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Experimental and Gyrokinetic Studies of Impurity Transport

in the Core of Alcator C-Mod Plasmas

by

Nathaniel Thomas Howard

Abstract

Using a unique set of diagnostics and modeling tools, a comprehensive study of im-
purity transport was performed on Alcator C-Mod L-mode discharges. A new, multi-
pulse laser blow-off system was designed and constructed to introduce trace amounts
of non-recycling, non-intrinsic, impurities in the plasma edge. This system was cou-
pled with an x-ray crystal spectrometer, a single chord x-ray/ultraviolet spectrometer,
and measurement of the laser blow-off neutral source at the plasma edge to provide
full, time-evolving, radial profiles of a single impurity charge state. An iterative X2

minimization scheme was created to infer the experimental impurity transport co-
efficients and their uncertainty by minimizing the difference in the measured and
STRAHL simulated emission. These measurements and data analysis methodology
allowed for determination of impurity transport coefficient profiles with realistic er-
rors from 0.0 < r/a < 0.6. The gyrokinetic co(le, GYRO, was use to analyze the
same discharges. Motivated by linear stability analysis and a rigorous assessment of
simulation sensitivities, nonlinear gyrokinetic simulations were performed such that
small modifications of the Ion Temperature Gradient (ITG) drive term, a/LT, were
made to match the simulated ion heat flux, Qj. to the experimental value. These sim-
ulations demonstrated simultaneous, quantitative agreement with experiment across
the simulation domain in the ion heat and impurity particle transport channels, and
indicated the possibility of missing electron dynamics from the nonlinear gyrokinetic
simulation. A study of Ip scaling used four discharges, constituting a scan of I,
from 0.6 to 1.2 MA. These discharges displayed a clear reduction of the experimental
impurity diffusion and inward convection, allowing for qualitative and quantitative
comparison of experimental with gyrokinetic simulation. Linear stability analysis
and high fidelity, global (0.29 < r/a < 0.62), nonlinear GYRO simulation of ion scale
turbulence (kop, < 1.15) were performed on these discharges with the result that
nonlinear gyrokinetic simulation was generally able to reproduce both quantitative
values and trends for the measured decrease in impurity diffusion and inward convec-
tion observed experimentally. Initial analysis of three discharges operated at various
levels of ICRH input power displayed a reduction of the experimental impurity dif-
fusion coefficient with input power. An in-depth linear stability analysis suggests a
transition of the turbulence character (ITG to TEM) with input power which may
explain changes in the measured diffusion.
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Chapter 1

Introduction

1.1 Nuclear Fusion

Even before the first test of the hydrogen bomb in 1952, there were discussions on

harnessing controlled nuclear fusion as an energy source. In turn, these spawned

national and international programs to master the underlying science and technology.

Unlike nuclear fission which harnesses the energy released from the splitting of massive

atoms, nuclear fusion seeks to harness the energy released by fusing the nuclei of

light atoms. Fusion's promise of highly energetic reactions without the long-lived

radioisotopes and waste products which plague nuclear fission, motivates its study

as an alternative energy source. However, creating controlled fusion reactions with

sufficient frequency to represent a viable energy source is far from a simple task.

Currently the most promising approach for harnessing fusion for steady state reactor

operation is the confinement of high temperature plasma using magnetic fields. The

magnitude of the fusion cross sections at relatively low temperatures (~ 10 - 100 keV)

make three particular fusion reactions of particular interest for energy production.

These are:

D + D -+ T(1.O1MeV) + H(3.03MeV) (1.1)

D + D -+ He 3(0.82MeV) + n(2.45MeV) (1.2)

D + T -+ He 4 (3.5MeV) + n(14.1MeV) (1.3)
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In each of these reactions the fusion "fuel" is in the form of the hydrogen isotopes

deuterium and tritium. The relative abundance of deuterium in water makes D+D

reactions desirable. However, the temperature dependence of the D+T fusion cross

section makes it energetically a much more favorable reaction. As a result, the first

fusion reactors will most likely be based on this reaction.

We will refer to a "pure" fusion plasma as one which consists only of fuel ions. In

the case of a deuterium/tritium plasma, these isotopes constitute what we will call

the "main" ions and have some significant probability of undergoing a fusion reaction

in reactor relevant conditions (volume averaged temperature ~ 15 keV). In contrast,

any ion or neutral species present in the plasma which is not a main ion is referred to

as an impurity species. Unlike the main ion species, the probability that these species

undergo any type of fusion process is either effectively zero or energetically impossible

in experimentally attainable conditions. Therefore, these ions do not contribute to

energy production.

1.2 Nuclear Fusion in Tokamaks

Currently, the most successful means of creating magnetically confined controlled fu-

sion reactions is provided by the tokamak. The word tokamak is a Russian acronym

which means toriodal chamber-magnetic. As the name implies, this is a device char-

acterized by a toroidal vacuum vessel with large external magnetic field coils. The

basic geometry and fields of a tokamak are summarized in Figure 1-1. The combined

result of the externally applied and self generated magnetic fields is a helical field

structure, similar to the windings on a barber pole. This field configuration confines

the high temperature plasmas necessary for the generation of controlled nuclear fu-

sion.

The conditions necessary for obtaining fusion ignition, where the total heating

power produced by fusion alpha (He++ ion) particles equals the loss rate from the

plasma, are well defined for a 50:50 deuterium and tritium plasma. The necessary

criteria for this condition were first established by in 1957 by Lawson [5]. To under-
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Figure 1-1: The basic layout of a tokamak. Figure taken from [1]

stand this criteria, we must first define the energy confinement time (in sec) for a

fusion plasma as:

TE (1.4)
Ploss

Where W is the plasma stored energy and Pr0 s, (in Watts) is the power loss from

the system. We can easily write the plasma energy density as W/V = 3nkT, with T

in eV, n in m-3 , and k = 1.6 x 10-9 J/eV. The fusion power density is a function

of both the plasma density and temperature. When the self heating fusion power

density due to alpha particles equals or exceeds the power loss per unit volume, the

following criterion is established as the ignition condition:

12 T
nirE> -( ) (1.5)

E, < o-o >

Here < ov > is the D-T fusion rate coefficient (in m3/s ) and E, is the kinetic energy

of the fusion alpha particle (- 3.5 MeV). We see that the product of the ion density

and energy confinement time must exceed a temperature dependent threshold value

for the energy losses to be matched by the fusion alpha power. For the D-T reaction,

the minimum of the function, occurs at a plasma temperature around 25 keV

with the requirement that niTE ~ 1.5 x 1020 m-3-s.
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In order to achieve long energy confinement times and ultimately ignition condi-

tions, cross field transport in fusion plasmas must be understood. Cross field trans-

port is the loss of energy, particles, and nomentum across magnetic field lines. In the

plasma core, transport is thought to result from one of two sources: 1) the collisions

of particles in a toroidal geometry and 2) plasma turbulence driven unstable by free

energy in the plasma's density and temperature gradients. These processes will be

described in more detail in Chapter 2 and the remainder of this thesis will attempt

to understand the physical mechanisms which dominate the loss of energy and impu-

rities from the plasma core.

To date, no tokamak has achieved the conditions necessary for ignition. However,

it is believed that ITER, a reactor-scale tokamak currently under construction in

Cadarache, France will take a large step towards achieving such conditions. Upon its

construction, ITER will be the world's largest tokamak and will attempt to demon-

strate the creation of burning plasma conditions for the first time (i.e. when the

plasma is dominantly self heated by alphas, even though it is not yet ignited). Much

of the current fusion research worldwide is in support of this device which is scheduled

to come online in 2018.

1.3 The Alcator C-Mod Tokamak

A number of smaller scale tokamaks are currently in operation worldwide. All work

described in this thesis was performed on the Alcator C-Mod tokamak located at the

MIT Plasma Science and Fusion Center. An engineering drawing of the tokamak and

support structure is shown in Figure 1-2. This tokamak's approach to the creation

of controlled thermonuclear fusion uses a compact, high magnetic field, device to

reach the high densities and temperatures needed for reactor relevant conditions.

Currently, Alcator C-Mod has the highest attainable magnetic field of any tokamak

in the world, reaching values of up to 8.1 Tesla. However, the machine is typically

operated at the slightly lower magnetic field of 5.4 Tesla, nominally the operating

point of the next generation fusion devices such as ITER. The high field and compact
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Figure 1-2: Pictured is a computer generated model of the Alcator C-Mod Tokamak

size of C-Mod allows for operation at higher densities than in most other tokamaks.

Central densities > 3 x 1020 m-3 are readily attained. Electron temperatures of several

keV are routinely achieved in the plasma core through both ohmic and radiofrequency

heating Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid (LH)). The high

densities and temperatures at which the machine is operated allowed it to achieve the

highest plasma pressure, in a magnetic confinement system, recorded to date. The

main machine parameters are summarized in the chart below:
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Alcator C-Mod Operational Parameters

Operational Period

Major Radius

Minor Radius

Toriodal Field

Plasma Current

Line Averaged Density

Central Electron Temperature

Ion Cyclotron Heating

Lower Hybrid Heating

Plasma Elongation

Plasma Triangularity

Plasma Duration

m

m

T

MA

1020 m-3

keV

MW

MW

s

The extensive diagnostic suite operational on Alcator C-Mod makes it ideal for the

impurity transport studies described here. Recent diagnostic upgrades [6, 7] have

improved the accuracy of both electron and ion temperature profile measurements.

These upgrades are essential for high quality modeling of transport processes in the

plasma core (r/a < 0.6) and were utilized in the both the experimental and simulation

work presented in this thesis. C-Mod also features a wide range of spectroscopic

diagnostics which allow for temporally and spatially resolved profiles of intrinsic and

non-intrinsic impurity species in the core of the device. The multi-pulse laser blow-

off system and impurity source measurement, developed as part of this thesis work,

complement existing spectroscopic diagnostics to provide a well characterized source

of non-intrinsic, non-recycling impurities at the plasma edge. This allows for some of

the most detailed impurity transport studies to date. A complete description of the

diagnostics used in this work is presented in Chapter 3.
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1.4 Motivation for the Study of Impurities in Toka-

maks

1.4.1 Impurity Sources in a Tokamak

Impurities are a natural part of tokamak operation and are introduced into the plasma

through a variety of means. Most commonly, impurities enter the plasma due to the

interaction of high temperature plasma with material surfaces such as the inner wall,

RF antennae, and the divertor. The boundary plasma of fusion devices has sufficiently

high temperatures (- 10 - 100 eV) to cause sputtering and removal of material atoms

from surfaces. The power density in this region is also sufficient to cause thermal

removal of materials through melting and evaporation. Plasma surface interactions

are an active area of research which studies the response of materials to harsh plasma

environments and tries to minimize impurity sources. Molecules of oxygen and nitro-

gen may also be introduced through insufficient vacuum conditions prior to plasma

operation. However, advances in vacuum technology and good vacuum practices have

minimized this source in modern tokamaks. In the unique conditions provided by a

burning plasma, an additional source of impurities is present in the plasma core.

Charged fusion products of the D+T fusion reaction, namely alpha particles, are con-

fined by the magnetic field and remain in the plasma core following a fusion event; this

alpha "ash" is required since fusion alphas provide the source of plasma self-heating.

Like impurities from materials surfaces and air, these particles are unable to undergo

fusion reactions and therefore considered impurities in the fusion plasma.

1.4.2 The Effect of Impurities on Ignition

Equation 1.5, the Lawson criterion for a D-T tokamak plasma, can be used to illustrate

the effect of impurities on the realization of fusion energy. Minimum levels of the key

plasma parameters, density, temperature, and energy confinement time are needed to

satisfy this criterion and to achieve the conditions necessary for fusion energy. The
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presence of impurities directly affects our ability to achieve these parameters, making

their study an essential area of research in fusion plasma physics. The following

sections will address these parameters individually and how the presence of impurities

effects them.

1.4.3 Plasma Density, ni

The effect of impurities on the main ion density is perhaps the most straightforward

motivation for the study of impurities in tokamak plasmas. Accumulation of impuri-

ties in the plasma core can lead to fuel dilution and decreased fusion power density.

For a pure plasma, consisting only of deuterium and tritium fuel, each nucleus has

only one proton and the electron and main ion densities can be simply written as:

ne = ni = nD + nr (1.6)

Here the quantities nD and nr represent the deuterium and tritium densities respec-

tively and ni represents the total main ion density. In practice, fusion plasmas are not

pure. Since global quasineutrality of the plasma must be maintained (Za ne = 0)

the addition of an impurity species whose charge is greater than +1 can greatly re-

duce the main ion density, ni, at fixed electron density. For a plasma with both main

ions and an impurity species of arbitrary Z, we have:

ni = ne - Znz (1.7)

It is easily seen that for Z > 1 small impurity densities can displace a large number of

main ions, thus reducing the population of particles able to undergo fusion reactions.

Modern tokamaks can contain impurities species present can ranging from He (Z=2)

to W (Z=74) making concerns of high-Z fuel dilution of particular relevance.

The deleterious effect of impurities on the main ion density propagates to the

overall fusion power density. Consider the fusion power density for a pure 50:50
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deuterium and tritium plasma. We can write this expression as:

Pf = < a >kE (1.8)

Where Pf is the total fusion power density, < 0f v > is the fusion rate coefficient,

and E, is the energy of the fusion alpha particles. If we consider plasmas with an

impurity species of arbitrary charge Z, the expression for the fusion power density

then becomes:

P= n2< v>_kE_)= 21- Z 2<afv>kE, (1.9)
4 4 ne

This illustrates the effect of impurity ions on a reactor's fusion power density, namely

the quadratic dilution factor caused by the inclusion of impurities in the plasma

core. Dilution effects associated with the core accumulation of impurities decrease

the number of fuel ions available to undergo fusion reactions which can significantly

limit the viability of fusion reactors. However, impurity contamination in a fusion

reactor is both unavoidable and, as it turns out, necessary. Many of the reaction

products of the fusion reactions can act as diluting species. The fusion reaction

between deuterium and tritium (Equation 1.1) creates not only a free neutron which

is promptly lost from the tokamak, but also a fusion alpha particle, He4 . In a reactor,

this fusion product is the main source of heat and miust transfer its energy to the bulk

plasma. However, this fusion "ash" is unable to undergo fusion in reactor relevant

conditions and is effectively an impurity within the fusion plasma. The buildup of

fusion alpha particles can dilute the main ion species and decrease the fusion power

density. For this reason, understanding the physical mechanisms which enhance the

outward flux of impurities is of great interest in fusion plasma physics.

1.4.4 The Energy Confinement Time, Te

Impurities play a critical role in the energy balance of the reactor. The presence

of impurities results in radiative loss of energy, degradation of the plasma's energy
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confinement time, and consequently a drop in the overall plasma temperature. These

losses take the form of bremsstrahlung (free-free transitions) and radiation resulting

from free-bound atomic processes such as line radiation, ionization, and recombina-

tion. Under normal operating conditions, radiative contributions from the last of

these mechanisms is usually small. In contrast, for significant impurity densities, the

total power radiated through bremsstrahlung can reach non-negligible fractions of

the total input power. The mean free path for bremsstrahlung reabsorption by the

plasma is typically much greater than the typical device size, implying that emitted

radiation is lost completely from the plasma. To better understand the radiation

effects of impurity accumulation, let us first define the effective plasma charge, Zeff

as:
EjZ nj 1 Zjn -

Zeff - (1.10)
Jj Zj nj ne.

For a pure D+T plasma the effective charge is necessarily equal to 1. The total

Bremsstrahlung power density is derived through the analysis of Coulomb scattering

and arises as a result of electron acceleration during collision events. The expression

for the total Bremsstrahlung radiated power is given by [8, 2, 9]:

P = 5.35 x 103Zeffn2TT W/m 3  (1.1

The power radiated via Bremsstrahlung is proportional to plasma effective plasma

charge, Zeff, which scales as the square of the impurity charge.

Due to the their desirable characteristics in power handling, refractory metal,

high-Z plasma facing components have been proposed for use in future fusion devices

such as ITER [10]. Yet the presence of high-Z impurity densities can result in fuel

dilution and in significant radiative power loss. Even at fusion temperatures, higher

Z atoms are not fully stripped of their electrons and can radiate power copiously

through free-bound processes. The plasma's impurity content, especially of high-Z

materials, must therefore be kept to a minimum in order to obtain the criterion for

a burning plasma. Figure 1-3. illustrates the effect of impurity content on reactor

power balance [2]. In this figure, f is equal to the ratio of impurity density to main
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Figure 1-3: The impurity fraction required to radiate away 50% of the total alpha
power at 10 keV for a wide range of impurity Z is plotted. Figure taken from [2]

ion density, nz/ni. At an assumed temperature of 10 keV, Figure 1-3 demonstrates

the impurity fraction, f, required to radiate away 50% of the total power generated

by alpha particles in a typical D+T reaction when contributions of Bremsstrahlung

and other atomic processes are considered. This plot illustrates the important role

impurity accumulation, especially of high-Z elements, can play on the reactor power

balance and motivates the study of impurity transport as a means of understanding

and reducing the plasma's impurity content. Take molybdenum for example. A

plasma containing a molybdenum density of only .001ne can radiate away 50% of the

alpha power at 10 keV. This implies that if all other quantities remained fixed, a

doubling of the energy confinement time is required meet the ignition condition. The

need for a factor of two increase in rE is further complicated by the fact that energy

and impurity confinement are often observed to increase together. These consequences

make understanding impurity transport crucial for next step fusion devices.
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1.4.5 The Study of Impurity Transport

The preceding sections explained how core impurity accumulation can adversely af-

fect a reactor's performance through degradation of the fusion power density and its

energy confinement time. Since it is generally desirable to reduce or control impu-

rity content in the plasma, it is clear that understanding the physical mechanisms

which contain and expel impurities is of great importance to the field of fusion plasma

physics. The movement of impurities both along and across the confining magnetic

field, defines the field of impurity transport. With a better understanding of the phys-

ical processes dictating impurity transport and the effect of engineering parameters

on these process, plasmas can be optimized to reduce core impurity content through

cross field transport processes. The work presented here focuses on understanding

the physics of impurity transport through accurate experimental measurement and

cutting edge computer simulations.

1.5 The Question of this Thesis

Discussion in the previous sections motivates the study of impurity transport in fusion

plasmas. A physical understanding of impurity transport may be obtained through

experimental study of impurity transport in existing tokamak plasmas. However, it

is not enough to simply observe existing experiments. The high cost of new machine

construction motivates the need for first principles (i.e. from the Maxwell/Boltzmann

equations) predictive models for energy, particle, and impurity transport which allow

for a priori determination of plasma performance and can guide engineering decisions

for next generation fusion reactors.

Measured transport levels have been shown to exceed the predictions of neoclas-

sical theory in almost all tokamak operational scenarios [11]. In the core of tokamak

plasmas this higher level of observed "anomalous" transport, is generally attributed

to the presence of drift wave type plasma turbulence [12]. The gyrokinetic model,

implemented by a number of modern turl)ulence codes, is thought to contain sufficient

physics to accurately simulate drift wave turbulence in the confinement zone of toka-
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mak plasmas and is the leading candidate for a predictive transport model. Yet before

such a model can be applied in a predictive capacity, it must be validated against

experiments. This requires rigorous comparison with observations of all transport

channels; at all levels of the primacy hierarchy (i.e. fluctuations, fluxes, and profiles)

[13, 14].

Previous gyrokinetic impurity transport work has aimed predominantly at ana-

lyzing experimentally observed transport coefficients qualitatively using quasilinear

models of impurity transport [15, 16]. The research presented here advances the field

of impurity transport by comparing cutting-edge turbulence models to experimental

measurement. The first comparisons of nonlinear gyrokinetic simulation with exper-

imental impurity transport ever performed are described here. The question asked

in this thesis work is: Can we develop new diagnostic techniques and utilize

the existing, unique set of diagnostics on the Alcator C-Mod tokamak to

make more accurate measurement of experimental impurity transport? If

so, can the gyrokinetic model of plasma turbulence help interpret exper-

iment and both qualitatively and quantitatively reproduce the measured

impurity transport levels? The remaining chapters of this thesis attempt to pro-

vide answers to these questions.

1.6 Organization of this Thesis

The remainder of the thesis is organized as follows:

* Chapter 1 - This chapter introduced the topic of nuclear fusion and the fun-

damental processes at the heart of future fusion devices. The leading magnetic

confinement concept, the tokamak was described, including a description of the

Alcator C-Mod tokamak located at MIT's Plasma Science and Fusion Center. A

brief description of the impurities effects in tokmakas was provided to motivate

the study of impurity transport and to introduce the topic of this thesis.

* Chapter 2 - This chapter provides an overview of existing work in the field
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of impurity transport performed both on the Alcator C-Mod tokamak as well

as on devices worldwide. The theory of classical particle transport and an

overview of the neoclassical theory of impurity transport is presented in this

section. Finally, brief descriptions of the drift wave turbulence believed to be

responsible for the observed levels of heat and particle transport are presented.

* Chapter 3 - This chapter overviews all of the experimental tools that are

used for studying core impurity transport on the Alcator C-Mod tokamak. The

focus of this chapter is the multi-pulse laser blow-off system. This system was

designed and constructed as part of this thesis work and enabled the impurity

transport studies presented here. Descriptions of the experimental methods and

spectroscopic and profile diagnostics used in this work are covered here in detail.

" Chapter 4 - This chapter covers the modeling tools used to analyze impu-

rity transport experiments. The new synthetic diagnostic developed around the

impurity transport code STRAHL and the methodology employed for deter-

mining the experimental impurity transport is presented. A brief introduction

to the power balance code TRANSP and its use in preparation of gyrokinetic

code inputs is explained. Finally, an overview of the gyrokinetic model and its

implementation in the GYRO code can be found in this chapter.

* Chapter 5 - This chapter covers the first quantitative comparison of experi-

mental and gyrokinetic simulated impurity transport. The analysis of a single

L-mode, experimental discharge is described in detail. Experimental levels of

impurity transport are compared with the simulated levels of impurity trans-

port predicted by the GYRO code. An extensive analysis into the experimental

uncertainties and their propagation to the simulated impurity transport output

from the GYRO code is presented in order to make a thorough quantitative

comparison between theory and experiment.

* Chapter 6 - This chapter uses both experimental techniques and gyrokinetic

simulation to understand the changes in impurity transport seen at different
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values of plasma current, I,, a parameter which strongly affects energy confine-

ment. A series of dedicated plasma discharges are analyzed using experimental

techniques and linear and global nonlinear gyrokinetic simulation. Both quanti-

tative and qualitative comparisons of the experiments are made with nonlinear

gyrokinetics to asses the ability of the code to reproduce the experimental trends

found with changes in engineering parameters.

9 Chapter 7 - This chapter provides the initial results of analysis performed on

experiments investigating the dependence of impurity transport on input power,

a parameter which along with plasma current is known to affect energy confine-

ment. Analysis of three discharges was performed using linear gyrokinetics and

the STRAHL code. Due to incomplete data sets, this analysis was not ex-

tended to nonlinear gyrokinetic simulation. However, the results are suggestive

of interesting changes in the underlying turbulence physics.

9 Chapter 8 - This chapter provides a summary of the content presented in this

thesis and the conclusions drawn on impurity transport physics. A discussion

of future work and new directions for impurity transport studies on Alcator

C-Mod are also provided.
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Chapter 2

Impurity Transport in Tokamaks

This chapter contains a basic description of the transport processes in magnetically

confined plasmas. We will begin by examining classical collisional transport processes

and eventually present the results of neoclassical transport theory. A brief introduc-

tion to the turbulent modes thought to dominate the observed transport levels will be

presented with some approximations. Finally, a brief introduction to the gyrokinetic

model and existing results in experimental impurity transport will be presented. This

chapter serves as an introduction into the transport processes which will be referenced

throughout the remainder of this thesis.

2.1 Classical Collisional Transport

A full treatment of classical transport is outside the scope of this thesis. However,

the basic concepts are introduced. The reader is referred to the of many texts for

the full treatment, [17, 18]. The description presented here will follow Helander and

Sigmar [17]. To begin the discussion of classical transport processes, first consider a

cylindrical plasma consisting of 2 species, electrons and ions. By poloidal symmetry all

derivatives in the 0 direction vanish. The magnetic field is in the z direction, B = Bi,

and background profiles are assumed to be functions of the radial coordinate only.

45



For a species, a, the equation of motion can be written in the following form:

dV~a
mana dt = eana($ +v' x B) -VPa -V + Nab (2.1)

Here the quantity a is the fluid velocity for the species, d/dt = (8/at + -V) is the

convective derivative, and 7r is the stress tensor. The last term of this equation, Rab,

is the friction force term between species a and species b. Defining two directions to

be || and I to the magnetic field, we can take the cross product of the momentum

equation with B to obtain the I velocity. The expression for the I velocity can now

be written as:

$ bx (Vp,+V. -Ra +mana-")
v1 = + -( 2.2)

B 2  
manaQa

Where the cyclotron frequency for species a is given by Qa = eaB/ma. Under the ap-

proximation of negligible viscosity and slow time variation, the third and fifth terms

in the I velocity are eliminated. With the assumption of only radially dependent

profiles of potential and pressure and symmetry in the 0 direction, two of the remain-

ing terms lead to only flow in the 0 direction, namely the $ x B and diamagnetic

terms respectively given by:

E X B VPa
v,a 2  + maaQa (2.3)

However, since motion in the 0 direction does not lead to loss from the cylindrical

system, we are interested in the radial component of the velocity. The only term which

generates radial velocity is the 0 component of the friction. Since the magnetic field is

primarily in the direction of the axis of symmetry, this velocity can be approximated

as:

Rab,O 
(2.4)Vr (2.4)

mana~a

Conservation of momentum during elastic Coulomb collisions naturally enforces that

the radial particle current density vanishes and as a result, the radial particle trans-
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port is inherently ambipolar, Z ealr,a = 0. We can see that friction in the 0 direction

leads to radial velocity and therefore radial particle flux. The form of the 0 component

of the friction is:

Rab,O = -man"(6a -V b)9 (2.5)
Tab

Where Tab is the momentum exchange collision time between arbitrary species a and

b and the thermal force [19] has been neglected. Therefore the velocity in Equation

2.3. contributes directly to the friction in the 0 direction. The total flux in the radial

direction for species a is therefore of the form:

Fa - naVr = Ra,O (2.6)

Since we are considering a pure plasma, let us now identify species a as electrons

and b as ions. A more complete derivation by Braginskii [19] reveals the existence of

another friction term due to the presence of the electron temperature gradient. The

derivation of this term is beyond the scope of this thesis but the reader is referred

to both [17] and [19] for a more complete treatment. Here, we simply quote the

additional electron-ion friction in the 0 direction:

3ne
Rei,O = e a. (2.7)

2QeTei

Inserting results from Equations 2.3, 2.5, and 2.7 into Equation 2.6 and performing

a number of rearrangements yields the radial particle flux for a two species plasma

(electrons and ions).

Tap" + ap' 3 areTe = Fe = -ne ar or ar) (2.8)Fe~Pi~~2Q 2 ( 2Tme e Pe 2 Te

Note that for typical tokamak profiles, the pressure and temperature gradients are

negative. This implies that the pressure gradieit terms tend to lead to outward

particle flux while the temperature gradient term results in an inward flux which

47



reduces the overall loss of particles.

2.1.1 Functional Forms of the Particle Flux

At this point, since we are considering a simple 2 component plasma, a few simplifying

assumptions will be made to elucidate key features of particle transport which will be

referenced throughout this thesis work. If we were to assume that particle transport

was a purely diffusive process, i.e. governed by Fick's Law, then we would expect to

be able to cast the particle flux into a form such that:

F = -D (2.9)
Or

In this case D, represents the diffusion coefficient, namely the proportionality factor

between the flux and gradient. However, it is clear from looking at Equation 5-15.

that this is not an appropriate (or at least complete) form. Even in this simple

classical picture, there exist terms proportional to the density but not proportional

to the density gradient in the flux expression. The simplest form that satisfies the

particle continuity equation but allows for non-diffusive processes is the following:

On
F = -D a+ Vn (2.10)

Or

This form for the particle flux allows for the existence of non-diffusive processes,

namely convective flows. All terms which are not proportional to n are therefore

grouped in the convective velocity for the species. Here inward flow of particles

corresponds to negative values of the convective velocity where outward flows are

denoted by positive values of convection. This form has been applied in tokamak

experiments worldwide and the existence of non-diffusive particle flux terms has been

verified experimentally [20]. If we assume in Equation 5-15 that both species have

identical temperatures and densities (enforced by quasineutrality), we can easily cast
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the equation into this form:

2T on oT
1-'=r + Or n (2.11)

mere 9r 2me 2 re

Here the diffusion coefficient and convective velocity are given by:

2T
DCL - (2.12)

mT

VCL= ar (2.13)

Similar arguments, though with more involved math will apply to the existence of

diffusive and convective components to neoclassical and turbulent transport.

2.1.2 3 Component Plasma Transport

We now consider the situation of a 3 component plasma consisting of electrons, ions,

and impurities. In this situation there exists not only friction between electron and

ions, but also friction between ions and impurities. Often, in tokamak plasmas the

frictional coupling between ions and impurities dominates that between ions and

electrons. We will examine, under rough approximation, the conditions for which

this statement is valid. The contribution to the total ion friction from impurities

versus electrons can be compared in the following manner:

Rie ne e (i -e
-- W -0 (2.14)Nz nzZ2 mi i-ze

Where we note that the 1/Z 2 dependence of this expression is the result of the non-

linear Z dependence of the Coulomb cross section. If we assume similar temperature

gradients between the species and flat density profiles, we can see the relevant theta

component of the velocity for species can be obtained from the diamagnetic compo-

nent of Equation 2.3 (since the E x B terms cancel). Under these assumptions:

&T.
a r
eB,9 Zvzu ~B (2.15)
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If we now compare the magnitude of the velocity difference between ions and electrons

versus that between ions and impurities, assuming an impurity with Z significantly

larger than 1, we obtain (under these rough approximations):

( -i- e)o 26iJ,
~ ~2 (2.16)

This result allows us to simplify Equation 2.14 to:

Rie 2ne e
,:- ~ -2 (2.17)
Riz nzZ 2 mi

Now, if we impose the constraint that the ion frictional coupling to impurities is 5

times greater than that for electrons we see that this is only satisfied if:

-z 1 (2.18)
ne 6Z 2

It is straightforward to see if this constraint is satisfied in typical C-Mod conditions.

Consider first the most common impurity in Alcator C-Mod, boron, which occurs

typical at approximately 1% of the electron density and has Z=5. The condition

set in Equation 2.18 suggest that a fraction of greater than 0.66% is needed for ion-

impurity friction to dominate. Performing the same test for calcium (average Z of 18)

and molybdenum (average Z of 30) we arrive at fractions of 5.1 x 10- 4 for calcium and

1.8 x 10- for molybdenum. These values can be compared with estimated fractions

of 1.0 x 10' for calcium laser blow-off injections and intrinsic levels of molybdenum

at about 1.0 x 10-4. These results would suggest that the criterion for dominant ion-

impurity friction is marginal or slightly satisfied for impurities typically considered in

Alcator C-Mod.

Analogous to the electrons, there exists a contribution to the total impurity-ion

friction resulting from the temperature gradient. This term can be obtained through

straightforward substitution of ion terms for the electron terms found in Equation

2.7. Following the same procedure outlined in the previous section, we arrive at an
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approximate expression for the total radial ion flux for a 3 component plasma:

T avi T, arz 3 z
FT -nj ( ar _ ar ar (2.19)

m2 Q Tz pi ZT Pz 2 T

Now we can estimate the relative radial flux of electrons versus ions.

ire mQi v m ne- ~e (2.20)
F me Q2WZ m nzZ 2

So we determine that the ion flux is generally quite large compared with the electron

flux. Under this assumption, we can calculate the impurity flux directly from the

ambipolarity condition:

eFj + ZeFz - eIe= 0 (2.21)

this implies:
1 1

-z =Jr + Fe -- Fi (2.22)Z Z

This result demonstrates that the direction of the impurity flux is opposite that

of the ions, implying that for outward flux of the main ion species that impurity

accumulation will result. However, depending on the relative contributions of the

terms in Equation 2.19 the main ion flux may be directed either inwards or outwards.

