Electron Beam Dynamics for the ISIS
Bremsstrahlung Beam Generation System ARCHIVES

b P MASSACHUSETTS INSTITUTE
y

OF TECHMOLOGY

Robert E Block ? JUL 25 20w
SB, Nuclear Science and Engineering (2010) A

LIZRARIES

Massachusetts Institute of Technology

Submitted to the Department of Nuclear Science and Engineering
in partial fulfillment of the requirements for the degree of

Master’s of Science in Nuclear Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2011
(© Massachusetts Institute of Technology 2011. All rights reserved.

> >

Author ........ L. S EERTRURRRRRPR — e .

& t of Nuclear Science and Engineering
. ‘ > May 13, 2011
Certified by................. oo Booee e

Timothy A Antaya
Group Leader, MIT PSFC Technology & Engineering

A , - Thesis Supervisor

Certified by....... ' U e
/ / / { J Jeffrey P Freidberg

Korea Electric Power Professor of Nuclear Science and Engineering
. . Thesis Reader

Accepted by ................. 7 ...................
| / Mujid S Kazimi

TEPCO Professor of Nuclear Engineering
Chair, Department Committee for Graduate Students






Electron Beam Dynamics for the ISIS Bremsstrahlung Beam

Generation System
by
Robert E Block

Submitted to the Department of Nuclear Science and Engineering
on May 13, 2011, in partial fulfillment of the
requirements for the degree of
Master’s of Science in Nuclear Science and Engineering

Abstract

An electron beam transport system was designed for use in the Bremsstrahlung Beam
Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose
of this electron transport system was to provide for electron beam diagnostics and
energy selection while also positioning the electron beam on a target down range.

The transport system and its component magnets were designed using the TRANS-
PORT, Poisson, and Opera 3D codes, as well as several custom Python scripts. By
implementing several methods in each part of the design process, it was possible to
design the electron transport system to the exact specifications of the ISIS electron
beam. This careful and iterative design process was documented in such a way to
facilitate future beam transport design both at the MIT Plasma Science and Fusion
center and elsewhere.

This design process resulted in a beam transport system composed of three iron-
dominated resistive-coil electromagnets. The system was designed for beam momen-
tum up to 60 MeV/c and emittance of order 20 mm-mrad. Through magnetic field
simulation and beam transport in 3D, a 1D matrix code which tracks individual par-
ticles was developed. This code agreed with more detailed beam calculations and
should allow for rapid beam simulation during system testing and operation.
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Chapter 1

Introduction

1.1 Motivation

In a world where the number of nuclear weapons states is increasing and the sheer
number of nuclear warheads prevents the international community from accounting
for all of these warheads, the use of nuclear weapons by rogue states or terrorist
organizations has become an important concern for US national security(Bunn and
Wier, 2006; Don Daigler, 2010; Hecker, 2006; Jenkins, 2006). Preventing a clandes-
tine nuclear attack on the United States will involve improving current international
safeguards against the theft of nuclear materials and nuclear weapons, but as this
happens it will also be important to prevent any materials which have already been
stolen from being employed against the United States (Hecker, 2006; Kramer, 2008).
To prevent the movement of nuclear weapons and materials across its borders, the
US will need improved detection systems.

The Defense Threat Reduction Agency (DTRA) is currently seeking ways to de-
tect concealed strategic nuclear material (SNM) from a distance up to 100 m. The
Integrated Standoff Interrogation System (ISIS) has been designed in order to meet
this challenge. Since the radiation which results from the nuclear decay of most SNM
can be easily shielded from detection, the ISIS design uses an active detection system,
similar to those outlined in B. Blackburn et al. (2006, 2007); James L Jones et al.

(2007). In an active system, a beam of photons or particles is used to induce nuclear
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fission in the target material. Detection of the material occurs when delayed photons

and neutrons, the signatures of nuclear fission, are detected by the system.

1.2 ISIS System Overview

The basic concept of the ISIS SNM detection system is to use a high energy photon
beam in order to induce photonuclear fission in concealed special nuclear material.
Once this fission is induced, detectors will be employed to collect signals generated
by the fission reaction. As outlined in figure 1-1 below, the photon beam is generated
by stopping a high-energy electron beam. A linear accelerator (LINAC) is used to
accelerate electrons from 10 to 60 MeV. These electrons are then transported to an
assembly of converter plates where the electrons are stopped and their kinetic energy
is converted through collisions into heat in the plates and Bremsstrahlung radiation.
Bremsstrahlung radiation is a term which describes the radiation generated by the
acceleration of charged particles as they pass by atoms. A thick collimator after
the converter plates shapes the secondary photon (Bremsstrahlung) beam for long
distance transport. The portion of the total system from the end of the LINAC
through the converter/collimator assembly is known as the Bremsstrahlung Beam

Generation System.

BBGS
LINAC A
N
Transport [Converter 7
Detectors

Figure 1-1: Basic system diagram of ISIS.

In order for the ISIS Bremsstrahlung Beam Generation System (BBGS) to suc-

20



ceed, it requires a robust and compact electron beam transport system to deliver the
electron beam at precise energies from a LINAC to the converter/collimator. The
focus of this master’s thesis project was to design, and time permitting, assemble and
verify an electron beam transport system for ISIS which meets the design require-
ments set by Raytheon project managers. This was an iterative design process in
which each design iteration attempted to meet the system requirements while mini-

mizing the size and power requirements of the components.

1.3 Thesis Objectives

The primary objective of this thesis project was as follows:

To design an electron transport system for the ISIS BBGS which utilizes
the full electron beam and obtains a final photo spot size no greater than 1
m at a distance of 100 m from the collimator, while also providing photon

beam steering capability of +5°(+15°) vertical(horizontal).
Secondary objectives included:

e Assemble the electron transport system for on-site testing and verification.

e Verify the transport system design using an equivalent momentum charged par-

ticle beam available at MIT facilities.

In addition to these educational objectives, it was important to provide detailed
documentation of the electron transport system’s physical specifications in order to

facilitate its incorporation into the ISIS system design.

1.4 Report Organization

Chapter 2 provides an overview of Bremsstrahlung Beam Generation System including
final design specifications and layout.

Chapter 3 includes a detailed review of the system-level beam transport design, com-

plete with both 1D and full 3D beam simulations.
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Chapter 4 details the magnetic and physical design of each component magnet.
Chapter 5 describes the calculations which supported the power system and water
cooling design for the BBGS.

Chapter 6 discusses a work plan to quantitatively characterize the BBGS system
performance using an electron cyclotron resonance ion source.

Chapter 7 presents conclusions of this work as well as insights for future work in the

field.

22



Chapter 2

ISIS BBGS Overview

This chapter provides an overview of the final design of the Bremsstrahlung Beam
Generation System for ISIS. This design is a result of many iterations and detailed
analyses which will be described in more depth in the chapters to follow. The purpose
of this chapter is to acquaint the reader with both the components of the BBGS and
the constraints which guided the design process.

2.1 Design Constraints

Unlike many beam transport systems, the ISIS BBGS is a part of a mobile and de-
ployable system which is assembled in a conventional ISO container. The requirement
for portability played an important role in the design process since it put physical
constraints on the size and weight of the BBGS.

Figure 2-1 shows a simplified diagram of the spaced allotted for the BBGS. The
BBGS must fit into the 1.5 by 2.0 by 1.5 m area while also maintaining weight,
power, and cooling requirements which can be supported by the portable systems
within the ISO container. Considerations of these constraints were important to the
BBGS design as they limited the size and number of beam-line components available
to shape the electron beam. For example, designs for a focusing solenoid as well as a
beam alignment magnet were removed from the BBGS due to concerns about system

size.
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Figure 2-1: ISO container for ISIS with the BBGS area highlighted.

Although the BBGS is responsible for shaping the final electron and photon beam
for ISIS, the input electron beam does not fall under the domain of the BBGS design.
The electron beam is formed by a linear accelerator designed by Advanced Energy
Systems (AES), and hence the electron beam was a constraint which drove much of
the BBGS layout and component design. To aid in the BBGS design, AES provided
the results of electron beam simulations for three selected energies. These results
were provided as electron position and momentum data evaluated at the exit of the
LINAC. The operating parameters and an example beam cross section as measured

at the exit of the LINAC are described in table 2.1 and figure 2-2, respectively.

Table 2.1: Beam Properties of AES Parmela Simulated Beam. Dimensions in cm,
angles in mrad.

(T) MeV | 07(%) | ZTrms | Tmas | Yrms | Ymaz | Bo>1ms | alo. | Yoms
60.66 0.21 | 0.136 | 0.489 | 0.137 | 0.487 43.3 0.483 | 0.486
30.57 0.23 | 0.159 | 0.510 | 0.161 | 0.511 46.9 0.669 | 0.675
6.178 0.38 | 0.167 | 0.509 | 0.168 | 0.511 51.7 0.420 | 0.419

The percentage of the beam outside the rms radius coupled with the relatively
large variance in beam energy (o2) presented a challenge for shaping and focusing the
electron beam onto the converter plate assembly. This task needed to be completed
with minimal beam loss so as to reduce the amount of unshielded radiation generated
within the container. The negative effects of excess radiation in the container could

include degrading equipment stability and also limiting maintenance access.
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Figure 2-2: Beam cross section and energy histogram for the 60.7 MeV beam from
AES Parmela simulations of the LINAC.

2.2 System Specifications

Diagrams of the final design for the Bremsstrahlung Beam Generation System are
provided in figures 2-3 and 2-4. The components labeled are as follows: beam defining
slits (1), straight-through beam port (3), 90° dipole magnet (2), steering magnets
(4), converter assembly (5), and photon collimator (6). The detailed designs for
each system component are elaborated in the following section. However, a basic

description of the purpose for each component is described below.

The object (1a) and image (1b) slits are included in the BBGS to provide for
diagnostic operation. By closing each slit aperture to a fine hole, it will be possible
to perform two main functions: (a) reduce the beam transverse divergence and (b)

calibrate the dipole to the appropriate beam energy.

It was important to include a pass-through (3) in the dipole magnet for more
than one reason. The pass through will primarily be used as a diagnostic port for
the electron beam directly from the linear accelerator. In addition, in the event of
an emergency during full-power operation, the beam will be fully stopped in a beam
dump located at the end of the pass-through. This is particularly important should

the power supply for the dipole magnet malfunction.
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Figure 2-3: ISIS BBGS system layout courtesy T. Bistany. 1la(b): beam ob-
ject(image) slits, 2: 90° dipole, 3: straight-through beam port, 4: steering magnets,
5: converter assembly, 6: photon collimator
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Figure 2-4: ISIS BBGS system instrumentation and controls schematic diagram.
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The 90° dipole (2) was included in the system based on lessons learned from a
previous active interrogation experiment to ISIS where the beam energy was not well
known (James L Jones et al., 2007). The dipole combined with the closed beam slits
(to fix the bending radius) sets the momentum of transmitted particles, which allows
for electron beam energy selection. The dipole also provides both radial and axial
beam focusing.

Independent vertical and horizontal steering magnets (4) were included in the de-
sign in order to meet the requirements for £5° vertical and £15° horizontal steering
of the secondary photon beam. Since the photons cannot be directed with magnets,
the electrons are steered before they collide with the converter plates. The secondary
photon beam which is generated then propagates within a conical envelope in the
direction of the primary beam with an opening half-angle 1/, where = is the rela-
tivistic factor of the electrons. When integrated with the ISIS controls system, these
magnets will allow for target tracking.

The converter plate assembly (5) was designed to stop the full energy 60 MeV
electron beam. The modular design allows for spent plates to be replaced or for the
operation of the beam with a variable depth of stopping material in the beam-line.

Finally, the collimator (6) was included in order to maintain the desired 1 m
photon beam spot size at a target which lies 100 m from the ISIS container. The
collimator was designed with an adjustable aperture in order to provide some measure

of tunable photon beam shape, should conditions deem that desirable.

2.3 Description of BBGS Components

2.3.1 Object and Image Beam Slits

The beam slit system was incorporated into the BBGS design in order to make a
point beam at low current for diagnostics and calibration of the system. This point
beam should transport free of aberrations and have low energy spread. A diagram of

the actuator and plates is shown in figure 2-5. The slits are each built from two MDC
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660006 electronic actuators and 304 stainless steel plates. The plates have a 4.93 cm
diameter circular cut such that when the actuators are closed, a variable sized hole

is left for the beam to pass through.

Figure 2-5: 3D view of actuators and plates used in the beam slit system.

Since the purpose of the slit system is to ensure that the dipole is calibrated to
point the electron beam on target, it will be important to understand the sensitivity
of beam alignment to the slit size. A detailed analysis is carried out in section 3.4,
but a more simplified approach was used to estimate basic feasibility. Figure 2-6
shows a simplified diagram of the geometry used to estimate how small the object
and image slits will need to be closed to achieve a given tolerance in beam position
at the converter assembly.

In the diagram, f is the focal distance of the dipole, da is the half-width of the
image slit, and z; is uncertainty in the final position of the beam. The function
describing the focal distance of a dipole magnet can be found in Livingood (1969) to

be:
B ro(cos ¢ + 1 sin¢)
 sing — (t; + t2) cos @ — tytasin @

f (2.1)

where 7y is the magnet bending radius, ¢ is the angular extent of the magnet, and
t; and t, are the tangents of the entrance and exit angles, respectively. The edge

angles are the angles the magnet edge makes with respect to the perfect angular
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sector symmetry.

Using a bending radius of 28.75 cm and identical edge angles, we find the focal
distance to be a positive function of edge angle. From the diagram, when the focal
distance is exactly 20.5 cm (edge angles of 27.5°), it is clear that it will be impossible
to use the beam slits to control the beam position at the converter plates. Two
equations can be used to find the ratio between the image slit size, d2, and the beam

position uncertainty, zs. For focal distances less than 20.5 cm:

xf . 32.0

it N 2.2

do 205-—f (22)
And for focal distances greater than 20.5 and less than 32.0:

Tf 32.0 — f

Zr = J 2.

do f—205 (23)

As an example calculation, assume that the image slit has a minimum aperture
of approximately 0.05 cm. To obtain resolution in the position of the beam at the
target within £0.2 cm, the focal distance must be less than 16.5 or greater than
21.8 cm. This type of calculation, though simple, was very important to keep in
mind throughout the design process. Since iterations brought changes to the bending
radius, slit placement, and desired beam size, it was always necessary to go back and

check the most fundamental calculations before proceeding with design changes.

That these slits do not have fine control of the image spot size and displacement
is no surprise, since the slits were designed primarily to cut the angular divergence of
the beam and not to create a fine spot size at the converter plates. It was the dipole
which was designed to control image size, as will become clear in what follows. In
any case, it was important that the slits not be located directly at the dipole focal

point.
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Figure 2-6: Variables used to estimate the effects of slit size on final beam position.
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2.3.2 90° Dipole Magnet

The 90° dipole magnet is the central component of the BBGS. The dipole steers the
electron beam to the converter assembly and it serves as a tool for beam diagnostics
and calibration. The dipole also provides radial and axial’beam focusing to ensure
the proper beam size at the converter plates. A schematic diagram of the dipole

magnet is shown in figure 2-7.

a=30

11

5.0

75 50 7.5 5.5

S - R —
R

Dimensions in cm
Not to scale

Figure 2-7: Dipole magnet layout and important parameters. Left shows a top-down
view and right shows a cross-section which splits the magnet through the middle.
Right image has mirror symmetry about R axis.

The BBGS dipole has a bending radius 7, = 28.75 cm with final entrance and
exit edge angles of 30°. These edge angles provide axial focusing while the dipole
itself provides radial focusing. The beam aperture half-height and half-width are 1.5
cm and 3.5 cm, respectively. These dimensions were optimized to minimize power
requirements while leaving a significant tolerance for inconsistencies in beam size.

The coils of the dipole are wound with 6.35 mm square copper conductor and are
water cooled through a 3.15 mm bore, as shown in figure 2-8. The conductor was

sized to optimize power requirements, water cooling, and peak current density.

1The terms axial and radial refer to the cylindrical geometry of a steering magnet. The 6 direction
points in the beam direction, ¥ parallel to the direction of steering (acceleration), and Z mutually
perpendicular to both the beam propagation direction and steering direction. Radial: ¥, axial: Z.
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Figure 2-8: Conductor diagram from Luwata. The BBGS uses conductor 8417 with
R=10,z=y=16,0D =6.35,ID = 3.15 mm.

2.3.3 Beam Steering Magnets

Schematic diagrams of the horizontal (z) and vertical (y) steering magnets are pro-
vided in figure 2-9. The purpose of the steering magnets is to align the electron beam
with the converter plates for a horizontal/vertical displacement of +15/5°. Since
these magnets must steer over a relatively short distance, they require high current
density and use the same hollow copper conductor as the BBGS dipole.

The apertures of the steering magnets are designed to accept the full beam with a
small tolerance for inconsistencies between the actual electron beam and the simulated

beam from AES. A discussion of this optimization is provided in chapter 4.

2.3.4 Converter and Collimator Assembly

The physical designs for the converter plate and collimator assemblies were completed
primarily by PSFC mechanical engineer V. Fishman. Included in figure 2-10 is a view
of the two assemblies. The primary goal of the converter assembly is to provide for
both online and offline adjustments to the effective stopping depth of the converter
system. By using 12 individual plates, the converter depth can be varied from 1 to
12 cm according to the optimal length for a given electron beam energy.

Candidate materials for the converter plates where Carbon and Aluminum due
to their ability to create highly forward-peaked Bremsstrahlung radiation from the
electron beam (T.A. Antaya, 2010). Nuclear grade graphite was chosen as the final
material for its high density, its good thermal conductivity, and because activation of

the Aluminum by secondary neutrons and photons presented radiation concerns.

33



/’_ |
l N
| 3.0
7.0 | € ?
i
45 | 8.3 159
3.0
|
'___—
—
2.6I| 2.25 5.0
Lo o Lde — —
X
Dimensions in cm
Not to scale
(a) X Magnet
/ N X,
i
I 3.0
3 «—
|
I
2.2 | 50 9.7
3.0
|
L
1.71! 1.1 3.0
Lo — - - L -
Y
Dimensions in cm
Not to scale
(b) Y Magnet

Figure 2-9: Steering magnet dimensions. Magnets are an H-magnet design with
simple racetrack coils. Coil and pole shapes are specified on the left and one quarter
of the yoke is shown on the right. Mirror symmetry about both = and y axes is
assumed.
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Converter Assembly Collimator Assembly

Figure 2-10: View of converter and collimator assemblies. Left shows view from
behind the converter assembly, right shows collimator from front (down range). The
electron beam enters the converter on the left and the collimated secondary photon
beam exits the aperture on the right.

In order to set the total target thickness for a given electron beam energy, the E-
STAR electron range database was used. (NIST, 2010) The continuous slowing-down
approximation (CSDA) range and Bremsstrahlung yield from E-STAR are shown in
figure 2-11. For an electron energy of 60 MeV and graphite density of 1.7 g/cm®, the
E-STAR database gives a CSDA range, R, of 25.98 g/cm?. The average total distance
travelled by the electron is then:

z=R/p=153 cm (2.4)

The issue with using the CSDA range for electron range estimation is that the path
of electrons in matter is actually highly irregular. For a more accurate estimation
of the range with respect to the front plane of the material, data from Tabata et al.

(1996) was used.

Using the correlation provided in Tabata et al. (1996) for the ‘extrapolated range,’

which is the correct range to use for estimating electron range in materials, we find
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Figure 2-11: Electron stopping data from E-STAR for graphite, p = 1.7 g/cmd.

R = 31.97 g/cm?. This assumes a mean excitation energy (from NIST) of 78.0 eV.
This result, which agrees with the data presented in Tabata et al. (1996), says that
for high energy electrons in Carbon, the effective range is actually longer than the
CSDA range.

