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Abstract

Sodium Fast Reactors (SFR) show promise as an effective way to produce clean safe
nuclear power while properly managing the fuel cycle. Accurate computer modeling is an
important step in the design and eventual licensing of SFRs. The objective of this work was to
couple a model for metal fuel performance to a sub-channel analysis code to more precisely
predict critical phenomena that could lead to pin failure for steady-state and transient scenarios.
The fuel code that was used is the recently developed and benchmarked FEAST-METAL code.
The sub-channel analysis code that was selected is COBRA-IV-I. This code was updated with
current correlations for sodium for pressure drop, mixing, and heat transfer. The new code,
COBRA-IV-I-MIT was then validated with experimental data from the Oak Ridge National
Laboratory (ORNL) 19-Pin Bundle, the Toshiba 37-Pin Bundle, and the Westinghouse
Advanced Reactors Division (WARD) 61-Pin Bundle.

Important topics that were addressed for coupling the codes include the following. The
importance of azimuthal effects in the fuel pin: FEAST only evaluates the fuel in two-
dimensions, assuming azimuthal symmetry; however, coupling to COBRA produces an
azimuthal temperature distribution. The acceptability of assuming a two-dimensional fuel rod
with an average temperature was examined. Furthermore, how the fuel pin evolves over time
affects the assembly geometry. How well a two-dimensional fuel rod allows for an accurate
description of the changing assembly geometry was also considered. Related to this was how the
evolution of the assembly geometry affects its thenrmal hydraulic behavior, which determined the
exact form of coupling between the codes.

Ultimately one-way coupling was selected with azimuthal temperature averaging around
the fuel pin. The codes were coupled using a wrapper, the COBRA And FEAST Executer
(CAFE), written in the Python programming language. Data from EBR-II was used to confirm
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and verify CAFE. It was found that the number of axial nodes used in FEAST can have a large
effect on the result. Finally FEAST was used to parametrically study three different pin designs:
driver fuel, radial blanket, and tight pitch breed and bum fuel. This study provides data for pin
expected life in assembly design.

Thesis Supervisor: Jacopo Buongiorno
Associate Professor of Nuclear Science and Engineering, MIT

Thesis Reader: Dr. Pavel Hejzlar
Reactor Core Design Lead, TerraPower
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Chapter 1. Introduction

1.1. Motivation

As the twenty-first century progresses the demand for inexpensive carbon free energy

will continue to rise. With seemingly no viable alternatives, nuclear power will likely be a key

supplier of that increasing power demand (1). Currently most operating nuclear power plants in

the world are Light Water Reactors (LWR); however, innovative reactor designs with improved

safety and performance features look promising for future deployment. Six advanced reactor

concepts have been proposed as Generation IV reactors (2).

One of these six designs, the Sodium Fast Reactor (SFR), has gained considerable

traction. Prominent American SFR designs such as the S-PRISM (a GE Hitachi SFR design)

(3)(4)(5)(6) and the Traveling Wave Reactor (TWR, a TerraPower reactor design) (7)(8)(9) exist

with increasing promise of one day being constructed. There is already experience with

construction and operation of experimental and prototype SFRs in many countries. A partial

listing is shown in Table 1-1, for a complete listing of SFR designs consult the International
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Atomic Energy Agency (IAEA) Fast Reactor Database (10). Finally, the SFR has been shown

as a technically viable way of closing the nuclear fuel cycle (2).

An important hurdle that must be overcome for all novel design concepts for nuclear

applications is verification of safe and successful operation. One way of accomplishing this is

through the use of computer simulation. Codes based on first principles and previously

developed correlations can be benchmarked with previous data from experimental reactors, and

then applied to new reactor designs.

This work focused on the modeling of two facets of SFRs, fuel performance and thermal

hydraulics, and the coupling of these models to provide a better description of the behavior of

each. The main purpose of this work was to couple a thermal hydraulic model and a fuel

performance model together. This allows for the ability to predict and model both phenomena

more accurately because feedback effects between the two are accounted for better with a

coupled model. A more detailed discussion of all the objectives of this work occurs in Section

1.3.

Table 1-1- List of countries with SFR experience and some of the corresponding reactors in those
countries, for a more complete list consult the IAEA database (10).

Country Reactor
America Experimental Breeder Reactor-l (EBR-ll) (11)

Fast Flux Test Facility (FFTF) (12)
China China Experimental Fast Reactor (CEFR) (13)

France Phenix (14)
SuperPhenix (15)

India Fast Breeder Test Reactor (FBTR) (16)
Prototype Fast Breeder Reactor (PFBR) (17)

Japan JOYO (18)
Monju (19)

Russia BOR-60 (20)
BN-600 (21)
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1.2. Background

1.2.1. Sodium Fast Reactors

The major distinguishing features of an SFR from other reactor types are listed in its

name. An SFR uses liquid sodium as a coolant and operates with a fast neutron spectrum.

Beyond these two defining properties, SFRs can take on a number of different incarnations. An

example of variety in SFRs at very high-level design is the reactor configuration, which can be

of the loop or pool type (22). Table 1-2 below lists some basic design ranges from Generation

IV SFRs.

The design features of the SFR imbue it with varied functionality and engineering

challenges. For example, the SFR design can support a conversion ratio that allows it to be run

as either a breeder or burner reactor. The sodium coolant offers increased heat removal

capability due to its high thermal conductivity, and is minimally corrosive to steel; however, it is

highly reactive with water and air. Furthermore the use of sodium coolant allows SFRs to be

operated at near-atmospheric pressure.

Table 1-2- Design parameters for Generation
Reactor parameter

Outlet Temperature

Pressure

Power Rating

Fuel

Cladding Material

Average Burnup

Conversion Ratio

Average Power Density

IV SFR designs (2).
Reference Value

510-5500

Near Atmospheric

1000-5000 MWth

Oxide, metal, carbide or nitride alloy
Ferritic-Martensitic or low swelling

Austenitic alloys

100-200 GWD/MTHM

0.25-1.30
350 MWth/m 3
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One thing that remains constant in SFR design is the general assembly design. SFR

cores, like LWR cores, are broken up into units called assemblies. SFR assemblies are arrays of

fuel pins, often wrapped with spacer wires for stability, through which the sodium coolant flows.

While the fuel pin is a constant in SFRs, the fuel material used inside of them can vary.

Listed in Table 1-2 are many of the possible options for SFR fuel. The two options that are most

common for SFR designs are oxide and metal fuel. While oxide fuel is appealing due to the

large amount of operating experience in LWRs and good chemical stability with the cladding

material, metal fuel is the focus of this thesis. Metal fuel has myriad advantages and

disadvantages as a fuel type. Table 1-3 shows a comparison of the properties of the two fuel

types. Notably, metal fuel has a higher heavy-metal density and thermal conductivity, which is

desirable. Furthermore, properly designed metal fuel experiences low Fuel Clad Mechanical

Interaction (FCMI) however it interacts chemically with the clad (23). A major disadvantage of

metal fuel is its low melting point which would be even lower without Zirconium, which is

alloyed into the fuel. Figure 1-1 shows the phase diagram for a Plutonium-Uranium system,

while the melting temperature is high for systems with primarily uranium, the eutectic melting

temperature is close to only 900 K (24).

For a considerably more detailed description on Sodium Fast Reactors consult Tang et al.

(22).

Table 1-3-Comparison of properties of uranium oxide fuel (25) to metallic alloy fuel (23).
Property U-Pu-lOZr U02

Theoretical Density at room 15.8x103  10.97x103

temperature (kg/m 3)
Heavy Metal Density (kg/m 3) 14.22x103  9.67x103

Melting point (*C) 1080 2800

Thermal conductivity average 15 3.6

200-1000 "C (W/m*C)

Specific heat at 100 "C (J/kg0 C) 80 247
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Figure 1-1- Phase diagram for Plutonium-Uranium system (24).

1.2.2. Sub-Channel Analysis

The method that was used in this work for the thermal hydraulic modeling of SFRs is

sub-channel analysis. The basic principal behind sub-channel analysis is standardizing the

porous body control volume equations for a well defined layout (26). The porous body approach

treats a system by dividing it up into regions and assigning values to properties based on volume

averages for that region. The well defined layout for sub-channel analysis is fluid flowing in

connected channels, which are the conditions of a nuclear fuel assembly. As such, sub-channel

analysis is an effective way to examine the fluid behavior of a nuclear fuel assembly.

There are various ways to assign exact sub-channel geometry to an assembly; the method

used in this work will be coolant centered channels. For a hexagonal assembly this divides the

assembly into many small triangles with their vertices being at the center of each fuel rod. This

is shown for a small 19-pin assembly in Figure 1-2.
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In addition to the many regular triangular sub-channels that are formed there are some

non-triangular shaped channels at the edges of the assembly. These channels are called edge and

corner sub-channels and are illustrated in Figure 1-2. The regularly shaped triangular sub-

channels are referred to as interior sub-channels. While the true shape of the sub-channels is

triangular, the solid fuel rods eliminate some of the free area where fluid can flow, resulting in

the flow area for the channel.

For SFR assemblies there is an additional geometric feature that is not shown in Figure

1-2. A wire is wrapped around each fuel rod to give rigidity to the assembly and to promote

cross flow, which is discussed below. To fully define the assembly cross-sectional geometry for

sub-channel analysis the geometric parameters listed in Table 1-4 are needed (this does not

include values needed to be defined in the axial direction).

In addition to dividing the cross-section of the assembly into cells, the assembly is

nodalized axially as well. The length of a node axially is generally on the order of a few

centimeters. The fully nodalized assembly is completely broken down into small control

volumes each of which communicates with surrounding control volumes based on conservation

equations.

Sub-Channel
Fuel Rod

Interior
Edge Sub-Channel Sub-Chan nel

Flow Area
Corner Sub-Channel -

Figure 1-2- Cross-sectional view of a 19-pin SFR fuel assembly with the channel centered
geometry definitions for sub-channel analysis overlaid.
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Table 1-4- Range of typical geometric values for
Geometric Parameter
Number of Fuel Rods
Fuel Rod Diameter
Fuel Rod Pitch or Pitch to Diameter Ratio
Inner Flat to Flat Distance
Wire Wrap Diameter

SFR assemblies.
Range of Sample Values
7-271
.584-1.32cm
1.082-1.24 (p to d ratio)
Dependent on number of fuel rods
.094-.142cm

The single phase conservation equations for a sub-channel j can be written as follows (for

a derivation up to this point refer to Nuclear Systems II: Elements of Thermal Hydraulic Design

by Todreas and Kazimi (26)). Please note the notation presented here is slightly different from

the book to match the notation used in Chapter 2 which presents the equations employed in the

sub-channel code selected. The notable differences are that x is used for the axial direction and

the subscript j denotes the current sub-channel, while the book uses z and i for these purposes.

Continuity

A (Pj + =_- Wi
i=1

1-1

Energy

(5 A - I -Af; [(ph);] + [r,1h;] = (q')rb - WH [h; - hi] - W h*1 + Af; ( ) 1-2
i=1 i=1

Axial Momentum

(n + W + W *+ (ri vX
6t iif~l + Ax

1-3

=-Afj (p~gx - Af] A -2 m N'W.*M_ -Vx)-_ Fij
I 'AxJ
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Transverse Momentum

6 A A A F
(wi) +z(Wifvz))+ (Witvx})= - z' - x 1-4

Where the variables are defined as:

Af Flow area

F Form loss coefficient

h Enthalpy

I Number of adjacent sub-channels

T Mass flow rate

p Pressure

p Density

q' Linear heat rate

s Gap distance between fuel rods

v Velocity

W Mass transverse flow rate

WM Momentum transverse flow rate

W" Energy transverse flow rate

And the sub/superscripts mean:

j The sub-channel
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i An adjacent sub-channel

ji Between sub-channel j and i

x In the x (axial) direction

y In the y direction

z In the z direction

* Effective amount transported by diversion cross-flow rate

' Previous axial level

The first of the four equations, the continuity equation, conserves the total amount of

mass in the cell, in the units of mass per unit length. It consists of three terms in total. The first

term represents the change of the mass in the cell with time.

Af (p) 

-

The second term is the mass that enters the cell in the axial direction. This is the mass that flows

into the cell from the previous cell (or perhaps in some harsh transients with flow reversal from

the next cell).

AfJ

AX 1-0

The final term is the crossflows from the adjacent cells.
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I

- Wi 1-7

In a similar way the other equations track the momentum and energy for the cells, the

purpose of each term is explained in Table 1-5. A sub-channel analysis code uses these

equations along with closure relations (for mixing, pressure drop, and heat transfer), to model the

fluid behavior.

An alternative method to sub-channel analysis that was considered for application in this

work is Computational Fluid Dynamics (CFD). CFD is capable of obtaining much finer

resolutions than sub-channel analysis methods because it divides the volume up in to a much

finer mesh. This increased accuracy comes at the price of computational efficiency. Sub-

channel analysis is capable of modeling much larger domains of both time and space than CFD

(27). For the purpose of coupling a fluid model to a fuel model many design iterations will be

necessary for assemblies with long run times (on the order of years), thus sub-channel analysis

was the chosen approach. This is not to say that CFD has no place in the future of this work. A

possible way to provide ever better models for certain phenomena may be to explore them with

CFD when experiments are too costly or difficult.
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Table 1-5 - A breakdown of the Energy and Momentum equations used in sub-channel analysis by terms with descriptions of each term.

Equation Terms and Description

Af i [(ph) 1  [rftih;] (q;' )rb Wi {h*} A; (p)
- hi]

Energy

Change in Energy Energy carried Energy change
enrywith Axial transport Linear heat transferred from by mass fo hneienergy exchangeserredroomfrom change in
time of energy generation rate adjacent cells exchange from pressure

adjacent cells

S A~riiv~1) A~J ~ 1 4 M (vx1  (s
x W 'dv,*) V,; -Af;(p)gx AfA i= XA

Axial 
Vxi)

Axial Axial AxialMometum momntu
Change in axial momentum Axial transport Momentum loss oss from transferred Momentum lostmomentum carried by mass of momentum from gravity to form losswith time exchange from pressure drop from adjacent

adjacent cells cells

S A A A F-
W(iyj) A z'(iivz }) +(WKitvx}) -- (sf{ pz' {z A x

Transverse

Momentum Change in Momentum
transverse carried from Momentum Momentum loss Momentum lost

moenum th prvos carrned from from pressure to form lossmomentum the previous adjacent cells drop
_________ with time level I______________ I___I __ I__I



1.2.3. FEAST

The tool that will be used in this work to model the fuel performance of SFRs is the Fuel

Engineering And Structural Tool (FEAST) (23)(28)(29). Two versions of FEAST were

developed, FEAST-METAL and FEAST-OXIDE. Since the interest of this work is metal fuel

FEAST-METAL is the version employed and will hence forth be referred to as just FEAST for

brevity.

FEAST was developed to fully model a metal fuel pin, which includes the fuel, the

sodium bond, the clad, and the fission gas plenum. FEAST nodalizes the fuel pin in the radial

and the axial direction, while assuming there is symmetry in the azimuthal direction. The axial

direction supports up to 20 nodes, while the radial direction can have up to 8. The radial nodes

must be split between the fuel and the clad; the recommended split is to use 6 fuel nodes and 2

clad nodes (23). This is shown in Figure 1-3.

FEAST was written in Fortran-90. FEAST employs several different modules and

couples them using an explicit numerical solution algorithm. The modules in FEAST are (23):

1) Fission gas release and swelling

2) Fuel chemistry restructuring

3) Temperature distribution

4) Fuel clad chemical interaction

5) Fuel and clad mechanical analysis

6) Transient creep-fracture in the clad

These models allow FEAST to analyze a fuel pin for both steady-state and transient conditions

and predict critical phenomena that could lead to pin failure.

The required inputs to run FEAST include the pin geometry, the fuel composition, and

the complete history of the pin. The history of the pin includes the power, flux fission rate, and
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clad temperature or coolant temperature and heat transfer coefficient as functions of time.

FEAST has been benchmarked with the currently available metal fuel data from EBR-II and has

proven accurate (23)(28)(29).

n

2

0

0

0
0

0

2

1

Cross Sectional View

*

Figure 1-3- Diagram of the nodalization employed by FEAST, the fuel rod is divided in to nodes
along the axial direction (left) and the radial direction while being assumed azimuthally
symmetric (right).

It
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1.3. Objectives

The over-arching objective of this work was to produce a coupled model for thermal

hydraulic and fuel performance for SFRs. Fuel performance is highly sensitive to coolant

temperature; the accuracy of predictions made by any fuel performance model will be only as

good as the coolant information used. Any user wishing to employ a fuel performance model

has to make some assumptions about the thermal hydraulic behavior of the coolant. The

information usually available is the coolant inlet temperature and the pin linear power, along

with either the coolant mass flow rate or outlet temperature. The latter two could apply either to

the pin specifically or to the assembly. Without the coupling of a sub-channel analysis code, a

simple one-dimensional energy balance must be assumed for the coolant. Peaking factors can be

introduced to increase accuracy; however, phenomena like mixing can never be captured with a

simple model.

Figure 1-4 shows the difference between the axial temperature distributions between

COBRA (the sub-channel analysis code ultimately selected for this work) and the simple coolant

model used in FEAST for a sample pin. The difference is as much as 10 0C at some axial

locations. Differences such as this can produce major discrepancies in predicted performance,

which is described in Section 5.1.

Further value of coupling a fuel performance model to a thermal hydraulic model, like

sub-channel analysis, is the ability to examine multiple pins from an assembly as the coolant

behavior of the entire assembly is given by such a model. While peaking factors can often be

used to approximate the coolant conditions for a hot fuel pin, predicting the coolant behavior for

pins in the periphery of the assembly is not as straightforward.

The coupling of the two models was broken down into three sub-objectives. Firstly a

suitable model for the thermal hydraulics was needed. At the start of the project the fuel model,

FEAST, was already in hand, however this was not the case for the coolant model. Second, the

two models needed to be coupled together. Finally, the coupled model needed to be tested and

applied. The outline below shows these objectives with sub-tasks listed.
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u-0-- FEAST

I.-4

Relative Axial Fuel Position

Figure 1-4- Comparison of the axial coolant temperature profile produced by the models in
FEAST and COBRA, taken from Figure 5-4 in Section 5.1 where a more thorough discussion of its
context can be found.

I) Obtaining a suitable sub-channel analysis code (Chapters 2 and 3)

1) Several sub-channel analysis codes existed as potential candidates for coupling, the first

task was to select an appropriate one for use and evaluate it. (Section 2.1 and 2.2)

2) After the sub-channel code was selected, evaluating the current features of the code and

adding/improving the missing/desired parts was next. Specifically, constitutive relations for heat

transfer, pressure drop, and flow mixing needed to be examined to ensure they were capturing

the operating domain of interest with a reasonable accuracy. (Section 2.3)
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3) Benchmarking and validation was the final step for preparing the sub-channel analysis

model. Sources for validation of the sub-channel code were previous experiments, for example

the ORNL 19-pin test bundle. (Chapter 3)

II) Coupling of the fuel and sub-channel codes (Chapter 4)

4) After completing the development of an up-to-date sub-channel analysis code, it was

coupled with FEAST. The method of coupling was such that there is only one input file and

execution to produce results (no intennediate formatting or commands were needed by the user).

However at the same time each code was preserved in a way that independent development of

each can be carried out and easily adapted to the coupled version. (Section 4.4)

5) One challenge to coupling the codes was the effect of azimuthal variations of the clad

temperature on the fuel performance. FEAST is a two dimensional code examining only the

axial and radial directions of the fuel, while sub-channel analysis provided the coolant behavior

around the fuel rod. This effect was studied to determine its importance and how to address it

when coupling. (Section 4.2)

6) In implementation of coupling the codes, the question of computational efficiency of the

communication between the two codes was addressed. This point was important to ensure that

the coupled program runs in a reasonable amount of time. Because of the stiffness of the fuel

governing equations, FEAST has to be run with fairly short time steps (on the order of tens of

seconds), even at steady-state. On the other hand, the thermal-hydraulic behavior of the

assembly at steady-state evolves over periods of days, weeks, or months. A further extension of

this problem was determining what directions between the codes information was passed. As

described above, the evolution of coolant behavior affects the fuel performance, however the

evolution of the fuel, to a lesser degree, affects the coolant behavior. It was necessary to
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determine if the magnitude of this effect was great enough to warrant two-way communication

between the codes, which.would significantly affect the overall computational efficiency.

(Section 4.1 and 4.3)

III) Validation and application (Chapter 5)

7) Ideal benchmarking of the coupled code would look at data consisting of fuel

performance results from multiple pins from an assembly with known operating conditions.

Unfortunately data sets such as this could not be found in the literature. Since benchmarking and

validation of the combined code was still required, more creative means were necessary. The

combined model was compared to experimental data and FEAST results for fuel pins to examine

its validity. (Sections 5.1 and 5.2)

8) The completed model allows the examination of any pin from an assembly. It was

necessary to determine how the perfonrance of pins in cooler regions of the assembly compared

to that of the hot pin. (Section 5.3)

9) The ability to examine the fuel perfornance of any pin in the assembly can allow for

better design, but beyond the hot pin it is not obvious which pins need to be examined to ensure

the postulated thermal limits are met. Assemblies can consist of up to 271 pins, which would be

a rather daunting number of pins to examine. A parametric study was conducted to determine

fuel pin limits based on different geometry and operating conditions, with a goal of determining

a set of guidelines for what pins to examine when looking at an assembly. (Section 5.4)
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Chapter 2. Sub-Channel Code Selection
and Upgrade

2.1. Code Selection

Selecting the sub-channel analysis method is the first step to choosing the code to use for

modeling the thermal-hydraulics for the coupling. The pros of using an existing sub-channel

analysis code were weighed against writing a new code. Writing a new code had many enticing

benefits. A new code could be tailored to do specifically what is required; the solution scheme

could be designed with its intended use in mind. Furthermore, the code would be modem and

understood because there would be no need to decipher sparsely commented codes written in

archaic programming languages. However, the time investment required to prepare a code from

scratch was considered too steep if a code already existed that contained most of the features

required. Considering the vast field of choices that already existed, dozens of sub-channel

analysis codes (e.g. VIPRE, COBRA, and SLTHEN) and many more codes that can be used as

sub-channel analysis codes (e.g. RELAP), it was likely a suitable code could be found.
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Important criteria were identified, and then cross-referenced with the available codes so the best

choice could be made.

2.1.1. Criteria

The complexity and features of sub-channel analysis codes can vary greatly depending on

their intended application. It was necessary to choose a code that was suited for the purposes of

examining sodium fuel assemblies with an emphasis on coupling to fuel behavior. The

following criteria were deemed important features for the code to have:

-Can handle sodium as the fluid: This is an obvious criterion however many sub-channel

analysis codes are written for water as the fluid. While it was possible that such a code could be

selected and adapted for this purpose it would have involved considerable changes to the code.

-Supports hexagonal geometry with wire wrap: Most sodium fuel assemblies are packed

into a hexagonal geometry because it allows tighter packing, and have wire wraps to promote

mixing. The code must be able to handle this geometry.

-Capable of both steady-state and transient analysis: Time scales of these different modes

of operation can be vastly different, possibly requiring different solution schemes and

correlations. Both modes of analysis were desired.

-Contains a transverse momentum equation: The transverse momentum equation helps

describe the transfer between cells radially. Some codes implement correlations in place of this

equation. Eliminating unnecessary correlations means a more physical model and requires less

benchmarking.

-Employs up to date correlations: Many sub-channel codes were written decades ago, and

as such many experiments have since been conducted that have added to the empirical data

available for places where correlations are necessary. Out of date correlations were the easiest of

the above criteria to overlook as new correlations could be implemented without major changes

to the code.
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While these five requirements provided a good description for what the code should be

there was an additional requirement that superseded them. Any potential code must have an

available source code. Even an ideal sub-channel analysis code for this purpose required access

to the source in order to couple it to FEAST.

2.1.2. Sub-Channel Analysis Options

Below is a listing of existing sub-channel analysis codes, this list is not exhaustive due to

the sheer number of variations on codes that exist.

ASFRE Japanese sub-channel analysis code that is used for fast breeder reactors

(30).

COBRA Code commissioned originally by the Atomic Energy Commission (AEC).

Later versions, which included support for sodium reactors were

developed at Pacific Northwest Laboratory (31)(32)(33).

MATRA LMR Korean code for liquid metal reactors based on MATRA which was in turn

based on COBRA. MATRA LMR improves COBRA in structure,

capabilities and new models (34).

RELAP Not traditionally a sub-channel analysis code however which can be used

as one (35).

SABRE A British line of codes originally developed for the treatment of

blockages in sodium assemblies. The code was improved on many times

with different versions adding capabilities for transient and boiling

calculations (36).

SLTHEN Code based on SuperEnergy, sharing many of the same benefits and

drawbacks (37).
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SuperEnergy

VIPRE

Code developed at MIT, its predecessor was the ENERGY code. In this

code the energy and momentum equations are decoupled allowing for less

computational time at the cost of more correlations (38).

Code based on COBRA for water only (39).

Many of the codes on this list were quickly eliminated for one reason or another. VIPRE

is a sub-channel analysis code used for water, the amount of work to change it for use with

sodium was not worthwhile considering different evolutions of its predecessor (COBRA) were

designed specifically for sodium reactors. Many foreign codes are very similar to American

codes but much harder to obtain (ASFRE, CADET, SABRE). Other codes like RELAP can be

used in a non-conventional way as a sub-channel analysis code; however, it requires the use of a

very large number of junctions, which makes setting up the input file very cumbersome (35).

Table 2-1 below contains a pared down list of the most promising codes, with their most current

versions listed, and the important criteria that they do or do not satisfy.

The final code listed, COBRA-IV-I satisfied the most important column, availability, and

almost every other requirement. The only other code readily available was SuperEnergy2 and

that lacked many capabilities. COBRA-IV-I did have some drawbacks, the main one being its

age, the IV-I version is from 1976, which evolved from codes written 10 years before that.

Nonetheless it was the best choice.

Table 2-1- Comparison of possible sub-channel analysis codes
properties deemed necessary for the chosen code.

considered for use based on

Transverse

Hexagonal Transient Momentum Current
Code Geometry Analysis Equation Available Correlations

Limited number
SuperEnergy2 of rings No No Yes No
SABRE4 Yes Yes Yes No No
MATRA LMR Yes Yes Yes No Yes

Limited number
SLTHEN of rings No No No Yes
COBRA-IV-l Yes Yes Yes Yes No
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2.2. COBRA-IV-I

2.2.1. Code Structure and Initial Changes

Initial changes were made to the COBRA code so it could be compiled and run on

modem machines. The code was designed to be run on ancient computers such as a CDC-7600,

a CRAY, or an IBM360. The language used for the code was Fortran IV, the version developed

in 1961 predecessor to Fortran 66. Due to the premium on computer memory 45 years ago, an

additional program, called SPECSET accompanied COBRA to resize arrays based on the size of

the problem. These common blocks were inserted into the code with the "include" statement,

however maximum sizes for arrays must still be set before the executable is compiled.

Table 2-2 shows what variables are sized by this program along with the reasonable

values used to compile the program that should allow for most assemblies to be run without

recompiling. If it is desired to run an assembly that does not fit these characteristics the code can

be recompiled.

A second additional program also accompanies COBRA called GEOM. GEOM creates

geometry files that are needed to run COBRA using simple geometry inputs. A wrapper

program was designed to run both GEOM and COBRA. This program makes entering the input

and running both programs easier and more efficient.

COBRA itself is composed of many sub-routines ranging from ones as simple as

HCOOL, a sub-routine used to determine heat transfer coefficients, to more complicated ones

like SCHEME and XSCHEM. These two routines are of particular importance because they

perform the steady-state implicit and transient explicit solutions, respectively. A description of

all the sub-routines can be found in (31). Figure 2-1 shows the diagrams for SCHEME and

XSCHEME, while Figure 2-2 shows the overall flow diagram for the program, and where

SCHEME and XSCHEME fit in.
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Table 2-2-Listing of arrays that must be sized with the program SPECSET before COBRA can be
compiled. Values given are those used to compile so most SFR assembly geometries can be
examined.
Parameter Description Maximum value

Cards in property, axial heat flux, and forcing function tables
Sub-channels
Sub-channel gap connections
Axial locations for gap and area variation
Axial nodes plus one
Fuel collocation points plus three
Fuel types
Fuelrods
Same as MX
Axial locations for grid spacers
Number of grid spacer types
Sub-channels that can have area variation
Wall connections
Axial fuel type divisions
Array width
Connections to a channel
Gaps that can have gap spacing variation

for current version
601
546
816
10
451
6
4
271
451
12
5
42
24
5
5
24
60

The implicit solution scheme uses a lumped parameter finite difference method to solve

the conservation equations (Equations 1-1 through 1-4 in Section 1.2.2). The final formulation

for these equations is shown in Equations 2-1 through 2-4 (31).

Continuity

(P1 - Pj) m; - m- 1 -=DC]TW
A; At Ax [DC j 2-1

The matrix operators [DC] and [DC]T are the finite difference and summing operators,

respectively. A bar over a variable denotes the previous time quantity.
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Name
MP
MC
MG
ML
MX
MN
MT
MR
ME
MZ
MK
MA
MW
MY
MO
Ml
MS
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Figure 2-1- Flow diagrams showing the calculation procedure used in SCHEME and XSCH EM, the
sub-routines used by COBRA-IV-l to calculate the implicit and explicit solution schemes (31).
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In this equation U represents the overall heat transfer coefficient, the subscript w denotes

wall, c is the thermal conduction coefficient, and the operator [DW]T is similar to [DC]T but

orders by wall connection rather than sub-channel. These appear in terms that were not in the

original energy Equation 1-2, as they were eithcr assumed negligible (radial conduction) or not

accounted for (wall heat transfer). Additionally, the term Q A is new and accounts for axial
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conduction. The set of bracketed terms at the end of the first line of the equation are equivalent

to the two summations in Equation 1-2, having slightly different definitions of crossflow rate

adds the additional complexity.

Axial Momentum

- m + [DC]tujVj + (muuw -;m+hUjhl

2-3
= -gA'p cos(6) - '- - [DC]'w'[DC]uj - KLmj

The terms in this equation match up one to one with Equation 1-3, the only differences

being that u is used for velocity in place of v and the cos(O) term accounts for the possibility of a

non-vertical geometry. The last term is the loss due to friction.

Transverse Momentum

wI - /uJw; -u _1w- 1  S S s cos6

t '6x I cw; = [DC]P_ 1 - [ [DC]T w 2  2-4

The second and third terms in Equation 1-4 are combined into the second term in the

equation above; this can be done because the control volume is selected so that no lateral flow

exists across transverse surfaces. For this same reason Ax' can be written as 1, the characteristic

gap length. The new term on the left hand side of the equation is a conduction term, while the

terms of the left match up to Equation 1-4 as pressure drop and friction loss terms. The new

operator that appears, [S], is a summing operator similar to [DC].
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MASS - EN4ERGY

AXIAL MOMEN TU 1N

The explicit solution scheme is a pressure-

velocity solution method with an implicit energy

equation. It uses Equations 2-5 through 2-8, whose

computational cells are shown in Figure 2-3 (31).

Continuity (Implicit)

(SP ]~ +lAX + mfl+l n+,SpAAx 6t+ [DC] w +1-

=E!1+1
2-5

Energy (Implicit)

Sph
AAx t + [DC]T h'w+1Ax + mj'+1h]

-m 1= Qip

LATERAL MOMEINTUM

W.

3

Figure 2-3- Computational cells used
for the explicit energy equations.
Dashed lines show the boundaries of
the Mass-Energy Cells (31).

Axial Momentum (Implicit)

mjn+1 = mjn - A t ; -A tg(f + _p + -Tavr M mntum (plicit) 2-7

Transverse Momentum (Implicit)

Wn+1 sj-Atj- gt[Cn+l
2-8

The superscript n refers to the time step. The terms

Q, M, and W are lumped explicit terms for energy,
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axial flow, and transverse flow, respectively. The term E in the continuity equation represents

volume dilation or volumetric error which is to be corrected by pressure adjustment in the

solution. Using Equation 2-9 which, relates density to enthalpy, with Equations 2-5 and 2-6,

Equation 2-10 can be derived for Ej (31).

p = p(h, P*)

EJ= !~' f~~ +XLCJ~jSv Sv SP
E= m+1 -m_ 1 + xTw+1v -AxQ -AxA' p1

2-9

2-10

By further substituting Equations 2-6 and 2-7 into Equation 2-10 a pressure correction equation

is formed. The derivate of the pressure correction equation is (31):

2-115Ej A + s S
P;= g -A vj + Ili_1 + A [DC] v (DC ]

The explicit solution proceeds by first calculating the flows in the momentum equations

(Equations 2-7and 2-8) using an initial guess or pervious cycle result for pressure. The cell

volume error and other quantities are now calculated with pressures and flows from the first

calculation. The amount of pressure change for the cycle is calculated with Equations 2-9 and

2-11 through the equation below (31).

P; = SE

This change is used to calculate the other incremental changes to complete the cycle. The

solution is complete when Ej' falls below a set threshold (31).

2-12
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In addition to these fundamental equations several constitutive relationships are needed.

COBRA-IV-I contained many cutting edge correlations from its time; however since then there

have been many developments. Before any tinkering was done with these relations a few

analyses were done to examine the validity of the code as is.

2.2.2. Reference Case

The first analysis conducted was a reference case to benchmark how well the code

performed without making any changes to it. The Oak Ridge National Laboratory (ORNL) 19-

pin test assembly was chosen as the reference case because it was a common test case for other

codes and because it contained data for both high and low flow cases (where different flow and

mixing effects are dominant) (40)(4 1). Table 2-3 shows the input parameters used in COBRA to

do the calculations.

The parameters are broken up into three groups. The first group is the geometric

parameters that were discussed earlier, the values needed to fully define the sub-channel

geometry. The second group is the system conditions which detail the specific operating

conditions of the experiment or simulation preformed. The final group is the calculation

parameters, which are values that COBRA needs as inputs but are not physical like the previous

two groups.

Several sources of data have been published from other codes that have also run these

cases. These include data sets from RELAP (35), MATRA-LMR, SABRE4 and SLTHEN (34).

However, in most cases the data was published in the form of a plot, thus obtaining values

introduced a certain amount of error to the values above what they previously contained.

Both cases were plotted with the initial result and comparisons to other codes and the

data from the experiment, as shown in Figure 2-4. The X-axis on these plots is sub-channel

number. The sub-channels to plot were chosen to show the behavior of the coolant across the

assembly. Figure 2-5 shows the numbering of sub-channels for a 19-pin assembly. The values

on X-axis of Figure 2-5 make a path across the assembly.
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Table 2-3- Input
low flow cases.

parameters for the ORNL 19-pin test assembly to run COBRA for both high and

Input Parameter ORNL

Geometry Number of Pins 19
Rod Diameter (mm) 5.84
Rod Pitch (mm) 7.26
Wire Wrap Diameter (mm) 1.42
Wire Wrap Pitch (m) 0.3048
Duct inside flat to flat distance (m) 0.0341
Total Length (m) 1.016
Heated Length (m) 0.5334
Lower Unheated(m) 0.4064

System Pressure (atm) 1
Conditions Inlet Temperature ("C) 315

Inlet Mass Flow (kg/s) 3.0378 / 0.04087 (high flow)
Average Rod Power (W) 16975 / 263 (high / low)
Axial Power Distribution (max/avg) Uniform
Radial Power Distribution Uniform

Calculation Wire Pitch Fraction (6) 0.0417
Parameters Turbulent Mixing Factor (B) 0.01

Number of Axial Nodes 80

The Y-axis shows the value of the temperature of each cell at the end of the heated length in

relative temperature. Relative temperature is defined by Equation 2-13.

Tjrei TO 'x - T .
Tout,avg - in

2-13

Where the variables are defined as:

Tjirei The relative temperature for a sub-channel j

Tj,x The coolant temperature of sub-channel j, at the location x where the relative temperature

is calculated, usually the the outlet or end of heated length
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Toutavg The bundle average coolant outlet temperature

Til The coolant inlet temperature

The relative temperature of a channel is a unitless measurement; it is the ratio of the temperature

rise of the channel divided by the bundle average temperature rise. It is a convenient way to

measure temperature and is commonly used in the literature; however, caution must be exercised

when employing it because it is easy to disguise errors. It is better suited for determining if the

shape of the temperature profile is correct, saying little about the magnitude of the temperature

rise. In this way it lives up to its name as it is good for detennining the performance of the code

for each channel relative to the others but not absolutely.

The high flow case shows good agreement of the data with COBRA, MATRA, and

RELAP. SABRE and SLTHEN show higher temperatures in the interior of the assembly and

lower temperatures on the periphery, which is caused by a greater fraction of the flow going

through the peripheral sub-channels. The high flow case shows that the correlations are working

well for this set of operating conditions.

