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ABSTRACT

Patient positioning is crucial to accurate dose delivery during radiation therapy to ensure
the proper localization of dose to the target tumor volume. In patient positioning for
stereotactic radiation therapy treatment, classical image registration methods are
computationally costly and imprecise. We developed an automatic, fast, and robust 2D-3D
registration method to improve accuracy and speed of identifying 6 degrees-of-freedom
(DoF) transformations during patient positioning for stereotactic radiotherapy by creating
a model of characteristic shape distributions to determine the linear relationship between
two real-time orthogonal 2D projection images and the 3D volume image. We defined a
preprocessed sparse base set of shape distributions that characterize 2D digitally
reconstructed radiograph (DRR) images from a range of independent transformations of
the volume. The algorithm calculates the 6-DoF transformation of the patient based upon
two orthogonal real-time 2D images by correlating the images against the base set The
algorithm has positioning accuracy to at least 1 pixel, equivalent to 0.5098 mm accuracy
given this image resolution. The shape distribution of each 2D image is created in MATLAB
in an average of 0.017 s. The online algorithm allows for rapid and accurate position
matching of the images, providing the transformation needed to align the patient on
average in 0.5276 s. The shape distribution algorithm affords speed, robustness, and
accuracy of patient positioning during stereotactic radiotherapy treatment for small-order
6-DoF transformations as compared with existing techniques for the quantification of
patient setup where both linear and rotational deviations occur. This algorithm also
indicates the potential for rapid, high precision patient positioning from the interpolation
and extrapolation of the linear relationships based upon shape distributions.
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1. Introduction

Cancer is a classification of diseases due to the uncontrolled growth of cells. The

National Cancer Institute estimates that in the United States in 2012 alone, there will be

1,638,910 new cases of, and 577,190 deaths due to cancer [1].a Cancer is a leading cause of

death, accounting for about 13% of all deaths worldwide in 2008 [1]. While the overall rate

of new cancer cases has significantly declined [2], deaths from cancer worldwide are

projected to continue rising, with an estimated 13.1 million deaths in 2030 [3]. Cancer

treatment requires a careful selection of one or more interventions, such as surgery,

radiation therapy, and chemotherapy [4].

One of the greatest advances in research and technology of cancer treatments has

been the utilization of ionizing radiation. Ionizing radiation damages the DNA of tumor

cells, which kills the cells or limits their proliferation. The first step in using ionizing

radiation for cancer treatment is for the clinical team to plan the radiation treatment

specific for each patient for the dose to conform to the tumor. One important element in

effectively delivering the ionizing radiation to the cancer patient is the accurate alignment

of the patient in the treatment room with respect to the conformal radiation beam. A major

source of concern in radiation therapy is the improper knowledge of the patient's anatomy

and suboptimal patient positioning during the course of therapy, which can drastically

compromise the clinical results. Reduction of these uncertainty margins can be achieved

with accurate patient positioning before treatment.
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Among the weakest links in the treatment planning process is the problem of patient

positioning and immobilization [5]. Current image registration processes are lengthy and

have significant margins of error. In fact, this problem of alignment remains the area of

greatest variance in actual treatment [5]. Medical imaging by computed tomography and

digitally reconstructed radiographs provides an anatomical representation of the patient

and can be interpreted to align the patient in the treatment rooms. This thesis addresses

the need for a faster and more accurate patient positioning algorithm that would be easy to

deploy, reduces radiation imparted to the patient, improves radiation dose delivery with

speed and precision, and facilitates more efficient use of radiation treatment rooms.

1.1 Radiation Therapy

Radiation therapy, or radiotherapy, is the use of ionizing radiation to treat tumors

and kill cancer cells. Radiation therapy can be given with a curative intent to cure cancer by

eliminating the tumor or preventing cancer recurrence, or with a palliative intent to relieve

symptoms and reduce cancer-induced suffering [6]. As a curative intent, radiation therapy

is used for approximately half of all cancer cases and often in conjunction with

chemotherapy and surgery [7,8]. Advances in radiation therapy have led to increased

survival and improved quality of life for patients with the improvement of radiation dose

conforming to the tumor and minimizing dose delivered to healthy tissue [9]. With

advances in techniques to measure and deliver dose effects, the effectiveness of radiation

therapy on tumor treatment has been improving.

a not including non-melanoma skin cancers

13



1.1.1 History of Radiation Therapy

Radiation therapy is a relatively new idea that was born just over 100 years ago

with the discovery of radioactive isotopes. This discovery prompted scientists to

investigate the effects of radiation on the body with the particular interest to use it

advantageously for health benefits or cure.

With the discovery of x-rays by Wilhelm Conrad Roentgen in 1895, and the

discovery of radium by Marie Curie in 1898, scientists saw the effects of x-rays and radium

on hair loss and skin damage [10]. Soon after, physicians found x-rays useful for diagnosing

broken bones and locating foreign objects, like bullets, in the body. The therapeutic

benefits of radium were first commercially exploited in 1913 for treating breast cancer,

head cancer, cervical cancer, and lymph nodes. However, radiation therapy treatments for

ailments were largely reserved for only inoperable, unresectable, or recurrent tumors

because of inexperience in radiation treatment planning.

In the mid-1900s, physicists and biologists conducted extensive research on how

radiation works, how to measure radiation dose, and how to control radiation. Increase in

funding in these studies on radiation was supported by the Americans, as the American

media bloomed with articles and reports calling for great need for action against cancer,

and soon the National Cancer Institute was born [10]. After World War II, cyclotrons and

nuclear reactors were available to accelerate particles to very high energies and produce

synthetic radioactive isotopes. In 1953, Henry Kaplan created the medical linear

accelerator x-ray machine. These three new devices were key in improving cancer cure

rates and the applicability of radiation therapy expanded to also include Hodgkin's

lymphomas and testicular cancers.
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Radiation treatment therapy became a more viable treatment option for cancers in

the 1970s with the introduction of computers to assist in treatment planning. This

development granted radiologists, medical physicists, and doctors the technology to image

the interior of the body without incisions: the CAT, MRI, and PET scans were used to target

tumors non-invasively. [10]

1.1.2 Radiation Therapy Modalities

Radiation therapy can be delivered either internally by brachytherapyb, or

externally by various types of direct and indirect ionizing radiation beams. The modality

used to treat the patient depends on the specific application and needs of the patient. The

type of radiation therapy prescribed by a radiation oncologist depends on many factors

including: the type of cancer, the size of the cancer, the cancer's location in the body, how

close the cancer is to normal tissues that are sensitive to radiation, how far into the body

the radiation needs to travel, the patient's general health and medical history, and whether

the patient will have other types of cancer treatment.

1.1.3 Physics and Biological Effects of Radiation Therapy

Radiation therapy works because the radiation from the incoming beam is strong

enough to ionize, or eject an orbital electron from an atom or molecule. When atoms or

molecules in DNA are ionized, the DNA is damaged either directly by the incoming

radiation, or indirectly by the creation of free radicals, as shown below in Fig. 1. When the

irradiated cell cannot repair the DNA damage, the cell stops dividing or dies [6]. Radiation

therapy is the physical use of ionizing radiation to induce tumor cell death, or terminate the

ba form of radiation therapy where a radiation source is placed inside or next to the area requiring treatment
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ability for tumor cells to proliferate, which is a method proven to be effective for

controlling the growth of malignant cells.

*IRECT
ACTON

Figure 1-1: Direct and indirect action of ionizing radiation. In direct action, a
secondary electron resulting from absorption of a photon interacts with the DNA. In
indirect action, the secondary electron interacts with a molecule to create a free
radical, which in turn damages the DNA [11].

Malignant cells have unregulated cell growth. In cancer, cells grow and divide

uncontrollably, and then form malignant tumors. Depending upon the location of the

tumor, cancer patients exhibit different signs and symptoms.

1.2 Treatment Planning

Once a patient is diagnosed with cancer, a team comprised of a radiation oncologist,

radiation therapist, medical physicist, and medical dosimetrist develops a patient's

treatment plan through a process called treatment planning. The first step in treatment

planning is to create a virtual patient, a detailed set of images, e.g. CT or MRI, that show the

location of the patient's tumor and the normal tissue and organ areas around it. It is

16



important to provide the context between the tumor and normal areas in order to optimize

the dose to the tumor, while decreasing dose distributed to normal regions in order to

provide a successful recovery. Medical imaging is important because it provides the

medical team with an accurate visualization of the interior contents of the body such that

the team can plan the geometric and radiological aspects of therapy from the medical

images, radiation simulations, and optimization algorithms.

1.3 Medical Imaging

Medical imaging, a non-invasive tool that produces internal images of the body, is

fundamental to conformal radiation therapy. The imaging techniques used primarily for

radiation therapy are typically x-ray computed tomography (CT) scans, magnetic

resonance imaging (MRI), nuclear medicine imaging (e.g., PET), and ultrasound scans [12].

Each imaging modality provides different data about the patient; thus, combining data from

several modalities provides a more complete description of the patient's physical and

geometric qualities. X-ray CT scans are the primary modality for image-based treatment

planning, providing a clear geometric and physical model of the patient. X-ray CT has the

major disadvantage since the CT data has limited contrast in showing soft tissue in the

patient MRI provides excellent soft tissue contrast, allowing for superior delineation of

normal tissues from tumor volumes. Medical imaging provides information about the

geometric and physical qualities of the patient.

1.3.1 Image-Guided Radiation Therapy

Improper knowledge of the patient's anatomy and position during treatment can

compromise the effectiveness of the individualized dose coverage plan by imparting
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insufficient dose to the target volume and/or overdose to normal tissues. The uncertainty

can be caused by patient set-up or internal motion. Image-guided radiation therapy (IGRT)

aims to reduce the unknown margins without compromising the clinical outcome of the

radiation therapy treatment [13]. IGRT is used as a tool to detect and correct for patient

set-up or motion errors, and organ movement and changes in the patient's anatomy.

IGRT is performed with ultrasound, 2D x-ray devices, and computed tomography

surface imaging. It can allow for instant correction for positioning deviations and improve

the precision of daily radiotherapy fractions [14]. Patient positioning, the process of

aligning the patient in the treatment room with respect to the external radiation beam

occurs in the operation room before radiation treatment. This step is crucial to delivering

the conformal radiation dose to the tumor volume. Patient positioning occurs in the

treatment room just before the patient is to receive his or her daily radiation therapy

treatment, as shown below in Fig. 1-2.

Figure 1-2: Cancer patient lying on a couch with a member of the medical time in the
radiation treatment room [18].

18



The current positioning techniques do not match the accuracy needed to perform

these treatments adequately. Currently, patient positioning is a process that takes a

significant amount of time and still leaves significant positioning error on the scale of

centimeters, a significant margin when treated brain tumors are on the scale of millimeters.

IGRT makes use of many several imaging techniques, using modalities ranging from planar

imaging to fluoroscopy to cone-beam CT, and following procedures as simple as using a

single set-up image or as complex as intra-fraction tumor tracking [19].

IGRT addresses patient set-up error, which can be systematic or random, which are

uncertainties in patient position and beam alignment, and variation in the size, shape, and

position of the tumor volume. Both systematic and random errors can arise between the

pre-treatment position and planning images. The systematic error can originate at different

phases during the treatment planning process, including during the data transfer from CT

to the plan, or through poor registration of different imaging datasets which then

propagates to the final patient positioning. The random error receives contributions from

day-to-day variability, such as hydration level in the patient [13].

