transparency is

ensured. Water-based Cherenkov detectors are inexpensive to manufacture, and a variety

of shapes can be configured.

One of the main problems with Cherenkov radiation is the limited intensity of the

emitted light. More research regarding how to compensate for the effects of the low light

emission is necessary. The light collection efficiency can be enhanced by increasing the

number of photomultiplying tubes (PMTs) capable of detecting light, employing a highly

reflective coating on the detector walls to preserve as much light as possible, and using

water of high-purity to avoid photon absorption by impurities. Such enhancements are

physical, and their applicability can be explored through experiment. In addition to the

aforementioned enhancements, there is a possibility of exploiting inherent properties of

Cherenkov radiation directionality and lack of self-absorption to enhance the light

collection and to reduce the background. If proven to work at lower energies,

directionality would allow significant background rejection. In active interrogation

application, a target location is directionally predicted, and the photon energy of interest

is between 3 and 10 MeV. In this range, forward Compton scattering is dominant

allowing for directionality exploration. As an alternative to directional methods of

background rejection, wavelength-shifting (WLS) dopants can be used. Cherenkov light

emission is maximized in the ultraviolet region, which is outside of the sensitive range of

most PMTs. Because of the absence of self-absorption of the light in the detector
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medium, WLS chemicals can enhance light in the PMT-sensitive region. Even though

using WLS might be a faster path to background rejection, all of directional properties of

Cherenkov light would be lost. It must be noted here that there is a difference between

development of a total absorption counter (for example, for photon spectroscopy) and a

directional counter (for enhanced background rejection) because multiple electron

scattering will deteriorate directionality properties. In the current work, the focus is on

the total absorption counter, and the Cherenkov directionality property is not used.

The choice of detector configuration depends on application. For active

interrogation detection, resolution is not required and background rejection might be most

important. For material characterization, spectroscopy is essential. Detection of gammas

is straightforward through Compton scattering. It must be mentioned here that the

detection of neutrons is possible by using dopants in the detector medium with high

neutron capture cross sections. Gadolinium salts have been successfully used as dopants

for neutron detection.20 -3
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3. Cherenkov radiation phenomenon and its application to

water-based detectors

Cherenkov radiation was first observed and described by A. P. Cherenkov in

1932.36,37 The original formal classical theory of Cherenkov radiation was developed by

Tamm and Frank in 1937.38 Extensive review of Cherenkov radiation history is provided

by. 39

Cherenkov radiation is most well known as the phenomenon causing the blue

glow in nuclear reactors and spent fuel pools. It is a response of matter to the motion of a

charged particle traveling at a speed exceeding the phase velocity of light in that matter.

Cherenkov light has unique properties distinguishing it from luminescence, which is the

basis for the operation of scintillators: directionality, ultraviolet spectrum, and energy

threshold. Unlike isotropic scintillation light, Cherenkov photons are directional along the

axis of polarization. The light is emitted in the direction of the charged particle in a cone

whose opening angle depends on the velocity of the particle and the index of refraction of

the medium. The spectrum of light is continuous with a maximum of intensity in the

ultraviolet region. Most importantly, Cherenkov radiation has a threshold character

implying that only particles with particular speeds, which are greater than the speed of

light normalized by the refractive coefficient of the medium, can create Cherenkov light

in that medium as described by Equation 3-1.

v > c/n(W) Eq. 3-1
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where n is refractive coefficient of the medium, and o is angular frequency of the photon.

The threshold property of Cherenkov radiation also makes it an attractive tool in

distinguishing between various particle types and energies using the correlation between

the particle velocity and the amount of generated light. The threshold property of

Cherenkov radiation makes it possible to significantly suppress low-energy background,

for example from a linear accelerator in a close proximity, and to nearly eliminate high-

energy background, for example cosmic neutrons, without adversely affecting the

response of the detector in the desired energy range, whereas for scintillators, energy

discrimination must be performed as post-processing.

3.1.Properties of Cherenkov radiation: threshold and directionality

The derivation of the physics of Cherenkov radiation can be approached using

classical electrodynamics and quantum mechanical derivation. Appendix A introduces

the ideal case originally derived by Tamm and Frank using classical electrodynamics

theory. A summary of physics of Cherenkov radiation phenomenon is briefly reviewed

here.

Consider a charged particle moving from left to right, as illustrated in Figure 3-1,

through a polarizable medium. The particle is a source of energy emitted in the form of

electromagnetic waves, creating a non-vanishing Poynting vector. The particle produces

spherical wavefronts moving at characteristic speed defined by their wavelength and

frequency. If the particle is moving at a speed close to the speed of wavefront

propagation in the medium, then the particle simply moves with its own spherical wave

fronts as shown in the top diagram of Figure 3-1. The propagation speed of the wavefront
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is equal to the phase velocity of light in the medium c/n. When the speed of the particle

increases beyond the phase velocity of light, the waves radiated from the points of motion

travel a shorter path than the particle itself in a given time period t as shown in the bottom

diagram of Figure 3-1. All of the spherical waves have a common envelope with the

particle being at the apex. According to Huygens principle, the surface of the envelope is

the front of the wave radiated by a charged particle. Correlating the angle of the front 0

with the speed of the particle, we get Equation 3-2.

C
cosO = n(w)v Eq. 3-2

Equation 3-1 can be obtained from Equation 3-2 by imposing the requirement for cosO to

be less than unity for all real angles.

The observation that the emitted radiation is perpendicular to the wavefront

explains the directionality of Cherenkov light. Note that the refractive index n(w)

depends on the frequency of the photons traveling through medium. This leads to the

direct dependency of the angle 6 on the frequency of the wave. The refraction coefficient

for photons in the blue part of the spectrum is larger than the refraction coefficient for the

red part.

Figure 3-2 illustrates the effect of threshold kinetic energies for Cherenkov

radiation for different particles in various media. Note that the threshold kinetic energy is

in units of rest mass. Thus, the phenomenon of Cherenkov radiation is independent of

particle mass and is a function of the refractive coefficient of the medium.
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Figure 3-1. Schematic of charged particle's motion at the speed of light in the medium
(top) and faster than phase velocity of light (bottom).
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Figure 3-2. Dependence of threshold kinetic energy (in units of rest energy, Eo=mc 2) on
refractive coefficient of the medium. Dashed line illustrates the case for water (n=1.33).
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Table 3-1. Threshold kinetic

3.2.Light yield and spectral distribution

As was pointed out in the previous section, Cherenkov light has two major

properties that serve to its advantage in detector applications: threshold and directionality.

However, the big problem of Cherenkov radiation is the modest light output. Moreover,

Cherenkov light is concentrated in ultraviolet range, the region in which most

photomultiplier tubes (PMT) have rather low efficiency. The famous formula of

Cherenkov light yield per unit path per unit wavelength interval originally derived by

Frank and Tamm is shown as Equation 3-3. Details of the derivation of Equation 3-3 are

provided in Appendix A.
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Threshold kinetic energy (MeV)

Rest energy n=1.003 (gas) n=1.33 (water) n=2.42 (diamond)
Particle

(MeV) P=0.997 P=0.75 P=0.41

KEth=12Eo Eth=0.52Eo Eth=0-IEo

Electron 0.511 6.10 0.26 0.05

Muon 106 1265.53 54.78 10.40

Proton 938 11198.76 484.72 92.06

energy for various particles.



d2 N - 2 1 _ dxdA Eq. 3-3
dxdA 72 f2n2

where a is the fine structure constant, and #l is the particle's velocity. In this equation, it

was assumed that the refraction coefficient is constant with photon wavelength. In fact,

such assumption is fairly accurate for water. Integrating Equation 3-3 over a wavelength

region of A - A2 Equation 3-4 is obtained.

dN C2naz /\11 \1
A2-N = --- 1 - 1)dx d.A = 27Tasin 20 Eq. 3-4

dx /12 #2n2 A2 A1)

Here we rewrote the (1 - ) as sin2 6 by employing Equation 3-2. To illustrate the

typical light yield, substitute 400-700 nm, which corresponds to a typical PMT sensitivity

region, for the limits of integration in Equation 3-4:

d N
- 490sin20 photons/cm Eq. 3-5

dx

3.3.Review of WCD applications

Cherenkov detectors have been primarily used in particle physics applications,

often in neutrino physics and dark matter physics. Since the discovery of Cherenkov

radiation in 1934 and the development of photomultiplier tubes capable of recording light

splashes as low as a single photon, Cherenkov detectors have been employed to discover
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and study various types of radiation, from low-energy gammas to cosmic showers and

neutrinos. Some of the well-known high energy physics application include Super-

Kamiokande in Japan and Milagro near Los Alamos, New Mexico.

Super-Kamiokande is an underground neutrino observatory which consists of a

cylindrical stainless steel tank holding 50,000 tons of clean water. The detection of

Cherenkov photons is done through 11,146 20" photomultiplier tubes supplied by

Hamamatsu. Milagro was a ground-based Cherenkov telescope for gamma and cosmic

ray detection. The pool consisted of 5 million gallons of water with three layers of PMTs.

The high-energy particle detection community was first to appreciate the special

role of Cherenkov detectors. However, the technology can also be considered for reactor

safeguards and monitoring as well as remote detection and identification of special

nuclear material. One of the greatest challenges of remote power monitoring or standoff

detection is the limited number of events because the intensity of radiation decreases as

the inverse of the square of the distance. This means that the detector design becomes a

compromise between the efficiency and the footprint.

At high energies and in large (kiloton to multi-kiloton scale) water detectors,

Cherenkov imaging is a well-proven technique. For example, Cherenkov detectors are

excellent electromagnetic calorimeters in high-energy physics application. Large

detectors are designed to do antineutrino astronomy in the energy range of 10'o-10- eV.

At lower energies relevant for nuclear material screening or reactor monitoring, the

implementation is more difficult, and still remains to be demonstrated as a practical

approach. Key research and development considerations of this application include

suppressing background, studying effects of dopants, and lowering energy thresholds.

Monte Carlo studies and experimental verification of this effect can help inform the

design of low energy gamma and neutron detectors.
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3.4.Gamma detection with water Cherenkov counters

Gamma rays are uncharged particles; thus, the only way Cherenkov light can be

created by these particles is through indirect interaction of gamma rays with a charged

particle. One of most common reactions for Cherenkov light production is through

Compton interaction of gamma rays with electrons. Compton interactions are preferred to

other reaction, for example photoelectric absorption and pair production, for high-energy

(greater than 0.5 MeV) gamma rays.

Energy threshold for gamma detection can be related to Compton interaction.

Recall from Section 3.1 that the Cherenkov energy threshold for electrons in water is 262

keV. Using Compton scattering formula, we can calculate the Cherenkov energy

threshold for gamma rays to be 420 keV. Figure 3-3 illustrates the dependence of

threshold energies on refractive index. Note, that as the refractive index approaches 1.0

(gases), the energies approach infinity asymptotically.

Another question is whether directionality of Cherenkov light can be preserved in

gamma detection. In Compton scattering, when gamma energy is above I MeV, the

scattering of electron is forward-peaked. Higher energy of the photon leads to anisotropic

scattering of the electron. Thus, directionality of high-energy gammas can be translated

into directionality of Cherenkov light. Figure 3-4 illustrates the dependence of the

scattering angle of the Compton electron on the energy of the incident gamma ray.
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4. Modeling of the detector with Geant4

In order to determine whether Water Cherenkov Detector is suitable for long-

range gamma detection as well as for detector optimization purposes, a full detector

simulation has been developed in Geant4. This chapter provides a summary on the code

capabilities and major findings of the detector optimization studies. Using Geant4, all

relevant physical interactions are modeled in detail including nuclear and electron

interactions and optical performance of the detector components. Specific examples and

details of the code are provided in Appendix C.

4.1.Overview of the code capabilities

The Geant4 42
,
4 3 toolkit provides a flexible framework for the simulation of

particle transport and interaction with matter. The software suite is most well known by

its application in high-energy physics, medical device simulation, and radiation detection.

The acronym comes from GEometry ANd Tracking. One of the main advantages of using

Geant4 over other toolkits (for example, MCNP) is the flexibility of its kernel, which

allows for construction of detector geometries of arbitrary complexity, construction of

particles and physics processes, and setup of application-specific sensitive detectors and

counters. Geant4 is based on C++, and the source is freely available 44 . Geant4 is a Monte
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Carlo method-based code, which means that high-precision calculations require a large

number of simulation histories.

Generally, the following steps are followed when the code is used for modeling

and analysis. The mandatory classesd that must be overridden by the user are provided in

parentheses.

* The particles of interest are specified, for example gamma rays or neutrons

(G4VUserPhysicsList).

e The processes which the particles will undergo are described (for example,

Cherenkov or scintillation).

e The geometry of the system is specified (G4VUserDetectorConstruction

virtual class).

" The materials are assigned to each component. Geant4 allows for specific

material definition including optical properties.

e Sensitive detector is defined. Sensitive detector is a useful feature of

Geant4 which allows the user to provide his or her own implementation of

the detector response to a physical interaction of radiation with the

sensitive volume.

- Primary events are generated. Geant4 provides a user with multiple

options to generate a primary event. Examples include using a particle

gun which is able to generate momentum and position, but does not

provide any sort of randomizing, or specifying a general particle source

which allows control of spectrum, spatial and angular distribution, and

inclusion of many sources (G4VPrimaryGeneratorAction).

- Particle transport is implemented including secondary event simulation.

- The results of an event are either stored or output.

d Geant4 is based on C++, and a class is C++ concept of a data structure, which is capable of
holding both data and functions associated with it.
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There are also a number of user-specified classes that are not mandatory but often

necessary to specify more complex settings. Some of these classes are necessary if a user

wishes to track particles throughout the detector and to record select events.

When applied to Cherenkov detectors, Geant4 has the capability of triggering and

tracking optical processes, which include the generation of photons by scintillation

process, Cherenkov photon production by a charged particle, and transition radiation.

Rayleigh scattering, bulk absorption and reflection-refraction media-boundary

interactions are also part of the optical processes and are wavelength-dependent.

Conceptually in Geant4, a photon is qualified as "optical" if its wavelength is much

greater than the interatomic spacing of a simulated material.

4.2.Modeling of geometry and materials

The detector was simulated with Geant4 (version 4.9.3). A schematic of the

model geometry along with sample particle tracks is shown in Figure 4-1. Modeling of

geometry in Geant4 consists of defining two main types of volumes: the "World" volume

and the daughter volumes. The purpose of the "World" volume is to simulate the

environment settings (for example, the laboratory). This volume also contains the

reference frame for the rest of the model. All other components are defined with respect

to the center of the "World" volume.

When the geometry of the volumes is defined, every component of the system is

assigned a material. Geant4 allows a user to specify each material individually including

isotopic composition of the elements or to select a predefined material or element from

the library. This feature is especially useful when complex alloys are used in system

components.
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The initial geometry of the detector was selected based on the availability of the

space in the interrogation system container and was later optimized to find the best

compromise between spatial constraints and efficiency. The detector consists of an

aluminum alloy body lined inside with a polypropylene shell with an attached reflector

and filled with high-purity water. High reflectivity of the walls is achieved by using 0.5

mm thick diffuse reflector (Gore DRP). Six 8" hemispherical Hamamatsu R5912-02

PMTs with maximum quantum efficiency of 25% at 375 nm are located in the top portion

of the tank facing downward.

I
I
I

Figure 4-1. Detector model in Geant4.
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4.3.Modeling of optical processes

One of the most important elements of the modeling of Cherenkov processes in

Geant4 is the user-defined optical property of the simulated medium. Properties are

generally expressed as a function of photon energy. Cherenkov photons are generated

only in the material for which a refractive coefficient has been provided. In addition, bulk

optical absorption has the ability to "kill" a photon. For this process, a detection medium,

for example water, is assigned a wavelength-dependent absorption coefficient. Boundary

processes possess certain flexibility, for example allowing the user to specify whether the

optical surfaces are polished or rough and made out of dielectric or metal. Reflectivity of

the surface can also be specified as a function of photon wavelength allowing for

reflection, refraction or absorption of a photon.

