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Abstract

An electron beam transport system was designed for use in the Bremsstrahlung Beam

Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose
of this electron transport system was to provide for electron beam diagnostics and

energy selection while also positioning the electron beam on a target down range.

The transport system and its component magnets were designed using the TRANS-

PORT, Poisson, and Opera 3D codes, as well as several custom Python scripts. By

implementing several methods in each part of the design process, it was possible to

design the electron transport system to the exact specifications of the ISIS electron

beam. This careful and iterative design process was documented in such a way to

facilitate future beam transport design both at the MIT Plasma Science and Fusion

center and elsewhere.
This design process resulted in a beam transport system composed of three iron-

dominated resistive-coil electromagnets. The system was designed for beam momen-

tum up to 60 MeV/c and emittance of order 20 mm-mrad. Through magnetic field

simulation and beam transport in 3D, a ID matrix code which tracks individual par-

ticles was developed. This code agreed with more detailed beam calculations and

should allow for rapid beam simulation during system testing and operation.

Thesis Supervisor: Timothy A Antaya
Title: Group Leader, MIT PSFC Technology & Engineering

Thesis Reader: Jeffrey P Freidberg
Title: Korea Electric Power Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

1.1 Motivation

In a world where the number of nuclear weapons states is increasing and the sheer

number of nuclear warheads prevents the international community from accounting

for all of these warheads, the use of nuclear weapons by rogue states or terrorist

organizations has become an important concern for US national security(Bunn and

Wier, 2006; Don Daigler, 2010; Hecker, 2006; Jenkins, 2006). Preventing a clandes-

tine nuclear attack on the United States will involve improving current international

safeguards against the theft of nuclear materials and nuclear weapons, but as this

happens it will also be important to prevent any materials which have already been

stolen from being employed against the United States (Hecker, 2006; Kramer, 2008).

To prevent the movement of nuclear weapons and materials across its borders, the

US will need improved detection systems.

The Defense Threat Reduction Agency (DTRA) is currently seeking ways to de-

tect concealed strategic nuclear material (SNM) from a distance up to 100 m. The

Integrated Standoff Interrogation System (ISIS) has been designed in order to meet

this challenge. Since the radiation which results from the nuclear decay of most SNM

can be easily shielded from detection, the ISIS design uses an active detection system,

similar to those outlined in B. Blackburn et al. (2006, 2007); James L Jones et al.

(2007). In an active system, a beam of photons or particles is used to induce nuclear

19



fission in the target material. Detection of the material occurs when delayed photons

and neutrons, the signatures of nuclear fission, are detected by the system.

1.2 ISIS System Overview

The basic concept of the ISIS SNM detection system is to use a high energy photon

beam in order to induce photonuclear fission in concealed special nuclear material.

Once this fission is induced, detectors will be employed to collect signals generated

by the fission reaction. As outlined in figure 1-1 below, the photon beam is generated

by stopping a high-energy electron beam. A linear accelerator (LINAC) is used to

accelerate electrons from 10 to 60 MeV. These electrons are then transported to an

assembly of converter plates where the electrons are stopped and their kinetic energy

is converted through collisions into heat in the plates and Bremsstrahlung radiation.

Bremsstrahlung radiation is a term which describes the radiation generated by the

acceleration of charged particles as they pass by atoms. A thick collimator after

the converter plates shapes the secondary photon (Bremsstrahlung) beam for long

distance transport. The portion of the total system from the end of the LINAC

through the converter/collimator assembly is known as the Bremsstrahlung Beam

Generation System.

LINAC BBGS SNM

'Fransport ':nvertei

Detectors

Figure 1-1: Basic system diagram of ISIS.

In order for the ISIS Bremsstrahlung Beam Generation System (BBGS) to suc-

20



ceed, it requires a robust and compact electron beam transport system to deliver the

electron beam at precise energies from a LINAC to the converter/collimator. The

focus of this master's thesis project was to design, and time permitting, assemble and

verify an electron beam transport system for ISIS which meets the design require-

ments set by Raytheon project managers. This was an iterative design process in

which each design iteration attempted to meet the system requirements while mini-

mizing the size and power requirements of the components.

1.3 Thesis Objectives

The primary objective of this thesis project was as follows:

To design an electron transport system for the ISIS BBGS which utilizes

the full electron beam and obtains a final photo spot size no greater than 1

m at a distance of 100 m from the collimator, while also providing photon

beam steering capability of ±5*(t15*) vertical(horizontal).

Secondary objectives included:

9 Assemble the electron transport system for on-site testing and verification.

e Verify the transport system design using an equivalent momentum charged par-

ticle beam available at MIT facilities.

In addition to these educational objectives, it was important to provide detailed

documentation of the electron transport system's physical specifications in order to

facilitate its incorporation into the ISIS system design.

1.4 Report Organization

Chapter 2 provides an overview of Bremsstrahlung Beam Generation System including

final design specifications and layout.

Chapter 3 includes a detailed review of the system-level beam transport design, com-

plete with both 1D and full 3D beam simulations.
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Chapter 4 details the magnetic and physical design of each component magnet.

Chapter 5 describes the calculations which supported the power system and water

cooling design for the BBGS.

Chapter 6 discusses a work plan to quantitatively characterize the BBGS system

performance using an electron cyclotron resonance ion source.

Chapter 7 presents conclusions of this work as well as insights for future work in the

field.
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Chapter 2

ISIS BBGS Overview

This chapter provides an overview of the final design of the Bremsstrahlung Beam

Generation System for ISIS. This design is a result of many iterations and detailed

analyses which will be described in more depth in the chapters to follow. The purpose

of this chapter is to acquaint the reader with both the components of the BBGS and

the constraints which guided the design process.

2.1 Design Constraints

Unlike many beam transport systems, the ISIS BBGS is a part of a mobile and de-

ployable system which is assembled in a conventional ISO container. The requirement

for portability played an important role in the design process since it put physical

constraints on the size and weight of the BBGS.

Figure 2-1 shows a simplified diagram of the spaced allotted for the BBGS. The

BBGS must fit into the 1.5 by 2.0 by 1.5 m area while also maintaining weight,

power, and cooling requirements which can be supported by the portable systems

within the ISO container. Considerations of these constraints were important to the

BBGS design as they limited the size and number of beam-line components available

to shape the electron beam. For example, designs for a focusing solenoid as well as a

beam alignment magnet were removed from the BBGS due to concerns about system

size.
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Figure 2-1: ISO container for ISIS with the BBGS area highlighted.

Although the BBGS is responsible for shaping the final electron and photon beam

for ISIS, the input electron beam does not fall under the domain of the BBGS design.

The electron beam is formed by a linear accelerator designed by Advanced Energy

Systems (AES), and hence the electron beam was a constraint which drove much of

the BBGS layout and component design. To aid in the BBGS design, AES provided

the results of electron beam simulations for three selected energies. These results

were provided as electron position and momentum data evaluated at the exit of the

LINAC. The operating parameters and an example beam cross section as measured

at the exit of the LINAC are described in table 2.1 and figure 2-2, respectively.

Table 2.1: Beam Properties of AES Parmela Simulated Beam. Dimensions in cm,
angles in mrad.

(T) MeV orT(%) Xrms Xmax Yrms Yma % > rms x'rms Yrms

60.66 0.21 0.136 0.489 0.137 0.487 43.3 0.483 0.486
30.57 0.23 0.159 0.510 0.161 0.511 46.9 0.669 0.675
6.178 0.38 0.167 0.509 0.168 0.511 51.7 0.420 0.419

The percentage of the beam outside the rms radius coupled with the relatively

large variance in beam energy (oT) presented a challenge for shaping and focusing the

electron beam onto the converter plate assembly. This task needed to be completed

with minimal beam loss so as to reduce the amount of unshielded radiation generated

within the container. The negative effects of excess radiation in the container could

include degrading equipment stability and also limiting maintenance access.
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Figure 2-2: Beam cross section and energy histogram for the 60.7 MeV beam from
AES Parmela simulations of the LINAC.

2.2 System Specifications

Diagrams of the final design for the Bremsstrahlung Beam Generation System are

provided in figures 2-3 and 2-4. The components labeled are as follows: beam defining

slits (1), straight-through beam port (3), 900 dipole magnet (2), steering magnets

(4), converter assembly (5), and photon collimator (6). The detailed designs for

each system component are elaborated in the following section. However, a basic

description of the purpose for each component is described below.

The object (la) and image (1b) slits are included in the BBGS to provide for

diagnostic operation. By closing each slit aperture to a fine hole, it will be possible

to perform two main functions: (a) reduce the beam transverse divergence and (b)

calibrate the dipole to the appropriate beam energy.

It was important to include a pass-through (3) in the dipole magnet for more

than one reason. The pass through will primarily be used as a diagnostic port for

the electron beam directly from the linear accelerator. In addition, in the event of

an emergency during full-power operation, the beam will be fully stopped in a beam

dump located at the end of the pass-through. This is particularly important should

the power supply for the dipole magnet malfunction.
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Figure 2-3: ISIS BBGS system layout courtesy T. Bistany. la(b): beam ob-
ject(image) slits, 2: 900 dipole, 3: straight-through beam port, 4: steering magnets,
5: converter assembly, 6: photon collimator
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The 90* dipole (2) was included in the system based on lessons learned from a

previous active interrogation experiment to ISIS where the beam energy was not well

known (James L Jones et al., 2007). The dipole combined with the closed beam slits

(to fix the bending radius) sets the momentum of transmitted particles, which allows

for electron beam energy selection. The dipole also provides both radial and axial

beam focusing.

Independent vertical and horizontal steering magnets (4) were included in the de-

sign in order to meet the requirements for ±5* vertical and ±15* horizontal steering

of the secondary photon beam. Since the photons cannot be directed with magnets,

the electrons are steered before they collide with the converter plates. The secondary

photon beam which is generated then propagates within a conical envelope in the

direction of the primary beam with an opening half-angle 1/-Y, where -Y is the rela-

tivistic factor of the electrons. When integrated with the ISIS controls system, these

magnets will allow for target tracking.

The converter plate assembly (5) was designed to stop the full energy 60 MeV

electron beam. The modular design allows for spent plates to be replaced or for the

operation of the beam with a variable depth of stopping material in the beam-line.

Finally, the collimator (6) was included in order to maintain the desired 1 m

photon beam spot size at a target which lies 100 m from the ISIS container. The

collimator was designed with an adjustable aperture in order to provide some measure

of tunable photon beam shape, should conditions deem that desirable.

2.3 Description of BBGS Components

2.3.1 Object and Image Beam Slits

The beam slit system was incorporated into the BBGS design in order to make a

point beam at low current for diagnostics and calibration of the system. This point

beam should transport free of aberrations and have low energy spread. A diagram of

the actuator and plates is shown in figure 2-5. The slits are each built from two MDC
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660006 electronic actuators and 304 stainless steel plates. The plates have a 4.93 cm

diameter circular cut such that when the actuators are closed, a variable sized hole

is left for the beam to pass through.

Figure 2-5: 3D view of actuators and plates used in the beam slit system.

Since the purpose of the slit system is to ensure that the dipole is calibrated to

point the electron beam on target, it will be important to understand the sensitivity

of beam alignment to the slit size. A detailed analysis is carried out in section 3.4,

but a more simplified approach was used to estimate basic feasibility. Figure 2-6

shows a simplified diagram of the geometry used to estimate how small the object

and image slits will need to be closed to achieve a given tolerance in beam position

at the converter assembly.

In the diagram, f is the focal distance of the dipole, d2 is the half-width of the

image slit, and Xf is uncertainty in the final position of the beam. The function

describing the focal distance of a dipole magnet can be found in Livingood (1969) to

be:

f =o(O +t i (2.1)
sin $ -(t 1 + t2 ) cos - t1 t 2 sin (

where ro is the magnet bending radius, 4 is the angular extent of the magnet, and

ti and t 2 are the tangents of the entrance and exit angles, respectively. The edge

angles are the angles the magnet edge makes with respect to the perfect angular
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sector symmetry.

Using a bending radius of 28.75 cm and identical edge angles, we find the focal

distance to be a positive function of edge angle. From the diagram, when the focal

distance is exactly 20.5 cm (edge angles of 27.50), it is clear that it will be impossible

to use the beam slits to control the beam position at the converter plates. Two

equations can be used to find the ratio between the image slit size, d2 , and the beam

position uncertainty, x1 . For focal distances less than 20.5 cm:

Xf 32.0
- = (2.2)d2  20.5 - f

And for focal distances greater than 20.5 and less than 32.0:

Xf 32.0 - f
- = (2.3)d2  f - 20.5

As an example calculation, assume that the image slit has a minimum aperture

of approximately 0.05 cm. To obtain resolution in the position of the beam at the

target within +0.2 cm, the focal distance must be less than 16.5 or greater than

21.8 cm. This type of calculation, though simple, was very important to keep in

mind throughout the design process. Since iterations brought changes to the bending

radius, slit placement, and desired beam size, it was always necessary to go back and

check the most fundamental calculations before proceeding with design changes.

That these slits do not have fine control of the image spot size and displacement

is no surprise, since the slits were designed primarily to cut the angular divergence of

the beam and not to create a fine spot size at the converter plates. It was the dipole

which was designed to control image size, as will become clear in what follows. In

any case, it was important that the slits not be located directly at the dipole focal

point.
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Figure 2-6: Variables used to estimate the effects of slit size on final beam position.
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2.3.2 90' Dipole Magnet

The 90* dipole magnet is the central component of the BBGS. The dipole steers the

electron beam to the converter assembly and it serves as a tool for beam diagnostics

and calibration. The dipole also provides radial and axial'beam focusing to ensure

the proper beam size at the converter plates. A schematic diagram of the dipole

magnet is shown in figure 2-7.

a =30 I y

12!5 R 20 5.0
.5|

R

Dimensions in cm
Not to scale

Figure 2-7: Dipole magnet layout and important parameters. Left shows a top-down
view and right shows a cross-section which splits the magnet through the middle.
Right image has mirror symmetry about R axis.

The BBGS dipole has a bending radius r, = 28.75 cm with final entrance and

exit edge angles of 30*. These edge angles provide axial focusing while the dipole

itself provides radial focusing. The beam aperture half-height and half-width are 1.5

cm and 3.5 cm, respectively. These dimensions were optimized to minimize power

requirements while leaving a significant tolerance for inconsistencies in beam size.

The coils of the dipole are wound with 6.35 mm square copper conductor and are

water cooled through a 3.15 mm bore, as shown in figure 2-8. The conductor was

sized to optimize power requirements, water cooling, and peak current density.

'The terms axial and radial refer to the cylindrical geometry of a steering magnet. The 0 direction
points in the beam direction, & parallel to the direction of steering (acceleration), and 2 mutually
perpendicular to both the beam propagation direction and steering direction. Radial: i, axial: 2.
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Figure 2-8: Conductor diagram from Luvata. The BBGS uses conductor 8417 with
R = 1.0, x = y = 1.6, OD = 6.35, ID = 3.15 mm.

2.3.3 Beam Steering Magnets

Schematic diagrams of the horizontal (x) and vertical (y) steering magnets are pro-

vided in figure 2-9. The purpose of the steering magnets is to align the electron beam

with the converter plates for a horizontal/vertical displacement of ±15/5. Since

these magnets must steer over a relatively short distance, they require high current

density and use the same hollow copper conductor as the BBGS dipole.

The apertures of the steering magnets are designed to accept the full beam with a

small tolerance for inconsistencies between the actual electron beam and the simulated

beam from AES. A discussion of this optimization is provided in chapter 4.

2.3.4 Converter and Collimator Assembly

The physical designs for the converter plate and collimator assemblies were completed

primarily by PSFC mechanical engineer V. Fishman. Included in figure 2-10 is a view

of the two assemblies. The primary goal of the converter assembly is to provide for

both online and offline adjustments to the effective stopping depth of the converter

system. By using 12 individual plates, the converter depth can be varied from 1 to

12 cm according to the optimal length for a given electron beam energy.

Candidate materials for the converter plates where Carbon and Aluminum due

to their ability to create highly forward-peaked Bremsstrahlung radiation from the

electron beam (T.A. Antaya, 2010). Nuclear grade graphite was chosen as the final

material for its high density, its good thermal conductivity, and because activation of

the Aluminum by secondary neutrons and photons presented radiation concerns.
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Figure 2-9: Steering magnet dimensions. Magnets are an H-magnet design with

simple racetrack coils. Coil and pole shapes are specified on the left and one quarter

of the yoke is shown on the right. Mirror symmetry about both x and y axes is

assumed.
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Converter Assembly Collimator Assembly

Figure 2-10: View of converter and collimator assemblies. Left shows view from
behind the converter assembly, right shows collimator from front (down range). The

electron beam enters the converter on the left and the collimated secondary photon
beam exits the aperture on the right.

In order to set the total target thickness for a given electron beam energy, the E-

STAR electron range database was used. (NIST, 2010) The continuous slowing-down

approximation (CSDA) range and Bremsstrahlung yield from E-STAR are shown in

figure 2-11. For an electron energy of 60 MeV and graphite density of 1.7 g/cm3 , the

E-STAR database gives a CSDA range, R, of 25.98 g/cm2 . The average total distance

travelled by the electron is then:

x = R/p = 15.3 cm (2.4)

The issue with using the CSDA range for electron range estimation is that the path

of electrons in matter is actually highly irregular. For a more accurate estimation

of the range with respect to the front plane of the material, data from Tabata et al.

(1996) was used.

Using the correlation provided in Tabata et al. (1996) for the 'extrapolated range,'

which is the correct range to use for estimating electron range in materials, we find
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Figure 2-11: Electron stopping data from E-STAR for graphite, p = 1.7 g/cm3.

R = 31.97 g/cm 2 . This assumes a mean excitation energy (from NIST) of 78.0 eV.

This result, which agrees with the data presented in Tabata et al. (1996), says that

for high energy electrons in Carbon, the effective range is actually longer than the

CSDA range.

Given that the stopping range of 60 MeV electrons in graphite is on the order of

15-18 cm, it may seem inconsistent that the converter plate assembly is only a total of

12 cm long. This is the first example of the small discrepancies that arise when large

systems are designed by multiple parties. In their preliminary calculations, Raytheon,

responsible for secondary radiation simulations, used a density for graphite equal to

2.2 g/cm3 . This results in a CSDA stopping range of 11.8 cm, within the converter

assembly length of 12 cm. However, when faced with the task of procuring nuclear-

grade graphite for the BBGS, we found that the most readily available products had

densities in the range from 1.7 to 1.8 g/cms.

The good news is that even though the entire beam will not be stopped in the

converter assembly, more detailed simulations (see section 5.3.4) have shown that

the amount of energy deposited into the collimator will be a small and manageable

percentage of the total beam power.
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Chapter 3

BBGS Beam Transport Design

3.1 Transport design process

The design process for the Bremsstrahlung beam generation system began with beam

transport design. Before it was possible to design individual components, it was first

necessary to create a simplified but encompassing model of the entire system.

The design for this system-level transport model began with intuition gained from

previous work, then it evolved as the individual components were designed and iter-

ated upon. Since the ISIS project is compartmentalized among several design teams,

changes to external constraints did not always propagate as quickly as would be de-

sirable. This meant that multiple solutions were created before the final product

presented in chapter 2 was complete. It is the purpose of this and the following chap-

ters to highlight important pieces of the iteration process which led to the final BBGS

design.

This chapter focuses on the design of the main beam-line, which includes the

dipole bending magnet, the object and image slits, and the relative distances between

all other objects. The goal of the beam design was to meet the Raytheon-specified

requirement of approximately 1x (unit) magnification of the LINAC beam at the

converter plates. This means that the electron beam at the converter plate should

be about the same size as the initial beam. Since the exact specifications of the

LINAC beam were unknown when this requirement was specified, a soft requirement
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of a beam width 'less than 0.5 cm but greater than 0.05 cm' was also used as an

acceptable limit throughout the design process.

While the steering magnets were an important consideration during the beam-

line design, it was primarily the case that the dipole and beam line design drove the

steering magnet design. Hence, the design of those components is not included in this

chapter.

3.2 1D Beam Transport using TRANSPORT code

The LINAC beam properties were presented as constraints in chapter 2, but in reality

they began as unknowns. The initial beam transport design was started well before

the final beam parameters from the linear accelerator were known. Hence, the system

design started with simplified methods in order to create a big picture design which

could be later modified to fit exact specifications.

Though the exact beam properties were unknown, it was possible to use typical

LINAC electron properties in order to begin to create a beam transport solution.

The tool used to parameterize the electron beam properties is the phase-space ellipse,

illustrated in figure 3-1. The phase-space ellipse is a standard formulation used to

characterize charged particle beams. (Livingood, 1969; Reiser, 1994) Since it is often

impossible to model all individual particles in a beam, the phase-space ellipse is used

to represent the envelope of a charged particle beam. The ellipse is used to describe

the displacement (x) of particles about the beam centerline as well as the angle

each particle's trajectory makes with the beam centerline (x'). The central idea of

the phase-space ellipse formulation is that many charged particle beams, because of

the way they are formed and accelerated, can be described by an equivalent beam

envelope. The thesis is that since accelerators operate on a charged particle beam

with periodic focusing forces, the horizontal and vertical displacement of any particle

from the beam centerline inside an accelerator will be sinusoidal in time, provided

that the displacements are small.
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Figure 3-1: Top: Phase-space ellipse used to parameterize the properties of the elec-
tron beam. Bottom: coordinate system for beam where z is in the average direction
of all particles in beam.
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So, the position of a given particle in the accelerator can be described as:

2xrv
x(t) = x, sin Avt (3.1)

where v is the beam velocity and A is the wavelength of oscillation.