The current image registration modalities used for patient positioning are based on

features extracted from the datasets or the intensity of the data in the image [12]. The

algorithms used to interpret the features or intensity of the data are inefficient time-wise,

are computationally costly, require manual intervention, and the conservative margin is

usually taken at 2 cm [20].
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1.4 Thesis Problem Statement

A major source of concern in radiation therapy is due to improper knowledge of the

patient's anatomy and suboptimal positioning techniques, with particular interest in the

location of the tumor target volume, during the course of radiation therapy. This thesis

addresses the need for improving the speed and accuracy of patient positioning in medical

image registration during stereotactic radiation therapy.c The goal of imaging is to provide

a more accurate conformation of radiation dose delivery to the tumor target volume while

sparing the surrounding healthy tissues. The algorithm will calculate the 6-degrees-of-

freedom (DoF) transformation necessary to align the patient based on two real-time

orthogonal 3D images and two projection images generated from digitally reconstructed

radiographs (DRRs) generated from a 3D volume image.

2D images contain significantly less information that is present in the 3D modalities.

In order to register the 2D images to the 3D volume, image fusion and registration is

conducted by medical experts with algorithms that intake a significant amount of user

input. Registration is a challenging task and can suffer from erroneous human input,

therefore an automatic registration method is developed to be easier to use and more

reliable. The goals of this thesis are:

1. To improve the accuracy of radiation dose delivery,

2. To decrease the number of preliminary scans from imaging necessary for

patient positioning which thereby decreases the radiation dose delivered to

the patient,

c single fraction radiation therapy procedure, often for treating intercranial regions
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3. To determine the linear relationship between neighboring 2D projection

images when multiple 6-DoF transformations are applied to a 3D volume

image,

4. To develop an automatic optimization algorithm to aid in positioning of

patients during radiotherapy treatments, and

5. To efficiently provide the 6-DoF transformation position shift of the patient

in relation to the radiation beam.

This thesis will address four important issues that need to be addressed before

image registration methods can be considered clinically acceptable:

1) first and foremost is the registration accuracy required for a specific clinical

application,

2) the robustness of the alignment in terms of sensitivity of the input data,

3) the speed with which a method can be performed, and

4) the clinical feasibility in terms of image acquisition, user interaction, and

interventional protocol requirements and/or acceptance.

The proposed thesis is designed to meet these four fundamental requirements,

combining the advantages of the methods proposed in the past and proposing novel

solutions for overcoming their drawbacks.

To limit the scope of this thesis, the assessment will focus on the use of input images

of the brain: two real-time orthogonal 2D projection images from a phantom and two DRRs

generated from a 3D volume image. The scope is limited to brain tumors because of the
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prevalent use of stereotactic radiation therapy for brain tumors, and focused on 2D-3D

registration because of its high applicability for patient positioning.

Radiation therapy has the potential to over-irradiate healthy tissue and under-

irradiate tumor tissue; improving the accuracy of radiation delivery can increase and will

increase the efficacy of radiation therapy and decrease the risk of adverse health effects.

Reducing the duration of patient positioning will decrease error probability due to patient

motion, improve the comfort of the patient during radiation therapy, and increase the

treatment capacity of the radiation therapy facility with faster therapy treatment sessions.

The target audience for this thesis is the five main stakeholders in radiation therapy

treatment: cancer patients, medical physicists, doctors, radiologists, and medical

researchers. Medical experts who advocate minimally invasive surgeries drive the growing

interest in radiation therapy. Advancing imaging registration techniques for patient

positioning will guide accurate and efficient radiation therapy treatments.

1.5 Thesis Outline

The following chapter, Chapter 2, provides a thorough background of and technical

issues behind image registration for radiation therapy, with a particular emphasis on

current methodologies of image registration. Chapter 3 covers the methodology of the

patient-positioning algorithm in detail. In Chapter 4, we present the results of the patient-

positioning algorithm: the accuracy and speed as based on cancer patient data, and a

sensitivity analysis of the algorithm. Chapter 5 discusses the results. We conclude in

Chapter 6 by summarizing the results, describing our contributions to image registration,

identifying the limitations of the algorithm, and proposing areas for new research.
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2. Background

This chapter provides the background of image registration: a general introduction to

the main concepts, current developments in the field of2D-3D rigid-body image registration

applied specifically to radiation therapy, and an outline of our registration approach. A

summary of current image modalities and image registration techniques that are used most

frequently is presented. Then, technical challenges behind image registration are identified.

Lastly, a new approach to 2D-3D image registration is introduced.

2.1 Patient Positioning

Precise alignment of the patient relative to the radiation beam is important in

simulation and daily treatments. The accuracy and reproducibility of positioning are

strongly dependent on the anatomic region involved and on the positioning aids used to

place the patient in exactly the same position as in treatment planning [14]. Positioning is

assisted with patient immobilization casts (e.g., body molds and head masks), or temporary

skin marks, implanted metal pellets, or tattoos to realign the patient, but variations as

much as 10 mm may occur between the visualized and the actual position [14]. These

patient positioning tools are used to assist in developing images of the patient.

Patient positioning developed from 2D-3D image registration, the alignment of a 2D

projection image to a 3D volume set, is a type of image-guided radiation treatment (IGRT).

The main objective of IGRT is to efficiently provide accurate information about patient

anatomy to assist in treatment planning for high precision, conformal dose to the target

tumor volume, and sparing of adjacent neighboring tissues.
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2.2 Medical Image Modalities

Medical imaging provides detail about the anatomy of interest. Imaging data can be

produced from imaging modalities such as x-ray computed tomography, magnetic

resonance imaging, positron emission tomography, single photon emission computed

tomography, and ultrasound imaging. There is no one modality that can fully provide all

geometric, physical, and functional information about the patient; rather, the combination

of the unique imaging strength of each modality can provide the necessary data of anatomy,

tissue contrast, organ contrast, volumetric information, functional qualities to the medical

team, depending on the particular need [12].

2.2.1 Computed Tomography Scans

Computed tomography (CT) imaging data is generated from x-rays. The CT scan is

produced when x-ray tubes and detectors rotate around the patient at predetermined

angles. The CT scans measure the physical parameters of x-ray absorption, density and

average atomic number, and contrast distribution to show the anatomy, mineral content,

and movement of contrast material, composed of an element of high atomic number, in

patients [15].

The attenuation of an x-ray traversing a thin slice of homogeneous material is

described by Eq. 2.1:

I = Io exp(d) (2.1)

where I, is the input intensity, p the coefficient of linear attenuation of the material,

and d the traversal distance of the x-ray [16].
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To extrapolate to the human body, which consists of a numerous combination of

different structures with different attenuation coefficients, Eq. 2.2 represents the human

body in the same form as shown above in Eq. 2.1:

I = 10 exp(-pid;)
(2.2)

where Io is the input intensity, pi the coefficient of linear attenuation of structure i,

and di the traversal length of structure I [13].

The pixel values in the CT scan correspond to the mean attenuation of the imaged

tissue on the Hounsfield scale. Hounsfield values, H, are defined in Eq. 2.3 [16]:

H = - 1000
(2.3)

The Hounsfield values H typically range [-1000, 3000] to represent the densities p

[air, metal] in the human body. CT scans are the primary dataset used to develop the

geometric and physical model of the patient in radiotherapy treatment planning when

determining the dose distribution. The geometric models derived from the CT images are

used to define and delineate anatomic structures, target volumes and to aid in radiation

beam placement and shaping. Distortions in the anatomical geometry of the patient are not

of major concern to CT scans. The major disadvantage of CT scans is the limited soft tissue

contrast, which can hinder accurate normal from atypical tissue discrimination. [12]

Multiple CT scans taken of the same object at different locations can be stacked to

generate a 3D volume image such as the reference volume image used in this thesis.
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2.2.2 Digitally Reconstructed Radiographs

Digitally reconstructed radiographs (DRRs) simulate x-ray imaging and are

reconstructed from medical tomography data sets of a patient either from a visual

comparison of the planning images versus those of the treatment stage, or from automated

registration algorithms. In our case, DRRs are generated from a series of 2D x-ray CT

images and are derived from the law of attenuation absorption [17]. The resulting 2D

images of DRRs simulate normal x-ray images but are only approximations of attenuation

[16].

DRRs can be computed with different algorithms from CT data. The most

straightforward and frequently used method is a ray-casting algorithm, which does not

consider lighting circumstances and reflections but rather finds the intersections of a ray

with all objects in the scene, as shown below in Fig. 2-1.

pi

Figure 2-1: DRR generation. A single ray originating at Po in the x-ray source enters
the volume at P1 and exits at P2 to create the pixel P3 in the image [16].
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Additional algorithms such as shear warp factorization and hardware texture

mapping for DRR generation exist. The various DRR algorithms have different approaches

to predicting the approximations and may feature the option to conduct interpolations or

estimate non-linear attenuation. The DRR images used in this thesis are generated from

raycasting.

2.2.3 Magnetic Resonance Imaging

Magnetic resonance images are produced from MRI machines that use a powerful

magnetic field to align the magnetization of particular atomic nuclei in the body. The

radiofrequency fields are systematically changing the alignment of the magnetization,

which causes the nuclei to produce a detectable precessing magnetic field. MRI is used to

provide excellent contrast of soft tissue, which provides clear discrimination between

normal tissues and tumors. The MRI measures the concentration of net spin nuclei, such as

1H, and the relaxation parameters as a form of frequency shift to show the anatomy of

tissues, free water content, and flow concentration of some molecular species [15]. Pulse

sequences allow enhanced image contrast or the suppression of specific tissues. An

additional advantage of MRI is its ability to produce images along sagittal and coronal

planes, offering better visualization of certain tissues. The drawbacks include the greater

susceptibility to spatial distortions, intensity artifacts, and image intensity values that do

not correspond to electron or physical density [21, 22].

2.2.4 Nuclear Medicine Imaging

Two instances of emission computed-tomography based on nuclear medicine

imaging are positron emission tomography (PET) and single-photon emission computed
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tomography (SPECT) which image the transport and concentration of biologically active

tracers. An example of a radioactive tracer for PET is 18-F, and for SPECT is 99m-Tc. The

resulting image is best at providing information about physiology, especially about tumor

metabolism, receptor site concentration and flow, and partial-volume tissue function [15].

For patient monitoring, nuclear medicine imaging has proven useful for assessing the

response of the patient to radiotherapy. The use of PET is limited because of the high cost

of cyclotrons needed to produce the radioactive tracers. The patient ingests or is implanted

with the source of ionizing radiation that specifically target the organ of interest [23].

2.2.5 Ultrasound

Ultrasound imaging uses cyclic sound pressure at a high frequency to measure

acoustic impedance mismatch and sound velocity and attenuation to produce images [15].

Ultrasound images tissue structural characteristics and blood flow well, but does not

provide clarity of internal geometric structures. The major advantages of ultrasound are

that images are produced in real-time, the required apparatus is relatively small, and

imaging does not involve ionizing radiation. A disadvantage of ultrasound is that not all

regions of the body, such as the brain and lung, can be imaged effectively due to signal loss

at large tissue density changes such as at tissue-bone and tissue-air interfaces [12].

2.2.6 Summary of Imaging Modalities

Medical imaging can be conducted with the following imaging modalities: computed

tomography scans, digitally reconstructed radiographs, magnetic resonance imaging,

nuclear medicine imaging, and ultrasound. These images are used in the image registration

process to assist during patient positioning.
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2.3 Image Registration Process

Image registration is the process of establishing point-by-point correspondence

between two (or more) same or similar images of a scene taken at different times, from

different viewpoints, and/or by different sensors [24]. The goal of image registration is to

geometrically align the two images, which differ due to the aforementioned imaging

conditions. The final information from image registration is crucial in patient positioning in

which the transformation function mapping the two images together is sought.

The input image undergoes a transformation and maps to a homologous dataset

representing the base image, the primary dataset as shown in Fig. 2-2.