For typical tokamak plasma profiles the first term would generally result in outward

flux, the second term would be small, and the third term would generate an inward

flux.

2.2 Neoclassical Transport Theory

When the classical theory of collisional transport is extended to include the effects of

toroidal geometry, the resulting transport is referred to as neoclassical. As discussed

in Chapter 1, the total field of the tokamak is made up of a toroidal and poloidal

magnetic field which result in a helical magnetic field geometry. It is important

to remember that in standard tokamaks, the toroidal field strength is much greater

(> x 10) than the poloidal field strength and that the field is oc 1/R, where R is the
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tokamak major radius. In this situation, the magnetic field strength at the inner wall

of the tokamak cross section exceeds the field at the outer wall. This geometric effect

creates a magnetic well for particles as they move along the field lines which wind

helically due to the combined toroidal and poloidal fields. Conservation of the first

adiabatic invariant, y, and conservation of the particle's total energy causes some

particles to be mirrored as they move into regions of smaller R and leads to the exis-

tence of two classes of particles, trapped and passing particles. Passing particles have

a sufficient ratio of parallel to perpendicular velocity to make a full poloidal transit

around the tokamak without mirroring. In contrast, magnetically trapped particles

are incapable of making a full poloidal transit. These particle have insufficient paral-

lel velocity relative to their perpendicular velocity and are therefore reflected at the

bounce point in their poloidal transit. Due to their drifts in toroidal geometry (VB

and curvature), trapped and passing particle have orbits which make excursions off of

magnetic field surfaces by roughly an order of magnitude greater than their gyrora-

dius, increasing their radial step size and thus increasing the magnitude of collisional

transport. Once again, the reader is referred to the references, [21, 17] for a more

complete description of neoclassical transport processes.

In neoclassical theory, the orbital dynamics are also affected by the collisionality

of the plasma. The collisionality is a measure of the relative frequency of momentum-

altering Coulomb collisions compared to the transit frequency or for trapped particles,

the bounce frequency. The transit frequency, defined as wt = vth/qR, is the frequency

at which a particle makes a complete poloidal transit. Large values of collisionality

indicate that the particle's mean free path is much shorter than the distance traversed

around a flux surface in a single poloidal orbit. The charge and mass dependencies

of the collision frequencies lead to the conclusion that, for non-trace fractions, high Z

impurities are typically more collisional than bulk electrons and ions. The neoclassical

regimes are defined by values of collisionality. They are called the Pfirsch-Schluter,

and the banana-plateau regimes. For the case of:

V > 1 (2.23)
vth/qR 1
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Where v is the momentum-exchange collision frequency; a large number of collisions

occur for a particle during a single poloidal transit and the plasma is said to be in

the Pfirsch-Schluter regime. Particles in the banana-plateau regime are those in the

opposite limit, i.e. at low collisionality, namely:

< 1 (2.24)
vth/qR

In the limit of large aspect ratio ( c = r/R < 1 ) the banana-plateau is further

divided into the banana and plateau regimes. The plateau regime implies:

E3/ 2 < < 1 (2.25)
vth/qR

and in the banana regime we have:

< 3/2 (2.26)
vth/qR

The plateau regime is characterized by passing particles which are generally able to

complete their particle orbits but the collision frequency is high enough such that

most banana trapped particles are detrapped by particle collisions before completing

a complete trapped orbit. In contrast, particles existing in the banana regimes are

essentially collisionless and both passing and trapped particles are able to complete

their orbits without undergoing significant collisions.

Derivation of the radial impurity fluxes in each regime is out of the scope of this

thesis but the reader is referred to the review paper by Hirshman and Sigmar for the

most comprehensive treatment of neoclassical impurity transport [22]. In this section,

we quote results from Fussman [23] which are obtained from Hirshman's review.

Since the derived impurity fluxes vary depending on the collisionality regime of inter-

est, it is first useful to understand the collisionality regime for heavy impurities under

typical fusion conditions. We quote a form for the transit frequency normalized to

the collision frequency for two species, a and b, at equal temperatures. This quantity
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is given by [23]:

V = 4.88 x 10-e-'3/2lnA RE 2 mb 4rnb (2.27)
vth/qR b ma + mb

with R in meters, nb in m-3, and T in keV. Plugging in typical numbers for Alcator

C-Mod at mid radius: InA = 15, R = 0.68, q = 1.0, T = 3.OkeV, nD = 1.0 X 1020,

and considering collisions between an impurity of mass and charge of A = 40, and

Z = 20 (medium Z, like calcium) and deuterium (A = 2, Z = 1), we obtain a value

of ~ 0.85. Given that this value is of order one, the exactly collisionality regime is

somewhat ill-defined. Therefore, we will examine the forms of the impurity flux in

both the Pfirsh-Schluter and the Banana-Plateau regimes.

Recall that for > 1 the impurities are considered to be in the Pfirsch-

Schluter regime. These particles can be described by the expression [23]:

_nD 1 OT
02 = --DpsVn, + DpsZ[ Or - -(1 - Z) or-]nz (2.28)

nD 2 T

where the Pfirsch-Schluter diffusion coefficient, D, is defined to be:

- 2+ )_4 27mDmz lnA ,2n
Dps =(2q2 + 1) Zem~ nD lnA29)3(47reo) 2  T(mD + mz) B 2 2 (2.29)

If we now consider the same two interacting species (calcium and deuterium) but

instead in the banana-plateau regime we obtain (from Hirshman [22] and Fussman

[23]) impurity fluxes of the form:

BP 9
a [nD 3(Z -1) QT1

= -DZ -a" + D Z Or+ 3Z - r nz (2.30)ar [nD 2Z Tj

where the impurity diffusion coefficient is of the form:

D BP vx/ Az T 1.5
z 4.04q RZ 2 B2 m 2/s (2.31)
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Where T is in keV, BT is in Tesla, R is in meters, and Az is the relative atomic

mass. Using the numbers representative of a medium Z, core impurity (see above),

we would predict a diffusion coefficient of order DF ~ 0.01 m2/s. We can make a

rough estimate the implications of such a diffusion coefficient on the global impurity

confinement time. If we assume rmp ~ a2 /Dimp = 0.212/.01, where a is the plasma

minor radius, we obtain an impurity confinement time of order 4 seconds for Alcator

C-Mod. Typical measured impurity confinement times are found to be approximately

20-25 ms. This simple estimate suggests that neoclassical predictions cannot explain

experimentally observed levels of impurity transport.

2.3 Drift Waves and Anomalous Transport in the

Tokamak Core

Despite the well developed theory for the classical and neoclassical transport of par-

ticles and energy, it is usually found that measured transport levels exceed these

predictions by up to a factor of 100. It is generally believed that the observed

"anomalous" transport levels are the result of low-frequency (relative to the cyclotron

frequency) plasma turbulence. This turbulence arises from the nonlinear interaction

of drift waves in the plasma which are driven unstable by the free energy in the

background plasma profiles. In this section, we will look at some of the candidate

modes which, when unstable, are believed to create the observed turbulence and trans-

port in the tokamak core. These instabilities are identified as the Ion Temperature

Gradient driven mode (ITG), the Trapped Electron Mode (TEM), and the Electron

Temperature Gradient driven mode (ETG). Here we present the linear growth rates

for some of these modes and identify their characteristics which will be referenced

throughout this thesis work.
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2.3.1 A Simple Picture of Drift Wave Instabilities and Par-

ticle Transport

Before look at the linear growth rates for the instabilities thought to dominate trans-

port in the plasma core, we will review a simplified picture of drift-wave instabilities,
following along with the derivation from [24].

First, assume a simplified slab geometry for the plasma (see Figure 2-1) and that

Vn

y

0.1B field

E VExB x

Figure 2-1: A cartoon showing a simple explanation of a plasma drift wave.

there exists a density gradient in the -x direction and a magnetic field coming out of

the page. Assume that we have an initial density perturbation varying sinusoidally

in the y direction such that the density is larger at point A than it is at point B
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(see Figure 2-1). In the presence of a density gradient, and assuming a constant

temperature, we have a diamagnetic drift velocity (also in the y direction) given by:

e e a2 (2.32)
neB

If the value of kl for this wave is sufficiently large, the electrons will respond to this

variation in density quickly and the Boltzmann relation is valid. This is given by:

-n, - e6 (2.33)
n Te

This implies that there is a potential perturbation which is in phase with the density

perturbation. Since regions of higher 6n correspond with regions of higher 6# in this

case, an electric field will be generated which creates E x B drifts as shown in Figure

2-1. This will result in a wave which propagates in the positive y direction with the

diamagnetic drift velocity, and a dispersion relation given by:

kge (2.34)

As long as the Boltzmann relation holds and the electrons can move along the mag-

netic field lines to cancel out the electric fields, the drift wave will be stable and

purely oscillatory. However, if some dissipation is introduced into the system, and

the mobility of the particles is limited, a phase difference will be introduced between

the density and the potential. This results in a modified version of the Boltzmann

relationship, namely:
onle _e#-n = -(1 - i0) (2.35)
n Te

where 6 represents the phase shift. This phase shift modifies the dispersion relation

for this wave to:

w ~ kyv*,e(1+i6) (2.36)

Since the time variation of the wave is proportional to e-iwt, it is readily seen that

the imaginary part of w represents the growth rate for this instability.
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The particle flux resulting from this wave in the x direction is given by the time

average of the density perturbation, on, times the E x B velocity due to the fluctuating

potential, 6#. If 6n and 6# are in phase (the E x B drift velocity is 90 degrees out of

phase), the time averaged radial particle transport is zero due to this wave. However,

if dissipation is introduced into the system and there is a delay between the density

and potential fluctuations (i.e. the wave is unstable), radial (outward, positive x)

particle flux will be produced. It is the physics described in this simple picture that

motivates the study of drift wave turbulence in fusion plasmas.

2.3.2 An Introduction to Ion Temperature Gradient and Trapped

Electron Modes

Here, as well as in the simulation work presented in later chapters, we assume that the

low values of normalized plasma pressure # (< 1) present in typical C-Mod plasmas

justify the assumption of an electrostatic limit, where magnetic field fluctuations are

ignored. Here we define 3 to be:

neTe + ng Ti1 e e (2.37)
B2/2po

In this low beta limit, all modes are assumed to be electrostatic with a perturbed

electric field given by 6E = -V6#. For simplification, we will also assume a geometry

where x is the radial coordinate, y is the poloidal direction, and || is parallel to the

static magnetic field. Under these assumptions, we will assume that the perturbed

electrostatic potential can be written in the form:

6 = 6#(x)e(-it+ikyy+ikliz) (2.38)

Before we discuss the linear growth rates for Ion Temperature Gradient (ITG) and

Trapped Electron Modes (TEM), we need to define a number of quantities. These are:
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LV = n/ | Vn |, LT = TI I VT |, 17 Ln/LT, g = v h d ky9/c, bi kp2,

Db = cT/ZeB, w, = kyDb/Ln, En = Ln/Ro, T = Te/Ti.

2.3.3 The Ion Temperature Gradient (ITG) mode

The ion temperature gradient mode is generally thought to be the primary contributor

to the high levels of anomalous transport which are observed in the tokamak core in

most operating regimes. As such, it has been the subject of large amounts of both

theoretical and experimental work [25, 26, 27]. In present day experiments, it is

commonly found that the L-mode plasma discharges are linearly unstable to ITG

type turbulence in the confinement zone and that nonlinear simulations indicate that

these modes can account for a vast majority of the observed experimental heat flux.

We begin the discussion on modes driven by the ion temperature gradient with

the simplest mode of this type, the slab ITG or qi mode. This mode results from

the interaction of ion acoustic waves with the radial ion pressure gradient. In a slab

geometry and in the limit of qi > 1 we can obtain the linear growth rate for this

mode given by:

7Ys,ITG (k c )1/3 (2.39)

The explicit dependence of this mode's linear growth rate on the value of qi is where

it derives it name. However, it is important to note that in the limit of a flat density

profile, this mode is characterized by a critical value of the electron temperature

gradient and hence it is identified as an ITG mode [28]. A more comprehensive

derivation of this mode and its properties can be found in Horton et. al [29].

Additional ion temperature gradient driven modes have been derived in toroidal

geometry. We consider now the toroidal ITG mode with a growth rate of:

7rroG ~ (kypi) (2.40)
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or inserting -= LT/L, we can determine that the linear growth rate is simply:

1g9i
7TITG ykPi) VL (2.41)

The key features of the ITG mode are displayed by this simplified linear growth rate.

Unlike the slab version of the ITG, this mode is driven unstable by the curvature

effects included in the effective curvature term, gi. This mode derives its name from

the inverse dependence on the ion temperature gradient scale length, LT. For a full

derivation of this ITG mode and its generation of heat and particle transport, the

reader is referred to [30] and [28].

2.3.4 Trapped Electron Modes (TEM)

Trapped Electron Modes (TEM) actually consist of a whole class of instabilities with

slightly different driving mechanisms. Two such trapped electron instabilities will be

discussed here.

Here we will investigate approximate linear growth rate expressions for two dis-

tinct modes, the dissipative and the collisionless trapped electron modes. Some of the

original work on dissipative trapped particle instabilities was performed by Kadomt-

sev and Pogutse [31] and the reader is referred to this work for a complete derivation

of the linear growth rate presented here. The dissipative trapped electron mode's

growth rate can be written as:

E3/2 W2 3
'DTEM --*e( 7e) (2.42)

vei

Here we wish to identify the key driving mechanisms for this mode. Since the fraction

of trapped particles in a tokamak system is oc ye, it is clear that the 61.5 dependence

of the linear growth rate demonstrates some dependence on the trapped particle

fraction. However, the primary drive term for this instability can be identified as the

ratio of the electron gradient scale lengths, a/LT, and a/Ln, which enter in the 7le

term. Note that an additional dependence on density gradient scale length is present
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implicity in the w* factor. Collisions enter the growth rate through the vei term and

provide a stabilizing effect (decrease the growth rate). These drive and stabilization

mechanisms will be studied in detail through numerical simulation presented later in

this work.

Finally, we investigate the linear growth rate of the collisionless trapped electron

mode. The full derivation of the quoted linear growth rate can be found in [32] but

it should be noted that the form derived in this paper and quoted here is very crude,

and should be view only as an rough scaling of the growth rate. Here we quote this

linear growth rate simply to identify key dependencies of this trapped electron mode.

R ) R 3
"/C,TEM e( (5r (R 1.5( ) (2.43)

The growth rate for the collisionless trapped electron mode demonstrates some key

features of trapped electron mode instabilities. The leading factor of (26)- once

again demonstrates the dependence of this mode on the trapped particle fraction but

perhaps more importantly the explicit dependence on the normalized density gradient

scale length R/L, should be noted. This dependence on the density gradient scale

length is complicated and can have a stabilizing or destabilizing effect depending on

its value.

Above we presented the linear growth rates for two types of trapped electron

modes. It was found that the driving terms for these instabilities included, Vei, a/LTe,

and a/La. The purpose of this section was to illustrate these key dependencies as

it will be demonstrated in later chapters that these driving terms play an important

role in the stability of experimental plasma conditions and the observed levels of

anomalous heat and particle transport.

2.3.5 The Electron Temperature Gradient (ETG) mode

The electron temperature gradient (ETG) is the analog of the ITG mode with the

roles of electrons and ions simply interchanged. A rigorous derivation of ETG modes

can be found here [33]. Here we present a very brief version to illustrate the key
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features of this mode. We can obtain an approximate expression for the ETG linear

growth rate:

TETG ~e(kyPe e . (2.44)

or inserting ie = LT,/L, we can write:

7ETG ~(kype) (2.45)
VLTe 2.5

This expression elucidates the key aspects of the the electron temperature gradient

mode. First, like the ITG mode, the ETG linear growth rate has a dependence on

the magnetic curvature of the system. However, the main driving term for this mode

results from the inverse dependence on LTe. Hence, this mode is known as the electron

temperature gradient mode.

It is important to contrast the linear growth rates of the ITG and ETG modes

at this point. For the ITG growth rate we found a dependence of 7Y oc kypi which is

similar to the dependence of ETG, namely y oc kype but differs by the square root

of the ion to electron mass ratio (Vmi/mee - 60.6). However, quasilinear theory of

turbulent transport suggests that the particle and thermal diffusivity should scale

as D, x - I/k'. It is therefore estimated that, for the same value of ky, the ETG

turbulence results in approximately 60 times lower values of both particle and thermal

transport. This simplistic estimate of the transport level would indicate that high-k

ETG turbulence plays only a small role in explaining the overall levels of observed

anomalous transport in tokamak systems. However, nonlinear effects of these modes

may result in non-negligible levels of transport. The role of ETGs is still an area

of active research but there is evidence that electron-scale turbulence can play an

important role in determining transport levels in the plasma core [34].

2.3.6 The Gyrokinetic Model

The simple derivation of the linear growth rates presented in the previous sections

provides useful insight into the physical mechanisms which drive ITG, TEM, and
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ETG instabilities in the plasma core. However, the linear picture is insufficient for

predicting measured transport levels after the linear growth phase. In this section,

we briefly overview the origin of the gyrokinetic equation and the validity of its

application in tokamak plasmas.

1(m)
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Figure 2-2: (The range of spatial and temporal scales which are described by the
Vlasov equation and the gyrokinetic equation are shown. This figure is taken from
[3).

In principle, a complete description of all plasma dynamics is contained in the

Newton-Maxwell set of equations. However, the large number of particles contained

in a Debye sphere and the long range nature of the interactions of these particles

makes solving for individual particle motions unnecessary and utterly intractable.

As a result, a statistical approach is taken where particles are characterized by a

statistical distribution function. This slightly reduced set of equations is represented

by the Maxwell-Boltzmann equation that is essentially an equation of motion for the

distribution function in 6-D phase space.
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The Boltzmann equation can be written as [3]:

Df f8fDt -a + {fS, H} = C(fU', fs) (2.46)Dt at

where for arbitrary functions F and G

{F, G} - 8FG &F&G (2.47)
aqi &pi &pi &qj

and

Hs(q, p) = |- I| +eS (2.48)
2mn8  c

is the single particle motion Hamiltonian as a function of particle position (q) and

momentum (p) and where # and A are the electrostatic and vector potentials respec-

tively. Here C(f8 r, f,) represents the collision operator for two particle interaction.

In the limit of C(f8 r, fs) = 0, equation 2.46 is reduced to the collisionless Vlasov

equation.

Despite the simplification from the full Newton-Maxwell system of equations, this

set of equations describes a huge range of spatio-temporal scales as demonstrated in

Figure 2-2. To further reduce the spatial and temporal scales described and thus re-

duce the complexity required to solve the set of equations, the gyrokinetic model was

developed. The gyrokinetic model effectively eliminates the fastest time scale phe-

nomenon (w > Q,) by transforming from particle position coordinates to gyro-center

coordinates. This eliminates the fast gyro motion of the particles while preserving

necessary kinetic effects associated with finite Larmor radius and reduces the prob-

lem from a 6D to a 5D one. This simplification makes the numerical solution of

the nonlinear gyrokinetic equation possible. In depth derivations of the gyrokinetic

equations can be found here [35, 36, 37, 3]. The gyrokinetic equation for the particle

distribution function in gyro-center coordinates, fS, can be written in the following

form:
afs dR afs di8fs

+ . - + -=< C[f,] > (2.49)
at dt aR dt au

where H. is the gyrocenter position, fit is the gyrocenter velocity, and < C[f8 ] >
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Figure 2-3: (A cartoon showing the conversion from guiding center to gyro-center
coordinates is shown. This figure is taken from [3].

denotes the gyrophase averaged collision operator. This equation fully describes the

evolution of the particle distribution function. The gyrokinetic equation is valid in

the following ordering:

W k| VE 6ns B1  Ps~ l - ~r - -~ -~- ~r,,- ~e- (2.50)Qs k1  Vth,s no Bo Ln

Here w is the characteristic frequency of the turbulence, k = k - b is the parallel

wavenumber, ki -I k x b | is the perpendicular wavenumber, VE is the perturbed

E x B velocity, B1 is the perturbed magnetic field, Bo is the equilibrium field, p, is

the Larmor radius, Ln = no/ I Vno I is the characteristic density scale length, and e is

the gyrokinetic smallness parameter. Given the ordering of the gyrokinetic equation,

it is believed that it offers a physical description of the low frequency (relative to

the cyclotron frequency) plasma turbulence which is thought to dominate transport

levels in the core of tokamak plasmas. The dominant nonlinearity arises from the

E x B nonlinearity entering the gyrokinetic equation through the d term. Nonlineardt

terms in the gyrokinetic equation lead to the coupling of unstable modes and the

development of plasma turbulence. Additionally, the full nonlinear gyrokinetic equa-

tion includes the physics required to describe self-generated turbulence suppression

mechanisms such as zonal flows. It is believed that the gyrokinetic model contains

sufficient physics to describe the turbulent transport processes which are responsible

for the observed transport levels. This includes the physics associated with ITG,
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TEM, and ETG turbulence and their nonlinear interactions. Nevertheless, it is clear

that even the complex gyrokinetic equations are an approximate model of the full

complexity of turbulent transport in fusion plasmas.

2.4 Overview of Existing Impurity Transport Re-

search

Investigations of impurity transport have been performed on fusion devices world-

wide. Impurity confinement and transport has been studied in tokamaks, stellara-

tors, reversed-field pinches, and other plasma confinement schemes worldwide. This

section is intended to give an overview of existing experimental results from impurity

transport studies in the core of tokamak plasmas.

2.4.1 The Evolution of Impurity Transport Studies

Early investigations of impurity transport can be traced back to the 1970s with mea-

surement of emission from intrinsic impurities. Dedicated study of the impurity

confinement times have been reported on Alcator A, Alcator C, JET, Tore Supra,

and Alcator C-Mod. On Alcator A measured impurity confinement times of injected

silicon and molybdenum were found to be much shorter than neoclassical predictions

[38, 39], providing evidence of anomalous impurity transport. Large databases of

impurity confinement times were collected in a variety of plasma conditions to create

impurity confinement time scaling laws. The Alcator C scaling law indicated that

measured impurity confinement times were dependent on q95 , Zeff, a, R, and the

charge and mass of the background gas, Zbg and mbg [401. A joint study performed by

Mattioli et al. on JET and Tore Supra measured impurity confinement times demon-

strated dependencies on plasma current (10.31), the plasma volume (V,0 70), and the

heating power per particle ((Pa/ne~ 0.57 ) [41]. Even more recent investigations into

the impurity confinement time scalings were performed on Alcator C-Mod by Graf et
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al. which found dependencies on both I, and Pot [42].

The arrival of more numerous and novel spectroscopic measurements provided an

opportunity to depart from the simple 0-D model of impurity transport provided by

measurement of the impurity confinement time and allowed for the first 1-D measure-

ments of radial particle transport. Such analysis has been carried out with varying

levels of sophistication to determine impurity transport coefficients on most major

tokamaks worldwide. Much of this work has been carried out on the major European

tokamaks such as JET [43, 16, 44, 45], Tore Supra [41, 46, 47], ASDEX-Upgrade

[48, 49, 50], and TCV [51, 52]. Common investigations including the Z dependence

of impurity transport, changes with input power and heating method, and changes

with the current profile will be discussed here.

2.4.2 RF Effects on Impurity Transport

The effect of applied RF power has also been investigated in a number of devices.

The most recent of these studies was performed by Valisa et al. on JET [43]. This

work focused on the effect of central ICRH in H-mode discharges which is of par-

ticular relevance to this thesis since C-Mod is primarily heated by ICRH. Trends in

the individual transport coefficients, D and V, were difficult to distinguish. Despite

these problems, they report a flattening of the impurity peaking with increased input

power which is correlated with changes in the ion temperature gradient. Also on JET,

Puiatti et al. looked at the effects of minority and mode conversion heating in JET

H and L-mode plasmas [16]. They found significant inward impurity convection was

present in situations of hydrogen minority heating which was in contrast to effectively

zero convection in mode conversion heated plasmas. Dux et al. investigated the local

dependence of impurity transport on ECH heating on the ASDEX-Upgrade tokamak

[48]. It was observed that increased ECH heating could increase the diffusion co-

efficient inside of r/a = .25 to highly anomalous levels. More recently on ASDEX,

Sertoli et al. used multiple experimental techniques to look at the local effects of ECH

heating on impurity transport using Argon measurement [49]. They found significant
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inward pinch in the middle of the stiff gradient region and results which were gener-

ally consistent with the previous work on ASDEX-Upgrade. It should be emphasized

that it is unlikely that direct effects of RF heating should have any significant effect

on core impurity transport. RF heating most likely affects impurity transport levels

through modification of the plasma profiles which in turn enhance or suppress plasma

turbulence and modify transport levels. In Chapter 7 of this thesis we will investigate

the effects of RF heating on impurity transport in the context of turbulence driven

transport.

2.4.3 q Profile Dependent Impurity Transport

Although much more limited, investigations into the current/q profile dependence of

impurity transport have been performed. Early work was performed on JET using

simple models for the transport coefficient profiles by Giannella et al. [44]. They

observed strong anomalous transport levels and concluded that the q profile shape

was a crucial parameter in determining the impurity transport coefficient profiles.

Mattioli et al. looked at the transition region from low to high diffusion coefficient

values and tried to relate it to the location of the s = r/qdq/dr = 0.5 or the q = 1

surface [41] on Tore Supra. Their work suggested that this transition occurred at

the . = 0.5 location in the plasma. The most recent work on q profile dependent

impurity transport (other than the work presented here) was performed on the TCV

tokamak by Scavino et al. [52]. They report a transition from inward to outward

values of impurity convection which occurs at q95 - 4.5. The relatively little work on

this subject and the clear dependence of q profile effects on the impurity transport

level (evidenced by impurity confinement time scalings) motivated much of the work

presented here.
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2.4.4 The Z Dependence of Impurity Transport

Investigations into the Z dependence of impurity transport have been performed on

numerous machines with no real consensus. On the Tore Supra tokamak Guirlet et

al. used multiple techniques of impurity introduction to explore differences in low

and medium Z impurities. They found no clear Z dependence on the impurity trans-

port coefficients in their work [47]. Additional investigations were performed later by

Parisot et al. which looked at Al and Ge impurity transport. Although there was

some evidence of a trend in the measured impurity confinement times, more in-depth

analysis of the transport coefficient profiles resulted in a largely inconclusive result

on the Z dependence of the impurity transport [46]. On the JET tokamak Giroud

et al. used CXRS measurement of Ne and Ar to look at the peaking of low and

medium Z impurities [45]. No peaking dependence with impurity Z was found. Dux

et al. studied the Z dependence in ASDEX-Upgrade H-mode discharges and found

that with rising Z the impurity transport became more dominated by inward impurity

convection[50]. Despite fairly extensive research on this subject, no clear conclusion

has yet been developed.

2.4.5 Miscellaneous Investigations

The scope of impurity transport work has by no means been limited to only the re-

sults described above. Additional investigations have been performed on many of the

major tokamaks. Early investigations were performed by Rice et al. on the Alcator

C-Mod tokamak to model L and H-mode discharges [53]. Aided by measurements of

a heavy ion beam probe, Horton et al. performed experiments into the mechanisms

of impurity transport on the TEXT tokamak [54]. Scavino et al. investigated the

dependence of shaping effects on measured impurity confinement times and transport

coefficient profiles in TCV [51]. Guirlet et al. looked at laser blow-off injected nickel

transport in the core of Tore Supra discharges [55]. Most recently, Villegas et al. re-

ported a measured dependence of the diffusion coefficient on the electron temperature
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gradient in the core of Tore Supra [56].

2.4.6 Modeling of Impurity Transport

The last decade of impurity transport research has seen the development of numerous

quasi-linear models to describe observed behavior. This is an active area of research

which can be found in the literature in the following references [15, 57, 58, 59, 60,

61, 62, 63, 64]. Generally, these models consist of two mechanisms which are used

to model the turbulent impurity pinch, namely the thermodiffusive pinch and the

curvature pinch. Although, newer models include additional mechanisms and even

electromagnetic effects. As these models have become more developed, experimental

investigations have used them to interpret their experiments, often finding qualita-

tive agreement. Work which provides comparison with quasilinear impurity trans-

port models can be found in any of the following references [47, 46, 56, 16, 43, 49].

However, these models have generally been unable to quantitatively reproduce the

measured impurity transport levels. Until this thesis work and the associated papers,

no model had demonstrated both quantitative and qualitative agreement with experi-

mental impurity transport levels and comparisons of experimental impurity transport

experiment with nonlinear gyrokinetic simulations had never been performed.
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Chapter 3

Diagnostic Tools on Alcator C-Mod

3.1 Studying Trace, Non-Intrinsic, Time-Evolving

Impurities

As discussed in Chapter 1, the study of impurity transport is motivated by the need

for clean fusion plasmas and good energy confinement. It is believed that in most

situations, transport in the tokamak core is dominated by turbulence driven unstable

by free energy in the background plasma profiles. Measured levels of cross field par-

ticle, energy, and momentum transport are the result of the formation of turbulent

structures in the plasma core. Trace impurities are not expected to effect the char-

acter of the turbulence and should act effectively as a passive tracer, transported in

and out of the plasma by the turbulent structures created by the background profiles

and providing a useful tool for understanding the characteristic turbulence.

In most current tokamaks, passive and active spectroscopic measurements rou-

tinely monitor the intrinsic impurity concentrations. Measurement of intrinsic im-

purity density or emissivity profiles provides some information on the dynamics of

the impurity transport. However, most of these impurities have poorly characterized

sources and may exhibit significant recycling (i.e. a cycle of implementation and re-

lease from material surfaces). Non-intrinsic, non-recycling impurities, by definition,

have no background level and their source can be well diagnosed. As a result, analysis
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of their measurement is not complicated by unknown source profile and time histories

or require background subtraction procedures.

Additionally, studying the time-evolving density response of a known impurity

source can provide more information than observation of steady state profiles. The

particle continuity equation describes the time evolution of the impurity density pro-

file.
=n -V.F+s 

(3.1)
at

Where F is the particle flux and S represents sources and sinks. As addressed in

Chapter 2, it is well documented that the observed impurity flux is not well described

by a purely diffusive process, namely:

F = -DVn (3.2)

Where the total particle flux is denoted by F and D represents the diffusion coefficient

for the species, typically measured in m 2/s. A more appropriate description for both

bulk particle and impurity flux has been found to be of the form [20]:

F = -DVn + Vn (3.3)

The transport coefficients, D and V, represent the diffusive and convective contri-

butions respectively to the particle flux. In this model, the diffusion coefficient, D

(m2/s), is strictly a positive definite quantity while the convective velocity, V (m/s),

is radially inward for negative values and outward for positive values. If we consider

steady state, in the absence of sources, the total particle flux must be equal to 0 and

it follows from Equation 3.3 that:

Vn V (3.4)
n D

In this situation, measurement of the impurity density profile (i.e. Vn and n) provides

no information on the separate values of diffusion and convection, only on their ratio,
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V/D. However, if we consider and measure time-evolving profiles, the impurity flux

can be deduced from the continuity equation. This measurement therefore allows

us to separate the out the diffusive and convective contributions. For this reason,

observation of non-intrinsic, time-evolving, impurity density profiles is desirable and

motivates the study of impurity transport using laser blow-off.