Now, the angle the particle makes with the beam centerline, x', is given by:

IW dx dt
x'(t) = xd

di dz
dx 1

2,r 2xrv
= o-cos .7t (3.2)

27rv
X'(t) = ' cos vt (3.3)

Since sin 0 ± cos2 0 = 1, we can write an equation for the phase-space ellipse within

an ideal accelerator:
x2 X12

Hence, particle motion in an accelerator results in an upright phase-space ellipse.

This result allows for a particle beam simulation to be completed before the final

beam properties are known. It is possible to estimate reasonable maximum values

for the beam width (xo) and divergence (x'), and with those estimates to build a full

simulation of the electron beam transport system.

In the first iteration of the BBGS beam transport design, the matrix-based TRANS-

PORT (Sta, 1972) code was used to model the dipole within the electron beam-line.

TRANSPORT is a very common beam transport code that has been used in the

design of many beam systems. Based on preliminary numbers from AES, the beam

parameters at the interface between the LINAC and the BBGS were chosen such that

the beam emittance was identical in both transverse spaces (x and y) with variable

beam widthlin the range [0.05,0.5] cm and divergence in the range [0.5,5.0] mrad,

where the beam emittance in a given transverse direction is defined as the area of the
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x,

Figure 3-2: Parameters available to characterize a dipole magnet in the TRANSPORT
code. BBGS sets R1 = R2 = oo. Figure adapted from (Sta, 1972).

phase-space ellipse for that coordinate direction.

The first task was to characterize the beam size at the converter plates for several

combinations of beam size and divergence. In order to do so, a basic model for the

dipole magnet was required. The magnet was chosen with a radius of 30 cm, and to

start with edge-angles (see figure 3-2) 01 = #2 = 0 degrees. The results of this first

analysis for a beam energy of 60 MeV are shown in table 3.1 and figure 3-3. The

beam inputs required by TRANSPORT are x, x', y, y', z, dp, p. The bunch length, z,

along with the energy variance, dp, were set to 0. For the momentum (in GeV/c),

the following equation was used:

p(Gev/c) = 1E~3 /T 2 + 2EoT (3.5)

where T is the kinetic energy of the beam and E0 is the electron rest mass energy,

equal to 0.511 MeV. This gave an input beam momentum of 0.0605 GeV/c.

Taking a look at the results, the simple dipole without edge angles tends to over-

'Here and elsewhere in this text, beam width denotes the distance from the beam center to the
maximum extent in a given direction. This is sometimes referred to as the 'half-width' in other
texts. For the full beam size measured from one extent to the other, this text uses 'beam diameter.'
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Table 3.1: Table of results from 90* dipole with r, = 30 cm and no edge angles.

xo/yo S '/ yf Yf Label
0.5 0.089 1.83 0.087 0.50 aa

0.05 2.5 0.145 4.10 0.361 2.50 ab
5.0 0.249 7.67 0.718 5.0 ac
0.5 0.428 8.37 0.260 0.50 ba

0.25 2.5 0.443 9.14 0.437 2.50 bb
5.0 0.487 11.2 0.758 5.0 bc
0.5 0.854 16.7 0.505 0.50 ca

0.50 2.5 0.862 17.1 0.615 2.50 cb
5.0 0.885 18.3 0.873 5.0 cc

ISIS Transport: Dipole with 0 edge angles

Zmin= 0.00 m Zmax= 1.50 m Xmax= 0.5 cm Ymax= 0.5 cm Ap * 1.00 Wed Apr 13 11:10:54 2011

Figure 3-3: TRANSPORT print out for beam label bb. Top curve is the y-envelope,
bottom curve is the x-envelope. Simulation ends at label D3 which represents the
start of the converter plate assembly.
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focus in x for all of the beams - there is a beam waist (see figure 3-3) before the

converter plates and the beam is larger than it started. It also provides no focusing

in the y direction, something which could present trouble for a high-divergence beam.

The next step in the design process was to add edge-angles to the dipole in order to

counteract the over-focusing of the beam in the x direction.

While it is possible to vary the edge angles separately, the decision was made to

maintain identical edge angles for both the entrance and exit of the dipole magnet.

This kept the dipole design as simple as possible, which in turn made it easier to

communicate design specifications to the engineers who created technical documents

for each component. Many revisions were created to explore the possible set of edge

angles, a few of which are shown in figure 3-4.

In addition to a deterministic beam transport mode, the TRANSPORT code

can also run optimization routines to find the best design for a magnet. Holding

all parameters fixed except for the edge angles, an optimization was run to obtain

equal beam height in x and y at the converter plate. The output from one of such

optimizations is shown in figure 3-5. For all of the test cases, the optimal edge angles

were between 22 and 30 degrees. The larger beams used in the simulation, which due

to details from AES appeared more realistic, required edge angles between 27 and 30

degrees.

After many simulations and feedback from MIT designers, the edge angles for the

dipole were set to 300 for both the entrance and exit angles. While this number would

not be optimal for all beam configurations, it was close enough and a 'round' number

which could be easily relayed to engineering. It is also the case that for the final

dipole parameters, edge angles of 27.5 degrees correspond to a focal distance of 20.5

cm, which is the location of the image slit. It was important that the edge angles be

chosen such that the focus was pushed beyond the image slit. This resolved the ID

beam design for the BBGS dipole. However, as more detailed information about the

LINAC beam became available, it was necessary to verify the ID results using more

complex codes.
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ISIS Transport: Dipole with 10 edge angles

Zi 0.00 m Zm. 1.50 m X-- 0.5 c .Ya 0.5 m Ap * 1.00 Wed Apr 13 11:1.4:4 2011

(a) 10 degrees

ISIS Transport: Dipole with 20 edge agles

Zin 0.00 Z Zmax- 1.50 mXmax= 0.5 c .Tax 0.5 m Ap 1.00 W.d Apr 13 11:10:40 2011

(b) 20 degrees

ISIS Transport: Dipole with 30 edge angles

Zmin- 0.00 m Z-a 1.50 m Xmax 0.5 ea 5ax= 0.5 = Ap * 1.00 Wed Ap 13 11:19:34 2011

(c) 30 degrees

Figure 3-4: TRANSPORT print out for beam label bb with different edge angles.
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ISIS Transport: Dipole with variable edge angles

zmin= 0.00 m Zmax= 1.50 m Xmax= 0.5 cm Ymax= 0.5 cm Ap * 1.00 Wed Apr 13 11:50:24 2011

Figure 3-5: TRANSPORT print out for beam label ab with edge angle optimization.
Edge angles are 26.7*.

3.3 pybeamld Transport Code

As details about the phase space and energy distribution of the electron beam began

to filter in, it became apparent that a more detailed analysis might be necessary to

verify the operation of the BBGS transport system. Before moving to full 2D and 3D

field models of the magnet system, a 1D transport code was developed by the author

which could more accurately represent the ISIS electron beam. The basic idea of this

code, pybeamid, was to use matrix transport methods to transport individual particles

rather than an idealized beam envelope. This '1D+' particle tracking method made

it possible to simulate the transport of non-ideal accelerator beams. The process of

writing this code also helped to gain a better understanding of the assumptions used

in the TRANSPORT code.
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Figure 3-6: Geometry for particle transport calculations. Left: cross section of
magnet poles, beam out of page. Right: top view

3.3.1 Code Scope

The scope of the pybeamld code is not to recreate or enhance all of the functionality

of the TRANSPORT code. Instead, it provides a Python-based extensible framework

with the following built-in functionalities:

1. Matrix transport through dipoles and free space

2. Variable field index and quadrupole edges for dipoles (see chapter 4)

3. Random beam generation based on given phase-space parameters

4. Interface to generate equivalent beams for Opera-3D models

5. Basic space-charge integration (see chapter 6)

3.3.2 Basic Theory

Since many books on the subject matter (Livingood, 1969; Reiser, 1994) do not

explicitly derive Matrix-based beam transport equations, a short overview of these

derivations is provided here. We start with beam transport in cylindrical geometries

(such as that in dipoles) where the beam trajectory travels in the b direction at a

constant equilibrium radius, ro. This geometry is described in figure 3-6.
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Magnetic Field in Axisymmetric Cylindrical Geometry

The theory of beam transport in cylindrical geometries starts with (of course) Maxwell's

equations. We can write Ampere's Law for free space:

1 OE
V x B = poj + O

c 2 o t (3.6)

Now, assuming steady state (2 = 0), the equation for the magnetic flux density in

a region free of current becomes:

V x B = 0 (3.7)

Expanding this vector expression for cylindrical coordinates, we have:

Vx B(= 1 OB,
+ OBr

OZ
OBo
9z )

- 1
0+-

r
( (rBo)

Or
OB,.
02 

Since V x B = 0, each of its vector components must also be equal to zero.

gives:
OBz
Or

OBr 
--- 0

Oz

(3.8)

This

(3.9)

Equation 3.9 can be found throughout the scientific literature. It is important because

it allows the description of coupling between radial and axial oscillations in cylindrical

geometries.

Another consequence of V x B 0 is that the magnetic field can be written as

the gradient of some scalar potential, 4:

B=V4 (3.10)

And hence since V -B = 0:

V 2 = o (3.11)
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In cylindrical coordinates, this evaluates to:

&92q 10q0 1 &2q5 O2q_
v2o# = +-+ + +! =0(3.12)

Or 2  r or r 2 002 Oz 2

Now, since the region of interest for beam transport calculations will be a small region

centered about the equilibrium radius ro, we write r = ro + x. Substituting for r and

eliminating terms which vary in 0 gives:

0 2# 1 _4 2_
+, - =0 (3.13)

5X2 + ro +XOX OZ2

Assuming that is small compared to ro, the Laplacian is simplified to the Cartesian

result that:

+2 =~ 0(3.14)
OX2  0z 2

Since x and z are small, we seek solutions for # of order 2 which will result in magnetic

fields to the first order. To the second order, the scalar potential can be expanded in

polynomial form as:

#(X, z) = c1x + c2 z + c3 (X2 - z2) + c4 Xz (3.15)

Here we set c3 = 0, since the geometry of our solutions will be such that the fields

in z will either be independent of x or always increasing/ always decreasing in x,

as illustrated in figure 3-7. This simplification holds true for most beam transport

scenarios and it simplifies the equations of motion by decoupling the x and z equations

of motion. This gives:

#(x,z) = c1x + c2 z + c4Xz (3.16)

and hence

B(x,z)= (c + c4z) i + (c2 + c 4x) Z (3.17)

We know Bx(0, 0) = 0 and B2(0, 0) = BO, hence:

B(x, z) = kzk + (Bo + kx) 2 (3.18)
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Figure 3-7: Possible field configurations for transport solutions. Left and center are
allowed, right is a disallowed configuration in this model.

where k is a constant factor to be defined later.

Equations of Motion About Equilibrium Orbit

In beam dynamics it is useful to plot the trajectory of an 'equilibrium' particle which

represents the average properties of a particular beam. This particle moves at the

average momentum and travels down the center of the beam line. In this discussion,

this particle travels in a circular orbit with bending radius, ro, momentum, po, velocity,

vo, relativistic mass, m, and position with respect to beam center, (x, z) = (0, 0).

The goal of beam transport simulations is to characterize the motion of particles

in the beam whose properties differ slightly from the equilibrium orbit properties.

Hence, a new variable x is adopted to represent the displacement from equilibrium

radius, x = r - ro.

The first step in deriving equations of motion is to find the force exerted on a

particle from the magnetic field:

F = q(vx B) (3.19)

Here it is assumed that the transverse velocities (x', z') are much smaller than the

velocity in the 0 direction, so the transverse forces on the non-equilibrium particle
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become:

F, (r ) = -qvB.,(r ) (3.20)

F2 (z) = qvB,(z) (3.21)

Axial Motion To solve for the axial motion, we write the differential equation:

dSz
maz = mg = qvBr(z) (3.22)

where here and elsewhere m is the relativistic mass, which is assumed to be approxi-

mately constant since the particle momentum p is primarily in the 0 direction and the

acceleration does not occur in this direction. Now, the field Br(z) in equation 3.22

can be represented using equation 3.18:

Br(z) = kz (3.23)

Here we note that k is in fact equal to L, which by equation 3.9 is also equal to

. This gives:
J@z qv/ 8B_

Y - - Oz) z (3.24)
dt2 m (Or

It is now useful to define the field index, n, a dimensionless parameter which helps to

characterize particle motion:
r OBz

n __ (3.25)
-z Or

Solving for 29-z near ro gives:

8B, B,(ro)
= -n (3.26)

0 r ro

plugging this result in to equation 3.24:

d2z - q (-B2(ro) z (3.27)
dt M 5 ro
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Using the equation for the equilibrium orbit field, B2(ro) = ;v, the equation for

axial motion becomes:
d2z vdt+ nz= 00 (3.28)

Substituting for the path length S = vot and dt = dS/vo, the equation used for axial

motion through magnets in pybeamid is:

d2z n
(3.29)

Radial Motion The solution for radial motion follows the same method. Writing

the equation of motion from the force balance:

d2r
mar = m - r -

dO V
t =W r

gives:
d2 r V2

dt 2
- r

+ -B2(r) = 0m

Substituting ro + x for r, this gives:

d2 (r -) v2

2 + -B2(r) = 0dt2  ro+x m

Which can be simplified by taking the following steps:

1. Factor out - from second term to give -y1
r0

2. Since x << ro, 1 can be approximated, taking only
r0

binomial expansion as: 1 + xro

3. Since ro is constant, d 2(rox) - d
2

xI dt2 dt2

These steps give:
d2x v2 /

d2 1 +
dtro ( ro

qv
+ -B2(r) = 0m
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= -qvB2(r) (3.30)

(3.31)

(3.32)

vIl

(3.33)

the first term in the

(3.34)

d2+ ;7 Z = 0
dS r



Now it is possible to use equation 3.18, taking only the z fields:

B2(r) = B2(ro) + k x (3.35)

Again, noting that k = -nBz(ro) and using B2(ro) = 0, the equation for radial

motion becomes:
2x V2  VVo V2 v N0

- + 2 2n x=-0 (3.36)
dt 2  ro ro ro ro

Here it is important to draw a distinction between the equilibrium velocity, vo and

the non-equilibrium particle velocity, v, which may be different. Writing v = vo + 6v

where 6v is a small perturbation from the equilibrium velocity, we have:

&x _(v+6v)
2  (vo±+5v)vo (v2  vv0

+ + + 0  + (,2 n) x = 0 (3.37)
dt2 ro ro r 2 r2

Expanding and dropping terms in 6v 2 as well as terms with " since they are much

smaller than - terms:ro

d2 x v2 6v
- + -- (3.38)

dt rro

Now, substituting for S = vot:

&x 1 1 ov
+ -X (1 - n) X = 16(3.39)

dS2 r 0  rovO

Or, in terms of momentum:

d x 1 1 Ap
+ - (1 - )x=(.0

dS2 r0  ro po

which gives the equation for radial motion used in pybeamid. This equation agrees

with those found in the literature, for instance Livingood (1969) eq 2-1.

3.3.3 Matrix Equations

Following the process of Livingood (1969), the pybeam1d code treats beam-line com-

ponents with transfer matrices that take the initial phase space and transform it to
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the phase space at the exit of the component. This transfer is written in matrix form:

xr= Mxc (3.41)

where x is the vector:
X

X /

P )
and M is a 3 by 3 transfer matrix for the given component.

To find the equations for x and x', solutions to equation 3.40 are sought in the

form:

6S 6S ro Ap
x = a sin - + bcos - +

ro ro J2 P
6 6S 6 .S

x' a-cos -- - b- sin -
r0 r0 r0 r0

(3.43)

(3.44)

where

(3.45)

Given initial values x, and x', plus defining the quantity:

ro

where 0 is the angular extent of the dipole path, then

(3.46)

a = rox/6 and b = x - (ro/6 2 )Ap/p (3.47)

The transfer matrix for axial motion in a dipole magnet becomes:

cos # 2 sin # (
-- sino

0

cos

0

1- cos #)
$sin#

1,
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The transfer matrix given by a dipole edge with angle a is given by the thin-lens

approximation (see Livingood (1969)):

ME,x ~

1 0 0
tana 1 0

0 0 1

(3.49)

And for a vacuum drift of length S:

MS,X =

1 S 0

0 1 0

0 0 1

(3.50)

For the axial equations, let us replace the variable z in equation 3.29 with y. Now,

the matrix equations will be the same as those for motion in x, modified as follows:

1. Replace J = V1 -n with E = Si

2. For edge angles, change the sign of tan a

3. Ignore variance in momentum

In the equations for y motion, a special case occurs when n = 0. We have:

sin# sin# 0 -q r
j IE 0

However, by L'Hospital's rule:

sine O_
lim s
e-+O e

0cos O0

1
(3.52)

The pybeamid code implements a switch which checks for this special case when

applying the matrix equations for axial motion.
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3.3.4 pybeamld Benchmark

Before using the pybeamid code for more detailed beams, it was important to bench-

mark the code against TRANSPORT calculations. The results of this benchmark are

shown in table 3.2. The only differences between the two results are that in pybeam1d

Table 3.2: Table of pybeamid results from 90* dipole with r,,
angles. Compare to table 3.1 for TRANSPORT results.

Xo/Yo I'/y' S', yf
IYf

= 30 cm and no edge

Label
0.5 0.087 1.797 0.086 0.491 aa

0.05 2.5 0.142 4.023 0.356 2.454 ab
5.0 0.244 7.474 0.707 4.908 ac
0.5 0.423 8.278 0.254 0.491 ba

0.25 2.5 0.436 8.984 0.429 2.454 bb
5.0 0.477 11.099 0.747 4.908 bc
0.5 0.845 16.520 0.492 0.491 ca

0.50 2.5 0.850 16.801 0.608 2.454 cb
5.0 0.872 17.969 0.857 4.908 cc

the maximum parameters are used as a basis for generating random particles, hence

the numbers are not exactly the same since the actual maximum will not be exactly

equal to the maximum random radius generated.

In this benchmark, the beam was generated by first picking values for r and r', the

distance from the beam axis and angle in the radial direction, from a uniform ellipse.

This assumes that since the beam is exiting an accelerator with radial symmetry, the

beam should be approximately radially symmetric.

Once the radial beam was generated,

tracted by assigning a random angle 0 to

values for the x and y directions were ex-

each point such that:

x = rcos6

y = rsin6

X =

y

r cos 0

r' sin 0
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Figure 3-8: pybeamid print out for beam label bb. Top row: starting phase space.
Bottom row: phase space at converter plate.

Examples of the initial and final beam profiles are shown in figure 3-8.

3.3.5 Beam Transport with Energy Variance

One of the primary reasons for developing the pybeamid transport code was to explore

the effects of variations in beam energy on the BBGS electron beam. Even before

the LINAC beam simulations were complete, it was known with certainty that there

would be some spread in the beam momentum.

The electron beam is accelerated in a pulsed mode, which means the beam is

not continuous but actually a series of 'bunches' of particles, each which have a finite

length in the beam direction. As the bunches are accelerated across a voltage gap, the

voltage is changing sinusoidally in time in order to prepare for the next bunch. This

means that particles at the front of the bunch do not experience the same accelerating

56

3 3



fields as those in the back of the bunch. Hence, as the beam is accelerated and the

momentum increases, the variance in the beam momentum also increases.

Before the electron beam parameters were known, a study was performed to probe

the sensitivity of the BBGS transport system to variance in the beam momentum.

For this study, a beam of 5000 particles was generated and each particle was assigned

a momentum at random from a normalized Gaussian distribution given by:

f (p) =x 2 p _X ~ 2 (3.57)
o 2o-

where p is the average beam momentum and c-, is the square root of the momentum

variance.

For each of the 9 beams simulated in the TRANSPORT study, three different vari-

ances in momentum were tested: "4 = 0.01,0.001,0.0001. Plots of these momentum

distributions are shown in figure 3-9. The results of this set of pybeamld simulations

are shown in table 3.3 and figure 3-10. As expected, when the momentum variance

is small, the beam behaves nearly identically to that of the monoenergetic electron

beam. However, for a standard deviation in momentum of 1%, the beam magnifica-

tion in the x direction is increased significantly.

At the time these simulations were completed, more clear information on the

electron beam began to filter in from AES. The detailed LINAC simulations showed

a standard deviation in beam momentum on the order of 0.2%, plus a high skewness

in the energy distribution. It became clear that even more detailed calculations would

need to be completed in order to estimate the actual beam size at the converter plates.