Given that the stopping range of 60 MeV electrons in graphite is on the order of
15-18 cm, it may seem inconsistent that the converter plate assembly is only a total of
12 cm long. This is the first example of the small discrepancies that arise when large
systems are designed by multiple parties. In their preliminary calculations, Raytheon,
responsible for secondary radiation simulations, used a density for graphite equal to
2.2 g/cm®. This results in a CSDA stopping range of 11.8 cm, within the converter
assembly length of 12 cm. However, when faced with the task of procuring nuclear-
grade graphite for the BBGS, we found that the most readily available products had
densities in the range from 1.7 to 1.8 g/cm?®.

The good news is that even though the entire beam will not be stopped in the
converter assembly, more detailed simulations (see section 5.3.4) have shown that
the amount of energy deposited into the collimator will be a small and manageable

percentage of the total beam power.
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Chapter 3

BBGS Beam Transport Design

3.1 Transport design process

The design process for the Bremsstrahlung beam generation system began with beam
transport design. Before it was possible to design individual components, it was first
necessary to create a simplified but encompassing model of the entire system.

The design for this system-level transport model began with intuition gained from
previous work, then it evolved as the individual components were designed and iter-
ated upon. Since the ISIS project is compartmentalized among several design teams,
changes to external constraints did not always propagate as quickly as would be de-
sirable. This meant that multiple solutions were created before the final product
presented in chapter 2 was complete. It is the purpose of this and the following chap-
ters to highlight important pieces of the iteration process which led to the final BBGS
design.

This chapter focuses on the design of the main beam-line, which includes the
dipole bending magnet, the object and image slits, and the relative distances between
all other objects. The goal of the beam design was to meet the Raytheon-specified
requirement of approximately 1x (unit) magnification of the LINAC beam at the
converter plates. This means that the electron beam at the converter plate should
be about the same size as the initial beam. Since the exact specifications of the

LINAC beam were unknown when this requirement was specified, a soft requirement
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of a beam width ‘less than 0.5 cm but greater than 0.05 cm’ was also used as an

acceptable limit throughout the design process.

While the steering magnets were an important consideration during the beam-
line design, it was primarily the case that the dipole and beam line design drove the
steering magnet design. Hence, the design of those components is not included in this

chapter.

3.2 1D Beam Transport using TRANSPORT code

The LINAC beam properties were presented as constraints in chapter 2, but in reality
they began as unknowns. The initial beam transport design was started well before
the final beam parameters from the linear accelerator were known. Hence, the system
design started with simplified methods in order to create a big picture design which

could be later modified to fit exact specifications.

Though the exact beam properties were unknown, it was possible to use typical
LINAC electron properties in order to begin to create a beam transport solution.
The tool used to parameterize the electron beam properties is the phase-space ellipse,
illustrated in figure 3-1. The phase-space ellipse is a standard formulation used to
characterize charged particle beams. (Livingood, 1969; Reiser, 1994) Since it is often
impossible to model all individual particles in a beam, the phase-space ellipse is used
to represent the envelope of a charged particle beam. The ellipse is used to describe
the displacement (z) of particles about the beam centerline as well as the angle
each particle’s trajectory makes with the beam centerline (z’). The central idea of
the phase-space ellipse formulation is that many charged particle beams, because of
the way they are formed and accelerated, can be described by an equivalent beam
envelope. The thesis is that since accelerators operate on a charged particle beam
with periodic focusing forces, the horizontal and vertical displacement of any particle
from the beam centerline inside an accelerator will be sinusoidal in time, provided

that the displacements are small.
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Figure 3-1: Top: Phase-space ellipse used to parameterize the properties of the elec-
tron beam. Bottom: coordinate system for beam where z is in the average direction
of all particles in beam.
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So, the position of a given particle in the accelerator can be described as:

2(t) = z,sin 3’;& (3.1)

where v is the beam velocity and ) is the wavelength of oscillation.

Now, the angle the particle makes with the beam centerline, 2/, is given by:

dx ﬁ
dt dz
dz 1
dtv
21 27w

= To—y- oS Tt (3.2)
Z(t) = 1l cos 2—:—% (3.3)

() =

Since sin? 8 4 cos?§ = 1, we can write an equation for the phase-space ellipse within
%

an ideal accelerator:

z?  z?
;2'4-;5:1 (3.4)

Hence, particle motion in an accelerator results in an upright phase-space ellipse.
This result allows for a particle beam simulation to be completed before the final
beam properties are known. It is possible to estimate reasonable maximum values
for the beam width (z,) and divergence (z/,), and with those estimates to build a full

simulation of the electron beam transport system.

In the first iteration of the BBGS beam transport design, the matrix-based TRANS-
PORT (Sta, 1972) code was used to model the dipole within the electron beam-line.
TRANSPORT is a very common beam transport code that has been used in the
design of many beam systems. Based on preliminary numbers from AES, the beam
parameters at the interface between the LINAC and the BBGS were chosen such that
the beam emittance was identical in both transverse spaces (z and y) with variable
beam widthlin the range [0.05,0.5] cm and divergence in the range [0.5,5.0] mrad,

where the beam emittance in a given transverse direction is defined as the area of the
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Figure 3-2: Parameters available to characterize a dipole magnet in the TRANSPORT
code. BBGS sets R; = R, = co. Figure adapted from (Sta, 1972).

phase-space ellipse for that coordinate direction.

The first task was to characterize the beam size at the converter plates for several
combinations of beam size and divergence. In order to do so, a basic model for the
dipole magnet was required. The magnet was chosen with a radius of 30 cm, and to
start with edge-angles (see figure 3-2) #; = B2 = 0 degrees. The results of this first
analysis for a beam energy of 60 MeV are shown in table 3.1 and figure 3-3. The
beam inputs required by TRANSPORT are z,2’,y, v/, 2,dp, p. The bunch length, 2,
along with the energy variance, dp, were set to 0. For the momentum (in GeV/c),

the following equation was used:

p(Gev/e) = 1E-3/T2 +2E,T (3.5)

where T is the kinetic energy of the beam and F, is the electron rest mass energy,

equal to 0.511 MeV. This gave an input beam momentum of 0.0605 GeV/c.

Taking a look at the results, the simple dipole without edge angles tends to over-

'Here and elsewhere in this text, beam width denotes the distance from the beam center to the
maximum extent in a given direction. This is sometimes referred to as the ‘half-width’ in other
texts. For the full beam size measured from one extent to the other, this text uses ‘beam diameter.’
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Table 3.1: Table of results from 90° dipole with 7, = 30 cm and no edge angles.

Tolvo | /¥y | zr & yy  y, | Label
0.5 |0.089 183 0.087 0.50 aa
0.05 25 |0.145 4.10 0.361 2.50 ab
50 (0.249 7.67 0.718 5.0 ac
0.5 |0.428 837 0.260 0.50 ba
0.25 2.5 0.443 9.14 0.437 2.50 bb
50 (0487 11.2 0.758 5.0 be
05 [0.854 16.7 0.505 0.50 ca
0.50 2.5 10862 17.1 0.615 2.50 cb
50 [0.88 183 0.873 5.0 cc

ISIS Transport: Dipole with 0 edge angles

Zmin= 0.00 m Zmax= 1.50 m Xmax= 0.5 cm ¥Ymazx= 0.5 cm Ap * 1.00 wed Apr 13 11:10:54 2011

roRw

O
w

DIPOLE MAGNET
| |

Figure 3-3: TRANSPORT print out for beam label bb. Top curve is the y-envelope,
bottom curve is the z-envelope. Simulation ends at label D3 which represents the
start of the converter plate assembly.
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focus in z for all of the beams - there is a beam waist (see figure 3-3) before the
converter plates and the beam is larger than it started. It also provides no focusing
in the y direction, something which could present trouble for a high-divergence beam.
The next step in the design process was to add edge-angles to the dipole in order to
counteract the over-focusing of the beam in the z direction.

While it is possible to vary the edge angles separately, the decision was made to
maintain identical edge angles for both the entrance and exit of the dipole magnet.
This kept the dipole design as simple as possible, which in turn made it easier to
communicate design specifications to the engineers who created technical documents
for each component. Many revisions were created to explore the possible set of edge
angles, a few of which are shown in figure 3-4.

In addition to a deterministic beam transport mode, the TRANSPORT code
can also run optimization routines to find the best design for a magnet. Holding
all parameters fixed except for the edge angles, an optimization was run to obtain
equal beam height in z and y at the converter plate. The output from one of such
optimizations is shown in figure 3-5. For all of the test cases, the optimal edge angles
were between 22 and 30 degrees. The larger beams used in the simulation, which due
to details from AES appeared more realistic, required edge angles between 27 and 30
degrees.

After many simulations and feedback from MIT designers, the edge angles for the
dipole were set to 30° for both the entrance and exit angles. While this number would
not be optimal for all beam configurations, it was close enough and a ‘round’ number
which could be easily relayed to engineering. It is also the case that for the final
dipole parameters, edge angles of 27.5 degrees correspond to a focal distance of 20.5
cm, which is the location of the image slit. It was important that the edge angles be
chosen such that the focus was pushed beyond the image slit. This resolved the 1D
beam design for the BBGS dipole. However, as more detailed information about the
LINAC beam became available, it was necessary to verify the 1D results using more

complex codes.
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18IS Transport: Dipols with 10 edgs angles
Zmin= (.00 m Zmare 1.50 m Xmax= 0.5 ca Ymax= 0.5 cm Ap * 1.00 Wed Apr 13 11:17:47 2011

]
(a) 10 degrees

ISIS Transport: Dipole with 20 edge angles
Inin= .00 ® Zmar= 1.50 m Xmax= 0.5 cm Ymax= 0.5 cm Ap ¢ 1.00 Wed Apr 13 11:18:4¢ 2011

[ 1
(b) 20 degrees

1SIS Transport: Dipole with 30 edgs angles
Zmin= €.00 m Zmax= 1.50 m Xmax= 0.5 c» Yoax= 0.5 am Ap * 1.00 Wed Arr 13 11:19:34 2011
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(c) 30 degrees

Figure 3-4: TRANSPORT print out for beam label bb with different edge angles.



ISIS Transport: Dipole with variable edge angles

Zmin= 0.00 m Zmax= 1.50 m Xmax= 0.5 cm Ymax= 0.5 cm Bp * 1.00 Wed Apr 13 11:50:24 2011

B
n
3

\_L

| |

Figure 3-5: TRANSPORT print out for beam label ab with edge angle optimization.
Edge angles are 26.7°.

3.3 pybeamld Transport Code

As details about the phase space and energy distribution of the electron beam began
to filter in, it became apparent that a more detailed analysis might be necessary to
verify the operation of the BBGS transport system. Before moving to full 2D and 3D
field models of the magnet system, a 1D transport code was developed by the author
which could more accurately represent the ISIS electron beam. The basic idea. of this
code, pybeam1d, was to use matrix transport methods to transport individual particles
rather than an idealized beam envelope. This ‘1D+’ particle tracking method made
it possible to simulate the transport of non-ideal accelerator beams. The process of

writing this code also helped to gain a better understanding of the assumptions used

in the TRANSPORT code.
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Figure 3-6: Geometry for particle transport calculations. Left: cross section of
magnet poles, beam out of page. Right: top view

f

3.3.1 Code Scope

The scope of the pybeamld code is not to recreate or enhance all of the functionality
of the TRANSPORT code. Instead, it provides a Python-based extensible framework

with the following built-in functionalities:
1. Matrix transport through dipoles and free space
2. Variable field index and quadrupole edges for dipoles (see chapter 4)
3. Random beam generation based on given phase-space parameters
4. Interface to generate equivalent beams for Opera-3D models

5. Basic space-charge integration (see chapter 6)

3.3.2 Basic Theory

Since many books on the subject matter (Livingood, 1969; Reiser, 1994) do not
explicitly derive Matrix-based beam transport equations, a short overview of these
derivations is provided here. We start with beam transport in cylindrical geometries
(such as that in dipoles) where the beam trajectory travels in the 6 direction at a

constant equilibrium radius, ry. This geometry is described in figure 3-6.
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Magnetic Field in Axisymmetric Cylindrical Geometry

The theory of beam transport in cylindrical geometries starts with (of course) Maxwell’s

equations. We can write Ampere’s Law for free space:

1 0FE

VxB=poj+ 5o (3.6)

Now, assuming steady state (%7 = 0), the equation for the magnetic flux density in

a region free of current becomes:
VxB=0 (3.7)

Expanding this vector expression for cylindrical coordinates, we have:

(3.8)

_(16B. 8By\., K (0B, OB,\,; 1(8(rBy) 0B, .
VXB_(r@&“'@T)”(F;_E—)eJ’?( ar 90 )°

Since V x B = 0, each of its vector components must also be equal to zero. This

gives:
0B, 0B,
or 0z

0 (3.9)

Equation 3.9 can be found throughout the scientific literature. It is important because
it allows the description of coupling between radial and axial oscillations in cylindrical

geometries.

Another consequence of V x B = 0 is that the magnetic field can be written as

the gradient of some scalar potential, ¢:
B=V¢ (3.10)

And hence since V- B = 0:
V=0 (3.11)
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In cylindrical coordinates, this evaluates to:

26 10 18 0%
2, __ 2 7 —r —— —_—
Vie=or e o T oz 0 (3.12)

Now, since the region of interest for beam transport calculations will be a small region
centered about the equilibrium radius ro, we write r = ro + z. Substituting for r and
eliminating terms which vary in @ gives:

0% 1 @Jra?qb_o
0z  ro+xz0r 022

(3.13)

Assuming that %f is small compared to g, the Laplacian is simplified to the Cartesian
result that:
8% 0%
Bk S T 14
0r2 = 022 0 (3:14)
Since z and z are small, we seek solutions for ¢ of order 2 which will result in magnetic

fields to the first order. To the second order, the scalar potential can be expanded in

polynomial form as:
d(x,2) = 1T + coz + ca(2® — 2%) + cazz (3.15)

Here we set c; = 0, since the geometry of our solutions will be such that the fields
in z will either be independent of z or always increasing/ always decreasing in =,
as illustrated in figure 3-7. This simplification holds true for most beam transport
scenarios and it simplifies the equations of motion by decoupling the x and z equations
of motion. This gives:

d(z,2) = a1z + c22 + cyx2 (3.16)

and hence

B(z,2) = (a1 + caz) X+ (co + caz) 2 (3.17)
We know B, (0,0) = 0 and B;(0,0) = Bo, hence:
B(z,2) = kz%x+ (Bo+ kx) 2 (3.18)
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Figure 3-7: Possible field configurations for transport solutions. Left and center are
allowed, right is a disallowed configuration in this model.

where k is a constant factor to be defined later.

Equations of Motion About Equilibrium Orbit

In beam dynamics it is useful to plot the trajectory of an ‘equilibrium’ particle which
represents the average properties of a particular beam. This particle moves at the
average momentum and travels down the center of the beam line. In this discussion,
this particle travels in a circular orbit with bending radius, ro, momentum, py, velocity,

Vg, relativistic mass, m, and position with respect to beam center, (z,z) = (0,0).

The goal of beam transport simulations is to characterize the motion of particles
in the beam whose properties differ slightly from the equilibrium orbit properties.
Hence, a new variable z is adopted to represent the displacement from equilibrium

radius, £ = r — rg.

The first step in deriving equations of motion is to find the force exerted on a

particle from the magnetic field:
F =q(v x B) (3.19)

Here it is assumed that the transverse velocities (z’,2') are much smaller than the

velocity in the § direction, so the transverse forces on the non-equilibrium particle
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become:

F.(r) = —quB,(r) (3.20)
F,(2) = quB.(2) (3.21)

Axial Motion To solve for the axial motion, we write the differential equation:

d*z
ma, =m—g = quB;(2) (3.22)

where here and elsewhere m is the relativistic mass, which is assumed to be approxi-
mately constant since the particle momentum p is primarily in the 0 direction and the
acceleration does not occur in this direction. Now, the field B,(2) in equation 3.22

can be represented using equation 3.18:

B, (2) =k=z (3.23)
Here we note that k is in fact equal to aaz’, which by equation 3.9 is also equal to
6—33}. This gives: d2
z qu (0B,
a2~ m ( or ) ‘ (3:24)

It is now useful to define the field index, n, a dimensionless parameter which helps to

characterize particle motion:

r OB
=z 2
" B, or (3.25)
Solving for ‘—982} near 7o gives:
6.82 . Bz(’l'o)
- " (3.26)
plugging this result in to equation 3.24:
&z quf n
W = E (—;O-Bz(’f‘o) Z) (327)
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Using the equation for the equilibrium orbit field, B,(ro) = oo the equation for

axial motion becomes:

2z v}
pr) + %n z2=0 (3.28)

Substituting for the path length S = vyt and dt = dS/v, the equation used for axial

motion through magnets in pybeam1d is:

&z n

35 T (3.29)

Radial Motion The solution for radial motion follows the same method. Writing

the equation of motion from the force balance:

2
ma, =m (% -7 (%‘;) ) = —quB,(r) (3.30)
Using
% —w= ; (3.31)
gives:
%¥§+%&m:o (3.32)

Substituting ro + z for 7, this gives:

d2(ro + ) v?
dt? o+

qu .
+ZB.(r =0 (3.33)

Which can be simplified by taking the following steps:

1. Factor out 10 from second term to give —- L

o ro1+E
2. Since z << 1y, ﬁ can be approximated, taking only the first term in the
o
binomial expansion as: 1 + -

d? (rot+z) _ d2z

3. Since g is constant, — =55

These steps give:

d*x  ? T qu
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Now it is possible to use equation 3.18, taking only the 2 fields:

B.(r) = B,(ro) + kz (3.35)
Again, noting that k = ——n—B’r%)- and using B,(ro) = 72, the equation for radial
motion becomes:
d?z  v®  vw ¥ vy
— 4t — 4|5 - =0 .
dt? To + To + (7‘(2) ?"g n) T (3 36)

Here it is important to draw a distinction between the equilibrium velocity, vo and
the non-equilibrium particle velocity, v, which may be different. Writing v = vo + ov

where v is a small perturbation from the equilibrium velocity, we have:

dt2 To To

n
2 2
To 7o

dz  (v+ 6v)? 4 (vo + dv)vp N (”_2 V% ) z=0 (3.37)

Expanding and dropping terms in dv? as well as terms with 6—:’%“—” since they are much

smaller than % terms:
T0
&z v ov
D)

W + 70' (1 - n) Tr — ’Uo;; (338)

Now, substituting for S = vet:

Pz 1 1 dv

ﬁ‘FT—g(l—’n)ﬂ?:r—OE (3-39)
Or, in terms of momentum:

Pz 1 1 Ap

d—Sz‘l';g(l—n).’B—E;J (3.40)

which gives the equation for radial motion used in pybeamId. This equation agrees

with those found in the literature, for instance Livingood (1969) eq 2-1.

3.3.3 Matrix Equations

Following the process of Livingood (1969), the pybeam1d code treats beam-line com-

ponents with transfer matrices that take the initial phase space and transform it to
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the phase space at the exit of the component. This transfer is written in matrix form:

xr = Mx,

where x is the vector:

»
I
88

Ap
P

and M is a 3 by 3 transfer matrix for the given component.