4.3.1. Reflectivity of the walls

Reflectivity is generally differentiated between specular and diffuse. Specular

reflection is a reflection from a smooth surface with the incident and reflected angles

being the same. Diffuse reflectivity, also referred to as Lambertian, causes the incident

light to scatter in many directions. Figure 4-2 illustrates the difference between specular

and diffuse reflectors.

High-efficiency reflectivity of the walls is important for photon collection. A

diffuse reflector Gore was chosen to surround the water medium because of its chemical

stability, hydrophobic water resistance, lack of fluorescence, and highly Lambertian

diffuseness. Figure 4-3 compares Gore DPR with various materials of similar reflectivity.
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Figure 4-2. Specular (left) vs. diffuse (right) reflectivity. Figure is taken from Schubert.4 5

The diffuse reflectivity was modeled as a function of photon wavelength. The

photons bounce off the walls until they are either absorbed in water or structural materials

or reach a PMT.
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Figure 4-3. Comparison of reflectance of various materials. Curves A and B correspond
to 3.0 and 0.5 mm Gore DRP, respectively. Curves C, D, E, and F stand for granular

PTFE, barium sulfate, microporous polyester, and powder coating.

Figure is taken from Gore.4 6
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4.3.2. Water absorption coefficient

The optical quality of water can significantly affect the performance of a

Cherenkov detector. Higher quality water results in collection of more Cherenkov

photons. The optical quality of water can be evaluated by assessing its light

transmittance. Light transmittance is defined as the ratio of transmitted (unabsorbed) to

total intensity of incident light as shown in Equation 4-1.

I
T = - Eq. 4-1

10

Light absorbance, A = -InT, can be related to the optical path of light, x, using Beer-

Lambert law:

A(A) = o(A)Nx Eq. 4-2

where N is the number density of light-absorbing species in the medium and O(A) is the

absorption cross section of a single particle. Absorption coefficient is then defined as:

a(A) = a(A)N Eq. 4-3

Absorption length is taken as an inverse of the absorption coefficient.

A literature survey has been conducted in order to estimate water absorption

coefficient. The main conclusion is that there is no agreement in data between various

sources. One of the most promising datasets was the one measured at Lawrence

Livermore National Laboratory (LLNL). The LLNL water absorption curve along with

three other datasets (Hale and Querry4 Querry48, and Smith and Baker49) are shown in

Figure 4-4. Comparison of LLNL curve with other datasets illustrates the spread in data

regarding water absorption properties.
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The assumed water absorption coefficient was modeled in detail and as a function

of photon energy because it influences how many photons will be absorbed in the water.

A quantum efficiency (QE) curve consistent with Hamamatsu R5912-02 PMT

specifications was also plotted in Figure 4-4 as a function of photon wavelength to

illustrate the overlap in QE and absorption length for various datasets.

- Hale, Querry 1973
~ Querry 1.978-

- Smith Baker 1981
--- L

-QE Ha

Smith and Baker
(1981) calculated
abs. length of
clearest natur
(ocean) water

200 300
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namatsuj

400
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Querry (1978)
calculated absorption
length for pure water
(used deionized filtered
water and a split-pulse
laser method)

Hale (1973) compiled
data from mulptiple-
sources and derived this

500 600 700 800

t wavelength (nm) 2 eV

Figure 4-4. Comparison of water absorption lengths as a function of light photon

wavelength. Quantum efficiency of Hamamatsu tubes is also shown (in black).

4.3.3. Effect of water absorption length and reflectivity of the walls on

detector efficiency

The efficiency of the detector depends on how well the cascade gammas are

converted into Compton electrons above the threshold for Cherenkov production (mainly
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determined by the volume of the detector water) and how well the Cherenkov photons are

detected by PMTs (depends on the water quality, reflectivity of the detector surface, PMT

characteristics, and photocathode area). The main sources of uncertainty in our detector

simulation are from reflectivity of the walls and quality of water. Figure 4-5 illustrates

the effect of water absorption length (figures on the left) and wall reflectivity on the

detector's response (figures on the right). The central figure shows the results with

originally assumed conditions. The assumed water absorption length (LLNL) as shown in

Figure 4-4 was scaled down in magnitude to simulate poorer water quality while keeping

reflectivity at 99.5%. The reflectivity of the walls was decreased from 99.5% (3 mm Gore

DRP) to 80% and 90% reflectivity while other parameters were held constant. It is

evident that the double-peak feature of the pulse height spectrum disappears as the water

absorption length and reflectivity of the walls decreased.

20 m7 max P 0
Number of PEs with 99.5% reIl and LLNL water abs length,

l8Mma 80%e

Figure 4-5. Effects of detector wall reflectivity and water absorption length on detector's
response.
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A reduction in the diffuse reflectivity of the liner can result in a decrease in the

number of photons reaching the PMTs as can a decrease in the transmission length of the

Cherenkov photons, particularly in the ultraviolet region of the Cherenkov spectrum. The

exact effect depends critically on the geometry of the detector, the numbers and

arrangements of the PMTs and the reflectivity of the walls and is shown in Fig. 4-6. The

number of PMT hits by photons increases exponentially with reflectivity, but it increases

nearly linearly (for non-large reflectance) with the number of tubes or even slower when

reflectance reaches ~90%. The reflectivity of the tank coating appears to be very

important to the photon collection efficiency, and employing a reflector with higher

efficiency can help reduce the cost of the detector associated with the PMTs.

160,

140,

120

100

80

60

40

20

1

0.9 6

Rfcv N3

Reflectivity 0.8 1 Number of PMTs

140

120

100

80

60

Figure 4-6. The number of Cherenkov photons detected as a function of the number of
PMTs (1 to 6) and the diffuse reflectivity of the wall material (0.8 to 1.0).
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4.4. Computational Results and Discussions

The results are organized into two following categories: (1) optimization of the tank

design, and (2) simulation of tank performance with 232Th. Additional simulation results,

for example detector response to 24 AmBe source, are described in Chapter 7 as an

illustration to the event reconstruction discussion.

4.4.1. Optimization of the tank design

Optimization studies were performed to determine the ideal dimensions of the

detector tank. The size of the detector is a compromise between the volume of water

available for the entering gamma rays to interact with electrons and to produce

Cherenkov light and the space available in the interrogation system container. Figure 4-7

illustrates the percentage of the incident gamma rays producing Compton electrons with

energies above the Cherenkov threshold (-270 keV) in the tank versus the depth of the

tank. The depth of the tank was selected to be 50 cm, at which about 80% of incident

gamma rays are expected to produce a signal.
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Figure 4-7. Fraction of gamma rays producing Compton electrons with energies above
Cherenkov threshold vs. depth of the tank.

In the final design, the detector is capable of accommodating six 8" tubes facing

downward. However, there are four 10B neutron detectors that must be placed in front of

or inside the tank. Two alternative concepts were proposed for consideration: (1)

Centronics 10B neutron tubes are placed inside the tank extending the depth dimension (in

the direction of radiation) of the tank to 60 cm, and (2) Centronics B neutron tubes are

placed outside the tank in a block of polyethylene with tank depth dimension capped at

50 cm. Both concepts are illustrated in Figure 4-8. The reason for evaluation of two
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designs was to determine if and how placement of 10B tubes affects the performance of

the Cherenkov detector. If the tubes are placed inside of the tank, an additional 10 cm of

water (because of the extended tank depth) will result in increased production of

Cherenkov photons by gamma rays. On the other hand, when the tubes are placed inside,

Cherenkov photons will experience an increase in scattering off the tubes. Hence, more

photons will be lost before they reach the PMTs.

Both scenarios were modeled in Geant4. As illustrated in Figure 4-8, in design 1

the 10B Centronics tubes are placed inside with 1-cm-thick block of polyethyle in front of

the tank; in design 2 the 10B Centronics tubes are placed outside in a block of

polyethylene. The block of polyethyle is capable of accomodating up to eigth 10B tubes.

Four tubes were modeled; any additional slots are filled with air.

Two critical assumptions were made within the Geant4 model: (1) water

absorption coefficient, and (2) Gore reflector performance. These two assumptions are

important in evaluation of performance of both tank concepts. For water absorption

length, LLNL curve shown in Figure 4-4 was used. The LLNL curve could be an

overestimate of the actual Cherenkov tank water quality. In such case, a larger fraction of

photons would be absorbed in the water, and placement of '0B tubes inside of the tank

would be undesirable. The second assumption is the reflectivity of the Gore liner. Inside

of the tank is fully lined with Gore (in both concepts). In addition, in design 1 (tubes are

inside) '0B tubes are wrapped in reflector as well.

Comparison of the two designs was done using two metrics: (1) number of

photoelectrons produced by an incident gamma, and (2) number of photoelectrons

produced by an interacting gamma. The first metric, number of photoelectrons per

incident gamma, is related to the detector's intrinsic efficiency. The number of

photoelectrons per interacting gamma is a purely computational metric, which helps in

conducting an assessment of how many photons interact with a photocathode when tubes

are placed inside versus when tubes are not present in the tank.
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Figure 4-7. Two concepts of tank design. Left: design I - Centronics tubes are placed
inside with 1-cm-thick block of poly in front of the tank. Right: design 2 - Centronics

tubes are placed outside in a block of poly.

To summarize the metrics:

- When neutron tubes are inside, there is more water for gammas to produce

Cherenkov photons through Compton interaction

- When tubes are outside, photons undergo fewer bounces and larger fraction of

them makes it to the PMTs

- Two effects cancel each other resulting in basically same performance

A simulation of detector response using a planar source of monoenergetic gamma

rays was completed for gamma rays of four various energies of interest: 3 MeV (lower
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limit of interest), 5 MeV, 7 MeV, and 10 MeV. The results of analysis using the

described metric are summarized in Table 4-1. Figure 4-9 illustrates spectral results for

design #2 (tubes outside of the detection medium).

Table 4-1. Comparison of two designs.

Design #2: tubes are outside Design #1: tubes are inside

Number of Average number Number of Average
Cherenkov of photo- Cherenkov number of

photons produced electrons per photons produced photo-electrons

Gamma in water gamma in water per gamma

energy (per gamma) (all PMTs) (per gamma) (all PMTs)

3 MeV 698 22 748 22

5 MeV 1377 44 1493 43

7 MeV 2012 64 2200 64

10MeV 2941 94 3154 91
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aPeak height = 223.6
Mean = 160.9
S ma 27.8
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Figure 4-8. Change in detector (design 2) response as a function of gamma ray's energy.

Comparing the two designs, the differences in performance are not statistically

significant. Design #2 shows very slightly better performance with respect to interacting

gamma rays. Fewer bounces of the photons in the tank means that more photons will

arrive to the photocathodes of the PMTs. Therefore, based on physics considerations,

both designs are equally valid. However, if the properties of the water are poorer than

assumed (recall the collection of data sets shown in Figure 4-4), design #2 would be

preferred. In addition, if Gore DPR performance is not as good as quoted or degraded

because of the structural materials in the tank, design #2 would also be preferred. Lastly,

when 10B tubes are inside the tank, there are concerns regarding humidity affecting their

performance. Based on the above considerations, design #2 with 10B tubes outside of the
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tank was chosen as a final design for the experimental prototype water Cherenkov

detector.

4.4.2. Simulation of 2 32Th source

A 232Th source was simulated to elucidate the response of the detector. The

gamma spectrum of the actual source was experimentally obtained using a HPGe

detector, and the results were converted into Geant4 input. The actual experimental

spectrum is shown in Figure 6-1. The input to the Geant4 model is presented in Figure 4-

10.

The Geant4 model of the detector-source system is illustrated in Figure 4-11.

Note that the model of the source-detector system was approximated as closely to the

laboratory setup as possible. The source was simulated as a slug of 232Th with the

dimensions approximately the same as the experimental source.
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Figure 4-9. Spectrum of 232Th as an input to the Geant4 model.
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The source was simulated at four different distances away from the detector. The

simulation was done for the same number of histories in all four cases. Such consistency

allowed approximating the same "real" time of the experiment for all cases. As the

source was moved away from the detector, the solid angle of the detector was decreased,

and the number of interactions decreased as well.

Active area of the Cherenkov
detector tank

Th-232 source
1 m away from tank's face

Figure 4-10. Illustration of the source-detector system.

Spectra for the same 2 32Th source at various distances from the detector face is

plotted in Figure 4-12. The abscissa is in number of photoelectrons ejected by

Cherenkov photons after QE curve was applied to the photocathode. Note that the
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ordinate is shown in log scale. Note that there is no definite peak as was observed in

Figure 4-9. The energy spectrum of 23 2Th has a desired high-energy peak (2.6 MeV), but

other lower energy gamma rays are emitted. Thus, the spectrum of 232Th appears
232continuous. Th is an interesting illustrative case of the challenges active interrogation

techniques are facing: material characterization by using continuous spectra feedback.

41) mTh source
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O 0 - mmn." 25cm
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Figure 4-11. 2Th spectra at various distances from the detector.

In order to further investigate the effect of low-energy part of the 232Th spectrum

on the Cherenkov detector response, the 2.6 MeV peak along with its Compton edge were

removed from the simulation input. The results were subtracted from the spectra shown

in Figure 4-12. Resulting curves are due to 2.6 MeV peak and its Compton edge
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component. The results are shown for the 2 cm and 75 cm distances. The other two cases

were removed for clarity. Note that the peak for the 2 cm case is very well pronounced.

When the source is moved away from the detector, gamma rays have a smaller chance to

deposit their full energy into the detector medium because of the decreasing solid angle.

Thus, the other illustrated peak, when the source is 75 cm away from the face of the

detector, appears smeared.

0102
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Number of PEs created by each gamma

Figure 4-12. 2nTh source, peak only (other contributors subtracted).

Figure 4-14 shows the full spectrum from 2 32Th source near the face of the

detector (2 cm case) and the 2.6 MeV peak only after the other features were subtracted.

It is evident from the plot that pulse height with 30 photoelectrons (p.e.) and above is the
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result of 2.6 MeV gamma rays. Such peak deconvolution is useful in applying energy

cuts in the actual detection when the radiation of interest is above a certain energy. For

example, in the application, detection of gamma rays of 3 MeV and above is considered

important to declare whether SNM is present in the target or not.
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232Figure 4-13. mTh source, full spectrum and peak only (other contributors subtracted).

Note from Figure 4-14 that even though the 2.6 MeV peak does appear as a peak,

the full energy of a 2.6 MeV gamma ray corresponds to the right side of the peak. In a

Cherenkov detector, discrete peak identification may not be possible due to poor

resolution. Thus, energy cuts are applied. However, such an approach can lead to the

removal of information related to the peak of interest. For example, if energy cut above

30 p.e. is applied, essentially half of the peak is discarded, and smaller signal is recorded.
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Table 4-2 illustrates the effect of various energy cuts on the signal obtained from 2m2Th

source. The top part reports the results in terms of p.e., and the bottom part provides the

percentage if full spectral integration was performed.

Table 4-2. Cuts applied to various distance cases.

>1 p.e.
> 10 p.e. > 20 p.e. > 30 p.e. > 40 p.e.