3.3.6 Transport of AES Beam

The engineers at AES provided three 50,000 particle simulations of the LINAC elec-

tron beam as it exits the accelerator. The first step to use these files for transport

in the BBGS models was to convert them to distributions we could use in our sim-

ulations. The output files generated by AES gave beam data in Snyder-Courant

formulation, in the form of 6 variables: (x, (#'y),, y, (#) , z, (#7)2), where x, y and z
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Table 3.3: Table of pybeamId results from 900 dipole with r0 = 30 cm
edge angles. Table adds variance in momentum. Units are cm and mrad.
highlighted in grey are shown in figure 3-10

-,p/P
0.0100
0.0010
0.0001
0.0000

Xf

2.901
0.335
0.093
0.087

XI

36.069
4.350
1.880
1.791

Label
aaa
aab
aac
aad

0.0100 2.850 35.480 aba

2.5 0.0010 0.416 6.616 abb
0.0001 0.144 4.040 abc
0.0000 0.140 4.002 abd

5.0

0.5

2.5

0.0100
0.0010
0.0001
0.0000
0.0100
0.0010
0.0001
0.0000
0.0100
0.0010
0.0001
0.0000

3.451
0.389
0.255
0.244
3.377
0.592
0.424
0.419
2.940
0.613
0.445
0.433

43.777
8.661
7.435
7.507

43.821
9.821
8.228
8.156

38.742
10.764
8.946
8.957

aca
acb
acc
acd
baa
bab
bac
bad
bba
bbb
bbc
bbd

5.0

0.5

0.0000
0.0100
0.0010
0.0001
0.0000

0.473 10.819
3.552
0.943
0.841
0.838

48.626
17.432
16.385
16.358

bcd
caa
cab
cac
cad

0.0100 3.155 42.981 cba

2.5 0.0010 0.956 18.232 cbb
0.0001 0.849 16.839 cbc
0.0000 0.838 16.679 cbd

5.0

0.0100
0.0010
0.0001
0.0000

3.232
1.055
0.881
0.866

42.937
19.522
17.878
17.915

cca
ccb
ccc
ccd
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Figure 3-9: Gaussian distributions in momentum used in beam simulations. Plotting
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are the transverse, vertical, and longitudinal locations of the particle compared to a

reference particle in the center of the beam, and (3-y), is the dimensionless momentum

in the u direction. In this notation, #, is defined as:

vu
# = - C(3.58)

where vu is the particle velocity in the u direction and c is the speed of light. 7, is

the Lorentz factor, defined as:
1

7N 1 (3.59)
(1 - #2) 2

The dimensionless momentum data from Parmela were used to generate pairs of

(X', y') for each electron, where x' and y' are the angles the particle trajectory makes

with the z axis in the x and y directions. Since these angles are small, the approxi-

mation tan 0 ; 0 was used to find, for direction u:

U' - PU - p - (/3 Y)" (3.60)
P Pz (#7-x)2

Finally, the particle kinetic energy, T, was found by:

T = - 1)E,, (3.61)

where

7 /#72+1 (3.62)

and

(#7) = /(3y)x + (#y)2 + (#y)2 (3.63)

Before running simulations with the electron beam data from AES, it was impor-

tant to characterize the basic features of the beam. Three beam simulations were

provided by AES. These beams have average energies of approximately 60.7, 30.6,
and 6.2 MeV. Hence, they are referenced in this report as beams 607, 306, and 062.

A summary table of beam parameters provided by AES is shown in table 3.4.

Based on simulations using normally distributed beams of similar momentum

60



Table 3.4: Beam properties of AES Parmela simulated beam. Dimensions in cm,
angles in mrad.

(T) MeV oT(%) Xrms mXn I Yrma Yma % > rms 'ms,, y '-m
60.66 0.21 0.136 0.489 0.137 0.487 43.3 0.483 0.486
30.57 0.23 0.159 0.510 0.161 0.511 46.9 0.669 0.675
6.178 0.38 0.167 0.509 0.168 0.511 51.7 0.420 0.419

10 1.

E20 - 6

~24 ~4

.0 o. 6.12 6.14 6.1 6.18 620 6.22 .1 3.2 3 0. 31A 30.5 0. 3 7 L. 60. 60Z " .4 60.

(a) 062 (b) 306 (c) 607

Figure 3-11: Beam energy distributions for all three AES simulations.

variance, the AES beams do not immediately seem troublesome. However, it is clear

from observation that the energy distributions of the AES beam have longer 'tails'

than a Gaussian distribution fit to the peak (see figure 3-11). This means that

extreme values (values far from the mean) are more likely in the AES beam than in

the simulated normally distributed beams.

The effect of the low-energy tails of the electron beams from AES was tested by

running the pybeamid code with the AES beam as an input file. In all three cases,

the low energy beam tail introduces a skewness in the final phase-space ellipse. To

showcase this effect, the final phase-space ellipses are presented in figure 3-12 for the

AES phase-space with and without variance in energy. The monoenergetic plots were

created by using the phase space provided by the AES beam but assigning all particle

momentum values equal to the average momentum of the beam. Figure 3-13 shows

the correlation between particle kinetic energy and displacement from beam centerline

as measured at the converter plate. As expected, there was a clear correlation between

the lateral displacement of particles and the kinetic energy. Particles with lower

61



0

[C

30

20

10

0

-10

-210 -5 0 5 10 15
X [mm]

(a) 062 - Monoenergetic

30

20

10

0

-10

-20
10 -5 0 5 10 15

(c) 306 - Monoenergetic

30

20

10

0

-10

-10 -5 0 5 10 15
X [mm]

(b) 062

E

(d) 306

0

30

20

*

10 - +

0

-10

20 -5t 0 10 15
X [mmn]

(e) 607 - Monoenergetic (f) 607
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Figure 3-14: Phase space for yy' evaluated at the converter plates. Since variance in
momentum does not effect first order transport in y, 1x magnification was achieved.
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kinetic energy tend to be located in positive x relative to the beam centerline, which

means on average the lower energy particles were over-focused by the dipole magnet.

These simulations, which were verified with those that follow in section 3.4, pre-

sented some important design challenges. While it was originally expected that it

would be possible to maintain 1x magnification of the beam at the converter plates,

the low energy tail makes this nearly impossible without the use of another focusing

component in the beam-line. While simulations were carried out for using a solenoid

or quadrupole magnet to focus the beam, it was determined that such a magnet would

be too large to fit in the already crowded beam line. This meant that the steering

magnets would have to be built with large apertures to accept the low energy beam

tail.

3.4 Opera 3D Beam Transport

While the 1D and 1D+ methods of TRANSPORT and pybeamid agreed well, it was

still important to verify that higher order effects in the BBGS magnets would not

have adverse effects on the beam transport. The inclusion of higher order effects

can be approximated in ID using correlations, but a more thorough alternative is to

create a full 3D finite-element solution for the magnetic field of the transport system.

Since the detailed 3D design of the component magnets is covered in chapter 4,

the dipole and steering magnet 3D designs are taken as given in this analysis.

After designing the magnets in 3D using Opera (Cob, 2009), the next step in

creating a beam simulation was to convert the input files provided by AES. For the

electron simulations in Opera 3D, input files must specify electrons with six variables:

(x, y, z, 0, #, V), where 0 is the rotation about the z axis, # is the rotation about the

new x axis, and V is the voltage used to accelerate the electrons. The raw electron

data from AES was converted into the correct format for Opera-3D using the geometry

outlined in figure 3-15. Having calculated the angles x' and y' as described in the

64



Figure 3-15:

2

b

Geometry used for conversion from x' and y' to 9 and <b.

previous section, next the angle 0 was calculated. From figure 3-15, it is clear that

0 = arctan b

and also, from simple trigonometry, that a = tanx'. So, calculating the value of b:

b = ctany'

c = v'1+a2 /1+ tan2 x = X,
cos x'

So, by substituting into equation 3.64:

sin x'
9 = arctan

tany'
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and for c:

(3.65)

(3.66)
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To find # in terms of x' and y', we observe:

arctan d (3.68)

and find:
tan2 y(

d =- -v/a2+b2- = tan2 -' + (3.69)

substituting into equation 3.68 to find:

4 = arctan tan2 x + tan2  (3.70)
cos 2 x'

Once the input parameters for each particle were calculated, it was necessary to

create an Opera Command Input (comi) file that would run the beam in the Opera

Post-Processor. This was an involved process and hence the interfacing Python script

is included in Appendix A.

The move to 3D computation of fields and trajectories complicates more than

just geometry. Before running each 5000 particle beam sample, it was necessary to

fine-tune the dipole magnet field such that a particle at average beam energy would

intersect with the center of the converter plate. This was an iterative process which

involved visual inspection of the trial beam. The most efficient method was to find

an electron kinetic energy (T) which intersected the center of the target, then in the

next iteration, scale the magnet current (I) by a factor:

I""" ~ 0.8 Tdesired (3.71)
'old Tmeasured

Learned iterative tricks such as this one became very important while working in 3D

as the field computations run for minutes rather than milliseconds!

After field calibration, the 5000 particle beam sample was run using a 'comi' file

which defined the simulation. To extract the phase space at the converter plate,

the Opera Post-Processor 'intersect trajectories with patch' function was used. This

function provides x, y, z and v2, vy, v, in the coordinate system of the Opera solution
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file, which for the sake of field symmetry is not the same coordinate system required

by the phase space.

The beam coordinate system was defined by first finding the beam direction, 2:

2 = ((3.72)

where v is the velocity vector in Opera coordinates. Now, using the notation that Y
is the y direction in Opera, the beam i direction was given by:

R = -2 x Y (3.73)

Finally, the beam y direction could be found:

9k =2 x R (3.74)

Once the beam coordinate directions were determined, each particle position and

momentum was normalized to the average beam position and then dotted into the

new coordinate directions to find the final phase space.

The results of the Opera 3D beam simulation for beams 062, 306, and 607 are

compared to pybeamid results in figures 3-16, 3-17, and 3-18, respectively. The

phase space for xx' is remarkably similar between the two models. This means that

the dipole was designed well in that higher order effects are not important for the

x transport. It also shows the true strength of the 1D method. A ID solution is

possible for 50,000 particles in less than one second, where a 3D solution for only

5000 particles takes a total of approximately 15 minutes, not including the time to

design and solve the magnet in 3D, which took many weeks.

Clearly the first order methods did not predict the same yy' phase space as the 3D

trajectory integration. This means that higher order effects dominate the y transport.

This is a result of the edge angles which focus the beam in the y direction. First order

methods treat this focusing, but not with enough detail to capture the entire effect.

The modification of the pybeamid transport with higher order effects is treated in
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more detail in chapter 4.

The 3D beam transport simulations were important for the BBGS design because

they helped to validate previous calculations while providing insight into possible

higher order effects in the beam transport. With three methods in reasonable agree-

ment with explainable differences, it was determined that the BBGS magnets could

be designed with tight tolerances to the beam simulations.

3.5 Estimation of Radial Space-Charge Effects

Throughout all of the BBGS beam transport simulations, the effects of space-charge

on the beam dynamics were ignored. Space-charge effects are the effects of the electric

fields generated by the beam on the beam. For this reason they are sometimes referred

to as 'self-fields.'

A simple set of calculations was performed to validate the assumption that self-

fields are not important in the BBGS beam transport. For these calculations, a

cylindrical coordinate system with the beam direction in positive i is used. Assuming

an axially symmetric and uniform beam exiting the LINAC with beam envelope, R,

the governing equation for the motion of the radial envelope is derived by Humphries

(1990) to be:
d R -K (3.75)
dz2  R

where K is the generalized perveance, given by:

eI
K = 2 / (3.76)

where e is the electron charge, I is the beam current, and mo is the rest mass.

This calculation would underestimate the space-charge effects in the BBGS, since the

total beam current is actually generated by several short pulses, not an infinitely long

continuous cylindrical distribution of charge. To make this an overestimate of space-

charge effects, the BBGS current was multiplied by the reciprocal of its duty factor.

This calculates the space charge as if the electron beam was actually a continuous
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beam with a charge density of that found in the beam bunches.

Rather than taking the time to integrate the equation of motion, a worst-case

calculation was performed. This assumed a constant df given by the initial value of

R = R, applied over the entire beam path. In this worst-case, the final beam radius

is given by:
1 d2 RO2 1 K2Rf = d 2 z + Ro Z2 + Ro (3.77)
2 dZ2  2 Ro

This gives the fractional change in beam envelope:

1 - - = (2.0 x 10-4, 1.7 x 10-6, 1.7 x 10-7) (3.78)
Ro

for the 6.2, 30.6, and 60.7 MeV beams, respectively.

This calculation showed that the space-charge effects in the BBGS electron beam

could be reasonably neglected. The calculation was an overestimate of the effects as

it overestimated both the current density in the beam and the accelerating forces.

3.6 Longitudinal Space Charge Effects

A calculation of space charge effects in the beam direction was not performed.
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Chapter 4

Magnet Design

The design of the component magnets for the ISIS BBGS was an iterative process

which could not and did not happen in isolation from the beam transport design. The

process taken was to first generate an acceptable beam transport solution in 1D. Next,

magnets were designed to replicate this solution and verify it in 3D. Finally, based

on the results of the 3D analysis, changes were made to the 1D transport solution

to begin a new design iteration. For clarity, the component designs are presented

separately in this chapter as a series of independent design iterations.

In addition to general space constraints imposed on the BBGS, there were other

requirements placed specifically on all magnetic components. All magnetic compo-

nents were required to be either air or water cooled and hence non-superconducting.

It was also a requirement that whenever possible, the magnetic components should

be constructed from industry standard parts and materials. These constraints led to

the development of iron core electromagnets with hollow copper conductor windings.

4.1 Dipole Magnet

Once the basic design parameters for the BBGS dipole were verified through TRANS-

PORT and pybeamid calculations, the next task was to create a physical design which

would meet those parameters.
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Figure 4-1: Cross section of dipole magnet version 1. Solved using Poisson 2D.

2D Magnet Design The first step in the physical magnet design was to create a

simplified solution for the magnetic fields using Poisson (Los, 2010). The Poisson 2D

code solves a finite-element version of the magnetostatics Poisson equation for both

x, y and r, z 2D symmetry. For the dipole magnet, r, z symmetry was used with the z

direction in the direction of the bending field and r direction in the negative direction

of acceleration. This corresponds to a cylindrical coordinate system in which the

charged particle moves along the 0 direction inside the magnet.

In order to begin iterating upon a magnetic field design, a starting point was

needed. Before details of the beam were known, it was determined that a safe design

would use a relatively large aperture in order to accept many different sized beams.

A cross-sectional view of the initial dipole magnet design is shown in figure 4-1. The

dipole aperture was set to ±3 cm vertical and ±5 cm horizontal. While this large

aperture allowed for potentially large beams from the LINAC, the drawback came

with the required total current and current density in the coils. The dimensions of

the dipole yoke (the iron surrounding the coils) were created by attempting to balance

the magnetic flux through the inner and outer return. The purpose of this balance

was to maintain a central field which was as symmetric and uniform as possible about

the beam centerline. The yoke was also designed such that the iron would be below
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saturation near the outside edges of the magnet, and hence the magnetic field lines

would be well contained by the yoke.

The goal of the first 2D dipole design, 'BND1', was to achieve a central field

that could bend the 60.7 MeV electron beam at a radius of 30 cm. To calculate the

required field, we combine the Lorentz force with centripetal acceleration:

F, = mar (4.1)
V2

qvB = ym0 - (4.2)r

1 p(4B = - (4-3)0.300 qr

which gives the required magnetic field in kG for momentum in units of MeV/c, radius

in units cm, and charge in units relative to one electron charge. For the 60.7 MeV

electron beam, a magnetic field of 6.8 kG is required in the dipole magnet.

To achieve this central field, the BND1 design had a total current per coil equal

to 16.2 kiloAmp-turns. The unit of Amp-turns denotes the total current in Amps

required for the coil. Since the coil is wound using small conductor, the current in the

conductor times the number of turns will give the total current in Amp-turns (A-t).

With this first solution for the magnetic field complete, it was important to estimate

how practical the design would be. One of the most important considerations for

design feasibility is the current density required. Current density drives conductor

choice, and conductors were a limiting constraint on the magnet design.

Choice of Conductors Some simple yet important calculations were performed

in order to size the conductors for the BBGS dipole magnet. This process began

with assumptions regarding the maximum allowable current for different conductor

designs. These assumptions were drawn using both industry sources as well as the

organizational knowledge of PSFC engineers. For solid copper conductor with air-

cooling, the American Wire Gauge (AWG) tables for limiting currents in packed

motor windings were used (McGahee, 1998).

Estimates for maximum current densities for water-cooled hollow copper conduc-
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Table 4.1: Maximum current for several choices of conductor. American Wire Gauge

(AWG) numbers are derived from reference values for creating packed motor wind-

ings (McGahee, 1998). Hollow conductor is square with round hole.

Type OD [mm] ID [mm] Area [mm 2 ] Im. [A] Packing Jconj [A/mm2]

24 AWG 0.51 n/a 0.20 0.81 0.7 2.83
20 AWG 0.81 n/a 0.52 2.0 0.7 2.69

18 AWG 1.02 n/a 0.82 3.25 0.7 2.77
10 AWG 2.59 n/a 5.27 20.8 0.7 2.76
Hollow 4.0 2.5 11.1 88.7 0.69 3.84

Hollow 6.35 3.15 30.0 240 0.74 4.43

tor are hard to find in the literature. This is mostly because the maximum current

density is highly dependent on the water flow rate that can be achieved. However,

an approximate value for a reasonable current density is given by Tanabe (2005) to

be j = 10 A/mm2 . Based on the experience of Dr. Antaya, this was reduced to

approximately 8 A/mm2 .

These estimates were combined to create a reference table, shown in table 4.1,

which guided the design of all BBGS magnet coils. For example, the BND1 coil

is 50 mm wide and 75mm tall. Based on this coil area of 3750 mm2 , the current

density, Je0 n, is equal to 4.32 A/mm2 . This led to the selection of the 6.35 mm

(0.25 in) hollow copper conductor for the first revision of the BBGS dipole. While

this simplified analysis did not complete the dipole coil design, it was conservative

enough such that a more detailed analysis could be delayed until the design was more

complete.

3D Field Verification After developing a basic field design in 2D, each magnet

solution was verified using the Opera 3D TOSCA Magnetostatic code. This move to

three dimensions was important for several reasons. First, it created an extra check to

ensure errors were not made in developing the 2D field solution. Second, it allowed for

the characterization of coil and magnet end effects. Finally, 3D field models allowed

for beam transport in 3D, the benefits of which are described in section 3.4.

As always, the first step to creating a new and more complex model was to verify
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Figure 4-2: Comparison of central field region for Poisson and equivalent Opera model.

that the complex model agreed with the original model in the limiting case. This

meant creating an axially symmetric Opera 3D model of the dipole magnet and com-

paring the field results to those found using Poisson. The results of this analysis for

the BND1 geometry are shown in figure 4-2. The calculations for the central field of

the BND1 model agreed within 0.01% for peak fields and 0.05% point-wise. Based on

the element size and field gradients, these differences are within the expected errors

of the finite element solution. However, it is important to note a marginal difference

between the definition of the Poisson and Opera models. In Poisson, the conductors

can be specified to lie exactly adjacent to the yoke. In Opera, conductors must be

defined such that they are completely within a region which contains no ferromag-

netic material. In practice this means that conductors in Opera must be defined with

a small (1 mm) gap between the conductor and the yoke. Since the magnet is an

iron-dominated magnet, these small differences in coil definition were not expected

or observed to have a significant effect on the calculated fields.

Once it was determined that the Opera solver was working correctly, a full 3D

model of the BND1 geometry was created.
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Field Analysis in 3D The ability to generate magnetic fields in 3D allowed for a

more detailed study of the coil design as well as higher order effects near the magnet

edges. For each design change, 3D beam transport results were compared with 1D

results. Discrepancies between the results were then investigated by probing the 3D

fields more carefully.

The progression of the BBGS dipole 3D magnet design is shown in figure 4-3.

There were 5 major design revisions for the BBGS dipole magnet, referred to as

BND1, BND2, ... BND5. Each design achieved the basic requirement for delivering

the electron beam to the converter plate, but as the design progressed efforts were

made to minimize both the power requirements and mass of the yoke and coils.

The primary design changes for each model are summarized below:

" BND1-BND2: Optimize yoke for field uniformity, minimize length of saddle

coils

" BND2-BND3: Minor revisions to coils and yoke

" BND3-BND4: Redesign with small aperture and racetrack coils. Performed

once beam parameters were known with more certainty.

" BND4-BND5: Coil adjustment to simplify winding and minimize power

In designs 1-3, the dipole had a wide aperture and saddle-shaped coils. The

reason for this was that the size of the electron beam was very uncertain in the

early stages of design. This very large aperture coupled with the requirement for

non-superconducting coils made it impossible to achieve the required fields without

using saddle-shaped coils. A downside to this design was that it was not possible to

include a straight-through beam port in the dipole, which would have made LINAC

diagnostics much more difficult.

Designs 4 and 5 created a more compact dipole which was designed to the exact

specifications of the LINAC electron beam. The final design uses racetrack coils which

allow for a straight-through beam port. It was possible to reduce the cross section of
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the coils due to the small pole gap, which was reduced to ±1.5 cm from ±3.0 cm, as

well as the reduced aperture width (down to ±3.75 cm from +5.0 cm).

BND1 Field Analysis The results of the 1D and 3D beam transport for BND1 are

shown in figure 4-4. From the beam transport, it was clear that higher order effects

were important in the BBGS transport. The x beam envelope was more uniform than

expected from ID simulations, and the y beam envelope was about 2x the width of

1D transport results.

The first step was to inspect the electron trajectories in order to understand how

they may differ from idealized results. As shown in figure 4-4 c, the fringing field of

BND1 acts at a significant distance from the magnet edge, resulting in a beam which

travels near the inside edge of the magnet aperture. To estimate how this affects the

beam phase space, it was important to examine the difference between the magnetic

field near the edge of the aperture and the theoretical field index n = 0 field assumed

in 1D calculations.

A plot of the magnetic field across the magnet aperture evaluated at the center of

the magnet is shown in figure 4-5. Clearly, in the range r = [25, 28] cm the magnetic

field is not a uniform field in r. One way to measure the non-uniformity is the field

index, introduced in chapter 3:

n = (4.4)
B, Or

Evaluating the field index at x = 26 cm gives n ~ -2.0. Recall the equation of

motion for the z (or y in Cartesian coordinates) direction:

d2 +n =0 (4.5)dS2  r0

Where S is the path length traveled in the magnet and ro is the bending radius.