(3.41)

(3.42)

To find the equations for z and z’, solutions to equation 3.40 are sought in the

form:
T = asin— +bcos§§ + Qéf-
To To 92 Y4
, 0 S 6 . 4S
z = a—cos— — b—sin —
To To To To
where

d=+vV1—n

Given initial values z, and z, plus defining the quantity:

585 _

To

00
where 6 is the angular extent of the dipole path, then

a= 7'01':,/5 and b=z, — (r0/52)Ap/p

The transfer matrix for axial motion in a dipole magnet becomes:

cos¢p  Tesing 53(1—cosg)
Mp. = —%sinqb cos ¢ 3sing

0 0 1

53

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)



The transfer matrix given by a dipole edge with angle « is given by the thin-lens

approximation (see Livingood (1969)):

1 00
Mg, = tﬁ% 10 (3.49)
0 01
And for a vacuum drift of length S:
1 §0
Msz=10 10 (3.50)
0 01

For the axial equations, let us replace the variable z in equation 3.29 with y. Now,

the matrix equations will be the same as those for motion in z, modified as follows:

1. Replace § = /1 —n withe =+/n

2. For edge angles, change the sign of tan «

3. Ignore variance in momentum

In the equations for ¥ motion, a special case occurs when n = 0. We have:

i 0
== (3.51)

However, by L’Hospital’s rule:

lim sin €@ _ 0 cos el _ (3.52)

e—0 € 1

The pybeami1d code implements a switch which checks for this special case when

applying the matrix equations for axial motion.
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3.3.4 pybeamld Benchmark

Before using the pybeam1d code for more detailed beams, it was important to bench-
mark the code against TRANSPORT calculations. The results of this benchmark are

shown in table 3.2. The only differences between the two results are that in pybeam1d

Table 3.2: Table of pybeam1d results from 90° dipole with r, = 30 cm and no edge
angles. Compare to table 3.1 for TRANSPORT results.

TolYo | To/Yo | Zf Ty Ys y; | Label
0.5 [0.087 1.797 0.086 0.491| aa
0.05 | 25 |0.142 4.023 0.356 2454 | ab
5.0 [0.244 7474 0.707 4.908 | ac
0.5 10423 8278 0.254 0.491| ba
0.25 | 2.5 | 0436 8984 0429 2454| bb
5.0 |0.477 11.099 0.747 4.908 | bc
0.5 | 0.845 16.520 0.492 0.491 | ca
0.50 | 2.5 |0.850 16.801 0.608 2.454 | «cb
50 |0.872 17.969 0.857 4.908| cc

the maximum parameters are used as a basis for generating random particles, hence
the numbers are not exactly the same since the actual maximum will not be exactly

equal to the maximum random radius generated.

In this benchmark, the beam was generated by first picking values for r and 7/, the
distance from the beam axis and angle in the radial direction, from a uniform ellipse.
This assumes that since the beam is exiting an accelerator with radial symmetry, the

beam should be approximately radially symmetric.

Once the radial beam was generated, values for the  and y directions were ex-

tracted by assigning a random angle 8 to each point such that:

z = rcosf (3.53)
y = rsinf (3.54)
Z = r'cosf (3.55)
y = r'siné (3.56)
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Figure 3-8: pybeamlid print out for beam label bb. Top row: starting phase space.
Bottom row: phase space at converter plate.

Examples of the initial and final beam profiles are shown in figure 3-8.

3.3.5 Beam Transport with Energy Variance

One of the primary reasons for developing the pybeam1d transport code was to explore
the effects of variations in beam energy on the BBGS electron beam. Even before
the LINAC beam simulations were complete, it was known with certainty that there
would be some spread in the beam momentum.

The electron beam is accelerated in a pulsed mode, which means the beam is
not continuous but actually a series of ‘bunches’ of particles, each which have a finite
length in the beam direction. As the bunches are accelerated across a voltage gap, the
voltage is changing sinusoidally in time in order to prepare for the next bunch. This

means that particles at the front of the bunch do not experience the same accelerating
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fields as those in the back of the bunch. Hence, as the beam is accelerated and the
momentum increases, the variance in the beam momentum also increases.

Before the electron beam parameters were known, a study was performed to probe
the sensitivity of the BBGS transport system to variance in the beam momentum.
For this study, a beam of 5000 particles was generated and each particle was assigned

a momentum at random from a normalized Gaussian distribution given by:

(p—p)” (3.57)

exXp — 20_2
p

1= s

p

where p is the average beam momentum and o, is the square root of the momentum
variance.

For each of the 9 beams simulated in the TRANSPORT study, three different vari-
ances in momentum were tested: i’;} = 0.01,0.001,0.0001. Plots of these momentum
distributions are shown in figure 3-9. The results of this set of pybeam1d simulations
are shown in table 3.3 and figure 3-10. As expected, when the momentum variance
is small, the beam behaves nearly identically to that of the monoenergetic electron
beam. However, for a standard deviation in momentum of 1%, the beam magnifica-
tion in the x direction is increased significantly.

At the time these simulations were completed, more clear information on the
electron beam began to filter in from AES. The detailed LINAC simulations showed
a standard deviation in beam momentum on the order of 0.2%, plus a high skewness
in the energy distribution. It became clear that even more detailed calculations would

need to be completed in order to estimate the actual beam size at the converter plates.

3.3.6 Transport of AES Beam

The engineers at AES provided three 50,000 particle simulations of the LINAC elec-
tron beam as it exits the accelerator. The first step to use these files for transport
in the BBGS models was to convert them to distributions we could use in our sim-
ulations. The output files generated by AES gave beam data in Snyder-Courant
formulation, in the form of 6 variables: (x, (87)z, ¥, (67)y; 2, (87).), where z,y and z
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Table 3.3: Table of pybeam1d results from 90° dipole with r, = 30 ecm and no
edge angles. Table adds variance in momentum. Units are cm and mrad. Results
highlighted in grey are shown in figure 3-10

o | 2L | opfp T Label
0.0100 | 2.901 aaa

0.5 0.0010 | 0.335 aab

| 0.0001 | 0.093 aac
0.0000 | 0.087 aad

0.0100 | 2.850 aba

0.0010 | 0.416 abb

00211 == 0.0001 | 0.144 abc
0.0000 | 0.140 abd

0.0100 | 3.451 aca

50 0.0010 | 0.389 acb

’ 0.0001 | 0.255 acc
0.0000 | 0.244 acd

0.0100 | 3.377 baa

05 0.0010 | 0.592 bab

[ 0.0001 | 0.424 bac
0.0000 | 0.419 bad

0.0100 | 2.940 bba

0.0010 | 0.613 bbb

Ui | Lo 0.0001 | 0.445 bbe
bbd

0.0000 | 0.433

5.0

0.0000 | 0.473 10.819 | bed
0.0100 | 3.552 48.626 | caa
0.0010 | 0.943 17.432 | cab
0.0001 | 0.841 16.385 | cac
0.0000 | 0.838 16.358 | cad
0.0100 | 3.155 42.981 | cba
0.0010 | 0.956 18.232 | cbb
0.0001 | 0.849 16.839 | cbec
0.0000 | 0.838 16.679 | cbd
0.0100 | 3.232 42.937 | cca
0.0010 | 1.055 19.522 | ccb
0.0001 | 0.881 17.878 cce
0.0000 | 0.866 17.915 | ccd

0.5

0.50 | 2.5

5.0
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Figure 3-9: Gaussian distributions in momentum used in beam simulations. Plotting
range is +3 standard deviations for the highest variance distribution.
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Figure 3-10: pybeamld zz' phase space for initial beam z, = 0.25 em, z}, = 5.0 mrad
with variance in momentum. From left to right, beam labels are: bca, beb, bee. As
seen, the image phase space was increased significantly when the momentum spread
was large.
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are the transverse, vertical, and longitudinal locations of the particle compared to a
reference particle in the center of the beam, and (37), is the dimensionless momentum

in the u direction. In this notation, 3, is defined as:

Uy

fu=2 (3.58)

where v, is the particle velocity in the u direction and c is the speed of light. =, is
the Lorentz factor, defined as:
1
Yu = W (3.59)
The dimensionless momentum data from Parmela were used to generate pairs of
(z',9) for each electron, where 2’ and y’ are the angles the particle trajectory makes
with the z axis in the z and y directions. Since these angles are small, the approxi-

mation tan§ ~ @ was used to find, for direction wu:

p_Pu_Pu_ (BY)u

u = == 3.60
p P (B (3.60)
Finally, the particle kinetic energy, T, was found by:
where
Y=V ([B71)?+1 (3.62)
and

(BY) = /(B2 + (B2 + (B7)2 (3.63)

Before running simulations with the electron beam data from AES, it was impor-
tant to characterize the basic features of the beam. Three beam simulations were
provided by AES. These beams have average energies of approximately 60.7, 30.6,
and 6.2 MeV. Hence, they are referenced in this report as beams 607, 306, and 062.
A summary table of beam parameters provided by AES is shown in table 3.4.

Based on simulations using normally distributed beams of similar momentum
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Table 3.4: Beam properties of AES Parmela simulated beam. Dimensions in cm,
angles in mrad.

(T) MeV l ar(%) | Trms I Tmaz ‘ Yrms l Ymaz l % > rms | - | Yo
60.66 0.21 |0.136 | 0.489 | 0.137 | 0.487 43.3 0.483 | 0.486
30.57 0.23 |0.159 | 0.510 | 0.161 | 0.511 46.9 0.669 | 0.675
6.178 0.38 | 0.167 | 0.509 | 0.168 | 0.511 51.7 0.420 | 0.419

, -

616 610 610 6 '3 ®A 305 %8 07 XD AT CH 50.4 506 600

14
T{Mev]

10 612 &

(a) 062 (b) 306 (c) 607

Figure 3-11: Beam energy distributions for all three AES simulations.

variance, the AES beams do not immediately seem troublesome. However, it is clear
from observation that the energy distributions of the AES beam have longer ‘tails’
than a Gaussian distribution fit to the peak (see figure 3-11). This means that
extreme values (values far from the mean) are more likely in the AES beam than in

the simulated normally distributed beams.

The effect of the low-energy tails of the electron beams from AES was tested by
running the pybeamld code with the AES beam as an inpuf file. In all three cases,
the low energy beam tail introduces a skewness in the final phase-space ellipse. To
showcase this effect, the final phase-space ellipses are presented in figure 3-12 for the
AES phase-space with and without variance in energy. The monoenergetic plots were
created by using the phase space provided by the AES beam but assigning all particle
momentum values equal to the average momentum of the beam. Figure 3-13 shows
the correlation between particle kinetic energy and displacement from beam centerline
as measured at the converter plate. As expected, there was a clear correlation between

the lateral displacement of particles and the kinetic energy. Particles with lower
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Figure 3-12: Beam zz’ phase space at the converter plates for each beam energy both
with and without energy variance.
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Figure 3-13: Particle kinetic energy vs. distance from beam centerline, as measured
at the converter plate.
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Figure 3-14: Phase space for yy’ evaluated at the converter plates. Since variance in
momentum does not effect first order transport in y, 1x magnification was achieved.
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kinetic energy tend to be located in positive x relative to the beam centerline, which

means on average the lower energy particles were over-focused by the dipole magnet.

These simulations, which were verified with those that follow in section 3.4, pre-
sented some important design challenges. While it was originally expected that it
would be possible to maintain 1x magnification of the beam at the converter plates,
the low energy tail makes this nearly impossible without the use of another focusing
component in the beam-line. While simulations were carried out for using a solenoid
or quadrupole magnet to focus the beam, it was determined that such a magnet would
be too large to fit in the already crowded beam line. This meant that the steering
magnets would have to be built with large apertures to accept the low energy beam

tail.

3.4 Opera 3D Beam Transport

While the 1D and 1D+ methods of TRANSPORT and pybeam1d agreed well, it was
still important to verify that higher order effects in the BBGS magnets would not
have adverse effects on the beam transport. The inclusion of higher order effects
can be approximated in 1D using correlations, but a more thorough alternative is to

create a full 3D finite-element solution for the magnetic field of the transport system.

Since the detailed 3D design of the component magnets is covered in chapter 4,

the dipole and steering magnet 3D designs are taken as given in this analysis.

After designing the magnets in 3D using Opera (Cob, 2009), the next step in
creating a beam simulation was to convert the input files provided by AES. For the
electron simulations in Opera 8D, input files must specify electrons with six variables:
(z,9,2,0,0,V), where 6 is the rotation about the z axis, ¢ is the rotation about the
new z axis, and V is the voltage used to accelerate the electrons. The raw electron
data from AES was converted into the correct format for Opera-3D using the geometry

outlined in figure 3-15. Having calculated the angles 2’ and ¢ as described in the
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Figure 3-15: Geometry used for conversion from z’ and ¢/ to 6 and ¢.

previous section, next the angle 6 was calculated. From figure 3-15, it is clear that

0= arctan% (3.64)

and also, from simple trigonometry, that a = tana’. So, calculating the value of b:

b=ctany (3.65)

and for c:

c=V1+a=+v1+tan?z = 1 (3.66)

cosz’

So, by substituting into equation 3.64:

sinz’

tan ¢/

6 = arctan

(3.67)
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To find ¢ in terms of 2’ and 7/, we observe:
¢ = arctand (3.68)

and find:

2
d=VaZ 152 = \/tanzac' 4 ety (3.69)

cos? g/

substituting into equation 3.68 to find:

tan?y’
= arct tan?z’ + —= 3.7
1) arcan\/an +0032x’ (3.70)
Once the input parameters for each particle were calculated, it was necessary to
create an Opera Command Input (comi) file that would run the beam in the Opera

Post-Processor. This was an involved process and hence the interfacing Python script

is included in Appendix A.

The move to 3D computation of fields and trajectories complicates more than
just geometry. Before running each 5000 particle beam sample, it was necessary to
fine-tune the dipole magnet field such that a particle at average beam energy would
intersect with the center of the converter plate. This was an iterative process which
involved visual inspection of the trial beam. The most efficient method was to find
an electron kinetic energy (7T") which intersected the center of the target, then in the

next iteration, scale the magnet current (I) by a factor:

I new Tdesired
~ 0.8 3.71
I old Tmeasured ( )

Learned iterative tricks such as this one became very important while working in 3D

as the field computations run for minutes rather than milliseconds!

After field calibration, the 5000 particle beam sample was run using a ‘comi’ file
which defined the simulation. To extract the phase space at the converter plate,
the Opera Post-Processor ‘intersect trajectories with patch’ function was used. This

function provides x, ¥, 2 and v, vy, v, in the coordinate system of the Opera solution
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file, which for the sake of field symmetry is not the same coordinate system required

by the phase space.

The beam coordinate system was defined by first finding the beam direction, :

z=<%0 (3.72)

where v is the velocity vector in Opera coordinates. Now, using the notation that Y

is the y direction in Opera, the beam X direction was given by:
x=-zxY (3.73)

Finally, the beam ¥ direction could be found:

<)
I
N>
X
"

(3.74)

Once the beam coordinate directions were determined, each particle position and
momentum was normalized to the average beam position and then dotted into the

new coordinate directions to find the final phase space.

The results of the Opera 3D beam simulation for beams 062, 306, and 607 are
compared to pybeamld results in figures 3-16, 3-17, and 3-18, respectively.  The
phase space for zz’ is remarkably similar between the two models. This means that
the dipole was designed well in that higher order effects are not important for the
z transport. It also shows the true strength of the 1D method. A 1D solution is
possible for 50,000 particles in less than one second, where a 3D solution for only
5000 particles takes a total of approximately 15 minutes, not including the time to
design and solve the magnet in 3D, which took many weeks.

Clearly the first order methods did not predict the same yy’ phase space as the 3D
trajectory integration. This means that higher order effects dominate the y transport.
This is a result of the edge angles which focus the beam in the y direction. First order
methods treat this focusing, but not with enough detail to capture the entire effect.

The modification of the pybeam1d transport with higher order effects is treated in
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Figure 3-16: Comparison of Opera and pybeamld phase space at the converter plates
for beam 062.
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more detail in chapter 4.

The 3D beam transport simulations were important for the BBGS design because
they helped to validate previous calculations while providing insight into possible
higher order effects in the beam transport. With three methods in reasonable agree-
ment with explainable differences, it was determined that the BBGS magnets could

be designed with tight tolerances to the beam simulations.

3.5 Estimation of Radial Space-Charge Effects

Throughout all of the BBGS beam transport simulations, the effects of space-charge
on the beam dynamics were ignored. Space-charge effects are the effects of the electric
fields generated by the beam on the beam. For this reason they are sometimes referred
to as ‘self-fields.’

A simple set of calculations was performed to validate the assumption that self-
fields are not important in the BBGS beam transport. For these calculations, a
cylindrical coordinate system with the beam direction in positive z is used. Assuming
an axially symmetric and uniform beam exiting the LINAC with beam envelope, R,
the governing equation for the motion of the radial envelope is derived by Humphries

(1990) to be:

d’R K
=R (3.75)
where K is the generalized perveance, given by:
el
~ Zrcoma(Brey 10

where e is the electron charge, I is the beam current, and m, is the rest mass.
This calculation would underestimate the space-charge effects in the BBGS, since the
total beam current is actually generated by several short pulses, not an infinitely long
continuous cylindrical distribution of charge. To make this an overestimate of space-
charge effects, the BBGS current was multiplied by the reciprocal of its duty factor.

This calculates the space charge as if the electron beam was actually a continuous
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beam with a charge density of that found in the beam bunches.

Rather than taking the time to integrate the equation of motion, a worst-case
calculation was performed. This assumed a constant % given by the initial value of
R = R,, applied over the entire beam path. In this worst-case, the final beam radius
is given by:
1K

1d?
R°z2 +R,==-=—2*+R, (3.77)

Rr=542 2R,

This gives the fractional change in beam envelope:

1-— % =(20x 107,1.7x 107%,1.7 x 10™7) (3.78)

for the 6.2, 30.6, and 60.7 MeV beams, respectively.
This calculation showed that the space-charge effects in the BBGS electron beam
could be reasonably neglected. The calculation was an overestimate of the effects as

it overestimated both the current density in the beam and the accelerating forces.

3.6 Longitudinal Space Charge Effects

A calculation of space charge effects in the beam direction was not performed.
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Chapter 4

Magnet Design

The design of the component magnets for the ISIS BBGS was an iterative process
which could not and did not happen in isolation from the beam transport design. The
process taken was to first generate an acceptable beam transport solution in 1D. Next,
magnets were designed to replicate this solution and verify it in 3D. Finally, based
on the results of the 3D analysis, changes were made to the 1D transport solution
to begin a new design iteration. For clarity, the component designs are presented
separately in this chapter as a series of independent design iterations.

In addition to general space constraints imposed on the BBGS, there were other
requirements placed specifically on all magnetic components. All magnetic compo-
nents were required to be either air or water cooled and hence non-superconducting.
It was also a requirement that whenever possible, the magnetic components should
be constructed from industry standard parts and materials. These constraints led to

the development of iron core electromagnets with hollow copper conductor windings.

4.1 Dipole Magnet

Once the basic design parameters for the BBGS dipole were verified through TRANS-
PORT and pybeam1d calculations, the next task was to create a physical design which

would meet those parameters.
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Figure 4-1: Cross section of dipole magnet version 1. Solved using Poisson 2D.

2D Magnet Design The first step in the physical magnet design was to create a
simplified solution for the magnetic fields using Poisson (Los, 2010). The Poisson 2D
code solves a finite-element version of the magnetostatics Poisson equation for both
z,y and 7,z 2D symmetry. For the dipole magnet, r, 2 symmetry was used with the z
direction in the direction of the bending field and r direction in the negative direction
of acceleration. This corresponds to a cylindrical coordinate system in which the
charged particle moves along the @ direction inside the magnet.

In order to begin iterating upon a magnetic field design, a starting point was
needed. Before details of the beam were known, it was determined that a safe design
would use a relatively large aperture in order to accept many different sized beams.
A cross-sectional view of the initial dipole magnet design is shown in figure 4-1. The
dipole aperture was set to 3 cm vertical and +5 cm horizontal. While this large
aperture allowed for potentially large beams from the LINAC, the drawback came
with the required total current and current density in the coils. The dimensions of
the dipole yoke (the iron surrounding the coils) were created by attempting to balance
the magnetic flux through the inner and outer return. The purpose of this balance
was to maintain a central field which was as symmetric and uniform as possible about

the beam centerline. The yoke was also designed such that the iron would be below
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saturation near the outside edges of the magnet, and hence the magnetic field lines
would be well contained by the yoke.