3.1.1 Impurity Introduction via Laser Blow-Off

The desire to study trace levels of non-intrinsic, time evolving impurities, led to

application of the laser blow-off technique to fusion plasma research. The laser blow-

off technique was first pioneered by Friichtenicht [65]. His work showed that a high-

powered laser incident on a coated glass slide can result in efficient generation of a

directed "beam" of low energy neutrals (< 10 eV). A qualitative description of the

physical process of laser ablation of thin film materials is as follows. A thin film

of a selected material, often a metal, is vapor deposited on the surface of a glass

slide and arranged such that a high-powered (> 450 mJ/pulse) laser is incident first

on the uncoated side of the slide. The laser propagates through the glass and is

absorbed by the deposited material, partially ionizing the materials and creating a

local plasma. The plasma "hot spot" expands and ingests additional material, cooling

in the process, until it penetrates the surface of the thin film and expands into vacuum

as a low energy, directed neutral beam in the direction of the laser beam. The laser

pulse's photon energy is effectively transferred to the directed kinetic energy of the

ablated atoms, making it an ideal source for a short timescale, controlled impurity

source. The deposited material thickness, laser power density, and ablated spot size

represent free parameters for tuning the desired magnitude of the neutral beam. The

versatility of this neutral source and the development of commercially manufactured

pulsed laser systems has made this technique a valuable tool for studying impurity

transport in tokamaks. The laser blow-off technique was first applied in 1975 by

Marmar [66]. Since that time, laser blow-off systems have been installed on tokamaks

worldwide to aid in impurity and heat transport studies [46, 49, 67, 16, 68, 51, 69].

The ability to introduce trace amounts of non-recycling, non-intrinsic impurities at
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what is effectively a delta function in time and space, motivated the design and

construction of the Alcator C-Mod multi-pulse laser blow-off system.

3.2 The Alcator C-Mod Multi Pulse Laser Blow-

off System

3.2.1 System Design Goals

The multi-pulse laser blow-off system was designed to meet four operational require-

ments. These were:

" Non-perturbative introduction of neutral impurities to the plasma edge.

" The ability to ablate a wide range of target Z.

" Multi-pulse injection capability with precise pulse timing on a 100 ms time scale.

" Remote operation of beam steering and ablated spot size.

The following sections describe the hardware aspects of the system which allow

for achievement of these goals.

3.2.2 Hardware Setup

Design of the multi-pulse laser blow-off system hardware drew from aspects of the

previous Alcator C-Mod laser blow-off system [67] and the system currently oper-

ational at the ASDEX-Upgrade tokamak [70]. Figure 3-1 shows a picture of the

multi-pulse laser blow-off system nounted on Alcator C-Mod's B-port. This section

briefly describes the main components of the laser blow-off system including the op-

tical, vacuum, and electronics setup of the system. For additional detailed discussion

of the hardware aspects, the reader is referred to Appendix A of this thesis.
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Figure 3-1: Pictured is the multi-pulse laser blow-off system mounted on the Alcator
C-Mod tokamak.

Optical Systems

The Alcator C-Mod laser blow-off system was first installed during the 2009 campaign.

Unlike its predecessor from the mid to late 90s, it employs a multi-pulse ND:YAG

laser ( A = 1064 nm ) built by Continuum lasers (Surelite II-10 model). This system

operates at 10 Hz with a pulse energy of 0.68 J to perform thin film ablation. Selection

of the laser pulse energy was based on previous laser ablation results utilizing YAG

laser systems [70]. This laser blow-off system is versatile and has demonstrated the

ability to ablate a wide range of target Z. For all studies described here, thin films

consisting of 10 nm of chromium, to aid in laser absorption in the material, and 2

microns of CaF2 were used. This choice was made based on typical densities and

temperatures operated in Alcator C- Mod (ne > 1 x 1020 m-3 and Te > 2 keV). Since

the ionization energies of lithium and helium-like calcium are ~ 1.15 and 5.12 keV

respectively, He-like calcium is the dominant core (0.0 < r/a < 0.75) charge state in

a typical L-mode plasma and fluorine is typically full stripped by the middle of the
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pedestal (outer 5% of the plasma), making CaF 2 visible in both core and edge views.

Results from both lab tests and other Alcator experimental runs have shown that

Al (Z=13), Fe (Z=26), Ni (Z=28), Nb (Z=41), Mo (Z=42), and W (Z=74) are also

easily ablated by this system. These additional impurities may be utilized in future

impurity transport studies on C-Mod.

Figure 3-2: A cartoon of the impurity injector's
plasma is shown.

location on B-port relative to the

Each laser pulse is incident upon the optical train shown in Figure 3-3. Its purpose

is to focus and steer the beam to the desired location on the slide. The laser is first

defocused by an -500 mm focal length lens to avoid power densities exceeding the

damage thresholds for the optical components. All optical components are made of

BK7 or fused silica and coated to optimize transmission of the main laser wavelength.

In practice the damage thresholds are not approached at any point in the optical train.

A colinear 670 nm diode laser is used to indicate the location of the main (infrared)

beam. As shown in Figure 3-3, this is achieved by ensuring the beams are aligned
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through the first mirror (Reflectivity ~ 99% @ 1064 nm and Transmission - 80%

@ 670nm). A wide range of power densities is obtained through manipulation of

the mechanical iris and the optical train's focal length. A long focal length (1146

mm) converging lens is translated up to 200 mm along the optical axis via a remote

controlled linear stage. Lens translation and iris manipulation alters the system's

0E0 
0

OD

1. Nd:YAG laser (10 Hz rep rate, 1064nm, 680mJ/pulse)
2. Diode Alignement Laser 1633 nm)
3 Plano-Concave Diverging Lense (f=-500 mm, BK7 Glass)
4. Mirror (BK7 Glass, R-99% @1064 nr, T-80%@ 670 nm)
5. Silvered Glass Mirror
6 Si vered G ass Mirror
7. Photodiode Housing/Photodiode

8. Mechanical Iris (1 inch max apeture)
9. P Tano-Convex Converging Lense 1= 146 mm, Fused Silica)
10. Linear Translation Stage 1200 mmtravel)
11. Motorized Mirror Mount (+/- 97 mrad)
12. Piezo Electric Mirror Mount (Tip/Tit 4 mrad)
13. Pano-Convex Converging Lense 1)=1146 mm, Fused Silica)
14. Wedge Prism (10 degrees @ 1064 nm)

Figure 3-3: (Top) The layout of the final optical system is shown. (Bottom) An early
arrangement of the impurities injector optics is shown in the setup lab. Most of the
key optical components are shown.

focal length and power density, allowing for ablated spot sizes ranging from 0.5 to 7

mm in diameter. This corresponds to an almost 200x increase in the ablated area.
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These aspects are essential to ensure both efficient ablation and control of the number

of introduced impurities, making non-perturbative operation possible under different

experimental conditions.

Unlike most previous laser blow-off systems, this system was designed such that

multiple ablations can be achieved during single plasma shot with precise timing.

Multi-pulse operation is achieved with a design unique to laser blow-off systems.

Most existing systems use slide transition to achieve multi-pulse operation. Instead,

the system developed for this thesis couples the 10 Hz repetition rate of the laser

flashlamp with a fast piezo- electric mirror steering system. The piezo-electric mirror

mount is manufactured by Piezosystems Jena and allows for up to 4 mrad of tip and

tilt by the application of -10 to 150 V to each axis. This piezo system is mounted

to an RS232 driven motorized mirror mount capable of +/- 97 mrad manufactured

by Zaber. On fast time scales (' 100 ms) the piezo-electric mount is used for beam

steering while inter-shot movement is provided by the stepper motor system. This

combination allows for up to 10 reproducible injections during the flat-top of a single

plasma discharge (typically Is) and up to 300 injections in a single day of tokamak

operation for a single 50 x 50 mm slide.

Vacuum System

While the laser system operates in air, the target slide must be inside the tokamak

vacuum system. The interface between the impurity injector's optical system and the

C-Mod torus is a glass window at the end of the beam line. The beam line measures

approximately 1 meter in length and is mounted at 10 degrees to the midplane on

the B-port flange of Alcator C-Mod (see Figure 3-2). The basic setup of this system

is demonstrated in Figure 3-4. Vacuum is achieved using both mechanical and turbo

pumping systems manufactured by Pffefier vacuum. Vacuum pressure is measured

using 3 separate convectron gauges down to 10-4 Torr, and an ionization gauge for

pressures down to 10-10 Torr. With proper baking of the system, pressures of 1 x 10-7

Torr are routinely achieved, adequate for transient exposure to the C-Mod torus

vacuum. The system is mechanically and electrically isolated from Alcator via a
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Figure 3-4: The impurity injector beamline is shown in the setup lab. This figure
shows many of the key aspects of the system.

bellows and ceramic break respectively. To maximize the transmission of laser blow-

off neutrals introduced into the plasma, the target slide is housed directly in front

of the torus interface valve. A 3D model of the slide holder is shown in Figure 3-5.

Using a simple model of the neutral transmission to the plasma edge indicates that,

with the current beam line setup, 55 to 85% of laser blow-off neutrals are transmitted

to the plasma edge following ablation. This model assumes a +13 degree spread of

the neutrals upon ablation and that any neutral impacting a material surface is lost.

Under these assumptions, the limiting aperture appears to be the port extension on

b-port.

Electronic Systems

Limited access to the C-Mod cell during tokamak operation requires remote control

capability of the laser blow-off system. Measurements of vacuum pressure, gauge
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Figure 3-5: A solid edge model of the impurity injector's slide holder is shown. In
this figure the face of the slide holder is expanded. When in use, a 50 x 50 x 1 mm
glass slide is sandwiched between the front plate and the body of the slide holder.

voltage, turbo pump rotation frequency, pump status, and temperature measurement

of the beamline are reported through the systems Programmable Logic Controller

(PLC). Interface with the PLC is provided by the RSVIEW program which allows

for almost fully remote operation of the laser blow-off system. Visual confirmation of

laser ablation and beam positioning is provided by a CCD video camera observable

in the Alcator C-Mod control room. For diagnostic purposes, all signals used for laser

triggering, energy measurement, and movement of the piezo-electric mirror mount,

are split and digitized for shot by shot monitoring. Measurement of the main beam

energy is provided at two separate locations along the optical train (see Figure 3-3).

A standard glass slide is used to remove small (a few %) beam fractions and direct it

to a photodiode housing. The photodiode signals are then amplified and monitored

remotely. An analog output module is used for remote operation of the piezo-electric
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laser beam steering system and external laser triggering. High voltage amplifiers

convert 0 to 5 V output of the analog output module to 0 to 150 V needed to drive

each piezo axis. TTL signals provided by the analog output module externally enable

the laser flash lamps and trigger laser q-switching. Operation of the stepper motor

mirror mount and linear translation stage is performed using RS232 commands. An

in-cell computer allows for remote login access and between shot manipulation of

course beam steering and focusing. Further details of the electronic systems can be

found in Appendix A.

3.3 Laser Blow-off Injection Characterization

Much of previously published work on laser ablation has focused on characterization

of the produced laser blow-off neutrals via lab bench testing [66, 65]. Here we focus

on the basic characteristics of typical laser blow-off injection following its introduc-

tion into the plasma environment. This section discusses the characterization of the

injected impurities from measured source time histories, changes in Zeff, the impu-

rity confinement time, the reproducibility of injections and their non-perturbative

introduction into the plasma.

3.3.1 Measurement of the Laser Blow-off Source

For all experiments described here, fiber optics were installed to view the impact

location of laser blow-off neutrals at the plasma edge and their ionization. A 420 t 10

nm filter coupled to the fiber optics and a photomultiplier allowed for measurement of

multiple Ca I lines and provided an accurate time history of the laser blow-off neutral

source at the edge. Since the ionization mean free path of calcium neutrals at a typical

C-Mod edge is of order a few mm, this measurement provides a good indication

of the calcium influx localized at the plasma edge. The intensity of the emission

makes it possible to obtain excellent signal to noise and provides evidence of small

amounts of slowly moving clusters of blown-off material. All of the results presented

here are consistent with the more detailed assessment of the laser blow-off neutral
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sources performed by Marmar et al. [66]. If it is assumed that single CaF2 molecules

make up the initial spike in the signal, these particles would have a directed energy

of slightly less than 1 eV. An unintentional byproduct of laser blow-off, secondary

clusters of blown-off material arrives at the plasma approximately 10 - 15x later

than the initial signal of blown-off neutrals, indicating that they are approximately

100 x more massive than the initial blown-off neutrals. Figure 3-6 demonstrates a

1 .0 ' - - - - ' - - - ' - - - ' - - - -

0.8 Ca I Emission

(6 0.6

2 FWHM < 1 ms << Timp
) 0.4

0.2 CaF2 Clusters

0.0
0 5 10 15 20

Time After Laser Pulse (ms)

Figure 3-6: The time history of the measured laser blow-off (Ca I emission) source
is shown. The initial pulse of free neutrals occurs shortly after the laser blow pulse.
Approximately 15 ms after the laser pulse, clusters of blown off material arrive at the
plasma edge.

typical injection measurement and the presence of clustered material which arrives at

the plasma after the initial pulse of free neutrals. Although small, the contribution

of these clusters can be observed spectroscopically, and must be considered when

attempting to explain measured spectroscopic brightness time histories (See Figure

3-8). Nonetheless, the measurement of Ca I provided a direct measurement of the

calcium ionization source in the boundary plasma which is required for transport

analysis. It is important to note that the FWHM of the atomistic injected impurity

source is < 1 ms < Timp. This makes the laser blow-off neutral atom source effectively

a delta function in time when compared to global transport time scales.
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3.3.2 Estimating Impurity Density from AZeff

Although the exact amount of impurities introduced into the plasma via laser blow-off

is not known. Impurity densities can be estimated through simple arguments based

on changes in Zeff. Typical ablated spot sizes range from .5 to 3.5 mm in most ex-

periments and result in the introduction of a small number of impurity particles per

injection. Changes in Zeff, as obtained here through visible bremsstrahlung measure-
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Figure 3-7: The change in Zeff obtained through visual bremsstrahlung
is shown following a laser blow-off injection at 1.41 seconds.

measurement

ment, are indicative of the number of injected particles. From the definition of Zeff

the impurity density that results is:

AZeffne
nz = 1

(Zimp)(Zimp -1
(3.5)

The average ion charge state of calcium and fluorine in the plasma are - 18 and

9 respectively, the average Z of the injected material (CaF2) is 12 and therefore 36

total electrons are contributed to the plasma per CaF2. For the injection scenario

shown in Figure 3-7, A Zeff ~ 0.3. This indicates that of the order of 7.15 x 1016

(~ .00024 ne) CaF2 molecules have been introduced into the plasma. Given a typical

operational spot size of - 2.5 mm in diameter and a CaF2 density of 3.18 g/cm 3 ,
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this suggests that about 2.4 x 10" CaF2 are ablated off the slide. Therefore only

a fraction (~ 29%) of the ablated particles actually make it into the plasma core

during a typical L-mode injection. The remainder of the injection is either ionized

by the laser and deflected by the magnetic field or is ionized and lost from the highly

turbulent scrape-off layer before reaching the core plasma. Based on these numbers,

a slightly less than a 1% change would be expected in the electron density following

an injection.

3.3.3 The Impurity Confinement Time, Timp

CaF2 injections were introduced into a wide range of C-Mod plasmas and a simple

confinement time analysis was performed on the soft x-ray and High Resolution X-Ray

Spectrometer (HiReX) brightness signals. A complete description of these diagnostics

can be found in the following section. To characterize the global impurity confinement

of L, I, and H-mode plasmas, spectroscopic signals were fit using a simple model for

the decay of the signal. A single laser blow-off pulse creates a transient impurity

influx into the plasma after which the impurity density radial profile shape reamins

constant by the impurity density decreases exponentially. During this phase the

impurity density decays away with the following form [51].

n2(r, t) = [ Ank(r)e 7 (3.6)
k

The fundamental eigenfunction is defined to be the impurity confinement time, Timp.

Figure 3-8 demonstrates the temporal evolution of He-like Ca following a CaF2 laser

blow-off pulse. The exponential fit to the decay phase is performed well after the

peak (- 30 ms after the laser pulse) to ensure that all ionization events at the plasma

edge have occurred and only the fundamental eigenfunction is reflected by the inferred

Timp. The impurity confinement time is therefore determined by fitting an exponential

function:

oc erimp (3.7)
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to the measured brightness versus time signals.

Ca+" Brightness vs. Time
350 - -

Shot 1091008021
300 T mp=23 .6 ms

250

200

15C
150

co 100
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0
1.35 1.40 1.45 1.50 1.55

Time (s)

Figure 3-8: The exponential decay of calcium on the x-ray spectrometer signal and
the fit to the exponential decay (blue line). The injection occurs at 1.41 seconds.
The secondary peak (at ~ 1.43 see) in the brightness signal is the result of cluster
formation during the injection

3.3.4 Reproducibility of Injections

The reliability of injections created by laser blow-off is demonstrated by their repro-

ducibility in measured signals. Comparison of the source signals, as shown in Figure

3-9, demonstrates the similarity between the laser blow-off produced neutral source

for multiple injections into a stationary plasma discharge. The reproducibility of

these injections is of particular relevance to this work. As will be discussed in further

detail in Chapter 4, brightness data from multiple, steady state, impurity injections

are often combined into a single data set to improve the temporal resolution of the

measurements. This technique implicitly assumes that each injection time history

is repeatable. In practice, the source time histories of the source are found to be

quite reproducible and the amplitude of steady-state injections are repeatable within

approximately +/ - 10%.
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Figure 3-9: Three injections into a steady-state plasma discharge are indicated by edge
plasma Ca I emission. Typical repeated injections indicate their source amplitude is
reproducible to within approximately +/ - 10%. The presence of clusters following
the main injection can be noted after each injection.

3.3.5 Non-Perturbative Operation

As discussed previously, turbulent transport is driven by the free energy in the gra-

dients of plasma profiles. Trace impurity injection via laser blow-off ensures that the

transport properties measured are characteristic of the non-perturbed, pre-injection

plasma profiles which dictate the turbulence properties. For the purposes of trans-

port experiments "non-perturbative" is quantified as less than 10% change in the

electron density and temperature with minimal effect on density fluctuations [611. In

practice the change in the core electron density and temperature is usually < 10%.

These injections may be characterized as a tracer for the bulk particle transport.

Non-peturbative injections are obtained through manipulation of the system's focal

length, laser power density, and ablated spot size. An example of an non-perturbative

impurity injection into Alcator C-Mod is shown in Figure 3-10.

86



M 1.5 -

E
o 1.0-

0.5

> 3

S0.32

0

0.4 -a cai+
[IBrightness

0.3-

7 0.2

0.0.
1.05 1.10 1.15 1.20 1.25 1.30

Time (s)

Figure 3-10: The effect of an injection on major plasma parameters (ne, and T) is
demonstrated. The injection occurs at 1.41 sec.

3.4 Determination of Background Plasma Profiles

on Alcator C-Mod

As discussed in Chapter 2, the physical quantities which drive impurity transport in

both collisional and turbulent transport theory are the background plasma profiles

and their gradients. In this work, we wish to compare the predictions of neoclassical

and turbulent transport models to experimental transport levels. In order to make

accurate comparison between theory and experiment, the uncertainty in experimental

profiles (ne, T, T, and q) and their derivatives must be minimized. The extensive

diagnostic suite present on the Alcator C-Mod tokamaks makes such measurement

possible. Using some of the most advanced measurements techniques currently avail-

able, the error in turbulence drive and suppression terms is reduced to levels which

allow for quantitative comparison of experiment with turbulence models. This sec-

tion covers descriptions of the main diagnostic systems utilized in this thesis work

and provides examples of the measurement quality.
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3.4.1 Electron Density and Temperature Measurement Us-

ing Thomson Scattering

The Thomson scattering system operating on Alcator C-Mod is an essential diag-

nostic for transport studies. An in-depth description of this system can be found

here [71, 6]. It features two distinct systems which provide both core and edge

measurement of ne and Te. Two identical Q-switched Continuum brand Nd:YAG

lasers are operated sequentially to provide 60 Hz operation of the Thomson system.

Measurement of scattered light along the vertical Thomson chord is obtained using

twenty-two, single-strand quartz fibers for the edge Thomson system and up to four-

teen additional fibers which constitute the core Thomson scattering system. This

system can ultimately provide measurement of both ne and T at approximately 16

ms intervals with equivalent radial resolution of AR = 1 cm (5% of a) in the core

and AR = 1 - 2 mm in the plasma edge. Profile measurements provide by the core

Density Profile Measurement, Shot 1101014006
2.0 i'. . . . . . . . . . . . . . . . .I-

- Combined Fit
E] Edge Thomson Data
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Figure 3-11: An example of Thomson scattering density profile measurement is shown
for the core and edge systems. The solid line indicates the FiTS generated b-spline
fit to the measured data.

and edge Thomson scattering systems are demonstrated in Figure 3-11 and Figure
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3-12 for a typical Alcator C-Mod L-Mode discharge. Absolute density calibration of

these measurements is made through comparison with Electron Cyclotron Emission

(ECE) cut measurements in discharges with secular increases in core density. Unlike

the temperature profile, which is also measured using ECE measurement, the den-

sity profile measurements provided by Thomson scattering are the only direct density

profile measurement available. Thomson scattering data provided the basis for all

profiles used in experimental and gyrokinetic analysis presented in this thesis.

3.4.2 Electron Cyclotron Emission Temperature Measure-

ment

Additional measurement of the electron tenperature is provided by three separate

ECE systems on Alcator C-Mod [72, 73, 74]. These measurements feature superior

temporal resolution to the Thomson scattering system and serve to complement the

data obtained from Thomson measurement. An example of all temperature measure-

ments can be found in Figure 3-12. All three systems present on C-Mod use second

harmonic X-mode emission. For typical C-Mod operational densities and parameters,

measurement of the electron temperature is provided from the plasma core to the edge

and is localized by its dependence on the value of BO. Two of these high time res-

olutions measurements are provided by grating polychoromator systems. These two

systems, GPC1 and GPC2 consist of 9 and 18 channels respectively. Additional ECE

measurement is provided by the Fusion Research Center ECE (FRECE) system op-

erated by the Texas collaboration on Alcator C-Mod. This system provides up to 32

additional channels with even higher temporal resolution. Estimated error bars for

ECE measurements (10%) are often lower than those estimated for Te measured from

Thomson scattering in the core. As a result, the combination of these systems with

the existing Thomson measurements plays a crucial role in constraining the normal-

ized electron temperature gradient scale length, an important quantity which drives

turbulence in the plasma core.
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Figure 3-12: An example of Thomson scattering and ECE temperature profile mea-
surements are shown for an L-mode discharge. The solid line indicates the FiTS
generated b-spline fit to the measured data.

3.4.3 Profile Fitting of ne and Te

Smooth profile fits of the background electron density and temperature profile are

obtained using the FiTS code developed by Darin Ernst and Kirill Zhurovich. FiTS

offers a GUI for removing outlying temperature and density data and performing

smoothing in both space and time. Separate functional fits are applied to the core

and edge data. In the core, data are fit using a b-spline fitting routine which allows

for user specification of the order and number of knots allowed in the fit. In practice,

the order and number of knots used is kept relatively small to avoid introduction

of false structure into the core profile shapes. The reduced x2 is reported to the

user for each fit. For the fits used in this work, the reduced X2 was generally found

to approximately equal to 1 for the temperature profile fits and often less than 1

for the density profile fits. Attempts to raise the density reduced x2 to a value of

1 were generally unsuccessful. Edge data are fit using a tanh function to model

the pedestal region of the plasma. A user specified blending region is set in FiTS
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which determines the radial locations over which the edge and core fits are combined

in a smooth manner. The program is built around the Thomson time base and

therefore allows for profile fitting at approximately 16 ms intervals during the plasma

shot. In practice, only data obtained from the core and edge Thomson system is

used for density profile fitting, while the temperature profile allows for the use of all

temperature measurements for constraint of the temperature profile fits. An example

of FiTS generated electron density and temperature profiles can be found in Figures

3-11 and 3-12.

3.4.4 Measurement of T and V

Accurate measurement of the ion temperature and toroidal rotation profiles is essen-

tial for meaningful comparison of experiment with simulation. As the Ion Tempera-

ture Gradient mode is often the dominant plasma instability and drives the majority

of energy and particle transport, measurement of (ITG) drive term, a/LT, is of great

importance for turbulence studies. Furthermore, rotation effects, specifically the E x

B shearing rate arising from radial gradients in the electric field, have been shown to

suppress turbulent fluctuations and reduce transport levels, making measurement of

the velocity profile essential for turbulence modeling [75].

Measurement of both the ion temperature profile and rotation velocity is provided

by High resolution X-ray Spectrometer with Spatial Resolution (HiReX Sr.). A de-

scription of this diagnostic can be found here [71. HiReX Sr. is an imaging x-ray

spectrometer used to measure spectra of the He-like and H-like charge states of argon

in the spectral range of 3.94 A < A < 4.00 A and 3.72 A < A < 3.80 A respectively.

This system employs 4 Pilatus 100 x-ray detectors for imaging of the spectra which

can operate at photon counting rates up to 1 MHZ. In practice, data acquisition times

are limited by a detector readout time of approximately 3 ms. Argon is introduced at

trace levels at the beginning of the discharge via gas puffing for routine measurement

of T and V4. These measurements are limited to the extent of the He and H-like ar-

gon charges state. For typical C-Mod densities and temperatures, this limits accurate

profiles to approximately 0.0 < r/a < 0.8. Spectral moments of the measured data
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represent a set of integral equations which can be solved for the profiles of interest

such as density, velocity, and temperature. Exact details of these equations can be

found here [76, 77]. Tomographic inversion techniques are applied to extract the de-

sired kinetic profiles, T and V4. It is assumed that good collisional coupling between

argon and the main ions (< 10 ms) relative to the energy confinement time implies

that Targ, ~_ T. Absolute measurement of V is performed through locked-mode

calibration on dedicated discharges during an operational day. It is assumed that

locked mode shots exhibit no toroidal rotation and the measured velocity therefore

indicates the velocity zero. Specific limitations of the T and V data used in this

thesis will be discussed in later chapters.

3.5 Impurity Radiation Diagnostics

The following section provides a brief introduction to the spectroscopic diagnostic

suite utilized for impurity transport studies on Alcator C-Mod. Example measure-

ments from each diagnostic and descriptions of their relevance to this thesis work are

presented.

3.5.1 High Resolution X-ray Spectrometer with Spatial Resolution

- HiReX (Sr.)

The HiReX Sr. spectrometer used for determination of T and V4 profiles and de-

scribed in the previous section, is the workhorse diagnostic for the impurity transport

studies in thesis. The unique spatial and temporal resolution of this spectrometer

makes time evolving profile measurement of core impurity charge states possible.

The standard setup for this spectrometer views the He-like and H-like charge states

of argon. However, for this work, the H-like argon crystal was replaced with a crystal

capable of viewing the He-like charge state of calcium. This leaves only the He-like

argon measurement to provide the experimental T profiles. For typical densities

(1.0 x 1020 m-3) and temperatures (3 keV), the He-like calcium charge state (Cai8+)
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Figure 3-13: Measured He-like ( Ca 18 + ) brightness profiles are shown. Selected time
slices are shown to demonstrate the evolution of the profile after an impurity injection
(.965 sec).

(ionization energy of ~ 5.1 keV) has the highest fractional abundance and provides

measurable profiles from approximately 0.0 < r/a < 0.6 (see Figure 3-14). With the

calcium-viewing crystal installed, the system views the spectral range from 3.16 to

3.23 A. This includes the w, x, y, and z lines of He-like calcium. Emission from the

w (resonance) line at 3.17 A was used for all measurements presented here. Time res-

olution of these measurements can, in principle, be reduced to almost 3 ms. However,

for typical L-mode plasma conditions, good signal to noise ratio requires operation

with approximately 6 ms time resolution. To ensure pixel to pixel variation of the

detector was not a problem, the system was exposed to an Iron-55 source (5.9 keV).

It was concluded from this test that of only an ~ 2% pixel to pixel variation would be

present in the measurement of injected calcium brightness. Figure 3-13 illustrates line

integrated brightness profiles of the He-like Ca charge state following a laser blow-off

injection as measured by the HiReX Sr. diagnostic.
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Figure 3-14: The approximate viewable range for the HiReX Sr. spectrometer is
shown by the shaded region. This region is comprised of 32 total line integrated
measurements.

3.5.2 The X-Ray and Extreme Ultraviolet Spectrometer (XEUS)

Additional measurement of calcium charge states is provided by the X-ray and

Extreme Ultraviolet Spectrometer, known as XEUS. XEUS is a single chord, flat

field, grating spectrometer setup to provide an approximately core plasma view at

an angle of 6.5 degrees relative to the midplane (see Figure 3-15). Spectral coverage

includes x-ray and extreme ultraviolet portions of the spectrum from approximately

10 to 70 A. Line emission from multiple charge states of calcium (Li, Be, B-like,

etc.) is included within this portion of the spectrum. A typical spectrum following

an calcium laser blow-off injection is shown in Figure 3-16. However, due to the
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Figure 3-15: The single chord view provided by the XEUS spectrometer is shown.

reliability of the atomic physics data available, only Li-like Ca emission at 18.68 A
was utilized during these studies. This line is well separated from other background

and calcium lines and provides good signal to noise for typical plasma conditions.

Fast framing CCD capabilities of the system allow for routine operation with time

resolution of 5 ms. However, resolution of down to 2.5 ms was utilized during this

work to best resolve transient behavior following laser blow-off injection. Future work

on this spectrometer will add spatially resolving components and allow for both core

and edge spatial coverage.

95



2.0-1 0 4- - -- -

- I I I I II I

-. 5I I || III II I
1.0II " I III I-I I || | | | I I I I

1.*1 i i ii i iII I I I -

II II IIII I -

4-a

5.0-10

O , 1 . -, 1, . . 1 .11 1 1 . .1 1 1. 1 1 1 1

16 18 20 22
A [Ang]

Figure 3-16: A typical spectrum measured by the XEUS spectrometer is shown fol-

lowing a CaF2 injection. Line emission from the Li, Be, and B-like calcium charge

states is visible. Image from Reference [4].

3.5.3 High Resolution X-ray Spectrometer - HiReX (Jr.)

The primary measurement used for global impurity confinement time analysis was

provided by the HiReX spectrometer [78]. This spectrometer is the predecessor of the

HiReX Sr. spectrometer described earlier in the section and known colloquially as the

HiReX Jr. spectrometer. Originally installed as a one of five identical spectrometers

for measurement of the ion temperature profile via puffed argon gas, only a single

spectrometer remains mounted on the Alcator C-Mod K-port. HiReX is a von Hamos

type spectrometer with sufficient spectral resolution to measure Doppler broadening

and shifts. Spectral coverage of the spectrometer exist from 2.8 to 4.0 A with a

resolving power of A/AA = 4000. Data acquisition rates for this spectrometer are

operated at 1KHz, more than sufficient for resolving both the influx and decay phases

following an impurity injection. The resonance line (3.17 A) of the He-like calcium

charge state (Ca18+) charge state is routinely measured using this spectrometer setup

and used for the determination of impurity confinement time. Using a view that

is typically tangent r/a = 0.3, this spectrometer provides line integrated brightness
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measurement of Ca18+. The core view of this spectrometer, good signal to noise

following a laser blow-off injection, and its excellent temporal resolution make it

ideally suited for these studies. Observed calcium emission following a laser blow-off

injection is shown in Figure 3-17. Note the clear resolution of both the influx and

decays phases of the impurity injection.

Soft X-ray Confinement Time Analysis 1091008021

HIREX, Co'' Confinement Time Analysis 1091005021

400

300

T,=24.5 ms

200
a1.35 1.40 14 .015

C rMe (a)

Figure 3-17: Plots of brightness versus time measurement following a laser blow-off
injection are shown. Measurement was provide by soft x-ray imaging (a) and HiReX

Jr. (b). Both diagnostics have sufficient time resolution to resolve the influx and decay
phases and are shown to provide almost identical values for the impurity confinement
time. The presence of sawteeth provide the step-like features in the soft x-rays.

3.5.4 Soft X-ray Imaging

Four soft x-ray imaging systems are operational on Alcator C-Mod. A complete

description of these systems can be found in references [71, 79]. Each system contains

a 38-element photodiode array with 3 pcs response time and radial chord spacing of

less than 2 cm. Beryllium foil filters eliminate collection of visible, UV, and ultrasoft

x-rays from the system. The two core viewing arrays use 50 - ptm foils optimized

for viewing greater than 2 keV photons, while te two edge viewing arrays feature

10- pm filters optimized for photons below 500 eV. The various poloidal views of the

core arrays allow for tomographic reconstruction of the 2D x-ray emissivity. Soft x-

97



ray data were utilized in this work for the determination of the impurity confinement

time. Emission from core calcium charge states (H, He, Li-like) is clearly observed

following laser blow-off injection. An example of these measurements and their use

in confinement time determination is shown in Figure 3-17a.
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Chapter 4

Impurity Transport Analysis Tools

on Alcator C-Mod

In Chapter 3, the set of diagnostic tools used during this thesis work was presented.