(total)

Integrated number of photoelectrons

2 cm 6890 2649 1289 516 140

25 cm 3972 1554 800 332 98

50 cm 2273 837 405 156 52

75cm 1441 522 257 120 40

Normalized to total

2 cm 100% 38.4% 18.7% 7.5% 2.0%

25 cm 100% 39.1% 20.1% 8.4% 2.5%

50 cm 100% 36.8% 17.8% 6.9% 2.3%

75 cm 100% 36.2% 17.8% 8.3% 2.8%
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5. Description of the Experimental Gamma Detector

Discussion of the detection methods and description of the experimental setup are

provided in this chapter. This chapter focuses on the experimental aspects of data

acquisition (DAQ). Two different acquisition chains are discussed: a traditional analog

chain based on charge analog-to-digital converter (QDC) and a digital chain employing

digital pulse processing algorithm (ADC). Review of the properties of PMTs, reflector

and water as a detection medium and their effect on detector functionality are also

discussed. All of the presented experimental results have been obtained with QDC data

acquisition system unless stated otherwise.

5.1.Experimental Detector Design

The detector is composed of a light-tight 1/8-inch-thick aluminum body, which

measures 0.75m x 0.5m x 2m, with a polypropylene insert for support of high efficiency

(98.5%) diffuse reflector (Gore). Figure 5-1 illustrates the aluminum body of the detector

as well as the insert.

The detector is filled with DI(deionized)-grade filtered water, which acts as a

moderator for the incident radiation. Water quality is maintained through periodic checks

and water re-circulation through an appropriate filtration system. Cherenkov photons are

detected with six 8" hemispherical Hamamatsu PMTs. PMTs are calibrated using two
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monoenergetic light emission diodes (LEDs). Figure 5-3 shows the water filtration and

recirculation system (left) and LEDs positioned inside the detector (right).

Figure 5-1. Aluminum body of the detector (left) and polypropylene insert (right).

The PMTs are mounted to the ceiling of the tank. They are powered by a

programmable external High Voltage (HV) power supply. The power supply provides

and maintains desirable PMT gains. The tank cover is equipped with an array of

waterproof feed-through connectors to bring in the high voltage and to take out the PMT

signals. The PMT signals are processed through the front-end electronics, and the

associated information is transmitted to the network through an HP Proliant USB server.

72



Figure 5-2. Water filtration and recirculation system (left) and LEDs positioned inside the

detector (right)

5.2.Front-end electronics for fast signal processing

The purpose of front-end electronics in nuclear detection is to obtain and process

the pulses acquired by the detector (in this case by the PMTs), to shape the time response

of the system to process event rate and time of arrival information, and to push the data to
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the server for further analysis.5 ' In case of the WCD, the quantities of interest are the

energy and timing of the event. Figure 5-4 illustrates the principle of signal acquisition

and processing.52 The sensor (PMT) converts the energy of a photon into an electrical

signal. The magnitude of the signal is proportional to the charge deposited by the initial

radiation and is subject to statistical fluctuations. In addition to statistical noise, the

electronics noise contributes to the data fluctuations. One of the important elements of the

data acquisition system is a digital logic unit that is capable of triggering on coincidence

between data channels. Such coincidence triggering can be used to reduce the electronics

noise.

Timing

Charge = energy

Figure 5-3. Electrical pulse generated by a detector. Figure is adopted from Tintori.

5.2.1. Electronics based on QDC

The original data acquisition setup for the detector was based on an analog v792

QDC. The QDC setup was used for preliminary testing of the detector performance. The

QDC is based on charge integration and requires a gate signal in order to define an

integrating window. Wiring diagram for QDC is shown in Figure 5-5.
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In this particular application of QDC, the gate signal is not known in advance and

must be generated by splitting a pulse from the PMTs into a prompt signal and a delayed

signal, as shown in Figure 5-6. The prompt signal is the original signal from PMTs. The

delayed branch of the signal arrives late compared to its prompt analog pulse because it is

sent through a long cable. The prompt signal is sent though a low-level discriminator

(LLD), CAEN v814, which only responds to pulses with amplitude higher than a certain

threshold value. The advantage of using a LLD is in its ability to block a low-level noise.

"Good" pulses, which are above the threshold, act as triggers. The output of the LLD is

then sent to the field-programmable gate array (FPGA) and a scaler CAEN v830. The

delayed signal is fed directly into the QDC.

from PMs

MLm

I
I
0

*0

I
from PMT

Figure 5-4. Wiring diagram for QDC.
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QDC setup as
outlines in

,eeFigure 5-5

Delayed signal
into the QDC

Delay box

Prompt signal
into the LLD

Signal splitter

Input from
PMTs

Figure 5-5. Data acquisition setup.

Field-Programmable Gate Array

The FPGA handles all logic necessary to recognize a valid event and to trigger

data acquisition. FPGA is a collection of digital gates that can be configured to do a

number of things. Specifically, vi495 houses three LVDS ports and three user-

customizable mezzanine card slots. The cards used in WCD DAQ are two A395D (8

NIM/TTL input/output channels) residing in slots D and E and a A395B (32 LVDS

output channels) residing in slot F. The block diagram of v495 is shown in Figure 5-7.
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Figure 5-6. Block diagram of v1495. Figure is taken from CAEN."

5.2.2. Electronics based on ADC

In ADC operation, the analog signal waveform is digitized and then, using an

internal FPGA, is digitally integrated and results in a single digitized charge number and

then passed along to the computer for analysis. Unlike the QDC, which uses gate signal

and threshold discriminators, ADC does not lose any data information. The errors

associated with ADC are due to analog-to-digital conversion and the resolution of ADC.

One of the main issues with using ADC is the large amounts of data that are generated for

even a short experiment.

The ADC data acquisition system was based on a flash analogue-to-digital

(FADC) converter and a FPGA. The system is housed in a CAEN crate. The high voltage

is supplied by a CAEN N1470 High Voltage Supply. The signal from each PMT runs

directly (no amplifiers or LLD unit are necessary) into a CAEN v1720 fast digitizer. The

digitizer issues individual raw channel triggers on the front panel through an LVDS
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ribbon connector. Charge integration of all enabled channels is triggered by the internal

majority logic condition. Internal trigger output on the front panel TRIG OUT sends the

trigger pulse to the FPGA through a LEMO connector. Acquisition is inhibited by low

logic on S-IN front panel input. The trigger pulse from v1720 is received by a general

purpose VME board v1495. The schematic of the hardware setup is pictured in Figure 5-

8.

VMI-SB v6533P 4)5 V20
Controller IV Supply FPA FADC Scaler

DAQ tingger

Power to PM13; Prompt sialla
from PMT

Figure 5-7. Fast ADC data acquisition setup.
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Analogue-to-Digital Converter

The ADC used in the WCD data acquisition system is CAEN Mod. V1720, a 1-

unit wide VME 6U module housing 8 Channel 12-bit Flash ADC Waveform Digitizer

with threshold Auto-Trigger capabilities. The front face of the digitizer and its block

diagram are shown in Figure 5-9.

The unit is capable of self-gating integration which implies that there is no

necessity for a delay line, as was discussed for the QDC system, that delays the analog so

that it appears within the gate interval. In addition, the ADC performs automatic pedestal

subtraction.

FRONT PANELF~ ONTPANELx8 channels

A UKCZ AMC (FPGA

ROCFPGA)
- -Readoutcontr .

VME interface contro
Opticallink control

Trigger control
External interface

control

Figure 5-8. Block diagram of v 1720 digitizer. Figure is taken from CAEN .
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The digitizer uses flash conversion, which feeds the signals from the PMTs in

parallel into a bank of threshold capacitors. One of the major advantages of

instrumentation ADC is the speed of data conversion. The sampling rate of the v1720 is

250MS/s (megasamples per second), thus sampling the waveform every 4 ns. Each

channel can generate its own trigger if the pulse height exceeds a digitally set threshold.

In addition, the v1720 allows setting for a coincidence threshold level between channels.

Specifically for WCD DAQ, the trigger from the digitizer is issued through TRIGOUT

LEMO output into v1495 mezzanine card A395D.

5.3.Photomultiplier properties

The principle of operation of a photomultiplier tube is based on two phenomena:

photoelectric effect and secondary electron emission. A PMT converts photons incident

on the photocathode into primary photoelectrons which are multiplied when they travel

from dynode to dynode. The final electrons are collected at the anode, and the output

pulse is produced. Performance of PMTs differs in different light collection scenarios. In

multiple electron state, or high light level applications, pulse pile-up might occur masking

signals as noise. Generally, such pulses are not handled individually, but rather as analog

current. On the other hand, in low light level application or so-called single

photoelectron counting, the output pulses can appear discreet. In the single photoelectron

counting method, the number of events is proportional to the intensity of the incident

light. This counting method is also called digital.

PMTs combine high gain, low noise levels, and high-frequency response. They

are an essential tool in UV and visible photon detection applications. In this detector

system, Hamamatsu R5912-02 tubes are used. The dimensions of the tube as well as the

characteristics of the voltage divider are shown in Figure 5-10. R5912-02 are 14-stage
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tubes with spectral response between 300 and 650 nm. The photocathode material is

bialkali with borosilicate glass as window material. The gain curve of R5912-02 tubes is

also shown in Figure 5-9 and shows that 14-stage tubes outperform 10-stage tubes

(R5912 curve) for typical operational voltages of 1400-1800 V. Because the output pulse

height depends on the supply voltage (gain), the higher gain of 14-stage tubes generally

do not require an amplifier, leading to a simplified electronics setup and reduced noise.

*R5912, R5912-02 GAIN

*RS912, R5912-02

55

Figure 5-9. Hamamatsu PMT characteristics. From Hamamatsu."

5.3.1. Quantum Efficiency

The quantum efficiency (QE) of the photomultiplier tube is an essential quantity

to characterize the performance of the tube. Generally, spectral response of the tube is
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expressed in QE or radiant sensitivity of the photocathode. QE is defined as the

probability that a photon incident on a cathode will eject a photoelectron. In single

photoelectron counting, QE represents the ratio of ejected electrons to the number of

incident photons. Radiant sensitivity is the photoelectric current from the photocathode

divided by the incident radiant power at a given wavelength of photon as defined by

Hamamatsu. 55

The QE is generally difficult to measure because calibrated light sources are

necessary. Hamamatsu provides QE for each tube type. QE and radiant sensitivity of

R5912-02 tubes are shown in Figure 5-11.
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Figure 5-10. QE for Hamamatsu R5912-02 tubes.
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5.3.2. Noise

Noise in PMTs is primarily a result of statistical fluctuations in dark current,

which is thermal emission of electrons encountered even in the absence of light. Other

sources of noise include glass scintillation, field emission, and electrical ringing. Noise

affects the signal-to-noise ratio and can affect counting accuracy if the count rate is low.

Thermionic emission of electrons is temperature-dependent, and minimization of

the noise can be achieved by cooling the PMT cathodes. PMTs with sensitivity in red and

infrared regions are more susceptible to noise even at room temperatures. The PMTs used

in WCD applications have bialkali photocathodes, which have relatively low dark current

due to thermionic emission.s5

Glass scintillation occurs when electrons, whether in vacuum or more rarely

outside of the tube strike the glass window. If the tube is operated with the anode

grounded (negative voltage), primary electrons leaving the photocathode may be attracted

to the glass bulb, deviate from their trajectory to the first dynode, and cause glass

scintillation. In WCD application, the tubes are operated with positive voltage (cathode is

grounded) because the photocathodes are submerged in water. Glass scintillation is less

of an issue for WCD practice than in applications that use negative high voltage.

5.3.3. Single Photon Testing

Hamamatsu R5912-02 tubes are designed for single photoelectron pulse height

distribution measurements. Pulse height distribution can be used to measure PMT

efficiency and stability over time. For testing purposes, single photoelectron counting

was performed on all Hamamatsu PMTs.
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A light-tight box was built specifically to investigate single photoelectron event

with the PMTs. The box was equipped with an optical bench, a PMT holder, and an LED

holder as shown in Figure 5-12. A small 1" in diameter Hamamatsu tube is shown in the

bench for illustrative purposes only.

Figure 5-11. Black box testing

Schematic diagram of the experiment is shown in Figure 5-13. The pulse

r(Berkeley Nucleonics BNC 575-4c) was set to send out a signal to the LED and to send

a gate to an ORTEC multichannel analyser (MCA). The LED emitted 365 nm photons

incident onto a PMT. The photons were filtered through a set of optical filters in order to

decrease the number of photons per pulse to an average of less than one. The amplitude

of the generated pulses was selected such that only about 10% of the pulses would

produce a signal in the PMT. The pulses from the PMT were then sent to a preamplifier

to stretch the signal and to an amplifier to shape it. A digital 300 MHz oscilloscope was

used to monitor the timing of the signals and Maestro (Ortec) software to plot pulse

height spectrum.
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Amplifier/ Preamplifier/
shaper stretcher

Oscilloscope (timing)
ORTEC multichannel analyser with Maestro

software (pulse height spectrum)

Figure 5-12. Schematic diagram of PMT testing with LED

Figure 5-14 shows an example of the LED input and pulse output. Note that two

examples are plotted: "no event" and "a single event." The first example shows that even

when a photon is incident onto a photocathode, there might not be an event due to

quantum efficiency of the photocathode. Second example shows the shape and timing of

the single photoelectron signal.
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Figure 5-13. Observed single PE data with 8-in Hamamatsu PMT.

Test parameters and the results of an average test are summarized in Table 5-1.

The high voltage was set to 1400 V in order to obtain a gain of 108 (as shown in Figure 5-

10). Obtained pulse height was 200 mV on average with pulse width of 5 nsec.

Corresponding charge was calculated to be 2*10~1" C assuming 50 ne impedance of the

oscilloscope. This charge is an output of the last dynode of the PMT. Recall that the

voltage was set such that 108 amplification of the signal was obtained. Thus, the

corresponding photocathode charge was 2*10~1'. This is another indicator that the signal

was produced by a single photoelectron since the charge of an electron is 1.6* 10-19 C.

* The specifications were provided by the manufacturer.
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Table 5-1. Test parameters and output values of single photoelectron testing.

Test parameters Notes

High voltage supplied, V 1400 PMT gain is 108 at the voltage shown

in Figure 5-8

Pulse width, ns 11.25 As supplied into the LED

Impedance, Q 50

Frequency, Hz 10

Power supplied into LED pulse 8
box, V

Output

As obtained from the PMT using
Pulse height, mV 200

oscilloscope (512 average setting)

Pulse width, nsec 5

Total peak area, mV-nsec 1000

Corresponding charge from last 2*10~1 Charge from the last (D14) dynode

dynode C14, C into 50 Q

Corresponding charge at the 2*10-19 CD is a ratio between C14 and the

cathode CD, C corresponding gain (108)

Single photoelectron peaks were obtained with ORTEC MCA. Figure 5-14 shows

a single photoelectron peak as well as the pedestal.
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Figure 5-14. Single photoelectron peak observation. The abscissa is in arbitrary bin units.

Performance of each PMT was verified using black box testing, and the results

were found to be in agreement with the specifications provided by Hamamatsu. Table 5-2

lists the operational voltages for the PMTs.

Table 5-2. Operational characteristics of PMTs.

PMT PMT serial number Operational voltage, V

I SLOO13 1352

2 SLOO19 1248

3 SL0020 1216

4 SLOO15 1336

5 SLOO14 1376

6 SLOO17 1344

88

Pedestal



5.4.Detector response to LED pulsed at various frequencies

In an attempt to characterize the PMT response to the submerged LED, the LED

was pulsed at several frequencies. The aim of this study was to determine if the LED is

capable of producing a discrete signal that can aid in the calibration process. The LED

was pulsed at 9.20 volts over four different frequencies (10Hz, 100Hz, 1kHz, 10kHz) and

the PMT output was recorded and plotted in Figure 5-15. The DAQ system was based on

QDC.

Note on Figure 5-15 that the detector response changes dramatically as the

frequency of the LED increases. The abscissa of the graph corresponds to the QDC bin

number, and the ordinate shows the number of counts collected over 10 minute periods.

