Unsupervised Discovery of Human Behavior and Dialogue Patterns in Data from an Online
Game ARCHIVES

H
¢
§
i

by .
Tynan S. Smith DR AR

S.B., Massachusetts Institute of Technology, 2010 o

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirement for the Degree of
Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

August 2011
(©2011 Massachusetts Institute of Technology.
All rights reserved.

N\

Author

Department of Electrical Engineering and Computer Science

/August 1, 2011

Certified by :
Deb Roy, Associate Professo%{Media Arts and Sciences

NN U Thesis Supervisor
Certified by, \\\\3“!\1\\“ S = .
3\ Jeff Orkin, Ph.D. Candidate

Thesis Co-Supervisor
/\ ~ -

Accepted by

Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

Unsupervised Discovery of Human Behavior and Dialogue Patterns in Data
from an Online Game

by

Tynan S. Smith

Submitted to the

Department of Electrical Engineering and Computer Science
August, 2011

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

A content authoring bottleneck in Al, coupled with improving technology, has lead to increasing efforts in using large
datasets to power Al systems directly. This idea is being used to create Al agents in video games, using logs of human-
played games as the dataset. This new approach to Al brings its own challenges, particularly the need to annotate the
datasets used. This thesis explores annotating the behavior in human-played games automatically, namely: how can
we generate a list of events, with examples, describing the behavior in thousands of games. First dialogue is clustered
semantically to simplify the game logs. Next, sequential pattern mining is used to find action-dialogue sequences that
correspond to higher-level events. Finally, these sequences are grouped according to their event. The system can not
yet replace human annotation, but the results are promising and can already help to significantly reduce the amount of

human effort needed.

Thesis Supervisor: Deb Roy

Title: Associate Professor of Media Arts and Sciences

Acknowledgments

1 would like to give special thanks to Jeff Orkin, who I have greatly enjoyed working with for the past five years.
He was a great help throughout my thesis, as my go-to person whenever I encountered a new challenge and needed
someone to bounce ideas off or get inspiration from. He was also incredible in getting a grant that made it possible for
me to work with him as a full-time research assistant during my last year. I would also like to thank Deb Roy, who,
although he was busy starting a company while on sabbatical this year, agreed to be my faculty supervisor and always
had insightful ideas. More thanks go to Hilke Reckman, who was a swell office mate, although we often weren’t in

the office at the same time.

I would also like to thank my family and friends, who helped keep me optimistic and motivated when my thesis
was threatening to overwhelm me. I would especially like to thank my parents, who provided fresh sets of eyes to
help me revise the written thesis. I would also like to thank my sister, who I dragged into traveling with me to give
me something to look forward to after my thesis was done. I would also like to thank Hanh Pham who was always
providing encouragement and someone to hang out when I needed a break. Lastly I would like to thank Harley Zhang,

who wrote a thesis so that mine could blow it out of the water, which it does.

This work and my research work with Jeff Orkin was supported by a grant from the Singapore-MIT GAMBIT Game
Lab for “Collective Al for Social Role-Playing Agents.”

Contents

1 Introduction

2 Background, Related Work and Theory

2.1 TheRestaurant Game Project o 0 i i it i e e e e
22 Related WOtk o i i e e e e e e e e e e e e e e
2.2.1 Sequential Pattern MiningandLeamning oo
222 Dialogue SYSIEMS it i e e e e e e e e e e e e
2.2.3 Unsupervised Natural Language ProcessingResearch
23 Sequence MIDING v o it e e e
2.3.1 Sequential Pattern Mining Algorithms L L
2.3.2 Dynamic BayesianNetworks o
24 Clustering and Similarity Measurements
241 WordCIustering o ottt e e e e e e e e e e
2.42 DialogueClustering
243 Event-Sequence CIUStering ot ottt i it
25 Event-SequenceLabeling e

2.6 Evaluation

3 Implementation

15

21

21

24

24

25

27

28

28

29

31

34

35

36

36

38

41

G T8 O © 1= 7= 41

32 LogProcessing e e e e e e e 45
33 Word CIUStering o o o e it e e e e e e e e e e e e e e e e e e e 46

3.3.1 Clustering Algorithm e e e 46

3.3.2 Similarity Measurements L i e e e e e e e e e e e e 47
34 ActionCIustering o i i e e e e e e e e e e e e e 50
3.5 RewritingLogswithClusters e e 51
36 Pattern Mining L e e e e e e e e e e e e e e 51

36.1 PatternPruningo e e 52
3.7 Additional Sequence Filtering e 54
3.8 LabelingLogswithSequencesttt 56
39 Sequence CIUSIEIINE o i i it e e e e e e e e 58
3.10 SystemEvaluation e e e e e 59
Analysis, Discussion and Results 63
41 WordClustering i i i e e e e e e e e e e e e e e e 63
4.2 Dialogue and Action Clustering0 e e e 66
43 Event-Sequence MIning it it e e e e e 72
44 Event-Sequence Clustering e 74
45 OverallPerformanceo it ittt ittt e e e e e e 74
Conclusion ’ 79
5.1 Contribution oL e e e e e e e e e e e 79
52 Future Work L e e e e e e 80

5.2.1 Large-Scale Modifications L. e 80

5.2.2 Word Similarity and Clustering e e e

5.2.3 Dialogue and ActionClustering e e e e
5.2.4 Candidate Event-Sequence Discovery
5.2.5 Event-Sequence Labelingand Clustering
526 EvaluationMethods e e
5.3 FinalThoughts e e