Here we introduce the software tools used to analyze the data provided by laser

blow-off injection and spectroscopic measurement. Brief descriptions of the itera-

tive synthetic diagnostic procedure developed around the impurity transport code

STRAHL, the power balance code, TRANSP, and the gyrokinetic code, GYRO, are

provided. Specific emphasis is put on their application to the analysis of core impurity

transport on Alcator C-Mod.

4.1 Determination of Experimental Impurity Trans-

port

4.1.1 The Governing Equations of Impurity Transport

The equations governing impurity transport are a set of coupled partial differential

equations representing continuity for each charge state of the impurity species namely:

a =+
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The impurity flux for a particular charge state is represented here as IF and Q,

represents the sources and sinks for each charge state ; namely ionization, recombina-

tion, and charge exchange processes. The system of equations is coupled through the

source/sink terms. Writing out the source and sink terms explicitly we can express

Equation 4.1 as:

an= -V (eIz+eR +nHaz)>z+nelz-1z-1+(neRz+1+rHaz+1)nz+1. (4.2)
at

where Iz is the ionization rate coefficient for an impurity species with ionization stage

Z, Rz is the recombination rate coefficient for radiative and di-electronic recombina-

tion from ionization stage Z, and az is the charge exchange coefficient. It is important

to note that in tokamak geometry, all of these quantities will have a radial dependence.

Previous measurement of particle transport in non-inductive scenarios have demon-

strated the need for a non-diffusive term in the particle flux [20]. Therefore, the flux

is assumed to consist of a diffusive contribution, which is proportional to the density

gradient for the species, and a convective contribution proportional to the density.

This is written as:

rz = -DVnz + Vnz (4.3)

Where D and V are the familiar flux-surface averaged diffusive and convective trans-

port coefficients. The solution of Equation 4.2 provides a complete description of the

time dependent impurity density profile in the plasma.

4.1.2 Evaluation of the Impurity Transport Equations Using

STRAHL

Analytic solutions to the impurity transport equations (Equations 4.2 and 4.3) do

not exist. As a result, the impurity transport code STRAHL [80] was used to solve

the coupled system of equations. STRAHL employs an unconditionally stable Crank-

Nicolson scheme to solve the set of coupled equations represented by equation 4.2

using radially dependent input values of D(r) and V(r). The details of STRAHL's
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numerical scheme are outside the scope of this thesis but the reader is referred to

reference [81] for additional information.

In order to simulate the transport equations, STRAHL must be provided with a

set of input data. The following inputs are required for numerical solutions of the

transport equations:

" The measured time history of the neutral impurity source.

* Atomic physics data. (ionization, recombination, and photon emission rates)

" The measured background plasma profiles for ne and Te.

" Plasma geometry information from an MHD equilibrium reconstruction (EFIT).

" Profiles for the diffusion and convection coefficients.

The laser blow-off source measurement described in Chapter 3 provides the time de-

pendent source of neutral impurities which is used as the input to the STRAHL code.

Source rates were provided for approximately 20 ins following laser blow-off injection

to resolve the initial laser blow-off neutral source as well as the trailing clusters of

material.

Atomic physics data used in this analysis was provided by the Atomic Database

and Analysis Structure (ADAS) [82]. ADAS provides high quality atomic physics

data for fusion applications. STRAHL is capable of reading standard ADAS file for-

mats and was provided with ionization, recombination, and photon emissivity data

obtained from the online database of atomic physics data, Open ADAS [82]. Use

of a standardized format which is openly available is important to ensure the repro-

ducibility of this work.

Raw Thomson and ECE profile data were b-spline fit using the FiTS code and the

resulting profiles were provided to STRAHL. Plasma geometry information is pro-

vided to STRAHL with the assumption of a stationary plasma geometry throughout

the STRAHL run time. To ensure the validity of this assumption, all analysis was

constrained to stationary portions of the discharge. For consistency, standard analy-

sis EFIT was used for both specification of the plasma geometry and the mapping of
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the ne and T profiles to the midplane.

Two options are available for the input of transport coefficient profiles into STRAHL.

Profiles can be specified using simple parameterized models for both D and V profiles

which allows for faster execution, but restricts the possible profile shapes. Alterna-

tively, the user is able to specify radial knot locations on which to specify values for D

and V. Values between the specified knots are obtained through straightforward linear

interpolation. Although slightly less efficient in computational time, this approach

allows for completely independent variation of the transport coefficient values at each

radial knot location and was used throughout this work. STRAHL assumes that the

transport coefficients, D and V, are flux-surfaced averaged, radially dependent, and

time independent.

STRAHL can not be executed in a time-independent mode and requires finite

simulation time. All discharges analyzed in this work exhibited L-mode particle con-

finement and required 100 ms of simulation time (the amount of time stepped forward

in the solution of Equation 4.2). Given a typical L-mode impurity confinement time

of 20 ms this interval properly resolves both the influx and decay phases following an

impurity injection. With this setup, execution times were approximately 2-3 seconds.

Following the execution of a STRAHL run, the charge state density profiles are

returned as a function of time. An example of STRAHL simulated impurity density

profiles using realistic transport coefficient profiles is shown in Figure 4-1. Provided

with the appropriate photon emission atomic physics data, STRAHL can calculate

the emissivity profile of desired line emission. The local line emission is known to be a

function of the electron density, impurity charge state density, and the local electron

temperature. This relation can be written as:

c = nenzf(Te) (4.4)

Generation of modeled emissivity profiles which correspond to measured impurity line

emission provide the necessary information needed to infer the experimental transport

coefficient profiles using an iterative synthetic diagnostic built around STRAHL's
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Figure 4-1: STRAHL generated impurity density profiles are shown in the experimen-
tally relevant region (0.0 < r/a < 0.6) following a laser blow-off calcium injection.

output.

4.1.3 Determination of Experimental Transport Profiles Us-

ing an Iterative Synthetic Diagnostic

The experimental impurity transport coefficient profiles were determined by coupling

STRAHL output with an iterative, X2 minimization method built around a synthetic

diagnostic. The synthetic diagnostic and the complementary set of software tools

for x2 minimization and iteration were developed specifically for this thesis work

and allow not only for the determination of experimental impurity transport profiles

but also the rigorous investigation of uncertainties in the derived transport. In all

work presented here, two core spectroscopic measurements were used: Time evolving,

radial profiles of Ca18+ (He-like Ca) provided by the HiReX Sr., soft x-ray spectrom-

eter and the single chord Car7+ (Li-like Ca) measurement provided by the XEUS

soft x-ray/VUV spectrometer. An overview of the methodology implemented by the
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Figure 4-2: STRAHL generated emission profiles for the measured Ca18+ and Ca17+
lines are shown in the experimentally relevant region (0.0 < r/a < 0.6) - 30 ms after
a laser blow-off calcium injection.

iterative synthetic diagnostic is presented below but more detail can be found in Ap-

pendix C.

Execution of the iterative synthetic diagnostic requires an initial guess for the

transport coefficient profiles and the additional STRAHL input data specified in the

previous section. Data from the HiReX Sr. and XEUS diagnostics is loaded and

processed such that background emission is subtracted and all signals are on identi-

cal time bases. To improve the temporal resolution of the primary He-like calcium

measurement, data from 3 impurity injections into stationary plasma conditions is

organized in time relative to the laser blow-off injection and combined into a single

dataset. The possible error introduced using this procedure is discussed later in this

chapter.

Execution of STRAHL generates emissivity profiles for the He-like calcium (Ca 18+)

resonance line located at 3.17 A and the Li-like calcium (Ca 17+) line located at 18.68A.

It is assumed throughout the analysis that the emissivity is constant on a flux surface.
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While results on poloidal asymmetry of impurities were recently reported by Reinke

et al. [83], the flux surface asymmetries for calcium appear to be quite small in the

plasma core. Under this assumption, the STRAHL generated emissivity profiles are

line integrated along the experimental lines of sight for both the HiReX Sr. and

XEUS spectrometers. A total of 33 modeled and measured views of plasma emission

are available for comparison. This consists of 32 line integrated views of Ca18+ with

tangency radii extending out to r/a ~ 0.6 and a single line integrated view of Ca17+

emission which extends through the plasma core for typical plasma operation. The

modeled/experimental views used in the analysis are demonstrated in Figure 4-3. In

0.6

0.4

0.2

N
0.0

0.2

0.4

-0.6

0.4 0.6 0.8

R (m)

1.0

Figure 4-3: The 33 total views provided by the HiReX Sr. and XEUS spectrometers
are shown. STRAHL generated emissivity profiles are line integrated along these
views to compare with measured signals.
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the absence of absolutely calibrated measurement, both modeled and measured sig-

nals are identically normalized while conserving the radial variation of the brightness

profile. An unbiased measure of the agreement between the measured and STRAHL

modeled spectroscopic signals is given by the following relation:

2 = Smeasured - SSTRAHL 2
o- (4.5)

Where Smeasured and SSTRAHL are the measured and STRAHL simulated signal

strength and a is the estimated standard deviation of each data point.
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Figure 4-4: Seven HiReX Sr. line integrated brightness time histories and the
XEUS brightness time history are compared with the synthetic emission generated by
STRAHL. Measured data is represented by black diamonds and synthetic emission is
shown by blue and red lines. The HiReX views are roughly equally spaced from the
core to r/a ~ 0.55.

The process described above was coupled to the nonlinear least squares fitting

routine MPFIT [84] to determine the experimental values of the impurity transport

coefficients through iteration. The algorithm minimizes X2 through modification of

the D and V profiles initially specified by the user. In typical operation of the code,
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each transport coefficient profile consist of 6 radial knots which are allowed to inde-

pendently vary in magnitude with each iteration of MPFIT. This is done in a manner

that will minimize the difference in the modeled STRAHL emission and the mea-

sured emission of the He-like and Li-like Ca charge states. To reduce the sensitivity

to the second derivative at the plasma core and eliminate instability within the code,

the innermost two radial knots are forced have identical values. This enforces the

boundary condition dn,/dr = 0. Second derivative sensitivity has been demonstrated

previously by Dux et al. [48]. Although the measured Cais+ (He-like Ca) signals

are limited to roughly the region 0.0 < r/a < 0.6 (for typical L-mode conditions),

the measured emission of the Li-like charge state is highest where the emission of the

He-like charge state is low. It therefore offers important information for constraining

transport in regions of weak He-like signal. Two radial knots are positioned out-

side the measurement region (r/a > 0.6) and allowed to freely vary. These external

0 0 4 Initial Guess Final Fit
C

.E 0.03
-c Data

STRAHL STRAHL
- 0.02 S

Data
E 0.01
0

0.00
15 35 55 75 95 15 35 55 75 95
Time After Injection (ins) Time After Injection (ms)

Figure 4-5: The measured (black points) and STRAHL modeled (red) brightness time
history for a core HiReX Sr. view is shown. The comparison using the initial guess
for the D and V profiles (left) and the final, X2 minimized profiles (right) is shown.

knots are less constrained by measurement (only the Can7+ and source measurements

are present in this region) but adjust such that the outermost measured signal is

appropriately reproduced. Similar x2 minimization techniques have been applied in

previous impurity transport studies [16, 46, 49]. The values of D and V are modified
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by MPFIT coupled with the synthetic diagnostic until X2 is reduced to a minimum.

An example of the synthetic HiReX Sr. and XEUS data compared with the measured

signals is demonstrated in Figure 4-4 for various views. The values of D and V which

best reproduce the measured signals are then quoted as the experimental impurity

transport coefficient profiles.

To gauge the optimum number of fitting parameters (knots) used in the mini-

mization process, the number of knots was initially kept to a minimum (3 in each D

and V profile) and increased until the inclusion of additional knots no longer resulted

in significant change in the returned V2 value. It was observed that increasing the

number of knots much above 6 resulted in large variation of the knot values with very

little change in the x2. For large, multi-parameter fits, the use of x2 minimization

requires some care in the selection of initial transport profiles [85]. The complexity

of the parameter space and the intrinsic noise in the data leads to the presence of

numerous local minima. For this reason an exhaustive examination of the local and

global minima present in the x2 space was performed using a Monte Carlo approach

for selection of the initial guess. Given user-defined upper and lower limits for the

values of D and V, random, uniformly generated values for the transport coefficients

at each knot are used as the initial profiles for a STRAHL run. These upper and

lower bounds are left intentionally quite large (D - [0 , 15] m 2 /s, V = [-50 , 20]

m/s). These intervals can be justified through very simple estimates. If we consider

a global impurity confinement time of 20 ms and a minor radius of 0.21 m, the dif-

fusion coefficient can be estimated by: D = 0.212/.02 - 2.2 m 2 /s. A rough estimate

of the convective velocity can also be obtained from the time required for core x-ray

signals to peak following a laser blow-off injection. This time is approximately 12

ms. Therefore its estimated convective velocity moving from the edge to the core

is: V = 0.21/.012 = -17.5 m/s. STRAHL is executed with the randomly generated

starting values and allowed to undergo X2 minimization. This process is repeated

approximately 300 times to determine what is believed to be the global minimum of

the parameter space. After the approximate location of the global minimum of the

space was identified, the start value used for all subsequent STRAHL runs was chosen
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such that it lies in the vicinity of the the apparent global minimum.

4.1.4 Error Sources in Transport Coefficient Determination

Uncertainties in the experimental data propagate through the impurity transport

code to the determined transport coefficients. Three sources of error were identified

as: 1) photon statistics and background, 2) normalization and combination of multi-

ple injections, and 3) uncertainty in the background plasma density and temperature

profiles.

Hirex Sr. Brightness Time Histories with Photon Statistics Errors
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Figure 4-6: The error bars due to photon statistics for 3 HiReX Sr. views are shown.

Uncertainity introduced by photon statistics and small variations in background

emission were calculated and included in the experimental error bars used in the / 2

minimization. The lack of any calcium intrinsic to the plasma, selection of a station-

ary analysis period, and measurement of a specific transition resulted in good signal

to noise and small error introduction purely from photon statistics and background

subtraction.

As mentioned in the previous section, emission from multiple impurity injections

was combined during the steady state portion of the discharge to improve the effec-

tive temporal resolution of the primary measurement. After background subtraction,

each injection was normalized to the maximum measured brightness value for that

injection. The maximum brightness was determined through a polynomial fit of the

peak in the measured brightness time history for the particular line of sight. Error in
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the peak value due to fitting has been estimated to be of order 1.5% through Monte

Carlo fitting of down sampled simulated data sets and was included in the experi-

mental error bars used in the X2 minimization.
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Figure 4-7: The electron density and temperature profiles for a stationary portion
of a discharge are shown. Approximately 25 time slices, obtained from individual
Thomson scattering times, are over plotted with the red curve indicating the mean
profiles.

In these studies, uncertainty in the background plasma profiles were the dominant

source of error in the determined impurity transport coefficients. Time averaged pro-

files of ne and Te were determined over the stationary portion of the discharge and

used as the input profiles for STRAHL. During stationary periods the statistical vari-

ation from this mean profile is assumed to approximate error bars on the density and

temperature profiles. The profile variation during a stationary portion of a discharge
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is shown in Figure 4-7. To account for this variation, and to determine its propaga-

tion to the transport coefficients, approximately 40 STRAHL runs were performed

where the density and temperature profiles were varied within the experimental error

bars and the transport was rederived through the iterative procedure described above.

The strong dependence of the local emission on electron temperature, especially in

the region of low Ca18+ density, can result in significant error and must be considered

when analyzing the uncertainty in the derived transport coefficients.

The profiles quoted as the experimental transport profiles represent the x2 weighted

mean from 40 STRAHL runs. Each STRAHL run consisted of variations of the back-

ground density and temperature profiles as well as small variations in the radial

location of the knots. The derived error bars represent the x 2 weighted standard

deviation from the mean and are typically found to increase with radius as result of

decreasing signal at the edge.

4.2 Power Balance Calculation Using TRANSP

In order to understand transport processes, we must first understand the transfer

of energy and particles in an out of the plasma. Determining these flows requires

knowledge of the sources, sinks, and background profiles of a wide range of quantities.

Despite our best efforts to create ever more innovative and robust methods of

plasma confinement, plasmas consistently demonstrate a tendency to reduce density

and temperature gradients through transport of heat and particles. It is desirable to

both measure the transport level and to understand the physical processes responsi-

ble for the transport of heat and particles. This motivates much of tokamak research

and ultimately motivates the work presented here. To this point in the thesis, we

have discussed the governing equations for particle and impurity transport in detail.

However, an understanding of energy and momentum transport is also needed to de-

scribe the full temporal and spatial evolution of a plasma discharge. In this section we

discuss the use of numerical power balance codes to solve the couple transport equa-

tions for particles, energy, and momentum which allow for calculation of experimental
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transport levels.

4.2.1 Numerical Transport Codes and Power Balance

A good general overview of the structure and implementation of numerical transport

codes such as TRANSP can be found in references [86, 87]. The basics of numeri-

cal transport codes can be boiled down to solving the set of conservation equations

governing particle and energy balance of ions and electrons. This is achieved using

a series of input quantities which are provided by experimental measurement and

numerical models to determine unknown quantities. To reduce the complexity of the

problem, numerical transport codes take advantage of fast transport time scales along

the magnetic field and the use of flux coordinates to reduce the governing equations

to a set of "1 1/2-D" equations which represent a 1-D transport model which use a

2-D plasma equilibrium [86]. The following overview of these equations is based on

their implementation into the power balance code, TRANSP and will for simplicity

assume circular flux surfaces so that the radial coordinate, r, is used. In reality, the

code accounts for the non-circular plasma geometry found in Alcator C-Mod.

The governing equations for heat transport are the electron and ion energy con-

servation equations:

3 t (neTe) + V - neV 2 - v'e V(neTe) Se (4.6)y2 te e~ + ( e (4~

and
3 a 5

(niTi) + V- qi + V- (-nTiv;) - vi V(niT) - Si (4.7)
28at 2

with

j2(r) 3me ne []( 48Se = + Pe,heating - Pionization - Prad - * [Z](Te - Ti) (4.8)
o-(r) mi Te

Si =Pi,heating + Put +3me l [Z] (Te - T ) + nino < o- >, (T - To) (4.9)
mni Te

qe = neXeVTe (4.10)

q = njxjVT (4.11)
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1nj Z?[Z)= .7 (4.12)

The left hand sides of each equation (4.6 and 4.7) are identical with only the

species indices changed. The first term represents the rate of change of energy for

each species, the second term represents heat flux losses, the third term indicates

convective losses, and the fourth term is the work of particles against the pressure

gradient. The right hand side of each equation represents heat sources and sinks for

each species. For the electrons, these consist of ohmic heating, direct auxiliary heating

to the electrons, the power lost through ionization processes, losses due to radiation

processes, and ion-electron equilibration. For the ions, the sources and sinks are:

direct auxiliary heating to the ions, the energy gained through neutral ionization,

ion-electron equilibration, and power loss due to charge exchange. The governing

equations for particle transport are the electron and ion continuity equations. They

have the familiar form:

at

and
a

(ni) =- -V Fi(r, t) + S, 0 (r, t) + Swaui(r, t) (4.14)
at

Where S,,, denotes volume particle sources (such as neutral beams and pellet

injection) and Swan represents the sources and sinks of particles originating at the

wall. These equations (4.6 - 4.14), coupled with the energy conservation equations

represent the basis of all power and particle balance codes. Evaluation of this set of

equations requires a number of known and unknown quantities. A majority of the

needed quantities are obtained via routine measurement in most tokamaks (ne, Te,

Ti, Pad, j). The missing quantities are obtained via calculation or modeling, often

using externally developed codes which are integrated into the numerical transport

code as separate modules. These quantities include o-, ve, vi, no, Pheating, Swait, and

Svol. An overview of the methods used for the calculation of these quantities is well

outside the scope of this work but the reader is referred to [86, 87, 88] for a more
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in-depth overview of the equations and models described in this section.

4.2.2 The Role of TRANSP in this Work

The use of TRANSP in this work served two main purposes: Determination of the

experimental values of the electron and ion heat fluxes, Qe and Qj and remapping of

experimental data, taken in 3D space, onto a consistent 1D radial grid for input into

turbulent transport codes.

Electron and Ion Heat Fluxes From TRANSP
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Figure 4-8: An example of the TRANSP calculated electron and ion heat fluxes is
shown for 32 different runs where the values of ne, Pabsored, Te, T, and Zeff were varied
within estimated uncertainties. Theses runs provide an estimate of the plausible
uncertainty ranges of heat flux found in the experiment.

Determination of the experimental electron and ion heat fluxes is essential for

comparison with turbulence codes. Since turbulent transport is thought to dominate

observed transport levels and neoclassical contributions are often small or negligible

in the plasma confinement zone, predictions of turbulent heat fluxes obtained through

turbulence simulation should approximately match the heat flux observed experimen-

tally. Therefore, obtaining not only calculated values for the experimental heat fluxes

but also an estimate of the uncertainties in these values is of great importance when

attempting quantitative comparison of turbulence simulation with experiment. Many

114



of the quantities relevant for the calculation of the electron and ion heat fluxes are

measured experimentally and their measurement uncertainties have been studied by

their respective diagnosticians. These are: ne, Te, T, and Zeff. However, the ab-

sorption efficiency of the Ion Cyclotron Resonance Heating (ICRH) is typically not a

measured quantity. TRANSP is coupled with the TORIC code [89, 90] to solve the

wave equation and calculate wave propagation and absorption in the plasma. This

model for the ICRH absorption is required to obtain the experimental profiles of the

electron and ion heat fluxes and motivates the use of TRANSP in this work. Vary-

ing the the experimental inputs within their estimated uncertainty and performing

ensembles of TRANSP runs can determine the propagation of uncertainty to the ex-

perimental heat flux values which are compared with output of turbulence codes. An

example of this analysis is demonstrated in Figure 4-8. More detail on the TRANSP

analysis performed and the importance of determining the uncertainty in the experi-

mental heat flux will be presented in the following chapter.

The TRANSP code also functions as an intermediary between experimental data

and the input files needed for gyrokinetic simulation of plasma turbulence. Using

the IDL interface, PreTRANSP, input data from numerous diagnostics is provided to

TRANSP. Although input data may be provided on any number of different radial

grids (r/a, 4, Rmajo), TRANSP maps all quantities to a single coordinate system,

the square root of the normalized toroidal flux, p. With all experimental values on

the same grid, output values are extracted to create input files for gyrokinetic codes.

Translation of TRANSP output to the gyrokinetic input files needed for the code,

GYRO was performed using the TRGK code developed at Princeton Plasma Physics

Lab. A chart outlining the workflow required for gyrokinetic input file generation is

shown in Figure 4-9.
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Figure 4-9: A chart outlining the workflow used to extract impurity transport coef-
ficients using STRAHL, performing TRANSP calculations, and steps used in GYRO
simulation.

4.3 Gyrokinetic Simulation Using GYRO

4.3.1 GYRO Overview

All simulation of plasma microturbulence performed during this thesis work used

the GYRO code developed by Candy and Waltz [91, 92] at General Atomics. An

important part of this work is to assess the degree to which the gyrokinetic model,

and more specifically, the implementation of this model in the GYRO code, contains

sufficient physics for the quantitatively accurate simulation of tokamak discharges in

the plasma confinement zone. GYRO is an Eulerian, 6f code that is, it solves the

gyrokinetic equation for the perturbed part of the distribution function, 6f, under

the assumption of background Maxwellian electrons and ions [93]. For a detailed de-
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scription of the numerical schemes employed by modern gyrokinetic codes the reader

is referred to [3]. Simulations can be performed with realistic plasma equilibrium [94],

electromagnetic effects (finite #), up to 5 total ion species, collisions, and adiabatic,

drift-kinetic, or gyrokinetic descriptions of each species. GYRO simulations may also

include rotation effects and E x B shearing rates which are calculated self consistently

from the experimental rotation profiles.

Both local (flux-tube) and global simulations are possible using GYRO. Local

simulation corresponds to the p. = p5/a --+ 0 (with p, = c,/Qci, QOc = eB/mic, and

c. = VTe/mi) limit of the gyrokinetic-Maxwell equations. This type of simulation

ignores profile variation, such that fixed values of profiles and the relevant gradient

scale lengths are fixed across the simulation domain. In contrast, global simulation

incorporates the real variation of the plasma profiles across the simulation domain.

However, due to the non-periodic boundary conditions, these global simulations re-

quire the existence of boundary or buffer regions at the edge of the simulation domain

[95]. These buffer regions are imposed numerically in a manner which does not affect

the simulation results in the interior of the simulation domain. An example of global,

nonlinear GYRO simulation and the buffer regions is shown in Figure 4-10. Candy

et al. demonstrated the agreement of the local and global approaches at values of

approximately l/p, > 300 [96]. All nonlinear gyrokinetic work performed for this the-

sis relied on global simulation. Use of global simulation allowed for straightforward

comparison of experimental impurity transport coefficient profiles with the gyroki-

netic predictions and eliminated the need for 4 or 5 local simulations to obtain the

information from a single global simulation.

4.3.2 Linear Gyrokinetic Simulation

Although nonlinear gyrokinetic simulation represents the most comprehensive simula-

tion of plasma microturbulence, the substantial time and computing requirements de-

manded by these simulations often makes them impractical for routine or exploratory

calculations. Linear gyrokinetic simulation can provide insight into character of the

plasma turbulence present in experimental discharges with quick turn-around (exe-

117



Global GYRO Simulation

0.3 0.4 0.5 0.6
r/a

Figure 4-10: An example of global,
the TRANSP values of Qt&. The
global simulation.

GYRO simulated total heat flux is compared with
shaded regions represent the buffer zones of the

cution time - 60 sec on 16 processors ) with only the use of local computing facilities

such as the LOKI cluster [97] at MIT. GYRO includes the ability for either eigen-

value and initial value solution to the linear gyrokinetic equation. All linear stability

analysis presented here was performed using initial value simulation. This type of

simulation is limited to resolving the real frequency and growth rate of only the most

unstable linear mode at a particular value of kep,. All perturbed quantities (electro-

static potential is shown) are assumed to be of the form:

(4.15)

Where n is the toroidal mode number, w is the real frequency and 'y is the linear

growth rate. We can relate the toroidal mode number to the poloidal wavenumber,
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ko through the following relation:

k =nq (4.16)

An example of the real frequency and growth rate spectrum up to k,9p, 1.0 obtained

from linear, local, initial value GYRO value simulation is shown in Figure 4-11. From

0.0 0.20

-0.1 0.15

'M-0.2 0.10-

-0.3 0.05
1110215005 @ 1100 ms

(+)= Electron (-) = Ion Direction
-0.4 , , , I, , , . . , ,. 0.00

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
ko Ps ke Ps

Figure 4-11: An example of linear GYRO simulation results is shown. Twenty sep-
arate linear simulations were used to determine the real frequency and growth rate
spectrum up to kop, a 1.0. Positive/negatives values of the real frequency indicate
modes rotating in the electron/ion diamagnetic drift directions.

these simple linear simulations we can have an idea of types of instabilities present in

the plasma. The sign of the real frequency is indicative of the propagation direction

of the unstable mode in the plasma frame. By looking at the kop, spectrum of the

linear growth rate, we can assess the scale of the turbulence which is most unstable

in the plasma. In the example shown in Figure 4-11 the peak of the growth rate

spectrum occurs at approximately kop, = 0.5 which indicates the wavelength of the

most unstable (low-k) modes are approximately 47r times as large as the local value

of p, and they rotate in the ion diamagnetic drift direction. These characteristics are

suggestive of ion temperature gradient (ITG) type turbulence. However, this picture

is overly simplified since it neglects the nonlinear interactions between different modes

and the nonlinear saturation of the resulting turbulence. For this reason, nonlinear

simulation is performed.
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4.3.3 Nonlinear Gyrokinetic Simulation

Nonlinear gyrokinetic simulation currently represents the most comprehensive model

of microturbulence which is numerically tractable. These simulations solve for the

perturbed distribution function and its nonlinear saturation. From the perturbed dis-

tribution, the perturbations to the electromagnetic fields can be obtained. In general,

these simulations are still quite demanding and require access to massively parallel

computing facilities. All nonlinear simulations discussed in this work were performed

on the National Energy Research Supercomputing Center (NERSC) using between

512 and 1024 processors and 10, 000 to 40, 000 CPU hours per case. Inclusion of addi-

tional impurity species, increasing the number of toroidal modes (increased simulation

box size), and running simulations up to higher-k values can result in simulation times

which are prohibitively long. As a result, simulations are often performed with the

minimum required fidelity to resolve the physics of interest and convergence studies

are performed to ensure that additional resolution does not alter the results.

The detailed implementation of the GYRO is out of the scope of this thesis. How-

ever, the reader is referred to the GYRO technical guide for a complete description of

the code [95]. Here we describe the basics of nonlinear GYRO simulation. Simulation

of the tokamak is performed using N toroidal modes with a spacing, An. Spacing

of the toroidal modes corresponds to simulation of a toroidal wedge with a width of

27r/An. The number of toroidal modes and their spacing is chosen such that they

span the desired range of kop. However, in the case of global simulation, the quantity

q/r varies across the simulation domain and therefore the maximum simulated kop,

value at the inner bound of the simulation domain tends to exceed the value at the

outer bound. Quoted values of kop, for nonlinear simulations correspond to the aver-

age value across the simulation domain. To ensure accurate simulation of the plasma

turbulence, simulation box sizes must be sufficiently large as to encompass many tur-

bulent eddy widths. For this work, this corresponded to box sizes of L, ~ 10 0p, and

Ly > 40 ps. As will be discussed in later chapters, spot checks were performed during

nonlinear GYRO simulation work to ensure that box size increases did not alter the
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results.

The goal of the nonlinear gyrokinetic simulation performed for this thesis was

to investigate the dynamics of impurity transport. For GYRO "production" runs,

simulations were performed with drift-kinetic electrons, gyrokinetic ions, and 3 gy-

rokinetic impurity species specified with normalized gradient scale lengths at values

of 0.5, 1.0, and 1.5 x a/Ln. Nonlinear GYRO simulation outputs the flux-surfaced

averaged impurity flux for each species as a function of radius and time. The impurity

transport coefficients, D and V, were determined from the three output values of the

impurity flux. The output impurity flux for each species was cast into the following

form:
SVn~z = -D z + V (4.17)

nz nz

Where Fz is the output particle flux from GYRO for each impurity species, nz is the

impurity density, and D and V are the flux surface averaged diffusive and convective

impurity transport coefficients. Plotting Pz/nz vs -Vnz/nz and performing a linear

fit to the data allows one to obtain the impurity diffusion coefficient from the slope

and the convective velocity from the y-intercept. The accuracy of this assumed form

for the impurity flux will be discussed in more detail in Chapter 5. Post processing

routines were developed as part of this work to modify GYRO inputs, analyze the

code outputs, and ultimately extract the flux-surfaced averaged impurity transport

coefficients for comparison with experimental results obtained via laser blow-off and

the iterative synthetic diagnostic.
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Chapter 5

Quantitative Comparison of

Experiment with Nonlinear

Gyrokinetic Simulation of Impurity

Transport

Previous impurity transport work has aimed predominantly at analyzing experimen-

tally observed transport coefficients qualitatively using quasilinear gyrokinetic models

[15, 161. This chapter describes the first comparison of nonlinear gyrokinetic simula-

tion with experimental impurity transport in the core of an Alcator C-Mod plasma

discharge. This comparison is accompanied by an in depth investigation of error and

sensitivity in the experiment and simulation, respectively, and serves as the start-

ing point for impurity transport model validation. The remainder of this chapter is

organized as follows: Section I briefly overviews the experimental discharge and the

diagnostic setup employed to determine the plasma profiles. Section II discusses the

gyrokinetic simulation setup, the initial methodology used to determine the predicted

impurity transport, and linear analysis of discharge. Section III presents the direct

comparison of the experimental results with gyrokinetic simulation and and sensitivity

analysis of the predicted transport profiles to a range of turbulence-relevant param-
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eters. Section IV details a new approach used to perform gyrokinetic simulation for

comparison with experimental impurity transport.

