
ARCHIVES
Data Collection Framework for Vehicular

On-Board-Diagnostic Systems

by

Chenxia Liu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2011

@ Chenxia Liu, MMXI. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document

in whole or in part in any medium now known or hereafter created.

Author ................ ................
Department of Electrical Engineering and Computer Science

CbCertified by..
4,

'(7 /
Certified by.

6

August 19, 2011

Hari Balakrishnan, Professor
Thesis Supervisor

August 19, 2011

....... .... ..... .... .... ....

Lewis Girod, Researcher
Thesis Co-Supervisor

August 19, 2011

Accepted by .....
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

-'



2



Data Collection Framework for Vehicular

On-Board-Diagnostic Systems

by

Chenxia Liu

Submitted to the Department of Electrical Engineering and Computer Science

on August 19, 2011, in partial fulfillment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Most modern vehicles contain an On-Board-Diagnostic (OBD) system that can col-

lect a wide range of system data from the vehicle. In aggregation, such data could

be applied towards solving the problems of accident prevention, vehicular safety, and

driving efficiency. In this paper, we describe our design and implementation of a dis-

tributed vehicular data collection framework for running applications that aggregate

customized OBD data on demand.

Our framework is low-capital, low-maintenance, and flexible enough to handle

several types of data requests. In our evaluation, the framework achieves within 2%

accuracy for data collection at 1-second interval when compared to an externally

calculated benchmark. We also simulate data collection under non-ideal conditions

and methodically characterize the drift of accuracy as total percentage of packet loss

rises for different patterns of data loss; in our experiment, we conclude that for our

sampled data, dropped blocks have the greatest impact on accuracy.
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Chapter 1

Introduction

Many modern vehicles now have the capability to measure and monitor an extensive

set of their functions through On-Board-Diagnostics system. On-Board-Diagnostics,

or OBD for short, can be used to collect real-time data from a vehicle, such as fuel

pressure or current speed. More commonly, it is used in checking the Diagnostic

Trouble Codes (DTC) after something goes wrong; these DTCs store snapshots of

problem-causing states for later diagnosis.

As mentioned, the predominant use of OBD is in diagnosing problems with a

vehicle after a malfunction. However, this is a very limited use of such data, and our

goal is to increase the availability and accessibility of OBD data, so that it can be

used more easily beyond the scope of diagnosing problems that have already occurred.

In terms of prevention, statistical trends of driving or usage trends could be very

applicable in guiding prevention and safety measures. Data such as fuel consumption

could even be correlated with GPS to help determine route fuel efficiency.

To this end, we have designed a low-capital, low-maintenance framework that can

collect a flexible range of OBD data from vehicles. Via this framework, the remote

server can send data requests to our low-cost device physically plugged into a vehicle's

OBD port and receive logs of custom-requested data. A smartphone acts as a proxy

for the server to carry out lower level requests, so a continuous connection between

server and OBD device is not necessary.
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1.1 Goals

Although projects using and collecting OBD data from vehicles are not uncommon,

our goals are specifically to define a low-cost, low-capital model for running vehicular

sensor applications.

In this project, we incorporate a custom-designed OBD interface device, a small

unobtrusive "cap" that plugs into the vehicle OBD port for collecting OBD data.

This "cap-device" communicates its data through bluetooth, and can provide sensor

data beyond OBD, such as accelerometer data, and possibly GPS depending on cost

and design. This device is small and inexpensive, and its main functions are running

simple calculations and querying the OBD system.

In this framework, our cap-device uses cheap bluetooth networking to offload data,

and the system works in the face of discontinuous network availability. The cap-device

fulfills its basic duties of collecting sensor data, but offloads more expensive functions

such as GPS readings and user interface to the phone. We leverage existing networks

and available resources to keep the system simple, general, and modular, and the

result is a framework flexible enough to run various data mining applications.

1.2 On-Board-Diagnostics

On-Board-Diagnostics (OBD) is a standardized system of data codes and communi-

cation protocols for collecting data on different vehicular functions from the vehicle's

computer systems and data-logging sensors.

Accessing a vehicle's functions via OBD can be done by sending requests through

a 16-pin connector in the vehicle. A request is comprised of a mode specification and

a "parameter identification number" (PID). The mode can be one of nine different

modes, the two most common being current data mode (for data logging) and freeze-

frame mode (for data on an error-causing state). The PID is a two-byte code that

specifies what type of data to collect, for example vehicle speed, air flow, throttle

position. The OBD standardization only extends to a certain set of PIDs, however,

14



and different manufacturers often have their own PID assignments for many other

PIDs.

Figure 1-1 shows a byte-level OBD response returned by an OBD system data

logs that we collected from a hybrid Prius.

7EA 03 41 GD 23 00 00 00 00 7E8 03 41 GD 23 00 00 00 00

Figure 1-1: Sample OBD protocol response that includes the OBD data from both
the engine powertrain unit (7E8) and the hybrid engine unit (7EA) in a single OBD
response. For each of the ECU responses, each byte after the ECU type identifies the
following, respectively: number of bytes of data, mode (4 signifies a response, and 1
requests current data), PID, four bytes of space for data, and an unused byte. [5]

Most modern vehicles have On-Board-Diagnostics systems. Originally, these diag-

nostic systems were designed and implemented by manufacturers themselves to test

their vehicles for conformity to the Environmental Protection Agency (EPA) emission

standards, and consequently, the signalling protocols and the codes specifying data

varied greatly between vehicle brands. However, in the past few years, many com-

ponents of the on-board-diagnostic systems have been greatly standardized: physical

connectors and pin outputs, signalling protocols to and from the vehicle's OBD port,

and messaging format of data requests and responses. In fact, all US vehicles built

after 1996 are required to implement the OBD-II system, which specifies a set of

the aforementioned standards, for monitoring emission control components. In 2005,

the Environmental Protection Agency passed regulations requiring commercial ve-

hicles of model year 2008 (and onwards) to support the OBD-compliant Controller

Area Network (CAN) signalling protocol defined by ISO15756-4.3 [1], There are still

many proprietary manufacturer codes, but the benefit of these standardizations is

that many types of vehicle system data are now easily and publicly accessible.