T:U=* V

Figure 2-2: Mapping Image U to Image V by transformation T.

The essential elements of image registration are: 1) reference/base image(s) V, 2)

input/target image(s) U, and 3) transformation function T that maps the reference image to

the input image.

The general approach of 2D-3D image registration methods to assist with patient

positioning is [25]:
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1. Preprocess the two datasets (the reference image and the input image) to have

homologous features

2. Select homologous features in the two datasets

3. Conduct feature correspondence and enumerate with a metric that measures the

degree of similarity

4. Determine transformation function between the reference image and the input

image

5. Repeat steps 3 and 4 by resampling at new positions, and

6. Optimize by maximizing the similarity metric.

The common initialization step is to preprocess the datasets so they can be

interpreted in the same domain (e.g., resolution, size), identify the metric that measures the

degree of similarity in the images, enumerate the position, and then resample until the

similarity between the images is maximized.

2.4 Transformations

The transformation functions examined in this thesis are described as rigid-body,

linear, affine, and with six degrees-of-freedom.

With target volume encapsulated in rigid anatomy, such as in the skull or pelvis, the

motion can be appropriately represented as a rigid body transformation. In rigid body

transformation, the anatomy can only undergo motion along three independent axes,

allowing for three rotations and three translations. The set of three rotations (6x, 0y, Oz)

and three translations (tx, ty, tz) is referred to as 6 degrees-of-freedom (DoF), as shown on

the phantom head in Fig. 2-3.
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Figure 2-3: Six degrees-of-freedom composed of three rotations (6x,, Oz) and
three translations (tx, ty, tz) on a skull.d

Non-rigid, or elastic, systems that are capable of being locally warped, and systems

that suffer from image distortions or poorly calibrated imaging devices require additional

DoF to identify the spatially variant transformation involved. The additional DoF required

to register this data properly include anisotropic scaling. This algorithm will assume a rigid

body system of 6 DoF.

Rigid body transformations can be represented as linear transformations of

translations and rotations. The transformation is an affine map where straight lines are

preserved by definition. The conversion from one frame of reference to another can be

represented as a transformation vector undergoing a change in perspective. Once the two

frames of references are known, the transformation matrix can be easily determined. The

linear transformation T mapping x to x1 is shown below in Eq. 2.4.

x = Tx (2.4)
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The transformations T can be represented as individual matrix transformations that

represent translations and rotations. The three translations of perturbations (tx, ty, tz) can

be calculated together as T(tx, ty, tz) in Eq. 2.5. The rotations are represented separately as

rotations about their respective axes: T(6x), T(6y), and T(62), as calculated in Eq. 2.6, 2.7, and

2.8.

1 0 0 0~

T(tx, ty,0 1 0 0
T~t~t~t)= 0 0 1 0

UT ty tz 1. (2.5)

1 0 0 0

0 cos6, sin9, 01
0 -sin0, cos0, 0

0 0 1. (2.6)

cosOY 0 -sin8, 01[0 1 0 0
sm , 0 cose , 0

0 0 0 1] (2.7)

cos90 sin O 0 01
I -sin0, cos0 0 0

T(&) = 0 0 1 0
0 0 0 1. (2.8)

The transformations in this thesis are taken to be affine. Affine transformations are

a subset of projective transformations. In a projective transformation, quadrilaterals map

to quadrilaterals, straight lines remain straight, and parallel lines map to parallel lines.
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Affine and rigid-body transformations can be conveniently represented using

homogeneous matrices. Affine transformations allow for a fast calculation of linear

transformations.

Linear transformations must satisfy two requirements: i) preservation of scalar

multiplication, and ii) preservation of addition. The displacements of the input image from

the base image will be very small, so linear approximations can be made.

Thus, the transformation applicable to this thesis can be represented in a matrix

form of linear transformations as shown below in Eq. 2.9:

B = T(tx, ty, tz, Ox, By, 6z)A (2.9)

where the input image B maps to reference image A by undergoing transformation

T.

2.5 Current Image Registration Modalities

The current image registration modalities are based on features extracted from the

datasets or the native grayscale data. The features are typically geometric structures such

as homologous points, lines, surfaces, or a combination that are either manually placed

fiducials and stereotactic frames, or selected from anatomical features or extracted

surfaces [12].

Applications of image registration are change detection, image fusion, target

recognition, target localization, depth perception, image mosaics, and motion estimation.

The image registration modalities described below account for rigid anatomy and are

commonly geared for the six degrees-of-freedom: three rotations and three translations.

The methods described below are referred to as 2D-3D dataset registration methods,
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which correlate a 2D reference position with a virtual 3D dataset. In medical imaging,

image data from the same patient is taken at different points in time or by different

detectors. The challenge in medical image registration is that the data from different points

in time may be slightly modified due to deformation of the subject, such as breathing or

anatomical changes.

Current image registration methods assume that two sets of features, e.g. fiducials

or tattoos, in the reference and input images can be well represented. The methods find the

pairwise correspondence between them using their spatial relations or various descriptors

of features [24].

2.5.1 Feature-based Registration

In feature-based registration, anatomical features of the base and input images are

an object used in the field of view which appears in the image produced, e.g. implanted

metal pellets skull are treated as landmarks and used to compute and minimize the

mismatch between the datasets. Various automated techniques or manual selection is used

to extract the anatomical features from the image. While early algorithms were based on

expert selection of points, newer algorithms are automated in finding corresponding

features between the images [24]. Then, the degree of mismatch between the two datasets

corresponding to the features is computed as the sum or average of the distances between

the two images. The disadvantage of feature-based registration is hefty pre-processing of

the data to precisely select the features [12]. Additionally, problems caused by incorrect

feature detection or by image degradations can arise since physically corresponding

features can appear dissimilar due to the different imaging conditions and/or due to the

different spectral sensitivity of the sensors, leading to degenerate solutions [24].
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2.5.2 Intensity-Based Registration

Another type of dataset registration is intensity-based registration. In intensity-

based registration, intensity patterns in the entire grayscale data are extracted and

compared via correlation metrics. A method that is being widely developed for intensity-

based registration is a mutual information (MI) based metric, a measure of statistical

dependency between two data sets [24]. This metric measures the level of redundant

information in the input and target datasets as shown below in Eq. 2.10:

MI(X,Y) = H(Y)-H(Y|X) = H(X) + H(Y)-H(X, Y) (2.10)

where H(X) = -Ex(7og(P(X))) represents entropy of random variable and P(x) is the

probability distribution of X. The pixel values are scalar values representing the intensity.

The joint probability distribution H collects a histogram of the grayscale pairs from

the datasets at each instance of coordinate transformation estimations. A reduction of MI

means a smaller probability of predicting one homologous pixel value from one dataset to

the other. This registration method is good at handling images of different image

modalities, such as homologous CT and MRI datasets. The disadvantage of intensity-based

registration is that is computationally intensive. Additional methods are implemented, such

as a coarse-to-fine resolution strategy and spline pyramids, to speed up the MI process.

Another disadvantage is false point matching due to poor image quality and by complex

nature of the image degradations, leading to poor robustness and reliability [12, 24].

2.6 Optimization of Image Registration

Once a metric to measure the similarity or dissimilarity of image registration is

selected, an objective function measuring the metric is created and then optimized to find
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the best alignment of the two image datasets. Typically, extrema define the most optimal

solution is created by the similarity metric. Thus, the alignment of the best match between

the images is when the objective function is maximized or minimized.

Two common techniques to maximize the objective function are gradient functions

and non-gradient functions. Gradient functions find the rate of change to indicate the

direction towards the extremum. Non-gradient functions execute a method of local search

by evaluating the objective function at select locations.

Previous and current approaches often rely on a good initial estimate of the pose

parameters, the position and orientation, before the optimization algorithm refines the

parameters until extrema are found. An example optimization algorithm is the iterative

closest point, which iteratively calculates the distance between two shapes with for

example the least squares method until minima are found. This procedure often leads to

registration errors due to poor initial pose parameters and is prone to local minima traps

[26]. Additionally this optimization method requires the greatest time in registration and

has a problems caused by its iterative nature and objective function.

2.7 Challenges of Current Image Registration Method

The objective of image registration is to be able to align the input image with the

base image by applying a spatial transformation. The goal of 2D-3D image registration is to

align the input image to the base image such that the alignment of the patient with respect

to the radiation treatment beam in the treatment room can be calculated. In medical

imaging patient positioning, it is necessary to know only the relative transformation and

position between the beam and the patient.
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Image registration is comprised of two coupled problems: the correspondence

problem and the pose problem [27]. Solving the correspondence problem consists of

finding matching image features and model features. If the camera pose is known, one can

relatively easily determine the matching features. Looking at the model from the point of

view defined by the camera pose, one defines the model features that are observed to be

close to the features of the new image. Solving the pose problem consists of finding the

rotation and translation of the camera with respect to the model. Given matching image

and model features, one can easily determine the pose that best aligns those matches.

The classic approach to solving these two coupled problems has been a hypothesize-

and-test approach, in which (a) guesses are made about matches between a few image

features and a few model features, (b) the camera pose is computed using these matches,

and (c) the remaining model features are projected on the image and a measure of the

quality of their superposition with image features is computed. This process is repeated for

all reasonable groups of matching guesses, and the correct camera pose and superposition

are chosen from among those that provide the highest measure of superposition. However,

this type of approach is generally expensive for complex models and images [28].

In medical imaging, image datasets of the patient are taken at different points in

time, by different detectors, or by different imaging modalities. One challenge in medical

image registration is that the data from different points in time may be slightly modified

due to deformation of the subject, such as breathing or changes in anatomical structure

such as weight loss. The variance in different imaging modalities by their innate

characteristics spawns the challenges mentioned previously. Another challenge is the

initialization of the detectors: the same detector day-to-day, or different detectors can
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cause small but significant discrepancies in dataset values.e Image noise is another

challenge, and can be a result of various reasons, from backscatter of implanted metal

pellets to patient motion, to poor initialization of the detector.

The varying quality of images that display a representation of the internal organs,

tissues, and function of the patient present a level of uncertainty, which is supplemented by

more uncertainty from the image registration process. The spatial and temporal differences

between the images may be affected by any single or combination of the issues identified

above.

2.8 Outline of the Registration Approach

Registration algorithms can be decomposed into three components: i) the similarity

measure of how well two images match, ii) the transformation model, and iii) the

optimization process that varies the parameters of the transformation model to maximize

the matching criterion [29]. Current classical approaches to image processing allow for

improvement in all three attributes in both time and accuracy.

In order to provide accurate 6 DoF patient positioning, our approach to develop an

efficient 2D-3D image registration process will begin by understanding the challenges and

scope of the task at hand. 2D-3D image registration is the process of aligning a pair of

orthogonal 2D images: Uc is the coronal view and Us, is the sagittal view of the patient with

the 3D volume image V, as shown below in Fig. 2-4, which is the specific case of mapping

shown previously in Fig. 2-2.

e Detectors are subject to change based on the operating temperature, pressure, humidity, etc.
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U U

Figure 2-4: 2D-3D Image Registration of input images U to base volume image V
under transformation T.

The overall goal is to derive the coordinate transformation that maps the input

image dataset points to the base image dataset. The two image datasets have different

scenes: the patient's anatomy may have changed slightly, the image datasets at hand are

taken at different times by the detector, and the gantry-to-patient positioning are

initialized differently by the hardware.