Since here n < 0, rather than being sinusoidal the solutions to the equation will be
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Figure 4-3: Evolution of dipole magnet design.

80

20, 20



10-

-5

L0

-10 -5 0 5 10 15i
X [mm]

(a) pybeamid

21/Apr/2011 20:08:37

Map contours: X
-5.308154E+001

-5.500006E+601

5.60000E+001

-5.700000E+001

-5.800000E+001

-5.900000E+001

-6.00000 001

-6.095260E+001
tegral= -5.741707E+003

-70

X [mmj

(b) Opera 3D

x

40

I

BOOTS
L-ngth an
Ma mt Dnsty gu
Magn~k oers"td
MantcalarPat corsteda
Mop *teor Pat gauss an

Elec Fux Dnsy C an-
ElRidK Van'
ConuIt"ty saw
Current Donty A on*
Pow W
Force N
Enrgy J
MISS 9

s DATA
BMzDdloF ep3
TOSCA Magntostant
Noniner materw
!mdian No I of I
1374024 alm at

36nnodes
24 awdom
Nodaily intepolaed Rieid
Actiated I doa coordnate
Reflectionin YZ planCC ild-0)
Reaectionin xpae (Z+x eldq-0)
HedPointLocalCaerdinates
Odg 0.0, 0.0. -42.42641
Angls: #- 0.0, 6- 4S.0, V- 0.0

FIELD EVALUATOES
CartesianCARTESIANI0xIO Carted

x-81.2 y-6.0-5.O
tos.0 S.0

(c) Opera beam simulation

Figure 4-4: Comparison of beam envelope for BND1. Differences hypothesized to be
a result of the non-ideal beam path.

81

E E

-



6.0

-5.6

x( 5.4

U-

5.2

Radial Position [cm]

Figure 4-5: Magnetic field across dipole aperture evaluated at the magnet center.

exponential in the form:

S S
y(S) = a exp V-r- + bexp - -- (4.6)

Solving for y(O) = yo and y'(0) = y' and substituting S = r0 0, this gives a =
10

I(Yo + Ly6) and b = I(yo - 1y'). The new transfer matrix for the y direction for a

dipole with negative field index is given by:

cosh EO 1- sinh E6 0

MD,Y = g sinh 0 cosh 6 0 (4.7)

0 0 1

where here E = V/Zi and sinh, cosh are the hyperbolic sine and hyperbolic cosine

functions.

The transfer matrix for a negative field index was implemented in the pybeamid

matrix code and the results were compared to those from Opera. Since the electron

trajectory is in a high field gradient only in the central region of the dipole, the

n = -2 index is only used for a section 9 = 7r/8 within the pybeamid code. A
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Figure 4-6: Phase space for 3D transport and 1D transport with adjusted field index.

comparison of the phase space for each case is shown in figure 4-6. While there were

still differences between the 1D and 3D phase space, this analysis showed that much

of the non-ideality in the 3D transport resulted from the field gradient near the inside

edge of the magnet aperture. This raised some concerns about how confident we

could be with the results, since the magnetic field errors in a finite element solution

are highest where the field gradients are also high. This meant that it would be ideal

in future iterations to shift the beam transport as close to the center of the magnet

aperture as possible.

BND2 and BND3 Field Analysis The primary driver for the changes between

BND1 and BND2 was to shift the electron beam transport such that the beam would

remain closer to the center of the magnet aperture where the field is known with

better accuracy. Once more information was learned about magnet windings and the

minimum bending radius of the conductors, the coil geometry was modified to be as

compact as possible. It was predicted that this modification in coil geometry would

reduce the extent of the fringing fields and hence shift the electron transport towards

the center of the aperture.

However, the results of the analysis for BND2 were nearly identical to BND1 (and

hence are not repeated here). In order to 'investigate why this may be, the fringing
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fields were compared between the two models. As shown in figure 4-7, a calculation

of the effective length of the bending magnets gives nearly identical results. The

effective length is given by:

Seff + By dl (4.8)
Bo

The effective length of the magnet extended approximately 4.8 cm beyond the magnet

edge for BND2 and 5.5 cm beyond for BND1. This gave a total effective length of

the magnets which was approximately 20% longer than the yoke.

One proposed solution to shifting the beam transport was to shift the dipole

magnet in the beam-line such that the electron beam enters the fringing field approx-

imately 1.5 cm to the right of the aperture center. This was explored using BND3,

and it was found that this could indeed bring the 3D transport results back in agree-

ment with ID transport. There were a few reasons why this did not resolve the dipole

design. First, detailed knowledge of the beam size gave the opportunity to reduce

the total size and power of the dipole magnet. Another reason for opting not to

shift the beam was that the fringing field could be significantly altered by field errors

introduced in the yoke manufacturing and coil winding process. It was determined
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that in order to be robust, the design should not rely heavily on higher order field

effects.

BND4 and BND5 Field Analysis Since the only difference between BND4 and

BND5 was a small change in coil geometry, the field analysis and beam transport

results were nearly identical. Hence, only the results for BND5 are presented here.

The 3D beam transport results for BND5 were presented in section 3.4. As a

reminder, the beam cross section at the converter plate for 1D and 3D simulations

are shown in figure 4-8. Here the beam trajectory remained directly in the center of

the magnet. The reason for this is that the effective length of the BND5 was only 1.8

cm beyond the magnet edge, where for the BND1 and BND2 design it was of order

5 cm. Since the beam trajectory was close to ideal and the field index was n ~ 0

at the aperture center, the x phase space average parameters agreed within ±10%.

However, the y phase space parameters were quite different in the 1D and 3D models.

The maximum extent of the 1D beam at the converter plate was approximately

5 mm, while the extent of the 3D beam was about 2.5 mm. While this difference

was not particularly important with respect to the generation of photons, it was still

important to understand what caused this difference.

Since the primary driver for y transport is the field as a result of the magnet edge,
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the 3D fields were explored to investigate how they differ from the simple assumptions

of the 1D code. The approach to exploring the fringe fields was to perform a multipole

analysis of the y focusing fields.

The idea of a multipole analysis is a popular tool for field design (Reiser, 1994).

By ignoring field variations along the direction of the trajectory, the vector potential

in z (and hence fields in x and y) can be written in the form:

00

A = rm sin m# (4.9)
m=O

It can be shown that this form must satisfy Maxwell's equations. By performing a

multipole analysis of the focusing fields along the magnet trajectory, it was possible

to extract the quadrupole (m = 2) component of the fields and use this component

to approximate the y focusing in 1D.

As shown in figure 4-9, the Bx fields were evaluated along a circular path with

constant radius for #= [0, 21r]. The goal of this analysis was to extract the multipole

components as a function of distance from the magnet edge, then create an equivalent

1D quadrupole focusing magnet that could represent the dipole edge. The B, fields

were evaluated from -2.0 to 7.5 cm with respect to the edge and are shown in figure 4-

10.

A Fourier transform of the magnet fields gave the multipole components of the

field. It can be shown that for a pure quadrupole (m 2), the transverse magnetic

field holding r constant will vary as sin no where n = m - 1. Hence, the Fourier

component which represents the quadrupole moment is n = 1. The magnitude of

the quadrupole component of the field (normalized to BO) is plotted as a function of

distance from the magnet edge in figure 4-11.

The effective quadrupole of the dipole edge was represented in pybeamid using
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the transfer matrix given by the TRANSPORT manual (Sta, 1972):

cosh kqS - sinh kqS
kq

kq sinh kq S

0

0

cosh kqS

0

0 -

0 0

0 0

cos kqS sin kqS

kqsin kqS cos kqS

where S is the effective length of the quadrupole and

k2=Ba 1
q a Boro

where Ba is the peak field of the quad evaluated at its radius a, and r0 B0 is the

particle rigidity.

Using the results for BND5 gives a quadrupole magnet defined by the following

parameters:

a = 0.75 cm, Ba = 1138 G,

which gives kq = 0.089. This quadrupole was implemented in pybeamid by assuming
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the edge fields act just outside the effective edge of the dipole magnet. The results

for the effective quadrupole in ID are compared to those from Opera in figure 4-12.

The pybeamid analysis including quadrupole edges gave a maximum beam enve-

lope in x and y within ±5% of the Opera results. While there were still higher order

effects in play that the 1D transport did not capture, it was determined that the

answers in 1D and 3D had converged enough to confirm the design and move forward

with the procurement of the dipole magnet components.

4.2 Steering Magnets

The design of the BBGS steering magnets was one of the most challenging parts of the

entire system design. The primary constraint on the steering magnets was that they

be contained within the 22 cm region between the image slit system and the converter

plates. Since this is a relatively small area to work with, it was first assumed that a

combined function steering magnet would be the most efficient solution. After several

failed attempts to design such a magnet, a design for two independent magnets was

settled upon.

The progression of steering magnet design concepts is shown in figure 4-13. For

clarity, magnets labeled with a number in this figure are referred to as 'STR' for

90



steering followed by the number, eg. STR2. The goal of this discussion is to walk

through each step in the design progression, showing how each design was eliminated.

For all design iterations, the geometry outlined in figure 4-14 is referenced, where L

is the effective magnet length, R is the bending radius of the magnet, and 0 is the

required deflection angle. This gives a minimum aperture width, 6:

j =L COS 1+w (4.12)
sin 2

where w is a term added to account for the width of the beam and vacuum pipe.

STR1 Field Analysis One of the simplest ways to make two-axis steering magnet

is to wind resistive coils around a rectangular frame, as shown in figure 4-15. Assuming

that such a magnet could take L = 16 cm of the available 22 cm (accounting for coil

returns and flanges), the minimum STR1 half-aperture would be (J., 5,) = (2.4,0.8),

plus approximately 1.5 cm for beam width and vacuum pipe. This gives aperture

dimensions wa = ±4 cm and ha = ±2.5 cm.

Figure 4-16 shows a scoping calculation for a steering magnet design with these

dimensions. The goal was to achieve fields B. = 3.26 kG for x steering and B. = 1.10

kG for y steering. For the coils shown, the current density reached 36 A/mm2 in

the x coils and 11.3 A/mm2 in the y coils: well above the limits for any of the

conductors available for the BBGS. Reducing the current densities to those achievable

by simple resistive windings would require an increase in coil width of approximately

900% in the x coils and 300% in the y coils. This would in-turn require a wider

total aperture and more current, which would then push the coils out further. It

was determined through several iterations that the steering magnet would grow to

impractical proportions before it would be possible to achieve the required fields for

steering. Hence, this design was put aside before moving to 3D calculations.

STR2 Field Analysis The second steering magnet design adopted similar geom-

etry to that of the BBGS BND1. The idea was to use water-cooled resistive coils

similar to those in the dipole, but to incorporate both x and y steering into one mag-
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Figure 4-13: Evolution of steering magnet design. Magnets 1 through 4 are shown
with cross-sectional view in xy plane. Magnet system 5 shows two independent mag-
nets, cross section of the xz plane.
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5

Magnet Boundary

Figure 4-14: Basic steering magnet geometry used in the design process.

y-steering coils iron yoke

x

x-steering coils

Figure 4-15: Cross-sectional view of version 1 dual-axis steering magnet design. Coils
are wound into the page (beam direction) and wrap around yoke.

(a) x steering

Figure 4-16: Version 1 steering magnet field calculations from Poisson for x and y
steering independently.
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Figure 4-17: Version 2 steering magnet face with 3D coil geometry. Coil returns use

much of the magnet length, similar to the BND1 coil design. Only one of two x and

one of two y coil ends shown.

net. A schematic of this design layout and the proposed coil geometry is shown in

figure 4-17. As before, the design of this magnet was an iterative process in which

the coil area was incrementally increased until the desired maximum fields in x and

y could be achieved. This involved separate calculations for each steering direction,

as depicted in figure 4-18.

As the magnet grew through iterations, it became clear that such a design would

not be feasible in the space allowed for the steering magnet. This was primarily due

(a) x steering (b) y steering

Figure 4-18: Version 2 steering magnet field calculations.
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to the complicated coil return geometry, which would require approximately 15 cm

of the 22 cm allocated for the steering magnets. This number only increases as the

effective magnet length decreases, since with short length came higher current and

larger coils. Hence, the STR2 design was put to rest.

STR3 and STR4 After weeks of iteration, it became necessary to begin brain-

storming and testing other possible designs for the combined steering magnet. During

this brainstorming period, decisions on feasibility needed to be performed quickly in

order to keep the project on schedule. Steering magnets 3 and 4 are examples of

designs which were rejected early in the process, but they are included here to show

the types of alternatives considered before the final design was settled upon.

The idea for the STR3 design came from a literature review which turned up a

paper by Benaroya and Ramler (1961) on the design of a cylindrically symmetric

motor-stator type steering magnet used for deflecting deuteron beams. This design

used a sinusoidal winding scheme in 4 coils to achieve uniform fields for steering.

The design was used to adjust a 21.6 MeV deuteron beam up to an angle 0 = 10.

The magnet was created from resistive copper wire and water cooled only from the

outside.

The momentum of a 21.6 MeV deuteron beam is approximately 285 MeV/c. This

is approximately 4.7 times that of the electron beam. This means that for the same

current and field, the magnet could deflect the BBGS electron beam at a radius

re -. Using the geometry from figure 4-14, sin 0= L/R, and hence:

Ire4. Le L.7
4.7 Le _ Ld (4.13)
sin e sinOd

Since the magnet in Benaroya and Ramler (1961) had an effective length Ld = 29 cm,

this gives a deflection angle for a hypothetical BBGS copy of the magnet 9e ~ 2.90.

This means that the current would need to be increased or the basic design would

need to be modified significantly in order to achieve the steering required for the

BBGS.
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While there were many benefits to this design, the downside to the design was that

it used a fairly complex winding scheme, and that the already-engineered solution was

too far from BBGS specifications to take for granted. It would have taken a significant

effort in both field modeling and 3D design to complete the motor-stator type design,

so the design was abandoned and left as a possible alternative for future iterations of

the ISIS system.

Another steering magnet design which was investigated but quickly abandoned

was that of STR4. The idea was to create a straightened version of the BBGS dipole

magnet, and then to physically rotate that magnet around the beam axis in order to

achieve steering in both x and y. Although the magnet design would have been quite

simple, the STR4 design was rejected due to the complexity involved with rotating a

heavy magnet that is under vacuum. Nevertheless, it may be useful to revisit such a

design option in the future.

STR5 Field Design After nearly 10 rejected design iterations for a combined-

function steering magnet, it was clear that a new strategy was necessary for packing

the BBGS steering function into the 22 cm region available. Since the primary diffi-

culty with achieving both x and y steering in a combined magnet was that the gap

sizes grew too quickly, it was determined that separating the magnets could help to

reduce required gap sizes and make the design feasible.

The design of two independent magnets proceeded by first determining which

magnet should come first in the beam line. To do this, the geometry outlined in

figure 4-19 was used. The goal was to estimate whether power could be saved by

placing one magnet first instead of the other. It was assumed that power scales

approximately linearly with the field required and the pole gap, G, of the magnet.

Of the 22 cm available, the x magnet was assigned 10 cm and the y magnet 8 cm.

This allowed 4 cm of extra room to account for parts of the coils which would not be

included in the effective magnet length.

Using these numbers, the parameters in table 4.2 were calculated. The last num-

ber in the table represents the relative power increase required to place the steering
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Table 4.2: Sizing of the independent steering magnets. G1 /G 2 denotes the pole gap
if the magnet is placed first/second. P denotes estimated power. w is the tolerance
added, which is the beam width (in x or y) plus 0.5 cm.

6 L [cm] w [cm] 6 [cm] G1 [cm] G2 [cm] 1/R [cm- 1] P2/P1

X 150 10 1.5 1.45 1.0 2.45 0.026 2.22
Y 50 8 1.0 0.5 1.5 5.90 0.011 4.88

magnet second in the beam line. For the x magnet, the power was approximately

doubled. For the y magnet, close to 5 times the power was estimated to be required.

The 1/R term compares the relative power required for each magnet. From this cal-

culation, the x magnet power was approximately double that of the y magnet. To

understand what this means for magnet placement, take the x magnet power when

it comes first to be Px. This means that placing the x magnet second will cost about

1.2 P,, but will save approximately (0.011/0.026)3.88P, ~ 1.6P2. This would suggest

that placing the y magnet first would save some power. However, since this estimate

was so rough, it was determined that the total power requirements for the steering

magnets would be approximately the same no matter which came first.

Since power requirements alone could not determine which magnet to place first,

other factors were considered. First, the mechanical rotation of the collimator and

target were considered. Since in the x direction there needs to be 3 times the rotation,

it would be beneficial to have the x pivot point as close to the target as possible to

minimize lateral travel of the collimator tip. Second, the effects of magnetic field non-

uniformity in the direction of the pole gap were considered. Since the second steering

magnet will be steering a beam which is off-center from the magnet axis in the pole

gap direction, it would be beneficial to minimize any non-uniformity. This leads to

a conclusion that a smaller gap is preferred, and hence the x steering magnet should

be placed second. From these considerations coupled with the power requirement

calculations, it was determined that the beam would encounter the y steering magnet

first, and then the x steering second.

The final designs for the x and y steering magnets are shown in figure 4-20. The

coils for STR5 were originally designed with room for only 3 conductors horizontally.
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G2=51+L2 tan 0

L2

R

Figure 4-19: Geometry used to determine the minimum gap height (G2 ) of the second
steering magnet.

Figure 4-20: STR5x and STR5y final designs. y magnet is on the left, x on the right:
beam travels left to right.
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Figure 4-21: Opera model of the entire beam-line.

However, this would have meant that the inlet and outlet current leads could not exit

the magnet from the same location. Hence, rather than deal with field errors, the

coils where increased to be 4 conductors wide. The steering magnets use the same

conductors as the dipole magnet. This allows for water cooling and also made the

purchasing of conductors for the BBGS more straight-forward.

Once the 2D magnet design was complete, it was important to verify the fields and

electron transport in 3D. While hand-calculations could estimate the effects of beam

width and energy variance on the required aperture sizes, only a full 3D calculation

could show them for the real beam from AES. For this purpose, an Opera 3D model

was created which contained all three magnets (BND5, STR5y, STR5x) and the AES

Parmela beam was transported through the field solution for all three beam energies.

The results of this analysis are depicted in figures 4-21 and 4-22.

The 3D simulations showed that it was possible for the steering magnets to achieve

effective steering angles of ±15/5* horizontal/vertical. Since the magnets operate

outside of their central field regions where field gradients are large, the simulated

phase space at the converter plates may not be as certain as that from the only

the dipole transport. However, since there was convergence of the beam envelope for
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smaller integration steps and mesh size, it was reasonable to base the steering magnet

design on only 3D transport simulations.
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Chapter 5

Engineering Design

Since the BBGS is a part of a practical engineering system and not just a bench-

top experiment, it was important to ensure that the idealized 3D magnet design from

field calculations could actually be converted into a practical engineering system. This

meant making decisions on power supplies, coil windings, and water cooling patterns

which would allow the BBGS to be fully integrated into the ISIS design.

The calculations performed in this chapter may be the most important for the

system engineers who must interface and operate the BBGS.

5.1 Power Calculations

Each magnet in the BBGS system requires an independent power supply for operation.

To specify each power supply, an equivalent circuit was generated for each magnet as

shown in figure 5-1. The magnets were treated as a resistor and inductor in series.

For each magnet, the maximum current was known to be approximately 200 A. To

R L

Figure 5-1: Simplified equivalent circuit for an electromagnet in the BBGS: a resistor
and inductor in series.
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Table 5.1: Conductor resistance calculation

Constant Value Units
Resistivity, Pcu 1.77 x 10-6 Ohm-cm
Inner Diameter 3.15 mm

Conductor Width 6.35 mm
Total Area 0.403 cm 2

Flow Area 0.078 cm 2

Copper Area 0.325 cm2

Resistance/length, r, 5.44 x 106 Ohm/cm

calculate the resistance of the coils, the following equation was used:

Rconi = nLaveri (5.1)

where n is the number of turns in the coil, Lave is the average length per turn, and r,

is the resistance per unit length, given by:

ri = pcu/A (5.2)

where Pcu is the resistivity of Copper and A is the cross-sectional area of the conduc-

tor. For these calculations, a resistivity equal to 1.77 x 10-6 Ohm-cm was used. A

calculation of the conductor resistance per unit length is shown in table 5.1

For each magnet, it was assumed that the power source would supply 200 A to

the coils and that for one magnet both coils would be wired in series. This means

that the total power for each magnet is given by:

P = 12Rtotai

and the voltage of the power supply should be:

V = P/I

(5.3)

(5.4)
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Table 5.2: Final magnet specifications

Constant Units BND5 STR5x STR5y
Conductors Wide - 7 4 4

Conductors Tall - 6 12 7
n turns/coil - 42 48 28

Number coils - 2 2 2

Lave coil cm 119.4 38.6 21.5
Total Length m 100.3 37.1 12.0

Resistance Ohm 5.46 x 10-2 2.02 x 10-2 6.55 x 10-3

Current Amp 200 200 200
Voltage Volt 10.9 4.0 1.31
Power kW 2.18 0.807 0.262

Stored Energy Joule 271.8 64.5 6.70
Total Current Amp-turns 16800 19200 11200

Inductance Henry 1.93 x 10-6 3.5 x 10- 7  1.07 x 10-7

Finally, the inductance (L) of each magnet was calculated using the formula:

L = Estorea
It (5.5)

where Estored is the total stored energy in the magnet and It is the total current of the

magnet in Amp-turns (note: total, not per coil). The energy stored in each magnet

was found by performing a the volume integral:

Estred H -BdV (5.6)

This integral was performed in Opera 3D using the volume integral tool.

