Reward Prediction Error Signaling in Posterior Dorsomedial Striatum Is Action Specific

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1523/jneurosci.0832-12.2012</td>
</tr>
<tr>
<td>Publisher</td>
<td>Society for Neuroscience</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/76756</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
Reward Prediction Error Signaling in Posterior Dorsomedial Striatum Is Action Specific

Thomas A. Stalnaker,1 Gwendolyn G. Calhoun,2 Masaaki Ogawa,3 Matthew R. Roesch,4,5 and Geoffrey Schoenbaum1
1 NIDA-Intramural Research Program, Baltimore, Maryland 21224, 2 Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, 3 The Massachusetts Institute of Technology Media Laboratory, Synthetic Neurobiology Group, Cambridge, Massachusetts 02139, and 4 Department of Psychology and 5 Program in Neuroscience and Cognitive Science, University of Maryland, College Park, College Park, Maryland 20742

Neural correlates of reward prediction errors (RPEs) have been found in dorsal striatum. Such signals may be important for updating associative action representations within striatum. In order that the appropriate representations can be updated, it might be important for the RPE signal to be specific for the action that led to that error. However, RPEs signaled by midbrain dopamine neurons, which project heavily to striatum, are not action-specific. Here we tested whether RPE-like activity in dorsal striatum is action-specific; we recorded single-unit activity in posterior dorsomedial and dorsolateral striatum as rats performed a task in which the reward predictions associated with two different actions were repeatedly violated, thereby eliciting RPEs. We separately analyzed fast firing neurons (FFNs) and phasically firing neurons (total n = 1076). Only among FFNs recorded in posterior dorsomedial striatum did we find a population with RPE-like characteristics (19 of all 196 FFNs, 10%). This population showed a phasic increase in activity during unexpected rewards, a phasic decrease in activity during unexpected omission of rewards, and a phasic increase in activity during cues when they predicted high-value reward. However, unlike a classical RPE signal, this signal was linked to the action that elicited the prediction error, in that neurons tended to signal RPEs only after their anti-preferred action. This action-specific RPE-like signal could provide a mechanism for updating specific associative action representations in posterior dorsomedial striatum.

Introduction

The dorsal striatum has been found to represent associations that may provide the basis for action selection. These include stimulus-response associations thought to underlie “model-free” behavioral control, as well as action-outcome or action-value associations thought to underlie “model-based” behavioral control. (Kawagoe et al., 1998; Hassani et al., 2001; Lauwereyns et al., 2002; Haruno et al., 2004; Tricomi et al., 2004; Lau and Glimcher, 2007, 2008; Pasquereau et al., 2007; Hori et al., 2009; Ito and Doya, 2009; Kim et al., 2009; Kimchi and Laubach, 2009; Stalnaker et al., 2010). To guide behavior appropriately, such representations must be updated when conditions change. Accordingly, striatum receives a large input from midbrain dopamine neurons, which signal reward prediction errors (RPEs)—differences between predicted and actual outcome values (Schultz et al., 1997; Clatworthy et al., 2009). However, the dopamine RPE signal does not appear to carry information about the action that led to the RPE (Schultz et al., 1993; Nakahara et al., 2004; Morris et al., 2006; Roesch et al., 2007). Although mechanisms have been proposed by which an action-agnostic dopamine signal could promote the creation or updating of action-specific associative representations (Houk et al., 1995; Montague et al., 1996; Centonze et al., 2001; Reynolds et al., 2001), an action-specific RPE-like signal might also be important for updating. That is, an action-specific RPE signal might allow updating of only representations related to the relevant action, rather than indiscriminately acting on all action-outcome representations that happen to be active at the time.

In the current study, we sought to test whether RPE-like signals in the dorsal striatum might be specific for the action that caused them. RPE signals have often been reported in dorsal striatum in imaging studies, although this signal is usually assumed to reflect dopamine input to the region (Delgado et al., 2000; McClure et al., 2003; O’Doherty et al., 2004; Tricomi et al., 2004; Haruno and Kawato, 2006). More recently, a subset of dorsal striatal neurons has been found to encode RPE signals in unit recording studies (Apicella et al., 2009; Kim et al., 2009; Oyama et al., 2010). Since in some of these studies it appears that RPE signals may be carried preferentially by interneurons in dorsal striatum, we examined this question separately in dorsal striatum, within striatal subregions, the posterior dorsomedial striatum (pDMS) and the dorsolateral striatum (DLS), which have been differentially implicated in goal-directed or model-based behavioral control and stimulus-response or model-free behavioral...
control (Yin and Knowlton, 2004, 2006; Yin et al., 2005a,b; Baldine et al., 2007; Johnson et al., 2007).