5.1 Description of the Experiment

The work presented in this chapter focuses on the analysis of a single Alcator C-Mod

[98] L-mode discharge. The discharge studied was run with a toroidal field of 5.3

T and a plasma current of 0.8 MA. During the 1.0 sec current flattop, a total of

1.0 MW of ICRH heating power was introduced by two separate antenna operating

at 78 and 80 MHZ (on axis, hydrogen minority heating) which resulted in a core

electron temperature of - 2.7 keV and a core density of ~ 1.5e20 m-. Although

not ideal for turbulent transport studies, sawtooth instability is generally unavoid-

able in C-Mod and is present for the entire discharge length. Due to the presence of

sawtooth oscillations, most of the gyrokinetic work was restricted to outside of the

sawtooth inversion radius to reduce or eliminate the influence of MHD driven trans-

port phenomenon which are not included in the gyrokinetic model. In order to avoid

H-mode, yet maintain the capability to vary the heating power substantially, the L-H

power threshold was raised by operating in Upper Single Null (USN) configuration

with the ion VB drift away from the active x-point. Figures 5-1 and 5-2 show the

time traces for key discharge parameters and the input plasma profiles used for the

GYRO simulations respectively. Experimental analysis of this discharge focuses on

the stationary portion from approximately 1.0 to 1.4 seconds while the plasma profiles

used for gyrokinetic simulation are nominally based on profiles at t = 1.1 seconds.

Ion temperature and toriodal velocity simulation profiles were time averaged over the

stationary portion of the discharge to reduce uncertainty.

Measurements of the plasma profiles were provided by the extensive diagnostic

suite [71] described in Chapter 3 of this thesis. For completeness, a brief overview

is provided here. A 33 channel Thomson scattering system [6] was used to provide

both edge and core electron density and temperature measurements with 16 ms time

resolution. Additional electron temperature measurement was provided by 3 sepa-
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Figure 5-1: Time traces of basic plasma parameters for the analyzed discharge are

shown. The oscillations in the central Te are due to sawteeth. The shaded region

indicates the time interval used for experimental analysis, 0.965 to 1.40 seconds, with

laser blow-off injections occuring at 0.965,1.165, and 1.365 seconds.

rate electron cyclotron emission (ECE) systems which serve to significantly reduce

error in the measured electron temperature profiles [72, 73, 74]. Ion temperature and

toroidal rotation profiles were determined using the spherically bent x-ray crystal

spectrometer, HiReX Sr., which is capable of providing spatially resolved spectra of

Ar+16 line emission [7]. Tomographic inversion techniques were applied to measured

spectra to determine profiles of ion temperature and toroidal velocity. This measure-

ment requires argon gas puffing into the plasma and is limited by the presence of the

Ar+ 1 6 charge state. For the discharge of interest, the abundance of this charge state

is diminished near the plasma edge and limits the accurate determination of these

profiles to inside of r/a = 0.75. The Zegf values used in this paper are assumed to
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Figure 5-2: The plasma density, temperature, and toroidal rotation profiles used as
inputs to the GYRO simulation are shown.The shaded region is the approximate
extent of the global, gyrokinetic simulation domain. Ion temperature and toroidal
velocity profiles are limited to 0.0 < r/a < 0.7 due to larger uncertainty in the edge
measurement.

be constant across the simulation domain and were calculated through a neoclassical

calculation which can be found here [99]. These calculated Zeff values, together with

estimates of plasma impurity content, were shown to be consistent with the measured

neutron rate and ion temperature profiles within experimental uncertainty.

The full array of spectroscopic diagnostics described in Chapter 3 was available

for this analysis. Measured profiles of the He-like (Ca18+) charge state of calcium

were provided by the HiReX Sr. spectrometer and a single chord measurement of the

Li-like (Ca17 +) was provided by the XEUS VUV spectrometer. Additionally, deter-

mination of the laser blow-off source time history was provided by measurement of

Ca I emission. The density and temperatures obtained in this discharge, combined

measurements of the impurity source, full time evolving profiles of the He-like calcium

charge state, and an effective boundary condition provided by measurement of Li-like

calcium allowed for unique determination of impurity transport inside of r/a = 0.6.
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5.1.1 Experimental and Neoclassical Transport Profiles

The methodology described in Chapter 4 was applied to the discharge of interest to

determine the experimental transport coefficient profiles. The results of this analysis

are presented in Figure 5-3. From left to right the experimental values of the diffusion

7 -.- Ir- -- ,...- -. ,.-, - .-- 10 - , --- --- - -- - - - ---- - ---

6V Vm/s) 4V/6

5

4 -10 - 0-
Experiment -
Neoclassical x 10 m.. -

2 -4-

1 -30.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
r/a r/a r/a

Figure 5-3: The experimentally derived and neoclassical impurity transport coeffi-
cients are shown: (a) Diffusion coefficient, (b) Convective Velocity, and (c) Peaking
Factor. The mean values of experimental coefficient profiles are shown by a solid blue
line. The shaded regions surrounding the mean profile (blue) indicate the estimated
errors on the transport coefficient profiles. The neoclassical impurity transport coef-
ficients (dashed red) are multiplied by a factor of 10 for comparison. The estimated
radial location of the sawtooth inversion radius is indicated by the dotted black line.

coefficient, convective velocity, and peaking factor ( the ratio v ) are plotted over

the radial region 0.0 < r/a < 0.6. Due to the reduced Ca18 + brightness profile

towards the outside of the measurement region as well as the strong dependence of

the local emission on electron temperature and its uncertainty, the error bars on the

measurement are significant and increase towards the edge of the measurement region.

The results of this analysis are found to be qualitatively consistent with previous

impurity transport measurements from JET, Tore Supra, and ASDEX-Upgrade [16,
46, 49]. The neoclassical values of the diffusion coefficient and convective velocity

calculated using the NEO code [100] are also shown in Figure 5-3. Experimental values

of the transport coefficients are shown to greatly exceed the neoclassical predictions

across the profile which suggests that neoclassical transport, which is the irreducible

amount of collision-dependent transport in a tokamak, is playing a negligible role in

the impurity transport. This supports the idea that another mechanism is dominating
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the transport, i.e. drift wave turbulence. Inside of the sawtooth inversion radius, the

values of core diffusion and convection are found to be quite small. MHD activity

dominates the transport in this region and frequent sawtooth crashes (sawtooth period

~ 8 ms) tend to maintain a relatively flat impurity density profile. Outside of the

inversion radius, in the so called plasma confinement zone, both impurity diffusion

as well as inward impurity convection are found to increase significantly with peak

values of the diffusion coefficient (- 5.8 m 2/s) occurring around r/a - 0.6 with

a corresponding minimum in the convective velocity (~ -25 m/s), where negative

velocity indicates an inward "pinch". It is speculated that transport in this region

is driven by plasma turbulence which can be simulated using nonlinear gyrokinetic

codes. In steady state, in the absence of core sources, l, = 0. It follows that:

V Vn (5.1)
D n

Therefore, the experimental peaking factor profile suggest significant peaking of the

steady state impurity density in the confinement zone with a flatter, even slightly

hollow, profile inside of the inversion radius.

5.2 Gyrokinetic Simulation Setup

5.2.1 Linear Stability Properties of the Discharge

The GYRO code [92] was used to perform both linear and nonlinear gyrokinetic sim-

ulation of the experimental discharge. The linear stability properties of the discharge

are summarized in Figure 5-4. Contours of the linear growth rate, -y normalized to

c,/a, for the most unstable mode in the range of kop, - [0.25 , 0.75] are shown for a

scan of the turbulence drive terms, a/LT and a/L, (Figure 6a-c) and a/LTr and aILT,

(Figure 6d-f) on the x and y axes respectively. Here, a is the plasma minor radius,

Ps = cS/Qe is the sound speed gyroradius, QOc = eB/mic is the ion gyrofrequency, and

c = /Te/mi is the sound speed. The normalized gradient scale length, a/Lw, for a

given quantity x is defined as -aVx/x. The range of kops was chosen to best display
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Figure 5-4: Contours of the growth rate, -y (a/c,), of the most unstable mode in the
range kop, [0.25 , 0.75] are shown for scans of a/LT,~ vs. a/L, (Figures Ga-c) and
a/LT, vs. a/LTe (Figures 6d-f) at 3 radial locations ( r/a = 0.35,0.475,0.6). The
experimental values are indicated by the + sign and the solid white line separates
modes with negative and positive real frequencies, which rotate in the ion and electron
diamagnetic drift directions respectively. The lack of sensitivity to changes a/LTe and
a/La is clearly demonstrated. The discharge is found to be ITG unstable at all radial
locations.

a shift from ion to electron direction in the low-k linear growth rate spectrum which

indicates a shift in the dominant instability from Ion Temperature Gradient driven

(ITG) to Trapped Electron Mode (TEM). The solid white line indicates the boundary

between modes rotating in the ion and electron diamagnetic drift directions and the

+ sign indicates the location of the experimental values of a/LT, and a/LTe(a/La).

The dominant mode in the experimental case at all radial locations rotates in the ion

diamagnetic drift direction. For a fixed value of a/LTe (a/La), the linear growth rate

clearly increases/decreases with the corresponding increase/decrease in a/LT. Ad-

ditionally, shifts of a/LT, and a/L, around the experimental points lead to minimal

changes in the linear growth rate. Since the growth rate is clearly linked to the ion

temperature gradient, these plasmas are classified as ITG dominated.
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5.2.2 Global, Nonlinear GYRO Simulation Setup

The results of the linear stability analysis were used to motivate global, nonlinear

GYRO simulations. Ion temperature gradient-type turbulence has been shown to

have significant contributions to the turbulent heat flux below for k9p, < 1.0 [3].

Therefore, the nonlinear simulations performed here considered only contributions

from turbulence in the low frequency range, 0.0 < kop, < 1.15. These values of

kop, clearly include the low-k peak in the turbulent heat flux which occurs at k0p, ~

0.4. The turbulent heat flux driven at the highest simulated value of kop, is < 10%

of that driven by the low-k peak in both the electron and ion channels. This sug-

gests that higher-k contributions can be neglected. Electrostatic simulations were

performed including E x B shear, parallel velocity effects, and drift kinetic electrons

with realistic mass ( /mD/me 6= 0-6). The physical simulation domain covered a

region from r/a = 0.29 - 0.62 which was simulated with 8 toroidal modes (An = 15)

spanning n = [0 - 105]. The corresponding simulation box size was ~ 100p,(L,) by

40p,(Ly). Additional simulations were performed with 16 toroidal modes to ensure

adequate resolution and accurate determination of both particle and heat transport.

Only modest differences are present between the two simulations and are summarized

in Figure 5-5. Although finite, these differences will be shown to be small compared
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Figure 5-5: (a) Comparison of the GYRO predicted heat flux between simulations
using 8 (red) and 16 (blue) toroidal modes is shown. Simulation buffer regions are
represented by shaded regions. Small differences are seen in the predicted diffusion
(b) and convective velocity (c) profiles for simulation with 8 and 16 toroidal modes.
These differences were found to be small compared with the simulation sensitivity to
plasma parameters

130



with the sensitivity to plasma parameters. It was therefore concluded that the use

of 8 toroidal modes demonstrated sufficient ability to resolve impurity transport re-

sults. Additional spot checks were performed with 16 toroidal modes throughout the

sensitivity analysis to once again validate the choice of 8 toroidal modes. Three trace

(~ .001ne) impurity species were included to provide the predicted impurity transport

profiles, without affecting the underlying turbulent dynamics. In order to compare

with the measured impurity transport, each species was given identical charge and

mass characteristics to that of He-like calcium (Z = 18, A = 40) but different values

of impurity density gradient scale length namely, 0.5, 1.0, 1.5 x Vne. The output

impurity flux for each species was cast into the following form:

S- D +V (5.2)
nz nz

Where Fz is the output particle flux from GYRO for each impurity species, nz is the

impurity density, and D and V are the flux surface averaged diffusive and convective

impurity transport coefficients. Plotting rz/nz vs Vnz/nz and performing a linear fit

to the data allows one to obtain the impurity diffusion coefficient from the slope and

the convective velocity from the y-intercept. This linear fit is shown in Figure 5-6 for

the discharge of interest. It is found that the linear fit is an very accurate model for

the GYRO output trace impurity fluxes, with one-sigma errors on the linear fitting

coefficients of order 1 x 10-5.
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Figure 5-6: The linear fit of the GYRO predicted values of Fz/nz vs -Vnz/nz is
shown at 3 radial locations, r/a = 0.35, 0.475, and 0.6.
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5.3.2 Sensitivity of Gyrokinetic Impurity Transport Using

Qtot Matched Simulation

To provide a rigorous quantitative comparison of the GYRO simulated impurity trans-

port with the experimental transport results, the sensitivity of the GYRO simulated

transport to a wide range of turbulence relevant parameters was investigated. This

analysis was performed using the Qtot-matched GYRO simulation case as a reference.

Within estimated uncertainties in the experimental values, the simulated impurity

transport coefficients were found to be most sensitive to changes in a/LT,, q, and

ni/ne. However the sensitivity to a/Lr,, a/La, Te/Ti, and 7ExB was also studied.

The sensitivity of heat and particle transport to TEM drive terms (a/LT, and

a/La) was found to be relatively small within ±10 and ± 20% changes of the exper-

imental profiles (see Figure 5-10. This result is consistent with the ITG nature of

the discharge and the lack of sensitivity of the most unstable linear mode to changes

in both a/La and a/LT, which was demonstrated in Figure 5-4. The ion tempera-

ture profile was scaled to modify the electron to ion temperature ratio, Te/Ti, within

estimated errors of +23%. These modifications also showed little effect on the de-

termined impurity transport coefficients. This is a somewhat surprising result given

the sensitivity of ITG turbulence on the this ratio and will be the subject of further

investigation. Due to the absence of external momentum sources on C-Mod, levels of

core rotation and E x B shearing rates are observed to be relatively small in L-mode.

Here we define the E x B shearing rate using the GYRO definition [102]:

r Bo
YExB r (5.6)q ar

with

WO= (5.7)

Where V) is the poloidal flux divided by 27 and # is the electrostatic potential. The

experimental shearing rate at r/a - 0.475 is approximately 25% of the linear growth

rate and was expected to have little effect on the simulated transport. A :50%
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the TRANSP calculated electron and ion heat fluxes individually was investigated.

GYRO predicted electron heat flux was found to be systematically low (between ~ 10

and 60%) compared with power balance calculation as demonstrated in Figure 5-7.

Attempts to increase the predicted electron heat flux were unsuccessful over a large
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IQi(MW/ /m2 (MW /m21

0.3 0.3

0.2 0.2

0.1 0.1
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Power Balance .
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Figure 5-7: The individual electron and ion heat fluxes for the Qtot-matched GYRO
base case are shown. Notice the overestimate of the ion heat flux relative to the
experimental value to compensate for an underestimated electron heat flux.

portion of the simulation domain. It was found that modification of the TEM drive

terms a/LTe and a/L, well outside of error bars (~ 50%) was required to matched Qe

and Qj separately. Based on this analysis, flux matching to the total power balance

heat flux, Qtot, was performed through small modification of the ITG drive term to

obtain a realistic turbulence level.

To determine the approximate level of agreement that should be sought between

the TRANSP calculated and GYRO predicted heat fluxes, a series of TRANSP runs

were performed. Realistic levels of error were assumed in the values of ne (10%),

Te (10%), T (15%), Zeff (20%), and Pabsorbed (10%) and 32 permutations of these

assumed errors were performed. The resulting ranges in the mean Qe, Qj, and Qtot
values are shown in Figure 5-8a over the GYRO simulation domain. The approximate

range of the mean power balance total heat flux is ±25%. It should be emphasized

that the values obtained through this method represent experimental ranges and not

error bars. They can be viewed more appropriately as upper and lower limits of the
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Figure 5-8: (a) Ranges of the mean TRANSP calculated heat fluxes, Qtot (Black),
Qe (Red), and Qt (Blue), found by 32 TRANSP runs with variations of experimental
inputs. (b) Using the experimental inputs of all quantities, the average total heat
flux calculated by TRANSP is shown with one sigma error bars obtained from time
averaging from 0.965 to 1.40 seconds.

possible heat flux values. Statistical variation of the power balance calculated heat

fluxes was obtained through time averaging from 0.965 - 1.40 seconds of the plasma

discharge. The statistical error in the total power balance heat flux is shown in Figure

5-8b and represents a lower bound on the total heat flux error bar. These errors are

found to be of order 10%. Qtot-matched GYRO simulations were performed such that

the GYRO prediction agrees with the TRANSP calculated heat flux within ~ 15%

to ensure agreement well within the calculated range of Qtot.

5.3 Quantitative Comparison of Measured and Sim-

ulated Impurity Transport

5.3.1 Comparison of Experiment with a Qtt-Matched GYRO

"Base Case"

The experimentally derived impurity transport is compared with the flux-matched

GYRO "base case" simulation in Figure 5-9. Plotted left to right are compar-

isons of the experimental and simulated diffusion coefficient, convective velocity, and
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Figure 5-9: Measured and GYRO predicted impurity transport are shown for the
diffusion coefficient (a), the convective velocity (b), and the peaking factor (c). The
dotted line represents the location of the sawtooth inversion radius.

peaking factor. The comparison extends over the entirety of the physical GYRO

simulation domain located outside of the sawtooth inversion radius, approximately

0.34 < r/a < 0.6. In this region, where transport is thought to be dominated by tur-

bulence, simulated transport profiles are found to be in general agreement with the

experimental values within the calculated uncertainties. Simulated diffusion demon-

strates agreement with experiment inside of r/a = 0.55 while underestimating the

diffusion by - 1.5x outside of this region. Inward convection is found in both simu-

lation and experiment and agreement within calculated experimental uncertainty is

found across the GYRO simulation domain. The steady state radial profile shapes

are also consistent between simulation and experiment. This is demonstrated through

comparison of the simulated and experimental peaking factors, L, (Figure 5-9c). The

results of the sensitivity analysis presented later in this section indicate that the ra-

tio v exhibits a reduced sensitivity to uncertainty in turbulence-relevant parametersD

relative to the values of D and V separately. This indicates that the GYRO predicted

is a robust result. Agreement of the simulated and experimental peaking factors

implies agreement in the steady state impurity density profiles.
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5.2.3 Obtaining Flux Matched Simulations

Outside of the sawtooth inversion radius, it is assumed that MHD activity is neg-

ligible and the heat flux calculated by power balance is the sum of the neoclassical

and turbulent contributions. Power balance calculated neoclassical thermal diffusiv-

ities are found to be small compared to the calculated effective thermal diffusivity

(Xe,neo < Xi,neo < Xeff). Therefore neoclassical contributions were neglected and it

was assumed that the power balance total heat flux was the direct result of turbulence.

Here the GYRO calculated heat flux (in MW/m 2 ) is given by [101]:

Q = ( d3v(mv2/2)6f6vxIVr) (5.3)

with

ov, = [b x V(60 - c6A1)] (5.4)

and

Qtot = Qe + Qi (5.5)

Where () indicates a flux surface average, r is the midplane minor radius, 6f is the

perturbed distribution function for each species, and 6# and 6AI1 are the fluctuating

electrostatic and vector potential respectively. Under the assumption of turbulent

heat flux, and in light of the ITG dominated nature of this plasma, small modifi-

cations were made to the ion temperature gradient scale length, a/LTr, such that

the GYRO simulated total heat flux matches that calculated by the power balance

code TRANSP [88]. In all regions of the simulation domain that are clearly outside

of the sawtooth inversion radius (as calculated from ECE measurement), necessary

modifications were within the estimated a/LT, error bars (~ 20%). However, inside

of this region, modification of the measured ion temperature gradient scale length

outside of error bars was required to match the TRANSP calculated heat flux. This

is unsurprising since the gyrokinetic model does not include MHD phenomenon and

therefore is not useful inside of this region. The existence of additional solutions (com-

binations of the turbulence drive terms a/LT, a/LTr, and a/Lna) which can match
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Figure 5-10: The sensitivity analysis to the parameters a/La, a/LT, Te/T around the

GYRO base case simulation is shown. Although finite, these sensitivities are small
compared to uncertainties in other turbulence relevant parameters. The solid line
indicates the experimental values of the transport coefficients.
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scan of the E x B shearing rate was performed which confirmed the linear picture and

showed little effect of shearing rate on the heat and impurity fluxes. Therefore these

terms will be ignored as significant sources of uncertainty in the simulated impurity

transport and the three dominant sources will be discussed.

The level of fuel dilution plays an important role in the determination of simu-

lated impurity transport. Increased impurity content reduces the ratio of bulk ion to

electron density, ni/ne, and reduces the driven turbulent heat flux at fixed turbulence

drive terms. For the simulated discharge the largest contribution to the calculated

Zeff comes from the medium and high Z impurities, argon and molybdenum. Es-

timates of the fractional impurity content of low (Z=5), medium (Z=18), and high

(Z=42) Z intrinsic impurities were made based on spectroscopic measurement of core

emission and the observed neutron rate. The best estimate for this discharge indicates

ni/ne = 0.95 with a Zeff = 1.7. Uncertainty in this estimate is difficult to quantify

since it is dependent on accuracy of the neoclassical Zeff calculation and assumptions

of the core plasma emission. The sensitivity of simulated impurity transport to dif-

CD (M2/S)
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Figure 5-11: The sensitivity of the GYRO predicted diffusion (a) and convection (b)
to different levels of dilution is shown. The flux matched base case has an estimated
5% dilution (ni/ne = .95). The measured transport coefficients are shown with error
bars for comparison (solid blue line with shaded region). The dotted line indicates
the location of the sawtooth inversion radius.

ferent levels of fuel dilution is shown in Figure 5-11 where the Qtot-matched base case

is represented by the 5% dilution simulation. Results from the 10% dilution should
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be viewed as a bounding value for the experimental dilution level since the predicted

total heat flux approximately matches the minimum of the power balance total heat

flux range (Figure 5-8a). Additionally, levels of dilution exceeding 10% are in clear

disagreement with measured neutron rates and the calculated Zeff. Increasing dilution

to the 10% level yields an approximately 40% reduction in the simulated diffusion

and inward convection.

The ITG nature of the low-k turbulence suggests that modification of the ion

temperature profile would result in a significant modification of the driven heat and

particle flux. The behavior of the linear stability was confirmed by nonlinear simula-

tions. Figure 5-12 demonstrates the sensitivity of the impurity transport coefficients

7 .. . . . . . . . , . . . .. .. . ,.........,............... ... . . .........
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Figure 5-12: The simulated impurity transport resulting from +7.5% and +15% scans
of a/LT, around the GYRO base case are shown.

to changes of +7.5% and +15% in a/LTr. Modification of a/LT by i7.5% corre-

sponds roughly to simulated heat fluxes that match the maximum and minimum

of the TRANSP calculated heat flux ranges (Figure 5-13). Therefore the predicted

transport for these cases represents bounding values of derived impurity transport if

simultaneous matching of the total heat flux is required. Interestingly, the simulated

transport coefficients are found to be more sensitive to reductions in the drive term

than to increases in the drive term. Decreased ITG drive results in large decreases in

diffusion and inward convection while increased drive has a more complicated effect.

For cases with increased ITG drive, simulations using only 8 toroidal modes were
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Figure 5-13: The values of Qtot for all of the simulations in the a/LT, scan are shown.
The solid black line indicates the TRANSP calculated value and the dotted black
lines indicate the ±25% error ranges on this quantity. The GYRO base case with a
±7.5% change in a/LTa approximately matches the lower/upper bounds of the power
balance Qtot range.

found to be insufficient and 16 modes were required. Without this increase in box

size (L.), an apparent saturation is present in the impurity transport at increased

values of a/LT,. When the box size is increased, the saturation no longer exists but

a nonlinear response of the transport coefficients to a/LT, remains. This behavior is

generally absent in the GYRO simulated heat flux implying a nonlinear response of

impurity transport and a linear response of the heat flux to a/LT,. A more in-depth

investigation into this phenomenon is presented at the end of this section.

The dependence of particle and impurity transport on safety factor and magnetic

shear profile has been the subject of much investigation [62, 61]. The presence of

a magnetic shear dependent curvature pinch is predicted to drive a strong inward

pinch for monotonically increasing q profiles. Nonlinear gyrokinetic impurity trans-

port sensitivity results demonstrate a dependence on modification of the q profile.

Figure 5-14 shows the response of the simulated transport coefficients on ± 5% and

±10% scaling of the q profile. During this scan, the toroidal mode separation, An,
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Figure 5-14: The sensitivity of the predicted impurity transport coefficients to changes
of ± 5% and ± 10% changes of the q profile is shown. In these scans, the magnitude

of q was varied without altering the magnetic shear profile. The measured transport
coefficients are shown with error bars for comparison (solid blue line with shaded

region). The dotted line indicates the location of the sawtooth inversion radius

was modified such that the maximum simulated value of kops 1.15 was approx-

imately maintained. It should be noted that this scaling of the q profile does not

change the magnetic shear profile, r/qdq/dr. Unlike flux tube simulations, global gy-

rokinetic simulations do not allow for independent variation of q and magnetic shear.

Therefore the effect of magnetic shear has not been tested here. From this analysis,

the sensitivity to the q profile is shown to be less pronounced than the sensitivity to

a/LT, and ni/ne but will still play an important role in any quantitative comparison

with experiment. To verify results of the q profile sensitivity, additional simulations

using larger box sizes (16 toroidal modes) were performed with largely unchanged

conclusions.

The behavior of the main ion and electron particle fluxes were also briefly in-

vestigated during the sensitivity scans to see if the null-flux condition was satisfied.

Investigation of the electron particle flux at mid-radius during a density ramp indi-

cates that of order 1 x 1019 m- 2 sdis the typical flux of particles at mid radius. Using

this as our reference value, and defining a value of 1 x 1018 m- 2 -1 as a satisfactory

null flux condition, we can now examine the flux in the GYRO base case simulation.

Shown in Figure 5-15 is the sensitivity of the electron particle flux to a/La and a/LTs.
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Where the gyro-Bohm flux normalization is 6.22 x 1020 m-2S-1. Therefore, with our
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Figure 5-15: Changes in the gyro-Bohm normalized electron particle flux with changes
in the value of a/La and a/LT, are shown.

previously stated condition, we would need a value of '/Fgb ~ .002 to satisfy the

null flux condition. It is clearly seen that the GYRO base case simulation does not

satisfy this criterion over a majority of the simulation domain. However, changes to

the value of a/La and a/LTr are also found to have significant effects on the local

value of the particle flux and it is possible that changes to turbulence-relevant pa-

rameters, even within experimental uncertainty, could lead to an effective null flux

condition. Further investigation into this transport channel is left as the subject of

future gyrokinetic model validation work.

In light of the sensitivity analysis presented in this section, it is clear that the
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uncertainty in the turbulence relevant parameters, ni/ne, a/LT, and q factors into

determining agreement or disagreement with measured impurity transport coefficient

profiles. Although the GYRO base case simulation demonstrates general agreement

with both the diffusive and inward convection observed experimentally, it is still pos-

sible to modify sensitive simulation parameters, while still maintaining agreement

with the total heat flux within the calculated power balance ranges (cases of ±7.5%

in a/LTr, 10% dilution, ±10% in q), to improve the agreement between simulation

and experiment.

5.3.3 The Separation of Heat and Particle Transport

The possible separation of heat and impurity particle transport observed during the

a/LT, sensitivity study presented in the previous section was the subject of further

investigation. Additional nonlinear gyrokinetic simulations were performed to better

understand the observed effects. These simulations were based on the Qtot matched

base case simulation and represent a scan of the a/LT, profile with ±7.5,15, and 30%

from the GYRO base case simulation. It should be noted that a value of a/LT, either

30% higher or lower than the experimental value is outside of the estimated error bars

for this quantity. However, to investigate a possible nonlinear relationship of particle

flux compared to heat transport, these simulations were performed. A normalized

value of both the heat and impurity flux was evaluated from each simulation. Eval-

uation of the impurity flux was performed here with a value of Vnz/nz = 1.0. The

results of this analysis are shown in Figure 5-17 at a radial location of r/a = 0.6.

This plot illustrates a number of interesting aspects of turbulence driven particle and

heat transport.

Experiment and simulation have demonstrated the existence of a ITG critical gra-

dient in tokamak plasmas. Below a critical value of a/LT, there is insufficient drive

for turbulent heat transport driven by ITG turbulence. The value of a/LT, where

the ITG turbulence "turns on" is known at the critical gradient. Dimits showed that

the critical gradient found through linear gyrokinetic simulation differs from the non-

linear calculated value [103]. This results from the interaction of the self generated
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Figure 5-16: A cartoon summarizing the aspects of the ITG critical gradient is shown.
The nonlinear critical gradient is observed as a result of the a/LT, sensitivity analysis
performed around GYRO base case.

zonal flows which tend to suppress the ITG turbulence, resulting in an upshift in the

calculated value of the critical gradient. As a result, the difference between these two

critical gradient values is known as the Dimits' shift. Figure 5-16 summaries the key

features of the ITG critical gradient.

In the simulations performed, a clear linear relationship of the simulated heat

flux exists above a critical value of a/LTr, namely the nonlinear critical gradient for

ITG turbulence. Interpolation of the linear behavior to its x-intercept value suggests

the critical gradient occurs about 25% below the GYRO base case a/LT, profile. A

more complicated behavior is observed in the impurity flux. Above the critical ITG

gradient, the particle flux initially exhibits an approximately linear increase with in-

creased values of a/LTr. However, it is clear that for values of a/LT, above the GYRO

base case values a saturation of the impurity flux begins to occur. These results indi-

cate different responses to increased turbulence drive for particle and heat transport.

However, the approximately identical x-intercept of both the impurity and heat flux

values suggests they have a common drive namely, ITG turbulence. At this time,

the reason for this saturation is not understood. The first step should be to inves-
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Figure 5-17: Normalized values of the impurity flux (blue) and total heat flux (red)
are shown for a scan of the ITG drive term, a/LrT, around the Qtot-matched base case
simulation at r/a = 0.6. The expected linear relationship between the total heat flux
is recovered quiet well and the value of the ITG critical gradient is well demonstrated.
Above the base case values, a saturation occurs in the particle flux which indicates a
separation between the particle and heat transport dynamics.

tigate whether additional resolution needs to be added to the simulations with high

turbulence drive (i.e high values of a/LT). Since all experimental comparison in this

work exists at values of a/LT, equal to or below that of the GYRO base case, these

investigations will be left as the subject of future work.

5.4 Comparison with Qi Matched Gyrokinetic Sim-

ulation

All gyrokinetic simulations presented to this point were Qtot-matched or represented

scans around the Qtot-matched base case simulation. In this section we present a new

approach where the GYRO simulated ion heat flux was matched to the power balance
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value while allowing Qtot to drop below experimental levels. Initial simulation using

the experimental profile of a/LT% tended to slightly overestimate the ion heat flux

across the simulation domain. On average an - 14% reduction of the experimental

a/LTa profile was required to obtain a Qi-matched simulation, where the value of Qe

in this simulation was ignored. The results of this new simulation are summarized

in Figure 5-18. As demonstrated in 5-18a and b, inside of r/a = 0.52 we find agree-
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Figure 5-18: (Results from Qj matched GYRO simulation are plotted. Both impurity
transport results (a and b) and simulated heat fluxes (c and d) are shown. The
dotted black line indicates power balance calculated ranges for Qe and Qj. Good
agreement is demonstrated for power balance and GYRO simulated ion heat flux,
whereas electron heat flux is systematically underestimated. Qj matched simulation
is shown to result in decent or slightly underestimated simulated impurity transport
relative to experiment.

ment within experimental uncertainty between simulation and experiment in both

the diffusion coefficient and the convective velocity. Outside of this region, simula-

tion is found to lie outside of the experimental uncertainties and to underestimate
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both quantities by ~ 2x relative to the mean experimental values. It is interesting to

note that both quantities in this simulation lie on the low side of the experimental

error bars (are below the mean value of the experimental diffusion and inward con-

vection). Figure 5-18 demonstrates clear agreement between the power balance and

gyrokinetic simulated ion heat flux across the simulation domain for this Q-matched

simulation.