A Sample Output
Al Sample Word CIUStErs o i it e e e e e e e e e e e e e e e e
A.2 Sample Dialogue and Action CIusterso i ittt e e
A2.1 Sample Action CIusters o i i i it e e e e e e
A.2.2 Sampleldentical DialogueLines
A.23 SampleDialogueLineClusters

A.3 Sample Candidate Sequences and Clusters oo i i e

B System Parameters
B.1 Word Clustering Component Parameters
B.2 Dialogue and Action Clustering Component Parameters
B.3 Sequence Mining and Filtering Parameters
B4 Sequence Labeling Parameters e

B.5 Sequence Clustering Parameters

C Source Code and Other Resources

89

90

91

91

95

97

108

111

111

114

116

116

117

119

10

List of Figures

1.1

1.2

2.1

22

23

24

25

2.6

3.1

32

33

34

3.5

3.6

3.7

38

4.1

The limited dialogue interaction allowed with Al characters in Oblivion 16
A screenshot fromthe game Facade e 17
A screenshot of the event annotation web-basedtool, 23
An example of Chotimongkol and Rudnicky’s form-based dialogue representation 26
An example of a simple Dynamic Bayesian Network (DBN) 29
An example DBN leamed fromreducedgamelogs 31
The interaction between layers within layered clustering 33
Sample layered clusteringoutput e 34
Systemstructure flowchart L 42
Excerpts of a log at various stagesof processing L L, 45
An example of computing Levenstheindistance 48
An example of how context similarity is computed forwords 49
The relationship between objects related to word context similarity computation 50
An example of the expansion factor of event-sequence instances 53
An example of how the modified PLWAP algorithmruns. 55
Examples of how the systemisbeingevaluated 61
Example clusters of words of the sametype, 64

4.2 The cluster of words with “white” asexemplar 65
4.3 The cluster of words with “nectarine” asexemplar, 65
44 Sample word clusters corresponding to geographical locations 65
4.5 The cluster of words with “hello” asexemplar 66
4.6 Sampleevent-sequencesmined L L. L. e e e e e e 73
4.7 Sample partial event-sequencesmined L L. 73
4.8 Sampleunusual sequencesmined. L e e 74
49 Sample event-sequence Cluster L. e e e 75
4.10 Excerpts from the best and worst log labellings 76

12

List of Tables

21

31

4.1

42

43

44

4.5

4.6

4.7

Al

A2

A3

B.1

B2

B3

B4

The reduced action list used for testing DBN learning 31
The context relationships used for sequence context similarity 59
“Waitress gives menu” actioncluster e 67
“Customer eats” actioncluster e e e e 67
Sample identical dialoguelines 70
Summary of the performance of different labelingmethods 71
System performance versus percentage coveredfactor Lo 77
System performance versus sequence mining minimum occurrence and maximum expansion factor. . 78

System performance versus sequence clustering preference factor.o 78
Representative output wordclusters [90
Sample action CIUSLETS e e e e e e 95
Sample identical waitresslines L. o 96
Word clustering parameters e e e e e e e e e e e e e e e e e 112
Word similarity parameters i i e e e e e e e e e e e 113
Unused word parameters o vt it e e e e e e e e e e e e e e e e e 113
Dialogue and action clustering parameterso e 114

B.S

B.6

B.7

B.8

B.9

Dialogue and action similarity parameters e 115

Sequence mining and filtering parameters L. L. 116
Sequence labeling parameters e e e 116
Sequence CIUStEriDZ PATAMELEISt i v vt vt e e e e e e e e e e e e e e 117
Sequence similarity parameterst e e e e e e e 118

14

Chapter 1

Introduction

One of the holy grails of artificial intelligence is creating computer controlled agents that can interact with humans
well enough to be indistinguishable from a human controlled agent. Indeed, Alan Turing, who was instrumental in the
development of computer science, proposed attempting to distinguish between a human and a computer interacting
with each other through dialogue as a measurement of the “intelligence” of computers [1, 2]. This idea became known
as the “Turing test,” and it has become one of the standard methods used to evaluate the performance of Al dialogue
systems, being used annually to judge the winner of the Loebner chatter-bot competition [3]. Creating good dialogue
systems is one of the main focuses in both industry and academia for creating Al agents to interact with humans. In
addition to chatter-bots, academic work has included robotic portraits [2], training systems [4], and interactive games

[5]. Industry work has included a lot of task-oriented systems, like airline booking bots [6].

One of the greatest challenges with developing Al agents that interact with humans is capturing the breadth of human
behavior. It is extremely difficult to make agents robust enough to deal with any possible situation they might encounter
while interacting with a human. Some Al developers handle this dilemma by limiting the ways humans can interact
with an AL This is often seen in video games where the only dialogue with Al characters typically consists of selecting
one of a given set of things to say (see figure 1.1), and actions like bartering or attacking are often restricted to certain
situations or certain characters. Another approach used in many commercial phone systems and chat-bots is to have a
catch-all response to unrecognized input. For example, many of the early chat-bots like ELIZA [7] and PARRY [8],
consisted primarily of catch-all pattern-matching responses that were designed to give the appearance of a particular

personality that would hide the problems with the natural language system [2].