The focus of my approach is to conduct 2D-3D image registration given the three

essential elements: a base dataset that is the volume image, the input dataset that is an

orthogonal pair of 2D images, and transformation T that is linear by definition and has six

degrees-of-freedom (tx, ty, tz, Ox, y, Oz). The goal is to return a 6-DoF geometric

transformation bridging the base dataset pose and the input dataset pose that best

specifies the pose of the images for the application of stereotactic radiotherapy. The image

registration will be geared toward stereotactic radiotherapy. In this case where the tumor

volume is in the head, the bones act as a reliable frame of reference to make stereotactic

calculations possible. The reason a pair of 2D images and DRR projections are used in this

algorithm is because they are the common datasets collected from radiotherapy treatment
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planning since they together provide information about the geometric anatomy and tissue

delineation in the patient.

The selection of a similarity metric should contain elements of the dataset that

uniquely represent the relative coordinates of and effectively characterize the image. The

similarity metric was expected to meet execution speed requirements, show robust

performance, and be accurate. Current image registration modalities have many

limitations, as described above. Our choice of the metric depended on the examined image

modalities, excluding possible distortions in the images to be registered and

implementation issues.

We wanted to eliminate manual point selection by a user from our procedure, as it

introduces one of the largest sources of error in image registration [14, 24]. Execution

played a large role in our decision to select this similarity measure. We elected to use all of

the points in the image, and then select a subset of the image to investigate; it is possible to

reliably characterize the image without using all available intensity information provided.

A stochastic sampling approach was considered, but because of the small size of the images,

it was possible to sample all data points in a timely manner. The generality of the shape

distribution method allows it to be used for all intensity-based image modalities. Thus, the

shape distribution method, which is described briefly below and in detail in the following

chapter, was developed to meet these requirements.

2.9 Shape Distribution

The shape distribution method of calculating shapes is possible without using pose

registration or feature correspondence, two costly processes in classical image registration

methods. The idea is to represent the signature of an object as a shape distribution sampled

40



from a shape function measuring global geometric properties of the object [30]. The

attributes, such as the distance between two selected points, define a variable space by

generating distribution histograms of the attribute [30].

The shape function is used as an alternative to the classic approach of intensity-,

point-, or surface-based algorithms because it is an affine-invariant, robust method. The

need for landmark features has been eliminated because landmarks cannot be selected

accurately in x-ray images and are a major factor in registration errors. The shape

distribution method is insensitive to noise, topology, and is quick and efficient This method

allows for an arbitrary 2D or 3D model to be transformed into a parameterized function

that is easily analyzed. The shape distribution method does not label the image from a prior

knowledge set, but is relatively positioned between input data points.

The shape function is the operation that creates geometric histograms called shape

distributions that are unique to each image, creating a representative signature as sampled

over the given domain. The shape distribution concept was developed by Robert Osada et

aL for representing 3D models as a two-dimensional probability distribution sampled from

a shape function measuring a strategically selected geometric property of the 3D model

[30]. Presented was a generalization of the Shells method, the representation of a 3D model

as a distribution of distances of surface points from the center of mass, by generating a

histogram of distances between pairs of points on the surface of a model. The shape

function method allows for the characterization of a defined shape attribute and identifying

the distribution of that attribute.

To give an example, the D2 shape function shown below in Fig. 2-5 is defined as the

function represents the distribution of Euclidean distances between pairs of randomly

41



selected points on the surface of a 3D model. The D2 descriptor is a one-dimensional,

rotation-invariant representation of 3D shapes. The D2 shape distribution was normalized

to be invariant to scale.

Figure 2-5: The D2 Shape function samples the distance between two randomly
selected points on the surface of the object.

In a random sampling distribution, the D2 shape function creates shape

distributions as the probability of finding an element of the object at that given distance. In

each D2 shape distribution plot below in Fig. 2-6, the horizontal axis represents distance,

and the vertical axis represents the probability of the distance between two points on the

surface of the labeled solid object.
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Figure 2-6: Distributions of the D2 shape function as evaluated on different input
objects.

The shape distribution concept has been adapted to fit the objectives of our image

datasets. Osada had limited the shape distribution to navigate a domain of uniformly
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distributed shapes and by sampling a random subset of points to create a position-

invariant descriptor of a 3D model. We had extended the shape function concept to

navigate the full domain of the images in order to provide the pose of the 3D model.

2.10 Objective Function and Optimization

To select the optimal transformation bridging the reference image and the input

image, automatic optimization procedures were considered. We avoided methods known

to be at fault to local extrema registration errors. Mathematical morphology and image

processing techniques are used to maximize the shared information between the DRRs and

the input images to align the patient to the planned position.

The nature of the characteristic datasets output by the shape function naturally led

to the selection of a similarity metric based method, so covariance was selected as the ideal

function to identify the combination of transformations of highest correlation to identify

the 6 DoF.

Optimization of the objective function was expected to find the most probable 6-DoF

transformation that aligned the 2D input images with the 3D base volume.

2.11 Summary of Background

The objective of stereotactic image registration is to derive a coordinate

transformation that maps homologous points from one dataset to the other. Current

registration methods are feature-based where homologous points on datasets are matched,

or intensity-based where intensity patterns in the datasets are matched. The current

registration methods tend to be time consuming and subject to registration errors.
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Common optimization methods that follow the registration methods find the

extrema to the defined similarity metric as defined in the registration method. One

commonly used optimization method is the least squares method, which may suffer from

local extrema traps.

We have developed an image registration modality that addresses the disadvantages

presented by current image registration and optimization methods.
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3. Registration Algorithm

This chapter provides a detailed description of the methodology of the image

registration algorithm. In Matlab, we developed an efficient patient-positioning tool that can

be used to accurately measure and calculate the transformation needed to aid the alignment

of the radiation beam with the patient in the treatment room. We aim to recover the six

degrees-of-freedom rigid-body transformation between a 3D model volume and a pair of

orthogonal 2D images without the use offiducials or other landmarkfeatures.

In this chapter, we introduce the steps of data preprocessing, characterization of

images by shape distribution, the objectivefunction, and optimization to provide the most

statistically likely 6-DoF transformation. Details of its implementation are described. The

algorithm interprets the evaluated transformation as a linear combination of each individual

transformation represented by the shape function. Then, we compare the shape distribution

approach against two different approaches. Lastly, we give a general overview of the

registration algorithm. The results of the algorithmfollow in Chapter 4.

3.1 Registration Algorithm Outline

The 2D-3D registration process can be categorized as two different periods that are

calculated at two different times as offline calculations and online calculations. During

offline calculations when the patient is not in the treatment room for radiation therapy, CT

data is collected and a 3D volume image of the region of interest patient is created. The 3D

volume model data is preprocessed for image registration, a domain is defined by a series
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of small-scale transformations, and the volume is transformed across this domain. Shape

distributions of orthogonal projections of the transformed volumes are created to form the

sparse base transformation set SV that corresponds to each small-scale transformation.

These steps can all be conducted offline.

When the patient is in the patient room ready for receiving therapy treatment,

online calculations are taken: a pair of orthogonal images U of the patient are taken (e.g., x-

rays), shape distributions SU of U are created, and then these distributions are correlated

against SV. The correlations C are optimized to output a 6-DoF transformation that most

accurately maps U to V, which is also known as the relative transformation that optimally

aligns the patient to the beam. The full image registration algorithm diagram is shown

below in Fig. 3-1. The offline steps are shown in Fig. 3-2.

Data preprocessing allowed for U input data set and V the base data set to be

defined in a common reference coordinate system. V is defined as the base image

intensities defined over domain A C 913. The input image intensities is defined as UI(ut)

defined over domain At; C 912 and by utj = 1,2...N, where N is the number of intra-

interventional image intensity sets. In our case we have a pair of orthogonal images so N, is

2.

The spatial transformation T that aligns the projections of V, PjWr(v)), with the

orthogonal 2D images U is defined in Eq. 3.1 as:

P ) ( Ui.j(xj),n j (3.1)

where (VT(v)) denotes the transformed base data set and P defines projection

transformations that map Ni-2D domains Ai with the 3D coordinates v E Qv
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Figure 3-1: Shape distribution image registration algorithm.
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Figure 3-2: Offline Calculations: 3D DRR Volume V (a) is used to generate a series of
transformations of the coronal (b) and sagittal (c) projections. The shape function
determines the characteristic shape distribution for each of the projection images,
producing a sparse transformation base set for both coronal (d) and sagittal (e)
projections.
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3.2 Data Preprocessing

The first step of the algorithm is to preprocess the input data and base data. Both

the 2D projection images and the 3D reference volume are images taken of the same

phantom. The data is filtered to remove noise, and then the data is parameterized to map

the intensity values from U to V. Data preprocessing is a multi-step approach.

Shown below in Fig. 3-3 is the coronal projection Ve (left) and sagittal projection Vs

(right) of the 3D reference volume composed of 152 2D-CT slices from which the DRR

volume V is generated. The DRR projections generated from the 3D volume image were

initially of resolution 1024 x 768 pixels. The isocenter of each image in both image datasets

were saved. Each pixel in the DRR projection images represents 0.5098 mm x 0.5098 mm.

Figure 3-3: Orthogonal pair of DRR projections derived from the 3D
volume image: coronal projection (left), sagittal projection (right).

The data points outside of the head were cropped (e.g., the air gap surrounding the

head and the head brace) to reduce memory and the computed domain, as shown below in

Fig. 3-4. The following steps of the algorithm necessitate the preservation of the data points

containing bone information, so the bone matter around the brain was preserved.
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Figure 3-4: Orthogonal images of U, cropped and values adjusted.

Noise in the images is removed with image filters. The noise in the images is due to

the inevitable differences of a pixel to any other in the matrix caused by unavoidable non-

uniformity in the realization process [31].

After data preprocessing, the values of the two image modalities span the same

anatomical domain space and intensity range, and is successfully prepared for the

following steps.

3.3 Defining Permissible Transformations

At small-scale changes, 6-DoF rigid-body transformations can be represented as a

combination of independent transformations. The property of additivity in linear

transformations as shown below in Eq. 3.2 allows us to treat the 6-DoF transformation T as

a six individual transformations for each DoF in the domain space that maps the 2D

projection images to the 3D volume image [32].

T(dx+dy+dz+Ox+y+9z)=T(dx)+T(dy)+T(dz)+
T(Gx) + T(Oy) + T(Oz) (3.2)

Taking the transformation at the small scale to be linear allows us to treat the

transformations as affine. A tendency for the values of the variables to linearly increase or
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decrease in tandem implies a linear correlation between the variables. When there is no

correlation between variables, there is no tendency for the values of the variables to

change in unison. In addition, the relationship between variables may be non-linear,

meaning variables that are uncorrelated are not necessarily deemed independent.

3.4 The Shape Distribution Metric

The objective function spans the domain defined by the reference images V and

input images U. This algorithm will evaluate the objective function as defined by the shape

function. It is necessary to establish the shape function such that information about the

pose is not lost during the creation of the image descriptor. The objective function will be

evaluated in the subsequent optimization step to identify the transformation relationship

between U and V.

In our algorithm, we defined a novel shape function F(I) that samples the image

domain space I as a distance from the isocenter and the intensity of the sampled pixel, as

shown below in Fig. 3-5. This full domain is sampled to obtain the unique contribution of

each point in the image to the complete shape distribution characterizing the image. The

sampling of the full image domain does not compromise the efficiency of the algorithm

because the cropping of the background already reduced the size of the image.
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Figure 3-5: Shape function F(I) samples the distance from the isocenter di and the
pixel intensity Ki of each pixel in the image I (left). The shape distribution S(I)
characterizes I as a histogram of di and Ki (right).

The idea to represent the signature of an object as a shape distribution sampled

from a shape function measures the global geometric properties of the object [30]. The

shape distribution defines a variable space by generating distribution histograms of the

attribute. The attributes, such as distances and angles between select points, are selected

strategically to meet the needs of the problem [30]. We have defined a shape function to

span a domain characterizing an image by both its pixel intensity value and distance from

the isocenter that uniquely characterizes each image.