The background (BG) shows typical features of the spectrum collected with a Cherenkov

detector: low-energy noise and high-energy cosmic ray peak. The muon peak is nearly

constant for BG, 10 Hz and 100 Hz cases. In fact, BG and 10 Hz cases show nearly

complete overlap except for an additional peak corresponding to the pulse signals. 100

Hz case starts to show some deviation from the BG which is seen as a shoulder rise in

bins 1000-3000. This deviation is most likely because of the significant increase of the

dead time of the detector. The dead time was calculated as the ratio of the number of live

triggers to raw triggers in the DAQ. Table 5-3 shows the dead time as a function of LED

frequency. When frequency reaches I kHz (1000 pulses per second), the dead time of the

detector is 95%. Increasing the frequency beyond that causes the detection system to

produce undesired results, shown in Figure 5-15, which cannot be used to monitor

detector's performance.
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PMT response to LED pulsed at four frequencies, each increasing by a level
of magnitude.

Based on this study, it was concluded that a LED frequency of 10 Hz produces a

clearly identifiable peak as shown in Figure 5-16. This value is used in subsequent

detector stability monitoring.
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Table 5-3. Dead time of the detection system as a function of LED frequency.

LED Frequency % Dead Time of System

0 Hz (Background) 17%

10 Hz 38%

100 Hz 82%

1 kHz 95%

LED Pulse Study

j10J

-10*C

0

~1 _=-1 02

10

Bin (A.U.)

Figure 5-16. Comparison of background and 10 Hz spectra. The insert shows
background-subtracted spectrum of 10 Hz LED pulsing.
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5.5.Water filtration and recirculation system

Water quality affects Cherenkov photon collection efficiency to a large degree as

was shown through simulation in Chapter 4. Photon absorption in water is a significant

source of uncertainty both in simulation and experiment. Water purification can be done

on multiple levels depending on a desired outcome: simple filtration to remove

particulates, de-ionization to remove ions, UV light to kill bacteria, or a combination of

any of the above. Ideally, all three methods would be used in order to obtain water of the

best possible quality.

5.3.1 Experimental investigation of water purity effects on signal

Preliminary investigations of the effects of water clarity on signal were performed

prior to filling the detector. An attenuation arm was constructed with a UV (365 nm)

LED pulser on one end and a photomultiplier tube on the other. The 8' long arm was

constructed out of 4" in diameter PVC pipe. The LED was excited by 35-ns pulses with a

100 Hz repetition rate. The output of the PMT was monitored using 300 MHz

oscilloscope.

Three "types" of water were considered for comparison: tap water, tap water

filtered with a combination of two filters (0.5 and 0.2 [tm), and DI water. For each case,

several samples were acquired in order to assess the variability between samples of the

same water type. All data were averaged over 512 consecutive pulses using a built-in

oscilloscope function. The input to the LED was recorded for each event to monitor

changes, if any, in the driving pulse. No changes have been observed for all samples.

Figure 5-17 shows the PMT pulse outputs for various water samples. The metric

for transmissibility was taken to be the peak height of each PMT pulse. Figure 5-17

92



shows that these peak heights vary with water type, but also vary between same type

water samples. The variability between samples of the same type was attributed to the

presence of bubbles in the tube, whose quantity cannot be effectively controlled without

an on-demand re-circulation system.

PMT PULSE -AVERAGE OF 512

I

0.45 0.5 0 55
TIME, Isec

Relative
Transmission

0. 0. 6 5

Figure 5-17. Comparison of pulse height changes for various water samples.
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Relative comparison of the PMT signal outputs lead to the following

observations:

1. The transmissibility is highest for the DI water, followed by the filtered tap

water, and then the unfiltered tap water.

2. The DI water exhibits the minimum variability between samples, and the

unfiltered tap water shows the greatest variability between samples.

3. Defining the DI transmissibility as 100%, the transmissibilities of the filtered

water and the unfiltered water are 86% and 39%, respectively.

The data shown in Figure 5-17 provide information on the relative water

transmissibility. They clearly indicate that the DI water is superior to all other two types.

However, they do not necessarily imply that the filtered water is unsuitable for the

operation of Cherenkov detector. To avoid complications that may arise with using the

unfiltered water, a DI water filtration system was implemented in the water recirculation

loop of the prototype tank. The water recirculation system is capable of removal of

bubbles and maintenance of water quality over long test periods.

5.6.Detector response to variations in water purity

During the initial testing of the detector, electrolysis stains on the internal walls

were noted. The detector was disassembled in order to further investigate the cause of the

stains and their effect of the water quality. Once the tank was drained and the

polypropylene liner supporting the Gore reflector was removed, a significant

accumulation of rust was found on the LED plate. The rust was caused by the presence of

a small (3 mm in diameter) piece of carbon steel from a drill. The drill was used to create
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holes for the support of the plate. Figure 5-18 shows the location of the LED plate in the

tank as well as the corrosion stains.

Tank Bottom
Stain from LED

Plate- Rust

Figure 5-18. LED plate corrosion.

All of the components of the detector were thoroughly cleaned, and the plate and

the reflector attached to the plate were replaced. The tank was refilled with DI water, and

spectral measurements were retaken. Figure 5-19 shows the change in spectra before and

after the tank cleaning. Note that muon peak moved after the water in the tank was

replaced indicating that larger signals were being collected. It must be noted here that an

important assumption about the detector was made: the performance of the PMTs did not

change, and all other parameters except for water transmissibility were the same. The

following observations and conclusions were derived from this experiment:

1. Water purity has an effect on detector stability of operation. The water quality

must be maintained at a constant level in order to avoid variations in the

spectral response of the detector. It was shown with simulations that the

quality of the water has a definite effect on the performance of the detector.

Assuming that the assumption about the PMTs was true, this experiment

supports this observation.
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2. Introduction of dissimilar metals in the detector must be avoided, as the DI

water tends to increase corrosion rates.

3. Gore reflector can be easily cleaned without damaging its properties.

sog Background Dates
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Figure 5-19. Background spectra before and after the tank cleaning.
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6. Calibration and efficiency of the detector

Energy calibration of the detector is a crucial part of the detector development.

The calibration cannot be achieved by Monte Carlo simulation alone due to the

uncertainties associated with the water optical transmission coefficient, reflectivity of the

walls, and PMT quantum efficiency. Thus, the overall energy calibration must be

performed in situ while using simulation as a supplemental verification tool.

Calibration of a water Cherenkov calorimeter as applied to remote detection is not

necessarily about the energy resolution, but rather about where to place an energy cut.

The goal of the detection is to determine whether high-energy (3-10 MeV) gamma rays

appear as a result of interrogation. The characteristic radiation from fission or

photofission is mostly continuous in the range from 3 to 6 MeV. 7 In addition, the effect

of Cherenkov radiation modulates the linearity of the energy scale since the size of the

signal is not directly proportional to the energy of the interacting particle, especially in

the lower energy region. However, the size of the signal is proportional to the detection

medium. This includes effects of the water clarity and reflector properties, which may

impair the resolution of the detector. Another source of resolution loss in Cherenkov

detector is drift in the operating parameters associated with the PMTs. We expect the

contribution of electronic noise to be negligible, especially since preamplifiers and

amplifiers are not used, and the PMTs can resolve single photoelectrons.

In this particular detector setup, the reflectivity is assumed to be constant.

However, the quality of water is considered to be variable. This is because the detector is

designed to be transportable and to be deployed at various locations, and even though the
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detection system is equipped with a water purification system, the transmissibility of

water cannot be assumed constant.

The detector was calibrated using multiple radiation sources in order to determine

lower level of sensitivity as well as to study the detector response to gamma rays with

various energies. The signals are collected as digitized data. Converting MCA scale to

energy scale is possible, but the peak does not correspond to the energy of the particle,

but rather to the average number of Cherenkov photons produced by the particle.

Calibration of the detector using cosmic muons is less straightforward because the

cosmic rays arrive at a distribution of angles and momenta. In addition, the calibration of

Cherenkov detectors at a higher energy range may not be representative for the low-

energy, 3-10 MeV, range. However, the muons and the peak they produce in the

spectrum are very useful for monitoring the stability of the detector.

6.1.Computational evaluation of detector resolution

Energy resolution of Cherenkov detectors is dominated by photoelectron

statistics. Unlike solid-state detectors and conventional scintillators, the resolution of

Cherenkov detectors is quite low which results in broad peaks that are sometimes

undistinguishable especially for low-energy events.

There are several reasons for this low energy resolution. The most important is the

small number of Cherenkov photons created during particle interactions in the detector.

Table 6-1 summarizes results of simulation for monoenergetic gamma ray interactions in

the Cherenkov detector. The simulation was done for six cases of gamma rays with

energy varying between I and 10 MeV. Each case included 10,000 histories. Recall that
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the Cherenkov threshold for a gamma ray is 0.42 MeV. The average number of photons

produced in our Cherenkov counter per 1 MeV gamma is -65. This number corresponds

to optical photons of energy between 1 and 4.5 eV. This energy span is equivalent to

selecting photons with wavelengths between 270 and 1200 nm in order to reduce

computational time. Note that the Cherenkov spectrum continues in UV (wavelengths

less than 270 nm), but the PMTs are essentially insensitive to light with wavelengths in

that region. These 65 photons result in 2.4 photoelectrons produced in all PMTs (summed

response). As the energy of the gamma ray increases, the ratio of photoelectrons to

Cherenkov photons stays relatively constant indicating signal linearity with deposited

energy. Note that as the energy of the gamma rays approaches the Cherenkov threshold,

this linearity becomes no longer valid. This observation was useful when detector

calibration was performed.

Table 6-1. Average photoelectron production as a function of gamma ray energy.

Energy of Average number of Average number of

incident produced photoelectrons, Cherenkov photons. per Ratio
per gamma, summed gamma, summed

response in all PMTs response in all PMTs

1 2.4 64.4 0.037

2 13.1 365.7 0.036

3 26.4 725 0.036

5 51.0 1404 0.036

7 67.2 1860 0.036

10 100.1 2760 0.036
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Graphical results of Table 6-1 are presented in Figure 6-1. The monoenergetic

peaks were fitted with a Gaussian distribution. The peak corresponding to a

monoenergetic gamma ray moves as the energy increases. In addition, there is a

significant broadening of the peak. Figure 6-2 shows the dependence of pulse height and

energy resolution on gamma ray energy. The parameters were calculated by fitting the

peaks shown in Figure 6-1 with a Gaussian function. Note that the error bars

corresponding to the peak locations are ac, where aY is the standard deviation. The

resolution was calculated using Equation 6-1, where FWHM is the full width of the peak

at half maximum, and Ho is the location of the peak centroid.

FWHM
R = Eq. 6-1

H0

The energy resolution of Cherenkov detector approaches 37% as the energy of the

incident gamma ray increases. Such poor energy resolution makes distinguishing between

gamma rays of similar energies, for example 3 and 5 MeV, very difficult, if not

impossible. Figure 6-3 illustrates the case when gamma rays with energies of 2. 3, and 5

MeV are incident and perpendicular to the detector face. All cases of simulation assumed

the same number of histories (10,000 incident particles).
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The pulse height spectra showed in Figure 6-1 are the product of effects due to

both electron recoil energy spectrum and detector resolution (Cherenkov light scatter and

absorption in the detector medium.) In order to describe detector behavior for sources of

various energies, one must take into account both of the contributors, deconvolution of

which experimentally is a difficult task. The relationship between the resolution of the

detector and Cherenkov light output was determined using computational model results,

presented in Figure 6-2. The energy spectrum of the detector was represented as a

Gaussian function, and the peak location was calculated; the dependence of peak location

on gamma energy is nearly linear. The resolution follows I/E dependence, where E is the

energy of the incident gamma rays. These two functions can be folded into a model that

describes the resolution change with energy of the gamma rays, as shown in Figure 6-4.

The model function for the resolution curve was fitted using least squares. The

equation for the function is provided on the plot. As light output increases, the resolution

of the detector becomes smaller, as expected. The behavior at larger energies is similar to

one of scintillators. Note that the model includes the contribution from recoil electron

spectrum and detector resolution, but the contribution due to electronics was not

accounted for. As the energy of the incident particle approaches Cherenkov threshold,

and the light output becomes small, the slope of the curve changes.

Increasing the resolution of the detector can help improve signal-to-noise ratio.

The noise is generated by PMTs and in electronics. As was mentioned above, the

electronic noise does not significantly affect the resolution of the detector, and most of

the resolution loss comes from the photoelectron statistics. One of the critical issues is

how sensitive the detection is to the thresholds. The threshold is set high enough that

most of the noise is ignored by the DAQ.
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6.2.Sources of error and photoelectron statistics

As with any detection system, the physical quantities measured with the

Cherenkov detector require uncertainty assessment. In the current analysis, we

differentiate between systematic and statistical uncertainties. Systematic errors arise from

mis-calibration of the detector or due to some other effects that are not taken into account

during the experiment, but could be corrected for. The systematic errors, once corrected

for up to a reasonable degree by adjusting experimental setup, for example PMT

calibration, are irreducible. Systematic errors along with random fluctuations dictate the
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accuracy of the experiment. Statistical errors are also called random errors or noise. The

fluctuations in observation, for example, energy loss by a particle, will affect the

precision of the experiment. In Cherenkov detector, the noise arises from uncertainty

associated with photon production. Theoretically, the rate of energy loss by a charged

particle through Cherenkov light emission can be predicted. In reality, such prediction is

not necessarily the actual energy loss by a particle going through the detector. The actual

energy loss follows a distribution the mean value of which can be derived (our theoretical

prediction), but individual experimental measurement would yield fluctuations around

that value. This is well illustrated in Cherenkov pulse height spectra shown in Figure 6-1:

each incident gamma ray has the same energy, but the light yield has a distribution. Some

correction for random errors is possible by making repeated measurements as well as

through refining the experiment. However, once the random errors cannot be reduced

beyond the systematic, it is impractical to conduct more measurements.

One of the main objectives of error analysis is to determine the accuracy and

precision of the measurement. The measurement takes a finite amount of time, which

inevitably introduces an uncertainty in the results. Another reason for uncertainty analysis

is to determine whether the equipment, both the detector and the data acquisition system,

are working correctly and according to expectations.

6.2.1. Systematic uncertainties

One of the main sources of systematic uncertainty in this experimental setup is

from the calibration of the PMTs. The sources of uncertainties specific to PMTs are

discussed in Chapter 5. The signal from each PMT is integrated separately and then

summed to obtain the pulse height spectrum specific to a source. In order to obtain a

good spectrum, each PMT was normalized. However, the calibration of PMTs can affect

the peak broadening and the location of the centroid. It is important to realize the effects
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of uncertainty introduced by the calibration because the resolution of the detector is

already expected to be quite poor as was discussed in Section 6.1.

Figure 6-5 shows the pedestal and the background as obtained by each PMT. The

PMTs were originally calibrated using an ORTEC MCA. The CAEN data acquisition

system was used to obtain the results shown in Figure 6-4 and the rest of the figures

discussed in Chapter 6. Figure 6-6 illustrates pedestal-subtracted background data. The

PMTs appear to produce nearly identical spectra including the muon peak location.

Figure 6-7 shows the zoomed-in spectra of Figure 6-6. The PMT individual

spectra are plotted along with the average of the six spectra. The bin location of the peak

and the average are shown in Figure 6-8. Note that there are two outliers: PMTO and

PMT3 which deviate from the average; the rest of the points are within one standard

deviation of the average.

Even though the PMTs were calibrated prior to the their installation in the tank,

change in data acquisition electronics from ORTEC to CAEN as well as PMT locations

in the tank affect relative calibration of the PMTs. Note that the positions of PMTs in the

tank can affect the light collection. Identification of the outliers after the PMTs have

been installed in the tank can help in calibration of PMTs in the low energy region.