However, if the desire is to have a system that can respond realistically and appropriately to a wide-array of input, a

large database of behavior is needed. If an agent designer is scripting the agent’s behavior by hand they would have

15

Anvil
Rumo

Thicves

NHewheim the Portly

Figure 1.1: A screenshot of the game Oblivion showing an example of the limited dialogue allowed with AI characters in most
video games. The dialogue lines available to the user are presented as a short list to be selected from.
to enumerate and script responses to all the scenarios the agent might encounter. In any but the most limited forms of
interaction this approach quickly becomes difficult to scale. For example, modern pattern-matching chatter-bots using
AIML have tens of thousands of pattern and response pairs that must be crafted by hand [2]. Another example is the
dramatic game Fagade, which allows the player to interact with two Al characters using typed natural language (see
figure 1.2). It took the two researchers who developed the game five years to hand-script the behavior of the characters
in this 15 minute game [5]. This content authoring bottleneck is a key problem that has prevented Al from advancing

as far as we would like. As Roger Schank, an influential contributor to artificial intelligence in the 70s and 80s, said:

“Not as much has happened in Al as one might have hoped. ... The major reason for this is really one of
content rather than structure. ... we simply were not able to even begin to acquire the content of a [human]

memory.” — Roger Schank [9]

Due to this bottleneck, Al researchers and developers have been moving in a new direction, in which behavior and
knowledge is not hand scripted. Instead behaviors are learned in an automated or semi-automated fashion from large
human-generated datasets (such as recorded interactions, or Internet content), reinforcement learning, or some other
method. Many approaches in this area have focused on using large datasets to learn a smaller simplified model that
is easier to use. For example, Lane and Brodley build user models from command sequences for a computer security
system [10]; Barzilay and Lapata learn a model of text coherence based on entities from a dataset of coherent texts
[11] etc. In fact, the entire Al sub-field of machine learning is focused on learning smaller models from training data

sets.

The problem with these models is that they contain less information than the dataset they were built from. This

makes them more efficient and focused, but it also makes them less useful for applications involving human-machine

16

inley at Trip?|

»

Figure 1.2: A screenshot of the drama game Fagade, which allows players to interact with Al characters through natural language.

interaction where we want to be able to draw on all possible experience. With our ever increasing processing power,
memory size and disk space, and the ability to run programs on large clusters of servers, new approaches have been
made possible. Now instead of learning a small model from a large dataset, we can modify the dataset itself in
such a way that it can be used directly as the source of knowledge or behavior. For example, IBM’s Watson, which
proved very capable at Jeopardy, is powered by a large database constructed from Wikipedia and other on-line sources

[12, 13].

Jeff Orkin, a PhD candidate at the Media Lab of MIT who I have been working closely with, has been pursuing a
similar technique for video game AI. He uses an entire database of recorded human behavior that has been annotated
and is accessible by the Al system during runtime [14]. Orkin is developing a new approach to authoring Al for
video games and training systems by capturing behavior from humans rather than hand-scripting patterns of behavior
[14]. Some similar work has been done with case-based reasoning for real-time strategy games [15], but Orkin’s work
differs in that it works with social behaviors and a seamless mix of actions and dailogue, with tens of thousands of
possible actions and utterances. Orkin is currently working with data from a two person restaurant simulation he made

called The Restaurant Game [16].

In the Restaurant Game, human players control either a customer or a waitress and are instructed to act out a normal
restaurant scenario. Although the game engine allows for a wide variety of behavior (everything from eating the
flowers on the table to stacking cheesecakes in order to climb onto the roof), typical patterns of behavior emerge.
Orkin originally implemented a fairly simplistic Al that matched patterns from the game it was experiencing during
run-time to un-annotated games in its database [14]. However, this approach was unable to appropriately capture
the overall structure of a game (e.g. the customer might keep ordering food and eating forever) or dependencies

between events in the game (e.g. the customer might order steak but receive salmon). To address these issues, Orkin

17

is developing an Al system that uses an annotated version of the game log database. Currently, he has developed tools
that allow actions and dialogue lines (which I will collectively refer to as “game-actions™) to be grouped into “events”
such as ordering food, or paying the bill [14]. Work is currently progressing on further annotations of cause and effect

relationships, such as the relationship between ordering a salmon and the waitress bringing a salmon.

Annotated datasets, including the one being built from the Restaurant Game, provide additional information to an Al
system about what the data means that is not easy to automatically observe in the data. However, although it is not
typically hard to find or generate a database of human behavior or dialogue, it can be difficult and time-consuming to
annotate the dataset with enough information to make it useful. Orkin’s current approach to overcoming this problem
has been to create easy-to-use annotation tools that can be crowd-sourced in order to quickly annotate large datasets
[17]. Even with these tools, it takes an expert who is familiar with the data to generate the possible annotations.
This can be a challenge itself, especially in a domain more complicated than a restaurant scenario. The difficulties
of manually annotating databases of human speech and behavior provided the motivation for this thesis. Given the
corpus of thousands of game logs from pairs of humans playing the game, how can we automatically generate a list of

events describing the behavior discovered in the logs, and a set of example sequences for each event.

In this thesis I use the game play logs from The Restaurant Game to complete as much of the process of event
annotation as possible in a completely automated, unsupervised manner. As mentioned previously, event annotation
in the context of the restaurant game logs involves grouping together actions (e.g. pickup glass, give menu, eat cake)
and dialogue lines into higher-level events. The sequences of game-actions that compose different events may be
interleaved within game logs (see figure 2.1). Furthermore, a single event, such as the customer getting seated, may

have many different forms in different logs.