Our shape function F(I) samples the full domain of I to locate pixels of high

intensities representing high-density regions, e.g. bone. The bone matter is the feature-of-

interest because of its anatomical rigidity allowing for stereotactic measurements and large

presence in the domain space encompassing the tumor volume-of-interest, making it a

consistent and reliable characteristic attribute in each image. In addition, the reduction of

the shape distribution S(I) by eliminating the detection of lower intensities reduces

computational requirements and provides a higher resolution of the high-intensity region
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of interest.

Figure 3-6: Full shape distribution S(I) (bottom right) of image I (left), and reduction
to only high intensity pixels for the creation of the shape distribution (top).

The shape distributions were normalized to 1 to provide invariance to the scale. It is

necessary to establish correspondences between different shape distributions in order to

compensate for the anisotropic scales. Then the algorithm prepared the collection of the

shape distributions characterizing a variable space of small-scale transformations of the

patient volume image, which is referred to as the sparse base transformation set.

3.5 Objective Function

Once we computed the shape distributions for two image modalities, we evaluated

the objective function as the similarity between the shape distributions of the input 2D

projection images SU(i) and the 3D reference volume SVUj). The similarity between the

shape distributions of the images and the volume is evaluated by a cross-correlation

function C that measures the change between two variables. The correlation coefficients in
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C are the quantities that give the quality of a least squares fit to the original data and show

the strength of a fit by the magnitude of the linear relation.

In the optimization step, the objective function is typically evaluated over the

defined domain to identify the extrema. In this case, C is the correlation coefficient matrix

of the shape distributions between input images and the base volume defined the objective

function.

By considering two series of shape distribution variables SU(i) and SV(j) where

j=0,1,2...N-1. The cross-correlation matrix Cis defined in Eq. 3.3 as [33]:

I(SU(i) - SU)(SV(j) - SV]

C (SU,SV) = -(3.3)
C (SU(i) - SU) 2  (SV(j) _ SV) 2

In C we have the cross-correlation coefficients r, which gives the goodness of the fit

for the best possible linear function describing the relation between SU and SV. The

coefficients r lies on the range [-1,+1] and is defined as the covariance of the two variables

divided by the product of their standard deviations. A value of r = 0 means there is no

correlation between U and V.

A value of 1 implies that a linear equation describes the relationship between X and

Y perfectly, with all data points lying on a line for which Y increases as X increases. A value

of -1 implies that all data points lie on a line for which Y decreases as X increases. The

correlation coefficients are invariant to separate changes in location and scale of the two

shape distribution sets.
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Cross-correlation is efficiently used to define the objective function whereby the

input transformation T is subject to an unknown combination of 6-DoF combinations, as

shown below in Eq. 3.4 [34]:

T = E c (dx = 1.2.... )+(-(dy = 1. 2.... )+E (: = 1. 2... . )+
c. (O.r = 1. 2. ... ) + E c) (0y = 1. 2.. .. ) + Ec( = 1. 2....) (3.4)

Coefficients cn for n = [1,6] is determined for each base function defined in the

sparse base set for 6 DoF. We define a sparse base function set that is comprised of a small

set of shape distributions of the volume perturbed by a set of single DoF transformations

that span the 6-DoF small-scale transformation space.

Figure 3-7: Correlation coefficients C(SUSV) between the shape distribution SU of
input image in relation to a set of 61 base functions.
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The objective function provides correlation coefficients C(SUSV) between the shape

distributions of the orthogonal pair of images Un that have undergone an unknown

transformation T and the sparse base set of orthogonal projections volume V. By comparing

the shape distributions between the base and input images, C(SUSV) provides correlation

information between the input and base images from which the discrete 6-DoF

transformation values maybe extracted.

We ensure that the correlations are statistically significant by evaluating the p-

values, P(SU,SV). The p-values p(ij) are computed by transforming the correlation to create

a t-statistic having n-2 DoF, where n is the number of rows of X. P, a matrix of p-values for

testing the hypothesis of no correlation. Each p-value is the probability of getting a

correlation as large as the observed value by random chance, when the true correlation is

zero. If p(ij) are sufficiently small, then the correlation r(ij) is statistically significant Base

functions only with statistically significant p-values are considered in optimization.

3.6 Optimization

Lastly, the optimization step analyzes the correlation coefficients provided by the

objective function and provides the best fitting 6-DoF transformation that maps U to V.

Optimization identifies the most probable transformation T with a multi-step approach.

The first step in optimization is to decompose C into two types of transformations:

translations and rotations. The translations and rotations are treated separately to

distinguish the impact of the transformation the data set: rotations impact the placement of

all pixels in all three dimensions, whereas translations affect the position of pixels in only

one dimension.
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The second step of optimization is to determine a correlation coefficient threshold

that demarcates a high probability of an accurate match. This value was determined

empirically because the interpretation of the correlation coefficient is dependent on the

context and purpose of the application, e.g. the specific image registration setup and type of

image modalities used.

We devised various cases defined by geometric constraints of 6-DoF

transformations that can be used to optimize C with best fit. For example, a translation in

the x-y plane will not affect the orientation in the z-plane so correlations related to this

translation will only be apparent from the view of the x-y plane.

Additional constraints to the optimization algorithm were derived from the gradient

ascent and descent recognition of C along each DoF. For example, the correlation between U

and V that suggests tx = 3 will be shown in C with a maximum correlation at tx= 3 and a

gradual ascent towards this value on the range of tx = [-5,5].

In C we have cross-correlation coefficients r that give us the goodness of the fit for

the best possible linear function describing the relation between SU and SV.

The optimization step provides that most statistically likely 6-DoF transformation

that optimally aligns U to Vwith the use of various approaches and constraints imposed on

C.

3.7 Accuracy

We measured the registration results as each individual translation and rotation

obtained from the registration algorithm in comparison with the original transformation

for transformation set and calculated targeting error AD. The total targeting error was

expressed as:
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AD = (Ar + zt - Aby - yt -A9z) 2 + (A +zt - A9-zt-A ) + (Az+yt-A -xt-A9y)

(3.5)

where the position coordinates of the target are (xtytzt) and the error in the

transformations are (Ax, Ay, Az, A~x, AOy, AOz) [35]. The targeting error metric AD was used

to measure the accuracy of the alignment between the actual and calculated transformation

between Uand V.

3.8 Sensitivity

In order to test the robustness of the image registration algorithm, we introduced

shot noise to both input images U.

Artificial shot noise was introduced to our datasets because this shot noise is

dominant when a finite number of particles that carry energy are sufficiently small so that

uncertainties due to the Poisson distribution are significant. Shot noise is a realistic factor

that affects the quality of our images because the variations of current in the x-ray detector

and DRR generation may cause the occurrence of independent random events that are

significant enough to affect the intensities of the image pixels. The parameters of the

Poisson noise were dependent on the input pixel values, which added Poisson noise to the

image by calculating the means of Poisson distributions.

3.9 Summary

The algorithm first pre-processes the 2D input image data U and 3D base image data

Vto contain homologous intensities and crops the images to discard extraneous

information in the image. Then for each input and base image representing the position of

an image, the shape distribution objective function F(I) creates a characteristic distribution
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of each image I which contains characteristics of its transformation. Then the objective

function, a correlation function enumerates the correlation between shape distributions of

the input images SU and the base volume SV. The correlation coefficient matrices C identify

the transformations that most similarly match the SU and SV. The optimization method

spans the objective function and quickly identifies the transformations of highest statistical

likelihood that align the orthogonal projection images U to the base volume set V and

provides the necessary relative 6-DoF patient positioning transformation during

optimization.
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4. Results

The results from the 2D-3D image registration algorithm are presented in this chapter.

Chapter 4 introduces the experimental framework used to characterize the performance of

the shape distribution registration algorithm. The details of our method used in a sequence of

test experiments used to verify the validity of this algorithm are described. The 2D and 3D

image datasets used in the results are identified. We present results of speed, accuracy, and

sensitivity from the 2D-3D image registration algorithm with DRR-DRR data.

4.1 DRR-DRR Image Registration Outline

The shape distribution algorithm was used first to register input images U

composed of the coronal and sagittal projection images (Uc, Us, respectively) generated from

the DRR, and the pair of projection images from the 3D base volume set Vgenerated by the

DRR. The DRR is derived from CT-simulated images of a phantom head. The image

registration process can be simplified into four main steps:

1) preprocessing of the input images and the volume base set,

2) developing the characteristic shape distributions,

3) optimizing the objective function defined by the shape distributions with

correlation, and

4) identifying the most optimal 6-DoF transformation.
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The DRR-DRR image registration simulates stereotactic radiotherapy treatment: the

3D DRR image is provided by treatment planning when the patient's tumor is analyzed and

quantified, and the pair of orthogonal 2D images are provided when the patient is placed in

the radiation treatment room preparing for radiation therapy.

We sampled 6-DoF transformations categorized in four categories:

1) Catl: transformations composed of only translations of the range [-5,5] pixels

with increments of 1 pixel,

2) Cat2: transformations composed of only rotations of the range [-5,5] degrees with

increments of 1 degree,

3) Cat3: combination transformations composed of translations of the range [-5,5]

pixels of increments of 1 pixel and rotations of the range [-5,5] degrees with

increments of 1 degree, and

4) Cat4: a set of unique 6-DoF transformations that include sub-pixel adjustments

within or outside of the domain of the sparse base volume set.

There were 1331 samples in Cat1, 1331 samples in Cat2, 15,625 samples in Cat3,

and 50 samples for Cat4.

4.2 Data Preprocessing and Initialization

The data preprocessing steps outlined in Chapter 3 guided the primary registration

of the 2D and 3D images. This step smoothed the intensity values in the images to reduce

the noise. Then we reduced the domain of the image by cropping out the background the

images and kept the full skull surrounding the brain intact to reduce computational

requirements necessary for alignment.
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In the cases of DRR-DRR registration, the intensities of the data sets were not

adjusted since both the 2D and 3D images are of the same modality and are already of

isotropic scale.

The set of pairs of 2D-projections generated from volume set composed of 152-CT

slices are of original resolution 1028x768. The 3D volume set of the phantom is generated

from the DRRs. We create a sparse base transformation set by saving projection images of

small-scale perturbations of the volume image. The elements of the base function set are

individual 6-DoF transformations spanning the region of small-scale of perturbations as

defined.

We defined the sparse base transformation set over a series of small-scale

perturbations with N =5, as [-5,5] pixels of translation (over a range of 5.098 mm) in any

one direction in increments of 1 pixel, or ±[-5,5] degrees in rotation about any axis with

increments of 1 degree. Defining the sparse base transformation set over the range of 5.098

mm is a realistic expectation of the relative transformations since the objective of this

algorithm aims to identify fine adjustments in patient positioning. The sparse base

transformation sets of the coronal and sagittal projections of the base volume are shown in

Appendix B. The sparse base transformation set is transformed as the volume base set

under the T as defined in the structure below in Table 4-1. The notation of the 6-DoF

transformations are written in shorthand as (tx, ty, tz, 6x, 6y, Oz) where tx, ty, and tz are

units of pixels and 6x, y, z are in degrees.
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Table 4-1: A set of transformations T applied to base volume Vto establish the
sparse base transformation set spanning N units of perturbation.

(N,0,0,0,0,0) (0,N,0,0,0,0) (0,0,N,0,0,0) ... ... (0,0,0,0,0,N)

(N-1,0,0,0,0,0) ...

(N-2,0,0,0,0,0) ...