Precise calibration of the PMTs will potentially result in decreased systematic

uncertainties and in increased resolution.
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6.3.Calibration sources

The calibration sources were selected to be as close to the experimental conditions

as possible. Doing so is difficult for WCD application to long-range detection because the

gammas from photofission are expected to have energies between 3 and 10 MeV,

although as has been previously noted, there are essentially no individual spectral lines in

this region. Thus, sources with energies close to or above 3 MeV are necessary.

Calibration was conducted using the following sources: 60Co, 2 3 2Th, and 24 1AmBe.

A '37Cs source was also used, but it was found that the energy of emitted gamma

rays is too close to the Cherenkov threshold. Thus, the error effects were found to be too

large. A 5 pCi '37Cs source, which is a 661.7 keV gamma emitter, was used to verify the

threshold properties of the detector. The 60Co source emits a cascade of two gammas of

energy 1173 and 1332 keV. 2 32Th contains 208T1, which is a 2.6 MeV gamma emitter. The
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full spectrum of 232Th measured experimentally with HPGe detector is shown in Figure

6-9. Note that there are a variety of gamma rays in addition to the 2.6 MeV gamma.

Characteristics of the check sources along with high-intensity sources used in the

experiments are provided in Table 6-2. The detector-source setup is illustrated in Figure

6-10. Note that the source position remained constant along the detector plane and was

only moved perpendicular relative to the detector face.

Table 6-2. Summary of calibration sources.

111

Check Sources

137 Cs 5.0 pCi 30.02 1.57E+05 dps y= 661.7 keV

60Co 1.0 pCi 5.27 1.44E+04 dps 1332.5 keV
Y2= 1173.2 keV

High Activity Sources

"Cs 800 pCi 30.02 2.82E+07 dps y= 661.7 keV

60 Co 1.8 mCi 5.27 6.66E+07 dps = 1332.5 keV

y2= 1173.2 keV

Neutrons with

24 AmBe 10 mCi 433 2.44E=04 dps 4.4 MeV
(neutrons)

(70% of the time)

y1= 2614.5 keV
232Th 0.3 mCi 1.40E+10 1.11 E+07 dps (and other gamma rays, see

Figure 6-2)
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Figure 6-9. A spectrum of thorium slug using an HPGe detector showing the many

gamma ray lines originating from daughters of 2 32 Th. The 2.6 MeV gamma ray

originates from the decay of 2 08T1 to 201Pb, but 208T is only reached about 30% of the
time. (100 second run)

A combination of the above sources can help with monitoring energy linearity,

detector stability and resolution. 2 Th was also used to set initial energy cutoff because

of its 2.6 MeV gammas.
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Figure 6-10. Detector and source setup. Source can be moved perpendicularly to the

detector surface.

6.4.Results of detector calibration

The detector was calibrated using the sources described in Table 6-2. The

responses of individual PMTs were integrated to produce a pulse height spectra

corresponding to each source. The experimental background-subtracted spectra are

plotted in Figure 6-11. The spectra shown are the total-absorption peaks. Similar sources

were simulated using a Geant4 model. The results obtained are presented in Figure 6-12.

There is a similarity between the two sets of results, especially for higher-energy part of

the spectrum.
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Figure 6-12. Computational (Geant4) integrated spectra of four sources (normalized).

114



One of the main issues for the water-based Cherenkov detector calibration is

determining which feature to use for calibration purposes. The energy of the maximum of

the peak is unknown because of the nature of Cherenkov photon production in the tank.

The problem with using the peaks becomes even more pronounced when the calibration

sources do not emit monoenergetic gamma rays, but rather produce radiation with a

variety of energies, as in case of 2m2Th. However, one feature of the Cherenkov spectrum

that can be used for energy calibration is the highest energy in the spectrum, the terminal

end of the peak. The terminal end corresponds to the maximum possible energy

deposition in the detector by muons.

Figure 6-13 illustrates the potential technique of Cherenkov detector energy

calibration. The terminal energy (MCA bin or computational number of photoelectrons)

of the peak is estimated. The estimate can be plotted against the coiresponding energy of

the particle. The slope of the line can be used to calculate the calibration parameters.

Besides the convenience of this method, using the terminal energy guarantees that when

the detection threshold is placed, it will not be exceeded by a particle of lesser energy.

The terminal energy was estimated by fitting the peak by a Gaussian distribution,

and the extrapolation to x-axis was taken as the end of the peak. Note that the error bars

shown in Figure 6-13 correspond to ±a, where a is the standard deviation of the fitted

peak. The reason for such a conservative estimate of the error associated with the

terminal energy is the fuzziness of the data in the tail of the pulse height spectrum. The

peaks broaden as the energy of the incident particles increases.

The experimental calibration of the detector is shown as Equation 6-2, where

energy is in MeV and ADCBin is the ADC bin corresponding to the terminal bin of the

peak.

E = 565.8 -ADCBin - 452.4 Eq. 6-2
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6.5.Dead time effects

The dead time of the detector is defined as the time which has to pass between the

registration of one set of particles and being able to register the next. During the dead

time, the system generally cannot accept a subsequent signal. In our QDC system, the

dead time is a combination of the effects of signal acquisition time, data conversion time,

and the readout time to memory.
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The dead time affects the results of the measurement, and thus it must be

accounted for. The difference between the ADC and QDC system with regard to the dead

time was discussed in Chapter 5; the discussion of dead time here is for a QDC data

acquisition system.

The dead time is measured using a reference pulser which is fed into the spectrum

simultaneously with the data acquisition. During the measurement, the number of the

reference pulses is determined by a scaler. The reference pulses are then compared with

the number of pulses recorded by the system. All of the experimental data reported in this

Chapter have been dead time corrected.

Our system does not measure correlated events. Thus, there is no danger of losing

correlated events, but there can be a problem with detector behavior during a high-count-

rate experiment.

6.6.Efficiency of the detector

Efficiency of the detector was measured using 60Co and 13 7 Cs sources. The

sources were placed in front of the detector, as shown in Figure 6-9, and the source bench

was moved away from the detector in 50 cm increments. This was done so the angular

dependence of the count rate could be determined. Figure 6-14 shows the summed

spectra for background and the 60Co source. Note that the muon peak overlaps for all

cases. Figures 6-15 and 6-16 show zoomed-in background-subtracted 60Co spectra.

Figure 6-17 shows background-subtracted data for 13 7Cs source. The background-

subtracted histograms were integrated to get the total number of counts. The summary of

integrated count rates as well as calculated intrinsic efficiencies is provided in Table 6-3.

Note that the activity of 13 7 Cs source corresponds to 3 check sources (5 ptCi each).
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The count rates of the detector with various sources were normalized using the

dead time correction discussed in Section 6-5. The summary of live pulser data used for

normalization is provided in Table 6-4.

The calculation of the detector efficiency revealed that the detector is capable of

detecting small amounts of radioactive material. The results of efficiency measurements

using 60Co source are statistically significant and are well above the threshold. However,

the measurements performed with '37Cs are questionable. It was expected that the

detector would not be able to pick up any signal from 137Cs check source because of low-

energy gamma rays emitted by a low-intensity source.

source, I pCi
"Co -0 cm

Co - 50 cm
aCo -100 cm
Background

V
0 2000 4000 6000 8000

flU1LA
14000

Bin (A.U.)

Figure 6-14. Spectrum of background and 60Co source.
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Figure 6-15. Spectrum of 60Co source after background was subtracted. Note that y-axis
is now count rate per second.
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Figure 6-16. Spectrum of 6OCo source after background was subtracted.
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Figure 6-17. Spectrum of 137Cs source after background was subtracted. Note that 137 Cs is
actually 15 microCi.

Table 6-3. Summary of detector count rates for 137Cs (3 check sources) and 60Co sources.

Activity Counts per Efficiency Counts at 50 Counts at
today, dps em at 0 cm cm 100 cmcm

60Co 14582 3292 30.1% 1359 593
m1s 470316 3669 1.56% 1812 761

Table 6-4. Summary of live pulser data used for normalization.

BG 137Cs 137Cs 137Cs 60Co 6OCo 60Co

0 cm 50 cm 100 cm 0 cm 50 cm 100 cm
Live pulser 4684455 4414846 4462994 4625984 4403227 4536396 4591942
Raw pulser 5969548 5969535 5843861 5969540 5906697 5885752 5906699
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7. Event reconstruction methodology

The data output of the detector appears in the form of raw-data digitized

electronic signals. Setup of the electronics is discussed in detail in Chapter 5. In this

Chapter, a process of converting the digitized detector signal data collected during the

experiment into meaningful physical information while recognizing the limitations of the

detection system is discussed. Such a process is generally referred to as event

reconstruction.

The event reconstruction process can be divided into two main parts: local

reconstruction and global reconstruction. Local reconstruction is collection and analysis

of the events from individual detector modules, for example energy measurement of a

particle in Cherenkov detectors. The global reconstruction process combines information

from all individual modules of the detection system, for example data from neutron and

gamma ray detectors, in order to produce high-level triggering. A combination of

information from multiple detectors can yield information about interrogated material. In

this Chapter, local event reconstruction is discussed.

The energy resolution of Cherenkov detectors discussed in Chapter 6 affects our

ability to fully reconstruct the initial physical process. Total event reconstruction is not

necessary with Cherenkov counters in a remote detection application because the

energies of the photofission products appear smeared rather than discrete. The purpose of

the event reconstruction as applied to Cherenkov detectors is to determine whether the

detected signal is due to gamma rays from photofission or from background.
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7.1. Characteristics of the signal

Knowledge of the characteristic signal is an important part of the event

reconstruction. Depending on the source of the signal and detector configuration, various

interaction spectra can be produced. The interaction spectrum can be characterized as a

combination of the incident particle flux, the interaction cross section, and the efficiency

of the detector. The simulated normalized flux of gamma rays incident on the detector as

a result of photofission is shown in Figure 7-1. Note that the interrogation target is 50 m

away from the detector, and the flux is a function of energy. The signal is 100

milliseconds after that interrogation pulse.

The flux for materials containing HEU and DU is at least an order of magnitude

higher than the one induced in the background. The energies of interest are between 3

and 10 MeV. Note that aside from the larger magnitude of the signal produced by the

interrogated unshielded HEU and DU vs. background, there is a clear distinction between

the two. However, identification of the nature of the signal might not be possible with a

Cherenkov detector because the presence of shielding can alter the absolute magnitude.

This effect can be observed when shielded HEU and DU signals are compared. The

difference between the two is not significant enough to declare which material produced

the signal, but it is sufficient to declare whether a SNM is present.

This simulation was done in MCNPX by Eric Johnson.
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7.2.Ambient and cosmogenic background

Understanding the background and how it can affect the signal is part of the event

reconstruction. Low-energy background affects the signal-to-noise ratio in the detector

making it difficult to determine whether a real signal was registered. Heusser16 pointed

out that while count rate directly affects the sensitivity of the detector, the effect of the

background is more severe because of the inverse of the square root dependence. Heusser

also indicated that environmental radioactivity is one of the more important contributors

to the background radiation, although the importance depends on a particular problem.

The most problematic radioactive ambient background gammas are from 232Th

and 238U decay series. The prompt beta-gamma cascades near the end of the series have

high energies. In addition, high-energy gammas can be produced by free neutron capture.

Gamma rays from 237Np and 23 5U series of naturally occurring decay chains have

significantly lower energies. The decay chains of 2m2Th and 238U are shown in Figure 7-2.

Important isotopes and energies of gamma rays associated with these two decay chains5 7

are listed in Table 7-1.

The background spectrum in the laboratory was taken with a HPGe detector. The

spectrum is shown in Figure 7-3. Note that most of the characteristic radiation listed in

Table 7-1 appear in the spectrum. Two primary non-series radionuclides contributing to

ambient background are 4 0K and 87Rb. 4 0K emits a beta particle (87.3%) and a gamma ray

through electron conversion (10.67%).58 The energy of the emitted gamma is 1.46 MeV

(highlighted in Figure 7-3). 87Rb decays through an electron emission with low, 0.283

MeV, energy.

Jagam and Simpson59 compiled a database of measurements of Th, U and K

concentrations in various materials including cement, ceramics, glasses, and aluminum.

Their report included several tables of radioactivity levels using direct gamma ray
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counting via neutron activation analysis.
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elements in the atmosphere and the earth. The illustration of the interaction and the

progeny particles produced is shown in Figure 7-4.61 High-energy muons are also capable

of increasing the dead time of the detector if not properly rejected.

Table 7-1. Decay chains and selected energies.

Series Isotope Largest gamma Yield (%) Notes

energy (keV)

U 214Pa 1313 18

214Bi 2448 1.5 20 gammas with energies above 600

keV

21'Bi 1765 15.4

Th Ac 1588 3.3 6 gammas with energies above

Cherenkov threshold (420 keV)

mBi 1621 1.49 3 gammas with energies above

Cherenkov threshold (420 keV)

STI 2615 99.2 Most characteristic gamma of mTh

series
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Figure 7-3. Background gamma spectrum obtained with an unshielded HPGe detector,
(6293 s live time).

There are multiple radionuclides produced by the cosmic ray interactions. The

most prominent are tritium and 14C.62 However, both are beta emitters, with particle

energies below the Cherenkov threshold. There are radionuclides produced by cosmic

rays which are gamma emitters with energies sufficiently high to produce a signal in the

detector, for example 2 2Na (1.27 MeV) and 3 8 CI (2.17 MeV). They will not be accounted

for in the current consideration because the tropospheric concentration of such nuclides is

very low.

127



IN F

V4k
1unccopnn

neuti

nuclear interac JOI
Yut i molecule

hadrn T" 4? ' c
oe e- e ,!IH\her nov

P, n'it;KI e7 y y ydey e
nuclear fragments

hadronlc
component

electromagnetic
component

Figure 7-4. Progenies of cosmic ray interacting with the atmospheric gases and earth
crust.

Cosmic rays, in particular muons, generally have very high energies well above

the Cherenkov threshold. The mean energy of a muon reaching sea level is on the order

of 4 GeV. Muon flux is on the order of 1 muon per cm 2 per minute. Since muons are

charged particles with energies well above the Cherenkov threshold, they will create a

detectable signal in the counter.

Muons are crossing the detector body at various angles. However, the muons

crossing the detector vertically will results in the largest signal because of the available

amount of the detector body to interact with. A muon will result in a deposition of about

2 MeV per g/cm 2 of material, most of which will turn into ionization. The amount of
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energy going into Cherenkov is rather constant. This fact is used to fix the charge scale

of the experiment. Because the detector properties can vary with water quality,

reflectivity of the walls and stability and optical properties of the PMTs, the energy scale

of vertical muons interaction can be used to continuously monitor detector operation and

stability.

7.3.Background rejection methods

The choice of the background rejection method depends on the detector type,

particles of interest, and the ways background can affect the ability of the detector to

select the signals of interest. This particular design of Cherenkov counter was tailored for

gamma ray detection. The incident gamma rays are monodirectional because of the large

separation between the detector and the source. There are two types of background

rejection methods that can be applied to this detector: passive and active. Passive

methods generally include shielding and reduction of radioactive contaminants in the

detector and surrounding materials. Active methods can include any or a combination of

veto and coincidence techniques, energy cuts, signal patterns (for example, PMT majority

selection or rise time), and multiple detection mechanisms.

Using gamma ray shielding on the sides of the detector not exposed to the

incident flux can potentially reduce the signal from low-energy background gammas.