Therefore, correct event annotation has two parts. First, within a single log the actions and dialogue should be grouped
correctly into their respective events. Second, corresponding event-sequences in different game logs should be recog-
nized as belonging to the same event. The ideal, automatic, unsupervised system would be able to correctly annotate
a set of game logs given nothing but the game logs themselves. The automated event-sequence discovery system I
have developed combines algorithms and concepts from many different areas of natural language processing, machine
learning, artificial intelligence and other areas of computer science in a novel new way. The process used by the system

can be summarized as:

1. Process the game logs to turn them into a sequence of actions and dialogue lines.
2. Cluster words semantically and functionally based on context and surface similarity.
3. Cluster dialogue lines and actions based on context and surface similarity.

18

4. Rewrite the logs as dialogue and action cluster sequences.

5. Mine the logs for frequent patterns with certain characteristics that are likely event-sequences.

6. Filter the candidate event-sequences based on certain properties to remove most non-event-sequences.
7. Find the optimal labeling of likely event-sequences in each game log.

8. Cluster the event-sequences by the event they correspond to.

9. Evaluate the performance of the system relative to a golden, manual labelling of the logs.

Although my system can not perfectly annotate the game logs, it does make the annotation process much easier. It is
able to automatically partially annotate the events in Restaurant Game logs (typically about a third of each log) and
generate a reasonable set of about 50-60 event clusters. The partial labeling assists human annotators by taking care
of many of the most typical event-sequences, requiring them to only annotate more unusual sequences and correct
mistakes the system made. The event cluster output is an organized collection of behavior sequences that appear in
the game logs, which greatly simplifies the process of creating the set of event labels that an expert must perform. It

also produces typical example sequences for each event, which can be used to train human annotators.

Due to the complexity of the overall system, most of the remaining chapters will be organized by opening with an
overview and then discussing the system in terms of each of its components. Chapter 2 presents related work and
relevant research for the whole system as well as individual parts and discusses the theory behind the design in more
detail. Chapter 3 discusses the implementation of the system and each of its components in great detail. Chapter 4
examines the results and performance of the system overall as well as several of its key components and investigates
what works well and what doesn’t. Lastly, chapter 5 concludes, elaborating on the potential usefulness of the system,

the contributions it makes to several areas of research, and how it might be improved in future work.

19

20

Chapter 2

Background, Related Work and Theory

This chapter discusses some of the multitude of related work that has been done in a variety of fields as well as the
theory behind my approach and choice of algorithms. The first section details previous and on-going work that Jeff and
I have done related to the overarching video game Al project that drove this thesis. The second section discusses some
of the research that has similar objectives to the whole system developed in this thesis. The remaining sections talk
about the components of the system and how the algorithms in each were chosen from a variety of options developed
by other researchers. For more information about the specific implementation of each of the components, see chapter

3.

2.1 The Restaurant Game Project

This thesis is inspired by a larger video game Al research project that I have been working on and was started by Jeff
Orkin, a PhD candidate at the MIT Media Lab. The project is developing the idea of collective Al Jeff is developing
a system to control Al characters which uses a database of annotated examples of human-played games to select

appropriate dialogue and actions [14].

The motivation behind the project is multifaceted. First it eliminates the need for expert Al programmers to manually
script all the possible behaviors an Al could exhibit. This is useful because it removes the need for experts and because
when manually scripting behavior it is extremely difficult even for experts to create a robust, interesting Al capable of
interacting with other players in a variety of interesting ways. Second, since the recorded games are being annotated
and used directly, rather than a behavior model learned and extracted from them, the Al can recreate unusual behavior

as well as typical behavior when the situation is appropriate. Furthermore, it is relatively easy to gather data because

21

of the massive number of hours of video games being played on a daily basis. For example, as of February 2010, the
collective play time of all players in World of Warcraft was 5.93 million years [18]. Another motivation is the idea
of running the AI on the cloud. Al servers could control characters for people around the world, and to some extent

characters created using a dataset from one game could be placed into another game.

The current game we have been working with is called The Restaurant Game [19]. It is a simple two-player simulation
of a restaurant experience, from the customer entering and sitting down to paying and leaving. One player controls the
waitress and the other controls the customer. Each is instructed to act out a typical restaurant scenario, but the game
engine itself allows for a wide variety of behavior, from eating the flowers on the table to stacking cheesecakes in
order to climb onto the roof of the restaurant. The dialogue that takes place is typed by each player and is completely
unrestricted. Since the game’s release in 2007, we have gathered over 10,000 recorded games played by over 15,000

unique people.

The current iteration of the Al is collective in two ways: first it records the actions and dialogue of humans playing
a game [16]; and second it uses an on-line tool to crowd-source annotation of the recorded game play logs [17]. It
is the annotation process that my thesis is related to. One of the types of annotations that are applied to logs are
event-sequence labels. This groups the game-actions by the events that they are a part of. For example, the following

sequence in a log would be annotated with the “Waitress cleans table” event label.

1. Waitress says “Ill take this for you.”
2. Waitress picks up dirty dish.
3. Waitress puts dirty dish on counter.

4. Waitress cleans dirty dish.

Jeff has developed an easy to use web-based tool that allows anyone to perform this annotation on the game logs. He
has also shown that un-trained people, who do not have prior knowledge or experience with the system and he has
never met, can use it almost as well as himself [17]. A screenshot of the tool is shown in figure 2.1. This tool could
be used with existing crowd-sourcing technology, such as Amazon Mechanical Turk, to quickly and cheaply annotate

a large number of game logs.