(0,0,0,0,0,0)

(-N+2,0,0,0,0,0)

(-N+1,0,0,0,0,0)

(-N,0,0,0,0,0) (0,-N,0,0,0,0) (0,0,-N,0,0,0) (0,0,0,N,-0,0) (0,0,0,0,-N,0) (0,0,0,0,0,-N)

The data preprocessing steps defined the input and base image datasets to be in the

same domain in terms of both image anatomical space and intensity. All images are filtered

to reduce noise in the intensity of the images.

The isocenter of the input images was recorded as the geometric midpoint between

the skull edges and the isocenter of the base volume was recorded as the geometric

midpoint between the skull images of the baseline transformation.

4.3 Shape Distribution

The shape distributions are developed for each image I within the coronal and

saggital projection image sets of U and V. The shape function F(I) samples each pixel in the

domain space as its intensity and distance from the isocenter. The shape distribution

samples the full domain of the image following the anatomical reduction of the image.

Pixels of intensities significantly higher than that of air, e.g. bone and metal implants, are
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saved to reduce computational requirements; pixels of intensities comparable to air are

discarded.

The shape distributions were binned a distance range of 200 pixels and an intensity

range of about 250 to further compress the size of the shape distribution. The shape

distribution of the orthogonal projections shown in Fig. 4-1 is of the coronal projection, and

the shape distribution of the sagittal projection is shown below in Fig. 4-2.
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Figure 4-1: Shape distribution of 2D coronal projection Uc transformed by T=
(0,0,0,0,0,0): 3D shape distribution (top left), pixel vs distance (top right), pixel vs
distribution (bottom left), distance vs distribution (bottom right).

64

A



x10

2

31

0
200

100 1nn
distance 0 0 intenity

120

100

80

60

0

0
200

x10

0.5 - - -- - - - -

0

£M

pixel value
.3

x10

0.5

Q ......
0 50 1UU 1U UU Iu IUU 0U

pixel value distance

Figure 4-2: Shape distribution of 2D sagittal projection Us transformed by T =
(0,0,0,0,0,0): 3D shape distribution (top left), pixel vs distance (top right), pixel vs
distribution (bottom left), distance vs distribution (bottom right).

By sampling the full sparse base transformation space defined previously in the

preprocessing step in Table 4-1, a sparse base function set is populated. For each

independent transformation of the volume in the base transformation set, a characteristic

shape distribution is developed. The shape distributions for each respective transformation

of the volume are shown in the Appendix in the same layout defined in Table 4-1.

Once shape distributions of both the input images and transformations of the base

images were created, the shape distributions were evaluated in the objective function.
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4.4 Objective Function

The shape distributions from the 2D projection images were correlated against the

sparse base function set containing the shape distributions developed from the 3D volume

set. C(SUSV) shows the correlation of each pixel in the shape distribution of the input

image series SU against the respective pixel in the shape distributions of that

transformation in the shape distribution base set SV. Each row of Fig. 4-3a (left) represents

the correlation of the input image of the shape distribution of each transformation against

that of each DoF of the volume base set. Fig. 4-3b (right) represents the correlation matrix

for the input image compared against the volume base set for the sagittal view.

Figure 4-3: Correlation matrix Ce of the shape distribution correlations between the
input coronal view and the base volume coronal views (left), and correlation matrix
Cs of the shape distribution correlations between the input sagittal view and the
base volume sagittal views (right).
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The correlation matrices Ce = C(SUcSUc) and Cs = C(SU,SUs) establish the domain of

the objective function from which the optimization function evaluates. The pair of

correlation matrices C in Fig. 4-3a and Fig. 4-3b are evaluated to identify the 6-DoF

transformation that maximizes the alignment between the 2D orthogonal input images and

the 3D volume set. The correlation values between 2D and 3D images that surpass a

minimum threshold signify a sufficiently high correlation between the alignments of the

images. The correlations of some 6-DoF transformations that map the 2D to 3D images are

visible in the coronal view but not in the sagittal view, and vice versa due to the effect of the

transformation on the projection. This logic guides the interpretation of the correlation

matrices to determine the optimal positioning. Fig. 4-4 depicts the elements of highest

correlation between the shape distributions of input set U and base set V.
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Figure 4-4: Correlation matrices. SUc correlates highest with SVe(T = (0,0,0,-5,0,0)). Us
correlates highest with Vs(T= (-2,0,0,0,0,0)).
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The correlation coefficients r gives a high goodness of fit for Trt~ describing the

relation between U and V. The correlation coefficients threshold was set to 0.15 with

respect to the specific data presented.

The p-values of the correlation coefficients were then evaluated to identify whether

or not the correlations above were statistically significant transformations.

We evaluated the p-values, p, the probability that a variate would assume a value

greater than or equal to the observed value strictly by chance, of the automatically

registered 6 DoF to ensure that the correlations are statistically significant as p =

P(ZaZobserved). The significance level z was set to 0.00 1 such that if the sample results are less

than or equal to that, the match of (ij) is statistically significant. The algorithm picks the

most likely 6-DoF transformation only if the solutions with p-values are significant.

4.5 Optimization of the Objective Function

The objective function defined above is optimized to determine the transformation

that maximizes the alignment between the 2D orthogonal input images and the 3D volume

set for each transformation. The optimization step provided the 6-DoF transformation as a

linear combination of elements of the sparse base transformation set as the highest

statistical match mapping U to V.

4.6 Speed Criterion

In Matlab, the offline steps of data preprocessing and development of the 3D volume

for the sparse base transformation set with a range of [-5,5] pixels and [-5,5] degrees were
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calculated in an average of 3.251 minutesf The offline steps begin with one 3D model and

output a pair of shape distribution sets, one for the coronal projection images and one for

the sagittal projection images.

The speed of each step in the algorithm as measured by various cases of

transformation T is listed below in Table 4-2.

Table 4-2: Speed of each online process in the image registration algorithm.

Preprocessing U (s) SUc (s) SUs, (s) Cc (s) CS (s) Optimization (s)
Average 0.1953 0.0155 0.0187 0.0713 0.0736 0.1532

Standard Deviation 0.0702 0.0010 0.0013 0.0188 0.0179 0.0096

Minimum 0.1104 0.0131 0.0155 0.0619 0.0643 0.1354

Maximum 0.3325 0.0165 0.0202 0.1272 0.1261 0.1654

The average speeds of each process were: 0.1953 s for data preprocessing, 0.0155 s

for creating the shape distribution for the coronal projection, 0.0187 s for making the shape

distribution for the sagittal projection, 0.0713 s for correlating the coronal view against the

base set, 0.0736 s for correlating the sagittal view against the base set. The total offline

calculation speed requires 185.06 s, and the average total online calculation requires

0.5276 s.

4.7 Accuracy

We measured the registration results as each individual translation and rotation

obtained from the registration algorithm in comparison with the original transformation

f It is important to note that both the data preprocessing step and the generation of the sparse base
transformation can be computed offline before the patient enters the treatment room, so this does not
compromise the time it takes for patient positioning in the treatment room.
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for transformation set and calculated targeting error AD. The errors of three translations

and three rotations between the original transformation and the transformation

determined by the algorithm are described by the target position coordinates (xt, yt, zt) and

the error in the transformations (Ax, Ay, Az, A x, Ay, A~z). The total targeting error was

expressed in Eq. 3.5.

Table 4-3: Evaluation of image registration algorithm in terms of targeting error AD.
Cat1 is the set of translational transformations, Cat2 is the set of rotational
transformations, Cat3 is the set of combination transformations, and Cat4 is a
unique series of transformations defined in Ch. 4.1.

AD of Catl AD of Cat2 AD of Cat3 AD of Cat4

Average 0.693 0.813 0.216 0.635

Standard Deviation 0.237 0.235 1.033 0.423

Minimum 0.000 0.000 0.000 0.000

Maximum 6.929 5.237 4.334 3.132
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The targeting error AD of a sparse sampling of Cat1 is shown below in Fig. 4-6. The

area of the marker is directly proportional to the cube of the targeting error magnitude.

The three axes are the three individual translational DoFs, (txtytz).
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Figure 4-5: Targeting error AD of a sparse sampling of Cat1. The perturbations (tx,
ty, tz) are plotted on their respective axes and the magnitude of AD is represented
by the color (a). The ty-tz projection is shown in (b), tx-ty is shown in (c), and tx-tz is
shown in (d).
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Similarly, the targeting error AD of a sparse sampling of Cat2 is shown below in Fig.

4-7. The area of the marker is directly proportional to the cube of the targeting error

magnitude. The three axes are the three individual rotational DoFs, (6x, Oy, Oz).
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We enumerate the registration errors of transformations T of all sets defined in
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Cat1, Cat2, and Cat3 by the DoF of the error in Table 4-4. The following table contains the

errors of translations and rotations between the registration method estimations and the

real transformations.
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Table 4-4: Registration errors of translations, rotations, and both, of the set of all T
transformations defined in Cat1, Cat2, and Cat3.

Errors of translations (pixel) Errors in rotations (degree)
tx ty tz ox Oy Oz Overall

Average 0.5556 0.5556 0.2222 0.0347 0.2932 0.8906 0.4253
Stanao 0.2326 0.2154 0.4237 0.3203 0.2273 0.2096 0.2715

Minimum -4 -4 0 -4 -4 -4 -3.333
Maximum 4 4 1 4 4 4 3.000

4.8 Sensitivity

In order to test the robustness of the algorithm, we introduced shot noise to modify

pixel intensities in the images U by adding Poisson noise directly to the image as a

modification of pixel intensities.

Then, the optimization method selected the most optimal 6-DoF transformation of

these elements in the sparse base function.

Table 4-5: Sensitivity evaluation of image registration algorithm in terms of
targeting error with input images U treated with shot noise.

AD of Cat1 AD of Cat2 AD of Cat3 AD of Cat4

Average 0.693 0.813 0.216 0.635

Standard Deviation 0.237 0.235 1.033 0.423

Minimum 0.000 0.000 0.000 0.000

Maximum 11.021 2.237 4.334 3.132

The addition of shot noise to U did not change the targeting error of the algorithm

image registration estimations.
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5. Discussion

The shape distribution image registration algorithm is fast, efficient, and accurate at

providing a predictive 6-DoF transformation mapping U to Vby creating shape

distributions characteristic of transformed images, and then correlating them against a

sparse base transformation set. This method does not directly depend on feature-, or

intensity- based homologous points, an aspect of current image registration methods that

commonly triggers registration errors. The algorithm is able to automatically register 2D-

3D DRR images accurately and quickly.

The image registration algorithm generally had sub-pixel accuracy in finding 6-DoF

transformations as linear combinations of independent single-DoF transformations in DRR-

DRR image registration by correlating their shape distributions against the sparse base

transformation set.

5.1 Speed Criterion

The algorithm affords fast offline calculations of the sparse base set on the

treatment planning data, as well as fast online calculations on the input data from a pair of

real-time 2D images.

In Matlab, the offline steps of data preprocessing and development of the 3D volume

for the sparse base transformation set with N = 5 was calculated in an average of 3.251

minutes. The offline steps begin given one 3D volume model of the patient, and then

calculate and output a pair of shape distribution sets, one for the coronal projection images
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and one for the sagittal projection images. The data preprocessing step and the generation

of the sparse base transformation can be computed in the computer system without

requiring use of the radiation treatment facilities, shortening treatment planning time and

increasing treatment room capacity.

For the online calculations, the average speed of each step was: 0.1953 s for data

preprocessing, 0.0155 s for creating the shape distribution for the coronal projection,

0.0187 s for making the shape distribution for the sagittal projection, 0.0713 s for

correlating the coronal view against the base set, 0.0736 s for correlating the sagittal view

against the base set. The longest online step was preprocessing of the data. The standard

deviations were under 0.02 s for each of the online steps.