Figure 2-5- Rod and sub-channel numbering for a 19-pin assembly with the cells bolded that

correspond to the temperature profile of Figure 2.5.
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The low flow case shows different behavior. The first thing of note is that every data

point from the experiment is below 1.00. However, with the definition of relative temperature

this is impossible; a weighted flow average of all the sub-channels relative temperature should

yield unity. While every channel is not plotted on this graph, the center channels are, which are

expected to be the hottest because the power distribution across the assembly is uniform. It

stands to reason if the center channels are not even 1.00 then no other channel will be, making it

impossible for all the channels to average out properly.

The reason the experimental data is like this can be explained in many ways. The first is

measurement error; error in measurement accuracy for the various instruments used in the

experiment does not exceed 1% with the exception of flow measurement, 5% (42). So it is

unlikely this phenomenon was caused solely by measurement error. The second is the way the

relative temperature was calculated in the experiment; the temperature used for the bundle

average was not a true bundle average outlet temperature. It was not calculated with the mass

flow and power or by flow averaging the temperature of every channel, but rather measured

downstream from the heated length with a single thermocouple (40). A third affect that could

cause this phenomenon would be improperly calculating the bundle average outlet temperature

by neglecting heat losses through the walls of the bundle. This effect does not apply here

because the bundle average temperature was not calculated, but will be important when the

phenomenon of all data points being below one appears again in Section 3.2.3.

A plausible simple assumption that can be used when observing this phenomenon is that

the temperature profile across the assembly is approximately flat around unity. Comparing the

values of the actual outlet temperatures for the ORNL low flow case examined supports this

assumption; the outlet temperatures range from 783.6 'F to 785.9 *F (42), a difference of just 2.3

*F or just over one degree Celsius. As a final comment on this effect, while visible in this case

due to the nature of the data this error will be a part of all data sets even when not as obvious-the

high flow case for example does not look abnonnal. Matching experimental data within 5% is a

reasonable goal for the code, much beyond that cannot be resolved.

The COBRA result does not match the low flow case well, neither does the MATRA

result. SABRE is the only one of the three to match the data well. This indicates that the

correlations for this regime need examination, as will be done in Section 2.4.
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2.2.3. Sensitivity Analysis of and Convergence of COBRA

The second analysis performed was to examine the transient capabilities of the code. A

parametric study looked at how both time step size and axial nodalization affected the code

performance for two separate accident scenarios for a generic assembly. The two accident

scenarios are an Unprotected Transient Over Power (UTOP) and Unprotected Loss Of Flow

(ULOF).

The input parameters for the sample assembly are listed in Table 2-4. The details of the

transient cases are shown in Figure 2-6 and Figure 2-7. The implicit solution scheme was used.

Table 2-4- Input parameters for a sample test assembly
for time step and node length.

Input Parameter

to run COBRA for a sensitivity analysis

Sample Assembly

Geometry Number of Pins 271
Rod Diameter (mm) 8.8
Rod Pitch (mm) 9.85
Wire Wrap Diameter (mm) 1.05
Wire Wrap Pitch (m) 0.5
Duct inside flat to flat distance (m) 0.165
Total Length (m) 4.5
Heated Length (m) 2.5
Lower Unheated Length (m) 0

System Pressure (atm) 1

Conditions Inlet Temperature (0C) 360
Inlet Mass Flow (kg/s) 49.2
Average Rod Power (W) 38773
Axial Power Distribution (max/avg) Cos 1.57
Radial Power Distribution Uniform

Calculation Wire Pitch Fraction (5) Based on axial nodes
Parameters Turbulent Mixing Factor (1) 0.01

Number of Axial Nodes varied
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The purpose of this analysis was twofold: to determine what reasonable node lengths

were and what time steps were practical for running the code with the implicit transient solution

(time step is set by the Courant limit for the explicit solution as described Section 4.1.2). This

was done by running various time steps and node lengths and determining how they affected the

time it took to run the code and the answer that it produced. For the purpose of determining the

validity of each result, it was compared to the result with the finest step for an error calculation.

The error calculation was performed simply with Equation 2-14.
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Error Xni - XmI 2-14
Xn,i

The Root Mean Square (RMS) difference of the data can be also calculated and used to

determine the order of convergence. The formula for calculating the RMS difference is shown in

Equation 2-15 below.

R MS = .~-(xn,i - Xmi) 2  215
i=1

In these equations j is the number of data points being compared and x,, and xm,i are the

corresponding data points at time i. For the purposes of calculating error xoj was taken as the

finest nodalization for the given case. With this definition the finest nodalization has identically

0 error.

Error was calculated for coolant temperature for both transients at several axial locations

and pressure drop for each channel type (interior, edge, and corner). The errors for the various

locations were of similar magnitude. The results presented below are for the outlet of the

assembly.

Table 2-5 shows the matrix of cases that were examined. For each transient both axial

node length and time step were varied, while one was examined the other was held constant.

Limits on sizes and lengths that could be examined were detennined by various factors. The

maximum number of time steps was 100,000. If the time step or node length was too course the

code would fail to converge. The combinations examined represented the range of available

nodalizations.

The run time for the calculation is approximately linear with both nodalizations, as can be

seen by the similar values in the run time per nodes columns of Table 2-5. The run time per

axial node is significantly greater for the ULOF then the UTOP because there are more time

56



nodes for the ULOF. All cases were run on the same computer with a Pentium 4 3.6 GHz

processor.

Figure 2-8 through Figure 2-11 show the error for the hot channel outlet temperature, as

defined by Equation 2-14 plotted as a function time. The larger node steps display greater error

than the smaller node steps as would be expected. The large initial error for Figure 2-9 is the

result of the the conditions of the ULOF transient changing so quickly initially, as can be seen on

Figure 2-6. The error for all the nodalizations stays mostly constant over time, with the time

nodalizations being slightly more variable than the axial ones.

Table 2-5- Node lengths and time steps examined for the parametric study, and a comparison
their of the run times. The number of time steps is the length of the transient divided by the
time step size.

Axial Number Time Number Run Time Run Time

Node Size of Axial Step Size of time Run Time Per Axial Per Time

(cm) Nodes (s) steps (s) Node (s) Node (s)
ULOF 2 219 5 2400 2974 13.58

4 109 2 6000 2681 0.45
4 109 5 2400 1030 9.45 0.43
4 109 10 1200 681 0.57
6 73 5 2400 786 10.77

UTOP 2 219 0.33 900 750 3.42
4 109 0.1 3000 986 0.33
4 109 0.33 900 310 2.84 0.34
4 109 1 300 124 0.41
8 55 0.33 900 198 3.60
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The results of the RMS analysis for all three channel types for both temperature rise and

pressure drop are shown in Table 2-6. The RMS difference for the pressure drop is very small

for all cases, even the axial UTOP analysis which has channel errors of near 0.5 kPa because the

bundle pressure drop is hundreds of kPa.

The temperature rise data for the axial nodalizations shows little to no order. There is not

a monotonic convergence based on node size. This can be seen on Figure 2-12, which is a plot

of the node length data plotted on a log-log scale. On the order of 1 'C of variation occurs for the

comer and edge channels as the axial node size is changed in both transients, again though this

only a small fraction of the total temperature rise, which is over 200 'C for the duration of the

transients.

The data converges much better based on time step; with order of approximately 1 (the

regression value is .92). Figure 2-13 shows the data on a log-log plot, the linear convergence can

be seen clearly.

Table 2-6- RMS data for temperature rise and pressure drop for a ULOF and UTOP simulated
with COBRA.

Root Mean Square Difference

Temperature Rise ('C) Pressure Drop (kPa)

Interior Edge Corner Interior Edge Corner

Xm XnXm Channel Channel Channel Channel Channel Channel

2 s 5 s 3 s 0.31 0.22 0.22 0.01 0.01 0.01

5 s 10 s 5 s 0.35 0.42 0.26 0.01 0.01 0.01
ULOF

2 s 10 s 8 s 0.66 0.58 0.47 0.01 0.01 0.01

2 cm 4 cm 2 cm 0.44 1.34 1.42 0.03 0.04 0.03
Axial

4 cm 6 cm 2 cm 0.09 0.25 0.45 0.00 0.01 0.01
ULOF

2 cm 6 cm 4 cm 0.53 1.12 1.00 0.03 0.04 0.05

0.1 s 0.33 s 0.23 s 0.03 0.02 0.02 0.01 0.01 0.01
Time

0.33 s 1 s 0.67 s 0.05 0.04 0.04 0.01 0.01 0.01
UTOP

0.1 s 1 s 0.9 s 0.07 0.06 0.06 0.02 0.02 0.02

2 cm 4 cm 2 cm 0.02 1.95 1.34 0.16 0.19 0.17
Axial

4 cm 8 cm 4 cm 0.13 1.23 0.72 0.41 0.06 0.37
UTOP

2 cm 8 cm 6 cm 0.12 0.73 0.62 0.47 0.21 0.28
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The conclusions drawn from this analysis were that COBRA node lengths can be varied

without adversely affecting the results. Furthermore, the time to run COBRA is proportional to

both the number of axial and time nodes. Because COBRA runs steady cases very quickly, on

the order of tens of seconds, a fine axial node mesh should always be used. For transients the

time step should be determined based on the length of the transient, how rapid changes to the

operating conditions occur, and the computational power available.

2.3. Correlations Update

The initial analysis of COBRA-IV-I showed it to be very capable for examining SFR

assemblies; however, there was room for improvement, especially for low flow situations. Each

of the areas in the code where empirical correlations were used (pressure drop, mixing, and heat

transfer) were closely reviewed. Then a literature review was conducted to survey advancements

made in these areas. New correlations were implemented in each area. As new correlations

were implemented they were benchmarked individually against the reference case, the ORNL

bundle (the details of this case can be found in section 2.3.2 Table 2-3)

2.3.1. Pressure Drop

In COBRA pressure drop is calculated from friction factor in the usual way using

Equation 2-16.

L pv 2

AP = De 22-16
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Where f is friction factor, L is length, De is equivalent diameter, p is density, and v is velocity.

The existing correlation, in COBRA-IV-I for friction factor, has the form of Equation 2-17. This

equation includes three constants, A, B, and C, which the user is to specify and the Reynolds

Number, Re. The COBRA manual recommends values of 0.316, -0.25, and 0 for these

constants, corresponding to the Blasius approximation for friction factor (43). This is for a

smooth case however, not taking into account pressure drop from the wire wrap.

f = Ax ReB + C 2-17

Novendstern (44) proposed a correction factor to account for the additional pressure loss

due to wire wrap, Equation 2-18.

6. 9 4  0.885

M 1.034 + 29.7 (Re)o0.0s6 2-18M=(P/D)o.a24 + (H /D)2.239 21

Where P is the rod pitch and H is the wire wrap pitch. Novendstern's factor was added to the

code as an option for the user to choose. Both the original COBRA model and the Novendstern

model share a limitation: they do not account for difference in pressure drop that result from

channel type (interior, edge, or corner). Cheng and Todreas developed a set of correlations,

fitted with experimental data, which provide a friction factor correlation for each channel type

(45)(46). These were also implemented into the code as an option. When using the Cheng and

Todreas model for pressure drop, it is necessary to also use their model for forced mixing, which

will be described below in Section 2.3.2, to obtain accurate results.

The Cheng and Todreas model assumes that the pressure loss comes from the sum of the

friction loss from the fuel and the drag loss on the wire. The friction loss on the fuel for an

interior channel is defined similar to the friction loss in a tube
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ef ,f (P,') ( L pV 2
er=fP De 2

The extra term that would not appear in a pressure drop equation for a smooth channel or tube is

the ratio of bare wetted perimeter, P,', for the channel divided by the wire-wrapped wetted

perimeter, P. Note that Cheng and Todreas use axially averaged values for wire-wrapped

geometric parameters, not local ones. The friction factorf' is defined based on the flow type

f = C)/Re"
1

1 f or laminar
18 for turblent

2-20

C/ is a function of the pitch to diameter ratio

C; = a + bi(P/D - 1) + b2 (P/D - 1)2 2-21

Where a, br, and b2 are constants (different for laminar and turbulent flow) and can be found in

Table 2-7 (45). For transition flow the friction factor is found from

2-22

Where y is an intermittency factor defined as

log Re - log ReL
log ReT - log ReL
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Table 2-7- Coefficients used for the Cheng and Todreas bare rod correlation for calculating Cf' in
Equation 2-21 (45).

Flow Subchannel 1.0<P/D<1.1 1.1<P/D<1.5

Regime a b1 b2 a b1 b2
Interior 26.00 888.2 -3334. 62.91 216.9 -190.2

Laminar Edge 26.18 554.5 -1480. 44.40 256.7 -267.6
Corner 26.98 1636 -10050 87.26 38.59 -55.12
Interior 0.09378 1.398 -8.664 0.1458 0.03632 -0.03333

Turbulent Edge 0.09377 0.8732 -3.341 0.1430 0.04199 -0.04428
Corner 0.1004 1.625 -11.85 0.1499 0.006706 -0.00957

and y is an exponent fitted from data and has a value of 1/3. The drag force caused by the wire is

defined as

/ L\ (Ar\C (pVV2 )
eI-I3CI 

222

where Cd is an empirical constant

Wd DRe'7 "Del} 2-25

and Wd is the wire drag constant defined as

Wd = [29.5 - 140(Dw/D) + 401(Dw/D)2](H/D)-0-8 5
2-26

for turbulent and laminar flow. The total pressure drop is the sum of these two losses.
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, 'De 3Ar1. L pVz
e = ef +ed = f +C(H) A' J De 2 2-27

The effective friction factor for the total pressure drop can now be written as Equation 2-28.

1 P' (De 3Ar 1  De Mf\=w' / +W )~A 2-28
Rem PW H A' )D

For the bare rod case this simplifies down to give the friction energy loss only, as would be

expected. The pressure losses for edge and corner channels are derived in a similar fashion, as

described by Cheng and Todreas (45).

The Cheng and Todreas correlations were the most recent and the most comprehensive

set of correlations found in the literature for pressure drop in hexagonal wire wrapped

assemblies. Chun and Seo (47) carried out an analysis on many pressure drop correlations. It

included those developed by Rehme (48) and by Engel (49), which are not included in the code

along with Novendstern's and Cheng and Todreas' correlation. The conclusion recommended

Cheng and Todreas' correlation for use in sub-channel analysis for all flow regions.

Figure 2-14 shows the ORNL 19-pin high flow test plotted for each of these three

correlations. The extra effect of the Novendstern factor is negligible; however, both this

correlation and Blasius' match the data well. The Cheng and Todreas correlation predicts

slightly higher peaking.
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Figure 2-14- Comparison of new pressure drop correlations added to COBRA with the data and
the old correlations for the high flow case.

2.3.2. Mixing

Mixing is the most complex phenomena modeled empirically, referring to mass,

momentum and energy transfer across sub-channels boundaries radially. The many mixing

terms, represented as W in the constitutive equations, are made up of an amalgam of different

types of mixing. Some forms of mixing are accounted for by the transverse momentum equation

and flow redistribution, while others require empirical model, radial conduction, and forced

mixing.

Conduction mixing is a form of mixing where only energy is exchanged across the cell

boundaries. COBRA has Equation 2-29 built in as an option for radial fluid conduction mixing.

c
W, = k- * (T - T) * K 2-29

This equation has the same form as suggested by Ro and Todreas (50). Here k is thermal

conductivity of the fluid, c is the gap spacing, / is the channel centroid to centroid distance, and T
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is the temperature of the channel. The two sources differ in their recommendation for the factor

K, the conduction shape factor (referred to as Gk in the COBRA literature). COBRA suggests a

constant value of 0.5 for the factor while Ro and Todreas propose Equation 2-26 for it.

K =30.66 2-30

For the geometry of the ORNL 19-pin test assembly the value of K iS 1.24 using Equation 2-30,

significantly higher than the value recommended by COBRA. Furthermore Ro and Todreas

propose an additional factor to account for conduction that takes place through the fuel rods.

R = 0.45 (k 3 8  -10 4 _Q.8 4  2-31

This value for the ORNL geometry is 1.28. The combined effect of the two factors from the Ro

and Todreas correlations yields five times more conduction mixing than COBRA recommends.

The effect of this increase is shown in Figure 2-15. The high flow ORNL case is barely affected

by the increased conduction mixing, as would be expected. The low flow case however is

significantly smoothed out, as it should be. The conduction increase from the Ro and Todreas

correlations accurately describes the low flow behavior without over-predicting the mixing or

distorting the high flow predictions.
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Figure 2-15- Comparison of new radial conduction correlations added to COBRA with the data
and the old correlations for both the high and low flow cases.

Forced mixing is further divided into two types: wire-wrap sweeping and turbulent

mixing. Wire-wrap sweeping describes mixing due to the transverse velocity of the fluid

resulting from wires in the sub-channel that make an angle with the axial direction. Two similar

descriptions of this effect exist, one in COBRA and another by Cheng and Todreas (45). Both

models assume the transverse velocity will be proportional to the axial velocity (V), the ratio of

the area of the wire to the subchannel (Ar/A') and the tangent of the angle made between the wire

and the vertical axis.
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VT c V -jtan 0 2-32

From this, Equations 2-33 and 2-34 follow as the equations used to calculate the wire wrap

mixing parameter, for interior (E i*) and edge channels (CI L). Interior mixing is mixing between

an interior channel and any other channel, edge mixing is between two edge channels only. In

the model included with COBRA Cm and Cs are set to one.

{Ai1/2
* = Cm( tan 0 2-33

ClL = C() tan 0 2-34

Cheng and Todreas introduce the equations below to calculate Cm and Cs. Although the COBRA

and Cheng and Todreas models are similar, each should be used only with its corresponding

description of pressure drop to obtain consistent results.

Turbulent Flow

-0.5

CmT = .14(C) 2-35

CST = .75 3 2-36

Laminar Flow

-0.5
CML = .077 (D) 2-37
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CSL = .413 ( 2-38

Where c is gap between the rods, D is the rod diameter, and H is the wire wrap pitch.

Turbulent mixing is the result of turbulent motion of the fluid causing it to transverse

sub-channel boundaries. COBRA offers several options for turbulent mixing correlations; the

simplest one is Equation 2-39, where P is the turbulent mixing factor and G the mass flux.

Wk = flc G 2-39

COBRA recommends a constant value of 0.01 for the turbulent mixing factor P. Many

correlations exist to calculate P. One such correlation was developed by Rehme, shown in

Equation 2-40 (51), where the variable Dh denotes hydraulic diameter of the cell.

# = 0.00525 (D) () Re- 0  2-40

The advantage of using a correlation for P in place of a constant is to account for the local

conditions of the sub-channel of interest. A representative value of P calculated for the ORNL

19-pin test assembly is 0.008. The impact of such a small difference is negligible, as shown in

Figure 2-16. In fact the general effect of turbulent mixing is so small (less than 10% of total

mixing) that in many cases it can be ignored because in SFR fuel assemblies forced mixing

driven by the wire wrap dominates (45).
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Figure 2-16- Comparison of new turbulent mixing correlation added to COBRA with the data and
the old correlation.

2.3.3. Heat Transfer

The heat transfer coefficient is not needed for the actual sub-channel calculations for the

coolant; it is used only when calculating clad and fuel temperatures. The heat transfer

correlation in COBRA is Equation 2-41, with Pr being the Prandlt number.

h = (--) (Al -Re A2 PrA3 + A4) 2-41
\DI/

The recommended values for the constants Al through A4 in this equation are 0.023, 0.8, 0.4,

and 0.0, respectively. This gives the Dittus-Boelter equation (25). This equation is for

nonmetallic fluids however. To obtain the general form of the equation for metallic fluids A2

and A3 can be set equal. As an alternative to the above form for a heat transfer correlation,

Equation 2-42 was added as an option. This correlation comes from a recent review of relevant

data and correlations for liquid metal tube bundles conducted by Mikityuk (52), it was selected

because it is fit to the complete set of data available.
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h = (1 - e ) (Pe0 " + 250) 2-42

Here Pe is the Peclet number, which is the product of the Reynolds and Prandlt numbers.

2.3.4. Results of New Correlations

Figure 2-17 shows a comparison of the results of the original code versus the updated

code for the ORNL test bundle. The equations used for this and all further analysis in the

updated code, COBRA-IV-1-MIT, are listed in Table 2-8.

COBRA-IV-I-MIT, while performing slightly poorer for the high flow case, increases the

accuracy of the low flow case significantly. Furthermore error in both cases is on the

conservative side, predicting slightly higher temperatures. The ORNL cases represent only a

small portion of possible conditions. Chapter 3 reviews many more cases to thoroughly

benchmark the code.

Table 2-8- Recommended correlations to use for the various phenomena that require empirical
models in COBRA.
Phenomena COBRA-IV-1 Correlation COBRA-IV-l-MIT recommendation
Pressure Drop Blasius Cheng and Todreas
Wire-Wrap Sweeping COBRA model Cheng and Todreas
Turbulent Mixing Constant 1 Constant B
Fluid Radial Conduction Mixing Constant K Ro and Todreas
Rod Radial Conduction Mixing None Ro and Todreas
Heat Transfer Coefficient Dittus-Boelter Mikityuk
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Figure 2-17- Comparison of how COBRA-IV-1 performs with the original correlations it contained
versus the new correlations that are recommended in Table 2-8 for the high flow case (top) and
the low flow case (bottom) of the ORNL 19-pin reference case.
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Chapter 3. COBRA-IV-I-MIT
Benchmarks and Validation

3.1. Range of Operating Conditions

Through the course of normal and transient operation SFRs can encounter a wide range

of operating conditions. When further taking into account different geometries, like driver fuel

geometry versus blanket geometry, and novel reactor designs the matrix of different possible

input conditions for the new sub-channel analysis code is quite extensive. To determine the

effectiveness of the tool for each range a methodical approach was needed. Different parameters

of interest and their corresponding ranges are listed in Table 3-1. The table is divided into two

groups of parameters, geometric parameters are listed first and operating parameters are listed

second. This is not an exhaustive list of every single code input that could affect behavior;

however it does cover all the major inputs that characterize designs.
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Table 3-1- Necessary ranges for parameters for thorough benchmarking of the updated version
of COBRA.

Parameter Regions of Interest

Bundle Size Up to 271 pins
Pitch to Diameter Ratio Fuel and Blanket

Convection Type Natural, Mixed, Forced

Flow Type Laminar, Transition, Turbulent
Power Skews Various

This list of parameters is not a unique choice, but rather a convenient one. For example,

convection and flow type, could be replaced with flow rate, linear power, and some geometric

parameters. This would describe the conditions equally well, but is more complicated. Thus the

above set was chosen because it is concise.

What is of particular interest for varying operating conditions is how the importance of

the physical phenomena described by the empirical correlations varies. The most complicated

empirical phenomena modeled is mixing; Ro and Todreas (50) produced a convenient way to

visualize how this is affected by varying parameters. Figure 3-1 shows two different plots with

the relative importance of mixing phenomena. The x-axis captures the effects of the flow regime

using the Reynolds number defined in Equation 3-1, while the y-axis captures the effects of the

convection heat transfer regime using the Grashof number defined in Equation 3-2. Each plot is

for a different pitch to diameter ratio, one being representative of a driver fuel region, the other

of a blanket region.

pDhV
Re = 3-1

g #* DJ,'b4
Gr6T = [ Dh 3-2

(P/p)2
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Where the variables are defined as:

#* Volumetric expansion coefficient

Dh Hydraulic diameter

Dhh Bundle averaged hydraulic diameter

g acceleration due to gravity

p Density

A T Change in bulk Temperature

v velocity

pt viscosity

Figure 3-1 shows how varying either flow regime, convection regime, or geometry (pitch

to diameter ratio) can change which types of mixing are most prominent, and in turn which

correlations are dominating. It also provides a convenient way to do benchmarking, as thorough

benchmarking will use assemblies operated with conditions that cover all important regions of

the plot. Each of the different bundles that were used for benchmarking are discussed in the next

section, and their coverage of different possible operating conditions in the following section.

3.2. Test Bundles and Designs Used as Benchmarks

Three experimental bundles of different sizes were used as the primary benchmarks for

COBRA-IV-I-MIT, and one code to code comparison was done. The experimental benchmarks

include the ORNL 19-pin bundle (40)(41), the Westinghouse Advanced Reactors Division

(WARD) 61-pin bundle (53), and the Toshiba 37-pin bundle (54) while the code to code
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comparison was done for a 271-pin bundle from the Korea Advanced Liquid Metal Reactor

(KALIMER) 150 MWe pool reactor design (34). Table 3-2 shows the input data for each of

these runs, note the data for the ORNL bundle is reiterated from Table 2-4 for comparison

purposes.

Table 3-2- A
the code.

comparison of the input data for COBRA for each of the cases used to benchmark

Input Parameter ORNL WARD Toshiba KALIMER

Geometry Number of Pins 19 61 37 271
Rod Diameter (mm) 5.84 13.2 6.5 7.67
Rod Pitch (mm) 7.26 14.216 7.865 8.95
Wire Wrap Diameter (mm) 1.42 0.94 1.32 1.2
Wire Wrap Pitch (m) 0.3048 0.1016 0.307 0.2085
Duct inside flat to flat 0.0341 0.114 0.0773 0.1498
distance (m)
Total Length (m) 1.016 2.65 3.043 3.163
Heated Length (m) 0.5334 1.143 0.930 1.0
Lower Unheated(m) 0.4064 0.2413 0.3986 0

System Pressure (atm) 1 1 1 1
Conditions Inlet Temperature ('C) 315 318 Varied 386.2

Inlet Mass Flow (kg/s) Varied Varied Varied 21.6
Average Rod Power (W) Varied Varied Varied 14800
Axial Power Distribution Uniform Cosine 1.4 Cosine 1.21 Uniform
(max/avg)
Radial Power Distribution Uniform Varied Varied Uniform

Calculation Wire Pitch Fraction (6) 0.0417 0.1249 0.0417 0.0607
Parameters Turbulent Mixing Factor (B) 0.01 0.01 0.01 0.01

Number of Axial Nodes 80 209 240 250

*parameters listed as "varied" can be found preceding the result presented, Table 2-4 for the ORNL
bundle, Table 3-3 for the Toshiba bundle, and Table 3-4 for the WARD bundle.
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3.2.1.ORNL 19-Pin Bundle

The smallest of the bundles used for benchmarking has only 3 rings totaling 19-pins.

This bundle was the first chronologically out of those uncovered from the literature. Located at

the Oak Ridge National Laboratory the bundle was part of the Fuel Failure Mockup (FFM), a

large high-temperature facility built to test fuel rods for liquid metal reactors. Figure 3-2 shows

a schematic of the bundle and the test section, while a thorough description of the FFM can be

found in Fontana et al. (40).

This bundle was not only used for benchmarking the final results of the update, but each

correlation added as described in the previous chapter. This assembly was chosen for

benchmarking each correlation because it had two distinct operating conditions and many other

codes used it as a benchmark (34)(35) allowing extensive code to code comparison. The results

of this assembly versus COBRA-IV-I-MIT are detailed in Chapter 2 in Section 2.4.4.

3.2.2. Toshiba 37-Pin Bundle

One ring larger than the ORNL bundle is the Toshiba Bundle, a 37-pin bundle operated

by the Toshiba Corporation Nuclear Engineering Laboratory in Japan in the 1980s (54). Figure

3-3 shows a schematic of the test section and the bundle. The bundle is divided into three

regions that can each be operated at different power levels, providing for the ability to examine

power skews across the bundle. Three different power skews were examined: 1:1, 1.4:1, and

1.96:1. For each case three different sets of operating conditions were examined corresponding

to different flow and convection regimes. The specific operating conditions for each case are

listed in Table 3-3.
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Figure 3-3- A schematic of the test section for the Toshiba 37-pin bundle and the three regions
that the bundle was divided into which could be operated at different power levels (54).

The results of the runs can be seen graphically in Figure 3-4 to Figure 3-6. Each figure

corresponds to one of the power skews, with the three different sets of operating conditions

plotted together. A visual inspection of the plots shows that agreement is best with the flat

power profile and decreases as the skew increases. A quantitative analysis of this is conducted in

Section 3.3.2.
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Table 3-3- Operating conditions used in
number corresponds to the number from

the different experiments of the Toshiba bundle used for benchmarks. The run
the source (54). Many values are listed in the units for COBRA input.

Bundle

Average

Inlet Temp. Outlet Temp. Reynolds Mass Flux Power Heat Flux Grashoff
Run Power Skew [F] [F] Number [Mlbs/ft2 -hr] [kW] [Mbtu/ft 2-hr] Number

B37P02 1:1 412.00 465.55 13024 1.0825 53.58 0.024170 56

C37P06 1:1 398.30 578.45 3022 0.2512 41.02 0.018504 204

E37P13 1:1 403.52 613.83 851 0.0707 13.40 0.006045 238

E37P17 1.4:1 409.10 488.01 8177 0.7359 53.82 0.024278 82

F37P20 1.4:1 400.28 648.84 2971 0.2406 53.82 0.024278 303

F37P27 1.4:1 400.10 677.32 1712 0.1309 32.56 0.014688 357

G37P22 1.96:1 402.44 484.20 8020 0.7218 54.57 0.024616 85

G37P25 1.96:1 398.66 651.29 2971 0.2406 54.57 0.024616 309

401.18 751.42 1487 0.1097 34.13

00

L37P43 1.96:1 0.015396 451
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3.2.3.WARD 61-Pin Bundle

The largest of the experimental data sets to benchmark with was the WARD bundle

totaling 5 rings 61-pins. The test section can be seen diagramed in Figure 3-7. Measurements

were taken for this bundle at a number of different axial locations. Comparisons were made to

the middle of the heated length, the end of the heated length and downstream from the heated

length. This gave more and different comparisons from previous benchmarks where data was

only compared at the end of the heated length. Also shown in Figure 3-7, each row of the

assembly could be operated at a different power level, providing for even more control over

power skews than the Toshiba Bundle.

Four or five different operating conditions for the WARD bundle were examined for

three different power skews: a flat skew, a U-shaped skew with 1.5:1:1.5 profile and an extreme

skew with a 2.8:1 profile. The details of each of these runs can be seen in Table 3-4.
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The results of each of the runs are compared to the COBRA-IV-I-MIT predictions in

Figure 3-8 to Figure 3-14. Similar to the Toshiba runs, better agreement is found for the flat

power distribution as opposed to the skewed distributions. For some of the low flow cases,

downstream from the heated length the same phenomena is observed as was discussed for the

ORNL low flow case, where every experimental data point for the run is below 1.00 in relative

temperature. The bundle average outlet temperature in the experiment was calculated with the

flow rate and assembly power (53). A plausible explanation of why the relative temperatures at

the end of the assembly all fall below 1.0 is that heat is lost through the assembly duct, which

was not reflected in the energy balance calculating the average outlet temperature. It should be

noted too that the middle of heated length produces relative temperatures between 0.4 and 0.6.

Even though the measurements are being taken at the middle of heated length the definition of

relative temperature does not change. The temperature rise to that point is still compared to the

bundle averaged temperature rise, and thus values in the vicinity of 0.5 for middle of heated

length are expected.
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Figure 3-7- Schematic of the WARD test section and the power break down across the bundle.

Each row can be operated at a different power level to achieve different power skews across the

assembly (53).
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Table 3-4- Operating conditions used in the different experiments of the WARD bundle used for benchmarks. The run

number corresponds to the number from the source (53) with the exception of those denoted with an "*" which lacked a

number and are designated with run numbers 1-6 to distinguish between them for this work. Many values are listed in the

units for COBRA input.

Bundle

Average

Inlet Temp. Outlet Temp. Reynolds Mass Flux Power Heat Flux Grashoff

Run Power Skew [F] [F] Number [Mlbs/ft2 -hr] [kW] [Mbtu/ft 2 -hr] Number

1* 1:1 605.2 797.83 13000 0.8326 440 0.04830 289

224 1:1 605.2 792.46 7900 0.5059 260 0.02854 291

218 1:1 605.2 800.63 3800 0.2433 130 0.01427 279

2* 1:1 605.2 798.73 1000 0.0640 34 0.00373 287
oo

3* 1.5:1:1.5 605.2 824.77 11500 0.7965 440 0.04830 343

4* 1.5:1:1.5 605.2 820.24 4400 0.2818 165 0.01811 343

5* 1.5:1:1.5 605.2 835.03 1100 0.0704 44 0.00483 321

6* 1.5:1:1.5 605.2 835.46 550 0.0352 22 0.00241 327

313 2.8:1 605.2 798.00 13000 0.8326 440 0.04830 287

223 2.8:1 605.2 798.61 7900 0.5059 260 0.02854 289
..- - - ---- --- -- --- -- .-- -- ---------- --- --- --- --- --- -- -------- --- --- -- - -- ------ --- ---- -- --- --- -- ---- --- --- -- -- - --- - - --- -.---- -*--- ---- --- --- - - * ---- - -

221 2.8:1 605 2 800.03 3800 0.2433 130 0.01427 290

231 2.8:1 605.2 798.86 1000 0.0640 43 0.00373 279

229 2.8:1 605.2 799.37 500 0.0320 17 0.00186 287
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middle), and the schematic section of the assembly showing the power skew (bottom).
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Figure 3-10- The two higher power benchmarks for the WARD case with a 1.5:1:1.5 power skew
(top, middle), and the schematic section of the assembly showing the power skew (bottom).
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Figure 3-11- The two lower power benchmarks for the WARD case with a 1.5:1:1.5 power skew
(top, middle), and the schematic section of the assembly showing the power skew (bottom).
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Figure 3-12- The two higher power benchmarks for the WARD case with a 2.8:1 power skew

(top, middle), and the schematic section of the assembly showing the power skew (bottom).
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Figure 3-13- The two lower power benchmarks for the WARD case with a 2.8:1 power skew (top,
middle), and the schematic section of the assembly showing the power skew (bottom).
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Figure 3-14- The lowest power benchmark for the WARD case with a 2.8:1 power skew (top),

and the schematic section of the assembly showing the power skew (bottom).

In addition to benchmarks across the bundle the WARD case also provides the

opportunity to do an axial benchmark because of the numerous axial levels temperature

measurements were taken at. Figure 3-15 shows such an axial benchmark for a 2.8:1 power

skew case, Run 223. Three channels are examined for this case. All three channels show good

agreement for the heated length of the channels, up to axial location A. After A the best

agreement is found for channel 1, a central sub-channel. The channels closer to the periphery

predict a higher temperature than is measured; a behavior that has shown up consistently in

benchmarks for highly skewed cases. This could suggest that the Cheng and Todreas correlation

is underpredicting the effect of swirl flow around the outside of the assembly.
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the partial assembly.
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3.2.4. KALIMER 271-Pin Design

This is not a benchmark against experimental data like all the previous examples in this

section but rather a code to code comparison. A code to code comparison, while not as

meaningful as an actual experimental benchmark was deemed necessary so COBRA-IV-I-MIT

could be tested for large assemblies. Actual experimental data for benchmarks was limited to

bundles sizes of 61-pins. Realistic assemblies for commercial SFRs could be as large as 271

pins. The KALIMER design provided an opportunity to do this testing as Kim et al. published

the results of MATRA-LMR, SABRE4, and SLTHEN for the analysis of this reactor (34). The

comparison was done for a fuel interior assembly, the details of which can be found previously

in Table 3-2. The results of the comparison are shown in Figure 3-16.

Note that this plot is of actual temperature rather than relative temperature. The plot shows

good agreement between COBRA-IV-I, COBRA-IV-I-MIT, and SLTHEN. MATRA appears to

predict a slightly higher temperature uniformly, but matches the shape of the other three codes.

Having either a slightly higher input power or slightly lower mass flux would cause a shift like

this, and thus the shift is not overly concerning. SABRE4 has a notably higher peak, likely

caused by shifting more coolant flow to the periphery of the assembly, an actual disagreement

with the other four codes.

a 1.- STENn

dot - - TE

Ita ni 4i e. 1: NH LA -I. -b r

.. .. 4.. .. .........

t 7T V,.

Figure 3-16- Code to code comparison for the KALIMER reactor design.
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3.3. Quantitative Analysis of Benchmarks

In the previous section numerous plots were presented comparing the results from

experimental studies to COBRA-IV-I-MIT predictions for those data sets. For each of the

comparisons the agreement appears acceptable based on visual inspection. This section will

rigorously test the agreement of the code with the experimental data through quantitative

analysis of the benchmarks.

3.3.1. Coverage of Operating Range

Determining if some of the desired ranges are covered by the benchmarks is simple.

Pitch to diameter ratio, bundle size, and power skew were covered by examining cases that

contained that feature. The flow and convection regimes on the other hand are more complicated

to determine if the benchmarks were exhaustive, as they interact in complex ways with each

other and the other parameters. To ensure that there is satisfactory coverage of all the desired

conditions the plots presented in Figure 3-1 are referred to. By populating these plots with data

points for each benchmark an inspection will detennine if all important regions are covered, as

shown in Figure 3-17.