This process works well in the case of The Restaurant Game, but it might be more challenging for a more complicated,
or unusual game. Almost everyone knows what to expect from a typical restaurant scenario so it is easy for them to
identify the events in a log when given a set of labels. However, in our newest game, Improviso [20], which is an

open-ended science-fiction improvisational acting game, it could be much more difficult to identify event instances in

22

 CLCOMPLAINS SF 00D ST AT
T T M
e St ——
C_DRINKS

[D ——
C_G MENU

|C_GETS_SEATED £

CCORERRS - = h o ey R

DISCUSS_GEOGRAPHY
PESCUSS AL T A R T R
81 pIscuss_names
¢ R TR R NE
W cieans vaBite]
_DEPOSITS BILL

|W_SERVES_FOOD

—yranagrotey -
[6] WAITRESS GIVES Menu.1 TO CUSTOMER

Figure 2.1: This shows the interface of the web-based tool developed to allow anyone to annotate event-sequences in game logs.
The user is currently putting the bottom two actions in a “CUSTOMER_GETS_MENU” event-sequence.

logs, let alone generate the set of event labels to begin with. Even in the case of the restaurant situation, it is not a
trivial matter to generate the set of events. It took Jeff several iterations of creating a set and attempting to label logs

with it before arriving at the final set he is currently using.

The challenges of manual event annotation are what lead me to develop the goal of this thesis. The original goal was to
create a system that could entirely automatically, find and label event-sequences in the logs and cluster the sequences
into events. However, it is very difficult for an automatic system to catch all the event-sequences accurately due to the
extreme variation of human-behavior and dialogue. The goal then became to develop a system that could help with the
event labeling process by finding and clustering the most common event-sequences. This can help when choosing a set
of event labels by using the extracted clusters as reference. It can also help train people to use the annotation system on
the dataset by providing examples of each label. Lastly the system can partially label the logs so that hand-annotators
only have to correct its mistakes and label rare event-sequences. This could significantly reduce the time and cost
associated with annotating the logs, and more importantly help make the process more data-driven so that an expert

does not have to spend a lot of time pouring over the logs to come up with a set of event labels.

23

2.2 Related Work

Although this exact problem of mining, clustering and labeling event-sequences is new, it is similar to work going
on in many different fields. Some of the most related research has been in the areas of sequential pattern mining and
learning, dialogue systems, and a variety unsupervised natural language processing efforts. The following subsections
describe the work that has been done in each of these areas and the similarities and differences they share with this
thesis project. The sections after this discuss the prior research efforts that influenced the various components of this

system.

2.2.1 Sequential Pattern Mining and Learning

Sequence pattern mining is one of the key stages in my event-sequence discovery system so it is natural that a lot
of the other research involving sequence mining and learning is related to my work. There has been a lot of similar
work done with mining patterns of human behavior associated with the development of sequential pattern mining
algorithms. However, most of the work deals with the actions of a single person, and a lot of it is only concerned with
contiguous behavior sequences. One of the main applications of sequential pattern mining, web-log mining, attempts
to find patterns in the series of actions a single user performs on a website [21]. The goal of web-log mining is typically

focused on user modeling [21], rather than the focus on event-sequence discovery of this thesis.

Another similar field is sequence learning and classification, in which a sequence (typically representing human ac-
tions of some form) is assigned a class based on previous examples a system has learned from. One of the main
applications of this is computer security, in which the commands entered by a user are classified as a anomalous or
normal in order to detect intruders or a user behaving inappropriately [10]. This is often done by building a database
of sequences representing normal behavior for each user and comparing current actions to the database in real-time
[10, 22]. Lau has explored another application of sequence-learning approaches, developing intelligent user interfaces
[23]. One challenge she has noted is identifying the task a user is performing based on the sequence of actions she
has performed. Although the sequence-learning ideas of comparing, clustering and classifying sequences resembles
my event-sequence discovery system, these approaches typically only look at a sequence as a whole, without trying to

break it up into individual events.

One last similar area of sequence research is sequence prediction. In sequence prediction the goal is to find statistical
regularities in some set of training examples in order to predict the next element in a novel sequence. This is applicable
to many problems in computer science, such as text compression, dynamic optimization and predictive caching [24],

as well as intelligent user interface design [23]. Sequence prediction is probably the least similar to event-sequence

24

discovery, but the notion of finding statistical patterns in sequences beyond simple pattern mining resembles some of
the additional steps involved in filtering and clustering event-sequences in my system. Also, many of the algorithms
used in sequence prediction extract interesting models from the observed sequences such as HMMs [23], which I

explored as possible ways to find and model event-sequences.

Much of the discrete sequences related research is very similar to my project. I did a lot of background research
in these areas, gathering ideas for the system overall and ultimately selecting a pattern mining algorithm to be the
basis of my candidate event-sequence mining component. Section 2.3 discusses the sequence mining component of
the event discovery system in more detail, discussing related research and the research that influenced it. Section 3.6
describes the specific implementation used and how it was modified from the original PLWAP sequential pattern

mining algorithm.

2.2.2 Dialogue Systems

Two of the main differences between my thesis project and most discrete sequence mining are: discrete sequence
mining usually focuses on the actions of a single person rather than multiple interacting people; and discrete sequence
mining typically deals with a small set of possible elements, rather than the diversity provided by allowing natural
language and open-ended behaviors. Dialogue system research deals with both of these things. Dialogue systems are
many and varied, from simple chat bots like ELIZA to the complex speech systems such as airline booking systems[6].
The goal of dialogue systems is for a computer to interact with a human through natural language in a realistic fashion,

often in order to accomplish some specific task.