The total offline calculation speed requires 185.06 s, and the average total online

calculation requires 0.5276 s. It is important to note that the evaluation of the speed was

dependent on a computer clock, so these speed values may reflect uncertainties in timing

by the automated clock.

5.2 Accuracy

The base transformation set is composed of shape distributions distinct to 1 pixel.

By comparing the original transformations of the 2D images with the transformation

selected by the registration algorithm, we can conclude that the selection of the 6-DoF

transformation is accurate to at least one pixel.

The accuracy of the image registration algorithm as evaluated by the targeting error

was with sub-pixel accuracy for all categories evaluated in the results. Most standard
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deviations of targeting error maintained sub-pixel accuracy of the patient positioning

transformation estimation.

A caveat to the output of the automatic image registration method is that at small-

scale perturbations, more than one combination of transformations can lead to similar

solutions of the objective function. In this image registration algorithm, two different 6-DoF

transformations may orient U to Vwith different pose estimations. The emergence of the

differing pose estimations is due to degeneracy. Degeneracy is the solution set is the

limiting case in which a class of transformations changes to belong to another class as a

result of similar evaluation of the objective function. Cross-correlation matrices C define

the domain of the objective function, which the optimization method evaluates to identify

the most statistically likely transformation. While a pair of cross-correlation matrices

presents bi-planar information about the pose of the 3D object, more information must be

provided about the generation of the transform to produce a complete set of non-

degenerate solutions.

Effectively, degeneracy increases the magnitude of the targeting error metric and

implies a reduction of the accuracy of the algorithm.

We have defined the solution space to have 6 DoF to describe the transformation T

with six distinct parameters. T has been defined as an affine, rigid-body transformation that

can map the 3D volume base set as a set of three non-degenerate points to three non-

degenerate points given bi-planar images. The algorithm shows degenerate solutions by

estimating the transformations to the most statistically relevant series of independent

transformations, which are commonly lost at the range of small perturbations.
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Degeneracy of this algorithm in the sparse model occurs as the reduction of more

complex input transformations to reduced 6-DoF T approximations with high accuracy. The

mathematically distinct range of solutions developed by the sparse base set establishes the

domain from which the 6-DoF transformation T estimation can be composed. At small-scale

perturbations, transformation estimations resulting from the optimization of the objective

function may produce similar cross-correlation values that are interpreted to lead to

degenerate solutions of the objective function. Because the current optimization method is

driven by statistical values of correlation between the input images and the base images,

the algorithm is susceptible to degeneracy.

Overall, the image registration method has sub-pixel accuracy with registering DRR-

DRR images. A closer examination of Table 4-4 views all transformations defined in Cat1,

Cat2, and Cat3, and then shows errors categorized by each DoF. The discrepancies in

magnitude of targeting error by each DoF may be due to the original image quality and the

shape distribution characterization of the images.

Targeting error is an effective metric at evaluating the magnitude of distance from

the targeted set of points given the error in each DoF. Targeting errors in tx and ty show

similar errors in terms of average, standard deviation, and range. This result meets

expectations since the images are of the same resolution in x and y. Targeting error of tz is

lower than of tx and of ty. This difference may be explained by the resolution of the image

along the z-direction. I hypothesize that because the pixel spacing is much larger along the

z-axis than along the x- or y-axis, the shape distributions are more distinctive, leading to a

lower average error in tz. However, because the spacing between each distinctive scan is
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larger, the standard deviation in error of tz may larger as a result of the interpolated

intensities.

Similarly, the differing resolution of the DRRs in the z-axis may have caused the

mean error in Oz to be higher than those of a2 and 6y. It is hypothesized that 6 is more

accurate than the other two rotational DoFs because of the distinctive shape distribution

transformation space of the sagittal projection.

5.3 Translational Transformations

Transformations composed only of translations as defined in a 6-DoF

transformation space, Cati, express high unitary correlations corresponding to matches

shown in the correlation matrices Ce or Cs between the shape distributions of input and

base images. The transformation correlation is shown as an element of high r either in Ce or

Cs depending on the dimension of the translation. The translation will typically only affect

one plane as a result of geometric description, since an entire plane will translate along an

axis without affecting the position of the other two planes. This geometrical observation

confirmed transformations as translations by showing high coefficients with significant p-

values in one C but not the other.

The transformations in Cat1 are accurate to an average of 0.693 pixels with a

standard deviation of 0.237. Cat1 has the largest maximum targeting error among the four

categories at 6.929 pixels.

Degeneracy poses an issue in transformation estimations amongst Cati. To give an

example of degeneracy, input transformation T = (2,4,4,0,0,0) mapping between U and V is

estimated by the algorithm to be mapped by a transformation T = (1,0,3,0,0,0); targeting

error is 4.5826 pixels.
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5.4 Rotational Transformations

Transformations composed only of rotations in a 6-DoF system express match

correlations to the rotation elements in the base transformation set, as shown in Ce or C.

The correlations in both Cc and Cs are affected by the rotations because geometrically,

rotations affect the orientation of the 3D object in all three planes. The results are relatively

high correlations shown in both Ce and Cs due to the geometrical effect of T in all three

dimensions.

The transformations in Cat2 have sub-pixel accuracy, with an average of 0.813

degrees, and a standard deviation of 0.235 degrees. An example of a degenerate case in

Cat2 is a real transformation on U of T = (0,0,0,2,4,4) that is estimated by the algorithm to

be T = (0,0,0,0,5,0). The targeting error of this example is AD = 5, whereas the actual

transformation between U and V may still abide to higher accuracy.

5.5 Combination Translation/Rotation Transformations

The combination of both translation and rotation transformations induces overall

lower correlations shown in Cc and Cs due to the geometrical effect of T of all three

dimensions. In the optimization algorithm, it was possible to deduct combination

transformations by combining the logic described above in Ch. 5.2 and Ch. 5.3. However

due to the nature of multiple transformations, the algorithm may have provided many

degenerate solutions of the 6-DoF transformation.

We see that the targeting error for Cat3 is on average 0.216 pixels, the smallest

average among all categories. However, the standard deviation is 1.033, providing near-
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pixel accuracy. The results of Cat3 support further investigation for optimal deduction of

transformation T.

5.6 Transformations outside of Base Set

There were several unique cases we tested in image registration matching in Cat4

where the transformations could be interpolated or extrapolated from the base set, as they

were of sub-pixel transformations or outside of the sparse volume base set. The algorithm

was able to determine interpolated or extrapolated transformations in the optimization

step due to the progression of statistically significant correlation coefficients against U and

V. These cases show that the algorithm is able to process sufficient data to determine

interpolation and extrapolation transformations.

For example, in the case where the input images were transformed outside of the

sparse base transformation set, the algorithm shows potential for transformation

extrapolation. In the case of T = (0,0,3.5,0,0,0) where the input images were transformed by

a unit undefined in the sparse base set, the algorithm shows the ability to interpret

transformation interpolation. This was achieved by developing criterion in the

optimization algorithm that identifies characteristic changes in correlation matrices C that

distinguish interpolated T. These observations lead us to believe that there can be sub-pixel

accuracy more refined than initialized by the domain of V.

5.7 Sensitivity

As shown by the sensitivity test of the introduction of shot noise to input images U,

the algorithm is robust. The preprocessing steps smoothed the images and distributions.

We did not find that the results of the algorithm were altered significantly by the artificially

81



added noise, as the algorithm was still able to interpret accurately the transformation

between U and V as the same 6-DoF transformation. Therefore, we conclude that the

algorithm is robust.

5.8 X-ray-DRR Image Registration

Registering x-ray to DRR images is a standard image registration process for

stereotactic therapy. The same four-step image registration process as the DRR-DRR

process above was applied to x-ray-DRRs:

1) preprocessing of the input x-ray images and the volume base set,

2) developing the characteristic shape distributions,

3) optimizing the objective function defined by the shape distributions, and

4) identifying the most optimal 6-DoF transformation.

As explained below, the adaptation of the current version of the algorithm as it is

defined for DRR-DRR image registration was not easily extended to x-ray-DRR image

registration.

The preprocessing step aimed to streamline the anisotropic range of the pixel

intensities and generate the same pixel resolution between the two image datasets. It was

not straightforward to define homologous anatomical regions such that both image

modalities are of mutual domain.

One obvious difference between the two image modalities was the pixel resolution

of the images. It was fairly straightforward to create replicate images of the same

resolution while maintaining the geometric domain and pixel intensity values.

The use of poor x-ray and/or DRR images or varying levels of noise in the images

may have caused registration difficulties.
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A larger difficulty in extending this algorithm to work for x-ray-DRR image

registration may have been due to the differences between the image qualities of the x-rays

and the DRRs. Because DRRs are only approximations of and are not real x-ray images, the

resulting DRR image may not be sufficiently similar for the development of an objective

function by cross-correlation.

The generation processes of the images differ significantly whereby homologous

points are represented by different numerical values. The ranges of pixel intensities are

anisotropic, proving difficult to demarcate the high pixel intensity region that represents

bone. The attenuation effects differ between the two image modalities and thereby change

the image qualities, causing the inability to easily relate the pixel intensities with an

automatic method.

The data preprocessing step posed an issue that was outside the realm of this thesis

project, so instead of defining the objective function from this data, we investigated further

the nature of relative transformations on the model given information of the model via the

shape distribution characterization.

We were provided with x-ray images X and DRR images of volume V that imaged the

same phantom. We were given three sets of x-ray images X: 1) baseline, 2) shift 1, and 3)

shift 2. Both shift 1 and shift 2 underwent three translations, enumerated below in Table 5-

1.
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Table 5-1: Transformations of x-ray images X.

Transformation Perturbation (mm) Perturbation (DRR-pixel)

Longitude Latitude Vertical tx ty tz

Baseline 0 0 0 0 0 0

Shift 1 1 2 3 -3.92 5.98 -1.96

Shift 2 -3 -2 -1 3.92 -1.96 5.98

To study the nature of the relative transformations, we transformed the two

projections of V by the known transformations shift 1 and shift 2. Pixel intensities of

homologous points were manually aligned between X and V.

Intra-comparison of the shape distributions of the x-ray images X and of the DRR

projection images of V shows that shape distributions provided distinctive characteristic

information about the transformed images (see Fig. 5-1 and Fig. 5-2).
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We have shown above that shape distributions are effective at representing images

with characteristic descriptors. However in the current state of the art, we are limited by

85

shift 2

200

*P ' IsgO ll

dabnee 0 0 pkdtt*d*y

. U



the initial data processing of the x-ray and DRR image modalities to be able to determine

relationships between the image modalities, limiting us from the definition of the objective

function and the final determination of the relative transformation.

5.9 Summary

Overall, we found that this shape function tool is valuable for fast and accurate

patient positioning in determining 6-DoF transformations from a sparse base

transformation set. We have achieved the design constraints of accuracy, sensitivity, and

speed necessary for this algorithm to be further researched for applicability in a clinical

setting.

The complete algorithm was conducted in under four minutes, three minutes of

which was in offline calculations. The online process to conduct a complete 2D-3D

registration was well under a minute. The longest step in the online process was

preprocessing the data.

The registration process was accurate to sub-pixel accuracy when the 6-DoF

transformation was defined within the sparse base transformation set but was shown to be

accurate to near-pixel accuracy when the 6-DoF transformation was interpolated or

extrapolated from the base set.