1.3 Bluetooth

Our design uses a bluetooth connection to send data from a powered device in the

vehicle to a smartphone, and we chose to use bluetooth because it requires little power

and operates based on proximity.
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Bluetooth is a communication protocol standard for connecting devices, specifi-

cally those within close range. In the bluetooth protocol, devices can be connected

as slaves or masters; a master initiates a connection by sending a paging request to

the slave's address, and the slave responds to the request. Bluetooth was designed for

short-range, limited-battery-powered devices, and it consumes on average 1-35mA, as

opposed to Wi-Fi, which requires between 100-350mA.

In terms of adapting to noise, Bluetooth uses a fixed signal rate and several coding

rates. It does suffer from interference when sharing bands with other RF devices; to

cope with this, the Bluetooth protocol involves frequency hopping, to find unused

frequency bands. [6].

1.4 Outline

Chapter 2 discusses the highlights of previous work done in the area of OBD data

collection. Chapter 3 describes the design and the main components of the frame-

work, as well as the authenticity issues related to deployment and the extensibility

of the system. Chapter 4 details the implementation of the framework as well as the

applications that we deployed on the framework. Chapter 5 analyzes the data col-

lected by the applications and discusses the effectiveness of data collection methods

on the framework, and we present our conclusions in Chapter 6. Chapter 7 suggests

improvements and possible future directions for the framework.
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Chapter 2

Related Work

Using OBD to collect data from a vehicle's internal sensors is by no means new.

Manufacturers used built-in diagnostics tools to test their vehicles before the 1990

Clean Air Act Amendments mandated the OBD standard [2]. Commercially, de-

vices are available for reading OBD data from vehicles, including hand-held devices

with displays that allow users to read Diagnostic Trouble Codes from their vehicles.

ScanTool is another product that can be plugged into the OBD port of a vehicle and

then connected to a laptop, at which point users can log or view values calculated

from the car's OBD responses using open-source or commercial software.

Research groups using OBD data have often used commercial devices to collect

readings; for example, a 2005 dynamic speedometer project used a commercial ScanT-

ool device to collect real-time velocity of cars, which was then used in a redesigned

version of the dashboard and speedometer [9].

Another project, VEDAS, implemented a distributed data stream mining system

designed to monitor the health of fleets of vehicles for maintenance [8]. In the VEDAS

project, PDA-like handheld devices with "appropriate middleware" were connected

as "scantools" to the vechicle's OBD port to collect and stream data. One main goal

of the project was to collect and analyze vehicle data while remaining within certain

resource constraints. Specifically, the data mining system design focused heavily on

optimizing data stream analysis and minimizing data storage and mining software

footprint. A lot of attention was paid to local data clustering and filtering methods;
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these allowed bandwidth to be saved by only sending "atypical" results. Alternatively,

some data was simply analyzed on board the device.

The VEDAS project also used OBD data to profile human driving behavior, using

speed and acceleration, for example, to detect possible drunk driving.

The CarTel project [4], as a distributed vehicular sensor network, was a major

motivation for this project. The CarTel network consists of a fleet of vehicles that

are equipped to collect GPS, OBD, WiFi, image and other sensor data. Queries

for data collection are sent from a central location, and the individual nodes handle

the heterogenous data and delivers it back through intermittently available networks.

CarTel handles and collects a huge range and quantity of sensor data, and uses a

variety of methods to send it back to the server.

Our project covers a much smaller scope than the CarTel project, but our goals

are a different: we wanted a remote sensor system that is simple, low-cost, and

easy to incorporate. This system is very much geared towards collecting vehicular

data in an inexpensive and scalable manner. Lowering the cost and complexity of

necessary equipment greatly lowers the barrier of entry and promoting adoption of

the framework. As part of the project, we also have designed a query system that is

simple and flexible, with the goal of making it possible to quickly create customized

queries and data mining applications.

18



Chapter 3

Design

The three main components of the system are a cap-device (described in more detail

in 3.3.3), a smartphone running a mid-client app, and the remote server. In general,

requests for data flow in the direction of server to cap-device, and data flows in the

opposite direction.

In a fully utilized system, the server component might be responsible for storing

and/or analyzing the data for every vehicle, so in terms of scalability, it cannot operate

on the level of individual OBD requests, sending each request through a smartphone

to a cap-device. In our system, the components handle data at different granularity

and communicates with their hierarchial neighbor component with different protocols.

In the following sections, we describe the design goals, as well as each component

in more detail.

3.1 Design Goals

In designing the framework for collecting OBD data, we aimed for a system that

was low cost, extensible, and low maintenance. Our query framework for describing

requests is also simple but extensible, and is narrowed down to provide support for the

three most common types of data requests: requests for single pieces of data (checking

a state), continuous requests (monitoring a value over time), and cumulative requests

(such as mileage). Additionally, when the phone is present, the model supports
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"tagging" of OBD/accelerometer data with location data requested from the phone.

This allows framework to collect information-rich data using only simple requests.

3.2 Operational Overview

The following is an overview of a how the system works as a whole, and how the

components interact with each other. The main components of the design and the

communication links are shown in Figure 3-1.

cellular GPS WiFi
location bcation

user (web)

event logging '-
data application j4Buoolh MF3G

Vehicle 0-
CAP device Mid-Client

Cce|-- device Server in-nc-
strage company

08D
bluetooth

Query Layer

Figure 3-1: Overview of components in framework design, including available sensor
data and communication links.

The server is the origin of remote sensor requests, in addition to running a variety

of server-side processes. A server posts request-messages for phones running the "mid-

client" application to pull. At the same time, it listens for incoming messages and

handles the new data.

Before the first use, the user explicitly gives the cap-device permission to connect

to the phone by pairing the phone with the cap-device over bluetooth. After that,

the phone needs to have bluetooth enabled, but it need not be discoverable. It will

be running the mid-client app, and optionally may have additional sensors, such as

GPS, enabled.

When powered up, such as during vehicle start-up, the cap-device starts up into

autoconnect mode and attempts to make bluetooth connections to phones that have

been paired to it. After establishing a connection, the cap-device can optionally

20



initiate a handshake exchange to verify that it is indeed connected to a "mid-client"

application, as opposed to a non-framework device.