In terms of impurity transport, similar levels of agreement between the experiment

and simulation exist for both the Qtot and Qi-matched simulations. However, there

is a fundamental difference between these simulations that motivates the remainder

of this thesis work to use Qi-matched simulation. As can readily be seen in Figures

5-19c and d, the Qtot-matched GYRO base case simulation obtains its match of the

total heat flux by increasing the ion heat flux above the TRANSP calculated uncer-

tainty ranges (Figure 5-8) to effectively compensate for an underestimated electron

heat flux. This results in a simulation which is not believed to be consistent with the

experimental observations. In contrast, the Qi-matched simulation presented in Fig-

ure 5-18 displays good agreement within the uncertainty ranges in the ion heat flux,

clearly underestimates the electron heat flux, and displays agreement with experi-

mental impurity transport inside of r/a = 0.52. Therefore, simultaneous agreement

of two transport channels (ion heat and impurity particle channels) is found in this

Qi-matched simulation. Furthermore, there are at least two arguments as to why

the electron heat flux is systematically underestimated by these simulations. The

GYRO simulations considered here were optimized for studying impurity transport

and only included contributions from long wavelength ITG/TEM type turbulence

(kops < 1.15). High-k TEM and Electron Temperature Gradient (ETG) type plasma

turbulence was therefore omitted from these simulations but could play an important

role in meaningful simulation of the electron heat flux. However, the inclusion of these

high-k modes is not expected to significantly modify the particle transport or ion heat

flux since the wavelength of these modes is small compared with the impurity and

ion Larmor radii. This expectation has been confirmed by high-k GYRO simulation

(which included kop, contributions up to ~ 2.5 ) of a similar C-Mod discharge. High-k
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Figure 5-19: (The experimental impurity transport (a nd b), ion (c), and electron (d)
heat fluxes are compared with 3 GYRO simulations: the GYRO base case, the Qj-
matched simulation, and a 7.5% reduction in a/LT, from the GYRO base case. These
simulations clearly display the differences in the Qj and Qtot-matched approaches.

modes (kop, > 1 ) were shown to drive non-negligible levels of electron heat flux while

not significantly altering the simulated impurity transport. Therefore, the impurity

transport results found from the Qi-matched simulation would not be expected to

vary significantly with the addition of high-k contributions. Alternatively, the model

used may lack the necessary description of electron dynamics which is needed to

simulate all of the experimental electron heat flux (i.e. gyrokinetic vs. drift kinetic

electrons). Investigation of these possibilities is computationally quite intensive and

is out of the scope of this thesis. We note that investigation of electron heat transport

in fusion plasmas is an active and challenging area of research.
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Therefore, we conclude that given the parameters of the simulations presented

here, the use of Qi-matched GYRO simulation is most consistent with experimental

observations. Furthermore, agreement between simulated and experimental impu-

rity transport and electron heat flux can simultaneously be improved through small

modification of turbulence-relevant parameters while maintaining a match to the ex-

perimental ion heat flux within estimated uncertainties. In light of these observations

and the sensitivity analysis presented earlier in this chapter, the remainder of the

gyrokinetic simulations presented in this thesis focus on Qi-matched simulation with

the knowledge that modest quantitative disagreements can probably be resolved with

small modifications to turbulence-relevant parameters in these simulations.
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Chapter 6

Experimental and Gyrokinetic

Analysis of I, Dependent Impurity

Transport

As discussed in Chapter 2 of this thesis, impurity transport has been the subject of

extensive investigation on fusion devices worldwide [45, 16, 46, 48, 68]. Despite this

work, clear dependencies of impurity transport coefficients, D and V, with engineering

parameters are less common and often contradictory. A physical understanding of

the mechanisms controlled by engineering parameters and their effects on the driven

impurity transport remains incomplete. The neoclassical model of impurity trans-

port has been shown, in most cases, to be insufficient to describe measured transport

levels [16, 46]. It is generally accepted that the observed "anomalous" transport in

the core is the result of drift wave-type plasma turbulence [12]. Interpretation of

experimental impurity transport observations has, to this point, been predominantly

limited to the application of quasilinear models coupled with linear gyrokinetic sim-

ulation [15, 61, 46, 16, 57]. Since it generally believed that turbulence dominates the

transport found in the plasma core, the most logical experiments would be designed

to test the effect of singular turbulence-relevant parameter changes on the measured

impurity transport. However, in practice these experiments are often prohibitively

difficult and we are limited to the set of engineering tools available on any one device
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at any one point in time. For this reason, changes in engineering parameters are nor-

mally used to study impurity transport dependencies. This work attempts to identify

clear trends of impurity transport coefficients with changes in an easily accessible

engineering parameter, namely the plasma current, Ip. It is likely that gross changes

of engineering parameters will result in modification of multiple turbulence-relevant

parameters. However, gyrokinetic simulation provides an important tool for sorting

out the dominant changes which occur with these gross changes in engineering pa-

rameters. The work presented in this chapter summarizes an experimental I, scan.

This scan was analyzed using gyrokinetic simulation to interpret the experimental

measurements in terms of changes in background plasma turbulence and to validate

the impurity transport predicted by the gyrokinetic model.

6.1 Motivation for Engineering Parameter Scans

During the 2009 and 2010 run campaigns on Alcator C-Mod, over 300 laser blow-off

injections of trace CaF2 were introduced into L-mode plasma discharges operated with

a wide range of plasma parameters. A database of impurity confinement times was

created from the injection data and a new Alcator C-Mod impurity confinement scal-

ing law was produced. Power law fits of the collected injection data were attempted

based on both physics and engineering parameters. Here we define "physics" pa-

rameters as quantities which have been identified through theory and experiment

as influencing plasma turbulence. However, accurate estimates of these parameters,

particularly those requiring profile gradients were not consistently available and mo-

tivated the use of engineering quantities at the fitting parameters for this work. All

injections included in this database were collected using CaF 2 laser blow-off injection

at trace levels. The HiReX Jr. spectrometer was employed to measure the He-like

calcium charge state with sufficient temporal resolution for accurate impurity con-

finement time determination. The engineering parameters considered in this study

were typical of those used for global energy confinement: Ip, K, 6, ne, BT, Pot, li, q9 5 ,

and Zeff. The regression analysis was performed such that an initial variable for fit-
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ting was user specified and the subsequent fitting variables were chosen according to

their relative reduction in the X2. At each variable selection step, correlation between

variables was checked to ensure the independence of selected fitting parameters. Ad-

ditional parameters were added to the regression only if a significant reduction in x 2

was achieved with the new parameter included. Parameters which did not result in

a significant reduction of the x2 were omitted. A description of this linear regression

methodology can be found here [104]. Through this method, the following power

law scaling for the impurity confinement time (given here by -r,) was derived for the

impurity injection database.

T8 = 17.28I,68 P- 15 B1 9  (6.1)

Where I, is in MA, Pot is in MW, and BT is in Tesla and T is in ins. A plot of the

injection database (includes measured impurity confinement times, i.e. the e-folding

time after laser blow-off) compared to the impurity confinement scaling is shown in

Figure 6-1. Significant scatter is present in the database but it should be noted that

estimated error bars for each inferred impurity confinement time are typically found

to be of the order 2 ms. It is interesting to compare the derived parameter scalings

with the commonly referenced L-mode energy confinement scaling, TITER-89 [105].

The expression for L-mode energy confinement can be written as:

TITER-89 = -048, 8 5 R 2 a3 . 1 B 2m 5 P-. 5  (6.2)

p e t Mbg tot

Where mbg is the mass of the background gas. Since all injections included in the

impurity injection database were introduced into D2 plasmas operated with no sig-

nificant variation in the plasma major or minor radius, geometric variables and the

mass of the background gas were no included in the impurity scaling law. However,

similarities between the impurity confinement scaling and the energy confinement

scaling are obvious. Similar scalings with plasma current and toroidal magnetic field

are found and a reduction of confinement with increase input power is also present.

The strong dependence of impurity confinement on plasma current (Tip oc I")
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Figure 6-1: Measured impurity confinement times are plotted compared to the pre-
diction of the impurity confinement time scaling law for all injections in the injection
database. Only L-mode impurity confinement times are included here.

is best demonstrated in Figure 6-2 where average impurity confinement times (up to

4 injections) are plotted as a function of plasma current. This scan was performed

at fixed values of PICRH, ne(0), and Bt. The results of this work are consistent with

similar analysis on other tokamaks. On Alcator C impurity confinement was found

[40] to scale as 1/q or c I, and a joint analysis of JET and Tore Supra data found

a I1 dependence of impurity confinement [41]. The scalings with I, and Ptet are

also consistent with the previous impurity confinement scaling on Alcator C-Mod

[42] based on a smaller impurity confinement data set. It is clear that the diag-

nosed I, dependence varies in its strength from one study to another. Differences

could be the result of databases which include subtle transition between confinement

regimes such as the linear ohmic confinement regime (LOC,saturated ohmic confine-

ment regime (SOC), L to I-mode transitions, and even operation with the VB drift

operated towards or away the active x-point. However, the consistent observation of
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Figure 6-2: At fixed PICRH, ne(0), and Bt, impurity confinement times with estimated
error bars are plotted as a function of I,.

I, dependent impurity transport and the results of the new Alcator C-Mod impurity

confinement scaling provided motivation for a more detailed analysis of changes in

impurity transport observed with plasma current.

6.2 Description of the Experiments

6.2.1 Setup of the Experimental I, scan

The plasmas studied in this chapter constitute a scan of plasma current performed on

the Alcator C-Mod tokamak. In an attempt to isolate the effects of plasma current

on the derived impurity transport, the current scan was performed at fixed toroidal

field (5.3 T), plasma shape, ICRH input power (PICRH = 1.0 MW), and central den-

sity of 1.5e20 m-s. Four separate discharges were performed with plasma currents of

0.6, 0.8, 1.0 and 1.2 MA. Time traces of key plasma parameters are plotted in Figure
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6-3. To raise the power threshold and avoid transition to H-mode, all discharges were
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Figure 6-3: Time traces for key parameters are plotted for each discharge in the I,

scan.

operated in upper single null (USN) configuration with the ion VB drift away from

the active x-point. None of the studied discharges show any indication of transition

to high confinement regimes and are characterized as standard USN L-mode plasma

discharges. Sawteeth were present in all plasmas and the radial extent of the inver-

sion radius was determined through electron cyclotron emission (ECE) and soft-xray

measurement. As a result, gyrokinetic analysis of these discharges is only reported

outside of the sawtooth inversion radius at each current, where the effects of MHD

driven transport are assumed to be minimal.
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6.2.2 Description of Diagnostic Setup and Measurements

An in depth description of the diagnostic suite used in this work was presented in

Chapter 3 of this thesis. However, a brief description of exact measurements utilized

is presented here for completeness. Measurement of the plasma profiles needed for

experimental and gyrokinetic transport analysis was provided by Alcator's diagnostic

suite [71]. Electron density and temperature profile measurement was performed using

a combination of a 33 channel Thomson scattering system [6] and 3 separate ECE

systems [72, 73, 74]. Data from these measurements was used to obtain the smooth,

b-spline fitted plasma profiles used for the experimental and gyrokinetic analysis. Ion

temperature and toroidal velocity profiles were obtained using He-like argon (Ar16+)

spectra measured by a spherically bent x-ray crystal spectrometer [7]. Edge gas

puffing was employed to introduce non-intrinsic argon into the plasma at levels which

provide good signal to noise but do not significantly alter the background plasma.

Ion temperature and toroidal velocity profiles were obtained from the measured argon

spectra using tomographic inversion techniques. These profiles are limited to regions

where He-like argon emission is sufficiently high. As a result, the exact radial extent

of the diagnosed T and V profiles varies with changes in plasma parameters. Good

quality profile data were obtained inside of r/a = 0.75 for all discharges of interest.

The values of Zeff used in the gyrokinetic analysis were obtained from a model for

neoclassical resistivity using the expressions found in reference [99] and are assumed

to be radially constant over the simulation domain. These values of Zeff are consistent

with spectroscopically constrained estimations of impurity concentration (ni/ne) and

the measured neutron rate within estimated experimental uncertainties.

6.2.3 Description of the Experimental Analysis Methodology

Impurity transport coefficient profiles were determined for all discharges in the Ip
scan. The methodology employed to determine the experimental profiles is briefly

outlined here but a detailed description can be found in Chapter 4 of this thesis.

The combination of a multi-pulse laser blow-off system [106] and the available spec-
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troscopic measurements on Alcator C-Mod allows for the accurate determination of

impurity transport coefficient profiles from 0.0 < r/a < 0.6. All experiments pre-

sented here featured trace injection of non-intrinsic, non-recycling calcium impurities

introduced via the laser blow-off technique. Light from neutral calcium introduced

at the plasma edge is measured spectroscopically to resolve the time history of the

laser blow-off generated source. The full, time evolving brightness profile of the He-

like (Ca18+) charge state is measured using the x-ray crystal spectrometer described

earlier in this section, HiReX Sr. An additional single chord measurement of the

Li-like (Ca'?+) charge state is provided by an x-ray and extreme ultraviolet (EUV)

spectrometer, XEUS. The core view of this spectrometer measures the time history of

Ca17+ emission and provides an effective boundary condition for the measured profiles

of Ca1 8+. A synthetic diagnostic built around the impurity transport code STRAHL

[80] is used to simulate emission from each diagnostic view. STRAHL assumes that

the impurity flux can be written as the sum of diffusive and convective contributions,

namely:

l, = -DVn, + Vnz (6.3)

Where both D and V, the flux surface averaged diffusive and convective transport

coefficients, are assumed to be time-independent with only radial dependence. The

D and V profiles which are found to best reproduce measured brightness data via the

synthetic diagnostic are quoted as the experimental impurity transport coefficient pro-

files. Similar X' minimization approaches have been employed on ASDEX-Upgrade

[48], JET [16], and Tore Supra [46]. A Monte Carlo analysis technique is used to

assess experimental error in the derived impurity transport coefficient profiles due

to error in the background electron density and temperature profiles. Once again,

the reader is referred to reference [68] or Chapter 4 for the experimental analysis

methodology and determination of uncertainties.
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6.3 Ip Dependent Impurity Transport in the Alca-

tor C-Mod Core

6.3.1 Experimental Observations of Core Impurity Tfrans-

port with I,

The methodology described above was used to determine impurity transport coeffi-

cients profiles for all four plasma discharges in the I, scan. The resulting transport

coefficients are shown in Figure 6-4. The solid lines indicate the mean derived trans-

port coefficients for each of value of I,. These curves demonstrate a clear trend in

the measured impurity transport with increasing values of plasma current. Error bars

were determined using a Monte Carlo approach for each discharge in the current scan,

but for clarity of presentation they are only displayed on the 1.0 MA discharge. These
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Figure 6-4: The experimentally derived impurity transport coefficients are plotted for
all discharges in the I, scan. The measured impurity diffusion coefficient (a) is found
to decrease significantly with increased plasma current while a much more modest
decrease in the mean inward convection (b) is observed. Representative errors bars
are shown on the 1.0 MA discharge and the (lotted lines represent the approximate
location of the sawtooth inversion radius at each current.

error bars are representative of the relative uncertainty present in the results at all val-

ues of plasma current. Large uncertainty in the measured convective velocity, despite

the clear organization of the mean impurity transport coefficients with plasma cur-

rent, may reflect systematic errors in the measured electron density and temperature
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profiles (e.g the Thomson scattering calibrations). However, since these discharges

were performed almost sequentially, any systematic errors are likely to be correlated

shot to shot. In the outer half of the measurement region, a doubling of I, from 0.6 to

1.2 MA is found to result in an - 7x reduction in the mean impurity diffusion while

only reducing the mean inward convection by - 3x. These changes would suggest an

increase in the impurity peaking factor, V/D, with increased plasma current. Unfor-

tunately, the large errors associated with the convective velocity obscure trends near

the edge of the measurement region. The transition from core (MHD dominated) to

confinement zone (turbulence dominated) impurity transport is clearly observed in

the measured diffusion coefficients. The Ip scan was performed at a fixed toroidal

field of Bt = 5.3 T with approximately fixed plasma shape. Therefore, the location of

the sawtooth inversion radius shifts radially outward with increasing plasma current

as expected. The location of the inversion radius is particularly relevant for deter-

mining the radial region where meaningful comparison with gyrokinetic simulation is

possible. The sawtooth inversion radii, as determined from ECE and soft x-ray mea-

surement, occur at r/a = 0.29, 0.34, 0.41, 0.47 for plasma currents of 0.6, 0.8, 1.0, and

1.2 MA respectively. At these approximate radial locations, a transition from low lev-

els of core diffusion to monotonically increasing values of diffusion is observed. Similar

transition between core and confinement zone diffusion has been observed previously

[68, 16, 46]. This behavior will be shown below to be the result of small normalized

gradient scale length (low turbulence drive) inside of the sawtooth inversion radius.

6.3.2 Changes in Turbulence-Relevant Parameters with Plasma

Current

Modification of the plasma current affects the plasma profiles which play key roles in

the drive and suppression of the turbulent modes generally believed to be responsi-

ble for the observed levels of impurity transport. Examination of the plasma profile

changes from the I, scan provides insight into changes in turbulence. The left column

of Figure 6-5 (a-d) shows ~ 400 ms time-averaged profiles of electron density, electron
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temperature, ion temperature, and q for the I, scan. The right column (Figure 6-5e-

h) shows the corresponding turbulence drive/supression terms namely, a/Lne, a/LT,

a/LTr, and A (magnetic shear) over the radial range 0.25 < r/a < 0.75. This range was

chosen to best demonstrate changes in turbulence-relevant parameters in the plasma

confinement zone, where gyrokinetic simulation is most applicable. With I, modifi-
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Figure 6-5: Plasma profiles (a-d) and their corresponding turbulence drive/suppresion
terms are shown (e-h) for all discharges in the I, scan. The black arrow indicates the
direction of increasing 4,. All drive/suppresion terms are observed to decrease with
increasing plasma current in the confinement zone.

cation changes are observed in all of the turbulence-relevant parameters. However,

the most significant effects occur in a/Ln., q, and A. Increased plasma current leads

to a broadening of both the electron and ion temperature profiles which in turn leads

to a reduction in the gradient scale length in the confinement zone. A similar effect is
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observed in the electron density. It is interesting to note the significant density profile

change in the 1.2 MA discharge. Despite the similarity of this discharge to the 1.0

MA case, a 2x reduction in the measured value of a/Lne is found as a result of a much

broader density profile. This is in strong contrast to the smaller changes observed in

other turbulence-relevant terms. However, the central density, ne,o, remains relatively

unchanged when compared to all other discharges in the current scan. It is generally

found that a/La, a/LTe, a/Lr, q and s all decrease with increasing plasma current.

A decrease in both the Trapped Electron Mode (TEM) (a/L, and a/LTe) and Ion

Temperature Gradient (ITG) (a/LT) turbulence drive terms would suggest a reduc-

tion in the overall turbulence level at high current but reduction of the turbulence

suppression term, 8, would lead to an increase in the overall turbulence level. The

overall effect of these profile changes on the characteristic plasma turbulence, if any,

is unclear. Therefore, linear stability analysis was performed to look for qualitative

changes in the turbulence character (i.e. from ITG-dominated to TEM-dominated)

during the I, scan.

6.3.3 Linear Gyrokinetic Analysis of the I, Scan

The GYRO code [92] was used to study changes in the linear stability properties of

discharges in the I, scan. The stability properties of both the 0.6 (Figure 6-6a-c and

6-7) and 1.2 MA (Figure 6-6d-f and 6-7) discharges are presented. It should be noted

that a full linear analysis of all discharges in theses studies was performed. The quali-

tative behavior of the 0.8 and 1.0 MA discharges can be determined by straightforward

interpolation between results from the 0.6 and 1.2 MA cases. Contours of the growth

rate of the most unstable linear mode in the range kop, ~ [0.25 -0.75] are plotted at 3

radial locations, r/a = 0.35, 0.475, and 0.6, for scans of a/L, and a/LTe /a/L, on the

x and y axes respectively . Here we define p, = cs/QOc as the sound speed gyroradius,

Qci = eB/mic as the ion gyrofrequency, and c, = Te/mi as the sound speed. The

color scheme employed indicates low linear growth rates with darker colors and large

linear growth rates with lighter colors. The selected kop, range was chosen to best

display a shift from ITG to TEM dominated turbulence in the low-k spectrum since
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Linear Growth Rate of Most Unstable Mode (a/Cs) in Range kg ps = [0.25-0.751
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Figure 6-6: Contours of the growth rate of the most unstable linear mode are plotted
for the lowest (0.6 MA, Figure 5a-c) and the highest (1.2 MA Figure 5e-f) currents in
the I, scan. 3 radial locations, r/a - 0.35, 0.475, and 0.6 are shown. The x-axis plots
values of a/LTa and the y-axis plots values of a/LTe. The white line indicates the
boundary between modes rotating in the ion and electron diamagnetic drift direction
and the "+" sign indicates the experimental location. It is found that both plasmas
are ITG dominated but are stable inside of the sawtooth inversion radius.

these modes are often responsible for the dominant contributions to heat and particle

transport. The solid white line indicates the boundary between modes rotating in

the ion and electron diamagnetic drift direction and the + sign indicates the location

of the experimental values of the gradient scale lengths at each radial location. Note

the change of scale in each plot. At r/a = 0.6 the most unstable linear mode in

both the 0.6 and 1.2 MA discharges is rotating in the ion diamagnetic drift direction

and is sensitive to changes in a/LT,. Therefore we characterize both plasmas (at

r/a = 0.6) as being dominated by ITG-type turbulence. Farther into the plasma, at

r/a = 0.475 both discharges are still ITG unstable. However the sawtooth inversion

radius for the 1.2 MA discharge lies just inside this location and as a result the linear
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Linear Growth Rate of Most Unstable Mode (a/cs) in Range ko ps = [0.25-0.75]
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Figure 6-7: Contours of the growth rate of the most unstable linear mode are plotted
for the lowest (0.6 MA, Top) and the highest (1.2 MA Bottom) currents in the I,
scan. 3 radial locations, r/a - 0.35, 0.475, and 0.6 are shown. The x-axis plots values
of a/LT, and the y-axis plots values of a/La. The white line indicates the boundary
between modes rotating in the ion and electron diamagnetic drift direction and the
"+" sign indicates the experimental location.

growth rate has been greatly reduced. At r/a = 0.35 the 0.6 MA discharge remains

ITG unstable. In contrast, r/a = 0.35 lies inside of the sawtooth inversion radius

for the 1.2 MA discharge. Small values of a/LT are present inside of the inversion

radius, resulting in stabilization of low-k ITG and TEM-type turbulence. This is a

robust result, observed in the linear stability analysis at all values of plasma current.

This result explains the observation of reduced diffusion and convection inside of the

sawtooth inversion radius in the experimental impurity transport coefficient profiles.
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6.4 Quantitative Comparison of Simulated and Mea-

sured Impurity Transport

6.4.1 Setup of the Nonlinear GYRO Simulations

The GYRO code was used to perform all gyrokinetic simulations presented in this

paper. GYRO is an Eulerian, 6f, initial value code which is capable of both local

and global simulation. All simulations presented here were global with an approx-

imate physical simulation domain of 0.29 < r/a < 0.62 and contributions of kop,

up to ~ 1.15 included. This range of kop, was chosen to capture the dynamics of

the long wavelength Ion Temperature Gradient (ITG) and Trapped Electron Mode

(TEM) turbulence which is thought to dominate turbulent ion transport. Simula-

tion of this kop, range was performed using 8 toroidal modes in most simulations

reported. This resulted in approximate box sizes of 100p,(L,) by 40p,(Ly). However,

numerous spot checks were performed throughout the analysis to ensure that larger

box sizes did not significantly effect the simulated impurity transport results. All

simulations were electrostatic, included drift kinetic electrons with a realistic mass

ratio (fmD/me = 60.6), rotation, and E x B shear effects. Simulated values of

the impurity transport coefficients were inferred from GYRO's output impurity flux.

Each simulation included three He-like calcium trace impurity species, at .001ne.

Each impurity was specified with a different value of the impurity density gradient

scale length, -aVnz/n, where n is the impurity density and a is the plasma minor

radius. The simulated diffusive and convective contributions to the impurity flux are

derived from the following equations:

- D +V (6.4)nz 'nz

where for an arbitrary species, the particle flux from GYRO is defined as [1011:

T - {J d v3f6v,|Vr|)V'(r) (6.5)
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with

6v, -[b x V(6# - EL6A)] - (6.6)
B c

Here V(r) is the volume enclosed by the flux surface, V'(r) = dV(r)/dr, 6f is the

perturbed distribution function for a given species, 6# is the fluctuating electrostatic

potential, and 6Ai is the parallel fluctuating vector potential. A linear fit of F/n ver-

sus the quantity -Vnz/n yields the diffusion coefficient and convective velocity from

the slope and y-intercept respectively. The simulated quantities (D, V, Qj, Qe, Qtot)

quoted in this paper are average values obtained from time averaging over long sim-

ulation time periods, typically of order ~ 450(a/c,).

6.4.2 Reproduction of the I, Scan Using Nonlinear GYRO

Simulation

Global, nonlinear GYRO simulation of all discharges in the I, scan was used to assess

the gyrokinetic model's ability to reproduce the observed trend of impurity transport

coefficients with I, and to provide a quantitative comparison of simulated and mea-

sured impurity transport. Figure 6-8 demonstrates the comparison between measured

and simulated diffusion and convection for all discharges in the I, scan. Gyrokinetic

turbulent transport is not dominant inside of the sawtooth inversion radius, therefore

simulated transport coefficient profiles were truncated to show only results outside of

the sawtooth inversion radius for each respective discharge. The upper radial bound

of the comparison is set by the maximum radius for accurate measurement of impu-

rity transport. The arrow in Figure 6-8 indicates the direction of increasing plasma

current. In light of the discussion earlier in this section, all simulations presented

here included modification of the experimental a/LTd profiles to match the GYRO

simulated ion heat flux, Qj, to the experimental power balance ion heat flux. Al-

though there was variation in the amount of modification needed across the profile,

the average percent change in a/LT (from the experimental value) for each discharge

was: -10% for the 0.6 MA discharge, -14% for the 0.8 MA discharge, +2% for the

1.0 MA discharge, and a -1% change for the 1.2 MA discharge. Before discussing
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Figure 6-8: Measured impurity transport (a-b) is compared with global, nonlinear
gyrokinetic simulation (c-d) for discharges in the I, scan. The arrow indicates the
direction of increasing Ip. Relatively consistent radial profile shapes are reproduced
by simulation. Additionally, both trends of decreased diffusion and convection are
recovered by the simulated I, scan.

quantitative agreement or disagreement, not two key features demonstrated in Fig-

ure 6-8. First, the shape of the simulated profiles for both D and V are found to

be consistent with the experimentally determined transport coefficient profile shapes.

Second, ion heat flux matched simulations display the ability to accurately reproduce

the experimental I, trends. The trends of decreased impurity diffusion and inward

convection with increased plasma current are found to be well reproduced by non-

linear simulation. However, as demonstrated in Figure 5-18, ion heat flux matched

simulations tend to systematically underestimate the power balance calculated elec-

tron heat flux across the simulation domain. This underestimate tends to be larger

at high values of plasma current. In fact, the 0.6 MA discharge shows agreement
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within experimental uncertainty between simulated and experimental values of Qj

and Qe outside of r/a 0.4 as demonstrated in Figure 6-9 well outside the sawtooth

inversion radius.

0.25
0.15 (MW /m2 ), - (MW /m2)

0.201

0.10 0.15

I 0.10
0.05 Q Matched Sim -

Power Balance . 0.05

0.00 ....i... ............ 0.00 ....i......
0.3 0.4 0.5 0.6 0.3 0.4 0.5 0.6

r/a r/a

Figure 6-9: The power balance calculated Qj and Qe is compared with the Qi-matched
simulation values for the 0.6 MA discharge. The solid black line indicates the exper-
imental heat fluxes and the dotted black lines indicate crude estimates of the uncer-
tainty ranges. The vertical dashed line gives the approximate location of the sawtooth
inversion radius.

It is interesting to note the differences in the low-k real frequency, W, and linear

growth rate, y, spectrum from the 0.6 and 1.2 MA discharges shown in Figures 6-10

and 6-11 at r/a = 0.6. As reported in the previous section it was found that the mode

with the largest linear growth rate in kop, ~ [0.25 - 0.75] is in the ion direction (-) in

both discharges. However, unlike the 1.2 MA case which has only modes rotating in

the ion direction, the 0.6 MA discharge has most unstable linear modes which rotate

in the electron direction (+) for values of kop, < 0.5. It is an open question as to

whether this difference in linear stability is related to the better observed agreement

in the 0.6 MA nonlinear simulation.

As discussed above, multiple changes in turbulence drive and suppression terms

are observed in the I, scan. It was demonstrated that linear stability analysis does

not predict a change in the character of the most unstable low-k turbulence with a

factor of two increase in the plasma current (0.6 to 1.2 MA). Despite this observa-
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Figure 6-10: The real frequency, w, and growth rate, -y, obtained from linear GYRO
analysis for the 0.6 MA discharge is shown as a function of kop, at r/a = 0.6

Frequencies in the electron/ion diamagnetic drift direction are denoted by
positive/negative values respectively.
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Figure 6-11: The real frequency, w, and growth rate, -y, obtained from linear GYRO
analysis for the 1.2 MA discharge is shown as a function of k9p, at r/a - 0.6

tion, clear trends were found in both impurity diffusion and convection with increased

plasma current. Furthermore, these trends are well reproduced by Qi-matched global,

nonlinear gyrokinetic simulation. In an attempt to identify the physical change (in

turbulence drive or suppression terms) most responsible for the observed changes

in impurity transport, a series of nonlinear simulations were performed around the

GYRO base case, a Qtt-matched global, nonlinear simulation performed on the 0.8

MA discharge of the current scan. To best determine the effects of single turbulent

drive/suppression term changes on simulated impurity transport, profiles of ne and q

from the 0.6, 1.0, and 1.2 MA discharges were inserted one at a time into the GYRO

base case simulation (the 0.8 MA discharge). These profiles were chosen due to the

169



large observed changes in both a/Le, q, and 8^ during the I, scan. This resulted in 6

additional simulations which were identical to the GYRO base case simulation, with

the exception of a modified q or ne profile. The bulk ion and impurity density profiles

were appropriately adjusted to maintain quasineutrality. Since GYRO consistently

demonstrated the ability to reproduce observed radial profile shapes, the results of

this series of simulations compared with experiment is presented in Figure 6-12 at

r/a = 0.5. The radial location chosen can be varied without significantly altering the
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Figure 6-12: Attempts to reproduce the observed I, trend through changes in single
turbulence drive term changes are shown at r/a = 0.5. Electron density (and a/L2.)
changes (c and d) result in a concave down trend of diffusion and a concave up trend
of inward convection which does not agree with experiment. Safety profile changes
better reproduce the trends in D and V, suggesting an important role of q in the
observed I, trend.

conclusions. Substitution of both the q and ne profiles modifies the simulated impu-

rity diffusion and convection and both modifications generally exhibit a decrease in
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diffusion and inward convection with increased plasma current. However, ne modifi-

cation results in a concave down/up trend in decreased diffusion/inward convection

which is opposite the experimental trend in diffusion and inconsistent with the ap-

proximately linear trend of the measured inward convection. In contrast, q profile

changes produce a slightly concave up trend with plasma current and demonstrates

an approximately linear trend in the simulated inward convection. This attempt to

sort out the effect of individual profile changes on the observed I trend, does not

provide a clear indication of the dominant physical change but suggests that q pro-

file effects play an important role. However, it is most likely that the self consistent

modification of the all plasma profiles is needed to best match the experimentally

observed trend with Ip.