A summary of these calculations for the three final BBGS magnets is shown in

table 5.2.

5.2 Magnet Cooling

The ISIS BBGS system has several components which generate enough heat to require

cooling beyond the built-in environmental cooling provided within the ISO container.

In order to ensure that the BBGS cooling requirements are met, an independent
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cooling system which provides chilled water to all BBGS components was designed.

This cooling system may either be run independently, or incorporated into a larger

cooling system for the entire ISIS system.

5.2.1 Basic Design

Designing the cooling system was an iterative process which began with the selection

of a reasonable operating pressure drop and temperature rise across individual com-

ponents. To begin, a pressure drop of 20 psi and maximum temperature rise of 20*C

were selected as reasonable operating conditions.

Next, scoping calculations were performed for each component to determine how

many cooling loops per coil would achieve the stated pressure and temperature goals.

For these calculations, the properties of 20*C water were used and assumed to be con-

stant with changes in temperature. For water flow through smooth pipes of diameter

D, the relationship used for the pressure drop, AP, was:

AP _ 8pfLQ 2  (5.7)

where L is the length of the pipe, Q is the volumetric flow rate, p is the density and

f is the friction factor, given by:

f = 0.184Re-o 2  (5.8)

where Re is the Reynold's number,

Re = 4pQ (5.9)rpD

and the flow is assumed to be turbulent. For a derivation of these equations, see To-

dreas and Kazimi (1990).

The results of a preliminary model of the flow are shown in figure 5-2. The

conclusions drawn from these figures are that the dipole should operate at about 3

cooling loops per coil, the X-steering magnet at one loop per coil, and the Y-steering
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Figure 5-2: Cooling parameters based on individual components

magnet on only one loop for the entire magnet. Reducing the number of loops in

each of the smaller magnets gives a higher outlet temperature of the water, but it

also reduces the flow rate required for the same pressure drop, so it makes sense to

do so as much as possible.

As a simple approximation of the BBGS cooling system, each component was

placed into a simple parallel circuit as shown in figure 5-3. This allowed for a compu-

tation of flow rate and outlet temperatures without non-linear iterations. The results

of this calculation are shown in table 5.3.
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Dipole Y Steering X Steering

QO Q6 Q7
Q1 Q8

Q2
Q3 Legend

AP = 20 psi 4 Q5- Common Node
Pipe

Figure 5-3: Simplified cooling system layout.

Table 5.3: Cooling parameters for components in parallel, 20 psi pressure drop.

Component n loops AP [psi] Q [gpm/loop] AT [*C]
Dipole 6 20.0 0.141 9.65

Y Steer 1 20.0 0.17 6.39
X Steer 2 20.0 0.137 11.8
Total 20.0 1.29 9.67

5.2.2 BBGS Non-linear System Model

The issue with the model described above is that it does not accurately represent

the flow path of a practical system, and hence may give errors in actual flow rates

and pressure drops. Such a system requires serial distribution lines which may effect

the flow rates provided to each individual component. A more realistic model for the

BBGS cooling distribution is shown in figure 5-4. In order to solve this and potentially

more complex systems in the future, a non-linear solving code was developed.

The solver uses a system of linearized equations for the volumetric flow rate. A

matrix equation in the form:

AQ = b (5.10)

is solved, where Q is a vector of flow rates along each individual pipe in the system.

The matrix A and vector b are built from a combination of flow conservation equations

at each node as well as pressure conservation equations around each loop within the
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Figure 5-4: Modified cooling system layout.

system. In these equations, the pressure drop across each pipe is related to the flow

rate by:

AP = KQ (5.11)

where K is given by the sum of two components: K1 , the resistance from lengths

of pipe, and K 2, the combined resistance from turns, diameter reduction, and other

components in the loop. To find K 1, equations 5.7 through 5.9 were combined, which

gives:

K, -- 0.184 * 8 p0 8p0 .2LQ 0 8  (5.12)
40.2 ir'-8D4 .8

and for a pipe with nt resistive components,

K = kjL Q 2(5.13)

i=1 2Qr

where ki is the form loss coefficent for the component, a factor determined by Todreas

and Kazimi (1990) to be of order 0.5 for 90* bends in pipe.

To solve for the flow rate, the matrix equation is solved and iterated upon using

an updating strategy which incorporates both the old and new values for Q:1

Qnew = QO0-5 x QOi55  (5.14)
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Following this procedure, the matrices corresponding to the system described in

figure 5-4 are shown below:

[[ A J] [ Q ] [b ]
[ 1. -1.-1-1- . 1. -1. -1. 0. 0. 0. 0. 0. 0. 0. 0.] [Qo I [0 1
[0. 0. . 0. O. 0. 0. 1. -1, -1. 0. 0. 0. 0. 0. 0.1 [Q1] [0 ]

0. 0. 0. 0. 0. 0. 0. 0. 0. 1. -1. -1. -1. 0. 0. 0.1 [Q2 0 [ 3
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. -1. 0. 0.) [Q3 [0

[0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. -1. 0.1 Q4 [0]
0. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 1. -1.] [Q5 1 [0 1

[ 9. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9.] [Q6 I [dP]
9. 0. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9.1 [Q7 ] = [dP
9. 0. 0. 9. 0. 0. 0. O. 0. 0. 0. 0. 0. 0. 0. 9.] [Q8 ] [dP]

[ 9. 0. 0. 0. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9.] [Q9 j [dPj

9. 0. 0. 0. 0. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9.] [Q10] [dPI
9. 0. 0. 0. 0. 0. 9. 0. 0. 0. 0. 0. 0. 0. 0. 9.] [Q111 [dP]
9. 0. 0. 0. 0. 0. 0. 9. 9. 0. 0. 0. 0. 0. 9. 9.1 [Q12] [dP]

9. 0. 0. 0. 0. 0. 0. 9. 0. 9. 9. 0. 0. 9. 9. 9.] [Q13] [dP]

9. 0. 0. 0. 0. 0. 0. 9. 0. 9. 0. 9. 0. 9. 9. 9.] [Q141 [dP]

9. 0. 0. 0. 0. 0. 0. 9. 0. 9. 0. 0. 9. 9. - 9. 9.] [Q15] [dP]

where in the matrix A above, each 9 represents a placeholder for the calculated value

of K for the pipe corresponding to the column number. These values are updated

during each time step using the flow rates obtained in the previous time step.

A first calculation was performed without the converter plates in order to see

the difference between the simplified and more complex model. The results of this

calculation are shown in table 5.4 and figure 5-5.

Table 5.4: Cooling parameters for components
psi system pressure drop.

Component
Dipole
Y Steer
X Steer
Total

n loops
6
1
2

AP [psi]
18.56
18.52
18.51
20.0

within the complex system layout, 20

Q [gpm/loop] I AT [*C]
0.126
0.121
0.109
1.10

10.66
9.00
14.89
11.27

Combined Magnet and Converter Plate Cooling Since the converter plate

assembly and collimator were estimated to require close to 5 kW of cooling, it was

decided that the magnets and the converter should be cooled in parallel systems rather

'This acceleration strategy was adopted from Gupta and Prasad (2000). Without acceleration,
solutions are highly dependent on the initial guess for Q and often oscillate without convergence.
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System Pressure Drop [psi)

Figure 5-5: Flow rate vs applied pressure drop for total system, excluding converter
plates.

than attaching the converter cooling to the end of the magnet cooling loop. This new

system layout is depicted in figure 5-6, where BBGS 1 represents the subsystem of

all magnets and BBGS 2 represents the converter assembly.

The design goal for this new system layout was to achieve a rise in water temper-

ature of no more than 10*C over any component while also balancing the flow such

that no component has a significantly higher flow rate than required. For the BBGS

2 subsystem, it was assumed that the components would be cooled using lengths of

the same hollow copper conductor used by the BBGS magnets. The subsystems were

assumed to be supplied by a large diameter (2 in) pipe such that the pressure drop

along the distribution lines was negligible.

The results of this analysis are shown in table 5.5. The total system requires a

pressure drop of approximately 40 psi and flow rate of 6.2 gpm from the chiller. In

addition to providing this number as a requirement, the system curves for both the

BBGS 1 and BBGS 2 subsystems are provided in figure 5-7. These curves should be

used by Raytheon systems engineers to incorporate the BBGS into the ISIS cooling

system.
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(a) Total System
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(b) BBGS 1
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Figure 5-6: Simplified diagram of cooling system and subsystems. BBGS 1 includes
all magnets, BBGS 2 includes converter plate, beam window, and collimator.
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Figure 5-7: System curves for the BBGS 1 and BBGS 2 cooling subsystems.
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Table 5.5: Cooling parameters for components within the final system layout, 40 psi
system pressure drop.

Component n loops Flow [gpm/loop] Qtotai [gpm] Power [kW] AT [*C]
Dipole 6 0.192 1.15 2.150 7.00

Y Steer 1 0.182 0.182 0.290 5.99
X Steer 2 0.160 0.328 0.850 9.85

Beam Window 1 0.5 0.5 0.1 0.72
Converter 4 0.614 2.46 4.50 6.94
Collimator 1 0.5 0.5 0.3 2.17

5.3 Converter Plate Water Cooling

Before settling upon a final design for the water cooling system, it was necessary to

study the water cooling of the converter plate assembly in more detail. The reason

for this is that unlike in the magnets, the heat is generated with high density far from

the water cooled region. Hence, even with water cooling established, the temperature

within the converter plates could reach unsuitable levels.

A basic thermal analysis of the BBGS photon converter plate assembly was con-

ducted using the Opera 3D Poisson equation solver. The mathematical equivalence

of electrostatic problems to steady-state heat conduction was used to complete a 3D

heat analysis without employing new software.

5.3.1 Steady-State Heat Diffusion in Opera 3D

To save the time and hassle of building or learning a new code for this important

but simple task, the thermal analysis of the converter plates was completed using

the Opera 3D Electrostatics solver. The form of the differential equation for heat

conduction is the same as that for electrostatic fields. Apart from constants, the

two problems have the same mathematical solution, as will be demonstrated in the

following section.

Theory The Opera 3D Electrostatics solver is a finite-element code designed to solve

Maxwell's equations for the electric field in the limit where =- 0. This code solves
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Poisson's equation for the electric potential, which can be derived from Maxwell's

equations. Starting from Gauss' law:

V -E =_ P (5.15)

Now we write E as the gradient of some potential:

E = -V4 (5.16)

We can see immediately that this formulation satisfies Faraday's Law of Induction

with the steady state assumption:

V x E -- = =0 (5.17)

since, by definition:

V x (-V4) = 0 (5.18)

Plugging in to equation 5.15, we find:

- V 2 
- (5.19)

which is Poisson's equation for the electric potential.

The derivation of Poisson's equation for heat conduction follows from the conser-

vation of thermal energy. Starting with an integral balance of thermal energy, heat

flux, and volumetric sources, we write:

- ETdV = q -fidS +f sdV (5.20)

where c is the volumetric specific heat, T is temperature, q is the heat flux, i is the

normal vector to the surface, and s is the volumetric heat generation rate. Assuming

steady state (I = 0) and applying Green's theorem to the surface integral of the heat
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flux:

V-qdV = - s dV (5.21)

V-q = -s (5.22)

Finally, given a linear relationship between the heat flux and the gradient in temper-

ature, where we assume the thermal conductivity is constant with temperature, we

find:

V -kVT -s (5.23)

(5.24)
k

Which is Poisson's equation for steady-state heat conduction.

The final step in relating electrostatics to steady state heat conduction is choosing

suitable units for comparison. In this analysis, the electric potential in Volts is treated

as the temperature in Celcius. The electric charge density in coulombs/cm3 is treated

as the heat generation rate in Watts/cm3 . Finally, since Opera requires that e be

specified in units of relative permittivity, the thermal conductivity k is specified in

Watts/(cm C) and then multiplied by the factor 88512. The Opera solution is

solved using the MKS system.

Basic Verification Before generating a detailed analysis of the BBGS converter

plates, it was important to benchmark the Opera solver using geometry for which

Poisson's equation for heat conduction could be solved analytically.

For this task, an infinite slab geometry was assumed. The slab was uniform and

infinite in the y and z directions, and extends to x = ±5 m. Within the region

x = ±0.5 m, a uniform heat generation rate of 10W/m 3 was applied. Throughout

the slab, a thermal conductivity k = 1.0 W/(m K) was assumed. The boundary

conditions of the problem specify the temperature at x = ±5 m to be 100'C.
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Using symmetry, the analytical solution for positive x gives:

T(x) = -5x 2 + 123.75 , 0 < x < 0.5m

T(x) = -5x + 125 , 0.5 < x < 5m

This results in a maximum temperature of 123.75*C at x = 0 and a constant heat

flux equal to 5 W/m 2 for x > 0.5 m, numbers which can be compared with the Opera

solution.

Implemented in Opera, the solution gives T.. 123.747*C and q = 5 t 10-6

W/m 2 for all x > 0.5 m. This agrees well with the hand-calculated analytical model.

5.3.2 Data Sources and Limitations

In order to generate a useful model of the converter plate heat transfer, it was im-

portant to first determine the material properties and volumetric heat generation in

the material.

The determination of the thermal conductivity of graphite was not straightfor-

ward, as graphite comes in many different forms and the heat transfer is highly

dependent on not only temperature but also the direction of heat flow. As a result,

several models were generated which present best and worst cases for the thermal con-

ductivity. The upper and lower bounds on the thermal conductivity were determined

using two papers, Lutcov et al. (1970) and Albers (2009).

To model the heat generation rate within the converter plates it was necessary

to make several assumptions about the electron transport through the plates. First,

it was important to approximate the proportion of the beam energy which is not

deposited in the graphite plates, as well as the maximum power density for each

beam. This was estimated using the NIST E-STAR database (NIST, 2010) for the

electron range and the radiation yield. Table 5.6 shows the numbers used to estimate

which beam would result in the highest power density in the converter plates. The

assumption of this calculation was that the energy would be deposited approximately

uniformly through the plate. The linear power density will not actually be uniform.
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Table 5.6: Estimation of linear power density for each beam energy

Energy [MeV] 60.7 30.6 6.2
Current [pA] 80.0 72.7 55.2

Power [W] 4900 2200 350
CSDA Range [g/cm 2] 26 15 3.5
Average Range [cm] 15.3 8.8 2.06

Radiative Yield 20% 12% 2.2%
Power Density [W/cm] 250 220 162

However, since the CSDA range is a concave down function of energy, the power

density for the BBGS will always be highest in the higher energy beam.

Since the distribution of power deposition inside the converter assembly was not

known with certainty, several models were used to estimate best and worst-case sce-

narios for beam power distribution. They are described in section which follows.

5.3.3 Models

A view of the basic model geometry used for calculations is shown in figure 5-8. In

this model, the green (1) outer region represents the 1020 steel frame, the purple (2)

region represents air, and the blue (3) region represents the high density graphite

converter plates. In all versions of the converter plate model, the ic boundaries are

-10

Figure 5-8: Isometric view of simplified converter assembly.

assumed to be held at a constant temperature of 40'C. This number was obtained
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by assuming that all of the heat generated is transferred through the side walls since

they will have water cooling plates attached. This also assumes that the walls are

cooled using 3.15 mm diameter tubes with a heat transfer coefficient determined by

the Dittus-Boelter correlation:

k
h - 0.023Re 8 Pr' 4  (5.25)

DH

where k is the thermal conductivity of water, DH is the diameter of the tubing, Re

is the Reynold's number, and Pr is the Prandtl number, given by:

Pr = /Cp (5.26)
k

where t is the viscosity and c, is the specific heat of water. For the other boundary

conditions in the model, a zero heat flux boundary was enforced. This is a worst-case

assumption which accounts for the fact that the magnitude of heat transfer through

the air-cooled boundaries will be much smaller than that through the water cooled

channels.

Since the material properties and energy deposition rates were uncertain, several

models were created for testing. In every model, the power in each converter plate

was distributed in a cylindrical region along the beam line with a radius of 0.5 cm.

The linear power distribution in the beam direction was varied between models to

test different scenarios. Model descriptions and the results for maximum temperature

in the graphite are shown in table 5.7.

Table 5.7: Model descriptions and results

2 Heat distributed in the beam direction using the results of Tabata et al. (1994) for electron
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Model Power Distribution k W/(cm K) Tm, [*C]
A Uniform 50.0 159
B Uniform 5.0 268
C Uniform 1.0 323
D Distributed 2  1.0 373
E Uniform 150% power density 1.0 384



The interpretation of the above results was dependent on what material tem-

perature limits would be important. The reaction of primary concern was that of

the oxidation of graphite in air, which through the results of Shemlet et al. (1994)

becomes important for temperatures greater than 500*C.

In the worst case modeled, a margin of 115*C was obtained. This margin may

not be sufficient to prevent rapid oxidation of the converter plates since the models

did not properly account for the non-linear behavior of thermal conductivity, and the

energy deposition rate within the sample plates is not well known. In addition, the

assumption of a constant temperature boundary of 40*C is highly dependent on the

simple heat transfer model assumed between the coolant and the converter assembly

wall.

In order to build a better model for the heat transfer in the BBGS converter plates,

it was important to determine more accurate estimates the energy deposition rate in

the material. This required the use of MCNPX for energy deposition calculations

in order to verify that the estimates for energy deposition rates were conservative

enough to model the worst case for heat transfer.

5.3.4 MCNPX Calculations

Although the MCPNX modeling of the converter plates and photon beam was tasked

to Raytheon, it was useful to create a simplified model which could be used as an

extra verification tool. A cross-sectional view of the MCNPX model for the BBGS

converter plates is shown in figure 5-9. The model is composed of four 'cells,' which

are used to specify unique regions in MCNPX. It has a geometry identical to that

used in the Opera 3d analysis, except there is a bounding box of air which extends

beyond the model by at least 20 cm in all directions.

In order to define an electron beam, the model used the MCNPX 'SDEF' card.

The SDEF card allows for the creation of a beam with one energy but a truncated

Gaussian distribution in space. The truncation is performed by defining a cell outside

which no particles may be generated. In the BBGS model, the source is limited to a

energy deposition in materials.
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0.5 cm wide by 0.2 cm tall box which is centered on the ideal beam centerline. This

represents an approximate rms beam envelope from the electron beam simulations.

All electrons generated travel in the forward beam direction since MCNPX does not

have built-in capability for creating beam divergence.

The primary function of this MCNPX model was to determine whether or not

the estimates for heat deposition rate in section 5.3.3 were overestimates or under-

estimates. If the heat deposition rate from MCNPX modeling was higher than the

worst-case previously modeled, then it would be necessary to run more detailed heat

simulations. Hence, the only tally performed in the MCNPX model was a mesh tally

which counted energy deposition rates throughout the carbon converter plates. The

mesh tally was performed over a 20 x 20 x 20 mesh which covered the 5.0 x 5.0 x 12.0

cm length of the carbon targets in the converter assembly. For simplicity, the 1mm

air regions between each converter plate were ignored. Simulations with 100000 par-

ticles were run for an electron energy of 60.67 MeV and a graphite density of both 2.1

g/cm3 and 1.7 g/cm3 . By running with different densities, it was possible to estimate

a maximum and minimum case for heat deposition on the converter plates.

The results of the MCNPX simulations are shown in table 5.8 and figure 5-10.

The MCNPX simulations gave insights into the true nature of the electron trans-

Table 5.8: MCNPX Energy Deposition Results

Model Density Total Power Peak Linear Power Est. Collimator Power

- [g/cm3 ] [W] [W/cm] [W]
A 1.7 3800 370 500
B 2.1 4300 450 100

port in the converter plates. Rather than being contained within a 1 cm diameter

tube, the energy is deposited in a cone shape which expands as the distance from

the first converter plate is increased. The maximum linear energy deposition rate

for 1.7 g/cm3 graphite was 370 W/cm, and it occurs approximately 3 cm into the

converter assembly. This maximum energy deposition was about the same as those

energy deposition rates modeled in Opera, and hence it was determined that further

simulations would not be necessary to validate the cooling design.
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Figure 5-11: Energy deposition rates evaluated for electrons in Graphite from ISIS
project technical lead, B. Blackburn. Graphite density used was 2.1 g/cms.

In order to verify the validity of the results from this analysis, the results were

compared to those of Brandon Blackburn of Raytheon, shown in figure 5-11. The

energy deposition curves did not agree exactly. Even though Blackburn used a con-

verter plate density which was 20% higher, the peak power density was slightly lower.

This was a bit concerning, but it was determined that since Blackburn had run sev-

eral simulations with many more particles and verified each with multiple checks, his

simulation was most likely a more accurate depiction of reality.

One reason which may help to account for the discrepancy between the two sim-

ulations was that the MCNPX simulations performed by the author may not have

handled the photon energy deposition correctly. Since there were no supercomputers

available, it was necessary to transport only the electrons and not the secondary pho-

tons. This means that the photon energy may have been assumed to be deposited

where it was generated - which would help to explain why the models in this thesis

were peaked closer to the first plate than those run by B. Blackburn.
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Simulation Sensitivity Since the heat conduction simulations relied on several ba-

sic assumptions about the heat transfer between the water and the converter assembly,

it was important to understand how sensitive the results were to these assumptions.

The thermal margin of 115*C is not significant unless its sensitivity to assumptions

is clearly defined.