After connection, the phone will poll the server for any message-requests that it

needs to send, and it will send these to the cap-device over bluetooth. Otherwise, the

phone waits for data from the cap-device, which it will store these locally in memory,

periodically writing these out to file or sending them to the server.

Once the cap-device is connected, if it receives any message requests, it will send

the necessary requests for OBD data to the appropriate application thread, also

running on the cap-device. Each application thread handles a different type of data

request (single, continuous, or cumulative data), and there may be several requests

that an application thread needs to handle, depending on the type of vehicle process

or collection interval that is specified. The application threads are responsible to

continuously polling for OBD data, and they take turns sending the necessary OBD

requests to the vehicle and receive responses.

Depending on the type of application, the thread may modify some local state

or pass outgoing messages to the bluetooth thread, which will get sent to the phone.

Outgoing messages can be OBD data that the phone has requested or requests to the

phone for sensory data for "tagging" that the cap-device cannot collect locally but is

available to the phone, such as GPS, WiFi location, or cellular location. In the case

that the phone is not available, event logs will be written to file, and data will remain

untagged.

If the phone disconnects from the cap-device, the cap-device re-enters the loop

where it searches for a paired device to connect to.

3.3 Architecture

3.3.1 Remote Server

The server is the location where data is ultimately stored and then used by various

services server-side. For example, the data can be processed by analytics services, or

21



made available to end users via a web interface, or used by an insurance company for

gauging driving safety and then providing incentives for safe driving. The server is

also the point of origin for data requests on the framework. Server implementation

can vary as long as it follows the communication protocols.

The server does not operate on the level of individual OBD requests, but rather

at the level of describing what type of data is wanted. The protocol of outgoing

packets is of the form <PID, mode, collection interval, action, request ID>. The

mode refers to one of the three data collection modes of single, continuous, and

cumulative; collection interval is the time between collecting data points, which is

relevant only for continuous or cumulative collection; an action command details an

action to be taken, such as start or stop, for the continuous and cumulative modes;

the unique ID is assigned by the server and used by the server to identify the response

to a particular request. The data stored on the phone will be dumped to the server

when the phone disconnects from the cap-device. Additionally, the packet can be

extended to include auxilary phone sensor data that might be desired.

Incoming packets to the server are dumps of data, and the server stores and

processes them.

At the moment, there is no capability for a server to target a specific vehicle with

a message-request, but this feature could be added by linking the serial number of

the OBD cap-device to the vehicle during installation, and using the serial number

to uniquely identify the vehicle. Server request-messages would then include a serial

number if they were meant for a particular vehicle, and the phone would also selec-

tively poll the server for requests specific to the serial number it receives from its

paired cap-device.

3.3.2 Smartphone

Since smartphone numbers have been rising dramatically over the past few years,

and, according to some sources, are nearing 20% of cellphone sales [10], we decided

that the increasing presence of smartphones makes them an appropriate device to use

as a piggyback middle component, bridging the server and the cap-device to provide
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network access to the cap-device. Another benefit of smartphones is that code and

functionality updates are easier to send to smartphone applications, as opposed to

the difficulty of deploying new code to a remote microcontroller device.

The smartphone connects to the server via the phone's data connection or through

wifi hotspots. It pulls data-requests from the server that will be sent to OBD devices,

and it sends data dumps to the server when the server requests it, or when it loses

connection to the cap-device. The message sent to the server includes the request ID

and vehicle ID in the packet so the server can identify the data.

For connecting to the cap-device, we use bluetooth for two reasons: 1) it is rela-

tively low-power for a passive, listening device, and 2) the user will frequently be in

close proximity to their vehicle (and the cap-device) during driving trips. Before the

first use, the user needs to pair their smartphone to the cap-device, to establish the

bluetooth key exchange.

The phone will be running a "mid-client" application in the background, which

waits passively for a cap-device to connect via bluetooth. Once it connects to a cap-

device, active server requests will periodically be sent to the cap-device. The protocol

for packets from phone to cap-device will include a PID, collection mode, the interval

between data points, a command (if relevant), and the ID designated by the server

for this request. Additionally, the phone will send period requests for the cumulative

data points, because those will not automatically be sent by the device.

Data that is sent from the device to the phone is stored in memory, and periodically

dumped to file, to be sent to the server on request or after an extended disconnect

from the device.

3.3.3 Cap Device

The cap-device is a low-cost device that is small and unobtrusive, and can be plugged

into a vehicle's OBD port. A prototype is currently being developed, and the relevant

features include a microcontroller, and accelerometer, and a bluetooth antenna; GPS

is also being considered, but as mentioned before, the cap-device may utilize the

phone's GPS. The primary function of the cap-device is to send queries to the vehicle
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OBD and do the minimal calculations required for collecting cumulative data.

Since the device is still in development, we decided to use a simulation in place of

an actual cap-device. This has the added benefits of simplifying testing and deploy-

ment, and allows us to avoid prototyping on a microcontroller. Our substitute for an

actual cap-device is a C-code simulation that runs on a laptop and has access to a

low-level bluetooth device. The data for the simulation comes from a log of actual

data that we collected using an off-the-shelf scantool.

The cap-device component does not have power constraints, because it is powered

through pin in the OBD port. To this end, it takes the role of the bluetooth client

and periodically attempts to connect to "mid-client" apps that have paired with it

and are within bluetooth range.

The cap-device collects data that has been requested by the phone and either

stores the result of a cumulative calculation or sends data back across the bluetooth

connection to the phone. The response protocol consists of sending the PID, the

server-assigned ID, a timestamp, and the data.

3.4 Security

Security in this data-collection framework is not fully implemented, but we feel it

is important to point out possible security vulnerabilities, as well as provide at least

partial solutions to these problems. Here we provide a list of security issues we believe

are important and possible aproaches.

1. Unauthorized removal of cap-device If the framework is used in a setting

that involves monitoring of a particular vehicle, such as in an insurance incentive

program, it is important to be alerted if the device is removed and plugged into

a different vehicle. One approach would be to send the Vehicle Identification

Number (VIN) in messages and check server-side that the serial number of the

cap-device sending the message is linked to the vehicle VIN in the messages.