Figure 3-17 contains a populated plot for both a tight pitch, typical of a blanket region,

and a looser pitch that would normally be associated with a driver fuel region. Both plots are

divided into three different regions of importance for benchmarking purposes. The line down the

middle of each plot splits them into two regions: one dominated by flow redistribution, important

for low flow conditions, and the other dominated by eddy redistribution and forced mixing,

important at high flow conditions. The third region of importance is conduction mixing which

contributes most significantly at intermediate or transitional flows when there are low thermal

rises across the assembly. The plots suggest that the most important regions of the map were

covered.
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3.3.2.Average Error for each Case

Table 3-5 shows the average error from the data for each benchmark. Average error for a

case is calculated as shown in Formula 3-3.

n

Average Error = ITre n ~predicted - Trei_n_measured 3-3

Where the sum is over each sub-channel in the bundle for which there was a measured data point

and Trei is defined in Equation 2-13. Table 3-5 presents the error by geometry and power skew.

Note that the flatter power skews performed better than the more pronounced skews of

2.8:1 and 2:1. The extreme skews were expected to have higher error because the power is

concentrated at the edge of the assembly; however, the energy loss through the duct of the

assemblies was not modeled with COBRA. This was tested and confirmed and is discussed in

section 3.3.3.

Another trend that holds for all the assemblies is that the error decreases for each

geometry and skew from the higher power cases to the lower power cases. This trend is also

expected because the relative temperature varies more in higher power cases; it is easier to

predict a case that falls between .9 and 1.1 with low error than it is one that ranges from .7 to 1.3.

Of the flat and conservatively skewed cases only one shows an error greater than 6%.

This case is the WARD 1 which has an error of 13.3%. A look back at a Figure 3-8 shows that

the code predicts values lower than are reported experimentally. However a closer look at the

experimental data shows that the lowest measured values are approximately 1.0. This is the

reverse phenomena as has been observed for some of the low flow measurements. The bundle

averaged relative temperature based on the data shown here would be greater than 1.0, a

contradiction to the definition of relative temperature. So in all likelihood the measured relative

temperatures should be shifted down closer to the prediction.
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Table 3-5- The average error for each of the benchmarks as calculated by Equation 3-3. The
error is shown for each specific case, and the average for each of the runs of similar geometry
and skew.

Benchmark Case Average Error of Relative Temperature [%]
Assembly Case Level (of heated length)

Middle End Downstream
ORNL 4.5

High Flow 5.4
Low Flow 3.6

Toshiba 1:1 1.9
B37P02 3.6
C37P06 1.5
E37P13 0.6

Toshiba 1.4:1 3.9
E37P17 5.7
F37P20 1.9
F37P27 4.2

Toshiba 2:1 6.3
G37P22 9.0
G37P25 4.6
L37P43 2.3

WARD 1:1 3.9
1 - 13.3 -
224 2.5 3.9 5.5
218 1.2 3.9 3.5
2 1.7 2.1 1.2

WARD 1.5:1:1.5 4.5
3 8.7 4.5 4.7
4 6.1 2.4 3.8
5 1.4 2.1 73
6 4.9 3.3 435

WARD 2.8:1 8.2
313 7.3 15.8 16.2
223 10.9 10.2 14.4
221 2.3 9.0 12.6
231 4.2 5.6 5.1
229 3.1 1.4 4.5
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For the other cases the magnitude of the error is reasonable (around or less than 5%) and

almost always on the conservative side. The temperature rise for each of the cases used in the

benchmarks above is on the order of 100 'C or less in some cases. This means the actual error

between the code and the measurement is generally less than 5 'C for cases that have 5% or less

error.

Figure 3-18 shows a cumulative distribution function for the relative error for all of the

data points which were compared to COBRA predictions, a set of roughly 400. 62% of the

COBRA predictions fall within 5%, 87% fall within 10%, and 98.5% fall within 20% of the

relative temperature rise of the data. The range between 10% and 20% is largely populated by

comparisons between the highly skewed cases.

Q

.4

Figure 3-18- Cumulative distribution function of the error between the COBRA predictions and
the data for the WARD, Toshiba, and ORN L bundles.

Determination of the reasonable amount of error is closely tied to what the experimental

errors are for the experiments that were used for the benchmarks. The temperature data was

drawn from thermocouples which would indicate the measurement error should be low. The
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literature indicates that the measurement error for these experiments is 2 'C (54). Error greater

than this is likely introduced in the calculation of relative temperature (which is the way the data

is presented). Evidence supporting this has occurred many times when looking at data sets for

low flow cases when each of the data points across the assembly has a relative temperature at the

outlet of less than 1.0 (or high flow cases where it is greater than 1.0 in one case). In some cases

the experimental data is converted into relative temperature using a measured temperature for the

bundle average outlet as opposed to a calculated one. The temperature is measured downstream

from the heated length so it is assumed to be near the bundle average; however, in order for the

low flow cases to be lower than 1.0 across the assembly, the measured value must be a few

degrees higher actual bundle average. In another case the bundle average temperature is

calculated but it is not stated if heat loss through the duct is accounted for, again likely causing

this temperature to be a few degrees higher than the true bundle average outlet.

A second source of error from the data comes from the way it was presented in the

literature. The data is presented in the sources in the form of plots. A sample plot is shown in

Figure 3-19. In order to do a quantitative comparison of the data it must be converted from

points on the plot back into values. The error involved in this process is related to the resolution

of the plots, which in many cases was very low. While impossible to accurately quantify all the

sources of error, 5% seems an acceptable level of error.
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Figure 3-19- Plots of the experimental data for the WARD assembly (53) (left) and the Toshiba
assembly (54) (bottom right); the magnified area shows how data points are converted to
numbers.

3.3.1. Effect of Conduction Losses Due to Wall

The quantitative analysis in the previous section showed that the highly skewed cases

varied the most between experimental data and COBRA-IV-I-MIT predictions. One reason for

this is because heat loss through the walls of the bundle has not been modeled thus far. To

determine if heat loss through the walls does account for the extra error in the skewed cases the
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Toshiba assemblies were run with heat loss. These assemblies were chosen for this purpose

because the source gave an estimate of the power lost through the duct (54).

Heat loss is more important for skewed cases than flat cases because the power is

concentrated more closely to one wall and thus heat is not lost uniformly. The experimental set

up for the Toshiba case is such that the bundle is installed in a containment tube in a hexagonal

can that is filled with sodium, with many horizontal baffle plates to limit heat loss from

convection. The estimated radial heat loss is 2 .5% of total bundle power (54).

Heat loss was modeled in COBRA by adding an additional sub-channel to the Toshiba

assembly that was connected through wall conduction only to each edge and corner sub-channel.

Because wall geometry and properties of the actual assembly were not known, the wall was set

up so that approximately 2.5% of the total power was lost to the new sub-channel.

Figure 3-20 to Figure 3-22 show the new predictions for the Toshiba cases with radial

heat loss through the wall. All three Toshiba assembles were rerun, even the flat case which had

low disagreement with the data. This is to ensure that the correction helps the skewed case

without negatively affecting the flat case, as would be expected if it was a more accurate model

of the actual experiment. Compared to the previous plots for the Toshiba case (Figure 3-4 to

Figure 3-6) the new predictions match the data better, this can be seen particularly near the edges

of the assembly. The data is presented quantitatively in Table 3-6.

The results confirm that the additional error for highly skewed cases may plausibly be the

result of radial heat loss. Average error of the relative temperature was reduced for both skewed

cases, bringing each below 5% eTor. The flat case was relatively unaffected, going from 1.93%

error to 2 .20% error, a negligible rise considering the errors already discussed. Of further note is

only one individual case is now above 5% error, G37P22. However, referring to Table 3-3 the

temperature rise for this assembly is only 82* F or 46 'C. Thus, converting relative error to real

error results in only a few degrees of discrepancy.

Real Error = Relative Error * ATbundle = .077 * 46'C = 3.5C 3-4

104



.,~~ - *E2TFQ&22.UEFIA

A EPi Data

E7Pi OBPA

5 42 45 1 17 4 sC1n

Channel

it2 27 5

Figure 3-20- Benchmark for the Toshiba case with a 1:1 power skew across the bundle corrected
for heat loss through the wall of the assembly.
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Figure 3-21- Benchmark for the Toshiba case with a 1.4:1 power skew across the bundle
corrected for heat loss through the wall of the assembly.

105

1.A0

S1.20?

1.0

I.

u.4C

S1.2'?

0-0

0 4017



U

A

7~ P 2 2 1 -- Ft

e G37P2s-Eata
-- 637P25 cODBRA

A L 37F43 Data

- - L7P4, c.BP A

0 .4C

5 42 43: 1 17 4 5 6 1 . 7 2: 27 56

Charnnel

Figure 3-22- Benchmark for the Toshiba case with a 1.96:1 power skew across the bundle
corrected for heat loss through the wall of the assembly.

Table 3-6- The average error for each of the Toshiba benchmarks as calculated by Equation 3-3
with radial heat loss through the wall taken into account.

Benchmark Case Average Error of Relative Temperature [%]

No Wall Heat Loss ~2.5% Wall Heat Loss

Toshiba 1:1 1.93% 2.20%

B371P02 3.65% 2.73%

C371P06 1.52% 2.14%

E37P13 0.62% 1.72%

Toshiba 1.4:1 3.95% 3.11%

E37P17 5.71% 3.82%

F37P20 1.89% 3.19%

F37P27 4.23% 2.31%

Toshiba 2:1 6.31% 4.81%

G37P22 9.05% 7.70%

G37P25 4.64% 3.36%

L37P43 5.25% 3.39%
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An error of 3.5 "C is good agreement as the experiment specifically notes 2 0C error,

which is compounded by the relative temperature calculation done for the experiment and the

data conversion to numbers from plots.

Figure 3-23 shows an updated cumulative distribution function of the relative error for

the 72 data points in the Toshiba Case. The distribution has shifted to the left from Figure 3-18:

now 79% of the COBRA predictions fall within 5%, 96% fall within 10%, and 100% fall within

15% of the relative temperature rise of the data. Proper modeling of heat loss in the

experimental setup allows COBRA-IV-I-MIT to accurately model skewed bundles.

40

7

0'.4

Error of Relative Tn pc rature

Figure 3-23- Cumulative distribution function of the error between the COBRA predictions
including heat loss though the duct for the Toshiba bundle.
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3.4. Pressure Drop Benchmark

The focus of the benchmarking thus far in this chapter has been on predicting the

temperature rise of the channels; this is because data sets were available for comparison. No

data sets for pressure drop could be found for sodium bundles in the literature. The pressure

drop correlations are not specific to sodium, however all the changes and updates to the code

have focused specifically on sodium thus far; it is unclear how well the code would perform with

water.

However, unlike temperature rise which is dependent on many correlations, the pressure

drop across the assembly is dependent mainly on the correlation used to find the friction factor.

Section 2.3.1 discusses the newly implemented correlation into COBRA, the Cheng and Todreas

Correlation. The Cheng and Todreas correlation was benchmarked against data (45)(46). A

hand calculation using this correlation can be compared to COBRA results to ensure it was

properly implemented into the code, to give confidence that COBRA is correctly predicting the

pressure drops of assemblies.

This was done for the ORNL assembly, which has a high and low flow case, the

operating conditions for these cases can be found in Table 2-3 or Table 3-2. The formulas used

in the hand calculation are as follows.

A Ptotai = APacceleration + A Pyravity + A Pfriction 3-5

APacceleration = G 2 * 3-6
Pout Pin

A Egravity -: P91 3-~7
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G 21
APfriction = fbundle 2 3-8

Where the variables are defined as:

De Equivalent diameter

f Friction factor calculated with the Cheng and Todreas Correlation

g Acceleration due to gravity

G Mass flux

L Bundle length

p Density

AP Pressure drop

All state properties were taken at the assembly midplane temperature in the calculation.

This will introduce a small discrepancy with COBRA. The equations in Section 2.3.1 are used to

calculate the friction factor for a single sub-channel. The comparison was made for the bundle

average pressure drop. The bundle average pressure drop is calculated with Equation 3-9.

3 m 1 m-2
Deb S(De) /(2-n) (Cfi /(n-2) -9Rbundle Rem \n Deb Deil 3

Where the variables are defined as:

Re Reynolds number

Cfi Bare rod friction constant, Equation 2-21
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m 0.18 for turbulent flow, 1 for laminar flow

i Channel type, interior, edge and corner

b Bundle

S Total cross sectional area of channel type, Equation 3-10

NiA
Si= A j)

3-10

Where A is the cross sectional area of the channel or bundle and N is the number of channels.

The results of the calculations are shown in Table 3-7. COBRA only reports total pressure drop,

so the constituent pressure drops could not be compared. The agreement between the total

pressure drops is good as expected.

Table 3-7- Comparison of pressure drop
assembly. All values are in kPa.

calculated by hand and with COBRA for the ORNL

High Flow Low Flow

Acceleration 1.15 0.00024

Hand Gravity 8.69 8.69
Calculation Friction 145.43 0.10

Total 154.12 8.79

COBRA Total 150.58 8.82
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3.5. Benchmark Conclusions

For three different experimental data sets and one code to code comparison covering an

extensive set of operating conditions COBRA-IV-I-MIT can predict the sodium relative

temperature rise with less than 5% average error. This level of accuracy is satisfactory

considering the method used, sub-channel analysis, and the various errors related to the

experimental data.

One method for further validation of this code and sub-channel methods in general would

be the use of CFD to generate data sets for benchmarking. This would provide the ability to

benchmark any geometry or conditions. CFD would even allow benchmarks to be carried out on

transient conditions, which currently there are no data sets for.

A word of caution about the current sub-channel code validation: there is a relatively

small set of experimental data for benchmarking a sub-channel code such as this for sodium.

Unfortunately these data sets were also the only data available to those who developed the

correlations for the codes. Therefore, it is not entirely surprising that COBRA-IV-I-MIT and the

other codes adopting similar correlations predict all the data sets well since they use correlations

that are based off those same data sets.

With the update and benchmark of COBRA-IV-I-MIT completed, Chapter 4 begins the

examination of the coupling of the sub-channel model to the fuel-performance model.
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Chapter 4.
FEAST

Coupling COBRA-IV-I-MIT to

4.1. Geometry and Time Scale

Due to the nature of the physical phenomena modeled by each code, they use different

time scales and geometries. Coupling of the codes requires that these are reconciled so that

infornation can be properly passed between the two. Time scale considerations must be taken

into account for both steady-state operation and for transients.

4.1.1.Steady-State Operation

COBRA can be run for steady-state operation or for transients. For steady-state operation

the code analyzes the assembly for a set of unchanging conditions. Thus to represent a steady-

state assembly that is operated for a length of time with changes to the power and flow, COBRA
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would have to be run many times, once for each time the conditions changed. Figure 4-1 shows

an example of the power and outlet temperature history from an EBR-1I subassembly, X447

(23)(55). For this case COBRA would have to be run 11 times to capture each of the different

power levels of the steady-state operation. In a sense the steady-state operation of COBRA is

length independent, that is to say a single run of COBRA would capture a one day steady-state

operation as well as a one year operation as long as none of the inputs (power, geometry, flow)

change. Because of this, the computational time to run COBRA for steady-state examinations is

very low.

LC4

77 X-

3

Figure 4-1 - Plots showing a power and outlet temperature history for fuel rod DPO4 from
assembly X447 from EBR-II (23). This is an example of what a steady-state power history could
look like.

Conversely for FEAST there would only be one run to simulate this power history for a

pin. The nature of modeling fuel performance is different than thermal hydraulics modeling; the

length of time to run a steady-state history will be proportional to the length of the history for

fuel performance modeling. The thermal hydraulic behavior only changes minimally while the

power level of an assembly is constant, but the fuel is always evolving. So while COBRA must

only be run once at each power level to generate a description of the assembly, and in effect, a

table of inputs for FEAST, FEAST must be run with a very fine time scale. As will be discussed

in Section 4.3 below thermal hydraulic behavior can be affected by the fuel evolution, as fuel

swelling will cause geometry changes. Even so these changes are very slow in time scale,
months to years for normal operation, and will not require COBRA to be run with significantly
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higher frequency. The recommended time step for FEAST steady-state runs is 10 seconds (23).

In comparison the length of fuel operation is on the order of years or even on the order of

decades for some breed and bum reactor designs. This results in very long computational time

for FEAST steady-state runs.

4.1.2. Transient Operation

The transient operation for both codes calls for a much finer time scale. The time scale

required for COBRA depends on the solution algorithm used. The implicit solution scheme

allows for the user to set the time step by setting the total length of the transient and the number

of time steps during the transient. If the explicit scheme is used, the time step length for COBRA

is determined by the Courant limit defined in Equation 4-1 below (31).

v * AT
FCOUR = 4-1

Where FCOUR is the courrant limit, v is the velocity, AT is the time step and AX is the axial

node length. COBRA recommends a default value for the courrant limit of 0.5. Resulting time

step sizes for COBRA are generally quite small. For example, with a node size of 2 cm and a

velocity of 4 m/s the resulting time step is 0.0025 s.

For FEAST the transient time step is defined by the user. The recommended maximum

time step length is 0.005 seconds (23). Having similar time steps between COBRA and FEAST

for transients allows for the FEAST transient file (specifically the tables with the power, coolant,

etc., inputs) to be generated with any desired fineness-although in most cases it will not need to

be near the order of the time step.

It should be noted for FEAST that transient operation can begin at any set time during a

steady-state run. This leaves open the possibility to operate the code for many years with the

steady-state time step of 10 seconds before the transient occurs calling for the much finer time

step only when needed.

114



4.1.3. Geometry

A general description of sub-channel analysis geometry can be found in Section 1.2.2.

The geometry of COBRA is three dimensional, generally with a fine mesh axially but limited to

one node per sub-channel radially. Nonetheless each fuel rod is adjacent to 5 or 6 sub-channels,

depending on location in the assembly (interior or edge), and thus there are multiple coolant

temperatures for each rod.

In Section 1.2.3, the background of the geometry of FEAST is discussed, the important

take away, for the concerns of coupling, is that FEAST is a two-dimensional code. Each rod is

nodalized axially and radially outwards, however azimuthal symmetry is assumed. This presents

a challenge for coupling: which temperature and heat transfer coefficient are given by COBRA

to FEAST? This problem is illustrated by Figure 4-2.

~'

I

k-I

-r

Figure 4-2- A schematic of a fuel pin and its surrounding sub-channels. Each channel has a
different temperature and heat transfer coefficient.
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One way to handle this problem would be to modify FEAST so it could accommodate for

a third dimension. This however would make the code computationally very heavy. Another

solution would be to run the rod in FEAST for each temperature. This would eliminate making

any changes to FEAST, but would still be very inefficient computationally and any information

regarding effects caused specifically by azimuthal variations would be lost. The simplest way to

resolve this geometric difference would be to pass the coolant average temperature to FEAST.

This would be the most efficient way to handle the problem; however there would be a large loss

of information. The next section discusses the acceptability of this approximate approach.

4.2. Sensitivity Analysis of Azimuthal Temperature

Distribution

The purpose of this analysis is to deterrmine if the model of two dimensional fuel rods is

acceptable given that the coolant temperature distribution around the clad is not uniform. The

approach adopted to accomplish this was to employ a finite-difference heat conduction analysis

code, HEATING7 (56). The code was used to model the temperature distribution in fuel rods

that arose from forcing functions applied to the outside of the clad. Forcing functions were

determined based off of literature review, and were chosen to represent bounding scenarios of

azimuthal variation.

The temperature distribution of the fuel rod that was calculated was then fed to ADINA,

which is finite element analysis software (57)(58). ADINA was used to calculate the stresses

generated by the azimuthal temperature variation. Stress calculations were checked by hand for

consistency and then compared to other stresses which occur in the fuel cladding.
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4.2.1. Azimuthal Temperature Profile

Various azimuthal temperature distributions were considered. These temperature

distributions were tested for representative EBR-1I and S-PRISM pin geometries. These

geometries and other proprieties used can be found in Table 4-1. Variations on these base

conditions to test for sensitivity included the following:

-Fuel Radius- Expanded to clad inner radius to simulate fuel that has already been in the

core for a length of time.

-Clad Conductivity- 22 W/m-K for clad conductivity was chosen as a representative

value for ferritic-martensitic and austenitic steel at 500 'C (59)(60), variations on this, both slight

(16 W/m-K) and severe (1 W/m-K and 100 W/m-K) were examined to see the bounding effects

of clad conductivity on the temperature distribution.

-Heat Transfer Coefficient- This property is dependent on numerous different values, 195

kW/m2 -K was calculated for a standard set of conditions. This value was varied in both

directions by 50% (from 97.5 to 292.5 kW/m 2-K) to account for a wide range of values that

could result from different operating conditions.

-Linear Power- In addition to 40 kW/m, a value of 30 kW/m was tested.

The forcing function used to model azimuthal variation around the pin was a sinusoidal

function that altered the heat transfer coefficient to give a desired outer clad temperature

distribution. Heat transfer coefficient was altered instead of coolant temperature due the

program used for the modeling-it was just as effective as varying the coolant temperature as it

achieved the desired outer clad temperature distribution.

Two different magnitudes of forcing ftnctions were used. A severe function that

simulated a temperature swing of about 15 'C around the pin was used to represent pins near the

periphery of the assembly, where the temperature change from channel to channel is greatest.

The second function simulated a temperature swing of only a few degrees, which describes the

conditions in the center of an assembly where the variation from channel to channel is minimal.
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Table 4-1- Nominal values of the geometric and thermal properties used to test the effect of
azimuthally varying temperature functions on the clad.

Geometric Properties Thermal Properties

EBR-1l S-PRISM

Fuel Radius 2.16 mm 2.739 mm Fuel Conductivity 16 W/m-K

Clad Inner 2.539 mm 3.161 mm Sodium Conductivity 60 W/m-K

Clad Outer 2.92 mm 3.72 mm Clad Conductivity 22 W/m-K

Pitch to 1.19 1.26 Linear Power 40 kW/m

Diameter Ratio Heat Transfer Coefficient 195 kW/m 2-K

The magnitudes of the functions were chosen based on the sub-channel analysis results for the

various assemblies presented in Chapter 3.

Figure 4-3 shows the results of each of the two forcing functions for the base conditions

of EBR-II. For the case of the slight function the azimuthal temperature distribution is almost

negligible, varying from average by at most a degree for the clad and much less than that for the

fuel. For the more severe case there is a larger variation for the clad, however it is still only

elevated by about 8 'C over the average clad temperature. This latter case will generally occur in

the periphery of the assembly where the coolant temperature is low. In both cases the

temperature distributions are very gradual, so are not likely to cause large thermal stresses. Each

of the variations of the base conditions discussed above yield similar results to the plots shown.

Review of the literature showed that the most severe azimuthal distributions are not

caused by variations from sub-channel to sub-channel but from clad contact with wire-wraps,

with the exception of very tight pitches to be discussed below (61). Even though upon onset this

study desired to look at variations from channel to channel, ultimately the most important part of

the analysis is to capture the bounding case that causes the most variation. The two-dimensional

rod assumption is blind to whether it is affected by sub-channel variation or clad hot-spot

variation.
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Figure 4-3- Resulting temperature distributions for two different azimuthal forcing functions at
different radial locations.
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The bounding case for local clad temperature peaking due to wire wrapping occurs when

a single wire wrap is simultaneously touching two rods at the same time, as illustrated in Figure

4-4. Due to symmetry this situation can be modeled by looking at only a quarter of a single rod,

shown in Figure 4-5.

Figure 4-4 - Cross-sectional view of three fuel rods and the wire wrap. At this axially location
the wire wrap is touching two rods at the same time.

Clad Coolant

Fuel

Figure 4-5 - Symmetry allows the situation in Figure 4-4 to be modeled with a quarter of one
fuel rod, as shown here.

Due to geometry limitations a simplification to the model was made. It was not possible

to use radial coordinates with two different origins, thus the wire could not be modeled as a
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quarter circle but rather was modeled as a slice of an arc, as shown in Figure 4-6. This

assumption is conservative, so the resulting temperature distribution will be more severe than

what actually occurs, and this will still be a bounding case.

Figure 4-6 -Approximation of Figure 4-5 where all the shapes are drawn based on radial
coordinates with the same origin.

The resulting outer clad temperature distribution for the wire wrap peaking can be found

in Figure 4-7 for the S-PRISM geometry with a wire wrap diameter of 1.422 mm. This shows

that the clad contact effect only has a significant effect on the clad temperature; the fuel

temperature only differs a few degrees off the average. The importance of the large temperature

spike in the clad is that this effect will be prevalent throughout the assembly; thus the pins in the

hottest central regions will suffer equally as the cooler pins located near the edge.

To verify this result a comparison to models in the literature was made. The work of

Chuang et al provides an opportunity for comparison as a similar situation is modeled (61). The

geometry for this case is shown in Figure 4-8. Compared to Figure 4-6 the geometry is very

similar for modeling the wire wrap.

Chuang introduces a dimensionless temperature for looking at peaking. The

dimensionless temperature is defined as the difference of the local azimuthal temperature and the

bulk coolant temperature divided by the difference of mean azimuthal temperature and the bulk

coolant temperature, shown in Equation 4-2.
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Figure 4-7 - Temperature distribution produced by wire wrap peaking when testing the S-PRISM
geometry and conditions with HEATING7.
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Figure 4-8 - Mesh from the Chung et al. to test wire wrap peaking (61).
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T - Tclad,<p - Tbulk coolant
Tclad,average - Tbulk coolant

The dimensionless temperature is an effective hot spot factor, which is independent of heat flux

(61). Figure 4-9 shows Chuang's results, which is based on the EBR-II geometry.

: .6 il 1hV ie

I I re

constant Heal Fu( at Cladding~~w~r~

0 10 23 4Aj 5f t

Figure 4-9 - Results obtained by Chung et al. for azimuthal peaking with and without a wire
wrap (61).

Figure 4-10 shows the results of the model presented in this paper converted into

dimensionless temperature. While Figure 4-9 and Figure 4-10 are for different geometries the

driving geometric parameter for this analysis is pitch to diameter ratio, which is 1.256 for the

EBR-II geometry and 1.19 for S-PRISM geometry, so similar results are expected. The results

match well for the wire wrapped case. The results of the unwrapped case are similar in the

magnitude of the variation however take on a different shape. For Chuang's result the

temperature dips at 300 as compared to a (very slight) steady drop in Figure 4-10. The reason for

this comes from a difference in the effect that is modeled for the bare rod case. Chuang is

looking at differences caused over a single channel, based off of distance to nearest pin, as the
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model in this thesis is concerned with differences from channel to channel. The effect of just the

wire wrap can be isolated in Chuang's case by dividing the hot spot factor with the wire by the

one without it, as shown in Figure 4-9. The factor is already isolated for this work because the

wire wrap model does not include the forcing functions applied to get variations from sub-

channel to sub-channel.

1.60 -

1.40 -

1.20 -

00

0.80 -

0.

0 0.40 -

0.00
0

AM m m m a& - am am mm low OW

---- re Vrap
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10 30 40
Azinathal Position (e)

50 60

Figure 4-10 - Results from HEATING7 for the S-PRISM design converted into dimensionless

temperature.

Now a finite element analysis can be conducted with confidence in the thermal model for

the bounding case, wire wrap azimuthal peaking, which is done in the next section. It should be

noted that hot spot peaking factors on bare rods caused by the pitch of the assembly were not

covered by the model in this thesis as it is not captured by sub-channel analysis due to the nature

of the method (each channel having a single temperature). As can be seen in Figure 4-9 the

effect is negligible in cases where pitch to diameter ratio is high, as it is seen in this plot (1.257)

(61). However, as the pitch becomes tighter the importance of this factor increases surpassing

the peaking due to wire wraps at approximatly 1.10. Figure 4-11 shows a plot of the bare factor
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(FB) and the wire wrapped factor (Fw) for a large range of pitch to diameter ratios (Fws is the

combined factor). For bare rod cases with very tight pitches the most important azimuthal effect

is missed entirely by the sub-channel model. The analysis in the next section will still provide a

good estimate of the importance of azimuthal effects because the total peaking factor is largely

independent of pitch to diameter ratio.

1.05 1.10 1.15 1.20
Pitch to Diameter Ratio, P

1.25 1.30
C

Figure 4-11- Plot for Chuang et al. showing the hot spot factor caused by the
bundle pitch as a function of the pitch to diameter ratio (61).

Determining the stresses caused in the clad by the temperature distribution produced by
the wire wrap required a finite element analysis to handle the complexity of the distribution.

While thermal strains will also be caused by an azimuthal temperature distribution, additional
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thermal strains for a temperature change on the order of 10 "C will be very small. Thus stresses

are focused on primarily in this section while strains are covered in Section 4.2.3. In addition to

the thermal strains caused by azimuthal temperature peaking there will be additional creep strain

(both irradiation and thermal), which is significant but not well suited for examination by finite

element analysis.

An analytical solution can be found for the simple case of determining the stresses

produced in the clad from a purely radial temperature gradient across it. The solution for the

plain stress case, where z=O, starts with an equilibrium of the stresses:

d~r Gr+UO6
d7 + 0
dr r

4-3

The strains are defined as:

du
Er

E60 = 7

4-4

4-5

And therefore,

dE Eg Eg - Er+1E = 0
dr r

Hooke's law provides the following two relations:

1
Er (r - vo) + aT
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1
Eg = (co - vur) + (xT
E- E 

Equations 4-3 to 4-8 can be combined into the following differential equation:

d 2 ar
r dr 2

d r
+ 3 dr

dT

dr

The heat conduction equation for a cylindrical shell with no internal generation is:

dT Ta Tb 1

dr b r
a

Substituting Equation 4-10 into 4-9 yields:

r dr 2 +3 dr =
Ta - Tb 1

In ( ) r

Using the boundary conditions G3(a)= o,(b)= 0, the differential equation can be solved for G5(r)

as follows and G5(r) can be obtained from Equation 4-11.

ar (r) Ea(Ta - Tb)
2

Ea(Ta - Tb)
2

b
.ln ()

1 1]

72b
4-12

[ r 1 1]1 + 2+ In r

In 1 1]
a a 2 b 2

4-13
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Where the variables are defined as:

a: Inner radius

c: Linear coefficient of thermal expansion

b: Outer radius

E: Young's Modulus

c: Strain

r: Radial direction

a: Stress

T: Temperature

0: Azimuthal direction

v: Poisson's Ratio

Figure 4-12 shows the results from ADINA for the thermal and pressure stresses for a

fuel rod. The plot also shows the analytical stress for the temperature gradient. All stresses are

effective stresses as defined by ADINA:

T72+U0 z 4-14

Note this is a different definition than the Von Mesis Stress which is typically used to define

effective stress. The values used for the geometry were the S-PRISM rod geometry values listed

in Table 4-1. The material properties used were those for HT9 (23), and the values can be found

in Table 4-2.

Table 4-2 - Material Properties of HT9
Young's Modulus 1.62* 10" MPa
Poisson's Ratio 0.2935
Linear Coefficient of Thermal Expansion 1.19*10' (1/K)
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Figure 4-12 - ADINA results for effective thermal and pressure stresses on the fuel cladding for a
typical S-PRISM rod. Also shown is the analytical solution for the thermal stress of the same
case.

The analytical solution and the AD[NA result match for the thermal stresses. A check on the

pressure stress calculated by ADINA can be accomplished with the fornulas for the stress of a

thin walled cylinder (62):

b
CO = Pi b - a

b
cr P 2 (b - a)

Pi - PO
2

4-15

4-16

4-17

where Pi is the pressure in the rod, which is assumed to be 3 MPa and PO is the external pressure,

assumed to be atmospheric. Therefore the effective pressure stress is:
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up=(3~a 3.72 )' / 3~ 3.72 2 3MPa -. 1MPa2I, =33MPa 3.72- 3.161 / 3 2(3.72 - 3.161)/ + 2 / 4-18

= 22,36 MPa

The value of 22.36 MPa calculated with Equation 4-18 with a thin shell approximation matches

the ADINA result reasonably. ADINA was compared to the analytical results for this simple

case as a check to ensure the code would properly model the fuel rod, as an accurate solution for

the bounding case cannot be obtained analytically.

Analyzing the S-PRISM geometry with the wire touching, and temperature distribution

shown in Figure 4-13 with ADINA produces the results shown in Figure 4-14. The additional

stresses caused by the imposed bounding temperature distribution are on the order of hundreds of

KPa while the total stress on the inside or outside clad is between 40 and 50 MPa. This is a

rather negligible contribution of additional stress generated from the bounding scenario.

Even though a perfect analytical description of the bounding case cannot be solved for by

hand, a conservative solution can be obtained by making some assumptions. First, the geometry

is assumed to be that as is represented in Figure 4-15. There are two clad regions, region A,

covered by the wire is at one temperature, while region B, uncovered is at a lower temperature.

The area covered by the wire is a small angular amount, denoted as 2P. Further assumptions are:

- The strains and stresses considered are membrane strains and stresses, i.e., averaged over the

thickness of the shell.

- The shell is unconstrained in the z-direction (plain stress case), a7=0

- There is no temperature gradient in the radial direction and no pressure, Gr=O
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Figure 4-13 - Angular temperature profile used to test the stress profile in ADINA.
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Figure 4-14 - Resulting stress profile for the inner and outer clad for the simple case, where
there is azimuthal asymmetry, and the bounding case which uses the azimuthal profile from
Figure 4-13.
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reference + AT) R
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temperature)

Figure 4-15- Diagram of a simple geometry that can be used to solve analytically for an
azimuthally varying temperature function.

The azimuthal strain can be defined as follows, for zone A and zone B, respectively.

1
EOA -A+ aT

1
EOB - E

Imposing the conservative assumption that the shell circumference is fixed gives the equation

below.

EQA
2 flR + EOB(2T - 2f)R = 0

Using these three equations and noting that the continuity of the stresses at the interface gives the

boundary condition OA- GOB yields Equation 4-22.
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o = -EaAT- 4-22

Examining this equation, if the entire shell is at the lower reference temperature then P=0 and

there is no stress, as would be expected. Also, if the entire shell is at an elevated temperature,

then p=nr and the stress is a maximum, this too is as expected because of the assumption of a

fixed circumference. The assumption of a fixed shell circumference is indeed conservative for

this case because a fuel rod is allowed to expand during operation. A more rigorous treatment of

this would give a non-zero ar because of the assumption of fixed circumference; however, the

error induced would be quite small, on the order of:

v t
1 -a4-23

For the case of a typical fuel rod, this is about a 2% contribution. If the shell were constrained in

the z-direction, there would be an additional factor of (I -v) in the denominator increasing a5,

however this would be an unnecessary additional conservative assumption because the fuel rods

are not constrained axially.

Examining Figure 4-13 shows that the temperature is elevated for about 20' or R/9

radians of the circumference, using this value for P, and 12 'C for AT also shown on that figure,

a value can be calculated for as:

fl 1 n1/9
o = -EaAT- = 162 GPa * 1.19 *10- * 12 K * -= 2.57 MPa 4-24

if K 7T
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This conservatively-estimated value is about an order of magnitude greater than what was

calculated by ADINA, however very low compared to the thernal stresses induced by the radial

temperature gradient.

In summary, this examination has shown that localized azimuthal peaking on a fuel rod is

on the order of 10-20 "C. In rods of large pitch-to-diameter ratio, this peaking is mainly due to

contact with the wire wrap. while in rods of tight pitch-to-diameter ratio it is due mostly to lower

coolant flow in the rod-to-rod gap resulting in a lower local heat transfer coefficient. Neither of

these effects can be modeled effectively through sub-channel analysis; however the effect is only

severe at the outer surface of the clad and quickly falls off in the interior of the clad due to high

thermal conductivity.

The additional stresses produced by azimuthal temperature peaking are small compared

to the total stress on the fuel rod cladding, on the order of 1%. In light of this a two-dimensional

fuel model is acceptable for coupling to the sub-channel analysis, but peaking affects still need to

be considered and are discussed in the next section.

4.2.3. Clad Hot Spot Creep Strain

As can be seen in Figure 4-3 and Figure 4-7 the azimuthal temperature distributions in

the fuel are minor (on the order of degrees), thus neglecting azimuthal temperature peaking

phenomena occurring in the fuel or at the fuel-clad interface is acceptable. In the previous

section it was shown that thermally induced stress in the clad from azimuthal affects is

negligible. The only remaining phenomena left that could be affected by a non-uniform

temperature profile around the pin is clad creep strain. Because creep strain is highly dependent

on temperature, temperature peaking in the clad on the order of 10 'C will have an effect and

cannot be neglected.

To account for the hot spot effect, clad creep strains and cumulative damage fraction

(CDF) must be calculated with the clad at an elevated temperature. The stress on the inner wall

of clad will remain unchanged because the temperature peaking does not affect the fuel clad

mechanical interaction or the plenum pressure. An extra option was added to FEAST to allow
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the user to enter a hot spot peaking temperature change, at which additional calculations will be

made for the clad thermal creep strain, irradiation creep strain, and CDF. A sample case with

representative EBR-II conditions was run with a hot spot peaking temperature change of 10 'C.

The results showed that the peak thermal creep strain increased from 0.63% for the normal

calculation to 1.3 1% when the 10 'C increase in temperature was considered, and similarly the

peak CDF increased from 0.95% to 2.78%. The peak irradiation creep strain was unaffected.