The goal of the first 2D dipole design, ‘BND1’, was to achieve a central field
that could bend the 60.7 MeV electron beam at a radius of 30 cm. To calculate the

required field, we combine the Lorentz force with centripetal acceleration:

F, = ma, (4.1)
’U2

quB = VMo (4.2)
__1 »r

~ 0.300gr (43)

which gives the required magnetic field in kG for momentum in units of MeV/c, radius
in units cm, and charge in units relative to one electron charge. For the 60.7 MeV
electron beam, a magnetic field of 6.8 kG is required in the dipole magnet.

To achieve this central field, the BND1 design had a total current per coil equal
to 16.2 kiloAmp-turns. The unit of Amp-turns denotes the total current in Amps
required for the coil. Since the coil is wound using small conductor, the current in the
conductor times the number of turns will give the total current in Amp-turns (A-t).
With this first solution for the magnetic field complete, it was important to estimate
how practical the design would be. One of the most important considerations for
design feasibility is the current density required. Current density drives conductor

choice, and conductors were a limiting constraint on the magnet design.

Choice of Conductors Some simple yet important calculations were performed
in order to size the conductors for the BBGS dipole magnet. This process began
with assumptions regarding the maximum allowable current for different conductor
designs. These assumptions were drawn using both industry sources as well as the
organizational knowledge of PSFC engineers. For solid copper conductor with air-
cooling, the American Wire Gauge (AWG) tables for limiting currents in packed
motor windings were used (McGahee, 1998).

Estimates for maximum current densities for water-cooled hollow copper conduc-
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Table 4.1: Maximum current for several choices of conductor. American Wire Gauge
(AWG) numbers are derived from reference values for creating packed motor wind-
ings (McGahee, 1998). Hollow conductor is square with round hole.

Type | OD [mm] | ID [mm] | Area [mm?] | Lma [A] | Packing | Jeon [A/mm?]

24 AWG 0.51 n/a 0.20 0.81 0.7 2.83

20 AWG 0.81 n/a 0.52 2.0 0.7 2.69

18 AWG 1.02 n/a 0.82 3.25 0.7 2.77

10 AWG 2.59 n/a 5.27 20.8 0.7 2.76
Hollow 4.0 2.5 11.1 88.7 0.69 3.84
Hollow 6.35 3.15 30.0 240 0.74 4.43

tor are hard to find in the literature. This is mostly because the maximum current
density is highly dependent on the water flow rate that can be achieved. However,
an approximate value for a reasonable current density is given by Tanabe (2005) to
be j = 10 A/mm?. Based on the experience of Dr. Antaya, this was reduced to
approximately 8 A/mm?.

These estimates were combined to create a reference table, shown in table 4.1,
which guided the design of all BBGS magnet coils. For example, the BND1 coil
is 50 mm wide and 75mm tall. Based on this coil area of 3750 mm?, the current
density, Jeoil, is equal to 4.32 A/mm?. This led to the selection of the 6.35 mm
(0.25 in) hollow copper conductor for the first revision of the BBGS dipole. While
this simplified analysis did not complete the dipole coil design, it was conservative
enough such that a more detailed analysis could be delayed until the design was more

complete.

3D Field Verification After developing a basic field design in 2D, each magnet
solution was verified using the Opera 3D TOSCA Magnetostatic code. This move to
three dimensions was important for several reasons. First, it created an extra check to
ensure errors were not made in developing the 2D field solution. Second, it allowed for
the characterization of coil and magnet end effects. Finally, 3D field models allowed

for beam transport in 3D, the benefits of which are described in section 3.4.

As always, the first step to creating a new and more complex model was to verify
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Figure 4-2: Comparison of central field region for Poisson and equivalent Opera model.

that the complex model agreed with the original model in the limiting case. This
meant creating an axially symmetric Opera 3D model of the dipole magnet and com-
paring the field results to those found using Poisson. The results of this analysis for
the BND1 geometry are shown in figure 4-2. The calculations for the central field of
the BND1 model agreed within 0.01% for peak fields and 0.05% point-wise. Based on
the element size and field gradients, these differences are within the expected errors
of the finite element solution. However, it is important to note a marginal difference
between the definition of the Poisson and Opera models. In Poisson, the conductors
can be specified to lie exactly adjacent to the yoke. In Opera, conductors must be
defined such that they are completely within a region which contains no ferromag-
netic material. In practice this means that conductors in Opera must be defined with
a small (1 mm) gap between the conductor and the yoke. Since the magnet is an
iron-dominated magnet, these small differences in coil definition were not expected

or observed to have a significant effect on the calculated fields.

Once it was determined that the Opera solver was working correctly, a full 3D

model of the BND1 geometry was created.
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Field Analysis in 3D The ability to generate magnetic fields in 3D allowed for a
more detailed study of the coil design as well as higher order effects near the magnet
edges. For each design change, 3D beam transport results were compared with 1D
results. Discrepancies between the results were then investigated by probing the 3D
fields more carefully.

The progression of the BBGS dipole 3D magnet design is shown in figure 4-3.
There were 5 major design revisions for the BBGS dipole magnet, referred to as
BND1, BND2, ... BND5. Each design achieved the basic requirement for delivering
the electron beam to the converter plate, but as the design progressed efforts were
made to minimize both the power requirements and mass of the yoke and coils.

The primary design changes for each model are summarized below:

BND1-BND2: Optimize yoke for field uniformity, minimize length of saddle

coils

BND2-BND3: Minor revisions to coils and yoke

e BND3-BND4: Redesign with small aperture and racetrack coils. Performed

once beam parameters were known with more certainty.

BND4-BND5: Coil adjustment to simplify winding and minimize power

In designs 1-3, the dipole had a wide aperture and saddle-shaped coils. The
reason for this was that the size of the electron beam was very uncertain in the
early stages of design. This very large aperture coupled with the requirement for
non-superconducting coils made it impossible to achieve the required fields without
using saddle-shaped coils. A downside to this design was that it was not possible to
include a straight-through beam port in the dipole, which would have made LINAC
diagnostics much more difficult.

Designs 4 and 5 created a more compact dipole which was designed to the exact
specifications of the LINAC electron beam. The final design uses racetrack coils which

allow for a straight-through beam port. It was possible to reduce the cross section of
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the coils due to the small pole gap, which was reduced to +1.5 cm from +3.0 cm, as
well as the reduced aperture width (down to £3.75 cm from +5.0 cm).

BND1 Field Analysis The results of the 1D and 3D beam transport for BND1 are
shown in figure 4-4. From the beam transport, it was clear that higher order effects
were important in the BBGS transport. The z beam envelope was more uniform than
expected from 1D simulations, and the y beam envelope was about 2x the width of

1D transport results.

The first step was to inspect the electron trajectories in order to understand how
they may differ from idealized results. As shown in figure 4-4 c, the fringing field of
BNDI1 acts at a significant distance from the magnet edge, resulting in a beam which
travels near the inside edge of the magnet aperture. To estimate how this affects the
beam phase space, it was important to examine the difference between the magnetic
field near the edge of the aperture and the theoretical field index n = 0 field assumed

in 1D calculations.

A plot of the magnetic field across the magnet aperture evaluated at the center of
the magnet is shown in figure 4-5. Clearly, in the range 7 = [25, 28] cm the magnetic
field is not a uniform field in 7. One way to measure the non-uniformity is the field

index, introduced in chapter 3:

_r 0B,
B, Or

(4.4)

Evaluating the field index at = 26 cm gives n &~ —2.0. Recall the equation of

motion for the z (or y in Cartesian coordinates) direction:

Py oy
d_S2 + n% =0 (4.5)

Where S is the path length traveled in the magnet and g <is the bending radius.

Since here n < 0, rather than being sinusoidal the solutions to the equation will be
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Figure 4-3: Evolution of dipole magnet design.
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exponential in the form:

y(S) = aexp —nE + bexp — —nE (4.6)
To To

Solving for y(0) = g and y’(0) = g} and substituting S = ryf, this gives a =
3 (o + 2y;) and b = 1(yo — 2yf). The new transfer matrix for the y direction for a

dipole with negative field index is given by:

coshef ™sinhef 0
Mpy=| Ssinhed coshed 0 (4.7)
0 0 1

where here € = \/—n and sinh, cosh are the hyperbolic sine and hyperbolic cosine
functions.

The transfer matrix for a negative field index was implemented in the pybeam1d
matrix code and the results were compared to those from Opera. Since the electron
trajectory is in a high field gradient only in the central region of the dipole, the

n = —2 index is only used for a section § = 7/8 within the pybeamid code. A
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Figure 4-6: Phase space for 3D transport and 1D transport with adjusted field index.

comparison of the phase space for each case is shown in figure 4-6. While there were
still differences between the 1D and 3D phase space, this analysis showed that much
of the non-ideality in the 3D transport resulted from the field gradient near the inside
edge of the magnet aperture. This raised some concerns about how confident we
could be with the results, since the magnetic field errors in a finite element solution
are highest where the field gradients are also high. This meant that it would be ideal
in future iterations to shift the beam transport as close to the center of the magnet

aperture as possible.

BND2 and BND3 Field Analysis The primary driver for the changes between
BND1 and BND2 was to shift the electron beam transport such that the beam would
remain closer to the center of the magnet aperture where the field is known with
better accuracy. Once more information was learned about magnet windings and the
minimum bending radius of the conductors, the coil geometry was modified to be as
compact as possible. It was predicted that this modification in coil geometry would
reduce the extent of the fringing fields and hence shift the electron transport towards
the center of the aperture.

However, the results of the analysis for BND2 were nearly identical to BND1 (and

hence are not repeated here). In order to investigate why this may be, the fringing
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fields were compared between the two models. As shown in figure 4-7, a calculation
of the effective length of the bending magnets gives nearly identical results. The

effective length is given by:
1
Sef = — | Bydl 4.
T Boj y ( 8)

The effective length of the magnet extended approximately 4.8 cm beyond the magnet
edge for BND2 and 5.5 cm beyond for BND1. This gave a total effective length of
the magnets which was approximately 20% longer than the yoke.

One proposed solution to shifting the beam transport was to shift the dipole
magnet in the beam-line such that the electron beam enters the fringing field approx-
imately 1.5 cm to the right of the aperture center. This was explored using BND3,
and it was found that this could indeed bring the 3D transport results back in agree-
ment with 1D transport. There were a few reasons why this did not resolve the dipole
design. First, detailed knowledge of the beam size gave the opportunity to reduce
the total size and power of the dipole magnet. Another reason for opting not to
shift the beam was that the fringing field could be significantly altered by field errors

introduced in the yoke manufacturing and coil winding process. It was determined
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Figure 4-8: Comparison of Opera and pybeamld beam cross section at the converter
plates for beam 607, model BND5.

that in order to be robust, the design should not rely heavily on higher order field

effects.

BND4 and BND5 Field Analysis Since the only difference between BND4 and
BND5 was a small change in coil geometry, the field analysis and beam transport
results were nearly identical. Hence, only the results for BND5 are presented here.

The 3D beam transport results for BND5 were presented in section 3.4. As a
reminder, the beam cross section at the converter plate for 1D and 3D simulations
are shown in figure 4-8. Here the beam trajectory remained directly in the center of
the magnet. The reason for this is that the effective length of the BND5 was only 1.8
cm beyond the magnet edge, where for the BND1 and BND2 design it was of order
5 cm. Since the beam trajectory was close to ideal and the field index was n ~ 0
at the aperture center, the z phase space average parameters agreed within +10%.
However, the y phase space parameters were quite different in the 1D and 3D models.

The maximum extent of the 1D beam at the converter plate was approximately
9 mm, while the extent of the 3D beam was about 2.5 mm. While this difference
was not particularly important with respect to the generation of photons, it was still
important to understand what caused this difference.

Since the primary driver for y transport is the field as a result of the magnet edge,
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the 3D fields were explored to investigate how they differ from the simple assumptions
of the 1D code. The approach to exploring the fringe fields was to perform a multipole
analysis of the y focusing fields.

The idea of a multipole analysis is a popular tool for field design (Reiser, 1994).
By ignoring field variations along the direction of the trajectory, the vector potential

in z (and hence fields in = and y) can be written in the form:

o0
A, = Z r™ sinme (4.9)
m=0
It can be shown that this form must satisfy Maxwell’s equations. By performing a
multipole analysis of the focusing fields along the magnet trajectory, it was possible
to extract the quadrupole (m = 2) component of the fields and use this component

to approximate the y focusing in 1D.

As shown in figure 4-9, the B, fields were evaluated along a circular path with
constant radius for ¢ = [0,2x]. The goal of this analysis was to extract the multipole
components as a function of distance from the magnet edge, then create an equivalent
1D quadrupole focusing magnet that could represent the dipole edge. The B, fields
were evaluated from —2.0 to 7.5 cm with respect to the edge and are shown in figure 4-

10.

A Fourier transform of the magnet fields gave the multipole components of the
field. It can be shown that for a pure quadrupole (m = 2), the transverse magnetic
field holding r constant will vary as sinn¢ where n = m — 1. Hence, the Fourier
component which represents the quadrupole moment is » = 1. The magnitude of
the quadrupole component of the field (normalized to By) is plotted as a function of

distance from the magnet edge in figure 4-11.

The effective quadrupole of the dipole edge was represented in pybeam1d using
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Figure 4-9: Geometry used for multipole analysis. Circle for evaluation has radius a
and angle ¢ varies from 0 to 27. Field of interest lies in the Opera X Z plane and is
perpendicular to both ¥ and the beam direction.
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the transfer matrix given by the TRANSPORT manual (Sta, 1972):

T coshk,S  ¢-sinhk,S 0 0 o
o k,sinh k,S  coshk,S 0 0 T4
_ q q q 0 (4.10)
y 0 0 cos k,S é sin k,S Yo
Y 0 0 —kgsink,S  cos k.S Yo
where S is the effective length of the quadrupole and
B, 1
k= (4.11)

q a BOTO

where B, is the peak field of the quad evaluated at its radius a, and r4B; is the
particle rigidity.
Using the results for BNDS5 gives a quadrupole magnet defined by the following

parameters:

a=0.75cm, B,=1138G, S=3.55cm
which gives k, = 0.089. This quadrupole was implemented in pybeam1d by assuming
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Figure 4-12: Phase space comparison at the converter plate using the approximate
edge quadrupole in 1D.

the edge fields act just outside the effective edge of the dipole magnet. The results
for the effective quadrupole in 1D are compared to those from Opera in figure 4-12.
The pybeam1d analysis including quadrupole edges gave a maximum beam enve-
lope in z and y within +5% of the Opera results. While there were still higher order
effects in play that the 1D transport did not capture, it was determined that the
answers in 1D and 3D had converged enough to confirm the design and move forward

with the procurement of the dipole magnet components.

4.2 Steering Magnets

The design of the BBGS steering magnets was one of the most challenging parts of the
entire system design. The primary constraint on the steering magnets was that they
be contained within the 22 cm region between the image slit system and the converter
plates. Since this is a relatively small area to work with, it was first assumed that a
combined function steering magnet would be the most efficient solution. After several
failed attempts to design such a magnet, a design for two independent magnets was
settled upon.

The progression of steering magnet design concepts is shown in figure 4-13. For

clarity, magnets labeled with a number in this figure are referred to as ‘STR’ for
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steering followed by the number, eg. STR2. The goal of this discussion is to walk
through each step in the design progression, showing how each design was eliminated.
For all design iterations, the geometry outlined in figure 4-14 is referenced, where L
is the effective magnet length, R is the bending radius of the magnet, and € is the

required deflection angle. This gives a minimum aperture width, ¢:

_+ [2(1 —cos8)

where w is a term added to account for the width of the beam and vacuum pipe.

STR1 Field Analysis One of the simplest ways to make two-axis steering magnet
is to wind resistive coils around a rectangular frame, as shown in figure 4-15. Assuming
that such a magnet could take L = 16 cm of the available 22 cm (accounting for coil
returns and flanges), the minimum STRI1 half-aperture would be (4., d,) = (2.4,0.8),
plus approximately 1.5 cm for beam width and vacuum pipe. This gives aperture
dimensions w, = *+4 cm and h, = +£2.5 cm.

Figure 4-16 shows a scoping calculation for a steering magnet design with these
dimensions. The goal was to achieve fields B, = 3.26 kG for z steering and B, = 1.10
kG for y steering. For the coils shown, the current density reached 36 A/mm? in
the z coils and 11.3 A/mm? in the y coils: well above the limits for any of the
conductors available for the BBGS. Reducing the current densities to those achievable
by simple resistive windings would require an increase in coil width of approximately
900% in the x coils and 300% in the y coils. This would in-turn require a wider
total aperture and more current, which would then push the coils out further. It
was determined through several iterations that the steering magnet would grow to
impractical proportions before it would be possible to achieve the required fields for

steering. Hence, this design was put aside before moving to 3D calculations.

STR2 Field Analysis The second steering magnet design adopted similar geom-
etry to that of the BBGS BNDI1. The idea was to use water-cooled resistive coils

similar to those in the dipole, but to incorporate both z and y steering into one mag-
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Figure 4-13: Evolution of steering magnet design. Magnets 1 through 4 are shown
with cross-sectional view in zy plane. Magnet system 5 shows two independent mag-
nets, cross section of the zz plane.
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Figure 4-14: Basic steering magnet geometry used in the design process.
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Figure 4-15: Cross-sectional view of version 1 dual-axis steering magnet design
are wound into the page (beam direction) and wrap around yoke.
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Figure 4-16: Version 1 steering magnet field calculations from Poisson for z
steering independently.
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Figure 4-17: Version 2 steering magnet face with 3D coil geometry. Coil returns use
much of the magnet length, similar to the BND1 coil design. Only one of two z and
one of two ¥ coil ends shown.

net. A schematic of this design layout and the proposed coil geometry is shown in
figure 4-17. As before, the design of this magnet was an iterative process in which
the coil area was incrementally increased until the desired maximum fields in z and
y could be achieved. This involved separate calculations for each steering direction,
as depicted in figure 4-18.

As the magnet grew through iterations, it became clear that such a design would

not be feasible in the space allowed for the steering magnet. This was primarily due

[ » [ L) 3 ~ 3
voe e e wnie tene

(a) z steering (b) y steering

Figure 4-18: Version 2 steering magnet field calculations.
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to the complicated coil return geometry, which would require approximately 15 cm
of the 22 cm allocated for the steering magnets. This number only increases as the
effective magnet length decreases, since with short length came higher current and

larger coils. Hence, the STR2 design was put to rest.

STR3 and STR4 After weeks of iteration, it became necessary to begin brain-
storming and testing other possible designs for the combined steering magnet. During
this brainstorming period, decisions on feasibility needed to be performed quickly in
order to keep the project on schedule. Steering magnets 3 and 4 are examples of
designs which were rejected early in the process, but they are included here to show

the types of alternatives considered before the final design was settled upon.

The idea for the STR3 design came from a literature review which turned up a
paper by Benaroya and Ramler (1961) on the design of a cylindrically symmetric
motor-stator type steering magnet used for deflecting deuteron beams. This design
used a sinusoidal winding scheme in 4 coils to achieve uniform fields for steering.
The design was used to adjust a 21.6 MeV deuteron beam up to an angle § = 1°.
The magnet was created from resistive copper wire and water cooled only from the

outside.

The momentum of a 21.6 MeV deuteron beam is approximately 285 MeV/c. This
is approximately 4.7 times that of the electron beam. This means that for the same
current and field, the magnet could deflect the BBGS electron beam at a radius
e &~ 7%. Using the geometry from figure 4-14, sinf = L/R, and hence:

47Le  Lqg
sinf, sinf,

(4.13)

Since the magnet in Benaroya and Ramler (1961) had an effective length Ly = 29 cm,
this gives a deflection angle for a hypothetical BBGS copy of the magnet 8, ~ 2.9°.
This means that the current would need to be increased or the basic design would

need to be modified significantly in order to achieve the steering required for the

BBGS.