However, if the cap-device is actually plugged into a device that simulates the

OBD of a vehicle, VINs can be falsified. For this case, we have considered using
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some sort of unique (physical) characteristic of a vehicle for identification; for

example, the pattern of vibrations detected by the cap-device accelerometer

during ignition might provide a unique fingerprint of a vehicle.

2. Data authentication External sources may try to spoof data, so we need

to verify that data is only originating from and being modified by framework

components. First, this involves mutual authentication of components when

they pair. This can be done through a software handshake, or by requiring

the user to have physical access to the device on the first pairing, for example,

entering a serial number visible on the cap-device into the mid-client app.

Additionally, message authentication codes (MAC) should be used at each step

where data is changed. Then server side, the chain of modifications can be

verified as being made by trusted components. This also helps with message

loss or corruption during transfer.

3. Data encryption Certain cases also exist where data is sensitive and needs

to be transmitted with encryption. This data will likely not need to be pro-

cessed by the phone, so end-to-end encryption will be used to protect the data

in transmission. Should the data need to be tagged, the cap-device can re-

quest additional sensor data from the phone, tag the relevant data, encrypt the

packets, and then send them back to the phone to transmit back to the server.

In general, the two main areas of security that should be addressed are data

privacy and integrity, and authenticity of identity. We have discussed a few possible

areas that we think are necessary before commercial use, but these are by no means

complete.
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Chapter 4

Implementation

This chapter describes the prototype implementation of our design. In order to speed

implementation of a prototype and make it more feasible, our implementation differs

somewhat from the design. The prototype we implemented is shown in Figure 4-1.

Vehicle Logs - Bluetooth , Server API
Veh l L(WiFiI3G)

Mid-Client
device

Laptop
CAP simulation

Figure 4-1: Overview of components in prototype implementation of design.

First of all, we broke the cap-device component down into a few parts. At the time

of our implementation, the hardware of the cap-device was still in develpment, and

existing versions of it were running legacy code for communicating with OBD that

we plan to discontinue using. Instead of testing and deploying cap-device code on

the microcontroller of an alpha prototype, we developed cap-device code on a Linux

laptop. To simplify the testing further, we collected OBD trace data from several

runs in a vehicle and used those traces to drive our testing. In conjunction with a

USB bluetooth device, this makes up the cap-device component of our design.
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We also implemented a message API between the mid-client and server. In our

implementation, we use the smartphone as both the mid-client device as well as a

simple server component. This means the smartphone generates the requests for data

and handles the endpoint for cap-device data, in addition to communicating with the

cap-device component via bluetooth.

In the following sections, we describe our implementation, beginning with the data

end of the system.

4.1 Pre-Collected Data

To drive our testing, we collected data beforehand from a vehicle and then used the

logged data while running the framework. We used a commercial ScanTool device

and OBDWiz software to collect OBD data; the vehicle driven was a Prius. Our

data consists of OBD data logs collected while driving in the area around Cambridge,

Massachusetts, near MIT. We collected PID 13, velocity, and our sampling rate was

several times a second. The data collected was in the OBD format of raw bytes, as

previously shown in Figure 1-1, and includes the byte readings from both the engine

control units (ECU), hybrid and powertrain.

Before running the data collection framework, we preprocessed the log into a

linked list in memory. This linked list was passed to a query thread, which acts as

an OBD system black box, returning data when it is requested in real time via an

OBD query API. This makes it easy to replace the query thread at some point in

the future with an actual thread that queries for and receives OBD data in real time

from a vehicle.

4.2 Cap-Device Code Structure

The code that handles the data collection and bluetooth sending of the data is writ-

ten in C, and its functionality is broken up into three main modules: the query

module, bluetooth module, and the applications module. As mentioned before, the
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query thread acts as the black box for requests to the vehicular OBD system. The

bluetooth module deals with reading input sent to the bluetooth device and writing

out responses as well as data packets through the bluetooth device. The applications

module deals with the three types of collection mode: single, continuous, and cumu-

lative. Fig 4-2 shows the interactions between the code modules on the cap-device.

new application
request

qu data-request

Query Application Bluetooth
Thread Thread Thread

OBD response OBD 
response

(preprocessing) Queu

Logs

Figure 4-2: Code structure of cap-device, detailing data flow for different types of
data requests.

4.2.1 Query Thread

The query thread acts as a vehicular OBD system, and has a lock-protected, single-

item queue from which it processes requests added by applications module threads,

as well as a lock-protected single item response queue. Requests sent to the query

thread include a PID and a conditional variable for awakening the requesting thread

when a response becomes available. A response contains a timestamp and between

one and four one-byte data values.

The query thread starts by pre-processing the logged data from xml form into a

linked list of OBD entries. Each entry contains the following data: PID, timestamp,

OBD data string.

The goal of the query thread is to stand in for an actual OBD device, so we try

to return data that realistically corresponds to real request time, as observed by the

app threads that are making requests. To do this, the query thread takes a reading

of system time every time it receives a request and calculates the difference in time,

d, since it last received a request; then, the query thread fast-forwards through the
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linked list of preprocessed OBD data to the next entry with a timestamp that is at

least d after the last entry it returned. The query then responds to the requesting

thread with that OBD data entry and advances its data linked list by one.

Requests can be sent to the query thread by first locking the query thread's

response queue, then locking the query thread's request queue. Then, the request is

copied into the query request queue, and a flag is set to alert the query queue that

an item needs to be processed. The requesting thread then conditionally waits on the

query thread. When the query thread the query thread has "sent" the OBD request

and "received" a response, it clears its alert flag and copies the OBD response into

its response queue and wakes the waiting thread.

When the query thread reaches the end of its data, it signals the end of its data

by returning -1 in the timestamp field of the response queue.

4.2.2 Bluetooth Thread

The bluetooth thread handles all communications through the bluetooth hardware.

Other threads can send messages via the bluetooth thread by adding their message

objects to the message queue of the bluetooth thread.

