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We present a search for a new heavy vector boson Z0 that decays to gluons. Decays to on-shell gluons

are suppressed, leading to a dominant decay mode of Z0 ! g�g. We study the case where the off-shell

gluon g� converts to a pair of top quarks, leading to a final state of t�tg. In a sample of events with exactly
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one charged lepton, large missing transverse momentum and at least five jets, corresponding to an

integrated luminosity of 8:7 fb�1 collected by the CDF II detector, we find the data to be consistent with

the standard model. We set upper limits on the production cross section times branching ratio of this

chromophilic Z0 at 95% confidence level from 300 to 40 fb for Z0 masses ranging from 400 to

1000 GeV=c2, respectively.

DOI: 10.1103/PhysRevD.86.112002 PACS numbers: 12.60.�i, 13.85.Rm, 14.80.�j

Various models of physics beyond the standard model
(SM) predict new U(1) symmetries with an associated
electrically neutral Z0 gauge boson. Assuming coupling
to charged lepton pairs, experiments at the LHC rule out
such particles up to masses of several TeV [1,2]. Strict
limits are also set by D0, CDF, ATLAS and CMS in
searches for Z0 decaying to light quarks [3–6] or t�t pairs
[7–10]. If the new particle decays only to gluons (chromo-
philic Z0), such limits are evaded. If the new gauge boson is
due to a new hidden sector, tree-level couplings to fermions
may be suppressed, and the leading interactions would be
with fields charged under the new U(1) and SU(2) or SU(3)
groups; the SU(3) case leads to a chromophilic Z0 that
decays to pairs of gluons [11]. However, the Landau-
Yang theorem [12] prevents a vector particle from decay-
ing to two massless gauge bosons, and so the predominant
decay mode is to one on-shell (massless) gluon and one
off-shell (massive) gluon, the latter then decaying to a pair
of quarks, giving Z0 ! g�g ! q �qg. For the same reason,
the Z0 boson cannot be produced through the fusion of two
on-shell gluons in the process gg ! Z0, but require at least
one of the incoming gluons to be off shell, see Fig. 1.

If the g� ! q �q pair in the decay is below the top-quark
pair mass threshold, it gives a four-jet final state; the usual
constraints on Z0 models from dilepton and dijet final states
therefore do not apply to this model. However, the four-jet
final state with a resonance in three jets would be challeng-
ing to see over the large multijet background. To extract the
signal from the large background, we will look at signal
events where the off-shell gluon decays to heavy flavor
quarks. In this paper, we focus on the decay Z0 ! gt�t
and consider the decay mode Z0 ! t�tg ! WþbW� �bg in
which oneW boson decays leptonically (including � lepton
decays) and the second W boson decays to a quark-
antiquark pair. This decay mode features a large t�t branch-
ing ratio and a distinctive experimental signature which
allows the reduction to a manageable level of the back-
grounds other than SM t�t production. Such a signal is
similar to SM top-quark pair production and decay, but
with an additional jet coming from the on-shell gluon from
Z0 ! g�g decay.

We analyze a sample of events corresponding to an inte-
grated luminosity of 8:7� 0:5 fb�1 recorded by the CDF II
detector [13], a general purpose detector designed to study
p �p collisions at

ffiffiffi
s

p ¼ 1:96 TeV produced by the Fermilab
Tevatron collider. CDF’s tracking system consists of a sili-
con microstrip tracker and a drift chamber that are immersed

in a 1.4 T axial magnetic field [14]. Electromagnetic and
hadronic calorimeters surrounding the tracking system mea-
sure particle energies, with muon detection provided by an
additional system of drift chambers located outside the
calorimeters.
Events are selected online (triggered) by the requirement

of an e or � candidate [15] with transverse momentum pT

[16] greater than 18 GeV=c. After trigger selection, events
are retained if the electron or muon candidate has a pseu-
dorapidity j�j< 1:1 [16], pT > 20 GeV=c and satisfies
the standard CDF identification and isolation requirements
[15]. We reconstruct jets in the calorimeter using the
JETCLU [17] algorithm with a clustering radius of 0.4 in

�-� space, and calibrated using the techniques outlined
in Ref. [18]. Jets are required to have transverse energy

FIG. 1. Diagram for Z0g (top) or Z0q (bottom) production
followed by Z0 ! gg� ! gt�t decay giving a t�tgg (top) or t�tgq
(bottom) final state.
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ET > 15 GeV and j�j< 2:4. Missing transverse momen-
tum [19] is reconstructed using calorimeter and muon
information [15]; in this experimental signature the miss-
ing transverse momentum is mostly due to the neutrino
from the leptonically decaying W boson.