One of the areas of dialogue research most relevant to event-sequence discovery is the processing of databases of
human-human dialogues. For example, Chotimongkol and Rudnicky have shown promising results for applying un-
supervised learning algorithms to the problem of acquiring domain-specific dialogue information from human-human
interactions [25). Their goal is identical to mine, “reducing human annotation effort,” [25], and their problem very
similar. They are trying to annotate human-human task-oriented dialogues, such as a customer reserving a flight and
a hotel from a travel agent, with their own form-based dialogue structure representation information [25]. Their di-
alogue structure representation identifies subtasks in the dialogue and fills in fields in corresponding forms from the

information in the dialogue, see figure 2.2.

Many of the steps in their process are very similar to stages in my own system: they cluster words based on contextual
similarity much like in my system (see sections 2.4.1 and 3.3); they segment the dialogue into subtasks, similar to my
labeling logs with event-sequences (see sections 2.5 and 3.8); and they cluster the subtask segments to group instances

of the same subtask together (see sections 2.4.3 and 3.9).

25

Q

b= Form: grounding % 5

Giver 3: right, below the start do you have S ':> — g
o Landmark: missionary camp Ej 39

a missionary camp? } (=% N E]
Follower 4: yeah. 2 Location: below the start]
Giver 5: okay, well if you take it from the a ,3;

start just run horizontally. Q — D
Follower 6; uh-huh. IE Form: segment description |§ »
Giver 7 tothe left for about an inch. Pt StartLocation: the start o8
Follower 8: right. B Direction: left. g
Giver 9 then go down along the side of & L___> Dist - aninch :> g =

the missionary camp. % Ell'lsd?.nce.tion inc QS,

Figure 2.2: “An example of a dialogue in the map reading domain and its corresponding [Chotimongkol and Rudnicky] form-based
representation.” This figure was taken from their original paper [25]

One of the main differences between their research and my event-sequence discovery system is that they are dealing
only with dialogue, not actions at all. Also since the dialogues are fairly short and task-oriented, they don’t have to
deal with a lot of overlap between subtasks so their subtask segmentation only has to identify boundaries between the
subtasks rather than identify a possibly interrupted sequence of action and dialogue lines corresponding to a subtask
as in my case. Furthermore, they assign every line of the dialogue to a subtask, unlike my system which leaves many
actions unlabeled. This is a useful feature for my system because in the domain of an open-ended video game, many
of the actions and dialogue lines are not part of any typical restaurant event, people like to do silly things. Their
representation of subtasks is a form with concept fields that are filled with words from the dialogue, whereas I do not

create a separate representation beyond clustering the dialogue lines and actions.

Gandhe and Traum have also done some relevant dialogue research, which is similarly motivated by creating virtual
characters capable of interacting with humans through natural language [4]. Their goal is to build a statistical dialogue
model from an un-annotated human-human dialogue corpus to avoid the massive amount of expert effort required
to create typical rule-based dialogue systems. This research is very similar to the overall Al project motivating my
thesis. However, there are some differences in how we handle the un-annotated corpus. The main difference is that
my goal is to automatically annotate the corpus with useful event information that can then help the Al system Jeff is
developing. However, their goal is to develop a chat bot that can use the un-annotated corpus directly using context and
skip the annotation step altogether. We found this did not work well in our domain because there was no concept of
the complete structure of a restaurant scenario so two bots could wind up repeatedly ordering food forever or leaving
before paying etc. We are dealing with this by adding in event-sequence annotations, they are dealing with it by
segmenting dialogue based on whether or not expert-chosen key concepts have been mentioned. Their approach is

simpler and makes it easy to automatically segment all the dialogues once the key concepts have been chosen.

Olney describes another unsupervised dialogue system similar in nature to collective AI [2]. His approach is to use

a database of dialogues to respond to a human user in real-time by using the human’s utterance to find the most

26

appropriate response in the database. His scoring of appropriateness is more complex than the context-based one used

by Gandhe and Traum, but it still has no notion of history and what has been talked about previously.

Dialogue systems based on human-human corpora are similar to our collective Al project, so a lot of the techniques
they use for annotating or otherwise processing the corpus are similar to the techniques used in my event-sequence
discovery system. They have similar challenges of trying to select responses that are appropriate based on the history
of the interaction so far. However, dialogue systems do not have to deal with actions, and they’re datasets tend to be

more cohesive so they don’t have to deal with interleaved events nearly as much.

2.2.3 Unsupervised Natural Language Processing Research

In addition to dialogue systems, other areas of natural language processing have produced research on unsupervised
techniques related to event-sequence discovery, only some of which I mention here. Barzilay and Lapata developed an
effective unsupervised coherence assessment algorithm based on the pattern of entity usage within a discourse [11].
Valid event-sequences must be coherent so the process of event-sequence discovery is largely composed of finding
coherent sequences of dialogue and actions. Barzilay and Lapata assess coherence of new text by automatically
extracting a model from texts known to be coherent, whereas I attempt to find the coherent sub-sequences in logs
assumed to be predominantly coherent. In addition, their model is based on the transitions in the grammatical role
entities fill from one sentence to the next, while my system evaluates coherence using the probability of particular
clusters of actions and dialogue lines appearing sequentially. Their approach would definitely be worth exploring as

an additional piece of sequence mining and filtering in future work.