While this additional calculation in FEAST provides the user with an estimate of the

strains that will result from hot spot temperatures it should be used with caution. The strains are

calculated in addition to the stress-strain calculations in FEAST and are external to it, they do not

feedback into the calculation (this is impossible to do with FEAST because it is one-

dimensional.) Furthermore, as will be discussed in the next section, the stress and strains in each

pin in an assembly are coupled through contact with the wire wraps. The location at which the

peak strains will likely be occurring will be the site of contact with the wire wraps (the cause of

the temperature peaking), which will generate additional stress on the clad. Ultimately a three-

dimensional full assembly model would be needed to accurately calculate the creep strains in the

fuel pin caused by azimuthal temperature variation.

4.3. Iterative Coupling Considerations

Before coupling the codes, the structure of the coupling needed to be determined. The

two options considered were a one way flow of information from COBRA to FEAST, or an

iterative process of updating COBRA with information from FEAST. The two methods of

coupling are shown schematically in Figure 4-16. In both methods inputs, such as power and

geometry, are fed to both codes. Also common to both methods COBRA feeds FEAST the

coolant temperature and heat transfer information. The iterative method features a loop where

FEAST passes geometry changes back to COBRA. This section examines the advantages and
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disadvantages of both approaches and gives the reasoning for the choice made to go with a one-

way structure.

n p u t

One-Way Couplrng

Itrat v" C douping

-+ COBRA

F EAST

> Output

Figure 4-16-Comparison of one-way and iterative coupling schemes for COBRA and FEAST.

4.3.1. Advantages and Disadvantages

The advantage of going with an iteratively coupled model is that it can more accurately

represent actual assembly operation. The coolant behavior is affected by the geometry of the

assembly. As the fuel pins evolve over time they swell, changing the geometry of the assembly.
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A coupled model will capture the evolution of the assembly geometry as it affects the thermal

hydraulic analysis and in turn the fuel performance.

The disadvantage to a coupled model is the computational time. FEAST is a

computationally intensive code. On systems with a good amount of memory (2 GB RAM is

enough) it is limited by processor speed. For example, when compiled with optimizations using

the Compaq Visual Fortran compiler version 6.6 (63) and a processor speed of 2.93 GHz the

code takes about one hour to run one year of simulation for a pin. FEAST is not parallelized, so

multiple cores do not give any significant speed increase. For a 217-pin assembly that is run for

only three years it would take roughly 650 processor-hours to simulate every pin. In its purest

form an iterative code would need to run every pin to know how the geometry is evolving, as

each pin will behave differently based on its location in the assembly. Adding even just one

feedback step to create and iterative code requires large amount of time, computing power, or

both. The situation becomes even more problematic for different reactor designs, like breed and

burn reactors that run on 20 year or greater cycles.

Certain assumptions can be made that would reduce the computational time for an

iterative scheme. Instead of running each pin in FEAST to determine the changes in assembly

geometry, a sampling could be taken, one pin from each ring for example, or an interior, edge,

and corner pin. The geometry changes could then be applied to each similar pin. This would

provide for a compromise allowing for feedback between the two codes while not being

prohibitively expensive computationally.

4.3.2. Impact

With possible coupling schemes in mind it was first worth looking at the impact of how

much of an effect implementing an iterative scheme would have. This was accomplished by

simulating reference geometry in COBRA and then modifying the geometry based on changes

that would occur during normal operation.

The reference geometry taken was the S-PRISM geometry (4). This was chosen because

it is a large assembly, 271 pins, with sufficient literature information detailing operating
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conditions. The reference geometry and input conditions for COBRA are listed in Table 4-3.

Note pressure drop is listed in this table where flow rate was listed in previous chapters. Holding

pressure drop constant is more meaningful when talking about changing geometry as the overall

core pressure drop will remain the same.

Table 4-3- Reference conditions for running COBRA with

Input Parameter

an S-PRISM geometry.

S-PRISM

Geometry Number of Pins 271
Rod Diameter (mm) 7.44

Rod Pitch (mm) 8.86
Wire Wrap Diameter (mm) 1.42
Wire Wrap Pitch (m) 0.2032

Duct inside flat to flat distance (m) 0.149

Total Length (m) 4.070

Heated Length (m) 1.016

Lower Unheated(m) 1.117

System Pressure (atm) 1
Conditions Inlet Temperature (*C) 371

Pressure Drop (MPa) .25

Average Rod Power (W) 20875

Axial Power Distribution (max/avg) Chopped Cosine 1.12

Radial Power Distribution Uniform

Calculation
Parameters

Wire Pitch Fraction (5)
Turbulent Mixing Factor (B)
Number of Axial Nodes

0.1252
0.01
160

The exact geometric evolution of an SFR assembly during its operating life is a very

complex process. Ohmae et al. have tried to model the evolution of assemblies with spacer grids

(64). For a wire wrapped assembly the pin clad and duct walls swell from thermal and

irradiation creep and thermal expansion. After a point the pins and the duct become coupled and

further growth of the fuel pins will cause additional duct swelling or impingement on the wire

wraps. A proper description of this evolution would require a three-dimensional code to model

the mechanical behavior of the assembly, however this is beyond the scope this work. Several
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approximations of the assembly swelling behavior are examined that could feasibly be

implemented into an iterative version of the coupled COBRA-FEAST code.

A value of 3% pin swelling was chosen for pin diametral growth as clad embrittlement

and pin failure often occur before this point (23)(65). While it may be possible to extend pin life

past 3% diametral growth if it is dominated by irradiation creep strain, 3% is a reasonable value

for the purposes of this examination.

The first case examined was changing the pin diameter only, increasing it by 3%. Every

other value was held constant. The result of this case shows a substantial temperature increase

for the entire assembly, as seen in Figure 4-17. This is expected because the flow area is

significantly decreased as the channels are smaller, so for a constant pressure drop there will be

less flow which leads to higher temperatures.

This case is largely unphysical; a change of pin diameter will have other indirect changes

to the assembly. To bring the model closer to reality the pin to diameter ratio must also increase.

Figure 4-18 shows schematically why the pin to diameter ratio must also change. While in a

real assembly there will be some squishing of the wire wraps for this analysis it was assumed

they did not change geometry. The assembly walls also need to swell to accommodate the pin

swelling, however assembly swelling will not be of the same magnitude as pin swelling. While

the pins were enlarged 3% the assembly flat to flat distance was only increased by 1.5%. The

value of 1.5% was used because it was the minimum assembly swelling that permitted sufficient

flow through the corner channels for COBRA to converge. The results of this case are shown in

Figure 4-19.
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Figure 4-17 - Assembly temperature distributions for S-PRISM geometry with unstrained fuel
rods versus rods with 3% strain, where the growth simply crushes the wire wrap.
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Figure 4-18 - Diagram showing why the pitch of the assembly increases when the pin diameter

does. If the pitch does not increase then the wire-wraps are "crushed." In reality there will be

some wire wrap impingement and some pitch to diameter ratio growth.
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Figure 4-19 - Assembly temperature distributions for S-PRISM geometry with unstrained fuel
rods versus rods with 3% strain and 1.5% swelling of the assembly flat to flat distance.

For this case the interior sub-channels have the same outlet temperature as the reference

case. The edge and corner channels are significantly higher than the reference case but still

below the interior channels. Considering the changes to geometry the overall flow area of the

interior channels is actually increased. The larger pitch has more of an effect increasing the area

than the increased diameter does detracting from it. This explains the lack of difference, or even

slight decrease for the interior channels. The exterior fuel rods see less flow, because the rod

swelling is more dominant than the slight increase in assembly flat to flat distance, and hence the

temperature rises on the outer channels are much higher. The overall effect of this swelling was

to flatten the temperature distribution of the assembly, and while it did not cause the peak

temperature to increase there were significant changes to the coolant distribution that would

indicate that COBRA needs information for FEAST for geometry evolution.

However there was still one more consideration that was not properly represented, which

was that swelling is a function of axial location along the rod. In the previous cases the rod was

assumed to swell uniformly along its entire length, all 4 meters. In reality only the portion of the

rod that has fuel will swell significantly, and the swelling will be relative to the power level and

temperature at each axial location. A third case was run where the swelling only occurred at
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axial levels where there was fuel, and was tapered so that the 3% swelling would occur at the

fuel mid-plane. This is shown in Figure 4-20.

The results of Case 3 are shown in Figure 4-21 below. The figure shows that the

temperature distribution is almost the same as the reference case. With this case it looks as

though the geometry feedback is not as important as the earlier cases indicated. While being the

closest representation to the swelled geometry of any of the cases considered, this was still an

approximation of the situation. Also consider that 3% strain is a limit, meaning that if it is

reached it would be at the end of life for the fuel. The vast majority of the life of the assembly

would be at much less strain than this, reducing the importance of strain feedback to COBRA.

Case 1
and 2

(>rC .3

F Ue I End

F L M id-PKa ne

Fuel Slrt

Figure 4-20 - Diagram showing the difference in swelling profiles axially for the cases modeled
to test the effects of swelling on assembly coolant behavior.
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Figure 4-21 - Assembly temperature distributions for S-PRISM geometry with unstrained fuel
rods versus rods with 3% strain, where the swelling only occurs in the active fuel region axially.

4.3.3. Conclusions

Considering the large amount of computational expense, added complexity to the coupled

code, inability to know the correct geometric evolution of the assembly, and the overall impact

of geometry changes on COBRA it was determined that an iterative coupling scheme was not

necessary. Swelling, or other geometry changes, can be handled just as effectively by entering

approximate conditions into COBRA if desired. For example, the general swelling behavior of

the fuel rods is known based on burnup, the geometry can be appropriately altered at each time

step that COBRA is executed. This will be explained in more detail in Section 4.4.3. Future

work on iterative coupling would be facilitated by a three-dimensional mechanical model of the

assembly.
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4.4. CAFE: COBRA And FEAST Executer

The coupled code was written with a modular approach. Rather that integrate the two

codes into one, the source and executable files wcre left separate. The advantage of this

approach is that if improvements are made to each code independently it will be much easier to

reconcile these improvements with the coupled approach. Leaving the two codes independent

required a third code for the coupling. This third code is a parent code to the other two, it formats

input and output files for COBRA and FEAST and calls them based on the user's settings. It is

called COBRA And FEAST Executer or CAFE. While both COBRA and FEAST are written in

FORTRAN, CAFE is written in Python.

4.4.1. Python Coding Language

Python (66) was an ideal candidate language for writing CAFE because its functionality

meshed well with the tasks that CAFE had to accomplish. Unlike COBRA and FEAST there

was no need for a language that had strong science and engineering roots to complete strenuous

numerical problems like FORTRAN. The main features deemed necessary for CAFE are as

follows:

- A user friendly interface

-Easy formatting and parsing of text documents for constructing input and output files

-The ability to call other codes and spawn new processes

-A clear and straight-forward source file that can be easily modified

These match very well with the strengths of Python.
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Python is a dynamic programming language in some ways similar to Tel, Perl, Ruby,
Scheme and Java. It features a "very clear, readable syntax... intuitive object orientation... [and]

extensive standard libraries and third party modules for virtually every task" (67). Furthermore

Python is an open source code that is easy to learn and has an avid developer and user

community.

Python translates into the previous bullet points in the following way:

-A user friendly interface: a module for Python was employed that allowed interfacing

with a Microsoft Excel spreadsheet. This provided a happy compromise between using data files

that are text documents that are often dense and confusing versus developing a graphical user

interface that would have taken considerable time.

-Easy formatting and parsing of text documents for constructing input and output files:

Python excels at handling text data. Python can read an entire text document into a vector of

lines. These lines can then be parsed by characters. This allows for the very specific formatting

to be accomplished as is required for the input files.

-The ability to call other codes and spawn new processes: Python can call executables as

subroutines.

-A clear and straight forward source file that can be easily modified: Python does not

require very strict formatting when coding. In most cases the code reads like a description of

what is being done, without any comments.

Below is an excerpt of the CAFE code to show the Python language:

1 if inopts.cell('C5').value=='Yes':

2 gtemplate = open('geomtemplate.dat', 'r')

3 print "updating and running GEOM"

4

5 gline=gtemplate. readlines ()

6 gtemplate.close ()

7 k=O

8
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gopts=master.get sheet by name('GEOM Input') #

k+=2

gline [k] (glirne [k] [:51+str (float (g

rjust (5,) +

str(float(gopts.cell('C5') .value))

str(float(gopts.cell('E6') .value))

opts. cell( 'E4' ) .value)) [0 :5].

[0:5].rjust(5,)+

[0:51 .rjust (5, )+ gline [k] [20:])

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

if gopts.cell('C9').value==Counterclockwise':

gline[k]=gline[k][:20]+' 0'+gline{1 [[25:]

i f gopts. cell ('C11' *) .value=='No':

gline [k] =gline [k] [:351+' 0'+gline[k] [40:]

32 geomin = open('geom.dat',w' )

33 for x in gline:

34 geomin.write (x)

35

36 geomin.close ()

37

38 subprocess.call('geom.exe <geom.dat', shell='true')

This segment of code handles the formatting for the GEOM program. All the text in grey are

comments and do not affect the execution of the code. The first line checks if GEOM is being

executed in this instance of CAFE, this process does not run if the input option (found in cell C5

of the input options worksheet of the input spreadsheet) is not selected. Lines 2-7 initialize the

code by opening the template file, reading it into a vector of lines, closing the template file, and

seting a counter to 0. Line 9 accesses the geometry input worksheet, shown in Figure 4-22.
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k+=2

gline[k]=(str(int(gopts.cell('C8').value)) [0:5].rjust(5,)+

str (float (gopts.cell ('E4' ) .value) ) [0:5]. rjust (5, ) +gline[k]

[10:30 [+

str (float (gopts.cell ('C101 ) value) )[0:5] rjust (5, )+glile [k] [35:]
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What is the rod diameter?
Whatis th e rod ptch to dimeter ratio?

What is the flat to flat ntemai duct dimens

What :s tie number of rods In the bundie?
What is the wire wrap direction?

What is tie pitch fraction For forcing cross -,ow?
Include corner subchannels?

The number of subchaiies is:
The number of gaps is

0.73

14 C m

0,237402 in

5.511811 in

217
Countecckise

0.0633 (recommended-node length/wire 'rap pitch)
Yes

438

654

Figure 4-22 - Sample input for the GEOM portion of CAFE, the portion of the code in the
excerpt above.

Lines 13 through 17 of the code format the 3 d card (GEOM refers to lines as cards) of the

input file. Lines 19 through 34 format the 7 card, (which appears two lines below the third 3rd

card on the input file for this style of GEOM input). Finally lines 32 through 37 open and write

the GEOM input file, geom.dat and line 38 calls the GEOM executable.

The template file that this code works on is shown in Figure 4-23.

1 GEOM SETUP

1 11

1.000 1 1 60 1

Figure 4-23- Template that CAFE uses to create a GEOM input file.

All the values on the template are options set by GEOM that would only in rare cases need to be

altered. The resulting input file the code produces using the template is shown in Figure 4-24.
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1 GEOM SETUP

0.287 1.195.511

1 11

2170.2871.000 1 0 600.063 1

Figure 4-24 - Resulting input file created by CAFE with the template and input above.

The version of Python used is 2.6 (68). The library for reading and writing Microsoft

Excel files that was used is OpenPyXL (69). This software and extensive documentation are

available at python.org.

4.4.2. CAFE Code Interface, Input and Output

As discussed above, CAFE employs the OpenPyXL package that allows it to interface

with a Microsoft Excel spreadsheet. A user interface has been created for CAFE from a

Microsoft Excel spreadsheet that includes all the input options needed to run CAFE, and all the

more common input options for COBRA and FEAST.

The input workbook consists of several different worksheets, each containing a grouping

of input options. The worksheets are as follows:

-Input Options- These are the necessary inputs and options for the CAFE code itself.

These inputs range from options about which portions of the code to run to nodalization data for

FEAST and COBRA necessary to create input files.

-GEOM Input- These are inputs for the GEOM program, the program which creates the

geometry files for COBRA.

-COBRA Input- These are the inputs for COBRA.
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-COBRA Tables- This worksheet contains relative heat flux tables for COBRA which

allows COBRA to simulate different power levels when creating a set of FEAST input files.

-FEAST Input- These are the inputs for FEAST.

The inputs for the various codes do not cover every possible set of inputs for COBRA and

FEAST. Values that do not often change are not handled by CAFE, for example coolant

properties. If the user wished to alter the coolant properties, to change from sodium to lead, he

would need to access the COBRA input files directly. This can be done in two ways. First,

CAFE assembles the input files for FEAST and COBRA from template files that contain a full

set of standard inputs. Any changes made to the template file will be reflected in any future

CAFE runs. So in the example above all the sodium properties could be changed to lead

properties in the COBRA template. The second way to handle this is to bypass the input file

construction by CAFE altogether. This is an option in the input options worksheet. If the bypass

is toggled on then the user must provide the name of a COBRA input file for each FEAST time

step he wishes to run and the name of a FEAST master input file. The interface does not support

the construction of COBRA transient input files at this time. If a transient is part of the

simulation the COBRA input file for that transient must be assembled by the user and the name

of that file supplied to CAFE.

Figure 4-25 shows a portion of the CAFE interface file. The worksheet shown here is the

COBRA Input worksheet. Column A lists the card or variable the input corresponds to in the

COBRA manual. Column B prompts the user for the input to be entered in Column C. For cases

where there are a set number of possible inputs, such as correlations to choose from, or yes/no

options a drop down bar will appear when selecting column C with a list of options This can be

seen in cell C8 in Figure 4-25, which shows a drop down menu of possible heat transfer

correlation options.. Answering some questions will require the user to go to a place in the

workbook to fill out other cells. When this is the case a cell will be highlighted in green with

this instruction. In the figure below cell row I I prompts the user for how many entries there will

be in the axial flux table. After entering this number row 12 instructs the user to head to the

<Cobra Tables> workbook to fill out this table. Numbers entered that have associated units with
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them will have a drop down menu appear in column D. The input units used in column C should

be selected from this menu, and the value will automatically be converted into the correct units

for COBRA and displayed in Column E. This can be seen in row 20; a value of 20.32 cm is

entered for the wire wrap pitch, which is converted into 8 in. Finally all cells that require

attention will be highlighted in red when an input is required but not present. In Figure 4-25, cell

C21 shows this, as the user has yet to enter a value for the outer rod diameter of the pins, the file

cannot be run until this is done.

One of the major benefits of the CAFE interface beyond the friendly format that

Microsoft Excel provides is the simplification of the number of input files required. To run

COBRA or FEAST without CAFE each would need up to a dozen input files depending on the

specifics of the run.

The output from CAFE is all the resulting output files from COBRA and FEAST. The

code does not do any processing of the output files, nor does it alter them in any way. Both

codes have a useful output format so changes to it were not necessary. Output improvements

would be better served through changes in COBRA and FEAST, if that was desired.

Figure 4-25 - Sample of the input workbook used by CAFE, the portion shown here is the
COBRA Input options.
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4.4.3. CAFE Code Processes

In Section 4.3 it was shown that a once through process for CAFE would be the most

efficient while still accurately predicting the fuel and coolant behavior. The overall flow

diagram for the procedure used in CAFE is shown in Figure 4-26. The figure shows that the

program proceeds linearly through the steps. Step by step the code works as follows:

1) Update Geometry-This step is flagged by cell C4 of the input options worksheet. It

toggles whether or not to run GEOM, which is the program that sets up the geometry

for COBRA.

2) Update COBRA Input Files- This step is controlled by cell C7 of the input options

worksheet. The user must choose between using the COBRA templates and data

from the COBRA Input tab or if they wish to supply already complete formatted

COBRA input files by name. If new input files are generated they are saved so the

user can go back and modify them for future use if desired.

3) Run COBRA- This is the only step which cannot be turned off. CAFE will run

COBRA a number of times determined by the number of FEAST time steps. FEAST

time steps are set by the user and should be based on when the steady-state assembly

conditions change. For example, a change in power level or flow rate should call for

a new COBRA run. COBRA will run an additional time if there is a transient.

4) Format FEAST Data Files- This option is toggled on and off by cell C1I in the input

options worksheet. It determines if a new set of input files for FEAST is generated

based on the COBRA runs.

5) Run FEAST- The flag for running FEAST is cell C17 of the input options worksheet.

FEAST will be executed a number of times equal to the number of pins that are to be

examined.
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1) Update Geometry
L -- -- ---- --1- -- ---- -

2) Update COBRA Input Files

3) Run COBRA

4) Format FEAST Data Files

5) Run FEAST

Finish

Figure 4-26- Process flow chart for CAFE.

Of the steps above most arc straight-forward in the way they run. Steps 3 and 4 are the

exceptions to this. Generating the input files for FEAST is the most complex portion of CAFE.

This process is diagramed in Figure 4-27 below. The flow chart contains a box, all the steps in

the box are incorporated into COBRA and all the steps outside the box are handled by CAFE.

There are two different processes that COBRA does, either running a steady-state or transient

case, or printing a temporary file that contains all the data required for FEAST input files

(temporary files are in addition to the normal COBRA output files). The logic in CAFE controls

COBRA, parses the data, and then formats and prints the FEAST data files. The process below

shows that a transient must always be run after the last time step of COBRA; this does not mean

that the transient must occur at the end of simulation. While all the other time steps must occur
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in order, FEAST has an input that specifies when the transient starts. The transient data files for

FEAST are completely separate from the steady-state files.

The current construction of CAFE allows for great flexibility in running different sets of

options. Above the case was discussed where the user would want to change the geometry of the

assemblies over time based on known swelling effects. This is easily accomplished by running

CAFE steps one, two, and three. This would give the COBRA data for each time step with the

assembly geometry constant. and the corresponding formatted COBRA input files. Then the

axial geometry table can be added to the input files that are desired to simulate swelling or other

geometric changes. Then CAFE can be run with steps three, four, and five and the swelling

effects on COBRA will be passed to FEAST. The user can now compare the effect that the

geometry changes had on the new and old COBRA output files.

This concludes the discussion of the coupling; the next chapter explores the validation

and uses of the coupled code.
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Print Steady State FEAST1
input files for each pin

If there is a transient print
FEASTinput fles for each pin

Figure 4-27 - Flow diagram for the portion of CAFE that runs COBRA and
for FEAST.

creates the input files
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Chapter 5.
CAFE

Validation and Application of

5.1. CAFE Benchmark

While COBRA and FEAST have been benchmarked thoroughly independently (Chapter

3 and Reference (23)(28)), a benchmark of the combined perfonnance is desirable. A rigorous

benchmark for CAFE would require a full set of assembly operating conditions along with fuel

performance data from multiple pins from that assembly. Unfortunately a complete set of data

such as this could not be found in the literature. The nearest complete sets of data found are

from assemblies from the EBR-II reactor. One such assembly is X425 from EBR-II. The data

available for this assembly includes:

-The pin geometry (23)(70)
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-The assembly geometry for a 61-pin array (71)

-The assumed coolant outlet temperature history and power history for the hot pin (23),

shown in Figure 5-1 and Figure 5-2.

The only data missing necessary to make a COBRA model for this assembly was a flow history.

However this could be determined from the power and peak channel outlet temperature. The

data used for the COBRA model is found in Table 5-1. The data used to model the fuel rods in

FEAST is found in Table 5-2. Figure 5-3 shows the bumup for the assembly as a function of

time.

Table 5-1- COBRA input data used to model the EBR-II X425 assembly.

Input Parameter Sample Assembly

Geometry Number of Pins 61
Rod Diameter (mm) 5.84
Rod Pitch (mm) 6.91
Wire Wrap Diameter (mm) 1.07
Wire Wrap Pitch (m) 0.15
Duct inside flat to flat distance (m) 0.0582
Total Length (m) 0.75
Heated Length (m) 0.343
Lower Unheated Length (m) 0.03

System Pressure (atm) 1
Conditions Inlet Temperature ("C) 370

Inlet Mass Flow (kg/s) 5.81
Peak Linear Power (kWN/m) 40
Axial Power Distribution (max/avg) Chopped Cos 1.48
Radial Power Distribution Uniform

Calculation Wire Pitch Fraction (6) 0.0938
Parameters Turbulent Mixing Factor (@) 0.01

Number of Axial Nodes 50
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Input Parameter Sample Assembly

Geometry Clad Outer Radius (mm) 2.92
Clad Inner Radius (mm) 2.539
Fuel Outer Radius (mm) 2.16
Wire Wrap Radius (mm) 0.535
Plenum to Fuel Ratio 1.0
Axial Node Length 0.049

Fuel Zr weight fraction 10
Conditions Pu weight fraction 19

Initial Fill Gas Pressure (kPa) 84

Calculation Time Periods in Rod History 50
Parameters Number of Axial Nodes 7

Time Step (seconds) 10
Flux Conversion Factor 5.02

Linear Power History

3 0.Ci

Figure 5-1- Power history for the EBR-11 X425
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Table 5-2- FEAST input data used to model the hot fuel pin from EBR-II X425 assembly.
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Outlet Temperature History

Figure 5-2- Outlet temperature history for the EBR-1I X425 assembly.

Burnupvs Time

afl

-4.:0

Figure 5-3-Burnup versus time history for EBR-II X425 assembly, the slope changes at points

corresponding to changes in power for the assembly.
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So with enough data to make COBRA and FEAST models for the X425 assembly, a

CAFE model of this assembly was constructed and analyzed. The hot pin was benchmarked

against the data and compared to the previous FEAST results. Peak clad strain for each case is

shown below in Table 5-3.

Table 5-3- Comparison of peak clad strain data in at. % between the experiment, FEAST only
results and CAFE results.

Peak Burnup (at. %) Experimental data FEAST CAFE
10.4 .25 .22 .21
15.8 .98 1.0 .80
18.9 2.0 2.23 1.52

The CAFE results are significantly under-predicting the experimental data, and of greater

concern the FEAST data, with which good agreement is expected. The discrepancy is due to the

way the power profile and the nodalization of both codes are handled. In both cases (FEAST

only and CAFE) FEAST is run with 7 axial nodes. This means the power profile can only have 7

different values. COBRA on the other hand has a much finer axial nodalization and has a much

smoother power distribution. The two power distributions are shown in Figure 5-4 below.

When COBRA passes data to FEAST it takes the average power over the section of the FEAST

node. Both distributions conserve the total power of the pin. However a difference still results

because of the calculation of the coolant temperatures. CAFE is using COBRA to calculate

coolant temperatures, so it employs the smooth power distribution in the sub-channel analysis

model. When FEAST is used alone, it uses the discrete power distribution in a simple energy

balance model, not accounting for mixing. The difference in these two methods produces a

different axial coolant temperature distribution, as shown in Figure 5-5.
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Figure 5-4- Comparison of the axial power profile input between FEAST and COBRA.
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Figure 5-5- Comparison of the axial coolant temperature profile produced by the models in
FEAST and COBRA.
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The difference in the two distributions is slight, but very important nonetheless. To

understand why a change of temperature on the order of 10 'C at the axial mid-plane of the fuel

has such an effect on the clad strain the mechanism of the clad strain must be considered. The

temperatures at this portion of the clad are low enough that thermal creep strain is negligible,

thus irradiation creep strain is responsible for the total strain. The formula for irradiation creep

strain rate is (23):

E= B * o * ( 5-1

Where B is a function of temperature, a is the equivalent stress, and <p is the flux. The power

level is the same for both cases, thus the flux is the same. The form of B is such that a change in

temperature on the order of a few degrees will have little effect. That means any difference from

creep strain rate must result primarily from the stress on the cladd. A difference in coolant

temperature affects both the cladd and coolant temperature. The fuel temperature in this range

will have a large effect on the FCMI stress that is placed on the clad because the temperature

affects the stiffness of the fuel.

In reality the temperature distribution along the fuel will be continuous, so FEAST is

only sampling a certain number of temperatures along the fuel rod, and misses anything that

happens between those nodes. In the above example, the clad peak strain is 125% greater (1.0%

versus 0.8%) for the FEAST only version than CAFE because the data passed to FEAST in

CAFE happens to "miss" a temperature where FCMI is the most important. There are two ways

to reconcile this difference. One way would be to force the temperature distribution CAFE

passes to FEAST to be equal to the one FEAST calculates. This however would defeat the

purpose of using CAFE in the first place. The second way would be to increase the number of

axial nodes FEAST uses which will make it less likely that important temperatures are missed.

The results of this solution arc shown in Table 5-4 below.
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Table 5-4- Comparison of peak clad strain data in at. % between the experiment, FEAST only
results and CAFE results with two different numbers of axial nodes.

Peak Burnup (at. Experimental FEAST CAFE 7 nodes CAFE 13 nodes
%) data

10.4 .25 .22 .21 .23
15.8 .98 1.0 .80 1.03
18.9 2.0 2.23 1.52 1.80

The results of running CAFE with more FEAST nodes matched up to the previous

FEAST data and the experimental data better. For each of the three burnups, the agreement of

CAFE is better with both the experimental data and FEAST. The only major discrepancy

between FEAST alone and CAFE is the strain at 18.9% burnup. No matter how fine of

nodalization is used there may be some differences between FEAST alone and CAFE. This is

because even though the clad temperature is continuous along the rod and any specific

temperature can be sampled by increasing the nodalization, it does not guarantee that properties

like heat transfer coefficient and power will be the same for FEAST and CAFE at that specific

location on the pin.

Up until this point only the peak axial clad strain has been considered. Figure 5-6

through Figure 5-8 shows the clad strain as a function of axial position for 15.8% burnup for the

various cases considered. Figure 5-6 shows a comparison between the standalone version of

FEAST and the data. Figure 5-7 and Figure 5-8 show the CAFE results for 7 and 13 nodes,

respectively, against the experimental data. These plots indicate the experimental error with

dashed lines. All three cascs predict the data with reasonable accuracy. CAFE with 7 nodes

matches the shape of the data the best, but under predicts its magnitude. CAFE with 13 nodes

predicts the shape of the data well, and predicts the peak extremely well in magnitude and

location.
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Figure 5-6- Axial clad strain profile produced with FEAST using 7 axial nodes for the EBR-Il X425
hot fuel pin (23).
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Figure 5-7- Axial clad strain profile produced with CAFE using 7 axial FEAST nodes for the EBR-1l
X425 hot fuel pin.
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CAFE, 13 Nodes
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Figure 5-8- Axial clad strain profile produced with CAFE using 13 axial FEAST nodes for the EBR-II
X425 hot fuel pin.

Clad strain data was the only set of data specifically available for the X425 assembly.

Fuel rods of similar type operated under similar conditions have clad wastage reported that is on

the order of 20 microns (72). This compares well with Figure 5-9 which shows peak clad

wastage as a function of burnup. Similarly, fission gas release data from the X425 model can be

benchmarked against fission gas release data from similar rods with the same fuel composition

(73), as shown in Figure 5-10.

For both of these cases the nodalization has little effect on the result. The number of

nodes should have the greatest effect on propertics that are highly temperature dependent that do

not occur at the peak temperature. This will mainly include FCMI and effects that are dependent

on it such as iXTadiation creep strain.

With these benchmarks it is clear that CAFE is predicting fuel behavior with at least the

level of accuracy of FEAST. To sce further benchmarks of FEAST consult references (23) and

(28).
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Figure 5-9 - Peak clad wastage history predicted by CAFE.
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Figure 5-10- Fission gas release history predicted by CAFE.

165

-- 1I lb-e



5.2. CAFE Verification

In light of the results regarding axial nodalization in the previous section, it was deemed

important to test the sensitivity of FEAST to axial nodalization and ensure that the solution

convergence was achieved as the number of nodes was increased. To examine this, an assembly

with geometry and conditions based on the S-PRISM design was employed. The switch in

geometry from EBR-II in the previous section to S-PRISM was done because the active fuel

length is much longer for the latter design, around a meter for S-PRISM and only a third of that

for EBR-II. The CAFE input data for the S-PRISM design is shown below in Table 5-5 and

Table 5-6.

Table 5-5- COBRA input data used to model an S-PRISM

Input Parameter

driver fuel assembly.

Sample Assembly

Geometry Number of Pins 271
Rod Diameter (mm) 7.44

Rod Pitch (mm) 8.86
Wire Wrap Diameter (mm) 1.42

Wire Wrap Pitch (m) .203

Duct inside flat to flat distance (m) .149

Total Length (m) 4.070

Heated Length (m) 1.016
Lower Unheated Length (m) 1.017

System Pressure (atm) 1

Conditions Inlet Temperature (0C) 371

Inlet Mass Flow (kg/s) 24.09

Peak Linear Power (kW/m) 19
Axial Power Distribution (max/avg) Chopped Cosine 1.41

Radial Power Distribution Uniform

Calculation Wire Pitch Fraction (6) 0.1252

Parameters Turbulent Mixing Factor (B) .01
Number of Axial Nodes 160
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Table 5-6- FEAST input data used to model S-PRISM driver fuel pins.
Input Parameter Sample Assembly

Geometry Clad Outer Radius (mm) 3.72
Clad Inner Radius (mm) 3.16
Fuel Outer Radius (mm) 2.74
Wire Wrap Radius (mm) 0.711
Plenum to Fuel Ratio 2.0
Axial Node Length .145

Fuel Zr weight fraction 10
Conditions Pu weight fraction 19

Initial Fill Gas Pressure (kPa) 84

Calculation Time Periods in Rod History 2
Parameters Number of Axial Nodes varied

Time Step (seconds) 10
Flux Conversion Factor 5.0

The number of axial nodes is varied only for FEAST and not for COBRA. The effect of

axial nodalization on COBRA was examined previously in Section 2.2.3, with the conclusion

that the COBRA nodes should be set as small as allowable by the code (1-2 cm generally), as

computational time is not an issue for steady-state runs. FEAST examinations have been

previously made on the effect of radial nodalization (23), but none for the axial direction.

Cases were examined for 5, 7, 10, 14, and 20 axial nodes. Table 5-7 shows the

corresponding node sizes for each of these nodalizations, along with the peak clad temperature

calculated by FEAST.

Table 5-7- Number and size of FEAST nodes compared with the peak clad temperature predicted
by FEAST.

Number of Nodes Node Size (m) Peak Clad Temperature (*C)
5 0.203 548.66
7 0.145 552.21

10 0.1015 555.79
14 0.0725 557.45
20 0.05075 559.15
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A comparison of the performance with different numbers of nodes is shown in Figure

5-11. This figure shows the end of life total clad strain axial profile. The profile is plotted for 14

nodes and 20 nodes, while the data points for 5, 7, and 10 nodes are shown for comparison. As

the number of nodes increase the data sets converge on one another. The coarsest nodalization, 5

nodes only, completely misses the behavior at the bottom of the fuel rod where the strain is

negative. The finest nodalization of 20 nodes predicts a localized peak in clad strain near the

bottom of the rod. While the peak appears completely unphysical it is predicted by FEAST and

corresponds to a localized peak in FCMI that FEAST predicts to occur at this point, perhaps due

to the increased stiffness of the fuel and higher retention of fission gas due to this location being

at the bottom of the rod and having a lower fuel temperature.

End of Life Total Clad Strain
o14

126

-4 C"IA o(

A 14H I4-'!

Relat e Axial Fuel Po ition

Figure 5-11- Axial clad strain profile predicted by FEAST plotted for various numbers of axial
nodes.

For both of these metrics the RMS difference of the data can be calculated and used to

determine the order of convergence. The formula for calculating the RMS difference can be

found in Section 2.2.3 in Equation 2-15. The RMS formula becomes the absolute value of the
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difference for the different nodalizations when applied to peak clad temperature since there is

only one value. Figure 5-12 shows a plot of the RMS difference for both clad strain and peak

clad temperature plotted against difference in node size.

The order of convergence can be determined by calculating the slope of the lines on

Figure 5-12. A linear regression of the log-log plot yields the values calculated in Table 5-8.

Peak clad temperature converges with an order of about 1, while total clad strain converges with

order of approximately 1.5.

This analysis shows that FEAST converges as expected as the number of axial nodes

increases. The exact node size that should be used will depend how valuable low solution error

is compared to computational time. 10-15 centimeters is a reasonable limit for node size, as a

coarser nodalization could produce peak clad temperature values with greater than 5 'C of error.

RMS

T Fi at. id e

Figure 5-12- RMS difference of node size plotted on a log-jog scale for peak clad temperature
and end of life clad strain.

Table 5-8- Order of convergence based on node size for two performance metrics.
Performance Metric Order of Convergence

Peak Clad Temperature .997
Total Clad Strain 1.539

169



5.3. Hot Pin Versus Limiting Pin

When running CAFE to evaluate assembly performance, a decision must be made as to

which pin or pins should be examined with FEAST. COBRA examines the behavior of the

entire assembly; depending on location in the assembly every pin will experience different

conditions. While the user would have the option to examine every single pin in the assembly

this would prove extremely time consuming computationally due to the nature of FEAST (see

the discussion in Section 4.3 regarding examining every pin for geometry changes). Certain pins

must be selected that are representative of the assembly, by which the overall fuel performance

of the assembly can be judged.