Lead shielding is generally superior to other shielding materials. Simple Geant4

simulation was used to estimate that a 15-cm shield of lead attenuates the background

gamma rays by a factor of 103. One has to take into account that lead is also ideal for a

muon captureg and subsequent generation of a neutron. These fast neutrons can induce

high-energy gamma rays in lead through excitation reactions and offset the effects of

shielding. In addition, the neutrons can affect the performance of ' 0B neutron detectors if

g Recall that muon capture rate is proportional to Z 4 , where Z is the atomic number.
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placed near lead shielding. One of the main drawbacks of lead or other high density

shielding is weight. If weight is an issue because the device must be transportable, heavy

shielding may not be acceptable.

Reduction of the radioactive nuclides present in the detector components and

surrounding materials can be done through material screening and purification. This is a

background reduction method, not necessarily rejection, and it is beyond the scope of this

work. An extensive review of radionuclide reduction was done by Leonard et al.

The report included results of direct gamma counting, alpha counting, neutron

activation analysis, and high-sensitivity mass spectrometry, and provided thorough

analysis of each technique.

The active methods of background rejection when this particular design of water

Cherenkov detector is considered are veto and coincidence techniques, energy cuts, and

PMT majority selection. The veto techniques are generally used to reduce the

background due to muons, especially if the detector is large, on the order of a ton of

active volume. The approach is to surround the detector with other detectors that will

function in an anticoincidence mode with the primary detector. For example, 2-cm thick

plastic scintillator paddles of various sizes were used in anticoincidence mode with a

0.64-ton liquid scintillator reactor antineutrino detector deployed at San Onofre Nuclear

Generating Station (SONGS.) 33

The next two methods described are directly applicable to the current design of

the detector: setting an energy threshold based on energy discrimination and

implementing PMT majority selection. With energy discrimination, only events with

energies above a certain threshold are recorded. This is particularly useful for the

detection of gamma rays from fission and photofission because they arrive with a

distribution of energies. As was shown in Figure 7-1, the gamma rays of interest can have

energies between 3 and 10 MeV, while the background gamma rays are mostly below 3
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MeV. Thus, realizing where to place an energy setting in the spectrum would allow

rejection of events produced by low-energy particles.

The second method is based on using the coincidence between PMT responses to

the incident particles. For example, only the events that trigger two PMTs or more are

recorded. This method is especially useful when dark currents of PMTs must be reduced.

Figure 7-5 illustrates changes in background count rates when majority is enforced. Note

that the low-energy part of the spectrum is significantly reduced when any two or more

(or three or more) PMTs are triggered in coincidence. As was discussed earlier, the

muons deposit such large amounts of energy to the detector, so they practically affect all

of the PMTs. This can be observed by looking at the muon peak which is unaffected by

majority settings.
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4510O Muon peak

10

C3

0-

10000 20000 30000 40000 50000 60000 70000 80000
ADC channel (A.V.)

Figure 7-5. Background rates in the Cherenkov tank with majority settings of 1, 2, and 3
PMTs.
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7.4.Final (simulated) event sample

The selection criteria for the analysis of reconstructed objects were designed

using Geant4 simulation. Using the Geant4 model first, we showed that the detector

calibration might be possible using 60Co, 232Th and 24 1AmBe sources. The calibration was

experimentally verified using the same sources. The calibration of the detector revealed

possible energy cutoffs.

The final study of the detector performance was done using 241AmBe source. The

event was both simulated in Geant4 and studied experimentally to determine the signal

efficiency and the capability of background rejection. 2 4 1AmBe source was used in order

to investigate the detector response to monoenergetic gamma rays as well as neutrons.

7.4.1. Simulation of 24 AmBe source

2 4 1AmBe is a neutron and gamma source emitted through the 9Be(a,n) 12C

reaction. The following three reactions 64 are relevant in an AmBe system:

1. 3C* -- C + n

2. l3 c* - 2C* + n - 2 C + n + y (4.43 MeV)

3. 3 C* 12C* + n 'Be + n + a -- n+3a

All three reactions result in a neutron emission, but only one of them produces a

gamma ray. Simplified schematic of 2 4 1AmBe source is illustrated in Figure 7-6.

Venkataraman et al.64 pointed out that the ratio of gamma to neutron emission is 0.75.

More recent experimental results of the gamma-neutron ratio measurements were

reported by Liu et al. 65 The recommended value was 0.575±4.8%. Their result is more

consistent with the value of 0.56±6% reported by Kamboj and Shahani.66 The results of
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Geant4 simulation reported in this Chapter are based on the ratio of 0.575 as reported by

Liu et al.6 s

Cherenkov detector
241Am/ 9Be source,

2.2 Me gamma

thermalization

4.43 MeV gamma

Figure 7-6. 24 AmBe source decay with neutron absorption on H in water.

The source was assumed to emit gamma rays and neutrons isotropically.

spectrum 67 of AmBe neutrons used in simulations is shown in Figure 7-7.

The

133



AmBe Neutron Spectrum AmBe
Entries 157
Mean 4.269
RMS 24610.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

Figure 7-7. 24 AmBe source neutron spectrum.

The simulation was initially performed for a bare source near the detector. The

results are presented in Figure 7-8. Two peaks were identified. The lower energy peak is

due to a neutron capture on hydrogen, which results in 2.2 MeV gamma emission. The

higher energy peak is due to 4.4 MeV gamma from 12C * de-excitation. In order to validate

the above observation, a series of cuts were applied along with additional simulations.

First, an energy cut was applied to the neutron capture in the tank. To study

possible peak deconvolution, the contribution of 2.2 MeV gamma rays to the signal was

excluded from the simulation. The results, shown in Figure 7-8, revealed that the signal

above 40 p.e. is mostly due to 4.4 MeV gamma rays. However, experimental
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deconvolution would be difficult due to partial contribution of 4.4 MeV gamma rays to

the 2.2 MeV peak.
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Figure 7-8. AmBe spectrum generated in Cherenkov detector. The signal due to 4.4 MeV
gamma rays is shown in red.

7.4.2. Simulation cases

With simulation, it is possible to deconvolute the two peaks by simulating gamma

ray and neutron interactions separately. It is difficult to do so experimentally. Thus,

shielding variations and their effect on pulse height spectrum were considered because of

their possible reproducibility in the lab environment.
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To further study potential energy cutoffs as well as peak deconvolution, the

simulation of the detector with an AmBe source included modeling of a source and

shielding materials as illustrated in Figure 7-9. The source is located 10 cm away from

the center of the face of the detector.

AmBe Source

10 cm away
from the

Polyethylene
shielding

Figure 7-9. 24 AmBe source and shielding near the detector.
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Three cases reproducible in an experimental environment were considered: (1)

bare source, (2) source surrounded by shielding on all sides except the side between the

source and the detector face (four sides), and source surrounded by polyethylene

shielding on all sides (five sides). In all cases, the source remained at the same position.

Case 1, with bare source, is intended to illustrate 4.4 MeV gamma ray interactions

with the detector. In addition, there will be neutrons thermalized in water and

subsequently absorbed by hydrogen. Thus, the spectrum is expected to include 2.2 MeV

gamma peak from hydrogen capture and 4.4 MeV gamma peak from the AmBe reaction

#2 as explained in Section 7.5.1.

Case 2, with shielding on all sides except between the source and the detector, is

intended to show attenuation of some of the 4.4 MeV gamma rays, but enhancement of

the neutron peak. This is possible because the neutrons that would be ordinarily lost from

the detector, as in case of the bare source, are thermalized and absorbed in polyethylene

shielding providing the detector with additional 2.2 MeV gamma rays. Note that the

neutrons incident on the face of the detector are not attenuated in polyethylene. Case 3,

with polyethylene on all sides, illustrates some enhancement of the neutron peak, but

mostly is there to attenuate the 4.4 MeV gamma rays.

The results of all three cases are shown in Figure 7-10. The variation of pulse

height spectra is due to the effect of polyethylene shielding on gamma ray and neutron

arrivals at the detector. The first peak is due to 2.2 MeV gamma rays from 2 H de-

excitation. The second peak is due to 4.4 MeV gamma rays.

The 4.4 MeV peak is decreased by about 40% when a 10-cm brick of

polyethylene is inserted between the source and the detector. This was checked by a

quick gamma ray attenuation calculation using Equation 7-1, where Io is the initial

intensity of the gamma source, I is the intensity of the source after the attenuator was

introduced, x is the thickness of the attenuator, and y is the attenuation coefficient of

polyethylene.
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-= e -l4
I0

Eq. 7-1

The attenuation coefficient of the polyethylene was calculated 68 to be 3.3 - 10-2

cm'. The calculated decrease in intensity of gamma rays was 25.6%. This compares well

with 23% value estimated using the Geant4 model.

No poly shielding
between the source
and detector

T

24'AmBe source
--- bare, 10 cm away

five sides
-- four sides

Bare source

-

III-Li. Iii I I
20 40 60 80

Poly shielding
between the source
and detector

100 120 140 160 180 200
Photoelectrons per incident gamma

Figure 7-10. Simulation results for AmBe source.

The neutron peak (2.2 MeV gamma peak) was enhanced when the polyethylene

moderator was introduced into the system. To study the neutron behavior in the detector

138

1400

1200

1000

800

600

400

200

.0



and the polyethylene, the sites of neutron capture were imaged using a ROOT script. The

neutron captures in the detector with a bare source near it are illustrated in Figure 7-11.
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Figure 7-11. Bare source, neutron captures. The dimensions are in cm. Left: face of the
detector. Right: captures along the depth of the tank.

The figure on the left shows the face of the detector that the neutrons are incident

on. The figure on the right shows the neutron captures along the depth of the tank. Recall

that the neutrons are emitted with a distribution of energies; thus, the capture sites are

scattered.
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Figure 7-12 illustrates the neutron captures in the water as well as in the

polyethylene shielding. Note that the intensity of neutron captures in the tank was not

changed much, but there are a lot of captures in the polyethylene.
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Figure 7-12. Neutron captures in the tank and in the polyethylene shielding placed on
four sides around the source. No polyethylene was placed between the tank and the

source.

Figure 7-13 is similar to Figure 7-12 and shows neutron captures in the water and

the polyethylene. The intensity of neutron captures in the tank decreased significantly due
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to the shielding between the tank and the source. The neutron peak is still higher than for

the bare source case because of the additional captures in the shielding.
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Figure 7-13. Neutron captures in the tank and in the polyethylene shielding placed on five
sides around the source. 10-cm polyethylene block was placed between the tank and the

source.
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7.4.3. Experimental verification of 2 4 AmBe spectrum

The experimental setup is illustrated in Figure 7-14. A 10 mCi 2AmBe source

was observed with the WCD under three different shielding conditions to produce a

significant attenuation of counts. The setup was described in detail in Sections 7.4.1 and

7.4.2. Three experimental tests were performed: (1) place bare 2 4 AmBe source 10 cm

away from the detector face, (2) surround the source on four sides with 10 cm of

polyethylene and leave one face open towards the detector, (3) place 10 cm of

polyethylene between the source and the detector effectively enclosing the source in all

directions with shielding.

The experiments were performed starting and ending with background

measurements. PMT settings are as described in Chapter 5. The results of experimental

measurements are plotted in Figure 7-15. All experimental measurements were taken for

a 10-minute period. Note, that the total number of counts is plotted as a function of ADC

bin. The measurements were corrected for the dead time of the detector. The muon peak

position, located around bin 9000, is the same for all measurements regardless of source.

This was expected since the energy deposited by a muon is much higher than of any

sources. Presence of the source is clearly visible even without subtracting the

background. However, the response of the detector to various polyethylene shielding

configurations requires subtracting the background.

The same experimental results after background subtraction are shown in Figure

7-16. The behavior of the detector is very similar to that predicted by the model. The two

peaks corresponding to the bare AmBe source predicted by the model are not as resolved

in the experimental results. Thus, the additional experiments with shielding allowed

discrimination between the 4.4 MeV and 2.2 MeV gamma rays based on neutron

properties.
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Figure 7-14. Experimental setup of AmBe source and the detector. Top: Shielding on
four sides. Bottom: shielding on five sides with polyethylene between the source and the

detector. The source is not shown.
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Figure 7-15. Experimental spectra obtained with AmBe source. The background is clearly distinct from the source spectra.



Figure 7-16. Background-subtracted AmBe spectra.
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Note that when the bare source is surrounded by the polyethylene shielding on

four sides, the neutron capture (2.2 MeV) peak is enhanced. The 4.4 MeV gamma ray

peak is not significantly affected. However, when a 10-cm polyethylene brick is inserted

between the source and the detector, there is a significant attenuation of 4.4 MeV gamma

rays. This is consistent with the prediction of the computational model.

One significant difference between the model and the experiment is the decrease

in 2.2 MeV peak for the "five side" case. The computational model showed almost no

decrease. This could be because the computational model overestimates the quality of

water or reflectivity of the detector walls. The overestimate can result in preservation of

more low-energy events as compared to the actual experiment.

7.4.4. Comparison of experimental and computational results

The comparison of the experimental data and the results of computational model

was not intended to be quantitative. The assumptions introduced into the model regarding

the water purity and reflectivity of the walls can result in a significant difference between

the pulse height spectra of experiment and simulation. In addition, simulation of the

pulse-processing chain was omitted including the internal amplification and digitization

of the PMT pulses. While the model accounts for the Compton scattering, statistical

distribution of the generated Cherenkov light, distribution of light absorption and

scattering, and statistical distribution of quantum efficiency of PMTs, the limitations of

the model will contribute to more resolved spectrum as compared to the experiment.

Thus, the discussion in this section is mostly qualitative.

The purpose of the simulation was to predict the behavior of the detector when

certain features of the AmBe source were suppressed or enhanced. Peak deconvolution of
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AmBe source is a difficult experimental task unless tagging is used. The features

predicted by the simulation were then searched for in the experimental spectra.

Figure 7-17 shows both the experimental spectrum of the bare AmBe source and

its computational prediction. The difference between the experimental results and

computational model can be seen in peak resolution. The resolution of the experimental

detector resulted in smeared peaks from 2.2 and 4.4 MeV gamma rays. However, the 2.2

MeV peak is very pronounced, even in the experimental spectrum. As was mentioned

before, the simulation predicts considerably better resolution than observed in the

experimental data.
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Figure 7-17. Comparison of bare AmBe source spectra obtained using Geant4 model and
experimental setup.
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The experimental spectra appear to be more smeared when compared to the

computational results. This is largely because the experimental spectra are obtained by

subtracting the background from the data, which contributes to the spectrum smearing. It

is possible to make the experimental spectrum more resolved by using tagging

techniques. Additionally, the computationally predicted spectrum can be "smeared" or

smoothed by using a smoothing convolution.

Smoothing is often used in imaging techniques and computer vision to reduce the

presence of noise. One of the more popular choices for the smoothing function is

Gaussian 69 because of its symmetry, smoothness, and ability to use standard deviation of

a filter window as a measure of its size. In particular, Gaussian works very well for two-

dimensional graphs (images) because it is a completely circularly symmetric operator that

can be decomposed into x and y components effectively reducing a complicated 2-D

convolution to a combination of I -D Gaussian convolutions.

The results of experiment and simulation are organized in histograms of equisized

bins. The advantage of using histograms for data representation is in simplicity of

representation and analysis. The histograms were converted into frequency polygons to

take advantage of smooth density function. The resulted frequency polygons were

smeared by a Gaussian smoothing function, in which each point was replaced by a

weighted average of its neighbors. The following convolution was used to represent the

smoothing function:

N

f(x) = p(xi)K(x - xi) Eq. 7-2
i=1

where p is the frequency polygon vector, N is the number of elements in the vector, and

K is a normalized Gaussian kernel function used to compute the coefficients for

Gaussian window expressed as:
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K(u) =f n/2 , <u < Eq.7-3

0, otherwise

where n is number of points in Gaussian window and a is a inverse proportionality

constant of Gaussian window n which was kept at the constant value of 2.5 h. Thus, by

varying n, we effectively vary Gaussian standard deviation a = n/a.