The ability of nonlinear gyrokinetic simulation to reproduce experimental profile

shapes, as demonstrated in Figure 6-8, allows for a simplified quantitative comparison

between experiment and the Qi-matched GYRO simulations presented earlier in this

section. Examining a single radial location of r/a - 0.5 allows for easier assessment of

quantitative agreement or disagreement of all discharges simultaneously. Quantitative

comparison of the measured and gyrokinetic simulated impurity transport coefficients

is shown in Figure 6-13 as a function of Ip. Once again, it is observed that the exper-

1012 L
10' 40

8 -10
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-20

2 -30
r/a =0.51

0.4 0.6 0.8 1.0 1.2 1.4 0.4 0.6 0.8 1.0 1.2 1.4
Ip (MA) Ip (MA)

Figure 6-13: Nonlinear GYRO simulation (red) is compared directly with measured
impurity transport coefficients (blue) at the radial location, r/a = 0.5 for all currents.
Reasonable quantitative agreement is found between simulation and experiment for
the 0.8, 1.0, and 1.2 MA discharges and the transport coefficient trends with I, are
well reproduced.
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imental trends of decreased diffusion and inward convection with increased plasma

current are well recovered by nonlinear gyrokinetic simulation. Furthermore, when

experimental uncertainty in the measured transport is considered, general agreement

is found in both D and V for the 0.8, 1.0, and 1.2 MA discharges. In all of these cases

the values of diffusion and inward convection tend to be approximately 2x lower than

the mean experimental values yet lie within experimental uncertainties. It should

be emphasized here that the sensitivity analysis described earlier in this section was

performed on the 0.8 MA discharge of the current scan and significant sensitivities to

ni/ne, q and a/LT, were identified. Given a similar nature of the turbulence character

for all discharges considered here, it is reasonable to expect similar sensitivities exist

at all values of I,. Therefore, quantitative agreement at each plasma current can most

be improved within the experimental uncertainty in Qj and other turbulence-relevant

parameters. The 0.6 MA discharge is a unique case. The simulated value of impurity

diffusion clearly disagrees with the experimental value and its uncertainty estimate in

this discharge. The exact source of this discrepancy is unclear. However, we note the

large uncertainties in the experimental impurity transport for this discharge which

are the result of a slightly lower overall electron temperature profile, uncertainty in

the Te measurement, and the strong dependence of He-like calcium emission on Te

in this temperature range. Overall, it is observed that Qi-matched nonlinear, gy-

rokinetic simulation is capable of reproducing the trend of decreased diffusion and

inward convection with increased plasma current while demonstrating quantitative

agreement with experiment in the 0.8, 1.0, and 1.2 MA discharges.
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Chapter 7

Initial Results on the Input Power

Dependence of Impurity Transport

In Chapter 6, experimental and gyrokinetic analysis of a dedicated I, scan was pre-

sented. Motivation for dedicated experiments was provided by the new Alcator C-Mod

impurity confinement time scaling (Equation 6-1) which indicates that the measured

impurity confinement times are a function of both Ip and the total input power Pot.

This chapter describes the initial results from a dedicated experimental scan of Pot.

Experimental and gyrokinetic analysis attempts to shed light on the physics behind

the observed Ptrt dependence of impurity transport and serves to complement the

existing results of the I, scan.

7.1 Description of the Experiments

7.1.1 Experimental Setup of the Ptt scan

This section describes the experimental setup utilized during the Ptet scan and the

summarizes the available diagnostic tools. As demonstrated by Equation 6-1, the

dependence the impurity confinement time on the total power is a relatively weak,

namely P -
15 . Therefore, it is expected that significant modification of the total
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input power would be required to generate a noticeable change in the inferred impu-

rity transport coefficients. To achieve such a change, various levels of Ion Cyclotron

Resonance Heating (ICRH) (hydrogen minority) were introduced into three sepa-

rate plasma discharges. An approximately 3 fold increase in the total input power

(PCRH - 1.0 , 2.5 , 3.3 MW) was obtained. The total input power, Pot is equal

to the sum of ohmic and auxiliary heating power, POH + ICRH. Time traces of

some basic plasma parameters are shown in Figure 7-1. In an attempt to isolate the
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Figure 7-1: Time traces for line averaged density, core electron temperature, plasma
current, and ICRH input power are shown for discharges in the Pt scan. The shaded
region indicates the approximate time region used for analysis.

effects of input power, these discharges were operated at approximately fixed central
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density (1.5 x 1020 m- 3 ), plasma current (0.8 MA), toroidal magnetic field of (5.3

T), and plasma shape. Sawtooth activity is present throughout the discharges but

the location of the inversion radius remains approximately fixed throughout the scan.

To avoid transition to H-mode and maintain low particle confinement conditions, the

discharges were operated in the upper single null (USN) configuration, with the ion

VB drift away from the active x-point which tends to significantly raise the H-mode

power threshold and therefore avoids the L to H transition at high input power levels.

However, operation in these conditions can result in L to I-mode transition. Although

no trace of the weakly coherent mode (WCM) is observed on the available fluctuation

diagnostics (magnetics, PCI and reflectometer measurement), the highest input power

discharge (3.3 MW) does show an edge electron temperature pedestal and values of

H98 which reach or exceed a value of 1. These are two of the key characteristics for

I-mode discharges [107]. It is clear that no transition to H-mode confinement (which

is known to drastically affect particle and energy confinement) occurs but there are

indications that the 3.3 MW plasma has transitioned into I-mode. The implications

of the possible confinement regime transition from L to I-mode in these discharges

will be discussed later in this chapter.

7.1.2 Description of Diagnostic Setup and Measurements

The diagnostic setup used during this scan was identical to that of the I, scan de-

scribed in the previous chapter. All discharges were optimized for the measurement of

time-evolving He-like calcium profiles using the HiReX Sr. diagnostic and the single

chord, Li-like calcium charge state measurement provided by the XEUS x-ray and

EUV spectrometer. Four identical impurity injections of CaF2 were introduced into

each discharge at 0.765, 0.965,1.165, and 1.365 seconds. However, since stationary

plasma conditions are needed for the experimental impurity transport analysis, only

data from the last 3 injections were utilized. To allow for gyrokinetic analysis, all

background density and temperature profile measurements were enabled (Thomson

and all ECE systems). Argon puffing was performed during each discharge to re-

solve the ion temperature and toroidal rotation profiles. However, due to the high
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electron temperatures reached, significant burnout of the He-like argon charge state

(hollowing of the brightness profile) was observed for these discharges. This resulted

in unreliable measurement of ion temperature and toroidal rotation near the plasma

core (r/a < 0.4). Due to the relatively low operational density, the accuracy of

the Bremsstrahlung based Zeff measurement is uncertain. Therefore, all Zeff values

used during analysis were provided by the neoclassical calculation [99] with bootstrap

current corrections.

7.2 Changes in Turbulence-Relevant Parameters

with Pt0 t

In this section we look at changes in the drive and suppression terms for the turbulent

modes thought to dominate impurity transport in the tokamak core (Ion Temperature

Gradient Driven modes (ITG) and Trapped Electron modes (TEM)) which occur

during the input power scan. Observation of these parameter changes provides insight

into the possible changes in turbulence character which occur with increased Pot. In

the left hand column of Figure 7-2 (a-d) the measured profiles ne, T, T and q during

the input power scan are shown. The right hand column, Figure 7-2 (e-h), shows the

corresponding turbulence drive terms over 0.4 < r/a < 0.75 . This region was chosen

to best demonstrate the changes in the tokamak confinement zone, where reliable

data is available and turbulence is thought to dominate. It is important to note again

that accurate determination of the ion temperature profile in the plasma core was

not possible for the highest input power discharges due to burnout of the measured

argon charge state. Therefore, the plotted profiles are limited to regions where the

data is believed to be reliable. Further discussion of the criteria used to defined the

regions of profile inaccuracy and other data limitations can found at the end of this

chapter. A modest change in the electron density gradient scale length, a/Lne, is

observed from 1.0 to 2.5 MW but no change appears to occur between the 2.5 and

3.3 MW discharges. It should be noted that edge Thomson density and temperature
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Figure 7-2: Plasma profiles (a-d) and their corresponding turbulence drive/suppresion
terms are shown (e-h) for all discharges in the Pt~t scan. Due to the burnout of the
Tj measurement, data from the 2.5 and 3.3 MW discharges is unreliable inside of
r/a = 0.4. The ITG drive term, a/LT, is found to decrease significantly with increased
Ptt. Note the change of x-axis scale for plots e-h.

data were not available for the 2.5 MW discharge. Data from a similar discharge

were inserted to allow for profile fitting of the electron density and temperature.

These profiles should not be used outside of r/a=0.8. Despite an ~ 2x increase in

the central electron temperature which occurs due to increased total power, there is

no significant modification of the electron temperature gradient scale length, a/LT6,

or the magnetic shear profile, s. This is in contrast to the changes observed in the

measured ion temperature gradient scale length, a/LT, which is found to significantly

reduce with increasing input power as a result to both an increased magnitude of the

ion temperature and a flattening of the temperature gradient in the confinement zone.
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Reduction of the ITG drive term with increased power may lead to stabilization of

the ITG-type turbulence and would be expected to result in significantly decreased

turbulent particle transport. However, mostly unchanged TEM drive terms would

suggest any significant TEM contributions would remain present or even be enhanced

due to decreasing collisionality at high input power. A complete linear stability

analysis of all three discharges was performed to best interpret the changes in the

turbulence drive terms and investigate any possible changes in the character of the

plasma turbulence which might occur.

7.3 Linear Stability Analysis of the Pot Scan

To best understand if changes in the turbulence character occur due to the observed

changes in turbulence-revelent parameters during the Pot scan, the gyrokinetic code

GYRO [92] was used. The analysis performed on these discharges was very similar

to to that performed on the I, scan. Figure 7-3 demonstrates the results of a full

linear stability analysis performed on the three discharges in the total power scan.

Two radial locations are shown in each figure, r/a - 0.475 and 0.6. Locations farther

into the plasma core were omitted due to large uncertainty in the ion temperature

profile measurement approaching the center of the plasma. Contours of the growth

rate of the most unstable linear mode in the range kop, ~ [0.25 - 0.75] are plotted

at the 2 radial locations for scans of a/LT, and a/LT, on the x and y axes respec-

tively. Here we define p, - c,/Oci as the sound speed gyroradius, Qc = eB/mic as

the ion gyro frequency, and c, = \/Te/mi as the sound speed. As with the I, scan

stability presented in the previous chapter, the color scheme employed indicates low

linear growth rates with darker colors and large linear growth rates with lighter colors.

The selected kop, range was chosen to best display a shift from ITG to TEM-type

turbulence in the low-k spectrum since these modes are often responsible for the dom-

inant contributions to heat and particle transport. The solid white line indicates the

boundary between modes rotating in the ion and electron diamagnetic drift direction

and the + sign indicates the location of the experimental values of a/LTr and a/LT
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Figure 7-3: Contours of the growth rate of the most unstable linear mode are plotted
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at each radial location. It is found that both radial locations of the 1.0 MW heated

discharge have the most unstable linear mode rotating in the ion diamagnetic drift

direction and have a linear growth rate which is sensitive to the changes in the ion

temperature gradient scale length, a/LT-1 . For this reason, we characterize the plasma

as being ITG unstable at both locations investigated at 1.0 MW. This conclusion is

supported by the negative real frequency, w (+ for electron, - for ion diamagnetic

drift direction), and linear growth rate, -y, plotted in Figure 7-4a for this discharge at

r/a = 0.475. However, as the ICRH input power is increased to 2.5 and then to 3.3

MW, the reduction in a/Lr, reduces the growth rate for the dominant ITG modes.

This results in a transition from the most unstable linear mode rotating in ion to the

electron diamagnetic drift direction. The location of the experimental point relative

to the ion/electron drift direction boundary would suggest that the 2.5 MW case

still has significant subdominant contributions provided by ITG turbulence. This is

supported by the real frequency and growth rate spectrum shown in Figure 7-4b.

This discharge classified as being in a mixed mode regime, where a combination of

both ITG and TEM type turbulence contributes significantly to the overall transport

level. Further increase in heating power to 3.3 MW pushes the experimental profiles

firmly into the region dominated by modes rotating in the electron diamagnetic drift

direction as demonstrated in Figure 7-4c. In this discharge, the most unstable linear

mode at both r/a = 0.475 and 0.6 rotates in the electron diamagnetic drift direction

and is unaffected by changes in the ITG driven term a/Lr-. Instead they are sensitive

to changes in the TEM drive term, aILT,. The value of qe for this discharge is qe > 4

at both locations which using the definition stated by Ernst [108] implies the plasma

is electron temperature gradient TEM dominated.

The change in the turbulence character from and ITG dominated plasma at low

input power values (1.0 MW) to high input power (3.3 MW) is best demonstrated in

Figure 7-5. Since it was demonstrated in Figure 7-2 that is was predominately the

ITG drive term, a/Lr, affected during the Pt0 t scan, the map of a/LTe and a/Lr, sta-

bility space is approximately identical for all discharges within the scan. Therefore,

the linear stability results obtained from the 1.0 MW discharge are, to good approx-
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Growth Rate of Most Unstable Mode (a/cs) in Range ko ps = [0.25-0.75]
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Figure 7-5: Contours of the growth rate of the most unstable linear mode are plotted
which are approximately correct for all 3 discharges in the Ptet scan at a radial location
of r/a = 0.475. The x-axis plots values of a/LT and the y-axis plots values of a/LTe.
The white line indicates the boundary between modes rotating in the ion and electron
diamagnetic drift direction and the "+" sign indicates the experimental location. The
transition from ITG to TEM-type turbulence which occurs during the Ptet scan is
clearly visible.

imation, representative of the stability results for the 2.5 and 3.3 MW discharges.

Figure 7-5 demonstrates an expanded version of the stability plots shown in Figure

7-3 which includes a wide range of a/LTa values at a radial location of r/a = 0.475.

The experimental values of the 1.0, 2.5, and 3.3 MW cases are over plotted on this

stability map to best demonstrate the transition from ITG to TEM type turbulence

which occurs with increased input power.

7.4 Experimental Observations of Ptet Dependent

Core Impurity Transport

Using the synthetic diagnostic and iteration techniques developed around the impu-

rity transport code STRAHL, the methodology described in Chapter 4 was used to

extract impurity transport coefficient profiles for all discharges in this scan. Impurity

transport coefficient profiles in the radial region 0.0 < r/a < 0.6 are shown in Fig-
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ure 7-6. The error bars were derived through the Monte Carlo approach described

03
r/a
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Figure 7-6: The experimentally derived impurity transport coefficients are plotted
for all discharges in the Pt scan. The measured impurity diffusion coefficient (a) is
found to decrease significantly with increased total power while no significant trend
is observed in the convective velocity (b). Representative errors bars are shown on
the 1.0 MW discharge. The vertical dashed line indicates the approximate location
of the sawtooth inversion radius.

in Chapter 4 and are plotted on the inferred transport coefficients for only the 1.0

MW discharge. These errors are representative of the relative uncertainty in all dis-

charges presented here. The dotted line plotted indicates the approximate location

of the sawtooth inversion radius for these discharges. The existence of two distinct

regions of impurity transport is once again demonstrated in these results. Inside of

the inversion radius, we find low levels of diffusion and convection. As discussed in

Chapter 6, transport in this region is dominated by sawtooth activity and exhibits

turbulence drive terms which are insufficient for exciting most turbulent modes and

for driving significant particle transport. Outside of this region, the magnitude of

both the inferred diffusion and convective velocity increase significantly. Large values

of the diffusion and convection are observed, peaking at approximately 5.8 m 2/s for

the diffusion coefficient and around 25 m/s for the convective velocity. Both of these

values are found in the 1.0 MW discharge. Increasing the total power to 2.5 and 3.3

MW results in approximately 2x and 3x reductions in the measured diffusion coeffi-

cient are observed in the outer regions of the measurement (r/a > 0.5). However, this
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is not accompanied by a corresponding reduction in the measured convective velocity.

Outside of experimental uncertainty, the inferred convective velocity demonstrates

no clear trend with increased total power. The measured reduction in the diffusion

coefficient implies an increase in the mean value of the peaking factor occurs with

increasing power and steeper steady state impurity density profiles at higher levels of

total power.
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Figure 7-7: The brightness time histories of impurity injections (Cai8+ emission)
into the 1.0, 2.5, and 3.3 MW discharges are shown by dashed lines. The measured
confinement times, with the exponential fits shown as solid lines, are found to slightly
increase with increased input power.

As demonstrated in Figure 7-7, there is a slight increase in the measured impu-

rity confinement time (as determined by Cais+ emission) which occurs with increased

input power. An increase in the measured impurity confinement time is expected

from a reduction in impurity diffusion at approximately fixed inward convection.

Since there is a factor of 3 decrease in the experimental diffusion coefficient (from
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r/a=0.5 to 0.6), one might expect a significant increase in the overall confinement

time with input power. However, the impurity confinement time is a global quantity

and only partial profiles of the impurity transport coefficients (0.0 < r/a < 0.6) are

determined here. Given the observed changes in the edge (the development of a tem-

perature pedestal at high input power), which imply changes in the turbulence, it is

reasonable to believe that there are changes in the impurity transport which occur

outside r/a = 0.6 and affect the impurity confinement time. As demonstrated by

Figure 7-8, determination of the impurity confinement time from the Ca1 7+ (Li-like)

emission actually supports this idea. Emission from the Li-like charge state comes
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Figure 7-8: The measured confinement times derived from measurement of Ca18+ and
Ca17+ emission compared to a simplistic estimate of the confinement time based on
the experimental diffusion coefficient at r/a=0.5.

primarily from outside the region of Ca18+ emission and is therefore more sensitive

to changes in edge transport. In contrast to the slight trend of increased impurity

confinement observed from He-like calcium emission, a decrease in the Li-like calcium

impurity confinement time with increasing input power is found. This is suggestive
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of enhanced edge particle transport in the high (2.5 and 3.3 MW) input power dis-

charges relative to the low (1.0 MW) input power discharge and could explain why

the changes in the derived confinement times from He-like emission are much less

dramatic than what would be expected by a factor of 3 decrease in the measured

diffusion (as seen from r/a= 0.5-0.6).

It should also be noted that the slight increase in the measured impurity con-

finement times for theses discharges is inconsistent with the weak PQ-i5 dependence

discussed earlier in this chapter. However, it is unclear whether or not direct com-

parison of these discharges is entirely justified as a measure of Pt dependent changes

in standard L-mode impurity transport. As discussed earlier in this chapter, there

are some indications that the high input power discharges may transition to the en-

hanced confinement I-mode regime. The low particle confinement characteristics of

this regime make it difficult to distinguish from standard L-mode discharges. Fur-

thermore, the behavior of discharges operated in the unfavorable VB drift direction

appears to exhibit some fundamental differences from standard discharges operated

in the favorable VB drift direction, namely a lack/reduction of power degradation

of the energy confinement when operating in unfavorable VB drift direction. The

differences between these two categories of discharges are under investigation in the

context of ongoing I-mode research efforts on Alcator C-Mod.

7.5 Discussion of Data Quality and Preliminary

Nonlinear Simulation

Due to the lack of reliable T and V data available for the high powered discharges,

extension of this analysis from simple linear gyrokinetic to the full nonlinear gyroki-

netic simulation was not thoroughly pursued. As was discussed in Chapter 3, both ion

temperature and toroidal rotation profiles are obtained from inversion of HiReX Sr.

line integrated H-like and He-like argon brightness measurements. However, to obtain

the necessary impurity transport data the H-like argon crystal was removed and only
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the He-like argon data was available for these experiments. The high electron tem-

peratures obtained during this scan resulted in "burnout" of the He-like argon charge

state. This refers to the hollowing of the brightness profile at the plasma core which

negatively effects the inversion routines used to generate ion temperature and toroidal

rotation profiles. An example of this charge state burnout is shown in Figure 7-9.

Here, the measured HiReX Sr. He-like argon brightness profiles from the 1.0, 2.5, and
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Figure 7-9: The measured HiReX Sr. argon brightness profiles for the 1.0, 2.5 and
3.3 MW ICRH discharges are shown. Notice the off axis peaking of the brightness
profiles and the hollowing of the profile inside of the peak for the high input power
cases.

3.3 MW discharges are plotted as a function of radius. Data from these runs is only

assumed to be reliable outside of peak in the measured argon brightness. However,

at this point it is still unclear if effects of the burnout propagate to radii outside of

this location. In the 1.0 MW discharge the peak of the bright profile occurs near the

plasma center but shifts outwards with increasing electron temperature to r/a - 0.25

at 2.5 MW and r/a ~ 0.3 - 0.4 at 3.3 MW. In light of the sensitivity analysis of

gyrokinetic calculation presented in Chapter 5, it is clear that large uncertainty in
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the ion temperature and its gradient scale length can easily lead to uncertainty in

nonlinear simulation results exceeding 100%, making such simulations uninformative.

As a result, only preliminary investigation of the high input power shot (3.3 MW)

was performed with nonlinear simulation and linear simulation was limited to outside

of the peak in the measured argon brightness profile.

Preliminary nonlinear simulation results of the 3.3 MW discharge provide some

useful insights for future work. Using only the experimental profiles, low-k (up to

kop, ~ 1.0), nonlinear gyrokinetic simulation was performed. This simulation resulted

in extremely low levels of both ion and electron heat flux relative to the experimental

values (~ I/1oth). It was found that large (up to ~ 75%) increases above the experi-

mental values of a/LT, were required to obtain simulations with heat flux approaching

the experimental values. In light of the results presented in Chapter 5 and earlier in

this chapter, this result is unsurprising. The linear stability analysis indicates that

the 3.3 MW discharge is dominated by TEM turbulence. Therefore, simulation of

low-k, ion-scale turbulence is not be expected to accurately predict the experimental

heat fluxes. Additional simulations were performed which included contributions from

kops up to - 2.5 and 16 toroidal modes. Combined with modest increases (~ 20%) in

a/LT, and a/La, these simulations began to approach experimental levels of electron

heat flux and very low levels of impurity transport (D < 0.4 m2/s and V < 1 m/s)

were predicted. No additional simulations of this discharge were performed since val-

idation quality results could not be achieved due to the experimental uncertainty in

the ion temperature profile. However, these preliminary results indicate that multi-

scale (low and high-k) simulations are most likely required for accurate simulation of

this discharge. These simulations are computational extremely demanding and are

out of the scope of this thesis work.
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Chapter 8

Summary, Conclusions, and Future

Work

8.1 Summary of this Thesis

The preceding chapters presented the development of new diagnostic tools, the exper-

imental determination of impurity transport with realistic uncertainty estimates, and

the first quantitative comparison of experimental impurity transport with nonlinear

gyrokinetic simulation. This chapter provides a brief summary of the last 7 chapters

and a discussion of possible future work in impurity transport and model validation.

The growing need for the study and understanding of impurity transport was

described in detail in Chapter 1. Motivation for impurity transport investigation is

provided by the need for dense, clean, fusion plasmas which exhibit long energy con-

finement times. An understanding of both the engineering dependencies of impurity

transport as well as the physical mechanisms which dictate the measured transport

levels is required for effective impurity control and, more broadly, for achieving the

ultimate goal of a first principles predictive transport model.

Theoretical and experimental investigation of impurity and particle transport has

existed since the first studies of magnetically confined fusion plasmas. As described

in Chapter 2, classical collisional transport is modified by the toroidal geometry of

tokamaks leading to the neoclassical transport model. However, even neoclassical
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transport levels are much to small to explain impurity transport observed under most

experimental conditions. It is believed that the "anamalous" transport levels found

in almost all experiments are the result of drift wave type turbulence such as the

candidate modes described in Chapter 2 ( ITG, TEM, and ETG). Reduction of the

Maxwell-Boltzmann equations to a 5-D set of equations known as the gyrokinetic-

Maxwell equations is believed to capture the physics of the relevant spatial and tem-

poral scales needed to describe drift wave turbulence and can be solved numerically

with present day supercomputing facilities.

A wide variety of diagnostic tools are available for the study of impurity transport

on Alcator C-Mod. As part of this thesis work, a novel, multi-pulse laser blow-off sys-

tem was designed and constructed to allow for multiple impurity injections of trace,

non-recycling, non-intrinsic impurities into the plasma. This system achieved all of

its design goals and provided ideal measurement conditions for the study of impu-

rity transport in the plasma core. A novel x-ray crystal spectrometer measurement

provided time evolving, profile measurement of a single impurity charge state. These

tools, coupled with accurate measurement of background plasma profiles, provided

a unique environment which allowed for one of a kind experimental and gyrokinetic

simulation comparisons.

A new approach to the determination of experimental impurity transport coeffi-

cient profiles (0.0 < r/a < 0.6) with realistic uncertainty estimates was developed for

this work. A novel synthetic diagnostic was developed around the impurity transport

code STRAHL to minimize differences between measured and synthetically modelled

signals and to evaluate the propagation of uncertainty from the experimental profile

and spectroscopic measurements to the inferred impurity transport. Realistic esti-

mates of experimental uncertainty paved the way for detailed quantitative comparison

with gyrokinetic simulation of turbulent impurity transport. Along the same lines,

the propagation of uncertainty from profile measurements and RF absorption models

to estimated uncertainty ranges of the power balance values of the ion and electron

heat fluxes was also evaluated. These values were held up for comparison against

output fluxes from the gyrokinetic code GYRO, making an assessment of their un-
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certainty critical.

Using the unique tools developed as part of this work and the existing capabili-

ties of C-Mod, the first quantitative comparison of experimental impurity transport

with nonlinear gyrokinetic simulation was completed. An exhaustive analysis was

performed on a standard, Alcator C-Mod, L-mode discharge. The neoclassical trans-

port code, NEO, was used to definitively show that neoclassical transport levels are

insufficient for explaining the experimental impurity transport levels in the core of

Alcator C-Mod. The experimental results demonstrate the existence of two distinct

regions, inside and outside of the sawtooth inversion radius. These regions of MHD

and turbulence driven transport, exhibit low and high levels of diffusion respectively.

Linear GYRO simulation of this discharge indicates the presence of ITG-type, low-k

turbulence across the region of interest for gyrokinetic investigation, 0.3 < r/a < 0.6.

Initial nonlinear simulations were performed up to kop, ~- 1.15 and included small

modification to the experimental ion temperature profiles such that the GYRO sim-

ulated total heat flux (Qe + Qj) matched the power balance value. It was found that

the experimental diffusion, inward convection, and the peaking factor V/D were gen-

erally well reproduced by gyrokinetic simulation within the calculated experimental

uncertainty.

The sensitivity of the gyrokinetic simulated impurity transport coefficients to un-

certainties in a wide range of turbulence-relevant parameters was also investigated.

These parameters included: a/LT, q, nr/ne, a/LTe, a/Ln, Te/Ti, and 7YExB. The

dominant sensitivities were found to the quantities, a/LT,, q, and ni/ne as expected

from theory. It was demonstrated that modifications to each of these terms can re-

sult in significant modification of the simulated impurity transport coefficient profiles.

Within the uncertainty in the experimental values of the total heat flux, these drive

terms can be modified (within error bars) to improve agreement between simulation

and experiment. However, in each Qtot-matched simulation it was observed that the

GYRO simulated ion heat flux exceeded its experimental value to compensate for a

systematically underestimated electron heat flux. This observation motivated sim-

ulations where the experimental values of a/LTL were modified within error bars to
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match the GYRO simulated ion heat flux to the experimental value, ignoring the

electron heat flux. These Qi-matched simulations were found to exhibit agreement

within error bars with the experimental values of ion heat flux and both impurity

transport coefficients over a majority of the simulation domain. The systematically

low electron heat flux could be attributed to the lack of simulated high-k turbulence

or could indicate missing electron dynamics. The simultaneous matching of the ion

heat and impurity particle transport channels in Qi-matched simulation motivated

their use in this work.

During the 2009 and 2010 run campaigns, over 300 impurity injections were in-

troduced into a variety of Alcator C-Mod L-mode plasmas. The measured impurity

confinement times were fit to a power law scaling which indicated a dependence of

impurity confinement on Pot, BT, and I,. The strong dependence of this scaling

law on plasma current (rmp oc L8) motivated a dedicated scan of L-mode plasma

discharges which used the newly developed techniques to extract impurity transport

coefficient profiles. During a scan of plasma current from 0.6 to 1.2 MA at fixed

density, field, and input power, decreasing values of both experimental diffusion and

inward convection were found. In the confinement zone, a doubling of plasma current

resulted in a factor of - 7 decrease in the experimental diffusion coefficient with a fac-

tor of - 3 reduction in the experimental inward convection. Linear GYRO simulation

of these discharges suggested no significant change occurred in the character of the

low-k turbulence during the scan and that all plasmas could be classified as ITG dom-

inated. Nonlinear, Qi-matched GYRO simulation was performed for the discharges

in the plasma current scan. It was found that nonlinear simulation was able to both

qualitatively and quantitatively reproduce the experimental trends and values of the

impurity transport coefficient profiles, within experimental uncertainties, for the 0.8,

1.0, and 1.2 MA discharges. This work represents the first simultaneous agreement

of gyrokinetic simulated impurity particle and ion heat transport with experiment.

Additional investigation into the physics dictating the dependence of measured

impurity confinement on input power was also performed. A dedicated scan of input

power was performed at fixed density, toroidal field, and plasma current to attempt
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to sort out the physics of this dependence. Three discharges were performed with

different levels of ICRH input power (1.0, 2.5, 3.3 MW). The determined impurity

transport coefficient profiles demonstrated a significant reduction the experimental

value of the diffusion coefficient outside of r/a ~ 0.5. In this region, an ~ 3x reduc-

tion was found between the low (1.0 MW) and high (3.3 MW) input power discharges.

In contrast, outside of experimental uncertainty, there was no measured reduction in

inward convection occurred during this scan. A linear stability analysis was per-

formed on the discharges in the input power scan. The low input power discharge

was found to be ITG dominated, but as the total input power increased, the plasma

demonstrated a transition from ITG to TEM dominated. This fundamental change

in the character of the plasma turbulence presents a unique opportunity for testing

turbulence models. However, due to poor data quality obtained inside of r/a = 0.4

for the high input power discharges, only preliminary nonlinear simulation of the

high input power discharges was attempted. These simulations suggest that high-k,

electron scale turbulence simulations are needed to match the experimental values of

heat flux in high input power discharges.

8.2 Future Work

The work presented in this thesis represents another step in understanding the changes

in turbulence which affect measured impurity transport levels and a first step in the

validation of the gyrokinetic model of impurity transport. The results of this work

should motivate additional investigation into impurity transport experiment and sim-

ulation on Alcator C-Mod and around the world. Here we briefly discuss future work

in the fields of impurity transport and transport model validation on Alcator C-Mod.

The design and construction of the multi-pulse, laser blow-off system comple-

mented an existing set of tools used to study of impurity transport on Alcator C-Mod.

The current suite of spectroscopic diagnostics is arguably one of Alcator's strengths.

The unique x-ray crystal spectrometer used in'this work allowed for unique measure-

ments of a single charge state of calcium with good spatial and temporal resolution.
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However, the measurements of this spectrometer were limited such that accurate im-

purity transport measurements could only be obtained inside of r/a ~ 0.6. It was

found as part of this work that gyrokinetic simulation generally reproduces exper-

imental impurity transport levels between ~ 0.3 < r/a < 0.6. However, previous

application of the gyrokinetic model outside of r/a < 0.6, in the so called plasma

transition zone (0.6 < r/a < 0.85), indicates that the model fails to accurately pre-

dict heat transport levels. To date, no comparisons of impurity transport experiment

with simulation have been performed in this region. Proposed modifications to the

XEUS x-ray spectrometer seek to expand its capabilities and allow for radial pro-

file coverage of plasma emission in this region. Combined with the measurements of

the x-ray crystal spectrometer and the appropriate line emission data, this should

allow for the measurement of multiple charge states of injected calcium and provide

effective coverage of the plasma throughout the transition zone. These combined

measurements would serve to greatly constrain the experimentally derived impurity

transport coefficient profiles and allow for a more comprehensive comparison of ex-

perimental impurity transport with gyrokinetic simulation to be performed.