We found that a small subset of fast-firing neurons in pDMS but not DLS exhibited prediction error correlations that were action-specific. These neurons tended to show RPE-like activity only on trials in which their anti-preferred action occurred. These data suggest that the dorsal striatal RPE signal could selectively influence particular action-outcome associative representations. This signal could complement the more global dopamine RPE signal to permit updating of action-specific outcome associations.

Materials and Methods

Subjects. Male Long–Evans rats were obtained at 175–200 g from Charles River Labs. Rats were tested at the University of Maryland School of Medicine in accordance with School of Medicine and NIH guidelines.

Surgical procedures and histology. Surgical procedures followed guidelines for aseptic technique. Electrodes, consisting of drivable bundles of 10–25 μm diameter FeNiCr wires (Stablohm 675, California Fine Wire) electroplated with platinum to an impedance of ~300 kΩ, were manufactured and implanted as in prior recording experiments. Electrodes were implanted in either PdMS (n = 4; 0.4 mm posterior to bregma, 2.6 mm left of midline, and 3.5 mm ventral to the brain surface) or dorso-lateral striatum (n = 5; 0.7 mm anterior to bregma, 3.6 mm left of midline, and 3.5 mm ventral to the brain surface). Coordinates were identical to those used to make infusions or lesions in studies that have found functional dissociations between these two regions (Yin et al., 2004, 2005b). At the end of the study, the final electrode position was marked, the rats were killed with an overdose of isoflurane and perfused, and the brains were removed from the skulls and processed using standard techniques.

Behavioral task. Recording was conducted in aluminum chambers containing a central odor port above two adjacent fluid wells on one wall. The odor port was connected to an airflow dilution olfactometer to allow the rapid delivery of olfactory cues. Delivery of odors at the odor port and 10% sucrose solution in 0.05 ml bolus at the two fluid ports were controlled by computer via solenoids, and photobeam breaks at each port were monitored by computer.

Each session consisted of a series of self-paced trials organized into four blocks. Rats could initiate a trial by poking into the odor port while the house light was illuminated. While in the odor port, an odor would be delivered for 500 ms. If the rat withdrew from the odor port before the 500 ms were finished, the trial would be aborted. At the end of the 500 ms odor, rats could make a choice response consisting of a movement from the odor port to the left fluid well or to the right fluid well. The identity of the odor specified whether they would receive reward at the left well (forced-choice left, specified by verbena olibac odor), the right well (forced-choice right, specified by 2-norbornane methanol, α-3,3-trimethyl odor), or either well (free-choice, specified by cedryl acetate trubek odor). Odors were presented in a pseudorandom sequence such that the free-choice odor was presented on 7/20 tri- als and the left/right odors were presented in equal numbers (± 1 over 250 trials). In addition, the same odor could be presented on no more than 3 consecutive trials. The identity and meaning of these odors remained the same across the entire experiment.

Rewards were arranged such that during each block, a low-value reward was available at one well (a delayed reward or a small reward), while a corresponding high-value reward (an immediate reward or a large reward) was available at the opposite well. These contingencies remained the same across all trials in a block. At the beginning of each new block of trials (unsignaled to the rat), the timing of sucrose delivery was changed so that the high-value reward was replaced by a low-value reward and vice versa. Thus at each block change, positive or negative prediction errors would ensue at particular time points after each of the two choice movements (see Fig. 1 for the contingencies in each block and the timing of the reward prediction errors). On free-choice trials, which were intermixed with forced-choice trials but had the same reward contingencies, rats adopted their choice behavior to meet the contingencies available on each block, so that by the end of blocks they were choosing the action leading to the higher value outcome at a high and stable rate (Fig. 2A).