The cap-device is powered by a pin from the OBD port, so it starts up when the

vehicle does. Once started, the bluetooth thread handles all bluetooth-related events,

such as device pairing and connecting, incoming messages, and sending messages. It

has two main states, unconnected and connected, with respect to a mid-client app.

Hardware

The specific bluetooth hardware we use is the Infineon eBMU BlueMoon PMB 8753/2

radio chip [7], which is compliant with standard Bluetooth 2.0. The device implements

the Serial Port Profile (SPP) so it can be accessed as a serial port; its communication

protocol is the AT command protocol.

The device we chose to use is is fairly standard and many chip components with

the same specifications are available; this should make a port of the simulation code
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to an actual prototype straightforward.

Functionality

The bluetooth hardware implements the AT command protocol, and after being pow-

ered, the device requires some set-up. The initialization AT commands sent to the

bluetooth device will reset the device, set up bluetooth PIN security, make the de-

vice discoverable, register for the local serial port service, and set up auto-connect

for connection requests. After the hardware is initialized and the cap-device is made

bluetooth-discoverable, the bluetooth thread enters the unconnected loop. The thread

breaks into the connected loop when it makes a connection with a device. If the blue-

tooth device encounters an error state and sends back error messages, the cap-device

code will reset the connection to the hardware and re-initialize it; it then enters into

the unconnected loop.

In the unconnected loop, the cap-device waits for a phone to pair over bluetooth.

If a bluetooth device tries to pair to the cap-device, the unconnected thread will

accept the connection and then (optionally) initiate a handshake with the connecting

device. The device is then connected to, as well as added to the "paired devices" list

of the bluetooth thread.

If no devices pair, the cap-device will periodically pick a bluetooth address of a

phone from its list of paired devices and broadcast a bluetooth request to connect to

that bluetooth address.

Once a device is connected, the cap-device enters a connected loop during which

it listens for messages from the phone and also sends out messages from the queue it

shares with the application threads.

The cap-device expects and handles the following types of incoming messages in

the connected state:

1. Incoming Request The format of incoming messages from the phone is a

14-byte string as depicted in Figure 4-3. The first three bytes are a header

string "MSG". The rest of the bytes in order are a 1-byte collection type ("0"
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for single, "1" for continuous, or "2" for cumulative), a 3-byte PID, a 3-byte

server-assigned request ID, a 3-byte interval, and a 1-byte command (for the

different commands in the continuous and cumulative types of collection). All

the numerical values are represented as ASCII strings, as opposed to binary

values.

MSG[3] type[1] PID[3] ID[3] interval[3] cmd[1]

Figure 4-3: Format of message protocol from phone to cap-device.

The message could certainly be compressed further in size by using a binary rep-

resentation, but for simplicity of this implementation we used ASCII characters

for each message component.

2. Pairing Request This request is handled the same way as in the unconnected

loop; an optional handshake may occur, and the connecting device's bluetooth

address is added to the "paired devices" list.

3. Disconnect The cap-device code will break out of the connected loop and re-

enter the disconnected loop, where it will try to initiate connections to paired

devices.

4. Error states The PMB 8753/2 bluetooth device will return "-1" through the

serial port connection if it encounters an error. At that point, the cap-device

will break out of the connected loop and jump to the re-initialization point near

start-up.

4.2.3 Application Threads

The cap-device also runs three application threads, one for each data collection mode:

single, continuous, and cumulative. Each thread has a lock-protected input message

queue where it receives requests to process from the bluetooth thread.

To send an OBD request, the application thread locks the query thread's response

and request queues, sets a flag to alert the query thread to a pending request, and
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then sleeps until it is woken by the query thread with an answer. The application

thread then copies the response and unlocks the request and response queues.

The single-app thread is very simple and its only data structure is an incoming-

message queue because the thread only has to collect PID data once for each request.

The single-app loops in checking its queue for requests; if it finds a request in its

request queue, it sends an OBD request for that PID to the query thread. When

it receives a response, the single-app thread enqueues an outgoing message to the

bluetooth thread's queue that includes the timestamp, the server-assigned ID, and

the data bytes (up to four).

The continuous-app thread collects data for a PID at specified intervals, and it

can receive two types of messages: a start request, to begin data collection for a PID,

and a stop request, to discontinue data collection for a PID. Unlike the single-app,

the continuous-app has to keep track of PIDs that it receives collect requests for. The

data structures of the continuous-app are an incoming-message queue, a time counter

for handling intervals, and a linked list of continuous-requests. A continuous-request

item contains a PID, a server-assigned ID, a frequency interval, and a time stamp of

the previous system time data had been requested.

The continuous-app checks its incoming queue at the beginning of each loop. For

a start request, it checks its linked list for a duplicate of the requested PID. If the an

entry with the same PID exists in the linked list, the entry gets overwritten; otherwise

a new entry is added. For a stop request, the matching PID is removed from the linked

list.

After checking its queue for new requests, the continuous-app thread traverses

the linked list of continuing requests. A item is ready to have data collected if the

difference between its previous collection time and the current system time (checked

by calling time(NULL)) is greater than the interval specified by the request. If so,

the thread updates the collection time of the item and sends a request to the query

thread for the item's PID; when it receives a response, it enqueues a message to the

bluetooth queue. Otherwise, the thread continues to the next request item.

The last application thread, the cumulative-app thread, is very similar to the
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continuous thread. However, it does not enqueue a response to the bluetooth thread's

queue every time it receives an OBD data entry. Also, in addition to start and stop

requests, the cumulative application also has a dump request, which requires the

thread to respond with the value of the corresponding PID.

Like the continuous-app thread, the cumulative-app thread also starts off by check-

ing its queue and adding or removing items to or from the requests linked list if

necessary; the main difference is that the thread does not add a message to the blue-

tooth thread's queue every time it sends an OBD query, but rather calculates a new

cumulative value and stores that in the PID item's linked list item. The cumulative

value calculation and the relevant data structure is presented in the code snippet in

Figure 4.1.