95



While there were many benefits to this design, the downside to the design was that
it used a fairly complex winding scheme, and that the already-engineered solution was
too far from BBGS specifications to take for granted. It would have taken a significant
effort in both field modeling and 3D design to complete the motor-stator type design,
so the design was abandoned and left as a possible alternative for future iterations of
the ISIS system.

Another steering magnet design which was investigated but quickly abandoned
was that of STR4. The idea was to create a straightened version of the BBGS dipole
magnet, and then to physically rotate that magnet around the beam axis in order to
achieve steering in both z and y. Although the magnet design would have been quite
simple, the STR4 design was rejected due to the complexity involved with rotating a
heavy magnet that is under vacuum. Nevertheless, it may be useful to revisit such a

design option in the future.

STRS5 Field Design After nearly 10 rejected design iterations for a combined-
function steering magnet, it was clear that a new strategy was necessary for packing
the BBGS steering function into the 22 cm region available. Since the primary diffi-
culty with achieving both = and y steering in a combined magnet was that the gap
sizes grew too quickly, it was determined that separating the magnets could help to
reduce required gap sizes and make the design feasible.

The design of two independent magnets proceeded by first determining which
magnet should come first in the beam line. To do this, the geometry outlined in
ﬁguré 4-19 was used. The goal was to estimate whether power could be saved by
placing one magnet first instead of the other. It was assumed that power scales
approximately linearly with the field required and the pole gap, G, of the magnet.
Of the 22 cm available, the x magnet was assigned 10 cm and the y magnet 8 cm.
This allowed 4 cm of extra room to account for parts of the coils which would not be
included in the effective magnet length.

Using these numbers, the parameters in table 4.2 were calculated. The last num-

ber in the table represents the relative power increase required to place the steering
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Table 4.2: Sizing of the independent steering magnets. G;/G2 denotes the pole gap
if the magnet is placed first/second. P denotes estimated power. w is the tolerance
added, which is the beam width (in z or ) plus 0.5 cm.

6 | Lcm]|wlem]|d[em]| Gy lem] | G2 [em] | 1/R [em™Y] | P/P;
X |15° 10 1.5 1.45 1.0 2.45 0.026 2.22
Y| 5° 8 1.0 0.5 1.5 5.90 0.011 4.88

magnet second in the beam line. For the z magnet, the power was approximately
doubled. For the y magnet, close to 5 times the power was estimated to be required.
The 1/R term compares the relative power required for each magnet. From this cal-
culation, the r magnet power was approximately double that of the y magnet. To
understand what this means for magnet placement, take the £ magnet power when
it comes first to be P,. This means that placing the z magnet second will cost about
1.2 P,, but will save approximately (0.011/0.026)3.88P, ~ 1.6P,. This would suggest
that placing the y magnet first would save some power. However, since this estimate
was so rough, it was determined that the total power requirements for the steering
magnets would be approximately the same no matter which came first.

Since power requirements alone could not determine which magnet to place first,
other factors were considered. First, the mechanical rotation of the collimator and
target were considered. Since in the z direction there needs to be 3 times the rotation,
it would be beneficial to have the z pivot point as close to the target as possible to
minimize lateral travel of the collimator tip. Second, the effects of magnetic field non-
uniformity in the direction of the pole gap were considered. Since the second steering
magnet will be steering a beam which is off-center from the magnet axis in the pole
gap direction, it would be beneficial to minimize any non-uniformity. This leads to
a conclusion that a smaller gap is preferred, and hence the z steering magnet should
be placed second. From these considerations coupled with the power requirement
calculations, it was determined that the beam would encounter the y steering magnet
first, and then the z steering second.

The final designs for the z and y steering magnets are shown in figure 4-20. The

coils for STR5 were originally designed with room for only 3 conductors horizontally.
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Figure 4-19: Geometry used to determine the minimum gap height (G2) of the second
steering magnet.

Figure 4-20: STR5x and STR5y final designs. y magnet is on the left, z on the right:
beam travels left to right.
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Figure 4-21: Opera model of the entire beam-line.

However, this would have meant that the inlet and outlet current leads could not exit
the magnet from the same location. Hence, rather than deal with field errors, the
coils where increased to be 4 conductors wide. The steering magnets use the same
conductors as the dipole magnet. This allows for water cooling and also made the

purchasing of conductors for the BBGS more straight-forward.

Once the 2D magnet design was complete, it was important to verify the fields and
electron transport in 3D. While hand-calculations could estimate the effects of beam
width and energy variance on the required aperture sizes, only a full 3D calculation
could show them for the real beam from AES. For this purpose, an Opera 3D model
was created which contained all three magnets (BND5, STR5y, STR5x) and the AES
Parmela beam was transported through the field solution for all three beam energies.

The results of this analysis are depicted in figures 4-21 and 4-22.

The 3D simulations showed that it was possible for the steering magnets to achieve
effective steering angles of +15/5° horizontal/vertical. Since the magnets operate
outside of their central field regions where field gradients are large, the simulated
phase space at the converter plates may not be as certain as that from the only

the dipole transport. However, since there was convergence of the beam envelope for
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Figure 4-22: Beam cross section for simulation 607 evaluated at the converter plate
for maximum bending angle in = and y. Percent of beam within a 2.5 mm radius is

84.0%.
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smaller integration steps and mesh size, it was reasonable to base the steering magnet

design on only 3D transport simulations.
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Chapter 5
Engineering Design

Since the BBGS is a part of a practical engineering system and not just a bench-
top experiment, it was important to ensure that the idealized 3D magnet design from
field calculations could actually be converted into a practical engineering system. This
meant making decisions on power supplies, coil windings, and water cooling patterns
which would allow the BBGS to be fully integrated into the ISIS design.

The calculations performed in this chapter may be the most important for the

system engineers who must interface and operate the BBGS.

5.1 Power Calculations

Each magnet in the BBGS system requires an independent power supply for operation.
To specify each power supply, an equivalent circuit was generated for each magnet as
shown in figure 5-1. The magnets were treated as a resistor and inductor in series.

For each magnet, the maximum current was known to be approximately 200 A. To

R L

— M U00—

Figure 5-1: Simplified equivalent circuit for an electromagnet in the BBGS: a resistor
and inductor in series.
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Table 5.1: Conductor resistance calculation

Constant Value Units
Resistivity, pcy 1.77 x 10~% | Ohm-cm
Inner Diameter 3.15 mm

Conductor Width 6.35 mm
Total Area 0.403 cm?
Flow Area 0.078 cm?

Copper Area 0.325 cm?
Resistance/length, r; | 5.44 x 107% [ Ohm/cm

calculate the resistance of the coils, the following equation was used:
Rcoil = nLaveTl (51)

where n is the number of turns in the coil, L,,. is the average length per turn, and

is the resistance per unit length, given by:
T = pCu/A (52)

where pc, is the resistivity of Copper and A is the cross-sectional area of the conduc-
tor. For these calculations, a resistivity equal to 1.77 x 107® Ohm-cm was used. A

calculation of the conductor resistance per unit length is shown in table 5.1

For each magnet, it was assumed that the power source would supply 200 A to
the coils and that for one magnet both coils would be wired in series. This means

that the total power for each magnet is given by:
P = I’Risa (5.3)
and the voltage of the power supply should be:

V=P/I (5.4)
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Table 5.2: Final magnet specifications

Constant Units BND5 STR5x STR5y
Conductors Wide - 7 4 4
Conductors Tall - 6 12 7
n turns/coil - 42 48 28
Number coils - 2 2 2
L,ye coil cm 119.4 38.6 21.5
Total Length m 100.3 37.1 12.0
Resistance Ohm 5.46 x 1072 2.02 x 1072 6.55 x 1073
Current Amp 200 200 200
Voltage Volt 10.9 4.0 1.31
Power kW 2.18 0.807 0.262
Stored Energy Joule 271.8 64.5 6.70
Total Current | Amp-turns 16800 19200 11200
Inductance Henry 1.93x10°% 35x%x 1077 1.07x 1077

Finally, the inductance (L) of each magnet was calculated using the formula:

L= QES‘;'“* (5.5)
I

where Foreq is the total stored energy in the magnet and I; is the total current of the
magnet in Amp-turns (note: total, not per coil). The energy stored in each magnet

was found by performing a the volume integral:
1
Egtored = / -H-BdV (5.6)
v 2

This integral was performed in Opera 3D using the volume integral tool.

A summary of these calculations for the three final BBGS magnets is shown in

table 5.2.

5.2 Magnet Cooling

The ISIS BBGS system has several components which generate enough heat to require
cooling beyond the built-in environmental cooling provided within the ISO container.

In order to ensure that the BBGS cooling requirements are met, an independent
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cooling system which provides chilled water to all BBGS components was designed.
This cooling system may either be run independently, or incorporated into a larger

cooling system for the entire ISIS system.

5.2.1 Basic Design

Designing the cooling system was an iterative process which began with the selection
of a reasonable operating pressure drop and temperature rise across individual com-
ponents. To begin, a pressure drop of 20 psi and maximum temperature rise of 20°C
were selected as reasonable operating conditions.

Next, scoping calculations were performed for each component to determine how
many cooling loops per coil would achieve the stated pressure and temperature goals.
For these calculations, the properties of 20°C water were used and assumed to be con-
stant with changes in temperature. For water flow through smooth pipes of diameter

D, the relationship used for the pressure drop, AP, was:

8 fLO?
Ap:_ngD?_ (5.7)

where L is the length of the pipe, Q is the volumetric flow rate, p is the density and

f is the friction factor, given by:
f = 0.184Re™0? (5.8)

where Re is the Reynold’s number,

Re:ﬂ

D (5.9)

and the flow is assumed to be turbulent. For a derivation of these equations, see To-
dreas and Kazimi (1990).

The results of a preliminary model of the flow are shown in figure 5-2. The
conclusions drawn from these figures are that the dipole should operate at about 3

cooling loops per coil, the X-steering magnet at one loop per coil, and the Y-steering
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Figure 5-2: Cooling parameters based on individual components

magnet on only one loop for the entire magnet. Reducing the number of loops in
each of the smaller magnets gives a higher outlet temperature of the water, but it
also reduces the flow rate required for the same pressure drop, so it makes sense to

do so as much as possible.

As a simple approximation of the BBGS cooling system, each component was
placed into a simple parallel circuit as shown in figure 5-3. This allowed for a compu-
tation of flow rate and outlet temperatures without non-linear iterations. The results

of this calculation are shown in table 5.3.
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Figure 5-3: Simplified cooling system layout.

Table 5.3: Cooling parameters for components in parallel, 20 psi pressure drop.

Component | n loops | AP [psi] | @ [gpm/loop] | AT [°C]
Dipole 6 20.0 0.141 9.65
Y Steer 1 200 0.17 6.39
X Steer 2 20.0 0.137 11.8

Total 20.0 1.29 9.67

5.2.2 BBGS Non-linear System Model

The issue with the model described above is that it does not accurately represent
the flow path of a practical system, and hence may give errors in actual flow rates
and pressure drops. Such a system requires serial distribution lines which may effect
the flow rates provided to each individual component. A more realistic model for the
BBGS cooling distribution is shown in figure 5-4. In order to solve this and potentially
more complex systems in the future, a non-linear solving code was developed.

The solver uses a system of linearized equations for the volumetric flow rate. A

matrix equation in the form:

AQ=b (5.10)

is solved, where @) is a vector of flow rates along each individual pipe in the system.
The matrix A and vector b are built from a combination of flow conservation equations

at each node as well as pressure conservation equations around each loop within the
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Figure 5-4: Modified cooling system layout.

system. In these equations, the pressure drop across each pipe is related to the flow
rate by:
AP =KQ (5.11)

where K is given by the sum of two components: K, the resistance from lengths
of pipe, and K>, the combined resistance from turns, diameter reduction, and other

components in the loop. To find K7, equations 5.7 through 5.9 were combined, which

gives:
0.184 % 8 p0'8#0'2LQ0'8
K= 402 <1848 (5.12)
and for a pipe with n, resistive components,
Ky = Z kit 2 (5.13)
2

where k; is the form loss coefficent for the component, a factor determined by Todreas

and Kazimi (1990) to be of order 0.5 for 90° bends in pipe.

To solve for the flow rate, the matrix equation is solved and iterated upon using

an updating strategy which incorporates both the old and new values for Q:'

Quew = Qnew X Q5id” (5.14)
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Following this procedure, the matrices corresponding to the system described in

figure 5-4 are shown below:

rarlj Qe = [b ]
Lo -1 o ot e op D00 0 g 00 0 00 0] 1a0] [0}
El 0000 000000 001 =1 =1 00000, 0. 0.1 IQ1] [0}
P 0.0 00,0, 00 07 00 00 b mi s gee g 0 1o [0 |
Fo=00 00 000000 000 00 0t T i 0. e [08 ] 01
EiGi0 00 00 000, 0.2 00T 90 0 "0 0- 121 0] (Qd) [0 ]
[F0.: 10 1 Heoids b 0 Che el 00 0D o s S [0 o]
[c8.0 90 0. 000 0. 0. 0. 0,500 0020 0200 0. 0 0] [Qe ] [dP]
[0 0020 2 00 D0, 00 0,0 000100 D0 00 0T QT = AP
[9:0.-=0 0902 00 0000 50,00 0.0 0.0, 0. 9.1 [Q87] [dP]
2900 0ct 0is 90 DBl 0. D00 D e 0 0l a0 [dP]
[i8. 00700 0009570000 050 20,0 0> 0 0. .0.] [QI0} [dP]
[0 000 B tio e pl aa 0 a0 a0 0l 0 ) 1G] [dP]
L9 0.0, 000,007 05 29+ 9. 0.0 052009 9. :{Q12] [dP]
o0 00000 0902 80 0.9 n0ren tariiog g g kg [aP]
o cioa o De S 0i 00 ior 00 0 0T o0 o an g e G e [dP]
9 200 200 B2 0000 00 0. -S00S90 20 00 000 0T Qi) [dP]

where in the matrix A above, each 9 represents a placeholder for the calculated value
of K for the pipe corresponding to the column number. These values are updated
during each time step using the flow rates obtained in the previous time step.

A first calculation was performed without the converter plates in order to see
the difference between the simplified and more complex model. The results of this

calculation are shown in table 5.4 and figure 5-5.

Table 5.4: Cooling parameters for components within the complex system layout, 20
psi system pressure drop.

Component | n loops | AP [psi] | @ [gpm/loop] | AT [°C]
Dipole 6 18.56 0.126 10.66
Y Steer 1 18.52 0.121 9.00
X Steer 2 18.51 0.109 14.89

Total 20.0 1.10 11.27

Combined Magnet and Converter Plate Cooling Since the converter plate
assembly and collimator were estimated to require close to 5 kW of cooling, it was

decided that the magnets and the converter should be cooled in parallel systems rather

1This acceleration strategy was adopted from Gupta and Prasad (2000). Without acceleration,
solutions are highly dependent on the initial guess for @ and often oscillate without convergence.

110




30 o

Total Flow Rate [gpm)])

1.0t

0.5

C 2‘0 4‘0 62) 8‘0 100
System Pressure Drop [psi}

Figure 5-5: Flow rate vs applied pressure drop for total system, excluding converter
plates.

than attaching the converter cooling to the end of the magnet cooling loop. This new
system layout is depicted in figure 5-6, where BBGS 1 represents the subsystem of
all magnets and BBGS 2 represents the converter assembly.

The design goal for this new system layout was to achieve a rise in water temper-
ature of no more than 10°C over any component while also balancing the flow such
that no component has a significantly higher flow rate than required. For the BBGS
2 subsystem, it was assumed that the components would be cooled using lengths of
the same hollow copper conductor used by the BBGS magnets. The subsystems were
assumed to be supplied by a large diameter (2 in) pipe such that the pressure drop
along the distribution lines was negligible.

The results of this analysis are shown in table 5.5. The total system requires a
pressure drop of approximately 40 psi and flow rate of 6.2 gpm from the chiller. In
addition to providing this number as a requirement, the system curves for both the
BBGS 1 and BBGS 2 subsystems are provided in figure 5-7. These curves should be
used by Raytheon systems engineers to incorporate the BBGS into the ISIS cooling

system.
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Figure 5-6: Simplified diagram of cooling system and subsystems. BBGS 1 includes
all magnets, BBGS 2 includes converter plate, beam window, and collimator.
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Table 5.5: Cooling parameters for components within the final system layout, 40 psi

system pressure drop.

Component | n loops | Flow [gpm/loop] | Qsotal [gpm] | Power [kW] | AT [°C]
Dipole 6 0.192 1.15 2.150 7.00
Y Steer 1 0.182 0.182 0.290 5.99
X Steer 2 0.160 0.328 0.850 9.85
Beam Window 1 0.5 0.5 0.1 0.72
Converter 4 0.614 2.46 4.50 6.94
Collimator 1 0.5 0.5 0.3 2.17

5.3 Converter Plate Water Cooling

Before settling upon a final design for the water cooling system, it was necessary to
study the water cooling of the converter plate assembly in more detail. The reason
for this is that unlike in the magnets, the heat is generated with high density far from
the water cooled region. Hence, even with water cooling established, the temperature
within the converter plates could reach unsuitable levels.

A basic thermal analysis of the BBGS photon converter plate assembly was con-
ducted using the Opera 3D Poisson equation solver. The mathematical equivalence
of electrostatic problems to steady-state heat conduction was used to complete a 3D

heat analysis without employing new software.

5.3.1 Steady-State Heat Diffusion in Opera 3D

To save the time and hassle of building or learning a new code for this important
but simple task, the thermal analysis of the converter plates was completed using
the Opera 3D FElectrostatics solver. The form of the differential equation for heat
conduction is the same as that for electrostatic fields. Apart from constants, the
two problems have the same mathematical solution, as will be demonstrated in the

following section.

Theory The Opera 8D Electrostatics solver is a finite-element code designed to solve

Maxwell’s equations for the electric field in the limit where % = 0. This code solves
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Poisson’s equation for the electric potential, which can be derived from Maxwell’s

equations. Starting from Gauss’ law:

V.E-= ‘g’ (5.15)

Now we write E as the gradient of some potential:
E=-V¢ (5.16)

We can see immediately that this formulation satisfies Faraday’s Law of Induction

with the steady state assumption:

0B
VXE=—-—=0 .
X o (5.17)
since, by definition:
Vx(=Vé)=0 (5.18)
Plugging in to equation 5.15, we find:
V2= g (5.19)

which is Poisson’s equation for the electric potential.

The derivation of Poisson’s equation for heat conduction follows from the conser-
vation of thermal energy. Starting with an integral balance of thermal energy, heat

flux, and volumetric sources, we write:

g/erV: q-ﬁdS+/st (5.20)
at Q on 0

where ¢ is the volumetric specific heat, T is temperature, q is the heat flux, fi is the
normal vector to the surface, and s is the volumetric heat generation rate. Assuming

steady state (% = () and applying Green’s theorem to the surface integral of the heat
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flux:

/V-qu = —/st (5.21)
Q Q
V-q = —s (5.22)

Finally, given a linear relationship between the heat flux and the gradient in temper-

ature, where we assume the thermal conductivity is constant with temperature, we

find:

V-kVT = —s (5.23)

~VT = (5.24)

s
k
Which is Poisson’s equation for steady-state heat conduction.

The final step in relating electrostatics to steady state heat conduction is choosing
suitable units for comparison. In this analysis, the electric potential in Volts is treated
as the temperature in Celcius. The electric charge density in coulombs/cm? is treated
as the heat generation rate in Watts/cm®. Finally, since Opera requires that € be
specified in units of relative permittivity, the thermal conductivity k is specified in

Watts/(cm C) and then multiplied by the factor gz==—5. The Opera solution is
solved using the MKS system.