To quantify the sensitivity of the thermal margin to assumptions about heat trans-

fer, the boundary temperature of the BBGS model E was increased from 40*C until

the maximum temperature of the solution reached 500*C. This corresponded to a

boundary temperature of 150*C. This means that the calculated heat transfer coef-

ficient between the water and the copper conductor could be as low as 30% of the

calculated value before the thermal limits of the converter plates are reached. The

Dittus-Boelter correlation, like any thermal hydraulic correlation, could not be as-

sumed to have more than ±20% accuracy. However, even this level of uncertainty

would not result in a temperature beyond the thermal margins.

Even with this analysis complete, it is important to note that the converter plate

thermal analysis remains quite uncertain. Every assumption in the analysis was meant

to be conservative, but there were many assumptions that could not be validated

independently. For example, the thermal conductivity of graphite was assumed to

be a worst-case based on data available in the literature and from the vendor, but

it is not clear if the graphite which arrives will have the same properties. This,

coupled with the uncertainties in the heat transfer correlations and water flow rate

calculations, could lead to undesirable results. Hence, it will be important to test

the BBGS converter assembly not only for its photon generation but also for its heat

transfer properties. It will also be prudent to plan for extra water cooling for the

converter plates in case it is needed.
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Chapter 6

Proposed Design Verification

The timing of the BBGS design and fabrication did not allow for the BBGS to be

tested as a part of this thesis project. However, a series of simulations and a testing

plan was created in order to facilitate future testing.

6.1 MIT Electron-Cyclotron Resonance Ion Source

Since the ISIS LINAC will not be immediately available once the BBGS is assem-

bled, the BBGS will be verified using an Electron-Cyclotron Resonance Ion Source

(ECRIS) which is being commissioned at MIT in Summer 2011. The ECR ion source

was designed by Armero (2010) as a part of a Master's thesis project and will be

commissioned and tested by Mark Artz as a part of his Master's work. A schematic

diagram of the ECRIS and its planned interface with the BBGS is shown in figure 6-1.

For testing the BBGS, the ion source will be used to generate H+ ions. Now, even

though the ISIS LINAC will use electrons, it will be possible to test the magnet at

similar operating conditions to those in ISIS. The reason for this is that the particle

momentum is given by:

p = VT 2 + 2TE. (6.1)

where T is the particle kinetic energy and Eo, is the rest mass energy. The ion source
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Figure 6-1: Schematic of the MIT ECRIS adapted from Armero (2010). The vacuum

flange will interface directly with the BBGS 6-way valve using a zero-length coupling.
Beam travels from the shaded region and exits left.

can accelerate protons to energies up to 30 keV, giving them a momentum of 7.5

Mev/c. Due to the mass difference between electrons and protons, an equivalent

momentum electron beam would have a kinetic energy of 7.01 MeV. Hence, even

though the ECR ion source emits protons, at high voltage it will produce particles

with momentum equivalent to electrons in the ISIS operating range of 6 to 60 MeV.

While the ion source will not allow for testing at full power, agreement between low

energy simulations and measurements should be sufficient to verify the transport

system operation.

6.2 ECRIS Beam Simulations

Beam simulations were performed in both 1D and 3D in order to prepare for the test-

ing of the BBGS with the ECRIS. To generate an initial beam, Mark Artz performed

a calculation of the ECRIS using the BEAM3D code (Antaya and Xie, 1987). The re-

sults of this simulation are shown in figure 6-2. The BEAM3D output files specify par-

ticle positions and velocities in the transverse and beam direction, (x, v, y, vY, z, v2).

Using the same methods outlined in chapter 3, these parameters were converted into
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equivalent parameters in the phase space (x, x', y, y', p).

The transport of the resulting 400 particle phase space was then simulated using

both the pybeamid and Opera 3D beam codes.

6.2.1 BBGS Without Space Charge

At first, the beam simulation was simplified by ignoring the effects of space charge in

both the ID and 3D simulations. Since the ECRIS would be running at low current

(2 mA), it was estimated that space charge would not be important. This assumption

will be tested in section 6.2.2.

For the 1D calculations, the dipole magnet was treated with a field index n = 0

and with edge quadrupole focusing elements. The parameters for the quadrupole were

determined using the same methods outlined in section 4.1, but for the new operating

current.

The results of the 1D and 3D calculations for the phase space evaluated at the

converter plates are shown in figure 6-3. Although it is not certain where emittance

measurements will be taken along the beam-line, these results give a reference and

could be quickly recalculated for different locations along the beam-line. Due to the

large initial divergence of the beam, the beam must be cut by the divergence slits. For

the simulations shown, the beam was cut at a radius of 2.5 mm by the first divergence

slit.

The Opera and pybeamid results for the ECRIS beam transport did not agree well,

except for maximum envelope parameters. This was because the ECRIS beam takes

up a significant portion of the dipole aperture, so Opera captures higher-order effects

which were not simulated in pybeamid. These effects could be represented using a

higher order (m > 2) field expansion near the dipole edges, but this calculation was

left for future work.

130



x
-

6-

2- + + +

4

2-

S + + +

4 +

-2- +

-44- + +

-6 4 " 4

-6 -4 -2 0 2 4 6
X [mm]

(a) Opera xx'

6- +4 +

4- ++

2- + + +
+ +. +

0 - +

-2- +- + .+ +

-4--4+

-6 
++

-4 -4 -2 0 2 4 6

(c) Opera yy'

+ 4 4-

4- 1

+ + + +

-2 4 - 4 +

4- ++4

-_6 -.4 -2 "0 2 4 6
X 1mm]

(e) Opera xy

2 *4 +

++2 
-

+ 444 + 2

0 
+

2- * +

-2 -40 +

(d) pybeamld yy'

-

+

+++ + ++

4--

2- f + + +

0-

+++2+ + +

-6 -4 -2 0 2 4 6

X [mm]

(b) pybeamid yx'

+ +4 ++

24 + -4 +

-2 0 +24-

X [MM]

(f)~4- 4.ea~dx

Figure 6-3: Comparison of Opera and pybeamld phase space at the converter plates for
2 mA ECRIS beam. The triangular beam in Opera xy is indicative of a second-order
aberration.

131

E6

(3

E3
E



6.2.2 BBGS Basic Space Charge Forces

In order to verify the assumption that space charge would not be important for the

2mA beam, as well as to facilitate the future transport of more intense test beams,

the pybeam1d code was modified to include basic integration of space charge forces.

Following from Antaya and Xie (1987), the electric field applied to a particle at beam

radius r due to space charge was assumed to be that of a cylindrically symmetric

beam with the total current of all the particles enclosed by r:

1 >j-
E,(r)= -* (6.2)

27KEoT vji

where I, is the current assigned to quasi-particle i and v, is the velocity of quasi-

particle i in the direction of the beam. Since it is not possible to simulate every

electron with charge e, each particle in the simulation is assigned an equal portion of

the total beam current, I.

Assuming a small displacement along the beam direction, AS, the extra compo-

nents to add to r become:

Ar = q 2 Er AS 2  (6.3)
2 mv2

and for r':

Ar' = E, AS (6.4)
mv

While this is not a robust or efficient integration scheme, the step size AS was reduced

until the results for different step sizes converged. It should be noted that this was

meant to be a quick calculation, and hence could certainly be improved in the future.

The space charge integration routine was used for the ECRIS 2 mA beam param-

eters in a 1.0 m drift space in order to understand the importance of space charge

for low current ECRIS operation. The beam envelopes and cross sections after 1.0

m of drift are shown in figure 6-4. The 2.0 mA beam uses 400 quasi-particles, each

with 5.0 pA of current. The 20.0 mA beam was not simulated at that current using

BEAM3D; instead, the phase space of the 2.0 mA beam was used and each quasi-

particle current was scaled by a factor of 10. This allowed for a simple estimate of
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the importance of space charge, and can be used as a reference to drive future cal-

culations. Clearly, the results of this analysis showed that for the 2 mA beam space

charge could be reasonably neglected.
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be expected for such a high current.
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6.3 Testing Plan

Once the BBGS and ECRIS are commissioned in late Spring/ early Summer 2011,

it will be important to test the actual system performance against the calculations

performed for this thesis. The measurements will include, but will not be limited to:

o Measurement of dipole Bo vs applied current to give operating parameters for

different beam energies

o Measurement of fringe field for comparison with simulated fields

o Steering magnet field measurement and analysis, concentrating on possible er-

rors as a result of non-ideal coils

o ECRIS phase space analysis using the techniques described by Xie (1989)

These and other measurements will be carried out by M. Artz and the author.
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Chapter 7

Conclusion

We designed an electron beam transport system for the ISIS Bremsstrahlung Beam

Generation System using well established methods for the design of iron-dominated

electromagnets. The design process involved creating generally applicable compo-

nents, then specifying those components as the input constraints became more certain.

This resulted in a series of magnets which were finely tuned for the electron beam

parameters which were provided by the engineers from Advanced Energy Systems.

Throughout the design process, a transport code and several smaller scripts were

developed in order to verify the magnet designs with several independent methods.

Since these codes may prove to be useful in future beam design at the PSFC Tech-

nology and Engineering Division, they were documented and are provided in the

Appendices of this thesis.

During the course of this project, many opportunities for future work and im-

provements to the BBGS design were identified. A selection of ideas for continued

work is provided below.

Dipole Field Design for Energy Variance Beam simulations performed using

Opera 3D and pybeamid showed that a negative field index within the dipole

magnet could help to limit the asymmetric radial beam spreading which results

from an input beam with high momentum variance. Since the magnet edges

provide more than enough axial focusing, future design iterations to the BBGS
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dipole could include a shaped pole to force a small negative field gradient. This

type of re-working could be important if it is found that the LINAC electron

beam has a larger momentum variance than that of the simulated electron

beams.

Additional Beam Shaping Components While the MCNPX calculations per-

formed at Raytheon do not suggest that precise beam size will be an important

factor in achieving a large signal to noise ratio, experiments may prove other-

wise. In this case, future revisions of the ISIS BBGS may include additional

components such as a solenoid or quadrupole focusing magnet. These compo-

nents could also allow for on-line adjustments of beam shape and size in the case

that the electron beam parameters vary significantly with energy. Such compo-

nents were not considered in this thesis due to the limited space allocated for

the entire BBGS.

Improved Converter Plate Design Based on the thermal calculations performed

for this thesis, it may be necessary to redesign the converter plate assembly in

order to improve the extraction of heat from the plates. At a minimum, the

temperature of the plates should be carefully monitored during testing and ad-

ditional water cooling should be made available in case the flow rates estimated

in this thesis will not be sufficient.
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Appendix A

Beam Transport Code

A.1 pybeamid Source Code

PYBE-I1D

Beam Generation and

Author: R.E. Block,

Created: 2/23/11

Modified : 4/28/11

Filename: beamId .py

transport in ID

reblock;alum . mit . edu

~limports * etc

from numpy import

from random import random

from random import gauss

from matplotlib pyplot import

## Functions

def readecr (name):

# For reading BEAM3D output files

f=open (name, 'r ')

A=f . readlines ()

for i in range(O,len(A)):

A[i] = A[i]. split()

A[i][-1] = A[i][-11[:-1]

for j in range(O,len(A[i])):
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A[iI[j]=float(A[iI[j])

B= [I

z=A[01[ 1]
for i in range(0,len(A)):

if A[i][1J==z:

B. append (A[ ii)

B=array (B) .T

return B

def rbeam(rmax,rpmax,npoints):

# Beam generation , distributed randomly in r,r'

theta=zeros (npoints)

for i in range(O,npoints):

theta [i]=random()*2*pi

u=zeros (npoints)

for i in range(0,npoints):

u [ i ]=random()

r=zeros (npoints)

r-rmax* sqrt (u)

return r,theta

def xy(r,theta):

# Conversion from polar coordinates

x=r*cos(theta)

y-=r*sin(theta)

return x,y

def xpyp(r,rp):

# Generate x and y ellipses from r,r'

theta = zeros(len(r))

for i in range(0,len(r)):

theta[i] = random(*2*pi

x = r*cos(theta)

xp= rp*cos(theta)

y = r*sin ( theta)

yp= rp*sin(theta)

return x,xp,y,yp

def plotellipse (x,y, xlab , ylab , color , xlimits=None, ylimits=None):

# For creating standardized plots

figure (None, figsize=(6,6))

plot (x,y, color)

if xlimits != None:

xlim(xlimits)

if ylimits != None:
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ylimn(ylixnits)

xlabel (xlab)

ylabel(ylab)

axhline (0,0,1, color='k')

axvline (0,0, color=' k)

-il-how ( )

def drift (X xp IS):

#Simple drift region (for x or y)

Xnew = x+xp* s

xpnew-xp

return xnew~xpnew

def dipole(x,xp,dp,r,t ,ui ,u2,n=0):

#Dipole transport, for radial direction

d=(1.0-n) **(0.5)

xl,xpl = edge(x,xp,r,ul)

x2 xl*cos(d*t) + xpl*r/d*sin(d*t) + dp*r/d**2*(i-cos(d*t))

xp2 -xi*sin(d*t)*d/r + xpl*cos(d*t) + dp/d*sin(d*t)

xnew,xpnew = edge(x2,xp2,r,u2)

return xnew, xpnew

def spacedrift(x,xp,yyp,s,dsv,I,q=.612e-19,rn=1.6726e-27,N=25):

#Drift with space charge, default ion is proton

n=int (round (s./ds))

ds=s/n

envelope=zeros ((3 ,n+1))

envelope [01= linspace (0, s, ,n+1)

envelope [I11 [1l=max(x)

envelope [2]1101 = max(y)

for i in range (0, n) :

forces=spaceforce (x, y Iq,m, vI , N)

dx,dcp ,dy,dyp=dxy(x, xp7ylyp, forces Ids)

x,xp=drift (x,xp,ds)

y, yp=d r ift (y, yp, ds)

x--x+dx

xp,--xp+dxp

y--y-dy

yp-yp,+dyp

envelope fi[ 1 i +i1=nax (x)

envelope [ 211[ i +J=max(y)

return x,xp,y,yp, envelope
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def spaceforce(x,y,q,m,v,I ,N=25):

# Calculates force on all particles using cylindrically symmetric fields

factor=q*I /(m*2* pi *8.85e -12*v** 3)

forces=zeros(len(x))

r=sqrt (x**2+y**2)

rmax--max ( r)

rmin=min (r)

rspace=linspace (rmin-rmin/N, rmax+rmax/N,N+l)

rcum-zeros (len (rspace))

for i in range(0,len(rspace)):

for j in range(0,len(r)):

if r[j]<rspace[i]:

rcum[ij=rcum[ ij+1
rcum=rcum * factor

for i in range(O,len(r)):

for j in range(1,len(rspace)):

if rti]<r[j]:

forces [ i]=rcum [j -11/r I]

break

return forces

def xyforces (x,y, forces):

# Convert radial force to x and y

r=sqrt (x**2+y**2)

xforce=forces*x/r

yforce=forces*y/r

return xforce ,yforce

def dxy(x,xp,yyp, forces ,ds):

# Calculate displacement resulting from space charge forces

xforce ,yforce=xyforces(x,y, forces)

dx =xforce*0.5*ds**2

dxp=xforce*ds

dy =yforce*0.5*ds**2

dyp=yforce*ds

return dx,dxp,dy,dyp

def dipoley(y,yp,rt,u1,u2,n=O):

# Dipole in axial transverse direction

yl,ypl = edgey(y,yp,r,ul)

i f n==O:

y2 = yl + r*t*yp1 # since sin(psi)/eps - 0/0 theta in limit

yp 2 = 0.0 + ypl

elif n>0:
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d=sqrt (n)

y2 yl*cos(d*t) + ypl*r/d*sin(d*t)

yp2 =-yl*sin(d*t)*d/r + ypl*cos(d*t)

else :

d=sqrt(-n)

y2 = yl*cosh(d*t) + yp1*r/d*siuh(d*t)

yp2= yI*sinh(d*t)*d/r + ypl*cosh(d*t)

ynew,ypnew = edgey(y2,yp2,r,u2)

return ynew, ypnew

def edge(x,xp~r,u):

#Edge focusing in radial direction

xnew = x

xpnew =tan(u)/r*x + xp

return xnew, xpnew

def edgey(y,yp,r,u):

# Edge focusing in axial direction

ynew = y

ypnew = -tan(u)/r*y + yp

return ynew, ypnew

def edgeyquad(y~yp,kq,s):

-g Quadrupole in focusing plane

ynew = cos(kq*s)*y + 1/kq*sin(kq*s)*yp

ypnew-- -kq*sin(kq*s)*y + cos(kq*s)*yp

return ynew, ypnew

def edgexquad(x,xp,kqs):

#Quadrupole in defocusing plane

xnew = cosh(kq*s)*x + I/kq*sinh(kq*s)*xp

xpnew-- kq*sinh(kq*s)*x + cosh(kq*s)*xp

return xnew~xpnew

def setpvar(pvar,n,mu=O):

# Generate momentum spr-ead from Gaussian distribution

dp = zeros(n)

sig=sqrt (pvar)

for i in range(O,n):

dpfi] = gauss(xnu,sig)

return dp

def runbbgs(x,xp,y,yp,dp):

#t Bun entire BBGS miagnet sy ,stem withi final parameters ,no quad edges

#g Drift distances and transport :ons.-t.

143



dl = 334.5 # Tin

rbnd5 = 287.5 #mm

tbnd5 = pi/2

ubnd5 = pi/6 # 30 degree edge angles

d2 = 278.5 # mrn

d3 = 72.6

ry = 0 # need to specify

ty = pi/36

d4 = 79

rx = 0 # specify

tx = pi/12

d5 = 92.4

# Now perform operations in beam-line

# Start with drift from LINAC to BND5

x2,xp2 = drift(x,xp,d1)

y2,yp2 = drift (y,yp,dl)

# Now insert dipole with 30 degree edges

x3,xp3 = dipole(x2,xp2,dp,rbnd5,tbnd5,ubnd5,ubnd5)

y3,yp3 = dipoley (y2,yp2,rbnd5, tbnd5,ubnd5, ubnd5)

# Drift to BiPM

x4,xp4 = drift (x3,xp3,d2)

y4,yp4 = drift (y3,yp3,d2)

# Drift to end

x5,xp5 = drift (x4,xp4,d3+d4+d5)

y5,yp5 = drift (y4,yp4,d3+d4+d5)

return x5,xp5,y5,yp5

# End pybeamild code specification
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A.1.1 Example Input File: Space Charge

Y# SPACECHARGE

1/# Example file for using pybeamld

## Author: R.E. Block, reblock@alum .mit.edu

##f Created : 4/12/11

## Modified : 4/28/11

## Imports

from numpy import *

from beamld import *

try:

import cPickle as pickle

except:

import pickle

# User inputs

savecorfile = ' ecris/out-2nA-edit txt'

fignames=' ecris /ecr-opera

Ep=938.272

m=1.6726e-27

I =5.OE-6

S1 1.0

dS 0.001

toneters=1.OE-3

tomm=1 0E3

Ii m i ts x 0.06 0. 06

# Name of input file

# Name for output f ilIes

# Proton rest mass energy

# charge in Coulomb

mass in kg

current per particle in Ampere

drift in meters

#integration step size

E xecution -

# Start by loading file

data=readecr(savecorfile) # load file

x= data [21* tometers # computation must be done in meters

y= data [31* tometers

vx=data [41

vy=data [51

vz=data [61

et=data [71

el=data [81

xp=arctan (vx/vz)

yp=arctan (vy/vz)

T=sqrt (et**2+el**2)*1E-6 # calculate T and convert to MeV
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pcalc=sqrt (T**2+2*T*Ep) # P in MeV/c

vzave=mean(vz)*1.0E6 # average velocity in m/s

npoints=len (x)

dp=zeros (npoints)

# Now run test with space charge

xsxpsys,ypsenvelope = spacedrift(x,xp,y,yp,S1,dS,vzaveI)

xs2,xps2,ys2,yps2,envelope2 = spacedrift(x,xp,y,yp,S,dS,vzave,I*10.0)

xl,xpl = drift (xxp,S1)

yl,ypl = drift (y,yp,Sl)

# Plot results

plotellipse (xs ,ys , 'X...[m] ',Y...[m] ','k+',limitsx ,limitsx)

plotellipse (xs2,ys2 , 'Xm] , 'Y-m , 'k+' ,limitsx , limitsx)

plotellipse (xs ,xps, 'X-[m1 ,"X'.radj" ,k+)

plotellipse (x1,y1, 'X-[m] ', 'Y..[m] ','k+',limitax ,limitsx)

# Plot envelope of beam

figure ()

plot (array ([0.0 , S1) ,array ([max(y) ,max(yl) ),'k-')

plot (envelope [0] , envelope [11 , 'b')

plot (envelope2 [0] envelope2 [1l , 'r--')

x] a bel ('Z.. [mn] ' )

ylabel('Xmax.,m]')

legend([ 'No..Space -Charge' ,'2.anA-Beam' , '20.iA...Beam'],loc='lower -right')

show 0
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A.1.2 Example Input File: Parmela input

#ff RUNSA\VT]OR

#1/f Example utsage of pybeamid to runi a Parmela save file (savecor)