The signature of Z0 ! t�tg ! WþbW� �bg ! ‘�bqq0 �bg
is a charged lepton (e or �), large missing transverse
momentum, two jets arising from b quarks, and three
additional jets from the W-boson hadronic decay and the
Z0 decay gluon. We select events with exactly one electron
or muon, at least five jets, and missing transverse momen-
tum greater than 20 GeV=c. Since such a signal would
have two jets originating from b quarks, we require (with
minimal loss of efficiency) evidence of decay of a b hadron
in at least one jet. This requirement, called b tagging,
makes use of the SECVTX algorithm, which identifies jets
from b quarks via their secondary vertices [20].

We model the production of Z0 bosons with mZ0 ¼
400–1000 GeV=c2 in 100 GeV=c2 intervals and subse-
quent decays Z0 ! gg� and g� ! t�t with MADGRAPH

[21]. Additional radiation, hadronization and showering
are described by PYTHIA [22]. The detector response for
all simulated samples is modeled by the GEANT-based CDF
II detector simulation [23].

The dominant SM background to the t�tþ j signature is
top-quark pair production with an additional jet due to
initial-state or final-state radiation. We model this back-
ground using PYTHIA t�t production with a top-quark mass
mt ¼ 172:5 GeV=c2 [24]. We normalize the t�t background
to the theoretical calculation at next-to-next-to-leading
order in �s [25]. In addition, events generated by a next-
to-leading order generator, MC@NLO [26], are used in
estimating an uncertainty in modeling the radiation of an
additional jet.

The second-largest SM background process is the asso-
ciated production of a W boson and jets. Samples of
W-bosonþ jets events with light-flavor and heavy-flavor
(b, c) quark jets are generated using ALPGEN [27], and
interfaced with a parton-shower model using PYTHIA.
The W-bosonþ jets samples are normalized to the mea-
suredW-boson production cross section, with an additional
multiplicative factor for the relative contribution of heavy-
and light-flavor jets, following the same technique utilized
previously in measuring the top-quark pair-production
cross section [20].

To check the quality of the W-bosonþ jets background
modeling, we compare the model to the data in
W-bosonþ four-jet events with zero b-tags. These events
are expected to contain only 1% of signal, while
W-bosonþ jets events are expected to account for 50% of
the expected background yield. We find agreement between
our total background estimate and the data to within 1%.

Backgrounds due to the production of a Z boson with
additional jets, where the second lepton from the Z-boson
decay is not reconstructed, are small compared to the

W-boson background and are modeled using events gen-
erated with ALPGEN, and interfaced with the parton-shower
model using PYTHIA. The multijet background, in which a
jet is misreconstructed as a lepton, is modeled using events
triggered on jets below the selection threshold normalized
to a background-dominated region at low missing trans-
verse momentum where the multijet background is large.
The SM background due to single-top-quark is modeled

using MADGRAPH interfaced with PYTHIA parton-shower
models; backgrounds from diboson production are mod-
eled using PYTHIA. Both are normalized to next-to-leading-
order cross sections [28,29].
We search for a signal as an excess of events above

expectations from backgrounds in event distributions ver-
sus the mass of the t�tj system (Z0 ! t�tj). In t�tþ j events,
we first identify the jets belonging to the t�t system. From
all available jets in the event, we use a kinematic fitter [30]
to select the four jets most consistent with the t�t topology.
In the fit, the top-quark and W-boson masses are con-
strained to be 172.5 and 80:4 GeV=c2, respectively. All
remaining jets are considered candidates for the light-
quark jet in the t�tj resonance. Following the strategy
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FIG. 2 (color online). Distribution of reconstructed Z0 mass in
simulated events for three choices of mZ0 .

TABLE I. Contributions to the systematic uncertainty on the
expected numbers of events for the two main background
processes, the total background yield, and an example
500 GeV=c2 resonance signal with an assumed total cross sec-
tion of 300 fb.

Process t�t W-bosonþ jets

Total

background Z0

Yield 550 79 670 102

Jet energy scale 17% 15% 16% 9%

Cross section 10% 30% 12% � � �
t�t generator 6% � � � 5% � � �
Gluon radiation 6% � � � 5% 4%

(e=�, b-jet) ID efficiency 5% 5% 5% 5%

Multiple interactions 3% 2% 3% 2%

Q2 scale � � � 19% 2% � � �
Total systematic uncertainty 22% 39% 22% 11%
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proposed in Ref. [11], we choose the jet with the largest

value of �Rðj; t�tÞ � p
jet
T to reconstruct the resonance mass

mt�tj, where�Rðj; t�tÞ is the distance between a jet and the t�t
system in �-� space. Figure 2 shows distributions of the
reconstructed mass for several choices of Z0 mass; the
width of these distributions is mostly due to jet energy
resolution and the multiple combinations of jet-parton
assignments, rather than the natural width of the Z0, which
is predicted to be much smaller [11]. Backgrounds, in
which no resonance is present, have a broad, smoothly
decreasing distribution at low mt�tj, while a signal would