Basic Verification Before generating a detailed analysis of the BBGS converter
plates, it was important to benchmark the Opera solver using geometry for which

Poisson’s equation for heat conduction could be solved analytically.

For this task, an infinite slab geometry was assumed. The slab was uniform and
infinite in the y and z directions, and extends to x = £5 m. Within the region
z = £0.5 m, a uniform heat generation rate of 10W/m?® was applied. Throughout
the slab, a thermal conductivity & = 1.0 W/(m K) was assumed. The boundary
conditions of the problem specify the temperature at £ = £5 m to be 100°C.
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Using symmetry, the analytical solution for positive z gives:

T(z) = -5z +123.75 , 0<z<0.5m
T(x)=-5z+125 , 0.5<z<5m

This results in a maximum temperature of 123.75°C at £ = 0 and a constant heat
flux equal to 5 W/m? for z > 0.5 m, numbers which can be compared with the Opera
solution.

Implemented in Opera, the solution gives Tyax = 123.747°C and g = 5 + 10~
W/m? for all z > 0.5 m. This agrees well with the hand-calculated analytical model.

5.3.2 Data Sources and Limitations

In order to generate a useful model of the converter plate heat transfer, it was im-
portant to first determine the material properties and volumetric heat generation in
the material.

The determination of the thermal conductivity of graphite was not straightfor-
ward, as graphite comes in many different forms and the heat transfer is highly
dependent on not only temperature but also the direction of heat flow. As a result,
several models were generated which present best and worst cases for the thermal con-
ductivity. The upper and lower bounds on the thermal conductivity were determined
using two papers, Lutcov et al. (1970) and Albers (2009).

To model the heat generation rate within the converter plates it was necessary
to make several assumptions about the electron transport through the plates. First,
it was important to approximate the proportion of the beam energy which is not
deposited in the graphite plates, as well as the maximum power density for each
beam. This was estimated using the NIST E-STAR database (NIST, 2010) for the
electron range and the radiation yield. Table 5.6 shows the numbers used to estimate
which beam would result in the highest power density in the converter plates. The
assumption of this calculation was that the energy would be deposited approximately

uniformly through the plate. The linear power density will not actually be uniform.
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Table 5.6: Estimation of linear power density for each beam energy

Energy [MeV] 60.7 | 30.6 | 6.2
Current [pA] 80.0 | 72.7 | 55.2
Power [W] 4900 | 2200 | 350

CSDA Range [g/cm?] | 26 15 3.5
Average Range [cm] | 15.3 | 8.8 | 2.06
Radiative Yield 20% | 12% | 2.2%
Power Density [W/cm| | 250 | 220 | 162

However, since the CSDA range is a concave down function of energy, the power
density for the BBGS will always be highest in the higher energy beam.

Since the distribution of power deposition inside the converter assembly was not
known with certainty, several models were used to estimate best and worst-case sce-

narios for beam power distribution. They are described in section which follows.

5.3.3 Models

A view of the basic model geometry used for calculations is shown in figure 5-8. In
this model, the green (1) outer region represents the 1020 steel frame, the purple (2)
region represents air, and the blue (3) region represents the high density graphite

converter plates. In all versions of the converter plate model, the &% boundaries are

Figure 5-8: Isometric view of simplified converter assembly.

assumed to be held at a constant temperature of 40°C. This number was obtained
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by assuming that all of the heat generated is transferred through the side walls since
they will have water cooling plates attached. This also assumes that the walls are
cooled using 3.15 mm diameter tubes with a heat transfer coefficient determined by

the Dittus-Boelter correlation:

k
h = ——0.023Re*®Pr’* (5.25)
Dn
where k is the thermal conductivity of water, Dy is the diameter of the tubing, Re

is the Reynold’s number, and Pr is the Prandtl number, given by:

Pr = -‘ikcﬁ (5.26)

where p is the viscosity and c, is the specific heat of water. For the other boundary
conditions in the model, a zero heat flux boundary was enforced. This is a worst-case
assumption which accounts for the fact that the magnitude of heat transfer through
the air-cooled boundaries will be much smaller than that through the water cooled
channels.

Since the material properties and energy deposition rates were uncertain, several
models were created for testing. In every model, the power in each converter plate
was distributed in a cylindrical region along the beam line with a radius of 0.5 cm.
The linear power distribution in the beam direction was varied between models to
test different scenarios. Model descriptions and the results for maximum temperature

in the graphite are shown in table 5.7.

Table 5.7: Model descriptions and results

Model Power Distribution k W/(cm K) | Tax [°C]
A Uniform 50.0 159
B Uniform 5.0 268
C Uniform 1.0 323
D Distributed? 1.0 373
E Uniform 150% power density 1.0 384

2Heat distributed in the beam direction using the results of Tabata et al. (1994) for electron
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The interpretation of the above results was dependent on what material tem-
perature limits would be important. The reaction of primary concern was that of
the oxidation of graphite in air, which through the results of Shemlet et al. (1994)
becomes important for temperatures greater than 500°C.

In the worst case modeled, a margin of 115°C was obtained. This margin may
not be sufficient to prevent rapid oxidation of the converter plates since the models
did not properly account for the non-linear behavior of thermal conductivity, and the
energy deposition rate within the sample plates is not well known. In addition, the
assumption of a constant temperature boundary of 40°C is highly dependent on the
simple heat transfer model assumed between the coolant and the converter assembly
wall.

In order to build a better model for the heat transfer in the BBGS converter plates,
it was important to determine more accurate estimates the energy deposition rate in
the material. This required the use of MCNPX for energy deposition calculations
in order to verify that the estimates for energy deposition rates were conservative

enough to model the worst case for heat transfer.

5.3.4 MCNPX Calculations

Although the MCPNX modeling of the converter plates and photon beam was tasked
to Raytheon, it was useful to create a simplified model which could be used as an
extra verification tool. A cross-sectional view of the MCNPX model for the BBGS
converter plates is shown in figure 5-9. The model is composed of four ‘cells,” which
are used to specify unique regions in MCNPX. It has a geometry identical to that
used in the Opera 3d analysis, except there is a bounding box of air which extends
beyond the model by at least 20 cm in all directions.

In order to define an electron beam, the model used the MCNPX ‘SDEF’ card.
The SDEF card allows for the creation of a beam with one energy but a truncated
Gaussian distribution in space. The truncation is performed by defining a cell outside

which no particles may be generated. In the BBGS model, the source is limited to a

energy deposition in materials.
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Figure 5-9: Cross sections of the MCNPX model, created using the built-in MCNPX
plot function. Regions labeled are: (1, blue) Air, (2, green) Stainless Steel, (3, red)
Graphite
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0.5 cm wide by 0.2 cm tall box which is centered on the ideal beam centerline. This
represents an approximate rms beam envelope from the electron beam simulations.
All electrons generated travel in the forward beam direction since MCNPX does not
have built-in capability for creating beam divergence.

The primary function of this MCNPX model was to determine whether or not
the estimates for heat deposition rate in section 5.3.3 were overestimates or under-
estimates. If the heat deposition rate from MCNPX modeling was higher than the
worst-case previously modeled, then it would be necessary to run more detailed heat
simulations. Hence, the only tally performed in the MCNPX model was a mesh tally
which counted energy deposition rates throughout the carbon converter plates. The
mesh tally was performed over a 20 x 20 x 20 mesh which covered the 5.0 x 5.0 x 12.0
cm length of the carbon targets in the converter assembly. For simplicity, the 1mm
air regions between each converter plate were ignored. Simulations with 100000 par-
ticles were run for an electron energy of 60.67 MeV and a graphite density of both 2.1
g/cm® and 1.7 g/cm3. By running with different densities, it was possible to estimate
a maximum and minimum case for heat deposition on the converter plates.

The results of the MCNPX simulations are shown in table 5.8 and figure 5-10.

The MCNPX simulations gave insights into the true nature of the electron trans-

Table 5.8: MCNPX Energy Deposition Results

Model | Density | Total Power | Peak Linear Power | Est. Collimator Power
- | lg/em’] W] [W/cm] (W]
A 1.7 3800 370 500
B 2.1 4300 450 100

port in the converter plates. Rather than being contained within a 1 cm diameter
tube, the energy is deposited in a cone shape which expands as the distance from
the first converter plate is increased. The maximum linear energy deposition rate
for 1.7 g/cm? graphite was 370 W /cm, and it occurs approximately 3 cm into the
converter assembly. This maximum energy deposition was about the same as those
energy deposition rates modeled in Opera, and hence it was determined that further

simulations would not be necessary to validate the cooling design.
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Figure 5-11: Energy deposition rates evaluated for electrons in Graphite from ISIS
project technical lead, B. Blackburn. Graphite density used was 2.1 g/cm?.

In order to verify the validity of the results from this analysis, the results were
compared to those of Brandon Blackburn of Raytheon, shown in figure 5-11. The
energy deposition curves did not agree exactly. Even though Blackburn used a con-
verter plate density which was 20% higher, the peak power density was slightly lower.
This was a bit concerning, but it was determined that since Blackburn had run sev-
eral simulations with many more particles and verified each with multiple checks, his

simulation was most likely a more accurate depiction of reality.

One reason which may help to account for the discrepancy between the two sim-
ulations was that the MCNPX simulations performed by the author may not have
handled the photon energy deposition correctly. Since there were no supercomputers
available, it was necessary to transport only the electrons and not the secondary pho-
tons. This means that the photon energy may have been assumed to be deposited
where it was generated - which would help to explain why the models in this thesis

were peaked closer to the first plate than those run by B. Blackburn.
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Simulation Sensitivity Since the heat conduction simulations relied on several ba-
sic assumptions about the heat transfer between the water and the converter assembly,
it was important to understand how sensitive the results were to these assumptions.
The thermal margin of 115°C is not significant unless its sensitivity to assumptions
is clearly defined.

To quantify the sensitivity of the thermal margin to assumptions about heat trans-
fer, the boundary temperature of the BBGS model E was increased from 40°C until
the maximum temperature of the solution reached 500°C. This corresponded to a
boundary temperature of 150°C. This means that the calculated heat transfer coef-
ficient between the water and the copper conductor could be as low as 30% of the
calculated value before the thermal limits of the converter plates are reached. The
Dittus-Boelter correlation, like any thermal hydraulic correlation, could not be as-
sumed to have more than +20% accuracy. However, even this level of uncertainty
would not result in a temperature beyond the thermal margins.

Even with this analysis complete, it is important to note that the converter plate
thermal analysis remains quite uncertain. Every assumption in the analysis was meant
to be conservative, but there were many assumptions that could not be validated
independently. For example, the thermal conductivity of graphite was assumed to
be a worst-case based on data available in the literature and from the vendor, but
it is not clear if the graphite which arrives will have the same properties. This,
coupled with the uncertainties in the heat transfer correlations and water flow rate
calculations, could lead to undesirable results. Hence, it will be important to test
the BBGS converter assembly not only for its photon generation but also for its heat
transfer properties. It will also be prudent to plan for extra water cooling for the

converter plates in case it is needed.
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Chapter 6

Proposed Design Verification

The timing of the BBGS design and fabrication did not allow for the BBGS to be
tested as a part of this thesis project. However, a series of simulations and a testing

plan was created in order to facilitate future testing.

6.1 MIT Electron-Cyclotron Resonance Ion Source

Since the ISIS LINAC will not be immediately available once the BBGS is assem-
bled, the BBGS will be verified using an Electron-Cyclotron Resonance Ion Source
(ECRIS) which is being commissioned at MIT in Summer 2011. The ECR ion source
was designed by Armero (2010) as a part of a Master’s thesis project and will be
commissioned and tested by Mark Artz as a part of his Master’s work. A schematic

diagram of the ECRIS and its planned interface with the BBGS is shown in figure 6-1.

For testing the BBGS, the ion source will be used to generate H* ions. Now, even
though the ISIS LINAC will use electrons, it will be possible to test the magnet at
similar operating conditions to those in ISIS. The reason for this is that the particle

momentum is given by:

p=+T?+2TE, (6.1)

where T is the particle kinetic energy and E, is the rest mass energy. The ion source
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Figure 6-1: Schematic of the MIT ECRIS adapted from Armero (2010). The vacuum
flange will interface directly with the BBGS 6-way valve using a zero-length coupling.
Beam travels from the shaded region and exits left.

can accelerate protons to energies up to 30 keV, giving them a momentum of 7.5
Mev/c. Due to the mass difference between electrons and protons, an equivalent
momentum electron beam would have a kinetic energy of 7.01 MeV. Hence, even
though the ECR ion source emits protons, at high voltage it will produce particles
with momentum equivalent to electrons in the ISIS operating range of 6 to 60 MeV.
While the ion source will not allow for testing at full power, agreement between low
energy simulations and measurements should be sufficient to verify the transport

system operation.

6.2 ECRIS Beam Simulations

Beam simulations were performed in both 1D and 3D in order to prepare for the test-
ing of the BBGS with the ECRIS. To generate an initial beam, Mark Artz performed
a calculation of the ECRIS using the BEAM3D code (Antaya and Xie, 1987). The re-
sults of this simulation are shown in figure 6-2. The BEAM3D output files specify par-
ticle positions and velocities in the transverse and beam direction, (3] 9,1, 0, 2, 05 )

Using the same methods outlined in chapter 3, these parameters were converted into
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equivalent parameters in the phase space (z,2’,y,y/,p).

The transport of the resulting 400 particle phase space was then simulated using

both the pybeam1d and Opera 3D beam codes.

6.2.1 BBGS Without Space Charge

At first, the beam simulation was simplified by ignoring the effects of space charge in
both the 1D and 3D simulations. Since the ECRIS would be running at low current
(2 mA), it was estimated that space charge would not be important. This assumption

will be tested in section 6.2.2.

For the 1D calculations, the dipole magnet was treated with a field index n = 0
and with edge quadrupole focusing elements. The parameters for the quadrupole were
determined using the same methods outlined in section 4.1, but for the new operating

current.

The results of the 1D and 3D calculations for the phase space evaluated at the
converter plates are shown in figure 6-3. Although it is not certain where emittance
measurements will be taken along the beam-line, these results give a reference and
could be quickly recalculated for different locations along the beam-line. Due to the
large initial divergence of the beam, the beam must be cut by the divergence slits. For
the simulations shown, the beam was cut at a radius of 2.5 mm by the first divergence

slit.

The Opera and pybeam1d results for the ECRIS beam transport did not agree well,
except for maximum envelope parameters. This was because the ECRIS beam takes
up a significant portion of the dipole aperture, so Opera captures higher-order effects
which were not simulated in pybeami1d. These effects could be represented using a
higher order (m > 2) field expansion near the dipole edges, but this calculation was

left for future work.
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6.2.2 BBGS Basic Space Charge Forces

In order to verify the assumption that space charge would not be important for the
2mA beam, as well as to facilitate the future transport of more intense test beams,
the pybeam1d code was modified to include basic integration of space charge forces.
Following from Antaya and Xie (1987), the electric field applied to a particle at beam
radius r due to space charge was assumed to be that of a cylindrically symmetric

beam with the total current of all the particles enclosed by 7:

1 I;
— 2
27 €T p Vzi (6 )

E.(r)=

where I, is the current assigned to quasi-particle ¢ and v,; is the velocity of quasi-
particle 4 in the direction of the beam. Since it is not possible to simulate every
electron with charge e, each particle in the simulation is assigned an equal portion of
the total beam current, I;.

Assuming a small displacement along the beam direction, AS, the extra compo-

nents to add to r become:

Ar=z-L5, A8? (6.3)

and for ';
Ar=-1EA 4
r msz S (6.4)

While this is not a robust or efficient integration scheme, the step size AS was reduced
until the results for different step sizes converged. It should be noted that this was
meant to be a quick calculation, and hence could certainly be improved in the future.

The space charge integration routine was used for the ECRIS 2 mA beam param-
eters in a 1.0 m drift space in order to understand the importance of space charge
for low current ECRIS operation. The beam envelopes and cross sections after 1.0
m of drift are shown in figure 6-4. The 2.0 mA beam uses 400 quasi-particles, each
with 5.0 pA of current. The 20.0 mA beam was not simulated at that current using
BEAMS3D; instead, the phase space of the 2.0 mA beam was used and each quasi-

particle current was scaled by a factor of 10. This allowed for a simple estimate of
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the importance of space charge, and can be used as a reference to drive future cal-
culations. Clearly, the results of this analysis showed that for the 2 mA beam space

charge could be reasonably neglected.
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be expected for such a high current.
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6.3 Testing Plan

Once the BBGS and ECRIS are commissioned in late Spring/ early Summer 2011,
it will be important to test the actual system performance against the calculations

performed for this thesis. The measurements will include, but will not be limited to:

e Measurement of dipole By vs applied current to give operating parameters for

different beam energies
e Measurement of fringe field for comparison with simulated fields

e Steering magnet field measurement and analysis, concentrating on possible er-

rors as a result of non-ideal coils
e ECRIS phase space analysis using the techniques described by Xie (1989)

These and other measurements will be carried out by M. Artz and the author.
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Chapter 7

Conclusion

We designed an electron beam transport system for the ISIS Bremsstrahlung Beam
Generation System using well established methods for the design of iron-dominated
electromagnets. The design process involved creating generally applicable compo-
nents, then specifying those components as the input constraints became more certain.
This resulted in a series of magnets which were finely tuned for the electron beam
parameters which were provided by the engineers from Advanced Energy Systems.

Throughout the design process, a transport code and several smaller scripts were
developed in order to verify the magnet designs with several independent methods.
Since these codes may prove to be useful in future beam design at the PSFC Tech-
nology and Engineering Division, they were documented and are provided in the
Appendices of this thesis.

During the course of this project, many opportunities for future work and im-
provements to the BBGS design were identified. A selection of ideas for continued

work is provided below.

Dipole Field Design for Energy Variance Beam simulations performed using
Opera 3D and pybeam1d showed that a negative field index within the dipole
magnet could help to limit the asymmetric radial beam spreading which results
from an input beam with high momentum variance. Since the magnet edges

provide more than enough axial focusing, future design iterations to the BBGS
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dipole could include a shaped pole to force a small negative field gradient. This
type of re-working could be important if it is found that the LINAC electron
beam has a larger momentum variance than that of the simulated electron

beams.

Additional Beam Shaping Components While the MCNPX calculations per-
formed at Raytheon do not suggest that precise beam size will be an important
factor in achieving a large signal to noise ratio, experiments may prove other-
wise. In this case, future revisions of the ISIS BBGS may include additional
components such as a solenoid or quadrupole focusing magnet. These compo-
nents could also allow for on-line adjustments of beam shape and size in the case
that the electron beam parameters vary significantly with energy. Such compo-
nents were not considered in this thesis due to the limited space allocated for

the entire BBGS.

Improved Converter Plate Design Based on the thermal calculations performed
for this thesis, it may be necessary to redesign the converter plate assembly in
order to improve the extraction of heat from the plates. At a minimum, the
temperature of the plates should be carefully monitored during testing and ad-
ditional water cooling should be made available in case the flow rates estimated

in this thesis will not be sufficient.
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Appendix A

Beam Transport Code

A.1 pybeamld Source Code

## Beam Generatmn and transport xn ID

e Author R.E. B!ock, reblock@alum . mlt edu
EEs Creased 2/23/11 it ST

# Modlfxed 4,/28;/11_'

# Fxlename béaﬁld.i}y :

A ;\Imports’, :—~’eti’(':‘ ~

:frbm numpy 1mport *
‘fromi random unport. random
from random 1mport, gauss

;fr_om matplot‘hb pyplot 1mport *

E Bunovionn .