The shape distribution algorithm is robust, due to the data-preprocessing step that

removed noise and ensured that the intensity values and size of the domain were

homologous. However, we found that the objective function defined by correlation was

sensitive to outliers in the data. Statistical inference for the cross-correlation coefficient is

sensitive to the data distribution.
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This algorithm is especially useful for describing an image as a distribution of the

selected characteristic shape attribute and thus, improves patient positioning time and

accuracy while also reducing the radiation dose delivered to the patient during positioning.
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6. Conclusion

We have introduced a novel algorithm for conducting 2D-3D image registration for

stereotactic radiotherapy patient positioning. This thesis addresses the need for a fast and

accurate patient positioning algorithm for stereotactic radiotherapy that would be easy to

deploy, reduces radiation dose delivered to the patient, improves the accuracy of radiation

dose delivery, increases comfort of the patient during the patient positioning process, and

facilitates more efficient use of radiation treatment rooms. The main objective of our

algorithm was to efficiently identify the accurate 6-DoF transformation that describe the

optimal pose alignment between the pair of orthogonal 2D input images and the 3D base

volume image set taken of the patient.

Our main contribution to the state of the art of patient positioning algorithms is the

introduction of a sparse base set for prompt 2D-3D image registration. We first identified a

number of issues associated with current image registration techniques and have focused

on generating methods for addressing the central goals of accuracy, robustness, and speed.

The algorithm allows for comparison of input 2D images against a 3D volume dataset with

unknown pose, retrieves the complex transformation that maps the 2D set to the 3D set,

and generates the most statistically likely 6-DoF transformation.

We designed an image descriptor, the shape distribution, to represent each image as

a histogram of distances and pixel intensities to effectively characterize the pose of the

patient image. The algorithm relies on the development of a set of shape distributions to
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characterize each image uniquely.

We developed a mathematical model that was not based on prior clinical data and

that does not anticipate an exact form of the input images. The algorithm requires the

generation of a sparse base set of transformations of the volume that spans a small range of

6-DoF perturbations. An objective function is developed from the cross-correlation of the

shape distributions of the input image against the sparse base transformation set which is

then optimized to identify the most statistically likely 6-DoF transformation aligning the

two datasets. We presented a framework for efficient registration of the 2D images to the

3D model with sub-pixel accuracy.

6.1 Experimental Results

We evaluated the registration algorithm with four categories of experimental results

on DRR-DRR image registration. We showed that for DRR-DRR registration, the shape

distribution algorithm robustly, quickly, and reliably determines the 6-DoF transformation

that maps the 2D images to the 3D volume of the patient.

The first two experimental categories, the set only translational transformations and

the set of only rotational transformations, within the base transformation set showed sub-

pixel accuracy in determining the transformation. The combination transformations

composed of both rotations and translations showed near-pixel accuracy.

The fourth category of experimental tests was composed of a unique set of

transformations both outside of the base transformation set and of sub-pixel increments.

The optimization method was able to deduce the transformations of these test

transformations. The results have led us to believe that this algorithm has the potential to

provide sub-pixel accuracy of transformations that is not reliant on the range of the base
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transformation test and the domain of the objective function that develops from this base

set.

The representation of the images by the shape distribution show that information

about the pose of the 3D model provides sufficient information to provide sub-pixel

accuracy of the alignment; thus, information about the pose is not lost in the shape

distribution characterization.

The speed evaluation of the algorithm showed that the algorithm is able to conduct

all offline calculations on average in 3.251 minutes and all online calculations can be

conducted on average in 0.5276 s. The speed of the algorithm meets criterion to be

sufficiently rapid for effective clinical application.

The sensitivity tests conducted by the introduction of shot noise to the input images

ensured that the shape distribution image registration approach is robust The estimated

transformations were not effected by the noise.

Overall, this shape distribution image registration method has proven to be fast,

accurate, robust, and does not suffer issues faced by current image registration methods,

e.g. local extrema traps.

6.2 Future Research

We developed a framework for 2D-3D image registration with shape distributions.

The concept of shape distributions is highly applicable beyond the scope of patient

positioning for stereotactic radiation therapy on the brain given 2D input images and a 3D

volume model. The following sub-sections of Ch. 6.2 describe techniques or concepts that

could improve the current 2D-3D image registration algorithm or expand the applicable

use of the concept of shape distributions for other complex imaging tasks.
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6.2.1 Shape Functions

The algorithm in this thesis may be extended to explore the effectiveness of using

additional or alternative shape functions to evaluate the domain space. Alternative shape

functions can provide additional information that may have been lost with the

characterization of images with the current shape function F(I). We did not have the chance

to examine other shape functions beyond the one we defined and tested. There is high

potential of increasing robustness and accuracy of this algorithm by combining the use of

several shape functions.

6.2.2 Additional Degrees-of-Freedom

This algorithm has the potential to identify more complex transformations with

more degrees-of-freedom. The investigation of this algorithm on systems with more

degrees-of-freedom may be geared for non-rigid bodies or for images that are skewed and

stretched.

6.2.3 Additional Medical Applications

This algorithm proves the potential for the use for other medical image modalities.

X-rays and DRRs are the most frequently used image modalities for stereotactic

radiotherapy, so this algorithm can be further developed to serve as a method for

registering x-ray and DRRs. In our initial investigation of x-ray-DRR image registration, the

process of registering proved to be extremely difficult, possibly due to differences in the

nature of differing pixel intensities.

There is room for future research in applying shape distributions to register other

image modalities such as MRIs and ultrasounds. Additionally, the algorithm is not
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restricted to the domain of the brain and further research may be conducted on the

alignment of other body parts. Because there is no prior knowledge set built into this

algorithm, the sparse base set can be variable depending on the input images.

6.2.4 Code Optimization

The current Matlab code has not been optimized for speed. It is possible to rewrite

this current algorithm with more efficient methods and optimizing especially at calculation

bottlenecks [36]. It would be of interest to compare our current algorithm with the

algorithm after it is optimized with the fastest implementation techniques.

We found that the shape distributions worked best on our datasets when the

number of bins of the shape distributions is set on the order of 1/200th of the full pixel

intensity range. We found that in general, increasing the bin size decreased the correlation

between the 2D and 3D images thereby decreasing the robustness of the algorithm, while

decreasing the bin size caused false positives in transformation matches. There is also the

opportunity to investigate selective point sampling to provide sufficient information in

characterizing the image without compromising information retained.

6.2.5 Optimization Method

The covariance function is very sensitive to the topology of the shape distribution.

The sample statistic cross-correlation coefficient r is not robust, so its value can be

misleading if outliers are present [37]. It may not be the best optimization method for this

scenario. Other methods should be explored to match the needs of the data type and

output. Additionally, strategic evaluation criteria will address the degeneracy of the

solution set.
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6.2.6 Precision

This algorithm indicates the potential for nearly infinite precision and accuracy of

patient positioning. The shape distribution currently holds to sub-pixel accuracy, as based

on pixel interval base transformations. The fourth set of experimental results shows the

potential for further precision and accuracy by improving the optimization algorithm for

analysis of interpolation and extrapolation of the linear relationships developed between

the correlation matrices.

6.3 Concluding Remarks

In the initial era of patient positioning for radiation treatment planning, attempts to

verify beam alignment with target volume were limited by the poor quality and the

cumbersome use of radiographic films [19]. Currently, patient positioning is a challenge

during radiation therapy treatment as it is a process that takes a significant amount of time.

The shape distribution 2D-3D image registration method establishes a novel way to

compute efficiently and accurately the relative 6-DoF transformation that maps the pair of

2D orthogonal images to the 3D volume base set. This technique avoids many of the issues

related to current image registration methods. The method has the potential for application

for other image modalities in image-guided patient positioning. With future research, the

shape distribution method can become even more efficient and robust, and provide near

infinite precision. We have achieved the main objective to introduce an accurate, fast, and

robust patient-positioning algorithm to align the pre-operative information of the

examined patient with rapid pose information of patient in the radiation treatment room.
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Appendix A

Implementation Details

A.1 Base Transformation Set

INIT 2D-CT data
INIT N maximum perturbation for base transformation set
INIT Transformation set of T{N}

FUNCTION base
CALL Generate DRR [17]
GENERATE 3d volume from CT data
FOR each transformation in transformation set

CALL Transform
GENERATE transformations of 3d volume

ENDFOR
FOR each transformed volume

CREATE bi-planar projections of 3D volume
FOR each projection
CALL DataPreprocess
CALL ShapeFunction
CREATE shape distributions for each projection
ENDFOR

ENDFOR
ENDFUNCTION

A.2 Image Data Preprocessing

INIT anatomical range
FUNCTION DataPreprocess

CROP image to anatomical range
CALL FilterImage

ENDFUNCTION

A.3 Transformation

FUNCTION Transform
CREATE translation and rotation transformation matrix
TRANSFORM image by transformation matrix

ENDFUNCTION
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A.4 Shape Function

INIT Isocenter
INIT Bone intensity range
INIT Bin size
FUNCTION ShapeFunction

FOR every pixel in image
COMPUTE Pixel intensity
COMPUTE Distance from pixel to isocenter
IF Pixel intensity is within bone intensity range

INCREASE Count at distance and intensity
ENDIF

ENDFOR
CREATE Shape distribution from count histogram as number of points with

distance and intensity
NORMALIZE Shape distribution

ENDFUNCTION

A.5 Objective Function

INIT P-value threshold
INIT Correlation coefficient threshold
FUNCTION Objective

LOAD Base transformation set
LOAD Input images
CALL ShapeFunction on bi-planar input images
CREATE Cross-correlation matrix between shape distribution of each input

image with those of the base projections
CREATE P-value matrix
GET Transformations of p-value transformations less than threshold and
correlation higher than correlation coefficient threshold

ENDFUNCTION

A.6 Optimization

INIT transformation criteria
INIT rotation criteria
FUNCTION Optimization

CALL Objective
FOR each projection

LOAD Correlation matrix
GET Gradient of correlation matrix
IDENTIFY potential translation transformation matches
IDENTIFY potential rotation transformation matches

ENDFOR
FOR each degree-of-freedom

DETERMINE transformation that optimizes objective function
ENDFOR

ENDFUNCTION
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Appendix B

Base Volume Set

Figure B-1: Transformations T imposed on V, coronal projection. Layout conforms to
T established in Table 4-1.
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Figure B-2: Shape distributions SVe evaluated as F(Vc), coronal projection. Layout
conforms to T established in Table 4-1.
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Figure B-3: Transformations T imposed on V, sagittal projection. Layout conforms to
T established in Table 4-1.
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Figure B-4: Shape distributions SVs evaluated as F(Vs), sagittal projection. Layout
conforms to T established in Table 4-1.
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Appendix C

Shape Distributions

Additional shape functions proposed by Osada et al. are shared below [30].

A3: Measures the angle between three random points on the surface of a 3D model.

D1: Measures the distance between a fixed point and one random point on the surface. The

centroid of the boundary of the model is treated as the fixed point.
D2: Measures the distance between two random points on the surface.
D3: Measures the square root of the area of the triangle between three random points on

the surface.
D4: Measures the cube root of the volume of the tetrahedron between four random points

on the surface.

A3 D1
3

D3 D4

Figure C-1: Five simple shape functions based on angles (A3), lengths (D1 and D2),
areas (D3), and volumes (D4).

Some of these shape functions
distribution based image registration

may be adapted for use in extending the shaped
algorithm.
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Appendix D

Small Angle Rotation

We approximate the transformation T as small-scale perturbations. In the following
calculations, we prove the parameterization of rotation transformations with the
equivalent angle-axis notation.

The rotation operator is represented as a 3D vector r where the length of the vector
equals the rotation angle , n^ is a unit length vector, and the direction represents the
rotation axis.

6 = sqrt(r2+ r/2+ rZ)

Thus, with the application of Rodrigue's formula, the rotation of a given 3D
coordinate point is:

R(r,x) = x * cos(O) + h(h- x)(1 - cos0) + sin 0(n- x x)

And for small angles 6 <<1, the rotation can be approximated as:

R(r,x) - x + 6(n x x) = x + r x x
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