Chambers and Jurafsky describe an interesting unsupervised system for learning narrative schemas, “coherent se-
quences or sets of events ... whose arguments are filled with participant semantics roles defined over words” [26].
Their system automatically discovers sets of related events and information about the possible values of their argu-
ments. Similar to Barzilay and Lapata, event chain coherence is evaluated in terms of the arguments they share.
However, in Chambers and Jurafsky event chains are only partially ordered and need not be continuous in the data,

which is somewhat similar to my model of event-sequences.

In both of the above unsupervised NLP research, entities play an important role in determining coherence. In my event-
sequence discovery system, entities are ignored in favor of clustering dialogue lines semantically. In future work it
would be interesting to examine the possibility of using entities to find coherent sequences, rather than statistics.
Reckman has already shown that the Restaurant Game data can be used to associate objects in the game with the

names of those objects based on co-occurrence in dialogue lines [27].

27

2.3 Sequence Mining

One of the key components of the event-sequence discovery system is the candidate event-sequence mining stage.
I explored a lot of algorithms in two areas of computer science before deciding on the modified PLWAP sequential
pattern mining algorithm as described in section 3.6. Dynamic Bayesian Network (DBN) learning has the advantage
that it produces fewer, more accurate candidate sequences because it tries to learn the cause and effect relationships
between dialogue lines and actions. It produced promising results on simplified cases, but did not scale well to the full-
sized problem. Sequential pattern mining techniques are efficient and allow for more direct control over the types of
sequences found, but this is also a detriment as it is not easy to determine the best value of the controlling parameters.
More information about several algorithms from each field and how they can be applied to event-sequence discovery
are given in the following two subsections. Further exploration of DBNs would be a good direction for possible future

work.

2.3.1 Sequential Pattern Mining Algorithms

One of the most similar areas of research to this project is sequential pattern mining, which is the generalized problem
of finding recurring subsequences in a database of sequences. Sequential pattern mining has many different algorithms
and variations depending on the needs of a particular problem. They are an important first step in many different
data-mining and processing applications, especially web-log analysis [21]. Sequential pattern mining algorithms are
simplistic in the sequences they find, typically only selecting sequences based on their frequency of occurrence rather
than any meaning they might have. Some sequential pattern mining algorithms have been adapted to find only maximal
(not the subsequence of any other frequent sequence) or closed (not the subsequence of any sequence occurring with

the same frequency) frequent sequences [21].

Some of the currently popular general-purpose sequential pattern mining algorithms include PrefixSpan [28], PLWAP
[29] and SPADE [30]. Each one has its own advantages and disadvantages depending on the problem they are to be
applied to. Mabroukeh gives a good summarization of the properties of these three algorithms and others [21]. There
are also many specialized sequential pattern mining algorithms that have been used for various problems in NLP and
elsewhere, such as DIMASP-C and DIMASP-D [31]. The problem I found with these specialized algorithms was, that
although they were very efficient, they were also very specialized and difficult to adapt to my particular problem. In
particular, the DIMAPS algorithms were only designed to find contiguous frequent sequences. Ultimately I settled on

PLWAP, because it was one of the fastest algorithms [21] and because it was relatively simple and easy to modify for

my purposes.

28

2.3.2 Dynamic Bayesian Networks

Another set of algorithms that can be used to mine sequences from data focus on finding sub-sequences based on
cause and effect relationships rather than simple frequencies of occurrence. Dynamic Bayesian Networks (DBNs) can
be used to find the cause and effect dependencies between the set of action and dialogue lines the sequence database

contains.

DBNs are directed networks of variables in which an arrow from variable A to variable B means that the value of
variable B is dependent on the value of variable A. They are “dynamic” because they are based on temporal sequences
of actions, with a copy of all the variable nodes for each time-slice represented. For example, there might be three
variables A, B and C, so we would have a node for each variable at the present time, a node for each variable at time
t-1 etc. for however many time slices back desired. Each node has an associated conditional probability table which
gives the probability of each of its values given the values of the nodes it is dependent on. An example of a simple

DBN with nodes up to two time-slices back is shown in figure 2.3.

t-2 t-1 t

—_ — —_ —_ A-1|A=0]|A=1 B-2 | A-2|A-1|B=0|B=1
f r r 0 107403 ofo{olio7{o3
1j02]08 ojo}]1}01]09

o} 1010109

c-11 A |Cc=0iC=1 0 1 1107103

0o lo09i0.1 1101} 0109{01

01 11}09i0.1 1{01}1}08j02

1} 01}09}0.1 11}o01{08}|02

111101709 1411 |oalon

Figure 2.3: A simple DBN modeling the dependencies between the values of the variables A, B and C in the current time slice and
the two previous time slices. Note only dependencies involving the variables in the current time slice are shown because
all other dependencies would just be the time-shifted version of these. The CPTs shown assume that all the variables
are binary indicator variables for simplicity.

A DBN’s structure and conditional probability table values can be learned automatically from a database of sequences
of the value of the variables [32]. One algorithm that does this is the REVEAL algorithm, which uses the mutual
information between successive time slices to determine dependencies [33]. DBN structure learning has been used
successfully in several domains, particularly in biology where it has been used to model gene expression data [34]. It

has also been applied to learning simple behavior models of human driving [35].