1 struct list-item{
2 int pid;
3 int intv;
4 int id;
5 double time-counter;
6 double cumu-val; // for cumulative only
7 double data..time; // for cumulative only
8 struct list-item* next;

9 };
10
11 // Increments the cumulative value of a list-item by value* difftime
12 int calc.cumu(int value, struct list-item* item, double time){
13 item->cumu-val += value*(time - item- >data..time);
14 return 1;
15 }

Listing 4.1: The struct list-item is used to track active PIDs in cumulative collection,
and stores the cumulative value of the PID data in cumuval. The function calc-cumu
updates the cumulative value of a list-item.

where item.cumu-value is the item's current cumulative value, item.time.counter

is the previous system time at collection; newvalue is the value just returned by the

query thread, and time(NULL) is a call to get the current system time.

When a dump request is processed off the queue, the cumulative-app thread tra-

verses the linked list to find the appropriate PID item and then adds a message to the

bluetooth thread's queue. The message contain the server-assigned id, the timestamp

of the last data collection, and cumulative value of the item.
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4.3 Smartphone "Mid-Client" Application

For the phone application, we used a Gi Android device running Android 1.6, with

bluetooth capability in the hardware specifications. The original Android 1.6 SDK

did not contain support for bluetooth, so we also used a backport of the Android

bluetooth library.

4.3.1 Threads

The "Mid-Client" application has the job of sending requests to the cap-device as well

as receiving data from the cap-device. The mid-client app has two main threads that

correspond to the state of the device: an AcceptThread that waits for bluetooth con-

nections, and a ConnectedThread that sends requests to a paired device and receives

data. Since we want to conserve power for the user's phone, when unconnected, the

phone does not try to run bluetooth device discovery to find the device and connect

to it; it simply sits passively while waiting for a cap-device to connect to it. The

whole process of connecting to a device is passive for the user's phone, except for

the initial bluetooth pairing that the user initiates from the phone, which sets up the

auto-connect capability on the cap-device side.

4.3.2 Operation

When the mid-client app starts up, it checks that bluetooth is available, requesting

access to turn on the bluetooth if it is not on. Then it starts an AcceptThread, which

simply loops while listening for connect requests from paired cap-devices.

When the phone receives a request, it accepts the connection and opens up an

RF communication socket and subscribes to the serial port service of the cap-device.

Then it spawns a ListenThread a SendThread to deal with the connection. Like the

cap-device code, mid-client can optionally respond to a handshake interaction and

authenticate the connecting device.

In the Java language, InputStreams from sockets are blocking, so we need both
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ListenThread and SendThread to deal with a connection. In our implementation, the

ListenThread receives the data messages that need to be sent to the server, and will

periodically append them to a local file. The SendThread sends requests to the cap-

device using the phone-device protocol, using as the phone-device protocol a message

14-bytes long that starts with a message header "MSG" (see Figure 4-3 for message

structure).

The mid-client app continues to listen for incoming data; if the cap-device becomes

disconnected from bluetooth, the RF communication socket closes and the Connect-

edThread terminates, and the AcceptThread again waits for bluetooth connections.
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Chapter 5

Evaluation

In this section, we evaluate our framework experimentally and characterize data in-

tegrity under different sampling regimes and different data loss characteristics. For

both of these points of evaluation, we use vehicle OBDdata collected from three traces

of a Toyota Prius driving around the Cambridge are; a ScanTool device was connected

to the OBD port to read data. The data was logged using OBDWiz software running

on a laptop in the vehicle, and we received velocity measurements roughly 5 times

per second.

Our goal in this evaluation is to assess the performace of this framework, but this

can only be done in the context of a specific application, for which the accuracy of

an estimate can be computed. For the purposes of this evaluation, we implemented

a simple mileage counting application that works by integrating vehicle speed. We

evaluate the accuracy of this estimate against the ground truth, from the odometer,

across a set of different sampling regimes, and data loss profiling. While this is a very

simple application, we believe that this evaluation methodology can apply equally

well to other, more complex applications.
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5.1 Data Logs

We collected speed traces for three different types of trips, all of duration 10 minutes,

but varying in their velocity profiles. The first trip was through residential roads,

which was characterized by low speeds (-25 mph), frequent stop signs, and areas

of construction; during this trip, we traveled 2.3 miles. The second trip was on a

state route, which was characterized by higher speeds (-50 mph) and stoplights; this

trip covered 3.7 miles. The third trip was on an interstate highway, characterized by

speeds of -70 mph, with no traffic lights, but included patches of construction; the

distance traveled was 9.2 miles.

We used these three logs of speed data in our experimentation and analysis, and

present the speed traces of the trips in Figure 5-1.

Vehicle Speed Trace per Trip

120 IResidential (2.3 mi) +

State Route (3.7 mi) x

100 -t Interstate (9.2 ml)

E
-a
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0
0 100 200 300 400 500

Time elapsed (sec)
600

Figure 5-1: The speed traces for the three trips used in analysis.
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5.2 Framework Accuracy

First, we evaluate the accuracy of data collected through the framework. To do this,

we compare data collected through the cumulative app of our framework to externally

calculated or measured benchmarks. Specifically, we chose to collect mileage because

it can easily be sanity-checked against an odometer reading and can also be simply

calculated through velocity measurements. We chose to use data collected by the

cumulative app because the functionality of the cumulative app is a superset of the

other two methods, and its performance provides implications for the performance of

the other two methods.

5.2.1 Methodology

For each trip log, we began by starting the mid-client app running on the phone and

the cap-device code (reading from the logged data) on the laptop. Once the system

was running, we sent a collection start command from the phone, requesting that the

cap-device cumulatively collect PID 13 (velocity), at a frequency of 1/second. The

cap-device began to make requests to the query thread and received responses in real-

time until the query thread exhausted the available data for the trip (implementation

described under "Query Thread" in 4.2.1). The units of the data collected through the

OBD protocol are in km/h, and these measurements are kept track of cumulatively

on the cap-device in units of km/hr*sec; we convert the final collected cumulative

value to distance in miles. Our final value passes a sanity check when compared with

the trip odometer reading we collected during data logging. We then compare our

cumulative values to the Riemann sum of the data log using all collected points, which

is the closest approximation to the actual mileage that we can attain.

5.2.2 Results and Analysis

The results of the framework-collected data are presented in Table 5.1.