” ""for i in range(O len(A[x]))
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A[11{J]= float(A[ ;][,] -

u—zeros ( npoxnts ) ',

ffor 'i ifn :"xy-a‘xi‘g‘é (0 ,"np'oi:n‘t,s

Su [ 1]—‘random()

r::zeros (npmnts )

: r—rmaxsr sqrt (u)

def xy(r the’ca)

# Converswn from polar coordlnates e

' rr*cos(theta )

y=r* s1n (theta )

return x,y

def xpyp(r rp)

# Generate x and v eIprse': from I‘,l =

theta ;\ zeros (len (r) )

for 1 in tange(O len( ))
theta[)} = random()*2*p1

x = recos(theta) -

xp= rp*cos (theta)

= f:?sih('t‘.heta) o
yp:: irp*stn(theta)
o return x xp y,yp

def plote 1pse (x y, xlab s ylab co]vor : th:ts——None yhmits_—None

# For creatmg' standardlzed p]ots
i ﬂ,’flgure(None, flgsxze—-(G 6))
: »k-,plot (x,y,colm-) :

1f xllm:ts !—, None:‘w :

- xllm ( thlts)

1f y]:m:ts A= Noncz
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= yhm(ylxmlts)
o xlabel (xlab)
_ylabel(ylab)
axhhne(l) 0,1

,.“’;~:x2 = xl*cos(d*t') + xpl*r/d*sln (d*t) + dp#l‘/d**?*(l' -cos (d
‘xp2 “.;—xl*sxn (d*t)*d/r +- xpl*cos(d*t) + dp/d*sxn (d*t)

Xnew xpnew -‘ edge(xZ xp2 r u2)

7'return xnew, xpnew i

def spacednft(x xp,y,yp,s ds v I,q—l 612e-19,m-‘1 6726e 27,N—25)
# Drift  with space charge defau]t ‘fon ~is ‘proton- ' oy
n—lnt(round(s/ds))
ds—s/n : s o
enve]opez;’zer,o‘s ( (:3 ,n+1))
envé]§pe’[0}= Iin’s4p:a';:e (0, s’ ,n+1)
envelope [1][0]=max(x)
: énv‘elbpe'[él"[‘O] max(y)
for: ‘if in ra.nge(() n)
= : forces—-spaceforce(x,y,q,m,v I N)
’ ¢ Ef"y,dyp:dxy(x xp,y yp,forces ds)
gk‘x,xp: rift (x,xp,ds) . .
: fi(y,yp:dn'ft (y,yp,ds)

7_x—x+dx .

j xp=xp+dxp -
 yeyHy
o -yp=yp+dyp
envelope [1]{ 1+1 -max(x)

4 ,‘enx‘re']qge[2][k1+1]=,max(}") ;

return X,Xp,y; yp ,envelope
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def xyforces(x,y,forces)
4 (‘onvert rachal force to x and y :
r—sqrt (x**2+y**2)
i il‘xforce-‘—-fqrce‘s’*x/;
yfofcéé.fbtéé's *y/r

. return xforce ,yforce - -

def dxy(x Xp, y,yp,forces ds) E : ’
# Calculate d]bplacement resultlng flom spa.ce charge forces

g xforce ,yforce xyforces(x,y,forces)"'ff o

: dy —-yforce *0 5 x ds**2
§ dyp=yforce=tds : ‘

return dx dx’ dy,dyp

t ul u2 n.-())
ransverse dlrectlol’l k

) ,yp,r 111)

def dlpoley( YD

# Dlpole in ax1a4

yl,ypl = edgey
1f n— 0‘;

eli f‘f 11>Q:* o
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‘yl*cos (d*t) + yplntr/dn:_ n(d*t) ’ :
—-yl*mn(d*t)*d/r + ypl*cos(dtt) ‘

deey(yapyram):

: Vynew;“y,'m, Haun
ypnew =L—tan(ll)/l'*y + YP

'return ynew, ypnew

def edgeyqnad(y,yp,kq,s) .
# Qua.drupo]e in focusulg plane i

ynew - cos(kq*s)*y + l/kq*sm(kq*s)*yp

ypnew— —kq*sm (kq*s)*y + : cos (kq*s)*yp

return ynew, ypnew

def edgexquad(x xp ,kq g s)

# Quadrupo]e ln defocu51ng p]ane : :
xnew = cosh(kq*s)*x + llkq*smh(kq*s)*xp ;
S xpnew-— kq*smh(kq*s)*x + "‘cqsh‘(kqegs,)*xp . { e

. return xnew xpnew

def setpvar(pvar n mu-—())

# Generate moment,um spread from Ganssxan dlstrtbutlonj :

dp{i] = gauss(mu sxg)

f return dp

def runbbgs(x xp ,y YP;dP)

# Run entlre BBGS mdgnet svstem WJth f]nal parametexs, no. quad edges -

# Drlft dlsbances and tr(xnsport const
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# Drift to BPM
x4,xp4 = dnft. (x3:,xp3 d2)

'y4,yp4 = drift (y3,yp3 d2)
4 Drift to end ’

~ return x5, xp5,y5,.YP5

H#

x5,xp5 = dnff.(x4 xp4 d3+d4+d5)" o
y5,yp5 # drxft(y4,yp4 d3+d4+d5): e

# : End‘pybeam‘ld f:,o"dé Spécificat—'iohy .

144




A.1.1 Example Input File: Space Charge

ecrls/out Z‘nA—-edlt; txt" .

flgnamesq— ecrls /ecr-—-opera

Ep—938 272 i : : : e # Proton rest ‘mass energj

a=1 612e—-19 g o e charge in coulomb

m-l 6726e—27 : - i . S mass in kg . D
1=50E6 R # current pet partlcle in: Ampere
SEo b o D g, meters
‘dS'=‘ 0001 i ‘ 1# 1ntefrxatlon step size

tometers 10E——-3 e : : e '

tomm=1. 0E3

hmltsx——[ 0; 06 0 06]

#/9& Executlon — :
# Start by loadlng fl]e‘,‘

data—readecr(savecorfﬂe) # load flle

P ‘ta[2]*tometers'[/ # computamon must be done 1n ’m‘eters
Y“ data[ﬂ* tometers - ’ '
vx'-data [4][
vy—data [5]: o
vm:data[s}z}ff}
ot=data[7]
el=data[s]

xp—arctan(vx/vz)

yp__arctan(vy/VZ) E o . : : e
Tzsqrt(et**2+e] **2)*1]3—6 i calc‘i‘xlya‘t‘e T and "ct'in‘vgri’;_;t;j‘*Me‘V e
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plot(enve]ope [OI envelope '1]

’b’
plot(envelope2 [0} ,enve]ope
xlabel( Zo 17y :F' :
ylabel ¢ ’Xmax... m] 7y :

]egend ({ ’No_Space_Charge ZJnA..Beam
## :

20 ...mA.,.Beam ' ] k,: lofé:‘ : ] 'o—'wyé ror 1ght k—,’j ) - .
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A.1.2 Example Input File: Parmela input

- Im por(zs

import pickle

##‘User mpucs - - : et -
’../SAVECORtest.txt’'

ksavecorf;le

fi S [’beafnldsavecorﬁ@
npoints = 5000
xlimits=[—10 15]
»ylix;;iﬁs_[ ~20,30]

St

T

## Now prob]em executlon
# Gra.b savecor bearn Lo
mybea.m = bg beamgenS(savecorflle npo:nts fxgnames True)
nmybeam pnnf.data() ' e

f:gure(None f:gsxze-—(B 6)) ’ -
plof(—.xf{o 5000},mybea.m T[O 50001/136,,, r+ )
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A.2 Opera Beam Generation

1mpor£ 'plckle

##: User Inputs and Constants - :
TESI'ING—'False T AT :

1 = ’IRACK..XO:’~

€12 = ’_Yo-

€13 = ".Z0=" # 75, 467 il
t13a= ', THEI‘L’ ' #Was 81. 2 for 70, -_18.5};&;;“; <

tld v...PHI—

€15 = '.PSI= 0_VOLTS=" . : -

t16 = ..STEP~1_.NSTEP——1500...OP’I'ION:PARTICLE_FILE_ fwas step=1
¢17 — '.STATUS=" S e 1

€18 = *_PRINT-NO_DISPLAY=YES\n'

i1

o

# Class and Functlon Defuutlon':

¢ 1a as s beamgen

# C]ass for generat.lng Opera beams from AES s “e‘ flles: a.nd pybeamld

x‘nlt_-(self saveﬁ]e ,n fignames readsiv

~ self.savecor f savefile .

self flgnames = flgnames %

xf readsave

self readSAVECOR()

def readSAVECOR( se]f)

# Used to- read save flle from Parmela S
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ff'«- Open(self savecor, r )

: fxledump ' rea.dhnes ()

= v—'ks‘,ek’lk f-P [0} :
= self.P[2]

' *ﬁ:}‘,"1,,.3;“(,5;‘1::.{‘xs;o;)", v

sqrt (sum( self x*t2)/self N)
- self rmsy = sqrt(su.m(self yn?)/self N)

»';se}f rmsx

‘ self rmsxp—-—‘ s‘qrrt‘(s‘um('self.‘ip‘¥#~2)‘/‘s‘§lff.Ny)i,l s

; se]f rmsyp:k sq,’rt"(ks’umz(ékelyf'.yp#*Z)j‘[,s;é‘lfﬂ_N) o

{s“gyl‘f»;;max‘x‘ = max( self x)

o selfmaxy max(self y)

'-‘v_self maxxp = max(se]f xp)

‘ ” 

k’k;,:"':self maxyp max(self yp)

‘i;self z _= self P{4} - mean(self P[4])
o :self rmsz sqrt(sum(self z**2)/self N)*

L = .s‘jq'r't(se'li*fj.Pglz]uz; sfexf;;gp;[z]fﬂz‘y
,}*self g = sart(self.bgas2 +1)
 self.T = (ks‘gilf .g—1) *0.511‘3,6,“

‘.fsel‘f:"r = sqrt(self x**2+se1f y**z) S
J'self.maxr = max(self r) Fo

':self rmsr = sqrt (sum(self r**2)/self N)
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. ffself maxx

\sé]f’.mye,ni’ﬁ)_

 self.T = Pla

sélf .z =zeros( self .N) L

jk seilf,.krlnisi‘":*o.()

ma.x(s e‘lr f x ) :

max(self xp)

’ll

o

max( self yp)

 self. tv'=' sqrt(self x**2+self y**2)

self. maxr = ma.x(self r):

L ,sglf.,rmsr,‘i sqrt. (sum(self r**2)/ self N)

ol e

' d'e;f;f

kl,j‘:'flgure(l flgSIZe (6 6)) - , e
 plot(self. x[O self. maxN] , self y[O self maxN}, r+ ) '

se lf < N

prmtp]ots(self)

Hw,yi’,xlabel(’X fem]®)
f_ylabe)(’Y fem] *)

“‘ax1s( ’scaled )

H:‘annotate(Ntext (self ma.xx* 7 self ma.xy*— 7))

"1‘;,:sa.vef1g(self f]gnames+ XY - png )
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“ ,j~f1gure(2 fxgsxze_.(ﬁ 6)) ;
: “,plot(self‘_xp[O self maxN]*lOOO self yp[O self maxN‘
o 's‘xlabel(”x" [mrad}”)

ig: re(4 fxgsylze—-(G 6)) . .
kaplot(self y[(l self maxN],se]f yp[O self
g}»:xlabel(” fem]”) =
 ylabel (Y’ [mrad]”) ‘
‘ 'jannotate(Ntext,(self ma.xy* 7 self maxyp*lOO

‘nm:N}*lOOO

; _"saveflg(self fxgnames-l- YYP . png )
,i.de{'ijfpp:iiitd;ayt"a;(‘sel’f) -
count = 0

;. for 1 in range(O self maxN)

1f self r[l] > self rmsr.‘

o count count +1 E
- float (count)/self maxN*lOO

. p“erc‘iont;

print ~,"scI‘f  . fig‘il,a:més

praen T 'str,('sékl»f .nnsx) ;

- str (‘s:eyl"f'.rm'a‘y)‘ :
' 1s’t~rk(”se;ljf maxx)
s'ﬁtb(s,el:f maxy) -
‘strl(lse'l‘f rmsxp*lOOO)
1s£r(s'e‘1f rmsyp*lOOO)
"st;r(mea.n(self .T)) : ,
! str(std(self T)/mean(self T)*100)
c str(self rmsr)

oo print '-’str(max(self r))
li‘r‘irh'i;”"’PercOUtM.y_‘ + str(percOut)

def dumpdata(s'élf); 5 : ,,
f = open( s;e]'f{. fignames+ ' pickle’ W)
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= ,[for 1"‘ in range (O ,m)

~ self.cdf "_;': self cdf/sum(self pdf)
axzs( t:lght Y

L x]abel( Rad]us_{cm} )

;fxgure () o :

'  s,a‘vefig(,éé‘yl’f;fiign"am‘,es' + ’-‘c'de’)‘ ; ;  -

“def

. self : dens:ty

5 self den51ty [0]4 #'*self dens;ty [D]/sum( self dens:ty [Ol)ﬂn :
- self. cdf = [] : i
L ‘for i in range(O,m)

‘flgure() e ; . ,
"~,k,:'fbar(se}f blns[O m],self dens:ty{ﬂ] self ma.xr/m)

-axis(’ txght Y .
‘ ‘f',f’»‘xlabel( Radlus_[cm] "y -

PhiVSr(self):
‘dR = 0.05

~zeros ((1 ,m)) k

self. density [on; = self.pdf[i]/(pix(self.bins[i+1]+s2 — self.bins[i

]**2))

self cdf a.ppend(float(sum(self pdffO (1+1)})))
éelf’.cdf = atray(self cdf) e e ‘

ylabe](’Normahzed..Beam...Dens:ty [per_cm 2} ) e

saveflg(self fxgnames + dens’)

bar( self 4‘

fns [0 m},self cdf self maxr/m)

ylabel (’CDF(R)*)

R=10.2

152



“def

[ def

bodegrees € self)

; self xpdeg ’ ’
self ypdeg ‘se}f yp*180/p1 s

def :

k"-';self phl arctan((tan(se}f xp)**2+tan(self yp)k**2/(cos(
S self theta arctan(sm(self xp)/tan(self yp)) G

“',self phl arctan((tan(se]f xp[O self. maxN])**2+tan(se]f yp[O se]f maxN})
kfor Jooin range(O, self maxN)
k yise'l‘f"thét” -
k self phx —";self phl*lSO/p;
‘gencoml(self energy,fllename trackname)
;yihnecount-(} : = , , ' -
e cut’ = (self rmsx—i—se]f rmsy)/2

o comlflle = open(ﬁlename )W )
- ofor i in range((} se]f maxN)

hist(U[1], numBins,None, True)

= self xp*lSO/p; T

convertfullangles(self) .-
elf.xp)#%2)) x*(.5))

convertangles ( self)

**2/(cos(self xp[O self maxN])**?))**( 5)) o e i ;
self theta # arctan(sm(self xp[O se]f maxN])/tan(self yp[O.self maxN]))

if self yp[)] > 0 # was ~<p<0
self phl[]} ——self p}u[])

self ,\theta *180/p1

#prlnt 'k’Wntlng conu f]le, cutt}ng at r= +st:r('cut)

“1f 1: #self r[]<—-cut
llnecount lmecount—l-l

: com;f:le .write(tl1 )
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: hﬁvbe'aml
i newbeaml
newbeaml

E newbeaml

o ~'>s_a~,,vecorfxle

“fignames.

## Example of usage Sl

if __name__. =— -_mam-; e ey o
: = ’SAVEcoRme ext?
= ’607—v5

= beamgen2(savecorf11e 5000 flgnames)f'-» . oah

‘prmtdata ()

printplots()
histogram ()

newbeaml convertangles()k‘ k

;,"‘newbea.ml genconn( 6 G’?E’?’ flgnames+’ coxm
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A.3 3D Beam Analysis

#,9&' ‘mmasmnows

i‘nﬁerse’c‘itibn

DEBUG4 = False B
DEBUG5 = Fa]se,
TESI'IkNG'— Fa.lse ’
TESTINGI True
‘#:" -

## Class and Functlon Defuutlonk

class flntersect.lon

# Used for lnterpretxng opera 1ntersecblon f:les

def --xnxt--(self fxlename energy,co]or)

self. flle fllename ’

- sel f. energy

’str (energy)

self . color =

' V‘lmportdata(se}f){: ,
. = 2. 9979245800E10 .

'open(self f11e+~" X
-f edump f readhne

p;rmt flledump[]en(; ledur

el fl]edump[o _
pr;nt fﬂedump[o
;for ‘km range(O len(ﬁledump)) S e
’ fl]edump[ il = flledump[ ] leplace( D’,"P“V')_; :
filedump[i] = filedump [i] Leplit o
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: "f::Znonn Z-—Zm

for ]' in range(O len(flledump[x}))
flledump[: ]{ j 'loat(fxledump[l][

# Calculateynew coc rd}na‘ d’i?tecy‘tri_q'j/xks._::of;vbéa;;ﬁ'

’[lself zhat : fmean(Vhat 1) : -

: 'self,:‘zhat_z ée]f zhat/sqrt(sum(self zhat**2)} e :
selthat: a.rray([self zhat[2] 0, —se]f zhat[O}])/sqrt(se]f zhat[O]*»2+self

zhat[2l**2) T e coah S o S

= self yhat = ‘—-array([self zhatf[i]*self xhat[2]~—self zhat[2]*self xhat[l] self

. zhat[O]* self xhat[2]—-self zhat[?]* self. xha.t[()} self zhat[O}* se}f xhat[l]-‘
se]f zhat[l}*self xhat[()]])
, self,yhat = self yha.t/sqrt.(sum(seif yhat.-n2))

& # Ca]culate new coordlnates of beam based on beam center
~ Xnorm = X—-Xm ‘ ' -
iYnorm Y—-Ym

ﬁse‘lyfy;ixf-: Xnorm*self xhat{O}-t—Ynorm* self xhat[l]-}-Znorm*self,.xhat [2]*
. sel,ff",k.‘yy‘ Xnorm*seli . hat{O}+Ynorm*self yhat[1)+Znorm*self yhat[2]
"fngffsy'g‘lff. = Xnorm*self zhatl‘O}-i—Ynorm*se]f zhat[l}+Znorm*self zhat[2}-,'f

f',ﬂ‘

N
l

‘v'_f‘seif'.vx —-VXakself xhat[0]+VY*self xhat[1}+VZ*self xhat[2]
 self.vy = VX*seIf yhat[0]+VY*self yhat[1}+VZ*self yhat[2]
'Self.vz _VX*seli zhat[O]—l»VY*self zhat[1}+VZ*se1f zhat[2]

selfm = mean(selfix)

self.ym

I

mean(self.y)
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= self vx/vc e

selfx = selfxeld
 self.y = self.y»10

"“V.se]f Xp = Sjeif.xp*lQOO i
5 self yp = self.yp*iOOO

’ ‘vjfplotbeam(self) -
L o fig = figure(l ﬁgs:ze (6 6))
S f}g clf() k . .
lot(self x,self y,self co]or)
Ht’f‘plot(o 0,’ko’) e
‘axhline (0,0, 1 color—’k )
‘,_axvhne(() 0 l,color*’k )
. xlabel( ’X..[mm] ’)
ylabel(’Y [mm] )

if TESTING1:

o _ax;s(( 6 6,-6. 6))

, axiisj( ; e’qﬁax : )a[ .

yx’f TEST]NG: prlnt ax
. savef:g(self f11e+ xy png

f:g clf() -
7 pIot(self X, self xp,self color)

= flgure(2 f;gslze..(G 6)) .. .
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 def

ehf lndlcatork——
ellf lndlcator :— yypk

felse.r‘ e

f TESTING prlnt ax
: ’saveﬁg(self f11e+ yyp png )

fxtelhpses(self lndmator)