#4 Athlor. R.E. Block,~ reblock,,alum.mit .edu

##Created: 4/114/111

##Modified : 4/14/111

##Imports
from numpy import*

from beamid import

import beaxngen5 as hg

try :

import cPickle as pickle

except:

import pickle

Wf# User inputs

savecorfile = '../SAVECORtest.txt'

fignames ='beamldsavecorG07'

npoints =5000

xlimits=[-10,151

yliinits=[-20, 3 0 1

SNowv problem execuition

#Grab savecor beam

mybeam = bg.beaxngen5(savecorfile ,npoints ,fignames ,True)

mybeam. printdata 0

x= inybeam.x*10

y = xnybeaxn.y*IO

dp= mybean. T/ mean (mybean. T) - 1.0

dp=dp#* 0. 0

xf,xpf,yf,ypf = runbbgs(x,mybeam.xp,y,mybeam.yp,dp)

if 0:

f igure (None, f igs iz e =(6,6))

plot (- xf[0: 500 01 mybeam.T[O: 50001J/ 1E6, 'r+)

xlabel( 'X- i4ml ')

ylabel( 'T- MeVj '

show0
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A.2 Opera Beam Generation

BFAMG

# Creates generic beams and uses beam output from Parmela

k Author: R.E. Block, reblockkalum.mit.ed u

## Created : 7/27/10

## Modified : 4/28/11

Filename: beamgen . py

Notes: see end of file for example usage

Imports

from math import pi

from pylab import *

try:

import cPickle as pickle

except:

import pickle

I# User Inputs and Constants

TFSTING = False

til = 'TRACK-X0-'

t12 = 'Y0-'

013 = '..Z0=' # 75.467

tl3a= 'TIEA' #was 81.2 for ZO, -18.5 error

t14 = '..PHIl='

t15 = '...PSI=0...VOLTS='

06 = '.STEP=1.NSTEP=1500...OVfION=PARTICLE...FILE=' #was step=1

t17 = 'STATUS-9

t8 = '.PRINT-NO..DISPLAY-YES\n*

## Class and Function Definitions

class beamgen:

# Class for generating Opera beams from AES save files and pybeamild

def ....init.(self ,savefile ,n,fignames,readsave=True):

self.maxN = n

self.savecor = savefile

self .fignames = fignames

if readsave:

self .readSAVECOR()

def readSAVECOR(self):

# Used to read save file from Parmela

148



f= open ( selIf .savecor ,'Ir)

fileduinp = f.readlines()

f. close 0)
del filedunip [01

del filedump [0]

for i in range(O,len(filedump)):

filedumpli] = filedunp [ij. replace( 'D' , ?E))

filedump [ii = filedump li. split 0
for j in range(0,Ien(filedumpfil)):

filedump[i][i] = float(filedumpi][j])

self.P = array(fileduxnp)

self.P = self .P.T

self .xp = -self .P[11/ self .P[51

self .yp = self .P[3]J/self .P[51

self.x = -self .PIOI

self.y = self .P[21

self.N = len(self.P[01)

self .rmsx = sqrt (sum( self. x**2)/ self.N)

self rmsy = sqrt (sun( self .y**2)/ self .N)

self . rmsxp= sqrt (sum( self xp**2)/self.N)

self .rmsyp= sqrt (sum( self. yp**2)/ self.N)

self .maxx = niax( self .x)

self .maxy = max(self.y)

self .maxxp = 3ax(self.xp)

self .maxyp = rnax( self .yp)

self.z = self .P[41 - xean(self.P[41)

self.rnisz = sqrt (sum(self. z**2)/ self N)

self .bg = sqrt (self .Pllj**2+ self. .P3]**2+ self .P151**2)

self.g = sqrt(self.bg**2 +1)

self.T =(self .g-l)*0.51le6

self.r =sqrt (self X**2+ self. y**2)

self .maxr = max(self.r)

self.rmsr = sqrt (sum( self. r**2)/ self N)

149



def alterInit(self ,P):

# Used for reading from pybeamId generated array

self.x = P[01

self.y = P[21

self.xp = P[l]

self .yp = P[31

self .N = len(P[0])

self .rmsx = sqrt (sum( self .x**2)/self .N)

self .rmsy = sqrt (sum( self .y**2)/self.N)

self .rmsxp= sqrt (sum(sel f .xp**2)/self .N)

self.rmsyp= sqrt(sum(self.yp**2)/self.N)

self.maxx = max(self.x)

self.maxy = max(self.y)

self.maxxp = max(self.xp)

self.maxyp = max(self.yp)

self.z = zeros(self.N)

self .rmsz = 0.0

self.T = P[41

self.r = sqrt(self.x**2+self.y**2)

self .maxr = max(self.r)

self .rmsr = sqrt (sum(self. r**2)/ self .N)

self .maxN = self.N

def printplots(self):

Ntext = 'N.=..' + str(self.maxN)

figure (1, figsize=(6,6))

plot(self.x[O: self.maxN] , self.y[O:self .maxN] ,'r+')

xlabel ( -'X.[cm] '

ylabel ('Y..,{cm '

axis ( 'scaled ')

annotate (Ntext, (self .maxx*.7 ,self .maxy*-.7))

savefig(self.fignames+'xy.png')
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figure (2 , figsize=(6,6))

plot(self xp[O: self mnaxN]*1000 ,self.yp[O: self maxN]*1000 ,'r

,clabel ("X'. frnrad1"

ylabel ("Y'.mradI)

axis ( ' equal' )

annotate (Ntext ,( sel f .xnaxxp* 1000*.7, self .maxyp*1000 -. 7))

savefig (selIf. fignames+'xpyp.png')

figure (3, fig size~=(6,6))

plot( self .x[0: self .maxNj, self .xp[10: self mxaxN*1000 , ' r+')

ylabel ("X' -I rad I"
annotate (Ntext ,(seIf. maxx*.7, seIf. maxxp*1000*-.7))

savefig (selIf. fignaines ' xxp. plig'

figure (4, fig size= (6,6))

Plot (self .y [0: self .maxNNI, self .yp (0: self mnaxN1*1000, ' r+')

x]label ("*Y-. [cm I" )

ylIa bel ("Y' -LinradI)

annotate (Ntext ,(se If. maxy*.7,se If. maxyp*1000*-.7))

savefig ( selIf. fignaines+'yyp. pug')

def printdata (self):

count = 0

for i in range (0, self miaxN):

if self.r [i] > self .rmsr:

count = count + 1

percOut = float (count)/ self axN*100

print s e I .fignames

print 'x-rs.z.. + str (self .rmsx)

print 'y-rrnis-...' + str (self .rmsy)

print 'x..max..=... + str self miaxx)

print 'y-uiax =' + str self miaxy)

print "xrs.~+str self rmsxp*1000)

print " y'..-rmis -.- '+ str self rmsyp*1000)

print 'E.....'+ str (mean(self.T) )

print 'Sig-E--.- + str (std (self.T)/mean( self.T) *100)

print 'rs.-.'+ str (self .rmsr)

print 'r-rmax..=... + str (max( self .r))

print 'PercQUtCz... + str(percOut)

def duxpdata(self):

f = open( self. fignames+'pickle,')
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datatodump = {'x':self .x*10,'y': self.y*10,'xp':self .xp, 'yp': self.yp, 'T':self.

T, 'dp': self .T/mean( self .T)}

pickle .dump(data , f)

f. close ()

def histogram(self):

print 'Printing...Histograms ...

m = 200

figure 0
self .pdf, sel f . bins , self . patches = hist (self .T/10**6,m, None, True)

axis( 'tight ')

xlabel( 'Kinetic...Energy...[MeV] ')

ylabel ('PDF(T) ')

savefig(self.fignames + 'hist ')

self .density = zeros ((1,m))

for i in range(0,m):

self.density [01[ iI = self .pdf[i]/(pi*(self. bins[i+1**2 - self.bins[i

]**2) )

self. density [0] = self. density [01 /sum( self. density [0]) *m

self.cdf = []

for i in range(0,m):

self. cdf.append( float (suin( self. pdf [0:( i+1)])

self.cdf = array(self.cdf)

self.cdf = self. cdf/sum(self. pdf)

figure ()

bar(self. bins [:m] ,self . density [0] , self .maxr/m)

axis 'tight ')

xlabel('Radius...[cmj ')

ylabel ('Normalized...Beam...Density...[ per-cm 2] ')

savefig(self.fignames + 'dens')

figure ()

bar(self. bins [0:m, self.cdf, self .maxr/m)

axis (' tight ')

xlabel ( ' Radius.-[cm] ')

ylabel ('CDF(R) ')

savefig ( self .fignames + 'cdf')

def phiVSr(self):

dR = 0.05

R = 0.2
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nuinBins = 50

U- =H

if self.phi = None:

beamgen2. convertfullangles( self)

for i in range(O,self.N):

if self.rfi] < R:

if self.r[i] > R--dR:

U = array()

U = U.T

y, bins, patches =hist (U[ 1 ,nuxBins, None, True)

def todegrees (self):

self xpdeg = self.xp*180/pi

self .ypdeg = self .yp*180/pi

def convertfullangles (self) :

self phi = aretan ((tan( self xp)**2+tan(self yp)**2/(cos( self xp)**2))**(.5))

self.theta = artan (sin(nselfxp)/tan(self.yp))

def convertangles( self) :

self.phi = arctan ((tan( self xp[0: self mnaxN]) **2+tan (self yp [0: self maxN])

**2/(cos (self xp 10: self .maxN ) **2)) **(. 5) )

self.theta =arctan (sin( self xp[0: self maxN]) /tan( self. yp[0: self naxN]))

for j in range(0, self .maxN):

if self yp~j ] > 0: #was xp<0O

self.phitj] = -self.philj]

self theta = self.theta*180/pi

self .phi = self.phi*180/pi

def gencoii( self , energy , filename , trackname):

linecount =

cut = (self.rmsx+self rmnsy)/2

#prinit 'Writinig comi file ,ctittig at r= '+ str (cut)

cornifile = open(filename, 'w')

for i in range(0, self maxN) :

if 1: # self .rliI K-- cut:

linecount=linecount+1

comifile write( ti)
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comifile. write(str (self .x[i ]))

comifile. write( t12)

comifile .write(str( self.y [ i))

comifile . write( t13)

comifile. write(str(75.467-self .z[i))

cornifile . write (tl3a)

comifile write (str (self . phi [ i 1+180))

comifile . write ( t4)

comifile write(str(90- self. theta [ i))

comifile. write ( t15)

comifile .write(str(self.Ti 1))

comifile . write(16 )

comifile. write (trackname)

comifile .write(t07)

if i1=0:

com ifile . write ( 'OLD')

else:

cormifile. write( 'NV')

comifile . write (t8)

comifile . close ()

print 'Closing-file ,-wrote...N--'+str(linecount)

# Example of usage

if _-name- = '...main.':

savecorfile = 'SAVECORtest. txt'

fignames = '607-v5'

newbeam1 = beamgen2(savecorfile ,5000 ,fignames)

newbeaml . printdata ()
newbeaml . printplots ()
newbeaml . histogram ()

newbeaml. convertangles ()

newbeaml . gencomi( ' 6.07 E7' , fignames+' comi' , fignames)
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A.3 3D Beam Analysis

## INTERSECTIONS

# Interprets Opera intersection files and creates phase space plots

## Author: R.E. Block. reblock@alunm .mit edu

## Created : 7/28/10

## Modified: 4/28/11

## Filename: intersections.py

## Imports

from math import pi

from pylab import *

# User Inputs

DEBUGI = False

DEBUG2 = False

DEBUG3 = True

DEBUG4 = False

DEBUG5 = False

TESITNG = False

TESTINGI = True

## Class and Function Definition

class intersection:

# Used for interpreting opera intersection files

def .. init..(self ,filename ,energy ,color):

self. file = filename

self.energy = str(energy)

self.color = color

def importdata(self):

vc = 2.9979245800E10

f = open( self. file+'. txt ', r'

filedump = f.readlines()

# print filedump [ len (filedunip) -11

f. close ()

del filedump [0]

#prin t filedump (O

for i in range (0, len(filedump)):

filedump [i= filedump [i]. replace ( 'D' ,E')

filedump [i] = filedump [i]. split ()
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for j in range(O ,len(filedump [i ]) ) :

filedump [i I[j I = float (filedump[i ][j])

self.P = array(filedump)

self.P = self .P.T

# [0]: Current , [1]: X, [2]: Y, 13]: Z, [4j: V/x, [51: Vy, 161: Vz

# Import variables from intersections file output

X = self .P[I

Xm= mean(self.P[1])

Y = self.P[21

Ym = mean(self .P[21)

Z = self.P[3]

Zm = mean( self P[31)

VX = self P[41

VY = self P[51

VZ = self P[61

Vmag = sqrt (VX**2+VY**2+VZ**2)

Vhat = array ([VX/Vmag,VY/Vmag,VZ/Vmag])

# Calculate new coordinate directions of beam

self.zhat = mean(Vhat,1)

self.zhat = self. zhat/sqrt (sum( self .zhat**2))

self.xhat = array ( self .zhat[21,0, -self .zhat [0]]) /sqrt(self .zhat [0]**2+self .

zhat [21**2)

self .yhat = -array([ self .zhat[1]* self .xhat[21- self .zhat{21* self .xhat [1 ,self.

zhat [0]* self.xhat[2]- self.zhat [2* self .xhat [0 ,self. zhat [0]* self. xhat[1]-

self.zhat[1]*self.xhat{011)

self .yhat = self.yhat/sqrt (sum(self.yhat**2))

# Calculate new coordinates of beam based on beam center

Xnorm = X-Xm

Ynorm = Y-Ym

Znorm = Z-Zn

self x = Xnorm*self. xhat{O]+Ynorm* self .xhat [1]+Znorm*self .xhat [2]

self.y = Xnorm* self. yhat [0]+Ynorm* self. yhat [1]+Znorm* self .yhat [21

self.z = Xnorm*self. zhat [0]+Ynorm* self. zhat [11+Znorm**self .zhat [21

self .vx = VX*self.xhat[0]+VY*self .xhat[1]+VZ*self.xhat [2]

self .vy = VX* self. yhat [0]+VY* self .yhat [1]+VZ*self. yhat[2]

self .vz = VX*self.zhat[0]+VY*self.zhat[1]+VZ*self. zhat [2]

self .xm = mean(self .x)

self .ym = mean( self .y)
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self .bx = self vx/vc

self by =self .vy/vc

self .bz = self .vz/ve

self .bgx = self .bx/sqrt(l- self .bx**2)

self .bgy = self .by/sqrt(l- self .by**2)

self .bgz = self .bz/sqrt(l- self. bz**2)

self .Vmag2 =sqrt (self VX**2+ self vy**2+self vz**2)

self.beta =self .Vmrag2/ve

self .gamma =1/( sqrt (1-self. beta**2))

self T =(self .garmma-1)*0.511e6

self .xp = self .vx/self .vz

self .yp = self.vy/self.vz

self .xpm = mean(self.xp)

self .ypm = mean( self .yp)

self.x = self.x*10

self.y = self .y*lO

self .xp = self.xp*1000

self.yp = selfyp10

def plotbeam(self) :

fig = figure (1 ,figsize =(6,6))

fig . cif ()

plot ( self .x, self .y, self. color)

plot (0 ,0, 'ko)

axhline (0,0 ,l , color='k)

axvline (0,0,1 ,color=*k)

xlabel( A- [nmmJ '

ylabel('Y- fml ')

i f TESTINGI:

axis((6,6, -6,6))

else :

axis( 'equal '

ax = axis ()

if TESTING: print ax

savefig( self. file+'xy.png')

fig = figure (2, figsize=(6,6))

fig . clf 0)
plot ( self .x, self xp , self . color)
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plot (0 ,0 , 'ko ')

axhline (0 ,0 , 1 , color='k ')

axvline (0,0,1 , color='k')

xlabel('X-[nn ')

ylabel ("X'- [ nrad ")

i f TESTING1:

axis((-6,6,-8,8))

ax = axis ()

if TESTING: print ax

savefig(self. file+'xxp.png')

fig = figure (3, figsize=(6,6))

fig . clf ()

plot(self.y, self .yp, self.color)

plot (0,0, 'ko')

axhline (0,0,1 , color='k')

axvline (0,0 ,1, color='k')

xIabel ( 'Y... [un] ' )

ylabel ("Y' .. mrad}")

i f TESTING1:

axis((-6,6,-8,8)) # was 2 and 8

ax = axis ()

if TESTING: print ax

savefig(self. file+'yyp.png')

def fitellipses (self ,indicator):

if indicator = 'xy'

yy = self.x

yyp = self.y

la be Is =[ 'X.. ntn] ' , 'Y- [irn} ' ]

elif indicator = 'xxp':

yy = self.x

yyp = self.xp

labels=['X-[nnj ',"X'.mrad]"]

elif indicator =- 'yyp':

yy self.y

yyp = self.yp

labels=['Y...[Inn] ',"Y'-[mradl"]

else:

yy = self.xp

yyp self.yp

labels=["X'..[mrad" ,"Y'.[mradj"]

ycm 0

ypcm 0
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ill = mean(yyp**2)

i22 = mean(yy**2)

H12 = mean(yy*yyp)

Tyyp =array({[ill i12] [4il2J221])

w,v eig(Tyyp)

self.w = w

self.v = v

ang = arctan(v[OJ111/v[01[01)-pi/2

phi = arange (0, 2*pi ,pi /80)

a = 2*sqrt(wfOJ)

b = 2*sqrt(WlDJ

u = 2*sqrt(w[O]) * cos(phi)

v = 2*sqrt(w[1}) * sin(phi)

up = ycni + (u*cos(ang)) - (v*sin(ang))

vp = ypcxn + (u*sin(ang)) + (v*cos(ang))

uint = ycm + (2*sqrt(w[0J) * cos(0))*cos(ang)

A = cos(ang)**2/a**2 + sin (ang)**2/b**2

B = -2*cos (ang) *sin (aing) *(1/a**2-1/b**2)

C = sin(ang)**2/a**2 + cos(ang)**2/b**2

area = pi * a * b

epsu = a*b

ghat = A*epsu

bhat = C*epsu

ahat = B*epsu/2

fig = figure (None, figsize =(6,6))

plot ( self .y, self .yp, self color)

plot (up, vp, 'k.- '

plot (0,0, 'ko ')

axhline (0,0,1, color='k)

axvline (0,0, 1 , color='k

xlabel (labels [0]1)

ylabel (labels [11)

savefig (self .f ile+indicator±' fi t .png')

print 'Tw' iss-.Pararneter-s-Aor...'+ self. file±'-.

print 'alpha.-..' + str(ahat)

print 'beta-;=-' + str(bhat)
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print 'gamma...--' + str(ghat)

print 'emmitance---' + str(epsu)

return (ahat,bhat,ghat,epsu,up,vp)

def histogram(self):

print 'Printing...Histograms ...

m = 200

figure ()

self .xpdf , self .xbins , self .xpatches hist (self .x,m,None,True)

axis( 'tight ')

xlabel (A'X.[irn ')

ylabel ( 'PDF(X)')

savefig(self. file + 'hist--x'

figure ()

self.xppdf, self.xpbins, self.xppatches hist(self.xp,m,None,True)

axis(7'tight')

xlabel ("X'..[mrad ")

ylabel ("PDF(X ')" )

savefig(self.file + 'hist-xp')

figure ()

self.ypdf, self.ybins, self.ypatches = hist(self.y,m,None,True)

axis (' tight ')

xlabel ('Y-[rn] ' )

ylabel( 'PDF(Y)')

savefig(self. file + 'hist-y')

figure ()

self .yppdf, self.ypbins, self.yppatches = hist (self.yp,m,None, True)

axis ( ' tight ')

xlabel("Y'.[mrad]")

ylabel ("PDF(Y')")

savefig(self. file + 'hist--yp')

figure (None, figsize=(6,6))

self.Tpdf, self.Tbins, self.Tpatches = hist(self.T/10**6,m,None,True,histtype

='stepfilled ' ,color=self. color [01)

#axis ('tight ')

xlabel( 'T.MeV] ')

ylabel ( 'PDF(T)')

#plot (self .Tx, self.BfT, 'g-,linewidth='2')

savefig (self. file + 'hist-T')
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def printdata( self):

f = open( self. file+'-raw. csv','w')

f. write(' ~ISIS-BJBGS-Electron -Tracking: -.. version -5\n ~
f. write( 'Rob-Block,\t[OSEP2010,\tf,'+self. file+'\n'

for i in range (0,len (self .x))

f .write str sel xl1 ) ' \ '

f .write str sel f .xpiI)+',t'

f .write st r sel f .y [ i}) t ')

f .write (st r sel f .yp Ii ,\ t

f write(str(self.Tfil/lO**6)+'\n')

f. close ()

def printhist (self):

f = open( self. file+'-pdf. csv','w')

f. write( ('ISIS _13BGS-Electron-.Tracking : -Dipole.version _\n)

f. write( 'Rob-.Block,\ t1QSEP20lO,\t. '+self . file+'\n ')

f. write( 'X..Bins,\tPDF(X) ,\tX-.p-.Bins,'\tPDF(X-p) ,\tY-Bins ,\tPDF(Y) ,\tY-.p-Bins\

tPDF (Y-p) ,\tT_ Bins , \tPDF (T) \n' )

f .write ( ,ninl\t -,\t mrad \t -,\t [un]\t -,\tt[mradl,\t-,'\t [Ne-,\t-\n)

f or i in range(O ,len (self. xbins>-1):

fLwrite(str(self.xbins[i])±',\t')

f. write str( self. xpdf [ i])+' ,\t '

f. write(str (self. xpbins [ iJ)+ ,\t ')

f.write(str(self.xppdf[iI)±',\t,')

f. writeC str (self. ybins iJ ])+' ,\t

f. write(str(self.ypdf[ij)I' ,\t, ')

f. write( str( self. ypbins [i)+' \t'

f.write(str(self.yppdf[il)+' ,\t 1)

f. write(str( self. Tbins [i )+',\t ')

f. write(str(self.Tpdf[i])+'\n'")