For our real-time data collection simulation, these results show very acceptable
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% Difference
Odometer (mi) Benchmark (mi) Framework Mileage (mi) (framework from

benchmark)
2.3 2.166 2.144 -1.02%
3.7 3.470 3.454 0.46%
9.2 8.778 8.754 0.27%

Table 5.1: Cumulative mileage calculated by cap-device from periodically querying
velocity readings during several trips. This value is compared to a cumulative calcu-
lation over all available data points.

errors for a mileage calculation, demonstrating that our framework is fairly accurate

for 1-second interval data collection under ideal conditions.

One thing to note is that these are relatively short traces that we processed in

our framework, and actual data traces can easily be an order of magnitude longer, in

both time and distance. This trial simply shows that data can be accurately collected

for short trips, which we believe can be extrapolated to longer trips, as long as the

error is evenly distributed.

5.3 Non-Ideal Data Collection

Our second evaluation point is to characterize data as it might be collected through

the framework under non-ideal conditions. In realistic conditions of data collection,

data may be lost in transmission from cap-device to phone, or the phone may not even

be available to offload data. In order to form an idea of how well the collected data

reflects the actual process being measured, we simulated continuous data collection

under the three types of non-ideal situations that we considered most probable:

1. Lossy Data Transmission For lossy data, we ignore possible packet loss that

might occur between phone and server; data is passed through WiFi or 3G for

that connection, and we may rely on the TCP/IP protocol. Data communi-

cation between the cap-device and the phone is sent over bluetooth; while the

bluetooth protocol also implements reliability measures, such as error correction

and frequency hopping [3], packets may still be dropped, due to channel noise.
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Figure 5-2 demonstrates collection with random drops.

Figure 5-2: Example of lossy collection, where packets are randomly dropped with
uniform probability. The black lines represent successfully transmitted packets, the
gray lines represent lost packets.

2. Cap-Device to Phone Connection The bluetooth connection between phone

and cap-device is over RF, and may be disconnected due to interference over

the channel. Additionally, in the case of error, the cap-device code will restart,

temporarily disconnecting it from other devices until it reconnects. This will

result in a brief ga in the data, which can be handled either by dropping the

gap completely and underestimating results, or by accounting for the gap by

making the assumption that the average is estimated using the last measured

value. Figure 5-3 demonstrates discontinuous collection.

Figure 5-3: Example of discontinuous collection, where the connection may be broken
for periods of time, and all packets during disconnects are lost. The black lines repre-
sent successfully transmitted packets, the gray areas represnet disconnected regions.

3. Long periods of Non-Connectivity One possible use case we wanted to con-

sider is the situation where a device lacks phone connectivity for long periods

of time (on the scale of months). In this case, the cap-device does not have an

upload link, and may need to conserve storage space by decreasing measurement

frequency. Although we do not have this sort of dynamic scaling-back imple-

mented, code running on the cap-device could begin to decrease measurement
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frequency the longer the device lacks phone connectivity. Figure 5-4 demon-

strates downsampled collection.

Figure 5-4: Example of downsampled collection, where the frequency of packet trans-
missions is decreased; no packets are dropped. The black lines represent successfully
transmitted packets.

We again used velocity data in characterizing non-ideal circumstances, but this

time we were interested in the continuous collection case, because non-ideal conditions

will have the most observable effect on these results. Our goal is to characterize how

noisy collection affects the collected results and in order to assess the maximum

amount of disruption that would be tolerable. Since all three of our data traces have

a duration of 10 minutes, we will compare the different conditions by dropping equal

amounts of data, e.g., some percentage of the samples will be dropped. This way, we

will be able to observe the normalized effect of different packet loss conditions.

5.3.1 Methodology and Results

Characterizing data collected under a wide range of non-ideal circumstances would be

infeasible to run on our framework in real-time, and since we were mainly interested in

characterizing endpoint data anyways, we simulated the non-ideal conditions. Using

Python scripts, we sampled directly from the each of the logs and applied filtering

that would simulate our various models of non-ideal data collection. Additionally, we

decided to use 10% as our "acceptable" level of error.

Lossy Data Transmission

We simulated lossy data collection by sampling the velocity every 5 seconds, and

then dropping each measurement with some probability for each trial. Since dropped
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packets were randomly distributed, we ran the simulation four times for each drop

probability trial to mitigate randomized skewing of the data.

We are specifically interested in how drop probability affects the accuracy of the

successfully transmitted data, to the end of characterizing a maximum drop proba-

bility that should be tolerated for a trip. For each run of each trip, we calculated

the absolute value of percent difference of the cumulative value from the benchmark

value. We present this data in Figure 5-5, with the standard deviations of percent

differences for each trial.
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Figure 5-5: Mean and standard deviation of the absolute value of percent differences
of cumulative speed from benchmark, for three types of trips. Plots fraction of data
dropped against absolute value of percentage difference.

We can clearly see the general trend of increasing error and increasing standard

deviation of error as drop probabilities increase, which is expected. Data collected

during interstate travel appears to remain fairly accurate despite large fractions of

data dropped, which may be due to the relatively constant speeds during such travel.
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The wider spread of percentage differences in residential and state route travel can

be attributed to large variations in speed due to stopping, but the cumulative values

remain within 10% of the benchmark value until we reach 60% or 70% loss of total

data. Past this point of data loss, the standard deviation increases significantly,

indicating data loss past this rate yields much less precise and reliable data.

5.3.2 Discontinuous Connection

Our second common case of non-ideal data collection is an inconsistent cap-device

to phone connection, leading to dropped chunks of data due to restarts and dis-

connections. We simulate these temporarily dropped connections by dropping all

measurements in randomly selected 30-second blocks.

For each trial, we chose a total percentage of the 10-minute trip to be "discon-

nected," ranging from 5% to 95%. Then, from the range of data points to be col-

lected, we randomly selected the necessary number of 30-second blocks to drop. We

accounted for the dropped regions in the cumulative calculation by approximating the

speed during the dropped regions as as the last speed reading before a disconnect.

For each "disconnect" percentage, we ran the simulation four times, again to spread

out the effects of the specific traces on the randomly sampled results, and took the

average and standard deviation of the results.