be reconstructed near the resonance mass.
We consider several sources of systematic uncertainty

on the predicted background rates and distributions, as well
as on the expectations for a signal. Each systematic uncer-
tainty affects the expected sensitivity to a signal, expressed
as an expected cross-section upper limit in the no-signal
assumption. The dominant systematic uncertainty is the jet
energy scale uncertainty [18], followed by theoretical
uncertainties on the cross sections of the background pro-
cesses. To probe the description of the additional jet, we
compare our nominal t�t model to one generated by
MC@NLO and take the full difference as a systematic un-

certainty. We also consider systematic uncertainties asso-
ciated with the description of initial- and final-state
radiation [30], uncertainties in the efficiency of recon-
structing leptons and identifying b-quark jets, and uncer-
tainties in the contribution from multiple proton
interactions. In addition, we consider a variation of the
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FIG. 3 (color online). Distribution of events versus recon-

structed t�t or t�tj invariant mass for observed data and expected

backgrounds in three control regions. Top: Reconstructed t�t
invariant mass in events with exactly four jets and at least one

b tag. Center: Reconstructed t�tj invariant mass in events with at

least five jets and exactly zero b tags. Bottom: Reconstructed t�tj
invariant mass in events with at least five jets at least one b tag

and HT < 350 GeV. The lower panels give the relative differ-

ence between the observed and expected distributions; the

hatched areas show the combined statistical and systematic

uncertainties of the expected background. A comparison of the

observed data and expected background is provided by the �2

calculation.
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Q2 scale ofW-bosonþ jets events in ALGPEN. In each case,
we treat the unknown underlying quantity as a nuisance
parameter and measure the distortion of the mt�tj spectrum

for positive and negative fluctuations of the underlying
quantity. Table I lists the contributions of each of these
sources of systematic uncertainty to the yields.
We validate our modeling of the SM backgrounds in

three background-dominated control regions. The t�t back-
ground is validated in events with exactly four jets and at
least one b tag. We validate W-bosonþ jets backgrounds
in events with at least five jets and no b tags. Finally,
modeling of SM t�t events with an additional jet is validated
by examining a signal-depleted region with at least five
jets, at least one b tag andHT , the scalar sum of lepton and
jet transverse momenta, less than 350 GeV=c. As shown in
Fig. 3, the backgrounds are well modeled within systematic
uncertainties.
Figure 4 shows the observed distribution of events in the

signal region compared to possible signals and estimated
backgrounds. At each Z0 mass hypothesis, we fit the most
likely value of the Z0 cross section by performing a binned
maximum-likelihood fit of the mt�tj distribution, allowing

for systematic and statistical fluctuations via template
morphing [31] of the signal and background distributions.
No evidence is found for the presence of top-quark-
pairþ jet resonances in t�tj events, so we set upper limits
on Z0 boson production at 95% confidence level using the
CLs method [32], without profiling the systematic uncer-
tainties. The observed limits are consistent with expecta-
tion for the background-only hypothesis. The upper limits
on the cross section are converted into limits on the cou-
pling factor g in the Z0 gluon vertex [11] (Fig. 5 and
Table II) in order to relate the observed limits to the
theoretical prediction. A coupling which is much larger
than unity would make the theory nonperturbative.
In conclusion, we report on the first search for top-

quark-pairþ jet resonances in t�tj events. Such resonances
are predicted by various extensions [11] of the standard
model and their existence is poorly constrained experimen-
tally. For each accepted event, we reconstruct the reso-
nance mass (mt�tj), and find the data to be consistent with
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FIG. 5 (color online). Top, upper limits at 95% C.L. on t�tþ j
production via a heavy new resonance Z0, as a function of the
resonance mass. Bottom, limits on the coupling g in the Z0
theory [11] versus resonance mass.

TABLE II. For each Z0 mass hypothesis, the expected and observed limits at 95% C.L. on the
production cross section times branching ratio, the theoretical prediction for coupling g ¼
100 GeV�2, and the limit on g.

Z0 mass (GeV=c2) Expected (observed) limit on � (pb) Theory � (pb) Limit on g (GeV�2)

400 0.27 (0.30) 0.003 987

500 0.23 (0.26) 0.09 157

600 0.17 (0.18) 0.22 87

700 0.10 (0.11) 0.24 64

800 0.083 (0.085) 0.18 68

900 0.061 (0.061) 0.10 77

1000 0.041 (0.041) 0.05 94
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SM background predictions. We calculate 95% C.L. upper
limits on the cross section of such resonance production
from 300 to 40 fb for Z0 masses ranging from 400 to
1000 GeV=c2 and interpret the limits in terms of a specific
physics model. These limits constrain a small portion of
the model parameter space. Analysis of collisions at the
Large Hadron Collider may further probe the remaining
allowed regions.
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