Figure 7-18 illustrates effects of smoothing on the shape of simulation results.

Two sizes of Gaussian filter (window) are shown: n=10 and n=20. Note that the 20-point

Gaussian window results in more smeared spectrum than 10-point window. Making the

smoothing parameter larger than 20 results in over-smoothing of the spectrum with two

peaks combined into a single one. As the smoothing kernel is applied to the simulation

results, the well-defined valley between the two peaks disappears, and the shape of the

spectrum tends to look more like the experimental.

One interesting feature revealed after spectrum smoothing was that both the peak

attributed to 2.2 MeV emitted after neutron absorption on hydrogen and the 4.4 MeV

peak decreased in order to fill the valley. The relative height of peaks in experimental and

simulation spectra do not match. Such discrepancy could be due to background

subtraction effects. Recall from Figure 7-16, Channel 200, that the 2.2 MeV peak is a

result of subtraction of two large numbers. Better agreement between the simulation and

experiment would be expected if the background rejection techniques discussed in

Section 7.3 were implemented.
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Figure 7-18. Comparison of experiment and simulation after smoothing function was
applied. The units of x-axis are arbitrary to show the comparison.

7.5. Summary of event reconstruction methodology

The event reconstruction was approached by coupling pre-experimental

simulations in Geant4 and post-experimental data processing using ROOT. The

computational model was successfully used to qualitatively predict possible detector

behavior in various experimental environments, and experimental data provided

verification of the predicted scenario. The quantitative agreement between the experiment

and the simulation was not found satisfactory, and implementation of background

rejection techniques is recommended. Refinement of detection methods along with
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improvements in the computational model upon obtaining experimental results with

minimum background contribution would allow for more quantitative predictions of

detector behavior. For more complex events, iteration between the experiment and

simulation will help to reconstruct the actual event.
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8. Conclusions and future work

Long-range active nuclear interrogation techniques require special detectors. The

focus of this research was on the development of non-traditional nuclear security detector

based on existing expertise with the Cherenkov high-energy particle detectors. We

showed that the Cherenkov-type counter has a potential to fulfill the requirements of such

novel detection systems for active interrogation applications. Cherenkov detectors have

the ability to work in intense low-energy background, for example near a linear

accelerator. Cherenkov detectors have inherent low energy sensitivity cutoff due to the

threshold nature of Cherenkov light. In many active interrogation systems using electron

accelerators, the bulk of the background from scattering is often below the threshold of

the Cherenkov detector. In addition, such detectors can use almost any medium as a

detector body, as long as light transparency is ensured and, if water-based such detectors

are inexpensive to manufacture, and a variety of shapes can be configured.

The main objective of this thesis was to design a large-size (meter scale) water-

based Cherenkov detector capable of detecting gamma rays and to demonstrate that the

detector is capable of particle energy discrimination. The detector was shown to

successfully detect gamma rays of energies above the Cherenkov threshold.

This Chapter reviews the research objectives, summarizes the work performed to

attain these objectives, and provides recommendations for future work.
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8.1.Research objectives

The purpose of this thesis was to investigate the principles of design and

applicability of the use of water-based Cherenkov detectors for gamma detection and

their use in an active interrogation system. The work focused on gamma interrogation of

SNM and photon-induced fission. The following objectives were fulfilled in this

research:

- create and optimize a computer model of the detector;

- design, manufacture and assemble an experimental detector;

- determine whether water Cherenkov detectors are suitable for gamma detection;

e demonstrate the ability of the detector to discriminate between gamma rays of

various energies.

A study of the detector performance using both computational and experimental

methods has been conducted.

8.2.Summary of work performed

8.2.1. Computational model

The computational model described in Chapter 4 was developed for the detector

optimization studies and prediction of the detector performance with various radiation

sources. The model is capable of triggering and tracking optical processes, which include

the generation of photons by scintillation process, Cherenkov photon production by a

charged particle, and transition radiation. The model incorporates the geometry of the

detector including the reflector, water absorption coefficients, optical boundaries, and
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quantum efficiencies of PMTs. All of the materials, including the aluminum shell,

polypropylene insert, and PMT windows, were modeled in detail featuring their

molecular compositions.

For neutron detection, toB lined tubes were incorporated into the overall design.

Detector design studies of the model were conducted mostly on the basis of placement of

'0 B tubes either within the Cherenkov volume or outside the water. The model predicted

no statistically significant difference between performances of the two designs. The

experimentally built detector follows simpler design with 10 B tubes outside the detection

volume.

The model also successfully predicted the detector behavior near various isotope

sources. Final verification was done using an 24 AmBe source. The double-peak feature

of the AmBe source was reproduced experimentally including the scenarios with neutron

peak enhancements.

8.2.2. Experimental detector

The experimental detector was designed based on the optimization studies

performed with the computational model. The detector is composed of a light-tight 1/8-

inch-thick aluminum body, a polypropylene insert for support of high efficiency (98.5%)

diffuse reflector (Gore RFP), six 8" PMTs supported by an aluminum plate, and DI-grade

filtered water.

One of the main problems with Cherenkov radiation is the limited intensity of the

emitted light. We used a material with high diffuse reflectivity to cover the inside walls

of the detector in order to preserve as much light as possible. In addition, we designed a

water-purifying loop to produce water of high-purity to avoid photon absorption by

impurities.
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The detector was able to detect a signal from 31Cs, although the statistics of the

signal was very poor. This was expected because the energy of the gamma rays emitted

by '37Cs (661 keV) is barely above the Cherenkov threshold. The efficiency of the

detector for 60Co (1.17, 1.33 MeV) radiation measurement was calculated to be about

30%. One of the significant limitations of the Cherenkov detector was found to be energy

resolution. The resolution of such detectors is quite poor. However, the radiation

expected from photofission does not have readily identifiable peaks in the 3 to 10 MeV

range and thus, consideration of resolution was not a major contributor to the detector

design.

Event reconstruction was an important part of the detector performance analysis.

The event reconstruction methods were developed by coupling pre-experimental

simulations in Geant4 and post-experimental data processing using ROOT. The

computational model was used to predict possible detector behavior in various radiation

environments, and experimental data provided verification of the predicted scenario.

8.3.Future work

One of the main limitations of the computational model was an approximation

used to model light absorption length in water. Because of the complexity of

experimental measurements, the actual absorption length was unknown, and an estimate

was used. However, as was shown in Chapter 4, the light absorption length can

significantly impact the performance of the detector. Therefore, it is recommended that

the light absorption coefficients of water estimated as close to the actual as possible.

Models of multiple sources have been incorporated into the detector model. A

very limited model of background, which included 2.6 MeV gamma rays due to 21sTI

emitted at random angles relative to the detector, was also incorporated. The model can
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be improved by including more details of low-energy terrestrial radiation as well as

cosmic rays.

The detector design and analysis was done to demonstrate that it is possible to use

water-based Cherenkov counters to detect and characterize gamma rays. Several light

collection enhancements were employed in the final design, however, there are more

ways to improve the detector performance and potentially resolution. One of the possible

improvements would be using the directionality property of Cherenkov light. This could

potentially improve signal-to-noise ratio of the detector. In an active interrogation

application, a target location is directionally predicted, and gamma ray energy of interest

is between 3 and 10 MeV. In this range, forward Compton scattering is dominant

allowing for directionality exploration. As an alternative to directional methods of

background rejection, wavelength-shifting (WLS) dopants can be used. Cherenkov light

emission is maximized in the ultraviolet region, which is outside of visible range of most

PMTs. Because of the absence of self-absorption of the light in the detector medium,

WLS chemicals can enhance light in the PMT-sensitive region. Even though using WLS

might be faster path to background rejection, all of directional properties of Cherenkov

light would be lost. It must be noted here that there is a difference between development

of a total absorption counter (for example, for photon spectroscopy) and a directional

counter (for enhanced background rejection) because multiple electron scattering will

deteriorate directionality properties.

Current analysis was based on collecting energy information in the detector and

using it to reconstruct an event. Another characteristic of the signal - timing information

relative to the interrogating beam pulse - was not used in the current analysis. Time and

energy information about the radiation arriving at the detector after the target irradiation

can provide additional method for background rejection. Fission, whether induced by

gamma or neutron, results in emission of prompt (within 10-" seconds) and delayed

radiation. Prompt neutrons are emitted in higher numbers and with higher energies than

delayed neutrons. On the other hand, a unique signature of SNM is emission of delayed
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gammas and neutrons after fission. Such delayed gammas are product of beta decay of

many short-lived fission products and generally have high energies making them

distinguishable from background. Delayed neutrons are generated in low numbers, but

their quantity is proportional to the amount of actinides in the target. Measuring both

prompt and delayed radiation as well as neutrons and gammas could potentially allow for

a spectroscopic long-range active interrogation detector.

Consider the following time scale of a fission process. A photon beam is fired in

the direction of a target. It takes about 10-15 seconds for a fission or photofission process

to take place. The nucleus is split into two fragments. Two or three prompt neutrons are

emitted 10-20 seconds later, and eight gammas are emitted 10-17 seconds after the split.

Temporal behavior of delayed neutrons (generally referred to as six groups based on their

decay constant) depends on a nuclide that underwent fission. Six to eight delayed

gammas are emitted seconds and minutes after the nucleus split with total energy of 6-8

MeV. Unique gamma ray signatures exist for each nuclide of special nuclear material.

This simplified example illustrates how the problem of acquiring time and energy

information in Cherenkov detectors can be approached using the time structure of the

signals.

8.4.Data acquisition system

The results reported in this thesis have been obtained using a QDC (gated

integrator) data acquisition system. As a part of this thesis work, the data acquisition

system was reconfigured from the QDC analog approach to a fast, waveform digitizing

ADC. In this system, the analog waveform is digitized at 4 ns intervals and an internal

FPGA is used to calculate the total charge. More testing of the ADC system is necessary
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including testing of effects of various integrating window widths, threshold parameters,

and multiplicity.

Using the fast ADC as a data acquisition system is recommended because of the

simplified DAQ as well as improvement of data collection, however it must be noted here

that the firmware for ADC systems are generally more complex than for QDC.
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Appendix A. Ideal case based on Tamm-Frank derivation

The goal is to derive expression for Cherenkov radiation in terms of total energy

radiated per unit path length by a charged particle. These derivations are based on Frank-

Tamm theory, and the references were provided in Chapter 3.

The assumptions for these derivations are outlines below:

- Particle with charge e moving in a straight line with a constant velocity v

- Infinite, isotropic and transparent dielectric

- Properties of the medium are described by dielectric constant only (E # 1) or

equivalently by refractive coefficient n(o) =

- Magnetic permeability p is taken as I

A.1. Dispersive medium, dielectric constant and magnetic permeability

One of the main assumptions of this derivation is that the magnetic permeability

is a constant, while the dielectric constant is a function of photon frequency. If the

medium is not dispersive, both the dielectric constant and magnetic permeability of such

medium are constant and relate electric and magnetic induction to the electric and
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magnetic fields, respectively. The assumption that the magnetic permeability is a constant

is valid in the current derivation because water is a non-magnetic medium. However, the

dielectric constant in water, which is a dispersive medium, is a function of

electromagnetic wave frequency.

A.2. Maxwell's equations

The electromagnetic field generated by such a particle can be described using

Maxwell's equations A-1:

-~ - 14w
V .E =-_p

VxE+ -=0 Eq. A-
V-H=0

-.- 47r 18a0
VxH= -j+-

c cat

The first equation, known as Gauss' law for E, describes electric flux through a

surface which is proportional to the enclosed charge. The second equation is known as

Faraday's law describing how changing magnetic flux produces electric field. The third

equation is Gauss's law for magnetism, H, stating that magnetic monopoles do not exist.

The last equation is Ampere-Maxwell law describing magnetic field produced by electric

current and changing electric field. p and ' are the free charge and the current densities

created by the passing charged particle.
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We can simplify Equation A-i by rewriting it in terms of vector potential. The

magnetic vector potential A is a three-dimensional polar vector whose curl is the

magnetic field. To describe electric field, both magnetic potential and scalar potential are

required. Equation A-2 describes magnetic (top 2) and electric (bottom) fields in terms of

potential. The definition of E and H7 satisfies the two homogeneous Maxwell's equations.

... 1 .. -_
H = -VxA

Eq. A-2

E = -V-V-
C at

The dynamic behavior of A and rp is determined by inhomogeneous Maxwell's

equations. We can rewrite inhomogeneous Maxwell's equations in terms of potentials as:

EM a2 A a9 41rtt
V2A -V V -A + -- = --

c2 at 2  
c at) c Eq. A-3

1 a47T

C at E

Additionally, to ensure that the above magnetic vector potential is uniquely

defined (recall that additional curl-free components can be added to the magnetic

potential without changing the observed magnetic field), we set the vector potential to

satisfy Lorenz gauge condition written as Equation A-4:

-* - EP &(P
V - A + - = 0 Eq. A-4

C at
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Using the Lorenz gauge condition, we can uncouple inhomogeneous Maxwell's

equations leaving two independent wave equations, with sources:

V2 A - - --- = - - -jrf
c 2 at 2  C Eq. A-5
epM8 2 9 4,Eq

2 ft e 7V 2 P at2  E

Equations A-5 combined with Lorentz gauge condition form complete set of

equations equivalent to Maxwell's equations. The equations A-5 are considered to be the

starting point of almost any derivation related to Cherenkov phenomenon and, more

generally, problems treating a charge moving through a medium.

A.3. Moving point charge and its fields

The simple case of current density and free charge moving along the z-axis can be

describes as:

ix = jy = 0
jz= evS(x)S(y)(z -vt) Eq. A-8
p= e6(x)6(y)S(z - vt)

The moving charge uniformly moving in an infinite and isotropic medium emits

electromagnetic field, which is stationary in the reference frame of the point charge. The
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system of equations A-5 must satisfy the plane electromagnetic wave equation emitted by

the charge, where k is the wave vector:

Eq. A-9e iI<(=-*t)

The surfaces of the emitted electromagnetic waves are perpendicular to k. The

electromagnetic waves propagate through the medium with velocity V'.

Since the system of equations A-5 is homogeneous everywhere in time-space

except at 2 = it (see Eq. A-8), we can rewrite A-5 as:

IEV2A a = 0
c2 Ot2) Eq. A-10

72 2

Substituting the wave equation A-9 into the system, we get a system of equations A-I I.

Note that the dielectric constant and the magnetic permeability are functions of frequency

-4k1.

k2

.(k) (k2

)2 = 0

2 = 0

c*

Eq. A-lI- y('kV)E(i)_t(kvg)e,[v)
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From equations A- 11, we can deduce that the following relations are possible:

yt # 0

(0>)2
2= p(w) 

c(w) = 0

Eq. A-12a

Eq. A-12b

Eq. A-12c

Electromagnetic waves that satisfy the condition A-12b are called Cherenkov waves.

Recognizing that the dot product can be written as kv = kvcos6, we can rewrite Eq. A-

12b as:

k 2 )(kvcoso)
2  C2

2 = Ji (0j) 2 - ==> (cos6) 2 = 2 Eq. A-13

Recall from the discussion in Section A.] that the magnetic permeability is constant and

n(w) = 8E(w). Rewriting Eq. A-13 in terms of refractive coefficient of the medium:

1
cos6 = Eq. A-14

Where f# is the ratio of particle velocity v to the speed of light in vacuum c.
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Appendix B. Neutron detection using Cherenkov counters

Since neutron particles are also uncharged, Cherenkov light must be produced by

indirect interaction with charged particles. A neutron interaction with an electron is

impossible. However, a neutron capture on a nucleus with high-capture cross section and

subsequent decay by gamma emission can be used to detect neutron presence. The

process of neutron detection is complicated by a necessary neutron capture and emission

of a single gamma ray or a cascade of gamma rays and subsequent Compton interaction

of such gamma rays with electrons. In neutron detection, the directionality is completely

lost because of neutron capture and isotropic gamma release.