Since our interest lies in the accuracy and precision change as collection condi-

tions worsen, we again took the cumulative value and calculated the absolute value

of its percent difference from the benchmark value for each trial. We present the

average percent difference for each "disconnect" percentage with standard deviations

in Figure 5-6.

Again, we are looking to estimate a maximum tolerable omount of interruption.

From the data, we can see that for state route driving, loss of contiguous speed data

points impacts the percent difference of the cumulative value greater than it does for

the other two types of trips, which we attribute to driving patterns involving stoplights

and longer periods of the vehicle remaining stationary. Interstate and residential
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Discontinuous Collection: Mileage % Difference from Benchmark
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Figure 5-6: Standard deviation of the absolute value of percent differences of cumu-
lative speed from benchmark, across three types of trips. Plots total fraction of data
dropped against absolute value of percent difference, for three trip types.

driving patterns are not as affected by randomly dropped blocks until higher fractions

of total data loss. However, to maintain high levels of accuracy (within 10%), only

low percentages of total contiguous data drops should be tolerated.

5.3.3 Lack of Connectivity

To simulate data collection during long periods of no connectivity, during which the

cap-device might dynamically drop the polling rate to conserve storage, we sampled

from the data of a trip at a set interval for each trial, from 5 seconds to 95 seconds,

increasing by 1 second for each trial. Data loss fraction is calculated as data lost

compared to 5-second interval collection, and corresponded to a range of total loss in

data up to 95%. We present the absolute percent differences in Figure 5-7.

For downsampled collection, the trend of percent error is roughly exponential, and
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Downsampled Collection: Mileage % Difference from Benchmark
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Figure 5-7: The absolute percent differences of cumulative speed from benchmark,
across three types of trips when with decreasing sampling rate. Plots total fraction
of data loss against absolute percent difference for three trips.

percent error stays low (less than 10%) for all three types of routes until about 60%

or 70% of total data loss, which corresponds to an interval of -15 seconds between

collections. The high errors in both the residential driving and state route trips are

likely due to the frequent variation in speed, as well as their shorter trip length (2.3

and 3.7 miles respectively, as opposed to 9.2 miles for the interstate trip), causing

errors to have a larger impact on percentage error. However, even if trip length

increased, it is unlikely that the interval between collections could be increased very

much, as evidenced by the high error rates in discontinuous collection, when 30-second

intervals of data were dropped.
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Chapter 6

Conclusions

Our goal was to provide a flexible OBD data collection framework that was low-cost,

low-maintenance, and was able to efficiently accomodate common types of data re-

quests. To this end, we designed a system for remotely collecting OBD data from par-

ticipating vehicles that met these goals, and I implemented a prototype with reusable

and extensible components. To evaluate the framework, I ran cumulative mileage

requests on the framework to aggregate OBD data, and the framework connected

components automatically, sent the requests for data, and calculated cumulative val-

ues that were very acceptably accurate.

The design of our framework emphasizes low-cost and simplicity in deployment

and operation; we leveraged the existing availability of smartphones and use a low-

power bluetooth protocol for communication. Additionally, at a finer granularity, we

also describe our design of a flexible communication protocol for accomodating many

different types of data requests.

I also simulated non-ideal data collection while sampling from our logged data,

in order to provide a rough characterization of data degradation that might occur

on our framework. For the three types of driving data that we collected (residential,

state route, and interstate driving), we concluded that losing up 60% of data would

still yield fairly acceptable results; with our specific logs, the percent differences of
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our results were less than 10% off from our benchmark values. Figure 6-1 shows the

specific tolerated percentage of data loss by trip and type of degradation.

Tolerated % Data Loss By Degradation Type
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Figure 6-1: For each trip and each type of degradation,
data loss tolerated for the calculated mileage to remain
value.

we see the percentage of total
within 10% of the benchmark

Interstate driving was the most resilient to data drops, likely due to the low

variability in speeds, and state route driving was the most susceptible to error due

to data drop, in the three types of non-ideal conditions that we simulated, likely due

to its high variability in speeds. However, we do realize that this characterization

of non-ideal conditions provides only a loose generalization of accuracy because the

results depend on the specific driving patterns of a trip.

Overall, it appears that a lower sampling rate does not impact the resulting

mileage very much. However, data loss due to disconnects and dropped blocks of

data have a much greater effect, although this is mitigated by keeping a relatively

constant velocity. This means that for the mileage application and other cumulative

value applications, the cap-device needs to be integrating continuously; for continuous
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collection apps, the phone needs to be "usually connected" to receive the data.

The methodology presented in this evaluation can be applied to evaluations of

other applications, in order to compare the performance of an application type under

varied data collection.
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Chapter 7

Future Work

In this project, we created a framework for remote OBD data collection, and the

prototype we implemented and tested was fairly basic. However, throughout the

process, we encountered many possible extensions and improvements for the system,

as well as interesting applications of the system. Future work might include creating

new applications to run on this framework, or improving the accuracy and efficiency

of the framework implementation.

7.1 Applications

On-demand access to OBD data opens up a lot of interesting applications. For exam-

ple, there are many simple and useful applications for monitoring a vehicle's usage;

for example, adding GPS capability to the system could allow correlation of location

to fuel efficiency, which could be aggregated and presented in a form useful to all

drivers. Profiling driving behavior is also a possible application, and such data in

aggregation can help statistically characterize safe versus unsafe driving.
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7.2 Design and Implementation

In terms of designa and implementation, we encountered several small changes that

could be made to improve efficiency and accuracy of our designed framework.

For instance, we found that a more dynamic approach to data collection (based on

speed, or acceleration, for example) would have likely resulted in more accurate data.

Residential area driving, for example, requires more frequent data collection due to

frequent stops as opposed to highway driving, where the speed is mostly constant and

usually varies very gradually.

Additionally, during our long-disconnectivity use case, we proposed an extra fea-

ture for dynamic scaling back of measurement frequencies depending on time since

last data offload. This has not been implemented, but would be useful for this specific

use case.

Collecting and analyzing longer traces of data would also be useful for determining

how closely some of the data inaccuracies we observed are related to trip length or

duration.
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