The generally accepted approach when selecting a pin to examine an assembly is to look

at the hot pin. The theory is that if the hot pin meets the fuel perfonnance criteria, then every

other pin in the assembly will too. To test this practice, the behavior of various pins from a

sample assembly was compared to the behavior of the hot pin. The assembly chosen is the EBR-

II X425 assembly, which was discussed in Section 5.1.

This assembly is a logical choice for this analysis as the behavior of the hot pin is known

to match the experiments well. The CAFE model was used to examine one pin from each ring of

the assembly: pins 7, 19, 37, and 61. The results from these pins are then compared to the hot

pin, pin 1. All the inputs for this run can be found in Section 5.1. Table 5-1 and Table 5-2 show

the COBRA and FEAST input data and Figure 5-1 through Figure 5-3 show the bumup, power,

and outlet temperature histories for the assembly. The input set up for this analysis highlights

one of the strengths of CAFE: the only alteration from the previous input file used to examine

the hot pin of the assembly necessary was to indicate additional fuel pins for examination.

The assembly was initially examined with 7 axial FEAST nodes. This produced some

surprising and questionable results. Figure 5-13 shows the peak axial irradiation creep strain

results when using 7 axial FEAST nodes.

170
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Figure 5-13- Peak irradiation creep strain history predicted by CAFE
different fuel pins for the EBR-II X425 assembly.
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Of particular interest is pin 37, which is located near the periphery of the assembly, and

thus will be much cooler than the interior pins, as shown in Figure 5-14. With only 7 nodes

FEAST calculates that the irradiation creep strain behavior of pin 37 is very similar in magnitude

to the hot pin and more severe than other pins more interior to the assembly.

This result prompted further examination of the assembly with more axial nodes to

determine if this was an artifact of the calculation or actual behavior that should be expected.

Figure 5-15 shows the peak irradiation creep strain for 13 nodes. This shows the more expected

behavior where the creep strain is ordered from greatest to least based on how hot each fuel pin

is. Table 5-9 shows a comparison of the peak irradiation creep strain for each pin for both 7 and

13 axial FEAST nodes. This data reinforces the conclusions drawn in the previous two sections

that too coarse of an axial node length for FEAST will produce incorrect results.
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Peak Clad Temperature, 7 Axial Nodes
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Figure 5-14- Peak clad temperature history predicted by CAFE using 7 axial nodes for 5 different
fuel pins for the EBR-l X425 assembly.
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Figure 5-15- Peak irradiation clad strain history predicted by CAFE for EBR-ll X425 fuel pins using
a finer axial nodalization for FEAST of 13 nodes.
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Table 5-9- Comparison of the peak irradiation creep strains predicted by CAFE for EBR-lI X425
fuel pins using 7 and 13 axial nodes for FEAST.

Peak Irradiation Creep Strain

Pin 7 Nodes 13 Nodes

1 1.52 1.78
7 1.29 1.77
19 1.21 1.71
37 1.51 1.57
61 1.16 0.82

In section 5.1 the formula for determining irradiation creep strain is shown as Equation

5-1. One of the important terms in this equation is stress. The stress on the clad comes from the

plenum pressure and the FCMI. The FCMI is a complicated phenomenon, but does not scale

based on temperature like many other fuel performance metrics do. Lower fuel temperatures can

result in higher FCMI due to higher fuel stiffness. Figure 5-16 shows the peak FCMI-driven

stress predicted for each pin over the course of the burnup. At various times the fuel pins from

the outer rings experience FCMI-driven stress equal to the stress of the inner pin. However,

while the stress is similar, the temperature is lower in the peripheral pins which ultimately results

in lower strain rates and strains. For this case all the pins are operated at the same power and are

assumed to bum at the same rate, if the power levels and consequently the burnup history were

different it would further complicate knowing which pin in the assembly will have the peak

FCMI-driven stress.

Figure 5-17 and Figure 5-18 show the peak thermal creep strain and the peak clad

wastage, respectively, for each pin examined. The results are as expected where the hotter pins

exhibit higher values of strain and wastage. Most fuel performance metrics are indeed most

critical for the hot pin, with FCMI being an interesting exception.
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Figure 5-16- Peak FCMI history predicted by CAFE for EBR-II X425.
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Figure 5-17- Peak thermal creep strain history predicted by CAFE for EBR-ll X425.
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Figure 5-18- Peak clad wastage history predicted by CAFE for EBR-Il X425.

5.4. Parametric Study of Fuel Pin Performance

The previous section showed while most fuel performance metrics will be most severe

for the hot pin of an assembly, not all of them necessarily have to be. The goal of this section is

to examine fuel pins parametrically while varying key geometric parameters and operating

conditions to determine the corresponding failure mcchanism likely to occur and the expected

life of the pin for steady-state operation. The result will be a set of charts that can be used as a

design guideline, and to help decide which pins in an assembly to analyze.

The first step was detenrmining which failure (or in some cases limiting) mechanisms be

would examined. The important limits considered for a fuel pin are as follows:

- Thermal Creep Strain - Damage caused to the clad by thermal creep.
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- Irradiation Creep Strain - Damage caused to the clad by irradiation creep.

- Cumulative Damage Fraction (CDF)- A statistical measure of life of the clad based on

time to rupture correlations as a function of temperature and stress. CDF is particularly

useful for pins with a variable power history.

- Clad Wastage (FCCI) - Loss of clad thickness at the inner wall due to interaction with

the fuel.

There are other failure mechanisms for fuel pins which are not examined here because the

purpose of this study is to develop a guide for steady-state operation. For example, fuel melting

was not considered because the most conservative fuel melting temperature (lowest solidus T on

the phase diagram corresponding to no zirconium) is 920 'C, a temperature which should never

occur during steady-state operation (74). CDF aid creep strain are different representations of

the same damage caused to the clad. Creep strain will be considered primarily over CDF in this

study (all of the power histories for the study are constant so both metrics would have similar

results.)

Next it was necessary to detenrine which operational parameters were likely to have the

largest effect on each of the chosen fuel performance metrics. While clad type would have a

large effect, the study was limited to HT9 as cladding material because it has the most desirable

properties.

FCCI is known to exhibit a strong threshold behavior based on clad temperature.

Furthermore, it will be affected by the fuel composition. For high plutonium fuels, below 650

'C it has little effect; however, above this temperature the clad becomes susceptible to it (75).

Therefore, the important parameters to study for FCCI are peak clad temperature and fuel

composition.

Figure 5-19 below shows several data points obtained from FEAST by running a sample

pin at a range of coolant inlet temperatures, it exhibits the threshold behavior of FCCI. The

sample pins were of a representative S-PRISM driver fuel geometry, which can be found in

Table 5-2. The fuel composition is U-19Pu-1OZr. The x-axis of Figure 5-19 shows the peak

clad temperature for each run, the y-axis shows the burnup that was achieved for that run. For all
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the pins FEAST predicts that below 660 *C the pins will reach burnups of at least 6 at. %, a value

determined by the creep strain limit. However, once the peak clad temperature exceeds 660 'C

the achievable bumup plummets because of FCCI. Fuel compositions with no Pu exhibit similar

behavior, but the threshold temperature is higher because of the lack of Pu raises the eutectic

temperature.

While FCCI behavior is fairly straight-forward to study for different conditions, studying

clad creep strain is significantly more challenging. Clad creep strain is strongly affected by clad

temperature, clad stress, and neutron flux, which in turn depend on the following parameters:

linear power (affecting both temperature and neutron flux), smear density and fuel composition

(affecting FCMI and thus stress), pin size, and pin diameter-to-clad ratio (affecting stress).

These effects were all considered by starting with base pin designs and operating conditions of

different types and altering them slightly. Each of the fuel types and the corresponding

parametric studies are discussed below.
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Figure 5-19- Predicted achievable burnup by FEAST versus clad temperature for U-19Pu-lOZr
fuel for two different power levels. The sharp drop that occurs between 660 *C and 665 'C
occurs because of FCCL.
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5.4.1. S-PRISM Driver Fuel

To study typical SFR driver fuel the S-PRISM fuel design was once again selected, the

details of which can be found in Table 5-2 in Section 5.1. The operating conditions and

geometric parameters that were varied are shown in Table 5-10 below. Two parameters that

were not varied are the pin diameter and the plenum to fuel ratio, this was done to keep the

assembly geometry the same. Results for different pin diameters and plenum to fuel ratios can

be found in Sections 5.4.2 and 5.4.3 for the other assembly geometries examined, blanket fuel

and breed and bum fuel.

Table 5-10 - Parameters and different values explored in a parametric study of fuel pin
performance.

Parameter Values
Inlet Temperature 371-531 0C at 20 *C intervals

Power 15, 20, and 25 kW/m
Pu Content 0, 19 at. %

Smear Density 75, 80, and 85%
Clad Thickness (outer pin diameter held 0.477 ,0.559, 0.67 mm

constant)

With the large number of parameters varied the study produced a very large amount of

data, which is located in Appendix A. An overview of the data is presented in Table 5-11. This

table shows a grid of the different combinations examined and what effect FEAST indicated was

the most limiting for a range of peak clad temperatures along with what bumup can be expected

for those conditions. The parameters in the left columns were study variables that could be set

directly in FEAST. While peak clad temperature was a desired variable to examine, it had to be

controlled indirectly through power and inlet temperature.

The thermal creep strain limit used for this table was 1%, which is a value used

previously in the literature as a design limit (76). The total creep strain is defined as the sum of

the irradiation creep strain and the thermal creep strain and the limit for the table is 3 %, beyond

which pins failure is expected (23)(65). All of the cases with Pu exhibit the behavior discussed
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above where FCCI dominates above 665 'C and limits the burnup to almost zero. For cases with

no Pu, FEAST predicts FCCI will not limit fuel performance until over 700 *C.

In some cases with lower clad temperatures the limits were never reached over the course

of the 20 year run. In these cases the expected failure mechanism reported in Table 5-11 is that

which is most significant at the end of the run.

One interesting result from this data is that a higher burnup can be achieved for a given

peak clad temperature by using a higher power. This is due to the time-dependent nature of

creep strain: the higher burnup occurs over a shorter amount of time and results in less creep

strain. Figure 5-20 shows this behavior, for the base fuel having nominal clad thickness, and

smear density and plutonium content of 75% and 19%, respectively. At a given clad temperature

an increase in power will correspond to an increase in predicted achievable burnup.

Other notable observations from Table 5-1 1 are that increasing the clad thickness by 20%

provides only a slight gain in predicated achievable burnup which diminishes as peak clad

temperature rises. Furthermore increasing the smear density significantly limits the performance

of the fuel, as expected.
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Table 5-11- Overview of the results from the parametric study on fuel pins with the geometry of SPRSIM driver fuel, the full results can be

found in Appendix A.
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Table 5-11 continued.



Figure 5-20- The FEAST predicted burnup limit for a fuel pin at three different power levels. As
the power level increase the predicted burnup also increases for a constant clad temperature.

5.4.2.S-PRISM Radial Blanket

The second geometry exairned parametrically also comes from the S-PRISM design: the

radial blanket. The blanket pins have a significantly increased diameter and tighter pitch with

respect to the driver fuel. The pin geometry is detailed in Table 5-12. Smear density and clad

thickness are not varied for this case; the only parameters varied are plutonium content (0, 19

at%), power (10, 15 kW/m) and inlet temperature (same range as Table 5-10). Pu would not

traditionally go into a blanket region, it is considered here as the interest is for theoretical pins of

the given geometry. The full results are given in Appendix A and an overview of the data can be

found in Table 5-13. The FEAST runs were again 20 years for this fuel, but due to the much

lower volumetric power rate the pins had much lower burnups at the end of life. Once again

FEAST predicts that increasing the linear power will allow for a higher achievable burnup for a

given peak clad temperature.
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Table 5-12- FEAST input data used to model S-PRISM blanket pins.

Input Parameter Sample Assembly

Geometry Clad Outer Radius (mm) 6.005
Clad Inner Radius (mm) 5.446

Fuel Outer Radius (mm) 5.023
Wire Wrap Radius (mm) 0.47

Plenum to Fuel Ratio 1.2

Axial Node Length .145

Fuel Zr weight fraction 10

Conditions Pu weight fraction 0
Initial Fill Gas Pressure (kPa) 84

Calculation Time Periods in Rod History 2

Parameters Number of Axial Nodes 7
Time Step (seconds) 10
Flux Conversion Factor 5.0

Table 5-13- Overview of the results from the parametric study on fuel pins with the geometry of

S-PRISM blanket, the full results can be found in Appendix A.
500*CPCT 550 CPCT 600 CPCT 650 CPCT

Linear Clad Smear Limit Limit Limit Limit

Power Pu Thickness Density Type Burnup Type Burnup Type Burnup Type Burnup

kW/m % mm % Atom % Atom % Atom % Atom %

Total Total Therm

10 19 0.56 70 Strain >10 Strain >10 Strain 4.5 NA

Total Total Therm

10 0 0.56 70 Strain >10 Strain >10 Strain 5.0 NA

Total Total Therm Therm

15 19 0.56 70 Strain >10 Strain >10 Strain 5.5 Strain 2.0

Total Total Therm Therm

15 0 0.56 70 Strain >10 Strain >10 Strain 6.0 Strain 1.5
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5.4.3.Tight Pitch Breed and Burn Fuel

The final geometry examined parametrically is breed and burn fuel that has a very tight

pitch. The pin geometry is detailed in Figure 5-14. The variables examined for this fuel are

power (10, 15, 20, and 25 kW/n) and fuel venting. Vented fuel pins are not sealed so do not

build up plenum pressure due to fission gas. For the purposes of this simulation the pressure in

the pins vents at 500 kPa so the plenum pressure will always be below 500 kPa. Also of note

this pin type has a low smear density of only 63%. The FEAST runs were for 40 years for this

fuel because the venting allows for a longer life and because it takes appreciable time to breed

enough plutonium in blanket assemblies before the blanket becomes the driver.

The fill results are given in Appendix A, an overview of the data can be found in Table

5-13. Not surprisingly, the vented pins could achieve significantly higher burnups than the

unvented pins. In some cases, at lower peak clad temperatures, it was impossible to predict what

the eventual failure mechanism would be because FEAST predicted so little damage to the clad

at high burnup (20-30 at. %). For these cases a question mark is entered for the failure

mechanism in Table 5-15. As was obscrvcd for previous geometries, in all cases for the breed

and burn pins higher power allowed for a higher achievable burnup.

Table 5-14- FEAST input data used to model breed and burn fuel pins.

Input Parameter Sample Assembly

Geometry Clad Outer Radius (mm) 5.22
Clad Inner Radius (mm) 4.72
Fuel Outer Radius (mm) 3.747
Wire Wrap Radius (mm) 0.711
Plenum to Fuel Ratio 0.72
Axial Node Length .125

Fuel Zr weight fraction 5
Conditions Pu weight fraction 0

Initial Fill Gas Pressure (kPa) 84

Calculation
Parameters

Time Periods in Rod History
Number of Axial Nodes
Time Step (seconds)
Flux Conversion Factor
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Table 5-15- Overview of the results from the parametric study on breed and burn fuel pins. Fuel Pin venting means the plenum pressure of the

pin is vented so the pressure does not exceed 500 kPa.

Fuel Pin

Venting

Smear

Density

%/



Chapter 6. Conclusions

6.1. Conclusions

The major conclusions and takeaways from this thesis are listed below. The key original

contributions are items 2, 4, and 7.

1) COBRA-IV-1-MIT is an updated version of COBRA that contains several new

correlations for pressure drop, mixing and heat transfer. It was benchmarked with the

available experimental data consistently producing less than 5% error. This compared

favorably to the experimental uncertainty from the benchmarks, which, while hard to

quantify, was similar in magnitude.
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2) Azimuthal symmetry was an acceptable assumption for fuel performance models in

regards to added clad stress. Finite element analysis with supporting hand calculations

showed the added stress generated by limiting axial peaking functions is very low (~1%)

and should not contribute significantly to creep strain. Clad temperature peaking can be

caused by azimuthal effects however, affecting the creep in the clad. To account for this

FEAST was modified to calculate clad creep performance metrics at an additional peak

temperature if desired.

3) Under the assumptions used clad strains of up to 3% will not cause geometry changes

that have a significant effect on the assembly thermal hydraulic behavior. Furthermore,

there was no way to generate an accurate three-dimensional geometric evolution of the

assembly with the available codes. Therefore, it was not necessary to model the

deformed assembly geometry in COBRA, which makes one-way coupling between

COBRA and FEAST acceptable. However, the deformed assembly geometry can still be

modeled in COBRA if an accurate description of the behavior is available.

4) CAFE is a coupled thermal hydraulic fuel performance model that uses COBRA-IV-I-

MIT and FEAST to predict assembly behavior. It was written in the Python language. It

operates with a single input file and handles all the interaction with COBRA and FEAST.

5) No good sets of data were available for bcnchmarking a full fuel assembly performance

code such as CAFE. COBRA and FEAST were each benchmarked independently and

proved accurate. CAFE was compared to FEAST benchmarks and good agreenent was

established.
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6) Using CAFE, a limitation on the FEAST node size was identified. Using FEAST node

sizes greater than 10-15 cm can lead to very inaccurate results. CAFE was verified to

ensure that solution convergence is achieved as the node size is reduced.

7) Having the ability to examine every fuel pin in an assembly design raised the question of

which fuel pins should be looked at when resources are limited. A parametric study of

fuel pin behavior was conducted with FEAST to determine expected failure mechanisms

and achievable burnups for different pin geometries, and how the failure mechanism and

burnups vary with parameters like peak clad temperature, power, and plutonium content.

These results are useful in the preliminary design of SFR fuel rods and assemblies.

6.2. Future Work

Future work for this project would include any updates or improvements to COBRA or

FEAST and further application and benchmarking of CAFE. Specific suggestions for future

work are listed below:

1) The use of CFD to improve the correlations used in COBRA. COBRA-IV-I-MIT uses

the most recent correlations found in the literature, however some of these correlations

are 20-30 years old. The correlations arc all based on the same data sets that are used to

benchmark the code so it is no surprise that good agreement is found between the code

and the limited experimental data. Short of conducting new experiments, CFD may be

the best way to generate data to develop higher-fidelity correlations. CFD could be

particularly useful to produce correlations for fringe regions where little experimental

data exists, such as extremely tight fuel pitches (P/D<l.1).
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2) Changing FEAST to allow for finer axial nodalization. The current limit in FEAST is 20

axial nodes. While this allows fine enough node sizes for fuel rods of 1-2 meters long,

longer fuel lengths and very detailed examination are problematic.

3) Development of FEAST to allow for data input and output during a run or to allow for

restart files. One of the limitations to two-way information passing is the

computationally intensive nature of FEAST. Currently, FEAST requires all input data at

the start of a run, meaning that for coupling it must be run to completion before COBRA

can be updated and generate data for the new geometries produced. If FEAST cQuld be

paused or restarted, input and output data could be processed during a run, so that long

FEAST runs could be broken down in to short segments of months or years in between

which COBRA could be update and run.

4) Development of a three-dimensional mechanical analysis code to examine the interaction

between the pin swelling, the wire wraps and the duct wall. Further considerations to

examine for the duct wall would be dilation due to pressure difference and irradiation

damage. A three-dimensional fuel performance model would be necessary for this

analysis. Such a code would provide valuable insight into the swelling behavior of an

SFR assembly with time.

5) Extension of FEAST into three dimensions. This is closely tied to the previous item, as a

three-dimensional fuel rod model would likely be needed for such an analysis code. To

accurately pass coolant information to a three-dimensional code a better implementation

of azimuthal hot spot factor with correlations would be needed.

6) Further benchmarking on more complete sets of assembly performance data for CAFE.

This item is limited to the lack of available data, but should fuel performance data

become available for a full assembly with multiple pins a good benchmark for CAFE

could be completed.
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7) Application of CAFE to assembly design. Now that the tool has been developed and

tested it can be used to test new assembly designs!
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Appendix A: Fuel Pin Parametric Study
Data

This appendix contains all the data from the fuel rod paramctric studies discussed in

Section 5.4. For each condition studied there are three tables: Thermal Creep Strain, Irradiation

Creep Strain, and Total Creep Strain. These tables have strain values ranging from 0.10% to

3.0%. The burnup at which each strain valuc occurred is listed for nine different peak clad

temperatures. If no value is listed it means the run terminated before that strain value was

reached. The four way s for a run to tcrrinatc are: FCCI limit, CDF limit, Total Strain limit, or it

reached full duration. To determine what caused a particular run to terminate refer to the column

in the total creep strain table. If "FCCl" or "CDF" appears then the run ended before this level

of strain was reached due to the FCCI limit or the CDF limit. If these letters do not appear but a

burnup is given for 3.0% that is not the End of Life (EOL) burnup then the total creep strain limit

was hit. Otherwise the run lasted the full duration. The EOL burnup listed on each table shows

what the burnup would be for the pin if the run lasted the full duration. For some of the cases

below the listed EOL burnup was not rcalized for any of the peak clad temperatures.

198



S-PRISM Driver
Linear Power
(kW/m)

15
15
20
20
25
25
15
15
15
15
15
15
15
15

Fuel
Plutonium
Content (%)

19
0
19
0
19
0
19
0
19
0
19
0
19
0

S-PRISM Radial Blanket 214-217
Linear Power Plutonium Clad Smear
(kW/m) Content (%) Thickness Density (%)

(mm)
10 19 0.56 70 214
10 0 0.56 70 215
15 19 0.56 70 216
15 0 0.56 70 217

Tight Pitch Breed and Burn Fuel
Linear Power Plutonium
(kW/m) Content (%)
10 0
10 0
15 0
15 0
20 0
20 0
25 0
25 0

Fuel Venting

No
Yes
No
Yes
No
Yes
No
Yes

Index
200-213

Clad
Thickness

(mm)
0.56
0.56
0.56
0.56
0.56
0.56
0.49
0.49
0.67
0.67
0.56
0.56
0.56
0.56

Smear
Density (%)

75
75
75
75
75
75
75
75
75
75
80
80
85
85

200
201
202
203
204
205
206
207
208
209
210
211
212
213

218-225
Smear
Density (%)
63
63
63
63
63
63
63
63

218
219
220
221
222
223
224
225
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S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

15 kW/m
19%
20 years

Clad Thickness
Smear Density
EOL Burnup

501.60 522.66
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

Thermal
543.71 564.76
29.65 20.96

2470

26.84
28.39
29.57

Creep Strain
585.77
14.28
17.14
18.82
19.99
20.92
22.51
23.60
25.03

606.74 627.69
9.66 6.59
11.84 8.23
13.19 9.24
14.11 10.00

14.87 10.58
16.17 11.68
17.05 12.39
18.19 13.31

13.90

Irradiation Creep Strain
564.76 585.77
8.36 7.85
10.54 10.37
12,39 12.18
13.99 13.78
1,5.4 1 15.20
18.48 18.27
21.00 20.83

-15

25.07 25.07
2 8.31

606.74
7.48
9.91
13180
13.19
14.41
16.72
18.44

Total Creep Strain

564.76 585.77 606.74
8.27 7.81 6.51
10.50 10.25 8.48
12.35 12.14 9.87
13.94 13.73 10.92
15,37 15.16 11.80
18,40 17.56 13.48
20.92 19.19 14.70
25.03 21.55 16.34
22.18 23.14 17.47

25.16 18.82

200

0.56 mm
75%
30.7

668.98648.62
4.12
5.33
6.13
6.72
7.18
8.02
8.65
9.49
10.04

501.60
13.15
15.08
16.51
17.85
19.07
21.42
23.48
26.80
28.27

501.60
13.10
15.08
16.51
17.85
19.03
21.42
23.48
26.75
28.27

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20

0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

522.66
10.63
12.85
14.49
15.96
17.30
19.99
22.26

28.39

522.66
10.58
12.85

14.49
15.96
17.30
19.99
22.26
25.66
28.35

543.71
9.16
11.42

13.31
14.95
16.25
19.11

21.50
25.24
28.22

543.71
9.11
11.38

13.27
14.95
16.25
19.07
21.50
25.24
28.22

668.98

668.98
FCCl

627.69
5.75
7.73
9.16
10.25
11.17
12.98

627.69
4.66
6.17
7.22
8.02

8,65
9.91
10.84
12.10
12.94
13.99

648.62
3.65
5.17
6.22
7.06
7.77
9.11

648.62
2.77
3.91
4.66

5.25
5.75
6.68
7.39
8.40
9.11
10.08



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

15 kW/m
0%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal Creep Strain
501.60 522.66 543.70 564.76

28.98 19.87
23.65
25.83
27.43
28.69

Irradiation
501.60 522.66 543.70 564.76
13.15 10.63 9.07 8.15
14.83 12.77 11.21 10.33
16.17 14.36 13.02 12.10
17.47 15.79 14.57 13.61
18.65 17.09 15.88 14.99
20.16 19.66 18.61 17.93
21.55 21.88 20.71 20.41
24.15 25.03 24.23 24.49
26.42 26.96 27.22 27.76

522.66
10.58
12.77
14.32
15.75
17.09
19.61
21.88
25.03
26.96

543.70
9.07
11.17
12.98
14.53
15.88
18.61
20.71
24.23
27.17

585.76
13.78
16.67
18.44
19.66
20.58
22.30
23.48
24.99

Creep Strain
585.76
7.64
9.91
11.76
13.36
14.74
17.72
20.20
24.07

Total Creep Strain
564.76 585.76
8.11 7.52
10.29 9.83
12.05 11.63
13.57 13.23
14.91 14.62
17.85 17.14
20.33 18.82
24.36 21.21
27.64 22.89

25.07

201

0.56 mm
75%
30.7

0.10
0.20
0.30
0.40

0.75
1.00
1.50

2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

606.74
9.62
11.76
13.06
14.03
14.178
16.04
16.93
18.06

606.74
7.27
9.62
11.47
13.10
14.32
16.63
18.35

606.74
6.59
8.48
9.87
10.92
11.76
13.40
14.62
16.25
17.35
18.69

627.69
6.68
8.27
9.24
10.00
10.54
11.59
12.26
13.15
13.69

627.69
5.96
7.90
9.24
10.33
11.21
12.89

627.69
4.96,
6.34
7.1
8.11
8.74
9.91
10.79
12.01
12,77
13.78

648.61
4.66
5.80
6.55
7.10
7.52
8.32
8.86
9.58
10.04

648.61
4.37
5.75
6.72
7.52
8.19
9.41

648.61
3.53
4.49
5.21
5.75
6.22
7.10
7.77
8.69
9.32
10.08

668.98
2.02
2.90
3.53
3.99
4.41
5.17
5.71
6.55

668.98
1.93
2.90
3.65
4.28
4.83
5.92
6.76

668.98
1.30
1.97
2.48
2.90
3.28
3.99
4.58
5.42
6.09
7.01

501.60
13.15
14.83
16.17
17.43
18.65
20.16
21.55
24.15
26.42



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

20 kW/rn
19%
20 years

Clad Thickness
Smear Density
EOL Burnup

545.89 567.31
23. 1
27.08
29.32
30.89
32.12

588.69
15.92
18.84
20.52
21.75
22.65
24.22

25.34

Thermal
610.08
10.65
12.89
14.18
15.19
15.92
17.21
18.11
19.23

Creep Strain
631.40
7.29
8.97
9.98
10.76
11.38
12.45
13.17
14.13

652.68 673.93
4.82
6.11
6.90
7.51
8.02
8.91
9.53
10.32

695.15 715.59

652.68 673.93 695.15 715.59
3.92
5.38

6.45
7.29

7.96
9.36
10.3117

Total Creep Strain
610.08 631.40
6.90 4.88
8.97 6.50
10D.43 7.57
11.49 8.41
12.39 9,08
14.13 10.37
15.36 11.32
17.10 12.67
18.8 13.57
19.73 14.69

652.68
3.20
4.37
5. 16
5.77
6.28
7.23
7.96
9.08
9.81
10.71

673.93 695.15 715.59
FCCI FCCI FCCI

202

0.56 mm
75%
40.9

0.10
0.20

0.30
0.40
0.50
0.75
1.00
1.50
2.00

3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

545.89
9,98
12.28
14.18
15.87
17.38
20.29
22.59
25.73
2803

567.31

9.19
11.77
13.51
15.08
16.48
19.51
21.98
25.62
28.48

Irradiation
610.08
7.79
10.26
12.00
13.40
14.58
16.87
18.67

588.69

8.75

13.34
14.91

16.20
1 9.06
21.5 3
25.56

Creep Strain
631.40
5.83
7.79
919
10.26
11.21
13.01
14.35

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

545.89
9.98
12.22
14.13
15.81
17.32
20.29
22.59
25.73
28.03

32.18

567.31
9.14
11.72
13.51
15.02
16.43
19.45
21.92
25.62
28.48
32.40

588.69
8.69
11.16
13.29
14.91
16.20
18.56
20.29
22.76
24.39
26.57



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

545.89 567.31
22.37
26.29
28.59
30.22

20 kW/m
0%
20 years

588.69
15.25
18.28
20.07
21.30
22.31
23.99
25.23

Thermal
610.08
10.65
12.89
14.24
15.19
15.92
17.21
18.05
19.17

Clad Thickness
Smear Density
EOL Burnup

Creep Strain
631.40
7.34
9.03
10.04
10.76
11.32
12.33
13.01
13.90

652.68
4.99
6.22
7.01
7.62
8.07
8.91
9.47
10.20

Irradiation
545.89 567.31 588.69 610.08
9.75 8.69 8.07 7.57
11.94 11.04 10.26 9.98
13.74 13.06 12.05 11.89
15.36 14.58 13.62 13.46
16.82 15.92 15.02 14.63
19.73 18.78 17.49 16.93
22.03 21.25 19.57 18.67
25.40 24.61 23.32
27.53 27.13

Creep Strain
631.40
6.11
7.96
9.31
10.37
11.27
12.95
14.24

652.68 673.92 695.14
4.15 1.96 1.40
5.61 2.92 2.07
6.62 3.64 2.63
7.40 4.26 3.03
8.07 4.71 3.36
9.42 5.77 4.15
10.37 6.62 4.71

Total Creep Strain

545.89
9.70
11.94
13.74
15.31
16.76
19.68
22.03
25.40
27.53
30.78

567.31
8.63
10.99
13.01
14.58
15.87
18.78
21.19
24.61
27.13
31.51

588.69
7.96
10.26
12.05
13.57
14.97
17.49
19.57
22.31
24.11
26.52

610.08
7.01
9.03
10.43
11.55
12.45
14.13
15.36
17.10
18.22
19.68

631.40

5.21
6.67
7.74
8.52
9.14
10.37
11.32
12.56
13.40
14.41

652.68
3.42
4.54
5.33
5.89
6.39
7.34
8.07
9.08
9.75
10.65

673.92
1.46
2.19
2.69
3.14
3.53
4.26
4.82
5.66
6.34
7.23

695.14
1.01
1.57
1.96
2.30
2.52
3.08
3.53
4.15
4.65
5.38

203

0.56 mm
75%
40.9

0.10
0.20

0.30
0.40

0.50
0.75
1.00
1.50

2.00
3.00

673.92
2.41
3.36
3.98
4.48
4.88
5.61
6.17
6.95

695.14
1.74
2.47
2.97
3.31
3.59
4.20
4.60
5.21

715.59
0.90
1.51
1.91
2.24

2.47
2.92
3.31
3.81

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

715.59
0.90
1.35
1.68
2.02
2.24
2.80
3.25

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

715.59
0.50
0.90
1.18
1.40
1.63
2.02
2.35
2.86
3.25
3.87



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

25 kW/m
19%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal Creep Strain
655.48 677.13
5.54
6.87
7.7 1
8.34
883
9.74
1030
11.07

rradiation
655.48
4.20
5.68
6.73
7.57
8.27
9.67
10.65

698.70 720.23 741.72

Creep Strain
677.13 698.70 720.23

Total Creep Strain
655.48 677.13
3.57 FCCI
4.77
5.61
6.31

7 85

9.67
9.6 47
10.44
11.35

698.70 720.23 741.72 762.28
FCCI FCCI FCCI FCCI

204

0.56 mm
75%
51.1

612.08
11.84
14.23
15.63
16.68
17.38
18.71

19.6
2 0.74

612.08
8.06
10.65

12,47
13.95
15.14
17.52
19.34

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

590.34
17.73
20.74
22.57
23.76
24.74
26.35
27.54

590.34
9.60
12.47
14.65
16.26
17.45
20.11
22.43
26.07
28.38

633.81
8.06
9.88
11.00
11. 77
12.40
13. 53

14.23
15.21

633.81
5.96
7.99
9.46
10.58
11.49
13.38
14.79

762.28

762.28741.72

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

590.34
9.39
12.33
14.4
15.98
17.24
19.69
21.51
24.18
26.00
28.45

612.08
7.29
9. 53
11.07
12.26
13.24
15.07
16.40
18.29
19. 55
21.09

633.81
5.12
6.87
7.99
8.90
9.67
11.00
12.05
13.46
14.44
15.63



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

590.34
17.45
20.67
22.57
23.83
24.81
26.56
27.75

25 kW/m
0%
20 years

612.07
11.91
14.23
15.63
16.61
17.38
18.64
19.55
20.67

633.81
8.20
9.95
11.07
11.84
12.40
13.38
14.09
14.93

Thermal
655.48
5.54
6.87
7.71
8.34
8.83
9.67
10.23
10.93

Clad Thickness
Smear Density
EOL Burnup

Creep Strain
677.13
2.80
3.78
4.49
4.98
5.40
6.17
6.73
7.50

698.70
1.89
2.73
3.22
3.57
3.92
4.49
4.91

698.70 720.23
1.40
2.10
2.59
3.01
3.36
4.06
4.70

741.72 762.28

Total Creep Strain

698.70
0.98
1.61
2.03
2.38
2.66
3.22
3.64
4.34
4.84
5.54

720.23 741.72 762.28
FCCI FCCI FCCI

0.56 mm
75%
51.1

720.23 741.72 762.28

*

612.07
7.99
10.30
12.19
13.88
15.14
17.52
19.34

590.34
8.48
11.14
12.96
14.51
15.91
18.92
21.51
24.46
26.35

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

633.81
6.31
8.27
9.67
10.79
11.70
13.46
14.79

Irradiation
655.48
4.27
5.75
6.80
7.64
8.34
9.67
10.65

Creep Strain
677.13
1.96
3.01
3.71
4.27
4.84
5.82
6.66

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

590.34
8.41
11.00
12.96
14.51
15.91
18.92
21.37
24.18
26.07
28.66

612.07
7.36
9.60
11.14
12.33
13.32
15.07
16.40
18.22
19.48
21.02

633.81
5.54
7.15
8.27
9.11
9.81
11.14
12.12
13.46
14.30
15.35

655.48
3.64
4.84
5.68
6.31
6.80
7.85
8.62
9.67
10.37
11.28

677.13
1.47
2.31
2.87
3.36
3.78
4.49
5.12
6.03
6.66
7.64

205



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

15 kW/m
19%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal Creep Strain
499.23 520.29

0. 10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

541.33 562.37
24.95 17,62

20.79
22,60
23.89
2 4.91!
26.76

7.9 7

583.37
12.08
14.40

15.81
16,79
17.58
18.91
19.85
21.03

604.34 625.28 646.19
8.08 5,53 2.82
9.93 6.87 3.88
11.02 7.73 4.59
11.85 8.36 5.10
12.44 8.87 5.53
13.57 9.77 6.32
14.32 10.36 6.87
15.26 11.14 7.65
15.89 11.65 816

irradiation Creep Strain
562.37 583.37
7.57 7.14
9.53 9.10
10.98 10.75
12.28 12.12
13.46 13.30
16. 05 15.85
18.20 18.05
21.81
24.83

Total Creep Strain

562.37 583.37
7,53 7.10
9.49 9.02
10.95 10.6 53
12.24 12.04
13,42 13.26
15.97 15.14
18.13 16.48
21.73 18.40

24.68 19,73
28.13 21.38

206

0.49 mm
75%
28.6

666.54

499.23
12.63
14.32
15.58
16.60
17.58
19.77
21.54
24.52
27.07

499.23
12.63
14.28
15.58
16.60
17.58
19.77
21.54
24.52
27.07

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20

0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

520.29
10.04
11.89
13.42
14.55
15.65
18.09
19.97
23.19
25.93

520.29
10.00
11.89

13.38
14.55

15.65
18.05
19.97
23.19
25.93

541.33
8.55
10.36
1189
13.26
14.48
16.99
18.99
22.48

25.27

541.33

8.51
10.32
11. 85
13.22
14.44
16.95
18.99
22.44
25.27

666.54

666.54
FCCI

604.34
6.67
8.67
10 32
11.57
12.59
14.63

604.34
5.69
7.34
8.47
9.38
10.12
11.49
12.51
13.89
14.79
15 93

625.28
5.10
6.83
8.04
8.98
9.81
11.34

625.28
4.08
5.34

6.20
6.87
7.38
8.43
9.18
10.24
10.91
11.77

646.19
2.75
4.04
4.98
5.73
6.39
7.65

646.19
1.88
2.79
3.45
3.96
4.39
5.22
5.85
6.75
7.38
8.28



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

15 kW/m
0%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal Creep Strain
499.23 520.29