The discussion of Qtot and Qi-matched gyrokinetic simulation presented in Chap-

ter 5 of this thesis motivates additional simulation work. It was demonstrated that

when Qi-matched GYRO simulation was performed, agreement between experimental

and simulated values of impurity transport and ion heat flux can be obtained within

experimental uncertainty. However, an unexplained discrepancy in the electron heat

flux persisted in both Qtot and Qi-matched simulation. The natural extension of this

work is to attempt to understand and resolve this discrepancy. It is possible that

the presence of high-k TEM and ETG type turbulence could represent the missing

contributions to the electron heat flux. Due to the predominately low-k nature of

the presented simulations, the dynamics of this type of transport is not fully resolved

and could play a significant role in quantitative agreement of electron heat flux while

leaving the ion-scale dynamics basically unchanged. In order to address this issue, the

GYRO Qi-matched simulation presented in Chapter 5 will be the subject of further

investigation using high fidelity, multi-scale GYRO simulations.
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It is often both desirable and difficult in tokamak experiments to change the char-

acter of the plasma turbulence. However, in light of the preliminary analysis presented

in Chapter 7, The simple method of increasing input power in moderate density dis-

charges appears to provide such an opportunity. These discharges allow for rigorous

testing of cutting edge transport models, such as the gyrokinetic model, in conditions

dominated by fundamentally different types of turbulence. More specifically, these

conditions can provide testable predictions for the leading theoretical models which

predict different particle and heat transport in response to different types of dom-

inant turbulence. However, as discussed in Chapter 7, the data available from the

input power scan was not of high enough quality to motivate significant nonlinear

gyrokinctic work. At this time, experiments have been proposed on Alcator C-Mod

which were motivated by the RF dependent impurity transport results and seek to

both repeat and fill in the gaps present in this initial dataset with the highest quality

impurity transport, ion temperature, and rotation data possible. This dataset would

allow for the direct comparison of impurity transport in ion and electron dominated

regimes and allow for the ability of nonlinear gyrokinetic simulation to accurately

predict heat and particle transport levels in both of these turbulent regimes to be

tested.
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Appendix A

Laser Blow-Off Hardware and

Control Systems

Chapter 3 of this thesis presented the basic layout of the multi-pulse laser blow-

off system's optical, vacuum, and electronics systems. The focus of this appendix

is to provide reference detail of the laser blow-off system, particularly in aspects

pertaining to the control systems, electronics for laser timing, beam steering, and

data acquisition.

A.1 Electronics Setup of the Laser Blow-off Sys-

tem

The laser blow-off system is controlled by two main electronic systems. These sys-

tems are a rack mounted PLC controller and a CPCI crate. This section will overview

these systems and their function in the laser blow-off system operation.

The PLC is located in the impurity injector rack in the Alcator C-Mod cell (shown

in Figure A-1). This controller runs a simple ladder logic program which is charged

with monitoring the impurity injector systems. All vacuum controller components

(convectron gauges, ionization gauge, turbo pumps) are controlled through the PLC's

DC and AC output modules and are monitored using the analog input module. Out-
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Figure A-1: A picture of the PLC electronics setup is shown.

put from the PLC is used to control the in-line valve (separating the main beamline

from the foreline) as well as the mechanical and turbo pumps. Built into the PLC

programming are a series of safety features which check the vacuum pressures and

turbo pump operation to avoid damage to the system. If activated, these systems

close the in-line valve and begin a controlled shutdown of the pumps. On a day to

day basis, very little direct interaction is involved with the PLC electronics setup.

All of the PLC systems are controlled via the RSVIEW GUI which will be described

in the following section.

Laser triggering, piezo-electric mirror mount movement, and data acquisition is

achieved using the CPCI crate and associated backplane electronics. A picture of

these systems mounted in the electronics rack is shown in Figure A-2 The CPCI crate

consists of three main components: A 32 channel digitizer, a timing module, and an

analog output module. The timing module provides the necessary clock and trigger
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Figure A-2: A picture of the CPCI electronics and backplane is shown.

for the digitizer as well as a series of clocks used for laser timing. The 32 channels

of the digitizer are connected to an electronics backplane which provides double pin

LEMO connections for each channel. All signals are passed to these connections to

collect all the necessary information for diagnosing the system's performance. Sig-

nals used to control the timing, laser triggering, and beam positioning are teed off

and input into the electronics backplane for input into the digitizer. Additionally, a

16 channel analog output module is connected directly to the electronics backplane

and allows for 0-10 V signal generation. These outputs are used to both drive the

piezo-electric mount and to provide the necessary gated signals for laser triggering.

The details of the piezo-electric system and the laser triggering will be explained in

more detail later in this appendix.

A.1.1 The Remote Interfaces for the Electronic Systems

Two separate interfaces were developed for the remote operation of the impurity in-

jector electronics. The PLC controller housed in the Alcator C-Mod cell is controlled

via the RSVIEW software installed the laser blow-off computer located in the control
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room. This software, similar to Labview, allows the user to interact with the PLC

controller via a series of graphical representations. A picture of the RSVIEW GUI

designed to control the impurity injector is shown in Figure A-3. Most of the features

of this interface are self explanatory. From this screen, the operator can control all

of the impurity injector vacuum systems, monitor the vacuum pressure via ionization

and convectron gauges, and monitor the turbo pump operation. A built in heating

tape system, for vacuum baking, is also controllable from this interface. This system
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Figure A-3: A picture of the PLC GUI is shown. It should be noted that the system
is disconnected in this picture so the measurements are meaningless.

consists of four thermocouple gauges and four heating tapes which are fed into a

feedback system. Each thermocouple monitors the local temperature and increases

the current in the corresponding heating tape until a temperature of approximately

90 degrees Celsius is reached. To avoid unsafe conditions, the tapes are shut off if any

temperature exceeds 100 degrees Celsius. There are several additional safety systems

which can be monitored through this interface as well. If the pressure measured by

the convectron gauges rises to approximately 100 mTorr, the inline valve will close,
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and the pumps will turn off. To warn of possible pump malfunction, indicator mes-

sages will appear if the rotation frequency of the turbo pump decreases to below 1400

Hz as well. The last feature added to this system involves control of UV lamp which

was installed in the impurity injector's coolant loop. This lamp is operated during

periods of machine down time to ensure that, the laser's coolant loop remains free of

algae and other microorganisms.

Setup of the laser timing and piezo-electric beam steering is controlled via an IDL

interface. The control widget for these systems can be found in:

/user/local/cmod/codes/transport/run-impinj .pro

Screenshots of the different pages of this widget are shown in Figures A-4 and A-

5. The first page of this interface allows the user to control advanced options of the

laser's timing such as the q-switch delay and the digitization rate of the laser blow-off

system's digitizer. Page 2 of the widget, the "Injection Setup" tab, allows the user to

specify the timing of the laser blow-off injections. The first of these injections may

be specified at an arbitrary time but all subsequent injections are forced to occur at

100 ms intervals following the first injection time. Control of the peizo-electric beam

steering is found here. The user specifies the number of mm that they desire the

beam to be steered in the positive x and negative y directions. An x and y position

must be specified for each laser blow-off injection. If the user does not specify the

injection positions, it will default to 0.0,0.0 for all injections. The "Run Test Shot"

tab allows the user to toggle the impurity injector's timing system to sync with the

C-Mod shot cycle or run independently. If running independently of the shot cycle,

the user may perform test shots of the system to test alignment or laser positioning.

The "Test Card" tab of the widget allows the user to ping both the DTAQ board and

the server pcdaqengl to ensure the system is functioning properly.
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Figure A-4: Pages 1 and 2 of the impurity injector's control widget are shown. These
pages allow for laser timing control and the control of piezo beam steering

A.1.2 Remote Laser Triggering

The ability to remotely trigger the impurity injector's laser system with precise timing

is important for reliable operation of the system. This was achieved using a custom

made laser timing card and the timing module in the impurity injector's CPCI crate.

The basic operation is as follows:

Mounted in the system's electronics backplane is a digital fiber link (DFL) card

which interprets the current machine state. The system is set up such that upon

entering check state(~ 30 seconds before the plasma shot) a signal is sent to the laser

timing card. This signal triggers an internal 10 Hz clock which sends a negative going

202



r I st u en ast im. In -. 9

Timing Setupe Injection Setup Run Test Shot) Test Card]

sync with C -Mo d
.- Yes * No

Recompile

Plot Weveformsj

Plot Date

QUIT

rf mat up pa Thin i uWtV Iniec r I-- C3 X
Timing Setupl Injection SetUpl kn Test Shetl Test Card

Test Hardware
Ping Server pcdaqeng1

Ping Boardi Must be run from server

Test Boardi Must be run from server

Server Ping Test
PING pcdwe1g.psfc.mit.edu (198.125.176.219) 56(8
64 bgtes free pedaqengi~psfc.miteki (156.125.176.64 Wstes free KcAqegi pfc~l~d 181616

64 bytes from pcdaqensi.psfc.mit.edu (188.125.176.

-- pcdageng1.psfc.mit.edu ping statistics --
3 packets transmitted, 3 received % packet Ios
i!tt min/ae/eax/mdev = .185/0.22"/.263/l.036 m

QUIT I

III___________________________________

Figure A-5: Pages 3 and 4 of the impurity injector's control widget are shown. These
pages allow the user to perform test shots and test communication with the CPCI
crate.

TTL pulse (normal is high +5V state) to the laser power supply and causes the laser

lamps to being to flash. This provides the required warm-up before generation of

laser pulses. On receiving the event "POSTSTART", (-3.99 seconds) from the engi-

neering encoder, the digitizer is triggered and a 10 Hz "master" clock is output by the

timing module. This clock is fed into two other timing module channels to generate

two delayed clocks (relative to the master clock) which correspond to the flashlamp

clock and the q-switch clock. The flashlamp clock is delayed relative to the master

clock such that a pulse will occur at precisely the user specified time of the first laser

blow-off injection. The exact delay of the flashlamp clock is determined by the laser
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blow-off control widget and written into the tree for each shot. The q-switch clock

is delayed an additional ~ 175 ps (a value found to optimize laser energy) relative

to the flashlamp clock. Both of these clocks are output to the laser timing card. At

t = 0 seconds the system's analog output module delivers a +5V gate to the laser

timing card (2 second width) which switches from the laser timing card's internal 10

Hz clock to the flashlamp clock output by the timing module. To ensure that the

laser does not receive a more than 1 pulse during a 100 ms interval, the laser timing

card delays the switch from its internal clock to the flashlamp clock until at least 100

ms has passed. At this point, the laser is flashing based purely on the timing module

generated clocks and pulses. If the laser timing card receives both the flash gate

(which is on from 0-2 seconds) and a q-switch gate simultaneously (+5V from the

analog output module), it triggers the laser timing card to output a negative going

pulse at the next occurrence of the q-switch clock. This enables q-switching of the

laser. The clocks/signals generated during a laser trigger are best demonstrated in

Figure A-6. After 60 seconds of operation, the laser timing card will automatically

disable all outgoing signals to the laser. This feature acts as a safeguard in the event

of an indefinite check state.

Timing Module Inputs/Outputs

Channel 1-out - Digitizer Clock (50 kHz)

Channel 2-out - Trigger for Digitizer

Channel 3-out - Master clock (10 Hz) - To timing module channels 8 and 10

Channel 4-out - Delayed flash clock (10 Hz), - To laser timing card input 3

Channel 4-in - Master clock - From timing module channel 5

Channel 5-out - Delayed Q-switch clock (10 Hz) - To laser timing card input 5

Channel 5-in - Master clock - From timing module channel 5

Laser Timing Card Inputs

Input 1 - Check pulse from PLC

Input 2 - Recool pulse from PLC
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Input 3 - Delayed flash clock - From timing module channel 7

Input 4 - Flash gate from analog output module

Input 5 - Delayed q-switch clock - From timing module 9

Input 6 - Q-switch gate from analog output module

Laser Timing Card Outputs

Output 1 - Flash pulse out to laser

Output 2 - Flash pulse monitor to digitizer

Output 3 - Q-switch pulse out to laser

Output 4 - Q-switch pulse monitor to digitizer

Internal LaserTiming Clocl -, Switch From Internal to Delayed Flash Clock

Cl

I.I

U U(I
Time (s)

Figure A-6: The timing signals for laser triggering are shown.
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Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Figure A-7: Setup of all channels of the timing module are shown.

A.1.3 Remote Positioning Systems

Positioning of the primary (YAG) laser on the target is performed using two separate

systems described in the main body of this thesis. Course movement of the beam on

between shot time scales, is performed via the motorized mirror mount, while during

shot beam movement is provided by the piezo-electric mirror mount. Figure A-8

demonstrates these two components. Control of the motorized mirror mount system

(+/- 97 mrad of tip/tilt) is provided via RS232 commands which are passed to the
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Figure A-8: Both the motorized and piezo-electric mirror mounts are shown. These
allow for inner and intra shot movement of the laser position.

mount by a visual basic GUI interface. The control computer located on the impurity

injector stand is linked via serial cable to this unit. During C-Mod operation, when

access to the cell is limited, remote manipulation of the mirror mount performed

by remote desktop connection to the (in cell) control computer. However, intrashot

redirection of the beam is required for multi-pulse operation. Custom high voltage

amplifiers located in the impurity injector electronics backplane take 0 to 10 V signals

from the analog output module and convert them to 0 to 150 V. These signals are

fed into each axis of the piezo-electric mirror mount, allowing for +/- 4 mrad of tip

and tilt on time scales of less than 100 ms. Stepped waveforms are generated via the

analog output module which allow for movement across the target slide during the

shot and provides multi-pulse operational ability. An example of the input voltage to

the high voltage amplifier is shown in Figure A-9.
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Figure A-9: The voltages output to each axis of the piezo are shown.

A.1.4 Verification of Position and Ablation

Visual confirmation of both the beam positioning and target ablation is of great

importance to the operation of the laser blow-off system. This is achieved using

a standard black and white CCD security camera (BNC out) which is linked via

fiber optics to the closed circuit TV system in operation on Alcator C-Mod. The

camera's view of the target slide cannot be direct due to geometric constraints and

the requirement of a totally enclosed beam line. As a result, the camera is mounted

approximately 90 degrees relative to the beam line. This is best demonstrated in

figure A-10. The camera views down through a NW80 glass vacuum window where it

Figure A-10: (Left) The location and position of the camera is shown on the impurity
injector beam line (Middle) A solid edge model of the silver mirror mount is shown
attached to a mock up of the vacuum window. (Right) The camera mounting post
attached to the vacuum window is shown.

views a reflection of the slide from a silvered glass mirror. This mirror is mounted at

slightly greater than 45 degrees relative to the face of the vacuum window flange as

to provide a view of the entire slide. However, to ensure that the mirror mount does
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not block the laser transmission down the beam line, it only protrudes ~ 0.5 inches

into the main beam line. The mirror and camera mounts are shown in Figure A-10.
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Appendix B

STRAHL Synthetic Diagnostic and

Iteration Tools

A series of codes were developed as part of this thesis to analyze experimental mea-

surement of spectroscopic data and to extract impurity transport coefficient pro-

files. The general purpose of these routines is to process experimental data, process

STRAHL output impurity emission, and to iterate the STRAHL code to infer the

experimental impurity transport. This section will describe the main routines and

functions used to perform this analysis. Because a complete description of STRAHL

is out of the scope of this work, it is assumed in this description that the reader has

some prior knowledge of the standard inputs needed for a STRAHL run. For more

detail, the reader is referred to the STRAHL reference manual.

B.1 Introduction to the tools

The set of tools developed to implement a synthetic diagnostic and an iterative

method of determining the impurity transport coefficient profiles is described here.

These tools are contained in 6 primary files which are located in /home/nthoward/strahl/strahl/:

* strahl.in

* run-strahl.pro
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e load-strahl-data.pro

" write-strahl-files.pro

" compare strahl-output.pro

* strahl-runtools.pro

A flow chart which briefly outlines the execution of a STRAHL run using these

tools is shown in Figure B-1. More detail on the individual procedures can be found

below.

Workflow of STRAHL tools

Input File

Figure B-1: A flow chart of the STRAHL workflow used in this work is shown.

B.1.1 Execution of the Codes

The initial execution of the codes listed above is best achieved using the execute-strahl.pro

routine. From the complied STRAHL diectory, the command :
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idl execute-strahl.pro

will compile all of the functions contained in the files listed above in the correct

order and will call the run-strahl.pro routine to begin execution of the package of

codes developed around STRAHL. The following sections will introduce the reader

to the logical progression of the program and give brief descriptions of some of the

key procedures and functions which are used.

B.1.2 run-strahl.pro

This procedure is the backbone of the tools built around STRAHL. Much of the logic

of the code is contained in this code. Based on the user preferences which are read

from the strahl.in file, the appropriate functions are called. All of the functions

called by this procedure are contained in one of the five files listed below. Comments

are present throughout this code which allow for a new user to follow the logical

progression of the functions called in this procedure.

B.1.3 strahl.in

This file is the input file which drives all of the tools written around STRAHL. The

flags and values set in this file are read by the function strahl-read-in and stored in

a structure. The structure is passed to the individual functions and the input values

and flags are used to control the course of the program. There are approximately 90

different flags or values which can be set in this file. This file is sufficiently commented

to allow the new user to understand the flags and usage. For this reason, a much

more complete description is omitted here.

B.1.4 load strahldata.pro

The main purpose of this procedure is to extract the raw spectroscopic data from

the tree and process it appropriately for comparison with the STRAHL output. This
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single procedure contains a large number of functions which are called to perform the

data processing. Some of the main functions called will be described here. These are:

strahl-read-in - This function reads the file named strahl.in which includes all of the

user specified flags and values for the iterative STRAHL run. It returns a structure

named input which includes all the of data read from strahl.in

strahl-read-exp - This is the main routine for loading experimental data to be

used in STRAHL. Currently this function is set up to take the input structure and

return a structure of formatted experimental signals (Hirex Sr. and XEUS data) on a

consistent timebase. This routine is written such that additional signals can be easily

incorporated by straightforward extension.

format-sr-signal - This procedure is used to combine raw HiReX Sr. data from

multiple injections into a single set of data. Individual injections are normalized and

combined into a single data set. After combination, the signals and their photon

statistic errors are put onto a 1 ms time base which is used throughout the package

of codes written around STRAHL. A structure is returned containing the combined

raw signal, the statistical error, and the appropriate timebase.

format-signal - This routine is a generalized formatting routine for any single chord

measurement. In this work it was applied to the XEUS signal. It allows for an arbi-

trary, user specified, time resolution, a necessary feature since there is no well defined

timebase for the XEUS data in the tree. Instead, the start of the signal rise is lined

up with a user specified time from in the strahl.in file. This procedure returns a

normalized (to its max value) signal, on a 1 ms timebase which begins at the start of

the user specified rise time.

strahlteeth - If the user specifies to include STRAHL's sawtooth model, this rou-

tine is called via a flag in the strahl.in file. This plots measured ECE or soft x-ray
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signals in the user specified simulation interval and allows the user to click on the

sawtooth crash times. This times are returned and will be written later for use in the

STRAHL run.

strahl-inv - If the user specifies the use of STRAHL's sawtooth model, this rou-

tine allows the user to determine the approximate location of the sawtooth inversion

radius. This is done by plotting core soft x-ray views and their corresponding tan-

gency radii.

find-source - This routine reads the raw source time history measurement, allows

the user to subtract the background, and formats the data in a manner such that

the appropriate STRAHL source file can be written. Alternatively, if an existing

source file is specified to be loaded, this routine ensures the timing is modified to be

consistent with the start STRAHL run time.

B.1.5 write strahl-files.pro

The main purpose of this procedure is collect data from the tree and output of the

load strahl data.pro to write the files required for execution of STRAHL. Some of

the main functions called will be described here. These are:

strahl-write-param - This routine is used to write both the source and the STRAHL

parameters (main input) file used for STRAHL execution. To write this file it must

be supplied with the input structure, information on where to obtain the source

data (tree or existing source), sawtooth information, D and V profiles, and the ra-

dial grid for these profiles. If it is the first execution of this function, it will write

a strahl.control file which tells STRAHL the correct files to read for execute. The

output of this routine is a STRAHL source file and a STRAHL parameter input file.

strahl-write-files - This routine is used to write the input files which specify ge-

ometry and profile information to STRAHL. Under normal operation, this file reads
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data from the analysis tree, constructs the STRAHL grids, normalized poloidal flux,

and normalized rho-volume and maps ne and T profiles read from FiTS save files to

these grids. It then evaluates all the other needed geometric quantities from the EFIT

and averages them over the STRAHL run time. Although time evolving background

profiles may be specified, for this work only the average values where used. This data

is then written to the appropriate STRAHL input files.

B.1.6 compare strahl-output.pro

The main purpose of this procedure is to format data output from STRAHL and

compare it with measured data. After the comparison is made, a chi-squared value of

the comparison is returned. This procedure represents the synthetic diagnostic part

of this work. Some of the main functions called will be described here. These are:

format-strahLemiss - This routine takes the normalized square root of poloidal

flux grid used by STRAHL and converts it to a dense grid of major radius values

using analysis tree EFIT values for the specified STRAHL run time period. It also

interpolates the STRAHL output emissivity onto the same dense radial grid. The

output is a structure with the new radial grid, STRAHL emissivity, and simulation

time included.

find-view-data - Whenever the STRAHL iteration routines are executed for the

first time, this routine is called to store the geometry data calculated by the line inte-

gration routine. The line integration usually calculates this view information at each

execution. Since this information is identical for each iteration, this data is stored

and used at each additional execute for faster execution. This routine calls the line

integration routine for the first time and stores the needed data in an output structure.

compare strahl-data - This is the main routine for making a comparison of the

STRAHL computed line integrated brightness with the measurement values. It uses

the geometry information from the find-view-data routine to quickly evaluate the
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line integrated brightness given an input enissivity profile. This routine checks for

errors in the data and removes these points if present. If specified by the user, it will

plot the measured and computed values of the brightness for a variety of HiReX Sr

chords and the XEUS chord. Ultimately, this routine returns a number which is the

X2 value for the iteration. Here the x2 is defined as:

2 _ (Smeasured SSTRAHL) 2  (B.1)

Where Smeasured and SSTRAHL are the measured and STRAHL simulated data and o

is the estimated standard deviation of each data point.

strahl-mpfit - This is the function called by MPFIT to perform the nonlinear least-

squares minimization. It takes the intial guesses for D and V, executes STRAHL

and directs all output to strahl.txt. Then it calculates (through a call of the com-

pare-strahl-data function) and prints x2 along with the values of D and V and the

returns the value of V2 to MPFIT so that it can iterate.

B.1.7 strahLrun-tools.pro

This procedure includes a number of different, routines which are used for determin-

ing the experimental values of the transport coefficients and plotting the results. The

main functions included in this procedure are:

strahl-loop - This function is used to evaluate the transport coefficient profiles which

result from a variation of the ne and Te profiles within their calculated errors. It takes

the input structure generated from the strahl.in file as an input. Effectively, this

function reads profiles for ne and Te from a FiTS save file, calls the appropriate func-

tions to write the STRAHL input files, and executes MPFIT. Once MPFIT converges,

it stores the radial grid used, the returned x2 value, and the values of the D and V. It

repeats this process for a user specified number of ne and Te profiles. Additional flags

can be set so that the radial grid varies slightly with each iteration. This function
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then calls the function form-profiles for interpolation of the D and V profiles onto

a 101 point r/a grid. A structure with the input structure, all of the trial x2 values,

D and V values, and the final formed profiles is returned.

make-sim - This function is used to make a simulated data set for testing purposes.

If the correct flags are set in strahl.in, this function is called after STRAHL runs

once with a user specified set of D and V values. It then saves the STRAHL output as

the experimental data and writes an IDL save file which can be loaded at a later time.

add-error - This function is used to add error to a simulated dataset. This fea-

ture allows for evaluation of error levels and their effect on the determination of the

impurity transport coefficients. It is able to add periodic and statistical types of error

at this time.

form-profiles - This function is called from strahl-loop and is used to interpo-

late from the STRAHL square root of normalized poloidal flux to a 101 point r/a

grid. It then uses the x2 values returned from each iteration in strahlloop to perform

a weighted average and weighted standard deviation at each radial profile point. It

returns the final D and V profiles, their standard deviations, and the new radial grid.

plot _strahl-results - This routine is used to plot the results from a series of STRAHL

runs such as those output from strahLloop. The profiles can be plotted with a large

number of keywords which will not be covered here. This procedure is also set up to

read GYRO output data, convert it to the STRAHL coordinates, and overplot the

data. It allows for .eps output.
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Appendix C

Shot List and Analysis Times

Shots Analyzed Using STRAHL, TRANSP, or GYRO Analysis

Shot Number STRAHL times TRANSP Run ID Linear GYRO Nonlinear GYRO
time time

GYRO "Base Case" Simulation - Chapter 5
1101014006 0.965 - 1.4 sec 86735 1.1 sec 1.1 sec

Analysis of the I, Scan - Chapter 6
1101014005 0.965 - 1.4 sec 86734 1.0 sec 1.0 sec
1101014006 0.965 - 1.4 sec 86735 1.1 sec 1.1 sec
1101014007 0.965 - 1.4 sec 86736 1.09 sec 1.09 sec
1101014009 0.965 - 1.4 sec 86737 1.1 sec 1.1 sec

Analysis of the PTot Scan - Chapter 7
1101014006 0.965 - 1.4 sec 86735 1.1 sec 1.1 sec
1101014011 0.965 - 1.4 sec 87041 1.1 sec N/A
1101014012 0.965 - 1.4 sec 86774 1.1 sec N/A

FiTS save files of ne and Te profiles are contained in /home/nthoward/profiles/original fit/
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Appendix D

GYRO Software Tools

This appendix attempts to describe the software tools which were used to analyze

the output of GYRO and modify GYRO runs in this thesis work. A brief description

of these codes will be provided in this section.

D.1 GYRO Input File Generation and Modifica-

tion Tools

A series of tools was developed for this work which allows for the generation of

GYRO input files (input.profiles or INPUT-profiles) from the output of a TRANSP

run as well as the modification of existing input.profiles files. These tools can all

be found in the procedure gyro-input-tools.pro. It should be noted that the in-

put file generation provided by the tools in gyro-input-tools was not used for this

work since these files are currently insufficient for nonlinear GYRO simulation due

to missing rotation data. Instead, only generation of input files from the PPPL tool,

TRGK was used for the work presented in this thesis. However, modification of

TRGK generated input files was performed using these tools. They can be found in

/home/nthoward/gyro-input/ on the C-Mod cluster.

make-input profiles - This is the procedure used to create an input.profiles file
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from an existing TRANSP run. It calls the other functions described in this section

and writes a file named input.profiles.(TRANSP run ID). Inputs are the TRANSP

run ID, time, and the time averaging window.

read-input-profiles - This routine does a formatted read through an existing in-

put.profiles file and returns a structure containing the arrays which were read from

the input.profiles file.

readtransp-data - This routine reads through the TRANSP tree and extracts data

from an existing TRANSP run. This data is time averaged using native TRANSP

time averaging functions. All outputs are converted into the appropriate units which

are needed for generation of a GYRO input file. The output of this procedure is a

structure with all the data needed to generate a GYRO input file.

write-input-profiles - This function takes a structure of the required GYRO data

(typically generated by read-transpdata or read-input-profiles) and does a formatted

write of the data to a local file which is named input.profiles.(TRANSP run ID).

change-inputs - This function is a generalized version of David Mikkelsen's readIN-prof-splTi.pro

routine. It allows the user to specify an existing input.profiles file, a grid of r/a points,

and an array of values corresponding to the normalized gradient scale length at each

radial location. This routine is generalized for any background profile that is user

specified. The routine modifies the local gradients and reintegrates the gradient pro-

file to obtain the new profile of the quantity.

D.2 Linear Stability Tools

A large number of linear GYRO simulations were performed as part of this work.

This section describes the tools which were used to perform the linear simulations

and generate the linear stability maps which were commonly shown in this work. All
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of the routines used for linear stability evaluation are contained in the file named

make stability.pro on the LOKI cluster (/home/nthoward/gacode/gyro/sim/). A

description of the main functions included in this procedure is found below:

make-stability - This is the main procedure used to create a set of linear GYRO

simulations for the purpose of making a stability map. This routine allows the user

to specify the two scanned variables (a/LT , a/LrT, or a/La) and their values. Ad-

ditionally it takes an array of kop, values, a radius to perform the analysis (in r/a),

and a starting directory (as a string). If the "auto" keyword is specified, as it was

throughout this work, the code defaults to a kops range of [0.25, 0.75] (11 total values)

and includes ±50% scans of the scanned variables using 15 different points to span

this range. Execution of this code calls functions which read data in the out.gyro.run

file from the starting directory to determine the experimental values of the scanning

variables. The keyword "nosubmit" is used to create and write the appropriate input

files in the GYRO directories without submitting them to the LOKI queue. The

submission of these directories was managed using the submit-all.sh file which is

described below.

write-lin-input - This function is used to write the input.gyro files needed for a linear

stability run. Based on the user's selection of scanned variables set in make-stability

the files are modified so that the appropriate scaling factor is applied to the normal-

ized gradient scale lengths in each run.

read lin-runs - Upon execution of makestability an output file is generated. This

file contains the input data which was used to execute make-stability. If these direc-

tories have been executed by GYRO, readilin-runs first reads the information file to

determine the number of directories which were made and extracts the real frequency,

growth rate, the kop, value from each directory. This data is then output in a struc-

ture which can be read and replotted later as a linear stability map.
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scan-ky - This is a simple function to do a quick scan of kop. Given a starting

directory, r/a value, the range of kop 8, and the number of total runs, it creates and

executes a series of linear GYRO simulations.

read-ky-scan - Given the starting directory and the number of points used in a

simple ky scan, this function reads the real frequency, growth rate, and kop, values

from the linear scan performed. It outputs a structure with all of this information.

submit-all.sh - This shell script does a controlled submission of linear GYRO runs

to the LOKI queue. It should be used with a series of directories created by the

make-stability function. It is designed to loop through the different directories which

correspond to different values of scanned variables specified in make-stability. This

script checks the number of currently submitted linear runs every 15 seconds. If the

number of runs drops below 12 then it submits until this number is reached.

D.3 Nonlinear GYRO Tools

This section summarizes some of the numerical tools which were used to evaluate the

nonlinear GYRO simulations described in this work. Over the course of this work a

number of tools were developed, many of which became obsolete. This section will

only focus on the tools which were explicitly used. It should be noted that the native

GYRO tool, VUGYRO, was used for routine evaluation of nonlinear GYRO runs.

However the routines here were used to extract the transport coefficients and make

quick comparison of the experimental heat fluxes with the simulated values. These

tools are located in ~/nthoward/GYRO/gyro/sim/Postgyro/ at NERSC.

gyro-calcs.pro - All of the evaluation of the nonlinear GYRO simulation was per-

formed using this procedure. The various keywords allow the user to select the partic-

ular function of interest. This code has several required inputs. Since it was originally

written to compare the fluxes from two separate nonlinear runs and make a guess for
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the required gradient modification to obtain the experimental values, it still requires

two completed GYRO directories as inputs. However, for the purposes of this work,

the second directory is effectively ignored. The user must also specify a grid of values

which span the GYRO simulation domain. Once again, this is for historical purposes

and is mostly irrelevant for the results presented in this thesis. If the keyword "plot"

is specified, the first directory is read and the experimental electron and ion heat

fluxes are plotted and compared with the corresponding simulation heat fluxes in

units of MW/m 2 . If the keyword "compare" is set, only the total heat fluxes are com-

pared and plotted. Finally, if the keyword "pflux" is set, the impurity particle fluxes

are read from the output data and then impurity transport coefficients are extracted.

When the "save" keyword is set an output structure is built by the code including the

impurity transport coefficients and the ion and electron heat fluxes. This structure

is typically exported to local machines for additional analysis.
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