For long-delay conditions, the length of the delay was titrated according to the rats behavior, according to the following algorithm: the side designated as long increased by 1 s every time that side was chosen until it became 3 s. If the rat continued to choose that side, the length of the delay increased by 1 s up to a maximum of 7 s. If the rat chose the side designated as short <8 of the last 10 choice trials then the delay was reduced by 1 s to a minimum of 3 s. The reward delay for long forced-choice trials was yoked to the delay in free-choice trials during these blocks. In the third and fourth blocks, we held the delay preceding reward delivery constant (500 ms) while manipulating the size of the expected reward. The small reward was a single bolus of sucrose. For big reward, an additional bolus was delivered 500 ms after the first bolus. On the third and fourth block, the side with the high-value reward continued to be alternated from side to side at each block. Across the experiment, the number of trials in each block varied nonsystematically ~64 trials (SD = 9.7).

Single-unit recording. Procedures were the same as described previously (Roesch et al., 2006, 2007). Briefly, neural activity was recorded using two identical Plexon Multichannel Acquisition Processor systems, interfaced with odor discrimination training chambers. Signals from the electrode wires were amplified 20× by an op-amp headstage (Plexon Inc, HST/8050-G20-GR), located on the electrode array. Immediately outside the training chamber, the signals were passed through a differential preamplifier (Plexon Inc, PXB2/16sp-r-G50/16fp-G50), where the single-unit signals were amplified 50× and filtered at 150–9000 Hz. The single-unit signals were then sent to the Multichannel Acquisition Pro-
cessor box, where they were further filtered at 250–8000 Hz, digitized at 40 kHz and amplified at 1–32×. Wires were screened for activity daily; if no activity was detected, the rat was removed and the electrode assembly was advanced 40 or 80 μm. Otherwise a session was conducted and the electrode was advanced by at least 40 μm at the end of the session. Neural activity was recorded using Plexon Multichannel Acquisition Processor systems, interfaced with odor discrimination training chambers. Signals from the electrode wires were amplified and filtered by standard procedures described in previous studies (Stalnaker et al., 2010). Waveforms (>2.51 signal-to-noise) were extracted from active channels and recorded with event timestamps from the behavioral computer. Waveforms were not inverted before data analysis.

Data analysis and firing rate epochs. Units were sorted using Offline Sorter software from Plexon Inc, using a template matching algorithm. Sorted files were then processed in Neuroexplorer to extract unit timestamps and relevant event markers. These data were subsequently analyzed in Matlab (MathWorks). We classified units according to the proportion of interspike intervals >0.5 s in each neuron’s spike train across the entire session, according to established methods (Schmitzer-Torbert and Redish, 2008). In both pDMS and DLS, this analysis revealed a somewhat bimodal distribution, as shown in Figure 3. Units with a high proportion of long interspike intervals (>40% >0.5 s) were classified as phasically firing and constituted 67% of all neurons recorded in each region. Our rationale for using 0.5 s as the criterion for this analysis (a range of values might be legitimately used for this purpose, Schmitzer-Torbert and Redish, 2008) is that it provided the best qualitative separation between the two ends of the distribution. None of the cells could be classified as tonically active neurons according to the criteria of Schmitzer-Torbert and Redish (2008). Thus we classified all nonphasically firing neurons as fast firing but not tonically active neurons. The average waveforms of phasically firing and fast firing neurons differed from each other but were nearly identical between pDMS and DLS.

To analyze neural correlates of reward prediction errors, we examined firing rate in the 300 ms beginning 50 ms after triggering the solenoid valve that controlled the delivery of reward. For negative reward prediction errors, we examined firing rate in the 400 ms beginning 50 ms after the solenoid controlling reward should have opened. These epochs were chosen based on a preliminary perusal of phasic increases and decreases to reward and reward omission, respectively, which revealed that phasic activity took at least 100 ms to begin to rise. We typically account for this delay by beginning analysis epochs 50 ms after the beginning of the relevant event. We performed ANOVAs (p < 0.05) on each neuron’s firing rate during each of these two epochs, including all conditions (block and direction) in which reward was newly delivered at the beginning of the block or in which reward was newly omitted at the beginning of the block, comparing early (first five trials in the block) and late (last 15 trials in the same block). For unexpected reward, these conditions included the presentation of the second short delayed reward, the first two-bolus reward, and the second two-bolus reward. For unexpected omission, the conditions included the presentation of the first long delayed reward and the second small-size reward. We did not include the first small-size reward as an unexpected omission because the timing of the reward on that block was not changed compared with the previous block. We also analyzed similar epochs during control conditions in which reward was delivered at an unchanged time from the previous block, and in which reward was absent at an unchanged time from the previous block. Please see Figure 1 for a graphical depiction of all of these epochs and conditions. For cue-related activity, we analyzed an epoch beginning 50 ms after cue onset and ending at withdrawal from the odor port. Cue selectivity was calculated as the difference in firing rates between the high-value predicting cue and low-value predicting cue, and was compared between early trials (first three of forced-choice trials in each direction) and late trials (last five of forced-choice trials in each direction), across the last three blocks.