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

541.33
24.25
.28.40

562.37
16.63
19.77
21.66
22.99
24.05
26.01
27.46

Irradiation
499.23 520.29 541.33 562.37
12.79 10.08 8.55 7.49
14.28 11.85 10.24 9.38
15.34 13.26 11.65 10.79
16.32 14.40 12.95 12.00
17.26 15.46 14.12 13.14
19.38 17.77 16.60 15.61
20.52 19.62 18.52 17.73
22.64 22.87 21.77 21.22
24.60 25.62 24.40 24.17

520.29
10.08
11.81
13.26
14.40
15.42
17.77
19.62
22.83
25.62

541.33
8.47
10.20
11.61
12.91
14.08
16.56
18.52
21.77
24.40

583.37
11.53
13.97
15.42
16.44
17.22
18.67
19.69
20.99

Creep Strain
583.37
6.90
8.79
10.28
11.61
12.79
15.34
17.46
20.91

Total Creep Strain
562.37 583.37
7.41 6.75
9.30 8.71
10.75 10.20
11.97 11.49
13.10 12.63
15.54 14.71
17.65 16.09
21.15 18.13
24.01 19.54
27.58 21.30

207

0.49 mm
75%
28.6

604.33
8.08
9.85
10.95
11.73
12.36
13.46
14.20
15.18
15.77

604.33

6.43
8.43
10.00
11.34

12.55
14.55

604.33
5.81
7.38
8.47
9.38
10.08
11.46
12.44
13.81
14.71
15.81

625.28
5.65
6.94
7.77
8.36
8.83
9.69
10.28
11.02
11.49

625.28
5.34
6.94
8.12
9.06
9.81
11.30

625.28
4.35
5.49
6.32
6.94
7.45
8.43
9.18
10.16
10.83
11.61

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

646.19
3.92
4.86
5.49
5.92
6.32
6.98
7.41
8.04
8.40

646.19
3.88
5.06
5.92
6.59
7.18
8.24

646.19
3.14
3.92
4.47
4.94
5.34
6.04
6.59
7.38
7.89
8.51

666.54
1.49
2.24
2.71
3.14
3.45
4.08
4.55
5.26

666.54
1.61
2.43
3.10
3.61
4.08
5.02

666.54
1.02
1.53
1.96
2.31
2.59
3.22
3.69
4.43
4.98
5.77

499.23
12.75
14.24
15.30
16.32
17.22
19.38
20.52
22.64
24.60
28.21



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

504.04 525.11
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

15 kW/m
19%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal Creep Strain
546.16 567.22 588.24

24.12 16.49
28.42 19.79
30.90 21.77
32.62 23.3

26.2
27.29

609.22
11.20
13.69
15.27
16.35
17.21
18.70
19.70
21.01

irradiation Creep Strain
567.22
9.08
11.70
13,91
15.77
17.44
20.83
23.63
27.96
31.04

588.24
8,81
11.47
13.64
15.50
17.17
20.69
23.63
27.60

Total Creep Strain
567.22 588.24
9.04 8.72-
11.66 11.43
A.3.F82 13.60
15 72 15.45
17t.35 17.12
20. 78 19.83
2 3.58 1.77
27.92 24.48
30.99 26.38

28.78

208

0.67 mm
75%
33.0

671.50630.19
7.63
9.53
10.75
11.61
12.29
13.51
14.37
15.40

651.12
4.88
6.28
7.18
7.86
8.40
9.44

10.16
11.07

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

504.04
13.64
15.77
17.53
19.11
20.37
23.18
25.39
27.01
28,55

504.04
13.64
15.77
17.53
19.11
20.37
23.13
25.39
27.01
28.55
31.53

525.11
11.29
13.78
15.81
17.53
18.93
21.96
24.21
27.74
30.67

525.11
11.25
13.78
15.77
17.53
18.88
21 96
24r.21

27.74
30.63

546.16
9.85
12.60
14.77
16.44
17.98
21.23
23.76
27.78

546.16
9.80
12.56
14. 73
16.44
17.98
21.23
23.76
27.78
30.72

671.50

671.50
FCCI

609.22

8.27
11.16

13.15
14.73

16.04
18.61
20.56

609.22
7.32
9.58
11.16
12.42

13. 4 2
15.36
16.76
18.70
19.97
21.59

630.19
6.37
8.58
10.16
11.43
12.47
14.46
15.90

630.19
5.24
7.00
8.18
9.08
9.85
11.29
12.38
13.82
14.82
16.08

651.12

4.11
5.78
6.96
7.91
8.72
10.25
11.38

651.12
3.21
4.52
5.38
6.05

6.60
7.72
8.54
9.71
10.57
11.66



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

504.04 525.11
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

15 kW/m
0%
20 years

Thermal
546.16 567.22

22.99
27.33
29.91
31.71

Clad Thickness
Smear Density
EOL Burnup

Creep Strain
588.24
15.99
19.34
21.37
22.77
23.85
25.75
27.11

609.22
11.11
13.60
15.18
16.26
17.12
18.57
19.61
20.87

Irradiation
504.04 525.11 546.16 567.22
13.64 11.25 9.71 8.94
15.54 13.60 12.29 11.43
17.26 15.54 14.41 13.51
18.79 17.26 16.04 15.27
20.24 18.61 17.53 16.90
22.95 21.64 20.33 20.28
24.67 23.81 22.68 23.04
26.52 26.25 26.61 27.47
28.10 28.51 29.73 30.63

525.11
11.20
13.60
15.54
17.21
18.61
21.64
23.81
26.25
28.51
32.80

546.16
9.67
12.24
14.37
16.04
17.53
20.33
22.68
26.61
29.73

Creep Strain
588.24
8.36
11.11
13.24
15.04
16.62
20.06
22.86
26.92

Total Creep Strain
567.22 588.24
8.85 8.31
11.38 10.98
13.46 13.15
15.22 14.95
16.81 6.58
20.19 19.43
22.99 21.37
27.42 24.12
30.63 26.07

28.64

609.22
8.09
10.80
13.01
14.68

15.99
18.57
20.46

609.22
7.36
9.58
11.16
12.38
13.37
15.27
16.67
18.57
19.88
21.46

209

0.67 mm
75%
33.0

630.18
7.72
9.58
10.75
11.57
12.24
13.42
14.19

651.12
5.38
6.73
7.59
8.22
8.76
9.67
10.30
11.11

671.50
2.57
3.66
4.38
4.92
5.38
6.23
6.91
7.82

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

630.18
6.60
8.76
10.25
11.47
12.47
14.41

630.18
5.51
7.14
8.31
9.17
9.89
11.29
12.33
13.73
14.68
15.81

651.12
4.79
6.32
7.45
8.36
9.13
10.53
11.57

651.12
3.89
5.06
5.92
6.55
7.09
8.13
8.90
9.98
10.71
11.61

504.04
13.64
15.54
17.26
18.79
20.24
22.95
24.67
26.52
28.10
31.08

671.50
2.21
3.34
4.20
4.92
5.51
6.73
7.68

671.50
1.58
2.39
3.03
3.52
3.93
4.79
5.42
6.46
7.23
8.27



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

501.60 522.66
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20

0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10,
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00

3.00

501.60
12.3'-j9
12.90
13.25
13.56
13.80
14.39
-14.90

501.60
12.39
12.90
1325
13.56
13.80
14.39
14.90
CDF

522.66
-11"-.56
12.58
12.97
13.33
13.64
14.31
14.93

522,66
11.48
12.58
12.97
13.33
13.64
14.31
14.93
CDF

15 kW/m
19%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal
543.70 564.76

17.99

543.70
9,72
11.37
12.74
13.84

14.74
16.31
17.29

543.70
9.72
11.37

13.84
14. 74
16.31
17.29
CDF

Creep Strain

585.76
12.39
15.09
16.70
17.80
18.62
20.15
21.21

irradiation Creep Strain
564.76 585.76
10.11 9.88
13.21 13.88
14.62 16.54
15.80 18.19
1670 19.0
18,38 21.21
19.48

Total Creep Strain
564.76 585.76
9.96 9.45
13.21 12.39
14.62 14.23
15.76 15.60
16. 70 161 6
18.38 18.50
19.4 4 19.-79

CDF 21.21
COEF

606.74
8.23
10.39
11.72
12.66

13.41
14.70

15,64
16.93
17.80

606.74
9.64
13.72
16.11
17.56

606.74
6.78
8.98

0.4 3
11.45

12.27
13.76

16.27
17.5
18.50

210

0.56 mm
80%
30.0

668.98

668.98

668.98
FCCI

627.69
5.61
7.21.
8.23
8.98
9.56
10.62
11.37
12.43
13.09

627.69
8.27
11.05
12.90

627.69
4.82
6.43
7.45
8.23
8.86
10.00
10.8 2
11.96
12.74
13.68

648.61
3.61
4.74
5.49
6.08
6.51
7.33
7.96
8.78

.33

648.61
5.72
7.80
9.17

648.61
3.10
4.19
4.98
5.53
6.00
6.90
7.53
8.43
9.02
9.84



Al
S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

501.59 522.65
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

501.59
12.47
12.74
12.97
13.21
13.44
13.99
14.54

522.65
11.21
11.88
12.35
12.66
12.97
13.56

15 kW/m
0%
20 years

Thermal
543.70 564.75

17.05

543.70
10.43
11.41
12.11
12.70
13.17
14.15
14.90

Irradiation
564.75
8.90
11.13
12.90
14.31
15.44
17.48
18.85

Clad Thickness
Smear Density
EOL Burnup

Creep Strain
585.76
11.68
14.46
16.11
17.25
18.15
19.79
20.97

Creep Strain
585.76
9.56
13.41
15.64
17.17
18.34
20.46
21.87

606.73
8.00
10.23
11.56
12.54
13.29
14.62
15.56
16.85
17.68

606.73
9.49
13.52
16.07
17.91

Total Creep Strain
564.75 585.76
8.86 8.74
11.13 11.72
12.90 13.60
14.31 14.97
15.40 16.07
17.44 17.99
18.82 19.36
CDF 21.32

CDF

211

0.56 mm
80%
27.1

627.69
5.49
7.17
8.19
8.98
9.56
10.62
11.37
12.35
12.97

648.61
3.72
4.98
5.76
6.31
6.78
7.64
8.23
9.02
9.53

668.97
1.33
2.04
2.55
2.98
3.33
4.04
4.55
5.37
5.96

1 ~

627.69
8.27
11.05
12.86

648.61
6.04
8.07
9.41

668.97
2.86
4.35
5.45
6.35

501.59
12.47
12.74
12.97
13.21
13.44
13.99
14.54
CDF

522.65
11.21
11.88
12.31
12.66
12.97
13.56
CDF

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

543.70
10.31
11.41
12.11
12.70
13.17
14.15
14.90
CDF

606.73
6.59
8.82
10.27
11.33
12.15
13.64
14.70
16.15
17.17
18.38

627.69
4.70
6.35
7.41
8.23
8.86
10.00
10.82
11.96
12.66
13.56

648.61
3.21
4.43
5.21
5.80
6.27
7.17
7.80
8.70
9.25
9.96

668.97
1.10
1.72
2.23
2.63
2.98
3.65
4.19
4.98
5.61
6.51

'I



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

501.59 522.65
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.0
3.00

15 kW/m
19%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal Creep Strain
543.70 564.75 585.76 606.73

5.68
7.75
8.98

627.68
4.19
5.86
6.86
7.61
8.20
9.31

Irradiation Creep Strain
564.75
4.23
4.60
4.90
5.16
5 .4 2
5,97
6.49
7.42
8.31

585.76
3.86
4.38
4. 86
5.31

5.64
6.12

6.61
7.53

8.46

606.73
2.89
3.41
3.90
4.30
4.68
5.45
6.05
7.12
8.09

Total Creep Strain

564.75
4.23
4.60
4.90
5.16

5.4.2
5.97
6.49
7.42

8.2 7
9.98

585.76
3.86
4.38
4.86
5.31
5.64
6.12

6.61
7.53

8.42
10,28

606.73
2.86
3.38
3.86
4.27

4.64
5.42

6.01
7.05

7.87
9.50

212

0.56 mm
85%
27.1

668.97648.61
1.15
1.52
1.71
1.89
2.00
2.30
2.56
3.04
3.49

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

501.59
5,90
6.09
6,23
6.42
6.57
6.98
7.3.5
8.13
8.91

522.65
5.08
5.49
5.79
6.05
6.27
6.72
7. 16
7.98
8.76

543.70

5.27
5. 53
5.75
5.94
6.38
6.75
7.50
8.24

668.97648.61
1.08
1.71
2.12
2.45
2.78
3.60

627.68
2.49
3.19
3.82
4.23
4.60
5.42
6 12
7 35
8.46

0.10
0.20
0.30
0.40

0.50
0.75
1.00
1.50
2.00
3.00

501.59
5.90
6.09
6.23
6.42
6.57
6.98
7.35
8.13
8.91
10.43

522.65
5.08
5.49
5.79
6.05
6.27
6.72
7.16
7.98
8.7 6
10.35

543.70
4.82
5.2~7
S. 53

5.75

5,94
6.38

6.75
7.50

8.24
9.72

668.97
FCCI

627.68
2.34
3.12
3.71
4.16
4.53
5.31
5.97
7.05
8.02
9.72

648.61
0.71
1.04

1.34
1.56
1.74
2.00

2.23
2.60
2.97
3.67



S-PRISM Driver Fuel

Linear Power
Plutonium Content
Duration

501.59 522.65
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

15 kW/m
0%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal Creep Strain
543.69 564.75 585.75

9.57
606.73
6.05
8.39
9.83
10.84

Irradiation Creep Strain
564.75
4.38
4.71
4.97
5.20
5.38
5.86
6.27
7.12
7.98

585.75 606.73 627.68 648.60 668.97
3.56 3.56 3.34 2,34 0.71
3.90 4.23 3.97 3.71 1.19
4.19 4.56 4.53 4.79 1.82
4.49 4.90 5.05 5.64 2.34
4.79 5.20 5.49 6.38 2.78
5.45 5.90 6.57 7.79 3.71
6.12 6.57 7.46 8.87 4.53
7.31 7.83 9.02
8.46 8.94 10.43

Total Creep Strain
564.75 585.75
4.34 3.56
4.71 3.90
4.97 4.19
5.20 4.49
5.38 4.79
5.83 5.45
6.27 6.09
7.12 7.31
7.94 8.42
9.69 10.69

606.73
3.30
4.23
4.56
4.86
5.20
5.90
6.53
7.76
8.83
10.98

627.68
2.34
3.49
4.49
4.97
5.45
6.46
7.35
8.79
10.09
12.32

648.60
1.60
2.26
2.97
3.64
4.19
5.27
6.05
7.16
7.98
9.02

668.97
0.37
0.56
0.71
0.89
1.11
1.82
2.41
3.15
3.78
4.79

213

0.56 mm
85%
30.66

627.68
3.67
5.60
6.79
7.61
8.27
9.50
10.35
11.54

648.60
2.23
3.60
4.56
5.27
5.83
6.79
7.50
8.46

668.97
0.56
1.00
1.45
1.82
2.15
2.82
3.34
4.19

4
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

501.59
5.60
5.97
6.23
6.49
6.72
7.20
7.61
8.42
9.24

501.59
5.60
5.97
6.23
6.49
6.72
7.20
7.61
8.42
9.24
10.87

522.65
5.31
5.57
5.79
5.97
6.16
6.57
6.94
7.64
8.39

522.65
5.31
5.57
5.75
5.97
6.16
6.57
6.94
7.64
8.39
9.83

543.69
4.49
4.90
5.23
5.49
5.75
6.38
6.90
7.61
8.39

543.69
4.49
4.90
5.23
5.49
5.75
6.35
6.90
7.61
8.35
9.91



S-PRISM Radial Blanket

Linear Power
Plutonium Content
Duration

10 kW/m
19%
20 years

Clad Thickness
Smear Density
EOL Burnup

441.10 461.68
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

Thermal Creep Strain
482.27 502.85 523.41 543.96 564.47

4.04
5.55

441.10 461.68
5.66
5.90

441.10 461.68
5.66
5.90

482.27
5.03

5.46

5.68
5.88
6.07

Total Creep Strain
502.85 523.41
3.98 3.35
4.78 4 24

5.08 4.70
5.36 4.97
5,61 5.25

5.91

214

0.56 mm
70%
6.1

585.00
2.60
3.72
4.51
5.08
5.52

605.50
1.20
1.88
2.41
2.82
3.15
3.80
4.28
5.00
5.52

482.27
5.04
5.46
5.68
5.88
6.07

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

Irradiation
502.85
3.99
4.79
5.09
5.36
5.62

Creep Strain
523.41
3,37
4.26
4.70
4.98
5.26
5.93

543.96
3.01
3.95
4.60
5.06
5.51

564.47
2.82
3.78_
4.57
5.25
5.90

585.00
2.70
3.78
4.69
5.56

605.50
1.65
2.61
3.59
4.48
5.25

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

543.96

2.96
3.91

4.58
5.04
5.48

564.47
2.64
3.70
4.51
5.15
5.78

585.00
2.11
2.92
3.64
4.21
4.68
5.57

605.50
1.02
1.57
2.04
2.43
2.77
3.41
3.90
4.64
5.19
6.00



S-PRISM Radial Blanket

Linear Power
Plutonium Content
Duration

10 kW/m
0%
20 years

Clad Thickness
Smear Density
EOL Burnup

Thermal Creep Strain

441.10 461.68 482.27 502.85 523.41
0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

441.10 461.68
5.66
5.93

482.27
4.87
5.14
5.37
5.59
5.79

Irradiation
502.85
3.97
4.66
4.90
5.11
5.32
5.81

Creep Strain
523.41
3.31
4.21
4.71
4.96
5.21
5.81

543.95 564.47 585.00
3.88 2.45
5.36 3.42

4.21
4.80
5.26

543.95
2.96
3.86
4.51
4.94
5.36

564.47
2.77
3.73
4.53
5.19
5.82

585.00
2.67
3.77
4.68
5.54

441.10 461.68
5.66
5.93

482.27
4.87
5.13
5.37
5.58
5.78

Total Creep Strain
502.85 523.41
3.95 3.28
4.66 4.19
4.89 4.71
5.11 4.96
5.31 5.20
5.81 5.80

215

0.56 mm
70%
6.1

605.50
1.66
2.22
2.75
3.21
3.59
4.29
4.80
5.51
6.02

605.50
2.56
3.86
4.91
5.79

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

543.95
2.91
3.83
4.49
4.91
5.33

564.47
2.58
3.59
4.41
5.10
5.71

585.00
2.05
2.75
3.38
3.95
4.42
5.32
6.00

605.50
1.52
1.97
2.39
2.79
3.16
3.87
4.40
5.16
5.70



S-PRISM Radial Blanket

Linear Power
Plutonium Content
Duration

476.47 497.35
0.10
0.20
0.30
0.40
0.50
0. 7-5
1.00
1.50
2.00
3.00

15 kW/n
19%
20 years

Thermal

518.21 539.07
9.05

Clad Thickness
Smear Density
EOL Burnup

Creep Strain

559.90
5.79
7.57
8.65

580.70
3.65
5.11
6.00
6.63
713

8. 5
8.71

Irradiation Creep Strain
539.07
3.34
4.27
4.66
4.94
5.19
5.80
6.40
7. 20
7.98

559.90
3.01
3.90
4.36
4.61
4.85
5.41
5.96
7.06
8.16

Total Creep Strain

539.07 559.90
331 2.97
4.26 3.87
4.66 4.36
4.92 4.60

5.19 4.84
5.80 5.40

6.38 5.95
7.18 7.03
7,98 8.11

216

0.56 mm
70%
9.1

601.49
1,92
2.86
3.50
3.97
4.36
5.10
5.65
6.43
7.02

622.25
0.69
1.11
1.42
1.67
1.90

32
2.67
3. 25

642.99
0.51
0.82
1.07
1.31
1.51
1.94
2.26
2.76

476.47
5,50
5.72
5.92
6.12
6.30
6.73
7.13
7.92
8.68

476.47
5.50
5.72
5.92
6.11
6.30
6.73
7.13
7.92
8.68

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40

0.50
0.75
1.00
1.50
2.00
3.00

497.35
4.81
5.52
5.82
5.99
6.15
6.53
6.91
7.65
8.40

497.35
4.0
5.51
5.82
5.99
6.15
6.53
6.91
7.65
8.40

518.21
3.90
4.76
5.00
5.22
5.42
5.89
6.31
7.07

7.85

518.21
3.87
4.75
5.00
5.22

5.42
5.89
6.30
7.07
7,83

580.70
2.82
3.70
4.09
4.46
4. 82
5.67
648
8.01

580.70
2.60
3.61
4.07
4.44
4.79
5.62
6.42
7.91

601.49
1.87
2.69
3.16
3.56
3.95
4.86
5.72
7.32

601.49
1.01
1.54
2.16
2.86
3.49
4.46

5.04
5.89
6.51
7.42

622.25
0.99
1.64
2.17
2.72
3. 25

622.25
0.45
0.62
0.80
0.97
1.15
1.60
1.95
2.47

2.90
3.62

642.99
0.94
1.59
2.16
2.70

642.99
0.44
0.59
0.74
0.87
1.02
1.37
1.72
2.17
2.49
3.04



S-PRISM Radial Blanket

Linear Power
Plutonium Content
Duration

476.47 497.35
0.10
0.20
0,30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

476.47
5.52
5.80
6.05
6.27
6.47
6.95
7.38
8.06
8.70

497.35
4.86
5.16
5.36
5.55
5.74
6.15
6.52
7.25
7.95

15 kW/m
0%
20 years

Thermal
518.21 539.07

8.83

518.21
3.90
4.87
5.19
5.37
5.54
5.92
6.30
7.00
7.70

Irradiation
539.07
3.32
4.21
4.45
4.66
4.87
5.37
5.87
6.86
7.87

Clad Thickness
Smear Density
EOL Burnup

Creep Strain
559.90
546
7.20
8.26
9.02

580.70
3.34
4.66
5.56
6.22
6.73
7.68
8.38

Creep Strain
559.90
3.00
3.89
4.42
4.65
4.85
5.36
5.89
6.92
8.00

580.70
2.76
3.60
4.06
4.41
4.75
5.56
6.35
7.85

Total Creep Strain
539.07 559.90
3.30 2.92
4.21 3.82
4.45 4.42
4.66
4.86
5.36
5.86
6.85
7.85

4.64
4.85
5.35
5.86
6.88
7.95
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0.56 mm
70%
9.1

601.49
2.14
2.97
3.67
4.22
4.66
5.45
6.02
6.82
7.40

I
642.99
0.25
0.40
0.55
0.75
0.95
1.36
1.70
2.21
2.62

622.25
1.49
1.96
2.41
2.81
3.16
3.80
4.26
4.90
5.35

622.25
2.44
3.49
4.26
5.02

601.49
2.62
3.49
4.12
4.66
5.19
6.45
7.65

642.99
0.90
1.64
2.24
2.75

476.47
5.52
5.80
6.05
6.27
6.47
6.95
7.38
8.06
8.70

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

497.35
4.84
5.16
5.36
5.55
5.72
6.15
6.52
7.23
7.95

518.21
3.87
4.86
5.17
5.36
5.54
5.92
6.30
7.00
7.68

580.70
2.47
3.36
4.04
4.37
4.71
5.50
6.27
7.72

601.49
1.84
2.44
3.00
3.50
3.92
4.77
5.39
6.26
6.88
7.75

622.25
1.36
1.72
2.09
2.42
2.74
3.39
3.86
4.55
5.04
5.69

642.99
0.24
0.35
0.47
0.61
0.77
1.16
1.47
1.97
2.36
2.99

*
4



Tight Pitch Breed and Burn Fuel

Linear Power
Plutonium Content
Duration

0.10
0.20
0.30
0.40

0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40

0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40

0.50
0.75
1.00
1.50
2.00
3.00

496.31 517.51
19.81

496.30
13.14
16.50
18.90
20.85
21.36

496.30
13.12
16.50
18.90
20.83

517.51
11.67
14.83
17.10
19.02
20.61

517.51

11.64
14.82
17.07
18.99
20.51

10 kW/m
0%
40 years

538.70
13.44
15.39
16.54
17.38
1801
19.18

20.03
21.25

538.69
10.59
13.57
15.73
17.52
18.99

538.69
10.30
12.67
14.16
15.24
16.11
17.63
18.68
20.16
21.20

Fuel Venting
Smear Density
EOL Burnup

Thermal Creep Strain
559.83 580.95
9.0 6.06
10.55 7.20
114 8 7.91
12.16 8.44
:.2.68 8.86
13.69 9.65
14.42 10.25
15.49 11.12
16.25 11.76

Irradiatio
559.82
.76

12.61
14.72

16.44

602.04
4.10
4.92
5.44
5.85

6, 1
6.82
7.28
7.99
8.51

No
63%
21.4

623.07
2,38
2.84
3.13
3.36
3.54
3.89
4.15
4.52
4.78

644.09
1.68
2.02
2.24
2.41
2.56
2.82

3.03
3.32
3.54

665.07
1.16
1.43
1.61
1.73
1.84

2.05
2.19
2.43
2.60

n Creep Strain
580.94 602.03 623.06 644.08 665.05
9.08 7.83 5.05 3.70 2.62
11.91

Total Creep Strain

559.82 580.94
7.86 5.63
9.51 6.79
10.56 7.53
11.32 8.09
S1.92? 8.54

13.02 9.38
13.82 9.99
14.99 10.88
15.83 11.56
17.03 12.52

60203
3.92
4.74
5.28
5.69
6 03
6.67
7.15
7.87
8.41
9.20

623.06
2.33
2.78
3.07
3.31
3.48
3.83
4.10
4.48
4.75
5.13

644.08
1.64
1.97
2. 19
2.37
2.50
2.78
2.98
3.29
3.51
3.83

665.05
1.13
1.39
1.57
1.70
1.80
2.00
2.16
2.40
2.57
2.82

218



Tight Pitch Breed and Burn Fuel

Linear Power
Plutonium Content
Duration

496.31 517.51

10 kW/m
0%
40 years

Fuel Venting
Smear Density
EOL Burnup

Thermal Creep Strain
538.70 559.83 580.95

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

602.04
17.11
18.72
19.34
19.67
19.89
20.23
20.36
20.44
20.45

623.07
8.98
11.42
12.62
13.34
13.82
14.53
14.91
15.33
15.59

Irradiation Creep Strain
496.30 517.51 538.69 559.82 580.94

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

602.03 623.06 644.08 665.05
15.05 10.90 8.00

Total Creep Strain
496.30 517.51 538.69 559.82

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

580.94 602.03
16.19
18.30
19.09
19.50
19.76
20.14
20.33
20.42
20.45
20.48
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Yes
63%
31.4

644.09
6.25
8.06
8.95
9.49
9.86
10.37
10.66
10.99
11.16

665.07
4.48
5.97
6.66
7.05
7.30
7.67
7.86
8.07
8.13

623.06
8.22
10.84
12.19
13.00
13.55
14.35
14.79
15.26
15.53
15.89

644.08
5.75
7.67
8.66
9.27
9.67
10.25
10.58
10.93
11.13
11.34

665.05
4.07
5.65
6.42
6.88
7.17
7.58
7.81
8.05
8.13
8.18



Tight Pitch Breed and Burn Fuel

Linear Power
Plutonium Content
Duration

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

565.47
10.62
12.40

13.47
14.24
14.86
15.95
16.74
17.86
18.67

15 kW/m
0%
40 years

587.25
707
8.38

9. 81
10.29
11.19
11.85
12.79
13.49

608.97
4.74
5.68
6. 30
6.76
7.11
7.81
8.34
9.08
9.63

Fuel Venting
Smear Density
EOL Burnup

Thermal
630.64
2.81
3.31

3.2
3.86
4.04
4.41

5.05
5.31

Creep Strain
652.29
1.93
2.30
2.52
2.70
285

3.12
3.34
3.62
3.84

673.81
1. 32
1.60

.8
1.91

2.24
2.39
2.61
2.79

Irradiation
608.95 630.62
8.21 5.13

Creep Strain
652.27
3.62

Total Creep Strain

630.62 652.27
20 .87
3.20 2.24
3.53 2.46
3.77 2.66
3.97 2.79
4.32 3.07
4.61 3.27
4.98 3.58
5.24 3.80
5.64 4.10

673.79 695.30 716.73
2.52 1.76 1 27

1.67

673.79
1.27
1.56
1.73
1.87
1.97
2.19
235
2.57
2.74
2.98

695.30
0.75
1.05
1.21
1.32
1.40
1.58
1.69
1.87
2.02
2.19

716.73
0.09
0.57
0.77
0.88
0.97
1.14
1.27
1.45
1.58
1.73

220

No
63%
32.0

695.32
0.81
1.10
1.25
1.36
1.45
1.62
1.73
1.91
2.04

716.76
0.11
0.61
0.81
0.92
1.03
1.18
1.32
1.49
1.60

738.17
0.00
0.02
0.29
0.46
0.57
0.77
0.88
1.05
1.18

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40

0.50
0.75
1.00
1.50
2.00
3.00

565.45
10.91
14.07
16.43
18.23

565.45
9.04
10.99
12.22
13.12
13.82
15.12
16.02
17.27
18.15
19.42

587.23
10.14
13.14

587.23
6.47
7.83
8.71
9.35
9.85
10.82

11.50
12.51
13.23
14.26

738.1.2
0.83
1.16

738.12
0.00
0.02
0.26
0.44
0.53
0.72
0.83
1.01
1.14
1.32

608.95
4.48
5.42
6.06
6.52
6.89
7.61
8.14
8.91
9.48
10.31



Tight Pitch Breed and Burn Fuel

Linear Power
Plutonium Content
Duration

565.47 587.25
26.88
28.94
29.73
30.17
30.48
30.98
31.31
31.44

15 kW/m
0%
40 years

608.97
18.08
19.70
20.32
20.63
20.85
21.17
21.31
21.37
21.39

Thermal
630.64
9.96
12.46
13.65
14.33
14.77
15.43
15,78
16.17
16.41

Irradiation
565.45 587.23 608.95 630.62
28.59 27.23 21.33 15.27

Fuel Venting
Smear Density
EOL Burnup

Creep Strain
652.29
6.49
8.45
9.41
9.96
10.33
10.86
11.17
11.48
11.67

Yes
63%
32.0

673.81
3.84
5.33
6.14
6.67
7.02
7.55
7.83
8.16
8.36

695.32
2.35
3.25
3.84
4.28
4.59
5.09
5.42
5.79
6.01

Creep Strain
652.27 673.79 695.30
10.82 7.33 4.81

5.92

Total Creep Strain
565.45 587.23
28.33 24.27

27.74
29.03
29.69
30.11
30.72

31.42
CDF

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

738.17
0.00
0.02
0.29

738.12

716.76
0.11
1.80
2.26
2.68
3.01
3.55
3.93
4.23
4.37

716.73
3.20
4.23

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

608.95
16.94
19.18
20.01
20.43
20.69
21.09
21.28
21.37
21.39
CDF

630.62
8.91
11.70
13.08
13.91
14.44
15.23
15.62
16.08
16.35
16.68

652.27
5.79
7.90
8.97
9.63
10.07
10.71
11.06
11.41
11.63
11.85

738.12
0.00
0.02
0.26
FCCI

673.79
3.40
4.89
5.77
6.34
6.76
7.37
7.70
8.07
8.29
8.47

695.30
2.08
2.98
3.58
4.02
4.34
4.92
5.27
5.68
5.95
6.12

716.73
0.09
1.43
2.04
2.44
2.76
3.36
3.73
4.17
4.32
4.45

221



Tight Pitch Breed and Burn Fuel

Linear Power
Plutonium Content
Duration

20 kW/rn
0%
40 years

579.74 601.62 623.46
9.01 6.06 4.1
10.59 7.20 4.92
11. 53 7. 93 .47
12.23 8.48 5.88
12.79 8.92 6.20
13.81 9.71 6.82
14. 57 10.30 7.28
15.62 11.15 7.96
16.35 11.79 8.46

Fuel Venting
Smear Density
EOL Burnup

Thermal
645.20
2.78
3.39
-.77
4.07
4.30
4.80
5.15
5.68
6. 06

Creep Strain

666.93
1.73
2.11
2.31
2.49
2.60
2.87
3.04
3.31
3.51

688.55
1.14
1.43

1. 76
1.84
2.05
2.9
2.40

2.57

Irradiation
623.44 645.18
6.99 5.00

Creep Strain
666.90 688.52
3.04 2.11

2.66

710.09
1.46
1.87

731.61 753.03
0.67

Total Creep Strain

645.18 666.90
2.63 1.67
3 .22 2.02
3.63 2.25
3,92 2.40
4.18 2.5
4.65 2.81
5.00 2.98
5.56 3.28
5.94 3.45
6.55 3.74

222

No
63%
42.7

0.10
0.20
0.30
0.40
0.50
0.75
100
1.50
2.00
3.00

731.68
0.00
0.29
0.59
0.76

753.14
0.00
0.00
0.00
0.06

710.14

0.53
0.94
1.11
1.23
1.32
1.46
1.58
1.76
1.87

579.72
10.53
13.63
15.95

601.60
9.13
11.85

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40

0.50
0.75
1.00
1.50
2.00
3.00

579.72
7.93
9.60
10. 65
11.44
12.05
13.19
13.98
15.16
15.97
17.12

601.60
5.59
6.79
7.55
8.10
8.54
9.39
10.01
10.91
11.56
12.52

623.44

3.86
4.68
5.24
5.65
6.00
6.61
7.11.
7.81
8. 1
9.07

731.61
0.00
0.23
0.53
0.67
0.79
F CC I

688.52
1.05
1.38
1.55
1.70
1.78
1.99
2.14
2.37
2.52
2.75

710.09
0.47
0.85
1.05
1.17
1.26
1.40
1.52
1.70
1.84
2.02

753.03
0.00
0.00
0.00
0.03
0.26
0.53
0.67
FCCI



Tight Pitch Breed and Burn Fuel

Linear Power
Plutonium Content
Duration

20 kW/m
0%
40 years

Fuel Venting
Smear Density
EOL Burnup

Thermal Creep Strain
645.20
10.47
11.88
12.40
12.67
12.84
13.11
13.19
13.25
13.28

666.93
5.32
7.20
8.13
8.72
9.10
9.65
9.95
10.30
10.47

Irradiation Creep Strain
601.60 623.44 645.18 666.90
26.24 18.72 13.14 8.98

688.52
576

10.44 7.14

710.09
3.86
4.97
5.53

731.61 753.03

Total Creep Strain
579.72 601.60 623.44 645.18
28.12 21.68 14.80 9.65
34.73 24.55 16.88 11.44
36.69 25.57 17.61 12.14
37.68 26.07 17.99 12.49
38.33 26.39 18.23 12.73
39.26 26.86 18.58 13.02
39.82 27.15 18.72 13.17
40.58 27.30 18.78 13.25
40.73 CDF 18.81 CDF
CDF CDF

223

IR.11

Yes
63%
42.7

579.74
34.84
37.24
38.18
38.71
39.12
39.79
40.23
40.70
40.75

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

601.62
23.67
25.40
26.04
26.39
26.62
27.03
27.24
27.33
27.36

623.46
15.89
17.38
17.91
18.20
18.37
18.67
18.75
18.81
18.84

731.68
0.00
0.29

688.55
2.95
4.27
5.06
5.59
5.97
6.55
6.90
7.26
7.49

753.14
0.00
0.00
0.00
0.06
0.29

710.14
0.94
2.72
3.31
3.72
4.01
4.53
4.86
5.27
5.47

579.72
28.35
35.90
38.44

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

731.61
0.00
0.23
FCCI

666.90
4.56
6.52
7.61
8.31
8.75
9.45
9.80
10.18
10.42
CDF

688.52
2.60
3.80
4.62
5.21
5.62
6.32
6.70
7.14
7.40
7.64

753.03
0.00
0.00
0.00
0.03
0.26
FCCI

710.09
0.50
2.46
3.01
3.39
3.72
4.30
4.65
5.12
5.38
5.56



Tight Pitch Breed and Burn Fuel

Linear Power

Plutonium Content
Duration

25 kW/m
0%
40 years

603.59 625.63 647.62
6.47 439 2.-749
7.68 5,27 3.22
8.45 5.85 3.55
9.03 6.25 3 77
9.47 6,62 3,95
10.31 7.24 4.32
10.93 7.75 4.53
11.81 8.45 4.90
12.47 8.96 5.12

Fuel Venting
Smear Density
EOL Burnup

Thermal

669.56
1.8-7
2.27
32.49
2.67
2.82
3.11
3.29,
3.58

.77

Creep Strain
691.41
1.21
1.54
1.76
1.90
2.01
2.23
2.38
2.60
2.78

713.20
0.55
0.99
1.1j 7I
1.28
1,39
1.57

1.68
1.90
2.01

Irradiation
647.58 669.52
4.46 3.1

Creep Strain
691.36
2.16
2.71

713.14
1.46
1.87

734.83 756.44 777.76
0.66 0.44

0.66

Total Creep Strain

669.52
1.76
2.16

2.38
2.60
2.
3.00

322
3.51

3. 73
4.02

691.36
1.10
1.46
1.65
1.79

1-90
2.12

2.30
2.52
2.71
2.96

224

No
63%
53.4

0.10
0.20
0.30
0.40

0.50
0.75
1.00
1.50

2.00
3.00

734.91
0.00
0.22
0.62

756.59
0.00
0.00
0.00
0.04
0.22
0.59

778.04
0.00
0.00
0.00
0.00
0.00
0.00
0.04
0.48
0.69

603.57
9.25
12.00

625.60
7.06
9.18

0.10
0.20
0.30
0.40
0.SO
0.75
1.00
1.50
2.00
3.00

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

603.57
5.92
7.17
7.97
8.56

9.07
9.95
10.61
11.52
12.21
13.20

625.60
4.10
4.97
5.56
6.00
6.36
7.02
7.53
8.27
8.78
9.58

647.58
2.60
3.11
340
3.66
3.84
4.21
4.46
4.83
5.08
5.41

734.83
0.00
0.15
0.51
0.69
FCCI

713.14
0.44-
0.88

1.10
1.21

1.32
1.50

1.65
1.83
1.97
2.16

756.44
0.00
0.00
0.00
0.04

0.18
0.51
0.69
FCCI

777.76

0.00
0.00
0.00
0.00
0.00
0.00
0.04
0.44
0.62
FCCI



Tight Pitch Breed and Burn Fuel

Linear Power
Plutonium Content
Duration

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

603.59
25.42
27.06
27.68
28.01
28.23
28.64
28.82
28.89

25 kW/m
0%
40 years

625.63
17.04
18.47
18.98
19.27
19.42
19.71
19.78

647.62
10.28
12.62
13.60
14.15

14.48
14.96
15.25
15.54
15.73

Thermal
669.56
5.49
7.50
8.52
9.14
9.55
10.13
10.42
10.79
11.01

Fuel Venting
Smear Density
EOL Burnup

Creep Strain
691.41
3.07
4.53
5.41
5.96
6.36
6.99
7.31
7.68
7.86

713.20
0.88
2.78
3.44
3.88
4.21
4.75
5.12
5.52
5.74

Irradiation Creep Strain
603.57 625.60 647.58 669.52 691.36
27.43 19.53 14.08 8.96 5.71

10.64 7.28
7.94

713.14
3.77
4.94
5.60

734.83 756.44 777.76

Total Creep Strain
669.52
4.61
6.66
7.83
8.59
9.11
9.84
10.24
10.68
10.90
CDF

691.36
2.63
3.91
4.83
5.45
5.92
6.66
7.09
7.53
7.79
CDF
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Yes
63%
53.4

734.91
0.00
0.22

756.59
0.00
0.00
0.00
0.04
0.22

778.04
0.00
0.00
0.00
0.00
0.00
0.00
0.04

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

603.57
23.11
26.11
27.14
27.65
27.98
28.45
28.74
CDF

0.10
0.20
0.30
0.40
0.50
0.75
1.00
1.50
2.00
3.00

625.60
15.76
17.92
18.69
19.05
19.27
19.60
19.75
19.82
CDF

734.83
0.00
0.15
FCCI

647.58
8.78
11.67
12.98
13.68
14.15
14.77
15.10
15.47
15.65
CDF

756.44
0.00
0.00
0.00
0.04
0.18
FCCI

713.14
0.44
2.49
3.04
3.51
3.84
4.46
4.86
5.34
5.63
CDF

777.76
0.00
0.00
0.00
0.00
0.00
0.00
0.04
FCCI

I



Appendix B: Sodium Properties

This appendix contains the sodium properties that were used in COBRA throughout the

course of this work. COBRA uses all British units. All the values in British units are reported

with the number of significant figures used (which is the number originally given with COBRA).