= len( self. xhins)-l

f. write(str (self xbinsjij)+' ,\t '

f . write( *, \ t ' )

f. write(str (self. xpbinsl I)+ ,\

f.write( , ,\t ')

f. write Cstr( self ybins [ij)±' \t)

f. write( ' ,\t, ')
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f. write (str ( self ypbins[ i])+'

f .write (', \ t ')

f. write(str (self .TbinsIi})+',\t')

f. write( '\n')

f. close ()

def plotspec(self):

figure (None, figsize=(6,6))

plot(self .x, self .T/10**6, self. color)

xlabel('X.[rnl ')

ylabel ('T...[MeV] ')

savefig(self.file + 'XT')

TMeV = self .T/10**6

'Tn = mean(TMeV)

Tv = var(TMeV)

I = m in(TMeV)

h = max(TMeV)

T = (Tm-1 ) /(h-l)

Tv = Tv/(h-I)**2

alpha =Tn*((Ti*(1-Tm))/Tv -1)+27

beta = (1-'En)*(('l*(1-'n))/Tv -1)+3

print alpha ,beta

self .Tx = arange(l ,h,(h-l)/100)

self .BfT = ((self .Tx-1)/(h-l))**(alpha-1)*(1-(self .Tx-1) /(h-1))**(beta-1)

self .BfT = self.BfT/(sum(self.BfT)*(h-1)/(len(self.BfT)-1))

xtest = arange(0,1,0.01)

Btest = xtest**(alpha -1)*(1-xtest )**(beta -1)

def percentGreaterThan ( z.arr , zO):

count = 0

for i in range(0,len(z.arr)):

if z.arrji]>zO:

count = count + 1

PGT = float(count)/len(z..arr)*100

return PGT

Execution Examples

if DEBUG1:
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filenames = '6072k' '6O7Crms '6O7Cxy' ,'306A',.3O6Crms',306cxy','62A','62Crmls',

62Cxy'j

beams = [ I

colors =['r', g)

# filename '607Crms'

energy ='60.7'

ellipsedata =I

# color =1+

for i in range(0, len (filenames)):

beams. append( intersection( filenames [ i energy, colors[ i%3]))

beams[ i 1. importdata(0

print 'Data.#f' + str(i) + '..iported'

ellipsedata append ((beams[i ]. fitellipses ('xxp'),beams ilfitellipses('yyp')

beams[i 1. fitellipses ( !XY )))

print 'Ellipses.fi tted.-for -data-4#' + str(i)

#beamil =intersection~flename ,energy ,color)

#beaml. imnportdata ()
# beamit.plotbeamn()

#beamnl. fitellipses (
dummy 1

if DEBUG2:

for i in range(O,len(ellipsedata)):

print '&k-{0:2.1 f..&.{ .2}..{222f.&.{:3f2{4.3f.\\\'.format(

float (len(beams[iJI.x))/5000*100,sqrt(ellipsedata [i ]21[l1* ellipsedata [i

1[21 131) sqrt( ellipsedata [ii[2][21* ellipsedataf iJI2J 131) ,ellipsedatafi

JIQJ[3J ,ellipsedata[iJ[lj[3j)

if DEBUG3:

#beamvx3-itesci('0-ulm--nctet''6 7''bI)

#beamnv3 intersect ion ('607- fullsym-v3-inter ','60.7' 'b+')

#beainv3 intersection ('306-v3-nontlin-full ', 30.G ,' b+' )

#beamnv3 intersection ('306- v3-nonlin-cut ,'30.6, 7b+1)

#beamnv3 intersection ('60f-V;3-TIOnlin-CUt ''30.6','g+-')

#beamnv3 initer-sectioni(62-3---cnt-test ''6.2','b±')

#beamv3 - int ersection('607- ste-r -v3i-cutxy, ' 2 6.2 ', 'b±)
#beainv3 intersection('brd5-607--intersections ''601.7',k

#beamv3 -~intersection ('306-v5-in tersections ''30.6', ' r+')

#fbearnv3 -intersection ( '/opera/BND5/ intersect ions/607-v5a/ oaes607 ', 60.7''ki'

#beamiv3 -intersection ( '/opera/BND/ int/607-bndla-int ''60.7 'k

#beamv3 -intersecti'on ( .. /opera /BND5. -coniib/it/60-bnid5-str5-init 'k'6. 7)

beamv3 =intersection( 'beamld/ ec ris /ecr -opera-it 60.7, 'k±)I

beamv3. import data 0
baim,3. plotspec (
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beamv3. plotbeam ()

beamv3. histogram ()

#beam-v3. printdat a ()
#beamv3. pr in t h ist ()

pgt = percentGreaterThan(abs(beamv3.x) ,2.5)

print 'Percent.beam-within.2.5.mns-' + str(100-pgt) + '..%'

if DEBUG4:

pgt = percentGreaterThan (beamv3. x, 5. 0)

print str(pgt) + '...%'
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Appendix B

Miscellaneous Code

B.1 Opera 3D Multipole Analysis

## MULTIIPOLE

## For generation of comi files and analysis of output from Opera

## Author: R.E. Block, reblock alum.rnit.edu

# Created: 4/01/11

## Modified : 4/28/11

## Filename: multipole.py

## Imports
from numpy import *

from matplotlib .pyplot import *

from scipy import fftpack

from numpy import concatenate as concat

## User defined inputs

rO = 28.75 # Bending radius of Dipole Magnet

rb = 0.75 # Radius to evaluate field

bO=6622.0 # Central field of dipole

base = 'bnd5-t1' # Name of base-file

dz=0.5 # Length between field evaluations

zmax=7.5 # Length from magnet edge to stop field calcs

dt=dz/rO

tl=arange(-dt*4,0.0,dt)+pi/4

zl=zeros(len(t1))

z2=arange(0,zmax+dz,dz)

t2=ones(len(z2))*pi/4
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t =Concat ((ti , t2) ) P#' Theta, values in Opera coords

z = concat((z1,z2)) #i Z values in Opera coords

extraz=zeros ( leu(z) )

extraz [:41= arange(-dz*4 ,0.0 ,dz)

nt=50

path] en=z+e xtraz

legendtext ==11
for i in range(0,len(pathlen)):

legendtext append( str (pathlen i 1) [0:5]+ '...cm')

if 1: print Iegendtext

# Program control - pick between generating comni file and reading tables

if 1:

coini=False

loadtbl=True

plotail=False

cal cfft=True

else :

corni=True

loadtbl=False

plotall=False

calcfft=False

##Functions1

def readtable (name, nhead):

f=open(nane, 'r ')

for i in range(0,nhead):

f. readline ()

data2d = f.readlines()

for i ini range (0, len (data2d))

data2dli] = data2dfi]. split()

data2d[il[l = data2d fill-ill: -1]
for j in range(0,1en(data2d[i])):

data2d [ifj l= float (data2d fi][ji )
data2d = array(data2d) .T

return data2d

def writecircle(r,z,u,nt=50,tO=,tm=360):
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toprint~= 'CIRCLE.J{ADIUS '+str(r)+'-TfH1-' + str(tO)+'-T2='+str(txn)+'-ZC='+str(z)+

'-NP-'+str(nt)+'-BU-,FFR-C-(I1LE,'+str(u)+'\ni'

return toprint

def changecoord (rO , theta)

dz = -.rO*cos(theta)

dx = rO*sin(theta)

toprint= 'SET..XLOCAL- '+str (dx)+ 'YLOCA-=OZLOCAL--'+s tr (dz)+'-.POCVb--QJLOCAL= 1+

str (90- theta *180./ pi)+' ..SLOCAL=O\n'

return topriut

def printtable (name, u, theta):

t 1= 'PLOT.FILETEPJYDMTiUNE0NT--Bz* '+st r(cos (theta) )±'-Bx* '+st r(sin (theta) )±'\n'

t2=ITABLEJ-NFLE=-TThfP-OUTILB = +str (naxe)+str (u)+. table -CIOLUN Sz1_17Fk1Bz* '+str(

cos ( theta))-x '+str ( sin (theta) )+\n

return tl+t2

~LProblem- execution

if coini:

f=open ( base+' .com i' 'w'

for u in range(O,len(t)):

f. write (changecoord (rO , tJul))

f. write( writecircie (rb ,z lul ,u))

f. write( printtable (base ,u, t Jul))

f. close(

if Ioadtbl:

data= []

for u in range(O,Ien(t)):

data. append( readtable (base+str (u)- .table' ,3))

if plotall :

fffigure("None, fi gsize--(12,9))

x=-Iinspace(O,2*pi ,51)

for u in range(O,len(t)):

i f u%5==O:

f ig ure (None, f ig s iz e(6.5,8))

plot (x, data [ u [0bO, lege d spec [u%51)

i f u%5==4:

xI abel( 'Ang Ie.4rad ia ns1)

ylabel( 'Bx,/BO)

xlim([O ,2* pi 1)

Ylim ([ -0. 15 ,0.15])

legend( legendtext tu-4:u+1j)
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if calcfft:

F =

P= []
P2=[]

for u in range(0,len(t)):

F.append((fft. fft(data[u][0]/bO)))

n = len(F[u])

P.append(abs(F[u][0:n/2])**2)

P2. append(F[u 1[0:n/21)

P=array (P)

P2=array (real (P2))

figure (None, figsize =(6,6))

for u in range(0,len(t)):

plot (range (0, len (P[u]) ) ,P[u])

figure (None, figsize=(10,6))

for m in range(1,4):

plot (pathlen ,P2.Tfml , legendspec [m-1])

xlabel ( 'Distance-from-edge- [cml ')

ylabel( 'Magnitude..[ Bx/B0] ')

xlim ([ -2.0,7.51)

legend ([ 'Quadrupole 'Hexapole' Octupole' 1)

Ba = max(P2.T[1])*bO

Seff= 9.5/(2*Ba/bO*(len(P2.T[1])-l)) * (sum(P2.T[11[:-1])+sum(P2.T[1l[l:]))

kq=sqrt (Ba/(rb*bO*ro))

print 'a-=-' + str(rb)

print 'Ba=..' + str (Ba)

print 'rO=-' + str(rO)

print 'BO=-' + str(bO)

print 'kq--' + str(kq)

print 'S...=.' + str(Seff)

if plotall or calcfft:

show()
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B.2 Electron Range Calculations

PROGRAM range

Used to calculate range of electrons in matter

Adapted from TABATA et al 1996

TO = 60.66

Z = 6.00

AW= 12.00

FI = 78.0

rho = 2.2

r=RO(TO,Z,AW, F)

re=REX(TO,Z, r)

print *, r

print *, r/rho

print *, re

print *, re/rho

END PROGRAM range

FUNCTION REX(TO, Z, RD)

PURPOSE - calculate extrapolated range of electrons

COPIED FROM TABATA et al , 1996

TO - incident kinetic energy of electrons in MeV

Z - atomic number of medium

! RO - CSDA range

FT - mean excitation energy in eV

REX - extrapolated range in G/cm2

TAUO=TO/0.511

ALzdDG(Z)

A1=0.3879*Z**0.2178

A2=0.4541+0.03068*Z

A3=3.326E-16*Z**(13.24 -1.316*ALZ)

A4=14.03/Z**0.7406

A5=4.294E-03*Z* *(1.684 -0.2264*ALZ)

A6=0.6127*Z**0. 1207

REX=RO/(A1+A2/(1. +A3/TAUO**A4+A5*TAUO**A6))

RETURN

END FUNCTION

FUNCTION RO(TO,Z,ATW, FI)

PURPOSE - csda range of electrons

COPIED FROM TABATAET AL, 1996

TO - kinetic energy

Z - atomic number

AIW - atomic weight
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FT - mean excitation energy in eV

RO - range in g/cm2

DOUBLE PRECISION C2,W

TAUO=TO/0.5 11

FI1=FI* 1. E-6/0.511

C1=DG((TAUO/(FI1+1.1E-6*Z**0.959*TAUO) )**2*(TAUO+2.) /2.)

C1=3.6*A'W/Z**0.9882/Cl

C2=1.191E-3*Z**0.8622

C3=1.02501 -1.0803E-4*Z

C4=0.99628 -1 .303E-4*Z

C5=1.02441- 1.2986E-4*Z

C6=1.03/Z**1.11E-2

W-LOG( 1. DO+C2*DBLE(TAUO**C3) )/C2

W=W-DBLE(C4*TAUO**C5) /(. DO+DBLE(C6*TAU))

R&=C1*SNGL(W)

RFIURN

END FUNCION
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B.3 MCNPX Input File

ISIS BBGS mcnpx electron transport - REB - 110212

c MODEL B - 2.1 g/cm3

c cell specification

C

geometry

-1 2

-2 3 4

-3

-4

1

-666

args

imp: e=1

imp:e=1

imp:e=1

imp:e=1

imp: e=0

imp:e=1

notes

$ bgd air cube

S steel assm structure

S air inside assm

$ carbon target region

$ outside

$ cookie cutter cell for beam

c end cell spec

c surface specification

c

constants

-20 -20 -10

-6 0 0

-2.5 11.3 0

-2.5 6.3 0

0 0 -0.1

40 0 0 0 60.0 0

12 0 0 0 22.6 0

5 0 0 0 5.0 0

5 0 0 0 5.0 0

0 0 0.2 0.5 0 0

notes

0 0 30 $ outer bounding box (bb)

0 0 12 $ conv assm bb

0 0 12 $ air inside assm bb

0 0 12 $ region for carbon bb

0 0.5 0 $ cookie cutter surf for beam

c end surface spec

c material specification

1 is AIR, T=20C

code density

8000.01e 0.2

7000.01e 0.8

keywords element

gas=1 $ 0

$ N

c

c MT 2 is 1020 Steel , T=100C , all natural elements (AAA000)

c mt code wgt fraction (percent/100) element

m2 6000.01e -0.0020 $ C

25000.01e -0.0045 $ Mn

15000.01e -0.0004 $ P

16000.01e -0.0005 $ S

26000.01e -0.9926 5 Fe

C

c MT 3 is Nuclear Graphite , high density , T=300C

c mt code density

m3 6000.01e 1.0
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density

-0.0013

-7.86

-0.0013

-2.10

c # mt

1 1

2 2

3 1

4 3

5 0

666 0

C

crd

box

box

box

box

rec

1

2

3

4

666

c

c MT

c mt

m1



C

c end material spec

C

c tally card specification

C

c specifier

f06:e 4

sd6 1

notes

$f6 is for energy , 0 denotes tally 0 (name) , 4 is cell to tally

$sets volume of cell to value for tally

C

c mesh tally description

tmesh

rmesh3

cora3 -2.5 20i 2.5

corb3 6.3 20i 11.3

corc3 0 20i 12

endmd

c end tally card spec

c

c other data and solution info

c

mode

sdef

sp1

sp2

trI

nps

e $ Mode

dir=1 vec=0 0 1

-41 0.200 0

-41 0.200 0

0 8.8 -2.1 1 0

1000000 $ Numb

comments are not allowed in this card!

e: electron transport only

x-=dl y=d2 z=0 ccc=666 tr=1 erg=60.67 $ source def

$ 2.35482 * 1 (a) a=0.0851

$ 2.35482 * 1 (b) b=0.0213

0 0 1 0 0 0 1 1

er of particles to run

C

c end other data, EOF

C

print

prdmp 0 0 1
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B.4 Matrix Solver for BBGS Coolant Flow

~#BBGS COXOLING

/#Matrix solver for pressure drop

##Authior: R.E. Block, reblock ,4aluin.mit~edu

##Created: 2/1/11

/#Modified : 3/3/11

##Filename: bbgscooling py

##Imports
from nunpy import

from matplotlib .pyplot import*

##User Inputs

NOD;]=~ = False

# DEFINE CONSTANTS FOR EA-CH EGEN OF TUBIBNG

dl = 0.00315 #This is for copper tube

d2 = 0.0114 #This is for inner diamreter of 11/2 flex tubing (0.45 in)

if NOINLEI7:

11 =0.001

12 =0.001

12 =0.001

else :

11 = 8 ftm of tubing for inlet and return

12 =1.5 y#An of tubing between dipole and y

13 = 0.5 Jn of tubing between y and x

Idipole = 56.0/3 # 3 loops per coil , 56 mn per coil

ly = 13.2 # thats one loop for BOTHl coils

Ix = 19.6 # one loop per coil , 2 loops total

Iconv = 2.64 -g assumning plates withi one line for every cm of area on two sides

id = 187

iy = 200

ix = 200

rho =1e3 #Density of' water at 20 C

mu = e-3 #Viscosity of w\ater at 20 C

cp =4.18 #kJ/kg K

resistivity =1.77E-6
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area = 0.635**2-pi*(0.315/2)**2

rperl = resistivity/area

# BUILD REAL MODEL - USE 17 SEGMENTS

n = 17

nloops=11

# PRESSURE DROP

dP = 1.38e5 # pressure in Pa [1.3 8 e5 is 20 psi]

L array ([11 , ]dipole , Idipole , ldipole , ldipole , ldipole , ldipole ,12 ,ly 13 ,x ,Ix lconv ,13

,12 11 ,lconv)

if len(L) != n:

print "Fatal-error , ...in correct .length -of -variable...L"

quit ()

D = array([d2,dld1,d1,d1,d1,d1,d2,d1,d2,d1,d1, d2,d2,d2,d1])

R = L*rperl*100

current = array ([0 , id , id , id , id , id , id ,0 , iy, , ix , ix ,0 ,0 ,0 ,0 ,1)

power = current **2*R/1000 # in kW

power[12] = 4.5/2 # deliver 4.5 kW to converter assembly!

power[16] = 4.5/2

# CREATE CONSTANT TFRM FOR MULTIPLICATION IN LOOPS

k = 0.184*8/(4**0.2* pi**1.8)*rho**(0.8)*L*mu**0.2/(D**4.8)

# 'IO ACOUNT' FOR PRESSURE DROP OF TURNS IN MAGNETI, ADD K2

ntd = 4*7*2

nty = 4*4*7*2

ntx = 4*4*12

ntconv = 2*22*2 # accounting for some coiled geometry on face of converter

k2factor = 0.5 #average resistance factor for 90 degree turns

k2=k2factor*rho/(2*(pi*(dl/2)**2)**2)*array([0,ntd,ntd,ntd,ntd,ntd,ntd,0,nty,0,ntx,

ntx ,ntconv,0,O,0,ntconv])

SCreate matrices anid solve

b = zeros(n)

b[-nloops:] = ones(nloops)*dP

beta = 0.45

A = zeros((n,n))

posind = [[01,[71,[9] ,[10 ,11 ,12 ,161 ,[8 ,131,[1 ,2 ,3 ,4 ,5 ,6,14]]
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negind = [11 ,2 3 4 ,5 ,6 71 [8 ,91 [10 ,11 42 16] [131 [f141 ,11511

for i in range(Ojlen(posind)):

for j in range(0,len(posindj)):

A[i][posind[i][jJJ I

for j in range(Ojlen(negindtij)):

A[i1lnegind[i][j11 = -1

Q1 = ones (n)

-# CREATE MLATRIX OF ONES DESCRIBING CLOSED LOOPS IN ThE SYSEM

I = zeros(( nloops ,n) )

[0,7,8,14 ,151 ,[0 ,7,9 ,10,13 ,14 ,151 [0,7,9411,13,14,15],

[0 7,9 12 134,15] [0,7,9,16,13 14,1511

for i in range (0, len (loops)):

for j in range(0,Ien(loopsfiji)):

l~1loops lull 11=1
:#f~open ' outpuit. txt '2w')

-#.-[- nloops: => 1 *9

#p r int, > f .

#f . close (

#print I

error = 100

numit = 0

deltaP? = arange (5,105,5) *1.38e5/20.0

#deltaP" array (120])*1.38e5/20.O

Qs =zeros (len (deltaP) )

for 1 in range (0, len (deltaP))

b[-nloops :J = ones( nloops)*deltaP li
while True:

# SET NUWVAU OF A FOR PRESSURE DROP TRS

A[-nloops:J= I*k*QI**0.8

# INCLUDE VALUS FOR TURNS

A[-nloops:1=A[-nloops:J± I*k2*Q1

Q2= linalg solve (A, b)

#Q2 =dot (inv (A) .b)

error = suin(abs(Q2-Q1))/suin(abs(Q2))

if error < le-4:

print 'Problen.convxer-ged.-in.'+str(nuxnit+1)+'..iterations'

#0 print A

print 'Q[m-3/sJl-

print Q2
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break

numit = numit + 1

if numit >=100:

print 'Not-converged

print 'Q[m/s]-='

print Q2

break

Q1 = abs(Q2)**(beta)*abs (Q1)**(1-beta)

Qs[iJ = Q2[01*15850.0

deltaP = deltaP*20/1.38e5

# CONVERT FINAL Q TO GPM

Qmgpr = Q2*15850.0

print 'Q[gpmJ-.-'

print Qgpm

dT = power/(rho*cp*Q2)

print 'dTs....'

print dT

Re = 4*rho*Q2/(pi*mu*D)

print 'Re..=-'

print Re

dPf = k*Q2**1.8 + k2*Q2**2

dPf = dPf*20.0/1.38e5

print 'dP-- '

print dPf

print dPf[0]+dPf[-11+dPffl]

print 'power-=-

print power

figure ()

plot (deltaP ,Qs)

xlabel ( 'System...Pressure..Drop... psi]')

ylabel( 'Total..Flow..Rate..[gpm] ')

# title ('System curve, excluding converter plate cooling )

show()
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