For analyzing the trial-by-trial evolution of prediction errors at the beginning of blocks, we examined the peak (for positive prediction error-related activity) or minimum (for negative prediction error-related activity) firing rate in 100 ms bins during the prediction error epochs described above, during each trial. We analyzed this activity using a repeated-measures ANOVA, which included the following factors: average activity in the last 10 trials of blocks preceding prediction error blocks, activity on the first five trials of the prediction error blocks, and average activity in the last 10 trials of prediction error blocks. When a significant effect of trial was found, we performed planned comparisons comparing activity on each of the first three trials of prediction error blocks with average activity on the last 10 of the previous blocks.

For correlations, we calculated the following indices: a positive prediction error index (average firing rate during positive prediction error epochs early in blocks minus late in the same blocks), a negative prediction error index (average firing rate during negative prediction error epochs early in blocks minus late in the same blocks), and a cue selectivity index (the difference in firing rate during the cue predictive of the high-value reward and the low-value reward early in blocks minus that same difference late in the same blocks). We then tested for linear correlations.
between the positive prediction error score and the negative prediction error score, and between the positive prediction error score and the cue-selectivity score.

Population firing rates are shown as averages using 100 ms bins and a 3-bin boxcar smoothing function. Directional selectivity was calculated by including only the last 10 forced-choice trials in each condition and taking the condition with the highest average firing rate during the epoch beginning with odor port withdrawal and ending in fluid port entry (the epoch during which rats were moving toward their chosen side). We used forced-choice trials because equal numbers of trials existed for each condition.

Bursting activity was analyzed using the Poisson surprise method as implemented by Neuroexplorer, with a surprise criterion of 4.6, defined as the negative log of the probability of finding the burst in a Poisson distribution with the same average firing rate (Legény and Salcman, 1985). The surprise criterion was chosen based on that used in previous recordings of striatal neurons (Cayzac et al., 2011). Interspike interval statistics (median value in each spike train and the coefficient of variation for each spike train) were calculated using Matlab.

Results

In each block of this task, sucrose was delivered at precise and consistent time-points relative to the response at the fluid well, with the exception of long-delay conditions, in which reward delivery varied from 1 to 7 s after the response. At the beginning of the second, third and fourth blocks, sucrose was delivered at different time points than it had been in the block immediately before (Fig. 1). Therefore, at certain time points at the beginning of those blocks, reward was unexpectedly delivered, resulting in a positive prediction error, while at other time points, reward was unexpectedly omitted, resulting in a negative prediction error. By examining neural activity in the epoch immediately after these time points and comparing this activity at the beginning of blocks with that at the end of the same blocks (by which time reward timing could be well predicted), we could look for reward prediction error encoding.

We recorded from a total of 489 neurons in dorsolateral striatum and 587 neurons in pDMS (Fig. 2C,D). We classified neurons as either fast firing neurons (FFNs) or phasically firing neurons (PFNs) according to the proportion of session-wide interspike intervals >0.5 s, and analyzed these populations separately (Schmitzer-Torbert and Redish, 2008). FFNs typically had triphasic waveforms, with faster baseline firing rates and shorter duration waveforms than PFNs, which typically had biphasic waveforms (see Table 1 and Figs. 3, 4 for firing rates, interspike interval distributions, and bursting statistics for these two subpopulations in each region).