Standard values on the tables below we-cre converted from the British units and aie rounded

appropriately. Properties are for liquid sodium unless otherwise specified.
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Pressure Temperature Specific Volume Vapor Specitic
Volume

124.2 856.33 2145 1173.89 0.02388 1.49E-03

ft3/lb m3/kgpsia

0
0
0

0
0

0
0
0
0

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.3
0.4

0.4

0.5

0.6

0.7

0.9
1

2.1

4.2

7.8

13.4

14.8

kPa

0

0
0
0
0
0
0

0
0

0.69

0.69
0.69

0.69

1.38
1.38
1.38

2.07
2.76
2.76

3.45

4.14

4.83

6.21
6.89

14.48

28.96

53.78

92.39
102.04
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0F

500

550

600

650

700
750

800
840

880

920

940

960
980

1000
1020

1040

1060
1080

1100
1120

1140

1160

1180

1200

1300
1400

1500

1600

1619

oC

260.00

287.78

315.56

343.33
371.11

398.89
426.67

448.89

471.11

493.33

504.44

515.56
526.67

537.78
548.89
560.00

571.11

582.22

593.33

604.44

615.56

626.67
637.78
648.89
704.44

760.00

815.56

871.11
881.67

ft3/lb

0.01801

0.01801

0.01828

0.01842

0.01856

0.0187
0.01885

0.01897

0.01909

0.01921

0.01927

0.01933
0.0194

0.01946

0.01952

0.01959

0.01965
0.01971

0.01978

0.01985

0.01991

0.01998
0.02005

0.02011

0.02046

0.02082

0.02119

0.02157

0.02165

m3/kg

1.12E-03

1.12E-03

1.14E-03

1.15E-03

1.16E-03

1.17E-03

1.18E-03

1.18E-03

1. 19 E-03

1.20E-03

1.20E-03

1.21E-03
1.21E-03

1.21E-03

1.22E-03

1.22E-03

1.23E-03

1.23E-03

1.23 E-03

1.24E-03

1.24E-03

1.25E-03

1.25E-03

1.26E-03

1.28E-03

1.30E-03
1.32:E-03

1.35E-03

1.351E-03

409870.00
178120.00

83102.00
41266.00

24533.00

15060.00

9519.00

7645.00

6180.00

5026.00
4111.00

3382.00
2798.00

2326.00

1944.00

1632.00
1376.00

1166.00

992.00
847.50

726.90
356.30
189.10

107.40

64.63
59.34

8.52

2.56E+04

1.11E+04

5.19E+03

2.58E+03

1.53E+03

9.40E+02

5.94E+02

4.77E+02

3.86E+02
3.14E+02

2.57E+02

2.11E+02

1.75E+02

1.45E+02

1.21E+02

1.02E+02

8.59E+01
7.28E+01

6.19E+01

5.29E+01
4.54E+01

2.22E+01

1.18E+01

6.70E+00
4.03E+00

3.70E+00

5.32E-01



Pressure

psia kPa

0

0
0

0

0

0
0
0
0

0.1

0.1

0.1

0.1
0.2

0.2

0.2

0.3

0.4

0.4

0.5

0.6
0.7

0.9

1

2.1

4.2

7.8

13.4

14.8

Temperature Enthalpy Vapor Enthalpy

F c Btu/Ib J/kg Btu/Ib J/kg

0 500 260.00 303.76 7.07E+05 2204.8 5.13E+06
0

0

0

0

0
0
0
0

0.69
0.69
0.69
0.69

1.38

1.38
1.38
2.07

2.76

2.76

3.45

4.14

4.83

6.21

6.89
14.48

28.96

53.78

92.39

102.04

550

600

650

700
750
800
840

880
920
940

960

980
1000

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

1300

1400

1500

1600

1619

287.78

315.56

343.33

371.11
398.89

426.67

448.89

471.11

493.33
504.44

515.56
526.67

537.78

548.89
560.00
571.11

582.22

593.33

604.44

615.56

626.67

637.78

648.89
704.44

760.00
815.56

871.11

881.67

319.44

335.01

350.49

365.88
381.19

396.43
408.58
420.69

432.77

438.8

444.83

450.85

456.86
462.87

468.88
474.88

480.88
486.88

492.87

498.87

504.86
510.86

516.85
546.85
576.95

607.21

637.7

643.4

7.43E+,-05
7.79E+05

8.15E+05

8.51E+05

8.87E+05

9.22E+05

9.50E+05
9.79E+05

1.01E--06

1.02E+06

1.03E+06

1.05E+06
1.06E+06

1.08E+06
1.09E+06
1.10E+06

1.12E+06

1.13E+06

1.15E+06

1.16E+06

1.17E+06

1.19E+06

1.20E+06
1.27E+06

1.34E+06

1.41.E+06

1.48E+06

1.50E+06

2212.9

2220.5

2227.6

2234.1

2240.2

2245.8

2249.9

2253.9

2257.6

2259.3

2261.1

2262.8

2264.4

2266.1
2267.6

2269.2
2270.8

2272.3

2273.8

2275.2

2276.7

2278.2

2279.6

2286.7

2293.9
2301.1

2308.5

2310.2

5.15E+06

5.16E+06

5.18E+06

5.20E+06

5.21E+06

5.22E+06

5.23E+06

5.24E+06

5.25E+06

5.26E+06

5.26E+06

5.26E+06

5.27E+06

5.27E+06

5.27E+06

5.28E+06

5.28E+06

5.29E+06

5.29E+06

5.29E+06

5.30E+06

5.30E+06

5.30E+06

5.32E+06

5.34E+06

5.35E+06

5.37E+06

5.37E+06

124.2 856.33 2145 1173.89 810.92 1.89E+06 2351.7 5.47E+06
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Thermal
Pressure Temperature Viscosity Codciiy Surface Tension

Btu/(hr-
F C lb/ft-hr N-s/m2 ft-F)

0

0
0
0
0
0
0

0

0

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.3

0.4

0.4

0.5
0.6
0.7

0.9

1
2.1

4.2

7.8

13.4

14.8

0
0
0
0
0
0
0
0
0

0.69

0.69
0.69

0.69
1.38
1.38

1.38
2.07
2.76
2.76

3.45

4.14

4.83

6.21

6.89
14.48

28.96
53.78

92.39
102.04

500

550

600
650
700
750
800
840

880

920
940

960

980
1000
1020

1040

1060
1080

1100

1120

1140

1160
1180

1200

1300

1400

1500

1600
1619

260.00

287.78

315.56

343.33

371.11

398.89
426.67

448.89

471.11

493.33

504.44

515.56
526.67

537.78
548.89

560.00

571.11

582.22

593.33

604.44

615.56
626.67

637.78

648.89
704.44

760.00
815.56

871.11

881.67

W/m-k

0.9235

0.8591

0.8038
0.7558

0.7138

0.6767

0.6437

0.6198

0.598

0.5778

0.5683
0.5592

0.5504

0.5419

0.5338
0.5259

0.5183
0.511

0.5004

0.497

0.4904

0.484

0.4778

0.4717

0.4442

0.4204

0.3995

0.3811

0.3779

lbf/ft N/m

3.82E-04

3.55E-04

3.32E-04

3.12E-04

2.95E-04

2.80E-04

2.66E-04

2.56E-04

2.47E-04

2.39E-04

2.35E-04

2.31E-04

2.28E-04

2.24E-04

2.21E-04

2.17E-04

2.14E-04

2.11E-04

2.07E-04

2.05E-04

2.03E-04

2.OOE-04

1.98E-04

1.95E-04

1.84E-04

1.74E-04

1.65E-04

1.58E-04

1.56E-04

45.43

44.6

43.79

42.98

42.18

41.39

40.62

40

39.39

38.79

38.5

38.2

37.91

37.61

37.42

37.03
36.74

36.46

36.03

35.89

35.61

35.33
35.05
34.78

33.42

32.11

30.84

29.61

29.38

124.2 856.33 2145 1173.89 0.3094 1.28E-04 23.64 40.89 0.00612 0.40
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kPapsia

78.57

77.14

75.74

74.34

72.95

71.59

70.26

69.18

68.13

67.09

66.59

66.07

65.57

65.05

64.72

64.05

63.54

63.06

62.32
62.07

61.59

61.11

60.62

60.15
57.80

55.54

53.34

51.21

50.81

0.01238

0.01219

0.012

0.01181

0.01162
0.01143

0.01124

0.01109

0.01094

0.01078

0.01071

0.01063

0.01056
0.01048

0.0104

0.01033
0.01025
0.01018

0.01006
0.01002

0.00995
0.00987
0.00979

0.00972
0.00934

0.00896
0.00858

0.00819

0.00812

0.81
0.80
0.78
0.77

0.76
0.75

0.73

0.72

0.71

0.70

0.70
0.69

0.69

0.68
0.68

0.67
0.67
0.66
0.66
0.65

0.65
0.64

0.64

0.63
0.61
0.59
0.56
0.53

0.53



Appendix C: Input Files

This appendix contains a sampling of all the input files for COBRA and FEAST. Base

input files were provided for each of the cases discussed in this thesis. For a detailed description

of the input file for both codes consult Wheeler et al. (31) (COBRA) or Karahan (23) (FEAST).

For each code, some changes made to the code required alterations to the input files. Those

alterations are listed below.
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COBRA Input File Modifications

-Setup.2 N5 LAMNF Pressure Drop Correlation

1=old cobra correlation

2= Cheng and Todreas Correlation

3= Novendstem

Setup 2.1 and 2.2 are filled with constants needed for the above correlations

-Setup.2 N6 Heat Transfer Correlation

O=Dittus Boelter

1=New Correlation-go to Setup2.3

For free form correlation enter constants as described

For Mikityuk correlation simply enter I on this line

-Setup.10 NI Turbulent Mixing

0-3=options in manual

4=Rheme Correlation

FEAST Input File Modifications

- Supplemental input files were added for coolant temperature and heat transfer coefficient

- A case number was added as the first line of the input file after the title, this allows for FEAST

to be run in a batch format.

-Tcout was removed from the main input file as it was redundant from the Coolant Temperature

input file

- Dtpeak was added as the final option before the transient flag to allow for calculation of creep

strains and CDF at a peak temperature
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COBRA Input File for ORNL 19-Pin Assembly

99999
1 ORNL

30
Sodium Properties Omitted-See Appendix B
23.64 .00612

2 0 0 0 0 2 0
.1458.0363-.033.1430.0419-.044.1449.0067-.009.316 -. 25
62.97216.9-190.44.40256.7-267.87.2638.59-55.1.316 -. 25

3 6
0 0 .395
4 42 42
7 60

12.

0 0.4 1.0 .920 1..925

9
2

.230

0 1 0

9
.056

8 19 19 2 1
9.250 0 00.17012.71

9 1

2.

40 0 0
80 100
10 0 0

.01

11 1 0
14.65

9
0 00.0159999.

0 0 0 0 0 0 0 0 0

1

600. 0.0654 0.0085
12 2 8 1

41 32 18 17 4 1 9 38
1
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COBRA Input File for Toshiba 37-Pin Assembly

99999
1 Toshiba
1 32

Sodium Properties Omitted-See Appendix B

2 0 0 0 0 2 0
.1458.0363-.033.1430.0419-.044.1449.

62.97216.9-190.44.40256.7-267.87.263

0067-.009.316
8.59-55.1.31-6

7520.1620
1560.2531
1560.3451
752.43570

8430.1770
1860.2691
1140.3601
654.43670

7 1
12.

8 37
9.250 0

9

114 2
.256

37 2 1
00.17012.71

9
.052

9
0 00.0159999.

119.8
0

240

0 .10 0 .020 0 C 0 0 0 0 0

30
10 0 0 1

.01
2.244

11 1 0
14.65

12 0
65 42 43 18

403.52
14

1.0826 0.02417

17 4 5 6 1 8 7 26 27 56

233

3
0.0000
0.1920
0.2841
0.3760
1.0000

4

25
0000.
9990.
2100.
9990.
000
78

1300
2081
2991
3910

.0000.

.0620.

.2040.

.9250.

-. 25
-. 25

1310
2231
3141
4060

.6540

.1140

.1860

.8430

1460
2381
3301
4210

78 9

925
204
062
000



COBRA Input File for WARD 61-Pin Assembly

99999
1
1

WARD

30
Sodium Properties Omitted-See Appendix B

2 0 0 0 0 2 0
.1458.0363-.033.1430.0419-.044.1449.0067-.009.316 -. 25
62.97216.9-190.44.40256.7-267.87

3 50
.2638.59-55.1.316 -. 25

.0000.0000.0900

.1290.6290.1390

.1871.0280.1961

.0000

.7020

.0830

.0910

.1480

.2061

.3150

.7740

.1340
.2441.2970.2541.3260.2631.3510
3021
3591
4171
4740
5230

4
7

4.0

4000.3111.
3260.3691.
0830.4261.
7020.4840.
0001.0000.
126

.1010.

.1580.

.2161.

.2731.

3960
8420
1810
3700

1100.4750.1200.553
1680.9070.1770.969
2251.2240.2351.263
2831.3850.2921.395

4000.32111.3950.3301.3850.3401.3700.3501.351
2970
0280
6290
0 00

126
186
.519

.3781

.4360

.4 930

.2630.3881.

.9690.4450.

.5530.5030.

2240
9070
4750

.3981.1810.4071.

.4550.8420.4650.

.5120.3960.5220.

9
2

.037
9

8 61 61 2 1
0 00.17012.71

0 .12 0 .012

9
0 00.0159999.

0 0 0 0 0 0 0

200
10 0 0 1

.01
3.64

11 1 0
14.65 605.2 0.8326

12 0 18
98 57 58 27 26 7 8 1 6 5

04830

4 17 18 43 42

234

0
0
0
0
0
0
0
0
0

134
774
315

9.250
9

104.4
0

209

79 80111



COBRA Input File for KALIMER 271-Pin Assembly

99999
1 KALIMER

1 30
Sodium Properties Omitted-See Appendix B

2 0 0 0 0 2 0
.1458.0363-.033.1430.0419-.044.1449.0067-.009.316 -. 25

62.97216.9-190.44.40256.7-267.87.2638.59-55.1.316 -. 25

3 4
0. 1. .3120
4 546 546

1. .3200 0. 1. 0.
9

7 1
8.20866

8 271
9.250 0

816 2
.3019 .0
271 2 1

00.17012.71

9
47244

9
0 00.0159999.

9
124.5

250

1
0
0

0 0 0 0 0 0 0 0 0 0
100

10 0 0
.01

2.8
11 1 1 0
14.695 727.2

12 0 22

0 0
2.418

0

545522452354269194131 82 44 19

61104161230309402496542

4 1 10 29
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COBRA Input File for ULOF Accident

99999
1 ULO
1 30

Sodium Propert
2 0

.316 -. 25

3 23
0. 0. .027

.16661.307.194

.33331.558.361
0.500.3876.527

4 546 54

7 1 81
19.685

8 271 27
9.250 0

9 1
172.212000

219 2400 300
10 0

.01
.5

11 1
14.695

1.00020
1 .011140
1.021260
1.032380
1.044500
1.056620
1.069740
1.081860
1.092980

0 1.1031100
0 1.1131220
0 1.1231340
0 1.1321460
0 1.1401580
0 1.1471700
0 1.1551820
0 1.1611940
0 1.1682060
0 1.1742180
0 1.1792300
0 1.1842420

F Accident

ies Omitted-See Appendix B
0 0 0 0 -1
.316 -. 25 .316 -.25

7.2144
41.451
11.475
7.2053
6
6

.0555.3607

.22221.544

.38881.346

.5555.1031

9
2

346456 .041338

1 2 1
00.17012.71

.316 -. 25

0833.5821.1111.8443.13881.099
25001.602.27771.615.30551.601

41661.157.4444.9106.4722.6344

5577 0. 1. 0.

9

9
0 00.0159999

4

0 0 0 0 0 0 0 0 0 0

0 1

0 0 601 601 601
680.
.00140
.013160
.023280
.034400
.046520
.058640
.071760
.083880
.0941000
.1051120
1151240

.1-241360

.1331480

.1411600

.1491720

.1561840
1621960
1692080
.1742200
.1802320
.1852440

.098
00463
015180
024300
.036420
.048540
.060660
.0737 8 0
.085900
.0961020
.1071140
1171260
.261380

.1341500

.1421620

.1501'740

.1571860

.1631980

.17032100

.1752220
.1812340
.1862460

.1779
1.00680
1.016200
1 . 026320
1.037440
1.050560
1 .063680
1.075800
1.087920
1.0981040

.1081160
1.1181280
1.1271400

1.13615 20
1.1441640
11511760

1.1581880
1.1642000
1.1712120
1.1762240
1.1822360
1.1872480

.008100

.018220

.028340

.039460

.052580

.065700

.077820

.089940

.1001060

.1101180

.1201300
1291420

.1371540
14516 6 0
.1521780
.1591900
1652020

.1722140

.1772260

.1822380

.1872500

.010

.019

.030

.042

.054

.067

.079

.090

.101

.112

.121

.130

.138

.146

.153

.160

.167

.173

.178

.183

.188
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0
120
240
360
480
600
720
840
960
108
120
132
144
156
168
180
192
204
216
228
240



2520
2640
2760
2880
3000
3120
3240
3360
3480
3600
3720
3840
3960
4080
4200
4320
4440
4560
4680
4800
4920
5040
5160
5280
5400
5520
5640
5760
5880
6000
6120
6240
6360
6480
6600
6720
6840
6960
7080
7200
7320
7440
7560
7680
7800
7920
8040

.1892540

.1932660

.1972780

.2012900

.2053020

.2083140

.2113260

.2143380

.2173500

.2203620

.2223740

.2243860

.2273980

.2294100

.2304220

.2324340

.2344460

.2364580

.2374700

.2394820

.2404940

.2415060

.2435180

.2445300

.2455420

.2465540

.2475660

.2485780

.2495900

.2506020

.2516140

.2526260

.2536380

.2546500

.2546620

.2556740

.2566860

.2576980

.2577100

.2587220

.2597340

.2597460

.2607580

.2607700

.2617820

.2617940

.2628060

1.1902560
1.1942680
1.1982800
1.2022920
1.2053040
1.2093160
1.2123280
1.2153400
1.2183520
1.2203640
1.2223760
1.2253880
1.2274000
1.2294120
1.2314240
1.2334360
1.2344480
1.2364600
1.2374720
1.2394840
1.2404960
1.2425080
1.2435200
1.2445320
1.2455440
1.2465560
1.2475680
1.2485800
1.2495920
1.2506040
1.2516160
1.2526280
1.2536400
1.2546520
1.2546640
1.2556760
1.2566880
1.2577000
1.2577120
1.2587240
1.2597360
1.2597480
1.2607600
1.2607720
1.2617840
1.2617960
1.2628080

1.1902580
1.1952700
1.1992820
1.2032940
1.2063060
1.2093180
1.2123300
1.2153420
1.2183540
1.2203660
1.2233780
1.2253900
1.2274020
1.2294140
1.2314260
1.2334380
1.2354500
1.2364620
1.2384740
1.2394860
1.2404980
1.2425100
1.2435220
1.2445340
1.2455460
1.2465580
1.2485700
1.2495820
1.2505940
1.2506060
1.2516180
1.2526300
1.2536420
1.2546540
1.2556660
1.2556780
1.2566900
1.2577020
1.2577140
1.2587260
1.2597380
1.2597500
1.2607620
1.2607740
1.2617860
1.2627980
1.2628100

237;

1912 6 00
1952720
1992840
2032960
2073080
2103200
2133320
2163440
2183560
2213680
2233800
2253920
2284040
2304160
2314280
2334400
2354520
2364640
2384760
2394880
2415000
2425120
2435240
2445360
2465480
2475600
2485720
2495840
2505960
2516080
2516200
2526320
2536440
2546560
2556680
2556800
2566920
2577040
2587160
2587280
2597400
2597520
2607640
2617760
2617880
2628000
2628 20

1.1922620
1.1962740
1.2002860
1.2042980
1.2073100
1.2103220
1.2133340
1.2163460
1 .2193580
1.2213700
1.2243820
1.2263940
1.2284060
1.2304180
1.2324300
1.2334420
1.2354540
1.2374660
1.2384780
1.2404900
1.241 5020
1.2425140
1.2435260
1.2455380
1.2465500
1.2475620
1.2485740
1.2495860
1.2505980
1.2516100
1.2526220
1.2526340
1.2536460
1.2546580
1.2556700
1.2566820
1.2566940
1.2577060
1.2587180
1.2587300
1.2597420
1.2607540
1.2607660
1.2617780
1.2617900
1.2628020
1.2628140

.193

.197

.201

.204

.208

.211
214

.217

.219

.222

.224

.226

.228

.230

.232

.234

.235

.237

.238

.240

.241

.242

.244

.245

.246

.247

.248

.249

.250

.251

.252

.253

.253

.254

.255

.256

.256

.257

.258

.258

.259

.260

.260

.261

.261

.262
.262



8160 1
8280 1
8400 1
8520 1
8640 1
8760 1
8880 1
9000 1
9120 1
9240 1
9360 1
9480 1

9600 1
9720 1
9840 1
9960 1
100801
102001
103201
104401
105601
106801
108001
109201
110401
111601
112801
114001
115201
116401
117601

118801
120001
0 1
120 0
240 0
360 0
480 0
600 0
720 0
840 0
960 0
1080 0
1200 0
1320 0
1440 0
1560 0

2628180 1
2638300 1
2638420 1
2648540 1
2648660 1
2658780 1
2658900 1
2669020
2669140 1
2669260 1
2679380 1

2679500 1
2679620 1
2689740 1
2689860 1
2689980 1
269101001
269102201

269103401
269104601
269105801
269107001-
268108201

268109401
267110601
266111801
266 13001
265114201
264115401
263116601
262 17801

262119001
261
00020 0
059140 0
041260 0
039380 0
039500 0
038620 0
037740 0
036860 0
035980 0
0351100 0
0341220 0
0331340 0

0331460 0
0321580 0

26940
053160
041280
039400
039520
038640
037760
036880
0351000
0351120
0341240
0331360
0321480
0321600

2638200 1
2638320 1
2638440 1
2648560
2648680 1
2658800 1-

2658920 1
2669040 1

2669160
2669280 1
2679400 1
2679520

2689640 1
2689760
2689880 1
268 1001 0

26910 1201
269102401

269103601
269104801
269106001
268107201
268108401

267109601
267110801
266112 '
26611320'1
265114401
264115601
263116801
26211 8001
261119201

15060
048180
0 4 0300
0 39420
039540
038660
037780
036900
0351020
0341140
0341260
0331380

0321500
0321620

2638220 1
2638340 1
2648460 1
2648580 1
2648700 1
2658820 1
2658940 1
2669060 1
2669180 1
2669300 1
2679420 1
2679540 1
2689660 1
2689780 1
2689900 1
269100201

269101401
269102601
269103801
269105001
269106201
268107401
268108601
267109801
267111001
266112201
265113401
26511 4 601
264115801
263117001
262118201
261119401

.2638240

.2638360

.2648480

.2648600

.2658720

.2658840

.2658960

.2669080

.2669200

.2679320

.2679440

.2679560

.2689680

.2689800

.2689920

.26910040

.26910160

.26910280

.26910400

.26910520

.26910640

.26810760

.26810880

.26711000

.26711120

.26611240

.26511360
.26511480
.26411600
.26311 720
.26211840
.26111960

.10580

.044200

.039320

.039440

.039560

.038680
.037800
.036920
.0351040
.0341160
.0341280
.0331400
.0321520
.0321640
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1.2638260 1
1.2638380 1
1.2648500 1
1.2648620 1
1.2658740 1
1.2658860 1
1.2658980 1
1.2669100 1

1.2669220 1
1.2679340 1
1.2679460 1
1.2679580 1
1.2689700 1
1.2689820 1
1.2689940 1
1.269100601
1.269101801
1.269103001
1.269104201
1.269105401

1.269106601
1.268107801
1.268109001
1.267110201
1.267111401
1.266112601
1.265113801

1.264115001
1.264116201
1.263117401
1.262118601

1.261119801

0.082100 0
0.042220 0
0.039340 0
0.039460 0
0.039580 0
0.037700 0
0.036820 0
0.036940 0
0.0351060 0
0.0341180 0
0.0331300 0
0.0331420 0

0.0321540 0
0.0311660 0

.263

.263

.264

.264

.265

.265

.265

.266

.266

.267

.267

.267

.268

.268

.268

.269

.269

.269

.269

.269

.269

.268

.268

.267

.266

.266

.265
.264
.263
.263
.262
.261

.068

.040

.039

.039

.038

.037

.036
.036
.035
.034
.033
.033
.032
.031



1680
1800
1920
2040
2160
2280
2400
2520
2640
2760
2880
3000
3120
3240
3360
3480
3600
3720
3840
3960
4080
4200
4320
4440
4560
4680
4800
4920
5040
5160
5280
5400
5520
5640
5760
5880
6000
6120
6240
6360
6480
6600
6720
6840
6960
7080
7200

0.0311700
0.0311820
0.0301940
0.0302060
0.0292180
0.0292300
0.0282420
0.0282540
0.0272660
0.0272780
0.0272900
0.0263020
0.0263140
0.0263260
0.0253380
0.0253500
0.0253620
0.0253740
0.0253860
0.0243980
0.0244100
0.0244220
0.0244340
0.0244460
0.0244580
0.0244700
0.0244820
0.0234940
0.0235060
0.0235180
0.0235300
0.0235420
0.0235540
0.0235660
0.0235780
0.0235900
0.0236020
0.0236140
0.0236260
0.0236380
0.0236500
0.0236620
0.0226740
0.0226860
0.0226980
0.0227100
0.0227220

0.0311720
0.0311840
0.0301960
0.0302080
0.0292200
0.0292320
0.0282440
0.0282560
0.0272680
0.0272800
0.0272920
0.0263040
0.0263160
0.0263280
0.0253400
0.0253520
0.0253640
0.0253760
0.0253880
0.0244000
0.0244120
0.0244240
0.0244360
0.0244480
0.0244600
0.0244720
0.0244840
0.0234960
0.0235080
0.0235200
0.0235320
0.0235440
0.0235560
0.0235680
0.0235800
0.0235920
0.0236040
0.0236160
0.0236280
0.0236400
0.0236520
0.0236640
0.0226760
0.0226880
0.0227000
0.0227120
0.0227240

0.0311740
0.0311860
0.0301980
0.0302100
0.0292220
0.0292340
0.0282460
0.0282580
0.0272700
0.0272820
0.0272940
0.0263060
0.0263180
0.0263300
0.0253420
0.0253540
0.0253660
0.0253780
0.0253900
0.0244020
0.0244140
0.0244260
0.0244380
0.0244500
0.0244620
0.0244740
0.0234860
0.0234980
0.0235100
0.0235220
0.0235340
0.0235460
0.0235580
0.0235700
0.0235820
0.0235940
0.0236060
0.0236180
0.0236300
0.0236420
0.0236540
0.0236660
0.0226780
0.0226900
0.0227020
0 .0227140
0.0227260

0.0311760
0 . 0301880
0.0302000
0.0292120
0.0292240
0.0292360
0.0282480
0.0282600
0.0272720
0.0272840
0.0272960
0.0263080
0.0263200
0.0263320
0.0253440
0.0253560
0.0253680
0.0253800
0.0253920
0.0244040
0.0244160
0.02442"80
0.0244400
0.0244520
0.0244640
0.0244760
0.0234880
0.0235000
0.0235-120
0.0235240
0.0235360
0.0235480
0.0235600
0.0235720
0.0235840
0.0235960
0.0236080
0.0236200
0.0236320
0.0236440
0.0236560
0.02-36680
0.0226800
0.0226920
0.0227040
0.02271-60
0.0227280

239

0.0311780
0.0301900
0.0302020
0.0292140
0.0292260
0.0282380
0.0282500
0.0282620
0.0272740
0.0272860
0.0262980
0.0263100
0.0263220
0.0263340
0.0253460
0.0253580
0.0253700
0.0253820
0.0243940
0.0244060
0.02441-80
0.0244300
0.0244420
0.0244540
0.0244660
0.0244780
0.0234900
0.0235020
0.0235140
0.0235260
0.0235380
0.0235500
0.0235620
0.0235740
0.0235860
0.0235980
0.0236100
0.0236220
0.0236340
0.0236460
0.0236580
0.0226700
0.0226820
0.0226940
0.0227060
0.0227180
0.0227300

0.031
0.030
0.030
0.029
0.029
0.028
0.028
0.028
0.027
0 .027
0.026
0.026
0.026
0.026
0.025
0.025
0 .025
0 .025

0 .024

0.024
0.024
0.024
0.024
0.024
0.024
0.024
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.022
0.022
0.022
0 .022
0 .022
0.022

4



7320
7440
7560
7680

00320
098140
049260
045380
047500
043620
040740

0.56840
0 . 0 82160
0.046280
0.045400
0.047520
0.043640
0.039760

0
0
0
C
0
0
0

0
0
0
0

33260
071180
045300
0 4 6420
046540
042660
039780

0
0
0
0
0
0
0

7800 0
7920 0
8040 0
8160 0
8280 0
8400 0
8520 0
8640 0
8760 0
8880 0
9000 0
9120 0
9240 0
9360 0
9480 0
9600 0
9720 0
9840 0
9960 0
100800
102000
103200
104400
105600
106800
108000
109200
110400
111600
112800
114000
115200
116400
117600
118800
120000

22280
062200
044320
046440
046560
041680
039800

0
0
0
0
0
0
0

.0227340 0.0227360 0

.0227460 0.0227480 0

.0227580 0.0227600 0

.0227700 0.0227720 0

.0227820 0.0227840 0

.0227940 0.0227960 0

.0228060 0.0228080 0

.0228180 0.0228200 0

.0228300 0.0228320 0

.0228420 0.0228440 0

.0228540 0.0228560 0

.0228660 0.0228680 0

.0228780 0.0228800 0

.0228900 0.0228920 0

.0229020 0.0229040 0

.0229140 0.0229160 0

.0229260 0.0229280 0

.0229380 0.0229400 0

.0229500 0.0229520 0

.0229620 0.0229640 0

.0229740 0.0229760 0

.0229860 0.0229880 0

.0229980 0.022100000

.022101000.022101200

.022102200.022102400

.021103400.021103600

.021104600.01021104800

.021105800. 021106000

.022107000.021107200

.022108200.022108400

.021109400.021109600

.021110600.02111-0800

.021111800.021112000

.021113000.021113200

.021114200.021114400

.021115400.0211156010

.021116600.02111-680

.021117800.021118000

.021119000.021119200

.021

160100
056220
044340
047460
045580
041700
038820

0
0
0
0
0
0
0

0227380 0.
0227500 0.
0227620 0.
0227740 0.
0227860 0.
0227980 0.
0228100 0.
0228220 0.
0228340 0.

0228460 0.
0228580 0.

0228700 0.
0228820 0.
0228940 0.

02 29060 0.
0229180 0.
0229300 0.

0229420 0.
0229540 0.
0229660 0.

0229780 0.
0229900 0.
022100200.
0221 01400.
02110 2 600
02 110 3 8 0 0
02110C000.
0211 06200.
021107400.
022108600.
021109800.
021111000.
021112200.
021113400.
021114600.
021115800.
021 1 17 000.
021i 8200.
021 19 400.