One of the most recent developments of neutron detection was addition of high-

capture cross section dopings into the detector medium, for example Gd salts. GdC 3 is

used because of large neutron capture cross section of the Gd isotopes (49,000 barns for

natural Gd). When a neutron is captured on Gd nucleus, a gamma cascade with total

energy 7.9 MeV for 157 Gd and 8.5 MeV for 155Gd is released. Neutron detection is

achieved through Cherenkov light generated by Compton scatter by such gamma-ray

cascades following neutron capture on Gd.

B.1 Gd modeling in Geant4: comparing Geant4, Dicebox and ENDF

libraries
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When a neutron is captured on Gadolinium nucleus, a gamma cascade with total

energy 7.9 MeV for 157Gd and 8.5 MeV for 155Gd is released. Because the neutron

capture is characterized by such gamma cascades, accurate modeling of Gd de-excitation

gamma cascades is essential in simulation of Gd-loaded neutron detector. Currently,

Geant4.9.3 does not properly reproduce Gd excited nucleus decay. Moreover,

occasionally Geant4 violates the conservation of energy of the excited nucleus decay.

DICEBOX, a Monte Carlo based code, generates y-ray cascades initiating at the neutron

capturing state and tenninating at the ground state following the rules of the extreme

statistical model.

Figure B-1 compares the gamma cascades generated in Geant4 and DICEBOX.

Note that obvious discrepancies between the two codes in the discrete gamma region,

especially for 7.9 MeV gamma release. The figure also contains an extra 2.2 MeV line

due to capture on hydrogen but this line is an artifact of the simulation.

Cascade energies generated by DICEBOX were introduced into GEANT4 model

to compare computational results with experimental. In order to model the gamma

cascade following a neutron capture on Gd, the following methodology was applied.

First, a flux of neutrons incident on the detector was simulated. The locations and times

of neutron absorption were recorded and stored. The Geant4 run was terminated. Second,
the absorption location and time data set was supplied with gamma and electron cascade

details obtained from DICEBOX. The Geant4 run was restarted with newly "defined"

particles - gammas and electrons from a cascade. The simulation continued normally

from this point on. Such approach allowed us to use more reliable DICEBOX data to

simulate neutron absorption on Gd and subsequent gamma cascade release.
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Figure B-1. Comparison of Geant4 and DICEBOX gamma cascade generation following
neutron captures on Gd.
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Appendix C. Examples of Geant4 and ROOT

C.1. Detector geometry and construction

This portion of the code provides the arrays used in the model to simulate Cherenkov

photon energies, quantum efficiency of the PMTs, refractive coefficient of the water, and light

absorption length in the water. The last three vectors are functions of the declared photon

energies.

OTNSimDetectorConstruction::OTNSimDetectorConstruction()
{ materials = new OTNSimMaterials();

numEnergies = 32;

PhotonEnergy[ 0]
PhotonEnergy[1]
PhotonEnergy[2]
PhotonEnergy[3]
PhotonEnergy[4]

PhotonEnergy[5]
PhotonEnergy[6]
PhotonEnergy[7]
PhotonEnergy[8]
PhotonEnergy[9]
PhotonEnergy[10
PhotonEnergy[ 11
PhotonEnergy[12
PhotonEnergy[13
PhotonEnergy[14
PhotonEnergy[15

.034*eV;

.068*eV;

.103*eV;

.139*eV;

.177*eV;

.216*eV;

.256*eV;

.298*eV;

.341*eV;

.386*eV;
2. 433*eV;
2. 481*eV;
2.532*eV;
2. 585*eV;
2.640*eV;
2. 697*eV;
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PMTQEarray[28] = 0.19;

PMTQEarray[29] = 0.18;

PMTQEarray[30] = 0.08;

PMTQEarray[31] = 0.0;

//' Water and Doped Water Material Properties

G4double refractiveIndexWater[nEntries] = {1.3435, 1.344, 1.3445,

1.345, 1.3455, 1.346, 1.3465, 1.347, 1.3475, 1.348,

1.3485, 1.3492, 1.35, 1.3505, 1.351,

1.3518, 1.3522, 1.3530, 1.3535, 1.354,

1.3545, 1.355, 1.3555, 1.356, 1.3568,

1.3572, 1.358, 1.3585, 1.359, 1.3595,

1.36, 1.3608};

G4double absorptionWater[nEntries] =

{3.448*m, 4.082*m, 6.329*m, 9.174*m, 12.346*m,

13.889*m, 15.152*m, 17.241*m, 18.868*m, 20.000*m,

26.316*m, 35.714*m, 45.455*m, 47.619*m, 52.632*m,

52.632*m, 55.556*m, 52.632*m, 52.632*m, 47.619*m,

45.455*m, 41.667*m, 37.037*m, 33.333*m, 30.000*m,

28.500*m, 27.000*m, 24.500*m, 22.000*m, 19.500*m,

17.500*m, 14.500*m};

The following list represents the materials incorporated into the code. Compositions of

some materials that are crucial for the detector model are also provided.

OTNSimMaterials: :-OTNSimMaterials ()
{
delete tyvek;
delete water;
delete acrylic;
delete vacuum;
delete quartz;
delete polyethylene;
delete gadolinium;
dele te blackAcrylic;
deIete air;
delete mumetal;
de.ee ss304;
delete teflon;
dele e a16061;
cIelete bf3;
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de:lete dopedWater;

}

void OTNSimMaterials::CreateMaterials()

/ Ma terials

tyvek = new G4Material(
tyvek->AddElement( natH,
tyvek->AddElement( natC,

"Yve"0.96*g/cm3,2);
2);

1);

/ BF3 from
http: //encyclopedia.airliquide.com/encyclopedia.asp?GasID=68
bf3 = n"ew G4Material( "bf3",2.84*kg/m3,2);
bf3->AddElement( natB, 1);
bf3->AddElement( natF, 3);

SS304 http://www.azom.com/Detailis.asp?ArticleID=965
ss304 = new G4Material( "ss304",8000*kg/m3,9);
ss304->AddElement(
ss304->AddElement(
ss304->AddElement(
ss304->AddElement(
ss304->AddElement(
ss304->AddElement(
ss304->AddElement(
ss304->AddElement(
ss304->AddElement(

natFe,
natC,
natMn,
natSi,
natP,
natS,
natCr,
natNi,
natN,

66.5*perCent);
0.08*perCent);
2.00*perCent);
0.75*perCent);
0.045*perCent);
0.03*perCent);
20.0*perCent);
10.5*perCent);
0.10*perCent);

/ 6061 Aal Compostion provded by Dave Jon
a16061= new G4Material( "l6061,2.7*g/cm3,9);
al6061->AddElement(
al6061->AddElement(
al606l->AddElement(
al6061->AddElement(
al6061->AddElement(
al6061->AddElement(
al6061->AddElement(
al6061->AddElement(
al6061->AddElement(

natAl,
natSi,
natFe,

natMn,
natMg,
natCr,
natCu,
natZn,
natTi,

air = new G4Material(
air->AddElement( natN,
air->AddElement( natO,

96.10*perCent);
0.80*perCent);
0.70*perCent);
0.15*perCent);
0.15*perCent);
1.20*perCent);
0.40*perCent);
0.35*perCent);
0.15*perCent);

air",1.184*kg/m3,2);
80.0*perCent);
20.0*perCent);

polyethylene = new G4Material(
polyethylene->AddElement( natC,
polyethylene->AddElement( natH,

"polyethvene", 0.94*g/cm3, 2
1 );
2 );
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vacuum = new G4Material( vacuum, 1., 1.008*g/mole, 1.e-
25*g/cm3,kStateGas, 273*kelvin, 3.8e-18*pascal );

quartz = new G4Material( "quartz", 2.65*g/cm3, 2 );

quartz->AddElement( natSi, 1 );

quartz->AddElement( natO, 2 );

water = new G4Material(
water->AddElement( natH,

water->AddElement( natO,

"water", 1*g/cm3, 2 );
2 );

1 );

gadolinium = G4NistManager::Instance()-
>FindOrBuildMaterial( G4 ;

dopedWater = new G4Material("'dopedWater",1.0*g/cm3,2);
dopedWater->AddMaterial (water, 99. 9*perCent);

dopedWater->AddMaterial(gadolinium, 0.1*perCent);

}

C.2. Optical photons

The following code snippet shows how most photons that have energies other than that of

interest can be "killed" to save on computational time. The photons must satisfy three conditions

in order to be accounted for: (1) be optical photons with energies between 1.0 eV and 4.5 eV, be

newly born (created by a charged particle), be created in water Cherenkov volume. The code is

part of user-defined "Stacking Action."

if (partic leName== "optic alphot:on" && currentTrack-
>GetTrackLength()==0 && currentVolumeName =="Water")

{
G4double KE = currentTrack->GetKineticEnergy(;
if(KE>4.5*eV && KE<1.0*eV) status = fKill;
else {
RunAction->IncrCerenkovPhotonCreated ();
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}

C.3. Sample ROOT output analysis code

{

gStyle->SetOptStat(0);
gStyle->SetFrameFillColor( 19);
gStyle->SetOptLogy(1);

/GRAB SPECTRUM HISTOGRAMS

OPF0IN T HISTOGRAMS
u of re,,flectivtyL effects

TFile
f m2 0_70 ( i " -/Apia tion S f" gwork/MIT,.1 Th3 /myOT-"N im2cm root ")
TTree * m20_70_spectrum = (TTree *)fm20_70.Get("eventtree");

TFile

fm20_80 ( "/Appliaions/gjwork/MT/Th232/myOTNSim_25cm.root" );
TTree * m20 8 O_spectrum = (TTree *)fm20_80.Get("event tree" ;

TFile
fm20 _90 ( " /Ap cat i-ons /g4work/MIT /Tnh232 /myTNSim 50cm root") ;
TTree * m20_90_spectrum = (TTree *)fm20_90. Get(".Eent.

TFile

fm20_98 ( "/Application /giwork/MIT /T2 32/myOTNSim 75cm. root");
TTree * m20_98_spectrum = (TTree *)fm20_98.Get("evenat tree"e );

Int_t numPmtHits;

TH1F * m20_70_plot = new TH1F ('"20 70_p1 " "232Th ,80, ,, 0.
m20_70_spectrum -> SetBranchAddress("nrmPmtHits",&numPmtHits);

i=0; i<m20_70 spectrum ->GetEntries(); i++){
m20_70_spectrum ->GetEntry(i);
m20_70_plot->Fill(numPmtHits);

}
TH1F * m20_80_plot = new TH1F

080 plot","m2_O 80",80.,1.,80.);
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m20_80_spectrum -> SetBranchAddress( " num-mtH it s " ',&numPmtHits);
for(int i=0; i<m20_80_spectrum ->GetEntries(; i++){

m20_80_spectrum ->GetEntry(i);
m20_8Oplot->Fill(numPmtHits);

}
TH1F * m20_90_plot = new THiF

( "m 20_90 plo ".. "m 90 ", 80., 1. ,80 .) ;
m20_90_spectrum -> SetBranchAddress( "mPmtHits",&numPmtHits);

or(int. i=0; i<m20_90_spectrum ->GetEntries(; i++){
m20_90_spectrum ->GetEntry(i);

m20_9Oplot->Fill(numPmtHits);

}
TH1F * m20 98 plot = new TH1F

("m 2 0_98_plot ", "m 0_98",,80.j,1.,80 .) ;
m20_98_spectrum -> SetBranchAddress("nimPtitsti",&numPmtHits);
for(int i=0; i<m20_98_spectrum ->GetEntries(); i++){

m20_98_spectrum ->GetEntry(i);
m20_98_plot->Fill(numPmtHits);

}

DRAW K NPCTU HISTJORGRAM S

TCanvas * cl new TCanvas;

cl -> SetBorderMode(0);

cl -> SetFillColor(kWhite);

m20 70 plot -> GetXaxis() -> SetTitle( of Psc t

m20 70 plot -> GetYaxis() -> SetTitle( 32Th, 100,
histori.es");
m20 70 plot -> SetLineColor(1);
m20_70_plot ->Draw(;

m20 80 plot -> SetLineColor(2);
m20_80_plot ->Draw("same");

m20 90 plot -> SetLineColor(3);
m20_90_plot ->Draw("same");

m20 98 plot -> SetLineColor(4);
m20_98_plot ->Draw("same");

legl = new TLegend(0.6,0.7,0.89,0.89); coordinates are
fractions of pad dimenszions
leg1->AddEntry(m20_70_plot,"2 ","l");
leg1->AddEntry(m20_80_plot,"25 ,"1");
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legl->AddEntry(m20_90_plot,"0 c ); // " eans

legl->AddEntry(m20_98_plot, " ti75 c );

legl->Draw();

legl->SetHeader( "{232 }Th source");
legl->Draw();

Float_t summ20_70 = 0;
Floatt sum_m20_80 = 0;
Floatt sum_m20_90 = 0;
Float t sum m20_98 = 0;

TH1F *m20_70_int = new TH1F("m2 20 int"Effect of cuts>
c photon collection",80,1., 80.);

TH1F *m20_80_int = new TH1F("m20_80 int4,"h. binsi
nte A",80. ,.,80. );

TH1F *m20 90 int = new TH1F("m20 90 int""hl bins
in-tegral", 80.,l., 80.)

TH1F *m20_98_int = new TH1F("m20_98_ int " , "hl bins

Sabov 20 P.E
f.or (Int -t i=1;i<=80;i++){
summ20_70 += m20_70_plot->GetBinContent(i);
m20_70_int->SetBinContent(i,sum m20_70);
summ20_80 += m20_80_plot->GetBinContent(i);
m20_80_int->SetBinContent(i,sum m20_80);
summ20_90 += m20_90_plot->GetBinContent(i);
m20_90_int->SetBinContent(i,sum m20_90);
summ20_98 += m20_98_plot->GetBinContent(i);
m20_98_int->SetBinContent(i,sum-m20_98);

}
cout<<"integrated vatle of counts 70%refl 20 mwa

<< m20 70 int->GetBinContent(80)<<endl;
cout<<"ntegrated vs lU of counts 80% 2mwteri
"<< m20_80_int->GetBinContent(80)<<endl;
cout<< integrated value of counts 90% refl, 20 mii waLer is
"<< m20_90_int->GetBinContent(80)<<endl;
cout<< itegrated value of counts 98% refl, 20 m water iS
"<< m2098int->GetBinContent(80)<<endl;

TCanvas * c2 = new TCanvas;
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c2 -> SetBorderMode(0);
c2 -> SetFillColor(kWhite);

m20O70_int -> GetXaxis() -> SetTitle ( "ntg tedrnmbero

m20_70_int
m20_70_int
m20_70_int

-> GetYaxis() -> SetTitle( "Interedau")
-> SetLineColor(6);
-> Draw();

m20_70_int -> SetLineColor(l);
m20_70_int ->Draw("same");

m20_80_int -> SetLineColor(2);
m20_80_int ->Draw("same");

m20 90 int -> SetLineColor(3);
m20_90_int ->Draw(a);

m20_98_int -> SetLineColor(4);
m20_98_int ->Draw("same");

}
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List of acronyms and abbreviations

ADC Analog-to-Digital Converter

DAQ Data Acquisition

DAS Data Acquisition System

dps Disintegrations per second

FIFO Fan-In/Fan-Out

FPGA Field Programmable Gate Array

FWHM Full Width Half Maximum

MCA Multichannel analyser

p.e. Photoelectron

PMT Photomultiplier Tube

QDC Charge-to-Digital Conversion

QE Quantum efficiency
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WFD Waveform Digitizer

WLS Wavelength shifters

190