7 3,

: If 1nd1cator Xy lroo

yy:: seIf x"’ 5

: yyp selfy SRR
labels=[’X. {m}f'~??,[,‘,@}»1,;'»“
Txxp L

yy : self X

yyp self xp s
labe]s:[ Ko fmm] * ’jx’i

yy : self y oo
yyp = self. o .
]abels—~[’Y [mm} o

yy:: self xp
yyp self yp . o
labels—[”X’...[mmd]” ”Y’ [mrad] ]

ypem =0
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11 = mean(yyps#2)
122 = mean(yy**2)
mean (yy+yyp)

: *!}cos(phl )
;2*sqrt (w[l]) *ykslni(’k,hl

';2yaqr£ (wlo])

wuxnt ycm + (2*sqrt(w[0}) * cos(o))*cos(ang) :
""“Air-~cos(ang)**2/a**2 + sin (ang)**Z/b**?
l/b**Z)
sxn(ang)**2/a**2 +: cos(ang)**Z/b**Z

B = —2xcos (ang)*sm (ang) *(1/a**2
c

Il,

”ai-ea =pi x a*xb

“epsu .= axb

‘glilya.t‘ = Axepsu :

~_bhat = Cxepsu_ e

L shat = Byepsu/z o

‘plot(self y,self yp,self
Cplotlip ko).
!p]ot(OO ’ko’) :
':;k‘axhhne(O 0,1, co]or—-’k ) -
: axvhne(O 0 1, color— k )
,abel(labels [0])

? Tw1ss...Parameters..for4,

_fi‘f‘iﬁt
\:,pfii;t alpharu + str(ahat)

- fig" flgure (None flgslze; ‘ (6 6))

- ycm + (u*cos(ang)) -—_;,(v*sln(ang))‘
= vp ypcm + (u*sm (ang)) + (v*cos(ang))

ylabel(labels[1]) o

—yry'ykr:prin,t : ’betau—;f, + str (kbhat),k, e -
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k 7'py,ri,ﬁt
.,p'rint

selfxppdf self prms,

axls(
o xlabel
u'y]abel

: k'k":saveflg(self fl]e + ’hlst~xp )

: ‘fighr_e

gamma...—... ‘P 4os

emm}tance

sel f{;"‘x:ppaéc}:iles ‘= hi

tlght o
(”X’., [mrad] . ) ,—'::
(»PDF(X )7:)

0

g "sel‘f “ypdf“ self ybms,. se]f ypatches hlsb(self y,m,None Trne)

o ,fax:s( tight’ ) :
x]abe}( Yo {mm] >) o
ylabel ( 'PDF(Y)’)

; ﬁgure

axls(
k xlabel
ylabel

savefxg(self flle + htst—yp )

flgure
- self

: "~1#axzs(
' 'xlabel

ylabe]
: j#plot(

self yppdf self ypbms, self yppatche'f:

~,savef1g(self flle + ’hlst—-y )

()

' hist ( sé“lfﬁ. yp ,m,None,True) o
tlght ) e
(”Y’...[mra,d}”) ;
("PDF (Y’ )”)

(None f:gslze (6 6))’ e e : - , e L
Fpdf; self Tbms, : self;Tpatches = hxst(self T/lO**b’,m,None True hlsttype

sterpfllled ’,,co]or—self color[O])
tlght Y :
CTo(MeV] ')
('PDE(T)’) e
self .Tx, ssit. BT, g;‘_’ 11new1dth_— 2y

- savef:g(self file + ’hist~T?’) =
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P ntdata(self)

f write( ISIS_BBGS Electron Trackmg ;lepole..,versmn...ll\n )

f wme( Rob.. B]ock \t103EP2u1o,\,"'+s‘e1f me+ \n ) ;

f wn(‘.e(’X Bms,\tPDF(X) \t,X.p..B"‘ j’t,PDF()&.p) \t;Y Bms ,\tPDF(Y) ,\(:Y
tPDF(Y.p} AT Bms,\tPDF(T)\n Yoo i e

f wnte( {mm} \t——,\t;[mr;ad],\kt,u \t[mm] \t——,\t[mrad] \te,\t[MeV} \t~\n )

_p...Bms i\

for i in range(O len(self xbxns)—l)
e nf wnte(str(self xblns[l])-l-’,\t
f. wnte(str(self xpdf[ll)—i—’ 'y -

ot wnte(str(self prlns[l])—!-': At )

. wnte(str(self xppdf[!])+ ,\t ) ' o
f, wnte(str(self ybms{l])+ Aty L
’f‘;wntze(str(self ypdi[ l)+ ,\t') e
Lo, wrlte(str(self ypb1ns[1])+ ~\t ) -
i 4’:"~>f wnte(str(self yppdf{l})+’ o
i .,wn}tke:(str(sgl‘f, Tbl:’gs[x])-}» _
 f.write(str(self. Tpdf[i])+’)

}en(se}fxbxns)~1
f wrxte(str(self xblns[x})+
ffg’wnt.e( ,\t ) .

At

,:‘ .:‘wnte( ,\t ) e e
o J‘.wnte(str(self ybms[l ])+ \t )
o f,-‘"wrlte( At) ' : c
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o= @el)/(ae1)
e "T'v = 'I‘xr/(h-l)**2 .

’ alpha = Tm*((‘I&m(l-—Tm))/Tv —-1)+27 ‘
i peta e (l—m)*(('lkna(l-—'ﬁn))/‘l\r -1)+3 "
~ print alpha beta. ; 5 k
self. Tx = arange(l h, (h—-—l)/lOO) : : S o : 5
: _,._'self BfT = ((self. Tx—l)/(h—l))**(alpha—l)*(l (self Tx—l)/(h—l))**(beta-l)
self. BiT ——‘self BfT/(snm(self BfT)*(h—])/(len(self BfT) 1))
‘ "xtest = arange (0,1,0.01) . S . ;
o iBtest’ = xyt:kes_tj ;

(alpha—l)*(l-xtest )**(beta —1)

def percentGreaterThan(z-arr J zO)

‘count 0; s

;for 1 dn- range((} Ien(z arr))
if z_arr[x])zD

count count + 1

PGT— float(count)/len(z-arr)*lﬂﬁ
, ; return PGT. = g

# Executmn Ekamples
1f DEBUGI' 4
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'menames = [607A”,'607Crms’, ' 607Cxy”, '306A” ,*306Cems’ , *306Cx C62A°,762Ckms’, "

, 7#beam1 1mportdata()
' : v# beaml plotbeam()
' #beyam{l.fltye]]lpsgas ()

dummy = ;1  St

if: DEBUGZ
foF i in tange(O len(elllpsedata)) : T
print & {0:2: 16} e {1:2.2 1) Lo {2:2. ”f}_&_.{a 3f}_,&:_{4 31). \\\\ format(  *
'float(len(beams[ I. x))/5000*100 sqrt(elhpsedata[1][2]{1}*elhpsedata[1
}[2}{3]) sqrt(e]hpsedata{1][2][2]*e111psedata[x}[2][3]) ,elllpsedata[:
][0][3} ,4elllpsedat.a[x][1][3]) i

"#bearmi% = lntersectlon( 601—fulhym—v3—nocut test ""'6 ?’,’b+’)
%camy,&:y“lnbersectlcn[ 60/-—fu]]sym—n3_1nter ’ ’60 7 * ’b+) . -

#beamv3 = vlntersectlon( 306 v3—nonlm fu]l !

‘#Béairrrzi:"zB'k::"—flntersectlon( 306 v3~non11n—~cut ‘ ’30
'#bearir;vfii':'nxntersectlon( 601—v3—nonhn—cut % k
#beamvg o yflntersectlon(’GQ v3—cut— test %
- #beamv:%_—_
#beamv?) :
#bea.mv?) : o
, ff}#beamjv‘si;.; ;
o #beamv?» = /opera/BNDﬁ_comb/xnt/607—»bnd5——str5—1nt

‘béamv.‘& = 1ntersectxon( beamld/evrxs/ecr—opera—mt’ ’60,7

i ntersectxon(’ﬁﬂ?—- steer—v3—~cutxy

v5a/oae5607 % ’60 7% "k+ )

1ntersect|on ( s

,k-i‘)

"beamvS 1mportdata ()

- #beamv?) <pl o’ts’pec_ O !
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Appendix B

Miscellaneous Code

B.1 Opera 3D Multipole Analysis

## Fordeneratlon of comx flles and an' }'ysxs ofk outpu’t from Qper
';';l# Authoru E BIock reblock@aluk' k o
## Createa 4/01/11

## Modified : 4/28/11
##,Fllernakm»e mulhpole py :

,## Imports -

from numpy lmport *

from matplothb pyplot 1mport ok
from sczpy 1mport fft.pack

from munpy lmport concatenate as concat

k## User’d flned anuts e T R
| AT Bendmg fadlu": of Dipole Magnet
# R.adlus t, w :

’22——ara ge (0 zmax+tdz, dz)
t2-ones,( len (z2) ) *pi/4
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: i,‘:i‘kcomx—False
i ,loadtbl—True
'f‘“:‘plotall_False -

: c&lcfft-True »
els’e 0 ;
: V;‘ comx—Trne

loadtbl=False

o "p].ot‘all=F_a‘]‘se
i cﬁa‘}c‘fﬂ;z“Fia‘ls“ei 5

- Flihctiblls = -

def readtable(name nh ad)

L f—-—open(name ’j )

'for 1 in range(O nhead) -
G ' f readl)ne{)
- dataZd

£ readhnes )

j:for Wm range(O len(data?d))

% data2d [ ]

data2d[1} spht ()

data?d I l[ -1] =

: dataZd[x][]}
: , dataZd

data2d [3][~ 1][ = 1

 for jin range(o Ien(data2d[1]))

float(data?d[l ][J})

array(dats2d) T :

. kret,urn data2d

dgf[mitecirc‘le(r ,Z,u, nt=50,£0=0,tm=360):
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co ;(theta))‘l- Bx* ’+str(sm(theta))+ \n ’
return’ t1+t2 S :

,%#‘_:”Prqblem; «é;(éé-ku Vt;rid ‘ni -

ifo'rkk u’ in range(O len(t)) :
1. wnte(changecoord(ro t[u]))
f. wnt.e(wntecucle(rb z[u] u))
A wnte(prlnttab]e(base u, t[u)))
f close()f“ ‘ Gk

;jf Ioadtbl. f,f,,"
data_[}
for u in range(O Ien(t))

1f plotall‘:,fﬁ Shmn st et S

: #f"gure(None f1gs1ze~(12 9))"7? -
=linspac e(D 2*px 51)
fir: u ra.nge(O len(t))
Cif u%b==0:

: flgure(None flgs1ze=(6 5 8))
p]ot‘(x data[u][0] /bO legendspeé [u%&])

':“_‘;\”xla.be]( Angle_[radlans] ’)
ylabel( 'Bx/B07) '
{xllm([O 2xpi])

‘ lyllm([ —0.15,0.15]) :
- ‘f'u'legend(legendtext [u 4'u+1])
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~ data append(read tab]e ( bas&i—str (u)+ ! table

'3))




,""xlabe]( Dlst
o ;ylabe]( Magmtude {BX/BO] )

‘7:1th([-—2 0,7.5]) , ‘
. ; Iegend ([ Quadmpole . k’Hexapole _k,' ! Octupole ! })

xf plotall or: ca]cfft
k show()

-

‘ 'for m m range 1 4)

Ba = max(P2 T[l])*bO N 5 arE ; Lo
- ,Seff— 9 5/(2*Ba/b0*(len(P2-T[1])—1)) * (sum(P2 T[l][ -1])+su.m(P2 T[l][l }))
kg=sqrt (Ba/(rb*bO*rO)) ,
: ’,prlnt A=l ¥ str(rb)'
~print 'Ba—’ 4 str (Ba)
print "r0=.’ 4 ser(:0)
~ print 'BO=’ 4 str(b0)
print £ kq;_’ + shr(kq)' ~
. ‘1‘ prmt f’S-.r-.. ‘: +,? str (Seff)

plot(pa(‘.h]en, P2.T{m} Iegendspec {m—-l})

ce_irom_.edge_[cm; )

il
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B.2 Electron Range Calculations

of 'e]’ec:t'r‘o"ii‘s_ in matter

FUNCTIONREX(TOZRO) ¢
1 PURPOSE - ca]culate extrapolated range of electrons i
! COPIED FROM TABATA ct al, 1996

1T — 1nc1dent kinetic ‘energy of electrons in MeV :
b7 atomlc -number of medlum

1RO~ CSDA range:

!t 'FI — mean kexcl‘tatiqn energy kin eV

{ REX — e'xtra‘.po‘la,te'd ‘range ‘in G/cm?2

TAUO:TO/O 511

| ALZL0G(2) °

A1=0. 3879*2**0 2178

: A2-0 4541+0 03068*Z :

A3—-3 326E— G*Z**(ls 24 1. 316*ALZ)

: A4-»14 03/Z**0 7406 v B

' A5—4 294E—03*z*»(1 684 -0. 2264*ALZ)

| A6=0.6127+Z»+0.1207 shies

‘ REX—RO/(A ‘+A2 /(1 +A3/TAUO**A4+A5*TAUO**A6))

'FUNCI'ION R(I(TD Z ATW FI) : :
! P’URPOSE = csdd. range of e}ectrons b
! COPTED FROM TABA’[‘A ET AL, 1996
1T0 - klnetlc energy i o

! Z .~ atomlc number .

ATW — atomxc Wezght

169




D04C2DBLE(TAOR+CS)) /C

CA+TAUO++C5) /(1. DODBLE(C6+TAUD)
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B.3 MCNPX Input File

_ ISIS BBGS menpx electron transport — REB — 110212

c surface specificati

cfd constant;s e . S
box 20 20 ~1 w000 0 so 00 dl'foj 30
box -6 0 O 1o 0 02260 0012
3 box -25 1L 3 0o 5 00 0 5.‘0,0“07 0 '12":_,'
4 box -2563 0 5 00 050 0 0012
666 rec 0 0 —0.1 00020500 005 0o

'%'{outer boundm

: conv assm bb

N

»"alr 1n81de2assm bb

,“reglon for

‘cookle cutter surf for beam

¢ end surface spec ——

¢ material sp’eci'ficatio»n:' —

,émrlmAm T=2OC
¢ mt code S ~.'d‘¢bi1‘si,tty : keywords
| ml 8000.01e 0.2
. ,7000.01e ' os } '

gas-*l

c Nﬂ‘ 2 is 1020 Steel T-—IOOC ',5 all naturaI elements (AAAOOO)
c mt code . "wg:t, .fractlon (petcent/IOO) elemen o ‘

we ,sooo,o,lkef'f . 8

2500001 00045

© 15000.01e  -0.0004
16000.01¢  -0.0005
126000.01e  '—0:~.9 92641 L

c

c MI’ 3 is Nuclear Graphlte, hlgh densxty H T—SOOC :

c mt code‘ densxty
ms 6000.01c | SR 1.0
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nd material spec

$. Mode‘ er

electron transport only

f-;’sd;ef' dir=1 vee=0 o 1 x=d1 y=d2 z::O cee=666 tr=1 erg 60 67 s source def

spl  —41 0.200 0
sp2  —41 02000
trl 0 8.8 -21 ‘ 1 00

$ 2 35482 * 1 (a) a—0.0851
$ 2. 35482 . 1 (b) b 0 0213
010 0 0 1 1 . :

.mps . :1000000 8 Number of partlcles to run . e

c ¥

c end other q'ag'a, BOF
prlnt:

prdmp 0 01
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B.4 Matrix Solver for BBGS Coolant Flow

# DEF]NE CONSI‘AN’IS FOR EACH SEGME‘N]? OF TUBING ao
dl = 0: 00315 # Thls lS for copper tube g S
d2 »0,611’74_ # This ;s for 1nner dxameter of 1/9 flex tubmg

1f NOINIET
- 11=0. 001,. i
2= =0.001
12«0 001',

11=8 #m of tublng far 1nlet and reburn

,ll2"ﬁkf~= 1.5 #m of t.ubmg between d1po]e and y .
A = 0. 5 #m of tubmg between v

2 lo’ps total

one ]cop per cml

# Densxty of water at ‘?0

# v 1scosn v of wa.ter at ’2 C o "i"
,#;kq/kg; K -

resmt:nnt.y 1 77E—6
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area

= 0.635x22— pix(0. 315/2)"2

T esxst;vxty/‘area s

R L* rperl “100

m" 1d ld 1d id, 1d ,0

cnrrent a.rray ( [0‘ iy ,0, 1x1x,0,0,0,0,0])

p,ower = current**2¢R/1000 # in K g
power[lZ] = 4 5/2 # dehver 4 5 kW to converter assembl}t
power[lB] = 4. 5/2 - - L
# CREATE OONSI'ANT TERM FOR MULT[PHCATION IN LOOPS :
k = 0. 184*8/(4:”0 2* px**l 8) *rho**(o 8)*L*mu:¢0 2/(D**4 8)

# TO AOOOU\TI' FOR PRESSURE DROP OF TURNS I‘\I MAC.H\]EI‘ ADD K2
ntd = 4*7*2 ’ v

}nty = 4*4*7*2

fnt."x; = 4*4*12

;n’téqnv = 2%22%2 # accountlng fer some colled geometry on face of converter j‘

fkafactor = 0. 5 #average remstance fact;or for 90 degree turns

kkafactor*rho/(%:(pl*(dl/Z)**Z)**Z)*array([0 nt.d ntd ntd ntd ntd ntd 0 nty,ﬂ ntx, -

ntx ntconv 0 o 0 ntconv])

e -

7!7'# Create matuces and solve

b = zeros (n)

b‘[-rxrxlo‘ops.]‘ = oites.(‘xsl,oéés )*dP L
beta;'-‘o.qts "

"A*—‘zeros((n n)) : : e , - i S
posind = [[0],[7],[9],[10,11,12,16], [s 13] [1,2,3,4,5,6,14]]
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fnegmd [(1 2 3:4 5, 6 7] [8 91 [10 11, 12 16] [13] 1“4] [151]

il in range(() len(posmd))

: for‘: 3 xn4 range(O len(loops[l]))
1{}]{10098[!1[1}1 1 e
#f-open(’output; txt’ ow)
#A[——nloops }—1*9 ;

#prlnt >> 1 A k

#1 . Qlose()

#prlnt I
error = 100

n’umxtr =0

‘dem;P" arange(s 105,5)+1.385/20.0
# deltaP % array( 20]}1.38&-}5‘/20,0 o ‘
Qs = zeros(len(deltaP))

i1 range(ﬂ len(deltaP))
b[—nloops

'for

= pnes(nloops)*delta?[l]

:# INCLUDE VALUE‘S FOR TURNS o
‘A{—nloops ]-A[—nloops ]+I*k2:Q1

o iy,prlntﬁ’

Problem...converged 1n..‘.;’+str(numlt+1)—|—’...1terat10ns’
# prlnt A : : ‘

’ pnnt ’Q[m 3/ b=

prlnt Q2
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pnnt J’dT..f—._ 7
prlnt dT ’
Re 4* rho*QZ/(pl *mu*D)

prlnt ’Re...—.. !

pr}nt Re

de= k*Q2**1 8 + k2*Q2**2
dPf = dPf+20. 0/1 38e5

pr“int - ’dP...».. 3 :

prlnt ‘de' S ’ ] R
print dPf[0]+dPf[-1]+dPE[1]

print 'power.=.’

p;int ;'pdwe;r e

flgure()

pIot (delta.P Qs) ’ ‘
xlabe]( System..Pressure Drop [psx] )
ylabel( Total Flow Rate_[gpm} Yo

#htle( S_‘ystem ‘curve excludmg converter plate coolxng ’)'_, ,.
show() : dEv e :
W
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