Reward prediction error signaling

An analysis of associative encoding in this dataset has been previously published (Stalnaker et al., 2010). For the current analysis, we first examined activity during positive prediction error epochs, using the 300 ms epoch beginning 50 ms after unexpected reward delivery (see Fig. 1 for the times when this occurred in the session), including every time-point at which a drop of sucrose was delivered in a block when it had not been delivered in the previous block. We compared activity across all of these epochs when reward was unexpected during the first five trials versus when it was fully expected during the last 15 trials of the same blocks. As a population (using a t test across neurons), FFNs in pDMS fired significantly more to unexpected than expected reward delivery (Fig. 5, C left, p = 0.006; DLS: FFNs, t (195) = 1.2, p = 0.22; DLS: PFNs, t (158) = 1.6, p = 0.10; pDMS: PFNs, t (329) = 0.7, p = 0.46). When analyzed individually, 19 pDMS FFNs fired significantly more than expected reward on early trials versus late trials. The proportion of neurons that met this test was significantly greater than the proportion that did the opposite (6 neurons fired significantly more to expected than unexpected; p < 0.01 by z2). The waveforms of these neurons were not significantly different from those of the larger FFN population (mean half-peak width of these 19 neurons was 92.1 ± 4.0 μs, compared with 93.2 ± 1.5 μs for FFNs in general).

We next examined these 19 neurons, constituting 10% of the FFN population, for further evidence of prediction error encoding. As shown in Figure 5, this analysis revealed features consistent with RPE signaling. First this population showed a significant suppression in firing to omission of an expected reward (Fig. 5B left, C). We tested for this during the 400 ms epoch...
expected reward delivery, described previously (Fig. 5) was inversely correlated with the difference in firing to unexpected and expected reward delivery, compared with the last 15 trials of the same blocks, and the difference for each neuron was positively correlated with the activity of each neuron is shown in Figure 7. In addition, population activity aligned to movement initiation and reward well entry is shown in Figure 8.

Interestingly, a trial-by-trial analysis (Fig. 5A,B, right) showed that both positive and negative RPEs in these neurons reached their peak on the second trial after a block switch, rather than on the first trial as occurs with a dopamine RPE signal (Roesch et al., 2007). This was confirmed using a repeated-measures ANOVA on peak RPE activity across trials (see Materials and Methods; positive: \(F(6,108) = 2.5, p < 0.05 \); negative: \(F(6,108) = 2.4, p < 0.05 \)). Planned comparisons revealed a significant difference between activity on trial 2 and that on the preceding block, but no significant difference between trial 1 and that on the preceding block (positive, first trial, \(t(18) = 0.32, p = 0.75 \); second trial: \(t(18) = 2.2, p < 0.05 \); negative: first trial, \(t(18) = -1.4, p = 0.17 \); second trial, \(t(18) = -3.0, p < 0.01 \)).

In addition to RPE encoding, this population also fired more to fully expected reward omission compared with fully expected reward delivery (compare solid lines between Fig. 5A,B, left). To test the robustness of this effect and its independence from changes in reward predictability, we performed a control analysis, which compared activity in these same neurons during reward delivery and reward omission across blocks in which reward predictability did not change. For this analysis, we chose epochs in which the reward delivered (or omitted) at the beginning of blocks occurred at the same time as that delivered (or omitted) in the previous blocks (see Fig. 1 for a graphical depiction of these epochs). In parallel to the previous analysis, we compared activity during these epochs during the first five trials of these blocks with that during the last 15 trials of the same blocks. As illustrated in Figure 9, this analysis revealed that activity did not change significantly within such blocks and did not differ between reward delivery epochs and absence of reward epochs (reward delivery early vs late: \(t(18) = 1.4, p = 0.19 \); absence of reward early vs late: \(t(18) = 1.3, p = 0.23 \); reward delivery late vs absence of reward late: \(t(18) = 1.5, p = 0.15 \)). Thus the phasic increases and decreases described above are primarily influenced by the changes in the predictability of the reward delivery or omission within those blocks rather than reward delivery or omission itself.

Dorsolateral striatal FFNs do not encode RPEs

As a population, FFNs in DLS did not show evidence of positive prediction error encoding. Analyzed individually, 12 neurons in this population fired significantly more to unexpected reward than fully expected reward. However this proportion was not significantly larger than the population that did the opposite (expected reward more than unexpected reward, \(n = 5 \), n.s. by \(x^2 \)). In addition, as shown in Figure 10, aside from a phasic increase to unexpected reward, this population did not meet any of the other criteria described above for RPE encoding. Thus, RPE-encoding FFNs were particular to the posterior dorsomedial region of striatum. This result is notable in light of our previous report that representations of action-outcome associations in these same neurons may reflect dopamine RPEs.