0227400 0
0227520 0
0227640 0
0227760 0
0227830 0
0228000 0
0228120 0
0228240 0
0228360 0
0228480 0
0228600 0
0228720 0
0228840 0
0228960 0
0229080 0
0229200 0
0229320 0
0229440 0
0229560 0
0229680 0
0229800 0
0229920 0
022100400
022101600
021102800
021104000
021105200
022106400
021107600
022108800
021110000
021111200
021112400
021113600
021114800
021116000
021117200
021118400
021119 6 00

0227420 0
0227540 0
0227660 0
0227780 0
0227900 0
0228020 0
0228140 0
0228260 0
0228380 0
0228500 0
0228620 0
0228740 0
0228860 0
0228980 0
0229100 0
0229220 0
0229340 0
0229460 0
0229580 0
0229700 0
0229820 0
0229940 0
022100600
022101800
021103000
021104200
022105400
021106600
022107800
021109000
021110200
021111400
021112600
021113800
021115000
021116200
021117400
021118600
021119800

022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
022
021
021
021
021
022
021
021
021
021
021
021
021
021
021
021

123
052
045
047
044
040
038

0
120
240
360
480
600
720

0
0
0
0
0
0

2,40G



840
960
1080
1200
1320
1440
1560
1680
1800
1920
2040
2160
2280
2400
2520
2640
2760
2880
3000
3120
3240
3360
3480
3600
3720
3840
3960
4080
4200
4320
4440
4560
4680
4800
4920
5040
5160
5280
5400
5520
5640
5760
5880
6000
6120
6240
6360

0.037860
0.035980
0.0331100
0.0311220
0.0291340
0.0271460
0.0261580
0.0241700
0.0231820
0.0221940
0.0212060
0.0202180
0.0192300
0.0182420
0.0172540
0.0172660
0.0162780
0.0152900
0.0153020
0.0143140
0.0143260
0.0133380
0.0133500
0.0133620
0.0123740
0.0123860
0.0123980
0.0124100
0.0124220
0.0114340
0.0114460
0.0114580
0.0114700
0.0114820
0.0114940
0.0115060
0.0115180
0.0115300
0.0105420
0.0105540
0.0105660
0.0105780
0.0105900
0.0106020
0.0106140
0.0106260
0.0106380

0.037880
0.0351000
0.0331120
0.0311240
0.0291360
0.0271480
0.0261600
0.0241720
0.0231840
0.0221960
0.0212080
0.0202200
0.0192320
0.0182440
0.0172560
0.0172680
0.0162800
0.0152920
0.0153040
0.0143160
0.0143280
0.0133400
0.0133520
0.0133640
0.0123760
0. 0123880
0.0124000
0.0124120
0.0124240
0.0114360
0.0114480
0.0114600
0.0114720
0.0114840
0.0114960
0.0115080
0.0115200
0.0115320
0.0105440
0.0105560
0.0105680
0.0105800
0.0105920
0.0106040
0.0106160
0.0106280
0.0106400

0.037900
0.0341020
0.0321140
0.0301260
0.0281380
0.0271500
0.0251620
0.0241740
0.0231860
0.0221980
0.0212100
0.0202220
0.0192340
0.0182460
0.0172580
0.0162700
0.0162820
0.0152940
0.0153060
0.0143180
0.0143300
0.0133420
0.0133540
0.0133660
0.0123780
0.0123900
0.0124020
0.0124140
0.0124260
0.0114380
0.0114500
0.0114620
0.0114740
0.0114860
0.0114980
0.01115100
0.0115220
0.0115340
0.0105460
0.0105580
0.0105700
0.0105820
0.0105940
0.0106060
0.0106180
0.0106300
0.0106420

.036920

.0341040

.0321160

.0301280

.0281400

.0271520

.0251640

.0241760

.0221-880

.0212000

.02121-20

.0202240

.0192360

.0182480

.0172600

.01-62720

.0162840

.0152960

.0153080

.0143200

.0143320
0133440
01 33560

.013360

.01,23800
.0123 92 0
.0124040
0124160

.0114 280

.0114400

.0114520

.0114640

.0114760

.0114880
0115000
01 5120

.0 115240
0115360

.0105480

.0105600

.0105720

.0105840

.0105960

.0106080

.0106200

.01-06320

.0106440
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0.036940
0.0341060
0.0311180
0.0301300
0.0281420
0.0261540
0.0251660
0.0231780
0.0221900
0.0212020
0.0202140
0.0192260
0.0192380
0.0182500
0.0172620
0 . 0162740
0.0162860
0.0152980
0.0143100
0.0143220
0.0143340
0.0133460
0.0133580
0.0133700
0.0123820
0.0123940
0.0124060
0.0124180
0. 0114300
0.0114420
0.0114540
0.0114660
0.0114780
0.0114900
0.0115020
0.0115140
0.0115260
0.0105380
0.0105500
0.0105620
0.0105740
0.0105860
0.0105980
0.0106100
0.0106220
0.0106340
0.0106460

.036

.033

.031

.029

.028

.026
.025
.023
.022
.021
.020
.019
.018
.018
.017
.016
.015
.015
.014
.014
.013
.013
.013
.012
.012
.012
.012
.012
.011
.011
.011
.011
011

.011

.011

.01

.011

.010

.010

.010
.010
.010
.010
.010
.010
.010
.010



6480 0
6600 0
6720 0
6840 0
6960 0
7080 0
7200 0
7320 0
7440 0
7560 0
7680 0
7800 0
7920 0
8040 0
8160 0
8280 0
8400 0
8520 0
8640 0
8760 0
8880 0
9000 0
9120 0
9240 0
9360 0
9480 0
9600 0
9720 0
9840 0
9960 0
100800
102000
103200
104400
105600
106800
108000
109200
110400
111600
112800
114000
115200
116400
117600
118800
120000

0106500 0
0106620 0
0106740 0
0106860 0
0106980 0
0107100 0
0107220 0
0107340 0
0097460 0
0097580 0
0097700 0
0097820 0
0097940 0
0098060 0
0098180 0
0098300 0
0098420 0
0098540 0
0098660 0
0098780 0
0098900 0
0099020 0
0099140 0
0099260 0
0099380 0
0099500 0
00996 0 0
0099740 0
0099860 0
0099980 0
0091l 01000
009102200
009103400
009104600

009105800
009107000

009108200
009109400
008110 600
008111800
008113000
008114200
008115400
008116600
008117800

008119000
008

.0106520 0.0106540 0.

.0106640 0.0106660 0.

.0106760 0.0106780 0.

.0106880 0.0106900 0.

.0 107000 0.0107020 0.

.0107120 0.0107140 0.

.0107240 0.0107260 0.

.0107360 0.0107380 0.

.0097480 0.0097500 0.

.0097600 0.0097620 0.

.0097720 0.0097740 0.

.0097840 0.0097860 0.

.0097960 0.0097980 0.

.0098080 0.0098100 0.

.0098200 0.0098220 0.

.0098320 0.0098340 0.

.0098440 0.0098460 0.

.0098560 .0098580 0.

.0098680 0.0098700 0.

.0098800 0.0098820 0.

.0098920 0.0098940 0.

.0099040 0.0099060 0.

.0099100 0.0099180 0.

.009928, 0.0099300 0.

.0099400 0.0099420 0.

.009920 0.0099540 0.
.099640 0. 0099660 0.

.0099760 0.0099780 0.
009988C 0. 0999(0 0.
009100000. 009100200.
009101 00.00911400.
.009102400.00910z2600.

.009103600.009103800.

.009104800.009105000.

.009106000.009106200.

.009107200.009107400.

.009108400.009108600.

.0081096"00.008109800.

.008110800.008111000.

.008112(00 0 8112200.

.008113200.008113400.

.008114400.008114600.

.0 08 15600 . 008115800.

.008116800.008117000.

.008118000.008118200.
00819200.008119400.

0106560 0
0106680 0
0106800 0
0106920 0
0107040 0
0107160 0
0107280 0

0107400 0

0097520 0
0097640 0
0097760 0
0097880 0
0098000 0
0098120 0
0098240 0
0098360 0
0098480 0
0098600 0
0098720 0
0098840 0
0098960 0
0099080 0
0099200 0
0099320 0
0099440 0
0099560 0
0099680 0
0099800 0
0099920 0
009100400
009101600
009102800
009104000
009105200
009106400
009107600
009108800
008110C00
008111200
008112400
008113600
008114800
008116000
008117200
008118400
008119600

242

0106580 0
0106700 0
0106820 0
0106940 0
0107060 0
0107180 0
0107300 0
0097420 0
0097540 0
0097660 0
0097780 0
0097900 0
0098020 0
0098140 0
0098260 0
0098380 0
0098500 0
0098620 0
0098740 0
0098860 0
0098980 0
0099100 0
0099220 0
0099340 0
0099460 0
0099580 0
0099700 0
0099820 0
0099940 0
009100600
009101800
009103000
009104200
009105400
009106600
009107800
009109000
008110200
008111400
008112600
008113800
008115000
008116200
008117400
008118600
008119800

010
010
010
010
010
010
010
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
009
008
008
008
008
008
008
008
008
008



12
1487541

0 3

243



COBRA Input File for UTOP Accident

99999
1 UTOP Accident
1 30

Sodium Properties Omitted-See Appendix B
2 0 0 0 0 0 -1

.316 -.25 .316 -. 25 .316 -. 25
3 23

0. 0. .0277.2144.0555. 3607.0833.5821
.16661.307.19441.451.22221.544.25001.602

.316 -. 25

.1111.8443.13881.099

.27771.615.30551.601
.33331.558.36111.475.38881. 346.41661 .157.4444.9106.4722.6344
0.500.3876.5277.2053.5555.1031.5577

4 546 546 9
0. 1. 0.

7 1 81
19.685
8 271 27
0 0
9 1
2 300
9 900 20
0 0
1
1
14 695

0000
0003.
0006.
0009.
00012
00015
00018
00021
00024
00027
00030
00033
00036
00039
00042
00045
00048
00051
0 0 054
00 57
00160
00163

6
3
1
0
3

2
'46456 .04

2 1
0.17012.7 1

9
13385

9
0 00.0159999.

3 0 0 0 0 0 0 0 0 0
0
0 0

0 0
680.

5
5
5
5
.5
.5

.5

.5
.5
.5
.5
.59

.5

.5

.5

.5
.5
.5

C00
0004
C 007
000 0
00013
00016
00019
00022
00025
00028
00031
00034
00037
00040
00043
00046
00049
00052
000 1-5
00058
00161
00164

r 4
D

1

I

I

.0001.5
000 5

.0007.5

.1,00010.5

.00013. 5
00016b.5

.00019.5

.00022.5

.00 025.5

.00028.5

.00031.5

.000 34. 5

.0003 '7. 5
000 0.5
00043.5

.0004 6. 5
00049.5

.000521. 5

.0 0 5 5

.00058.5

.0016 1. 5
00164.5

1779
.0002
.0005
.0008
.00011
.00014
.00017
.00020
.00023
.00026
.00029
.00032
.00035
.00038
.00041
.00044
.00047
.00050
.00053
.00056
.00059
.00162
.00165

.0002.

.0005.

.0008.

.00011
.00014
.00017
.00020
.00023
.00026
.00029
.00032
.00035
.00038
.00041
.00044
.00047
.00050
.00053
.00056
.00059
.00162
.00165

5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.50

.5

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.001
.001
.001

244

9.25

172.
21

1
.0
1

0
3

6
9
12

15
18
21
24
27
30
33
36
39
42

45
48
51
54
57
60
63



66
69
72
75
78
81
84
87
90
93
96
99
102
105
108
111
114
117
120
123
126
129
132
135
138
141
144
147
150
153
156
159
162
165
168
171
174
177
180
183
186
189
192
195
198
201
204

00166.5 1.00167
00269.5 1.00270
00272.5 1.00273
00275.5 1.00376
00378.5 1.00379
00381.5 1.00382
00484.5 1.00485
00487.5 1.00588
00590.5 1.00591
00693.5 1.00694
00696.5 1.00697
00799.5 1.007100
007102.51.008103
008105.51.008106
009108.51.009109
009111.51.0101-12
010114.51.010115
011117.51.011118
012120.51.012121
012123.51.012124
013126.51.013127
014129.51.014130
014132.51.015133
015135.51.015136
016138.51.016139
017141.51.017142

017144.51.017145
018147.51.018148
019150.51.019151

020153.51.020154
020156.51.020157
021159.51.021160
022162.51.022163
022165.51.023166
023168.51.023169
024171.51.024172
025174.51.025175
025177.51.025178
026180.51.026181
027183.51.027184
027186.51.027187
028189.51.028190
029192.51.029193
029195.51.029196
030198.51.030199
031201.51.031202
031204.51.031-205

1.00167.5 1
1.00270.5 1
1.00273.5 1
1.00376.5 1
1.00379.5 1
1.00482.5 1
1.00485.5 1
1.00588.5 1
1.00591.5 1
1.00694.5 1
1.00697.5 1

1.007100.51
1.008103.51
1.008106.51
1.009109.51
1.010112.51
1.010115.51
1.011118.51

1.012121.51
1.013124.51

1.013127.51
1.014130.51

1.015133.51
1.015136.51
1.016139.51
1.017142.51
1.018145.51
1.018148.51

1.019151.51
1.020154.51
1.021157.51

1.021160.51
1.022163.51

1.023166.51
1.023169.51
1.024172.51

1.025175 .51
1.026178.51
1.026181.51
1.027184.51

1.028187.51

1.028190.51
1.029193.51

1.030196.51
1.030199.51

1.031202.51

1.031205.51

.00168

.002713

.00274

.00377

.00380

.00483

.00486

.00589

.00592

.00695

.00798

.007101

.008104

.008107

.009110

.01011 3

.01116
011119
.012122
.013125
.013128
.014131
.0 15134
.016137
.016140
.017143
.018146
.018149
.019152
.020155
.021158
.021161
0212164

.023167

.024170

.024173

.025176

.026179

.026182

.027185

.028188

.028191

.029194

.030197

.030200

.031203

.032206

245

.00168.5 1

.00271.5 1

.00274.5 1

.00377.5 1

.00380.5 1

.00483.5 1

.00486.5 1

.00589.5 1

.00592.5 1

.00695.5 1

.00798.5 1

.007101.51

.008104.51

.009107.51

.009110.51

.010113.51

.011116.51

.011119.51

.012122.51

.013125.51

.013128.51

.014131.51

.015134.51

.016137.51

.016140.51

.017143.51

.018146.51

.019149.51

.019152.51

.020155.51

.021158.51

.021161.51

.022164.51

.023167.51

.024170.51

.024173.51

.025176.51

.026179.51

.026182.51

.027185.51

.028188.51

.028191.51

.029194.51

.030197.51

.030200.51

.031203.51

.032206.51

002
002
002
003
003
004
004
005
006
006
007
007
008
009
009
010
011
011
012
013
014
014
015
016
017
017
018
019
019
020
021

022
022
023
024
024
025
026
027
027
028
029
029
030
031
031
032



207 1.032207.51.032208
210
213
216
219
222
225
228
231
234
237
240
243
246
249
252
255
258
261
264
267
270
273
276
279
282
285
288
291
294
297
300
0
3
6
9
12
15
18
21
24
27
30
33
36
39
42

1.033210.51
1.033213.51
1.034216.51
1.034219.51
1.035222.51
1.035225.51
1.036228.51
1.037231.51
1.037234.51
1.038237.51
1.038240.51
1.039243.51
1.039246.51
1.040249.51
1.040252.51
1.041255.5i
1.041258.51.
1.042261.51
1.042264.51
1.043267.51
1.043270.51
1.043273.51
1.044276.51
1.044279.51
1.045282.51
1.045285 51
1.045288.51
1.046291.51
1.046294.51
1.047297.51
1.047
1.0000.5 1
1.0003.5 1
1.0006.5 1
1.0009.5 1
1.00012.5 1
1.00015.5 1
1.00018.5 1
1.00021.5 1
1.00024.5 1
1 .00027.5 1
1.00030.5 1
1.00033.5 1
1.00036.5 1
1.00039.5 1
1.00042.5 1

.033211

.033214

.034217
034120
035223

.036226
.036229
.037232
.037235
.038238

038241
.039244
.039247
.040250
.040253

0 4 1256
041259

.042262

.042265

.043268

.043271
0 432'74
044277

.0442 8 0

.045283
0452 8 6

.045289

.046292

.046295

.047298

.0001

.0004

.0007
0001

.00013
00016

.00019

.00022

.00025

.00028
00031

.00034

.0 00 3

.000,40

.00043

1.

1.

1.

.0001.5
0) 0 041 5

.0 0 0 5

.00010.5
1- 0- 0 1 . 5

. 00013.5
00016.5

.00019.5

.00022.5

.00025.5

.00028.5

. 0 0 0 3 1.5

.00034.5

.00037.5

.00040.5

.00043.5

0002
0005
0008
00011
00014
00017
00020
00023
00026
00029
00032
00035
00038
00041
00044

033211.51.033212
033214.51.033215
034217.51.034218
034220.51.035221
035223.51.035224
036226.51.036227
036229.51.036230
037232.51.037233
037235.51.037236
038238.51.038239
038241.51.038242
039244.51.039245
039247.51.039248
040250 . 51 . 040251
040253.51.040254
041256.51.041257
041259.51.041260
042262.51.042263
042265.51.042266
043268.51.043269
043271.51.043272
044274.51.044275
044277.51.044278
44280.51.044281

045283.51.045284
45286. 51.045287

046289.5 1.046290
046292.51.046293
0462935.51.046296
047298.51.047299

0002.
0005.
0008.
00011
00014
00017
00020
00023
00026
00029
00032
00035
00038
00041
00044

246

.033212.51

.034215.51

.034218.51

.035221.51

.035224.51

.036227.51

.036230.51

.037233.51

.038236.51

.038239.51

.039242.51

.039245.51

.040248.51

.040251.51

.041254.51

.041257.51
.041260.51
.042263.51
.042266.51
.043269.51
.043272.51
.044275.51
.044278.51
.045281 .51
.045284.51
.045287.51
.046290.51
.046293.51
.046296.51
.047299.51

.033

.034

.034

.035

.035

.036

.036
.037
.038
.038
.039
.039
.040
.040
.041
.041
.042
.042
.042
.043
.043
.044
.044
.045
.045
.045
.046
.046
.046
.047

.000

.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

1.032208.51.032209 1.0329209.51.032



45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
90
93
96
99
102
105
108
111
114
117
120
123
126
129
132
135
138
141
144
147
150
153
156
159
162
165
168
171
174
177
180
183

1.00045.5 1.00046
1.00048.5 1.00049
1.00051.5 1.00052
1.00054.5 1.00055
1.00057.5 1.00058
1.00060.5 1.00061
1.00063.5 1.00064
1.00066.5 1.00067
1.00069.5 1.00070
1.00072.5 1.00073
1.00075.5 1.00076
1.00078.5 1.00079
1.00081.5 1.00082
1.00084.5 1.00085
1.00087.5 1.00088
1.00090.5 1.00091
1.00093.5 1.00094
1.00096.5 1.00097
1.00099.5 1.000100
1.000102.51.000103
1.000105.51.000106
1.000108.51.000109
1.00011-1.51.000112
1.001114.51.001115
1.001117.51.001118
1.001120.51.001121
1.001123.51.001124
1.001126.51.001127
1.001129.51.001130
1.001132.51.001133
1.001135.51.001136

1.001138.51.001139
1.001141.51.001142
1.001144.51.001145
1.001147.51.001148
1.001150.51.001151

1.001153.51.001154
1.001156.51.001157

1.001159.51.001160
1.001162.51.001163
1.001165.51.001166
1.001168.51.001169
1.001171.51.001172

1.001174.51.001175
1.001177.51.001178
1.001180.51.001181
1.001183.51.001184

.00046.5 1

.00049.5 1

.00052.5 1

.00055.5 1

.00058.5 1

.00061.5 1

.00064.5 1

.00067.5 1

.00070.5 1

.00073.5 1

.00076.5 1

.00079.5 1

.00082.5 1

.00085.5 1

.00088.5 1

.00091.5 1

.00094.5 1

.00097.5 1

.000100.51

.000103.51

.000106.51

.000109.51

.000112.51

.001115.51

.001118.51

.001121.51

.001124.51

.001127.51

.001130.51

.001133.51

.003136.51

.001139.51

.001142.51

.001145.51

.001148.51

.001151.51

.001154.51

.001157.51

.001160.51

.001163.51

.00 1166.51

.001169.51

.001172.51

.001175.51

.001178.51

.001181.51

.001184.51

.00047

.00050

.00053

.00056

.00059

.00062

.00065

.00068

.00071

.00074

.00077

.00080
0008:

.00086

.00089

.0 0 092

.00095

.00098

.000101

.000104

.000107

.000110
.000113
.001116
.00111 9
.001122
001125

.001128

.001131

. 0 1134

.001-137

.001140

.001143

.001146

.001149

.001152

.001155

.001158
001161

.001164

.001167

.001170

.001173

.001176

.001179

.001182

.001185

247

1.00047.5 1
1.00050.5 1
1.00053.5 1
1.00056.5 1
1.00059.5 1
1.00062.5 1
1.00065.5 1
1.00068.5 1
1.00071.5 1
1.00074.5 1
1.00077.5 1
1.00080.5 1
1.00083.5 1
1.00086.5
1.00089.5 1
1.00092.5 1
1.00095.5 1
1.00098.5 1
1.000101.51
1.000104.51
1.000107.51
1.000110.51
1.001113.51

1.001116.51
1.001119.51

1.001122.51
1.001125.51
1.001128.51
1.001131.51
1.001134.51
1.001137.51

1.001140.51
1.001143.51

1.001146.51
1.001149.51
1.0(0 1152.51
1.001155.51
1.001158.51
1.001161.51
1.001164.51

1.001167.51
1.001170.51

1.001173.51

1.001176.51
1.001179.51
1.001182.51
1.001185.51

.000

.000

.000

.000

.000

.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.001

.001

.001

.001

.001

.001

.001

.001

.001

.001

.001

.001

.001
001

.001

.001

.001

.001

.001

.001

.001

.001
001

.001

.001



186
189
192
195
198
201
204
207
210
213
216
219
222
225
228
231
234
237
240
243
246
249
252
255
258
261
264
267
270
273
276
279
282
285
288
291
294
297
300
0
3
6
9
12
15
18
21

.001186.51

.001189.51

.001192.51

.00>195.51

.001198.51

.001201.51

.001204.51

.001207.51

.001210.51

.001213.51

.001216.51

.001219.51

.001222.51
.001225.51
.001228.51
.001231.51
.001234.51
.001237.51
.001240.51
.001243.501
.001246.51
.001249.51
.001252.51
.001255.51
.00.1258.51
.001261.51
.001264.51
.001267.51
.001270.51
.001273.51
.001276.51
.001279.51
.001282.51
.001285.51
.001288.51
.001291.51
.001294.51
.001297.51
.001
.0000.5 1
.0223.5 1
.0486.5 1
.0769.5 1
.10512.5 1
.13715.5 1

.16918.5

.19421.5 1

.001187

.001190

.001193

.001196

.001199

.001202
.001205
.001208
.001211
.001214
.001217
.001220
.001223
.001226
.001229
.001232
.001235
. 0 12 38
.001241
.001244
.001247
.001250
00125 3

.001256
0012-9

.001262

.001265

.001268

.001271
0012-74

.001277
.001280
001283
001286

.001239

.001292
001295

.001298

.0031

.0264

.0537

.08110

.11113

.14216
17419
19522

0061.
0314.
0577.
08610
11613
14716

1 8 0 19
1 9522

5
5

.5

.5

.5

.5

1
1
1

1
1

.0102

.0355

.0628

.09011

.12114

.15317

.18520

.19623

1.001L87.51.001188
.001 90.51.001191
.001193.51.001194

1.00 1196 .51 .001197

10 01199.51.001200
1.001202.51.001203
1.001205.51.001206
i.001208.51.001209
1.001211.51.001212
1.001214.51.001215
1.00121/.51.001218
1.001220.51.001221
1.001223.51.001224
1.001226.51.001227
1.001229.51.001230
1.001232.51.001233
1.001235.5-.001236

.001238 .51 .001239

.001241.51.001242
1.001244.51.001245
1.001247.51.001248

.001250.51.001251
-. 001253.51.001254

.0012,56.51.001257
1001 2 59.51.001 2 6 0

.001262.51.001263
1.001265.51.001266
1.001268.51.001269
1.001271.51.001272
1.001274.51.001275
1.001277.51.001278
1.001280.51.001281
1.001283.51.001284
i.001286.51.001287
1.001289.51.001290

.001292.51.001293
1.001295.51.001296
1.001298.51.001299

0142.
0395.
0668.
09511
12614
15817
19120
19623

5
5
5
.5
.5
.5

1
1
1
1
1
1

1

248

1.001188.51
1.001191.51
1.001194.51
1.001197.51
1.001200.51
1.001203.51
1.001206.51
1.001209.51
1.001212.51
1.001215.51
1.001218.51
1.001221.51
1.001224.51
1.001227.51
1.001230.51
1.001233.51
1.001236.51
1.001239.51
1.001242.51
1.001245.51
1.001248.51
1.001251.51
1.001254.51
1.001257.51
1.001260.51
1.001263.51
1.001266.51
1.001269.51
1.001272.51
1.001275.51
1.001278.51
1.001281.51
1.001284.51
1.001287.51
1.001290.51
1.001293.51
1.001296.51
1.001299.51

.001

.001

.001

.001

.001

.001

.001

.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001

.018

.044

.071

.100

.131

.163

.193

.196



1.19825.5 1.19826 1.19926.5 1.199

27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81

84
87
90
93
96
99
102
105
108
111
114
117
120
123
126
129
132
135
138
141
144
147
150
153
156
159
162

1.20027.
1.20330.
1.20433.
1.20536.
1.20539.
1.20542.
1.20445.
1.20348.
1.20351.
1.20254.
1.20157.
1.19960.
1.19863.
1.19766.
1.19569.
1.19472.
1.19275.
1.19178.
1.18981.
1.18784.
1.18687.
1.18490.
1.18293.
1.18096.
1.17899.
1.176102
1.174105
1.172108
1.170111
1.168114
1.166117
1.164120
1.161123
1.159126
1.157129
1.155132
1.153135
1.150138
1.148141
1.146144
1.143147
1.141150
1.139153
1.137156
1.134159
1.132162

20028
20331
20434
20537
20540
20443
20446
20349
20252
20155
20058
1996
19864
19767
19570
19473
19276
19179
18982
18785
18588
18491
18294
18097
178100
176103
174106
172109
170112
168115
165118
163121
161124
159127
157130
154133
152136
150139
148142
145145
143148
141151
138154
136157
134160
132163

249

.20128.5

.20331.5

.20434.5

.20537.5

.20540.5

.20443.5

.20446.5

.20349.5

.20252.5

.20155.5

.20058.5

.19961.5

.19864.5

.19667.5
.9570.5

.19373.5
.19276.5
.19079.5
.18982.5
.18785.5
.18588.5
.18391.5
.18194.5
.18097.5
.178100..
.176103.
.174106..
.171109..
.169112..
.167115..
.165118..
.163121.
.161124.
.158127.
.156130.
.154133.
.152136..

.149139..

.147142..

.145145.

.143148.

.140151.

.138154.

.136157.

.134160..

.131163..

20129
20332
20435
20538
20541
20444

20447
20350
20253
20156
20059

2 9962
1986 6

19 572 -
19374
19277
19080
18883

18786
18589
1839 2
18195

199E
177101
175104
171 07
171110

6 9113
1 -77316
16511 9
163122

6012 5
158118
15 61 1
17413 4
15-137
149140
147143
145146
142149
140152
138155
135158
133161
1.3116 4

20229.5
20432.5
20435.5
20538.5
20541.5
20444.5
20447.5
20350.5
20253.5
20156.5
20059.5
19962.5
29765.5
19668.5
19471 . 5
19374.5

1177.5
19080.5
18883.5
18686.5
18589.5
18392.5
18195.5
1798.5
177101.
175104.
173107.

171110.
169113.
167116.
164119.
162122.
160125.

158128.
156131.
153134.

151137.
149140.
146143.
144146.
142149.
1,40152.
137155.
135158.
133161.
131164.

.202

.204

.204

.205

.205

.204

.204

.203

.202

.201

.200

.198

.197

194
.1 93
.191
.189
.188
.186
.184
.182
.180
.179
.177
.175
.172
.170
.168
.166
.164
.162
.160
.157

.155

.153

.151

.148

.146

.144

.142

.139

.137

.135

.132

.130

24 1.19724.5 1.19725



165
168
171
174
177
180
183
186
189
192
195
198
201
204
207
210
213
216
219
222
225
228
231
234
237
240
243
246
249
252
255
258
261-
264
267
270
273

276
279
282
285
288
291
294
297
300

I.130165.
1.127-168.
1 . 125-171.
1.123174.
1.121177.
1.119180.

1.116183.
1.114186.
1.112189.
1.110192.
1. 108195.
1.106198.
1.104201.
1 . 101204.
1.099207.
1. 09721 0.
1 . 095 21 3
1 0. 9 03 2 1.6

1.091219.
1.090222.
1.088225.
1.086228.
1.084231.
1.082234.
1.080237.
1.078240.

1.077243.
1.075246.

1.073249.
1.072252.
1.070255.
1.068258.
1.067261.
1.065264.
1.064267.
1.062270.
1.0612 3D.
1.059276.
1.058279.
1 . 057282.
1 . 0 55285.
1.054288.
1.053-291.
1.051294.
1 . 05 0297.
1.049

12916 6
12716 9

.125172
123175
1201-7 8

.118181
116184
114187
.112190

.109193

.107196
105199
103202

.10120"

.099208

.097211

.0952114

.093217
.091220
.089223
.087226
.085229

084232
.082235
,08023 P
.078241

0 7 624 4
.075247
.073250
07 12 53
.070256

.068259

.067262
065265
.064268
.062271
06 274
.05927 /
05828")
05 62 8 3
.055286
.054289
052292
051 2 9 5
050298

1.129 1 66.51.129167
127169.51.126170
114172.51.124173
.22.1 .51.122176

1.120178.51.120179
.118181.51.117182

1.. 116184.51.115185
1.113187.51.113188
-1.111190.5-1.111191

1109193.5 .109194
1.107196.51.107197

1.105199.51. 05200
.103202 . 51.102203
101205. 51. 100206
099208. 51. 098209
097211 .51.096212

1 . 0 9 5214 . 51 . 094215
1.093217.51.092218

1.091220.51.090221
1.089223.51.089224
1087226.51.087227

.085229.51.085230

08 1235. 51 .081236
1-080238.51.079239

.078241.51.078242
1.,76244.51.076245
.074247.51.074248

1.073250.51.072251
1.071253.51.071254
1.069256.51.069257

1 . 0 68259. 51 .068260

L.06626-2.51.066263
1.065265.51.065266
1.06'3268.51.063269

062271.51.062272
1.060274.51.060275

.059277.51.059278
1.058280.51.057281

05628 3.51.056284
1.055286.51.055287
1.053289.51.053290

.052292.51.052293
S.05129. 51.051296
1.050298.51.050299

12 0 3
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.128167.51

.126170.51

.124173.51
.122176.51
.119179.51
.117182.51
.115185.51
.113188.51
.111191.51
.108194.51
.106197.51
.104200.51
.102203.51
.100206.51
.098209.51
.096212.51
.094215.51
.092218.51
.090221.51
.088224.51

.086227.51

.084230.51

.083233.51
081236.51
.079239.51
.077242.51

.076245.51

.074248.51

.072251.51

.071254.51

.069257.51

.067260.51

.066263.51

.064266.51

.063269.51

.061272.51

.060275.51

.058278.51

.057281.51

.056284.51

.054287.51

.053290.51

.052293.51

.051296.51

.049299.51

.128

.126

.123

.121

.119

.117

.115

.112

.110

.108

.106

.104

.102

.100

.098

.096

.094

.092
.090
.088
.086
.084
.082
.081
.079
.077
.075
.074
.072
.070
.069
.067
.066
.064
.063
.061
.060
.058
.057
.055
.054
.053
.052
.050
.049



1487541

251



COBRA Input File for EBR-I X425

99999
1 EBR-II X425
1 30

Sodium Properties Omitted-See Appendix B
2 0 0 0 0 2

.1458.0363-.033.1430.0419-.044. 1449.0067-
62.97216.9-190.44.40256.7-267.8

1.66 0.3 0.3 0.0

.009.316 -. 25
7.2638.59-55.1.316 -. 25

0.040.5610.1230.668
0.540.4140.540 0.0

9
2

0.2060.715
1.0 0.0

0.290.715

9
0.229921 0.042125

8 61
9.250 0

9

61 2 1
00.37012.71

9
0 00.015 36.

29.5
0.6

50

0 0 0 0 0 0 0 0 0 0 0

100
10 0 0 1

0.01
2.149

11 1 0
14.69595 698.0 3.214209 0.692642

12 2 1 5
1

1 7 19 37 61

252

3

0.0
0.3730

4
7

11
0.00
6680
126

6.0

0.0

.579
039
4560
126

186



COBRA Input File for S-PRISM

99999
1
1

s-prism
30

Sodium Properties Omitted-See Appendix B

2 0 0 0 0 2 1

.1458.0363-.033.1430.0419-.044.1449.0067-.009.316 -. 25

62.97216.9-190.44.40256.7-267.87.2638.59-55.1.316 -. 25

1

3 15

0.0 0.0 0.25 0.0 0.250.7070.2750.807

0.350.9880.375 1.0 0.40.9880.4250.951

0.50.707

0.30.8910.3250.951

0.450.8910.4570.807

0.5 0.0 1.0 0.0

4 546 546

7 1 816

8.0 0.293

8 271 271

9

2

0.056

9

2 1

9.250

9

160.2

.6

160

0 00.37012.71 0 00.015 36.

0 0 0 0 0 0 0 0 0 0 0

100

10 0 0

0.01

2.107

11 1 0

14.69595 699.8 2.542167 0.257257

12 2 1 1

1

1

253

9



FEAST Input File for EBR-1I X425

"FEAST-M: meal fuel code"
61
im= 50

na= 13
dt= 10.0
ptof= 1.0
rfo= 2.16e-03, 2. 16e-03, 2. 16e-03, 2. 16e-03, 2.16e-03, 2.16e-

03,2.16e-03,2.16e-03, 2.16e--03, 2.1 6e-03, 2.16e-03, 2.16e-03, 2.16e-
03

rci= 2.539e-03
rco= 2.92e-03
rw= 0.535e-03
xpu= 0.19
xzr= 0.10

fgpav= 84000.0
bonds= 0.00635
1fu=

.02638,.02638,.02638,.02638,.02638,.02638,.02638,.02638,.02638,.
02638,.02638,.02638,.02638

pco= 100000.0
tcin= 370.0
time=

0.OOOE+00,0.198E--00,C.198E+00,0.329E-+00,0.329E+00,0.344E+00,
0. 344E+00, 0. 512E-00, 0. 512E+00, 0. 598E+-00,0. 598E+00, 0. 775E+00, 0.77
5E+00,0.775E+00,0.775E+00,0.938E+00,0.938E+00,0.101E+01,0.101E+0
1,0. 105E+01, 0. 105E-01, 0.105E-01, 0.105E+01, 0. 107E+01, 0. 107E+01, 0.
114E+01, 0. 114E+01, 0. 116E+01, 0. 116E+01, 0. 125E+01, 0.125E+01, 0.131E
+01,0.131E-+01,0.150E+01, 0. 150E+01, 0. 152E+01, 0. 153E+01, 0. 152E+ 01,
0.152E+i01,0.158E+01,0.158E+01,0.158E+01,0.158E+01,0.176E+01,0.17
6E+01, 0. 176E+01, 0. 176E+01, 0. 190E+01,

0.190E+0 1,0.344E-01
dos= 5.02
tfre= 10.0
pres= 3.0e+1L,3.0e+5,j0.0
dtpeak= 0
tr= 0
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Feast Input File for S-PRISM Driver Fuel

"FEAST-M: metal fuel code"

0
im= 2
na= 7

dt= 10.0
ptof= 2.0
rfo= 2.738e-03,2.738e-03,2.738e-03,2.738e-03,2.738e-

03,2.738e-03,2.738e-03
rci= 3.1613e-03
rco= 3.72e-03

rw= 0.711e-03
xpu= 0.19

xzr= 0.10
fgpav= 0.84E5

bonds= 6.35e-03

lfu= .145,.145,.145,.145, .145,.145,.145

pco= 1.0e5

tcin= 371.0

time= 0.OOOE+00,20.E+00

dos= 5.0
tfre= 10.0
pres= 3.0e+11,3.0e+5,10.0
dtpeak= 0

tr= 0
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Feast Input File for Parametric Study of Radial Blanket

"FEAST-M: metal fuel code"
0
im= 2

na= 7

dt= 10.0
ptof= 1.2
rfo= 5.023e-03,5.023e-C3,5.023e-03,5.023e-03,5.023e-

03,5.023e-03,5.023e-03,
rci= 5.446e-03
rco= 6.005e-03
rw= 0.4 7 e-03
xpu= 0.19
xzr= 0.10
fgpav= 0.84F5

bonds= 6.35e-03
lfu= .145, .145, .145,.145, .145, .145, .145
pco= 1 .0e5
tcin= 371.0
time= 0.000E+00,20.E+00
dos= 5.0
tfre= 10.0
pres= 3.0e+11,3.0e+5,10.0
dtpeak= 0
tr= 0
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Feast Input File for Parametric Study of Tight Pitch Breed and Burn Fuel

"FEAST-M: metal fuel code"
0
im= 2
na= 20
dt= 10.0
ptof= 0.72
rfo= 3.747e-03,3.747e-03,3.747e--03,3.747e-03,3.747e-

03,3.747e-03,3.747e-03, 3.747e-03,3 .747e-03,3.747e-03,3.747e-
03,3.747e-03,3.747e-03,3. 747e-03, 3.747e-03,3.747e-03,3.747e-
03,3.747e-03,3.747e-03,3.747e-03

rci= 4.72e-03
rco= 5.22e-03
rw= 0.711e-03
xpu= 0.0

xzr= 0 . 0 5
fgpav= 0.84E5
bonds= 6.35e-03
ifu= .125, .125, .125, .125, .125, .125, .125, .125, .125,

.125, .125, .125, .125, .125, .125, .125, .125, .125, .125, .125
pco= 1.0e5
tcin= 360.0
time= 0.OOE+00,40.E+00
dos= 5.0
tfre= 10.0
pres= 3.0e+11,3.0e+5,10.0
dtpeak= 0
tr= 0
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