Table 1. Characteristics of recorded units classified as FFNs or PFNs

<table>
<thead>
<tr>
<th>Classification</th>
<th>pDMS</th>
<th>DLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N)</td>
<td>Baseline firing rate (spikes/s)</td>
</tr>
<tr>
<td>FFNs</td>
<td>196</td>
<td>16.6 ± 0.87</td>
</tr>
<tr>
<td>PFNs</td>
<td>391</td>
<td>1.78 ± 0.08</td>
</tr>
</tbody>
</table>

Baseline firing rates were taken across all intertrial intervals in recording sessions. Burst analysis uses the Poisson surprise method with a surprise criterion of 4.6 (\(p < 0.01 \)). Means ± SEMs are reported.
neural populations did not differ between DLS and pDMS (Stalnaker et al., 2010).

pDMS reward prediction errors are specific for the action that caused them

We have previously reported that many dorsal striatal neurons recorded in this task, including both PFNs and FFNs, show a phasic increase in activity during execution of one of the two actions available in the task and a phasic decrease in activity during the execution of the opposite action (Stalnaker et al., 2010).

Discussion

Here we tested whether dorsal striatal neurons signaled reward prediction errors in an odor-guided choice task. A subset of fast firing neurons in posterior dorsomedial striatum showed phasic increases and decreases in firing rate, lasting ~300–400 ms, that were consistent with prediction error encoding. The positive error signals were correlated with the negative prediction error signals and also with increases in firing to the differently valued cues that occurred with learning in each block. Thus, this sub-
population showed many of the same characteristics that have been reported for midbrain dopamine neurons. However, several characteristics of these signals are markedly distinct from those of the midbrain dopamine signal. First, unlike the dopaminergic signal, the dorsal striatal error signal was not maximal on the first trial after an unexpected change in reward delivery or omission; instead it appeared to peak on the second trial. This suggests a signal that integrates across trials rather than exclusively reflecting errors on the current trial. Second and more central to the current study, the dorsal striatal signal was selective for the action that led to the error. Specifically, these neurons tended to signal errors only following their anti-preferred actions—the action during which they had tended to show a phasic decrease in activity. Error signaling following their preferred action, during which they had shown a phasic increase in activity, was strongly attenuated. Thus, this prediction error-like signal was integrated with information about which action had caused the prediction error. Dopamine prediction error signaling, by contrast, has been found to be independent of the action that preceded the error (Schultz et al., 1993; Nakahara et al., 2004; Morris et al., 2006; Roesch et al., 2007).

There have been several previous reports of dorsal striatal unit activity that appears to carry RPE signals. In a probabilistic maze choice task, a small subset (~15%) of primarily fast-spiking neurons in DMS showed activity that correlated with modeled trial-by-trial RPE values (Kim et al., 2009). While the activity of many units recorded in that study was also correlated with the action chosen in that trial, the authors did not report the relationship between RPE and chosen action signaling. A second study reported that a low percentage of dorsal striatal neurons encoded positive RPEs in a Pavlovian probabilistic reward task. These neurons were likely medium spiny neurons, and were recorded in various parts of the dorsal striatum. The size of the RPE-signaling population in the current study (10% of all fast-spiking neurons recorded) is approximately consistent with the size of the populations found in these previous unit recording studies (Kim et al.,...
A number of imaging studies of human subjects have also reported BOLD activity in different parts of dorsal striatum that is correlated with RPEs (Delgado et al., 2000; McClure et al., 2003; O’Doherty et al., 2004; Tricomi et al., 2004; Haruno and Kawato, 2006). Although it is difficult to determine whether this signal derives from dopamine input or is locally generated, let alone whether different populations of neurons within striatum encode RPEs associated with different actions, these imaging data would be consistent with our results.

The RPE-like signal reported in the current paper occurred in fast firing neurons and not in phasically firing neurons. It is possible that prediction error-encoding PFNs were not detected by our analysis because they fire more slowly and hence would yield less statistical power in the small number of trials analyzed. It is also possible that the striatal RPE-like signal occurs predominantly in fast-firing interneurons, as at least one previous study has suggested (Kim et al., 2009). Although our FFN population included a much higher proportion of the total population than anatomical data suggest interneurons account for, our techniques (like those in many other published extracellular recording studies) may have biased recordings toward interneurons, which are far more likely to be detected during initial screening. Thus, with the caveat that extracellular recordings, at least when they are done exclusively during task engagement, are not well suited to the unequivocal identification of specific cell-types, our FFN population is more likely to consist of interneurons than medium spiny neurons.

Striatal interneurons, which are inhibitory, are thought to shape the activity of projection neurons that may participate in the control of movement. Thus, when interneurons show a phasic decrease in activity, it may disinhibit a population of medium spiny neurons (MSNs) that select for a particular movement (Parthasarathy and Graybiel, 1997; Gage et al., 2010). This implies that each possible action within a context may be gated by a particular subpopulation of striatal interneurons, via shaping of the activity of a corresponding subpopulation of MSNs. The current data suggest that when a prediction error occurs, the same population of neurons that gated the preceding action might selectively signal the error. Thus, this RPE-like signal would be targeted to the same MSN subpopulation that represents the action that led to the error. Because it is targeted in this way, such an RPE-like signal could in theory be particularly useful for updating of action-
outcomes; it might trigger updating only in the relevant subpopulation of MSNs, leaving those that represent other actions, and other action-outcome associations, unaffected.

A growing number of studies have examined differences in neural processing in dorsomedial versus dorsolateral striatum during learning and decision-making (Yin et al., 2009; Thorn et al. 2010). Lesions and pharmacological manipulations of these two regions suggest that dorsomedial, or associative, striatum is critical for goal-directed behavior—that based on representations of predicted outcomes—while dorsolateral striatum, or sensorimotor striatum, is critical for habitual behavior—that based on stimulus-response representations (Yin and Knowlton, 2004, 2006; Yin et al., 2005a,b; Balleine et al., 2007; Johnson et al., 2007). However, it remains a mystery how a similar internal circuitry and a broadly similar dopaminergic input across these two regions could account for such different functions (Wickens et al., 2007). Indeed we reported previously that neural correlates of action-outcome and stimulus-response associative representations are present in equal proportions in both regions, suggesting that information content in the two regions may not account for their functional differences (Stalnaker et al., 2010). The current results may provide some clue as to the reasons for these functional differences. The presence of an action-specific targeted RPE signal in DMS could facilitate action-outcome encoding necessary for model-based behavioral control. Conventional theories of dopamine-based learning and updating mechanisms rely on “stamping in” representations that are merely contiguous with reward; such a mechanism might be less efficient at learning or maintaining information about causal relationships between actions and outcomes. Thus, dorsolateral striatum, in the absence of an action-specific RPE signal, might be slower to learn or update causally based action-outcome associative representations, and would instead tend to develop stimulus-response associative representations. Notably, this effect might not be revealed in our paradigm, since it did not attempt to dissociate action-outcome contiguity from action-outcome causality. Alternatively, updated action-outcome representations may spread from dorsomedial to dorsolateral striatum in well trained rats such as ours, when both regions are functioning normally.

Because the RPE-like signals reported here are action-specific, it seems unlikely that they derive directly from dopamine input to this region. One possibility is that medial prefrontal cortex, which projects heavily to DMS and which has been found to signal prediction errors of action values (Vooram et al., 2004; Matsumoto et al., 2007), may convey prediction error information to DMS. Alternatively, RPEs could be calculated within DMS itself, since information about predicted outcomes is already encoded there along with information about actual outcomes (Kim et al., 2009; Stalnaker et al., 2010). The mechanism through which action-specific RPE-signaling striatal neurons may contribute to the updating of action-outcome associations, or action values, is unknown. Future empirical or computational modeling experiments may be able to test how a modulation of GABAergic input that is coincident with dopamine input during prediction errors might act to modify representations encoded by specific populations of mediiodorsal striatal neurons.

References

Clatworthy PL, Lewis SJ, Brichard L, Hong YT, Izquierdo D, Clark L, Cools R, Aigbirhio FI, Baron JC, Fryer TD, Robbins TW (2009) Dopamine release in dissociable striatal subregions predicts the different effects of oral