I experimented with the Bayes Net Toolbox Matlab implementation of REVEAL [36], modifying it to include depen-
dencies between more distant time slices and the current time slice. I also experimented with DBN learming program

called LibB [37] and another by a company called Structured Data [38], but none of them scaled well to my application

29

out of the box.

In order to apply DBN learning to the problem of candidate event-sequence generation, I had to come up with a
mapping between game-actions and DBN variables and values. There are multiple ways to do this but there are two
extremes. The first is having each action or dialogue line map to its own binary indicator variable. These variables
indicate whether or not each action or dialogue line appeared in a particular time slice. In other words, in each time
slice, only one of the thousands of binary indicator variables would be 1 and the rest would be 0. The other extreme
would be to have a single variable whose possible values correspond to all the dialogue lines and actions. I found
the former case more intuitive because the dependency can be seen in the structure and the candidate event-sequences
are more visible. In the latter case all the information is stored in one gigantic conditional probability table which
would basically be a transition probability matrix. In this case the event-sequences would be less obvious and it would

require development of an additional algorithm to construct event-sequences from the CPT.

The problem with the binary indicator variable case is that there are so many variables, but only one is going to be
one at any given time. By default, DBN learning algorithms consider the complete CPT, meaning that a particular
node’s CPT would have an entry for every possible combination of values of it’s parent nodes, even though in the
binary indicator case only a small fraction of the combinations are actually possible (e.g. a combination with two
parents in the same time-slice having a value of 1 is not possible). Furthermore, CPT estimation is a subroutine
within a subroutine of typical DBN learning algorithms, it must be done for each node for each time a new candidate
structure is being tested. Modifying the algorithm could allow it to take advantage of the constraint, but even still, the
number of possible structures of a DBN grows factorially with the number of variables. Consequently, it would be
difficult to scale up the binary indicator variable DBN method to the full set of game-actions, or even just the clusters
of game-actions. Many learning algorithms do provide parameters to allow a trade-off between accuracy and speed.
For example, you can set the maximum in-degree and out-degree of variable nodes, meaning the maximum number of

node they can be dependent on or can depend on them respectively.

In practice, I found that with the Bayes Net Toolbox I had to limit the number of variables to the low double digits,
rather than the 2000 or so I would have liked to use to represent the individual game-action clusters. In order to evaluate
the effectiveness of DBNs to see if they were worth attempting to scale-up, I reduced the game logs to sequences of
19 action variables (shown in table 2.1), completely removing all dialogue. I experimented with using binary indicator
variables for the actions as well as using the object of the action as the value of the variable. I found that the latter
overemphasized variables with very few possible objects / values (e.g. the customer can only pay the bill). To correct
for this, I artificially told the structure learning algorithms that all the variables has the same number of possible values.

Having action variables whose values were the set of all object was the most effective. The results were promising, an

30

example structure is shown in figure 2.4, but ultimately the scalability issues and the challenge of mapping dialogue

to variables led me to pursue sequential pattern mining as my means of candidate event-sequence generation.

Variable Actor Action | Variable Actor Action

1 Customer Clean 11 Customer Pay

2 Waitress ~ Clean 12 Customer Pickup

3 Customer Eat 13 Waitress Pickup

4 Waitress Eat 14 Customer Put-down
5 Customer Get-off | 15 Waitress Put-down
6 Waitress Get-off | 16 Customer Sit-on

7 Customer Give 17 Waitress Sit-on

8 Waitress Give 18 Customer Touch

9 "Customer Look-at | 19 Waitress Touch
10 Waitress Look-at

Table 2.1: The reduced set of actions used to test DBN structure learning. All dialogue lines were removed and actions were
combined based on just the actor and action involved. Very rare actions were also removed, such as the waitress paying.

a8 O
O O OO O

G5 %

Figure 2.4: An example DBN learned using the REVEAL algorithm form the Bayes Net Toolbox with a Bayesian Information
Criteria scoring function with a penalty of 1.0 (designed to limit over-fitting to the data) from 1000 games with a
maximum in-degree of 3 from only the previous time slice. Only one set of variables is shown instead of one for
each time slice because each dependency arrow indicates a dependency of one variable on the value of the other in the
previous time slice. Notice the chain 13-8-9-11, which represents the waitress picking up something and giving it to the
customer, then the customer looking at it and paying it. This chain represents the customer receiving and paying the bill
events. If we were to examine the CPTs we would find other interesting chains, for example 13-8-9 is also the event of
the customer getting the menu.

2.4 Clustering and Similarity Measurements

Another critical component of the event-discovery system is the several clustering stages. In addition to clustering
event-sequence instances corresponding to the same event, I use clustering on words, dialogue lines and actions,

to group them semantically and ultimately make event-sequence mining easier by reducing the number of unique

31

elements in the sequences. Similar to many of the systems described in sections 2.2.2 and 2.2.3, I first cluster words
based primarily on the similarity of the contexts they appear in. For example, pie and tart occur in similar contexts such
as “berry pie/tart” and “your pie/tart sir.” Although the results of the word clustering are interesting by themselves,
the purpose is to facilitate dialogue line clustering by allowing the surface similarity of dialogue lines to be measured
in terms of semantic word clusters rather than individual words. This causes a quick reduction in the number of
unique dialogue lines by combining those that are identical on the surface based on the sequence of word clusters they
are composed of. This word-cluster-based surface similarity is combined with a context similarity measurement in
order to cluster the dialogue lines themselves, while the actions are clustered in parallel. The motivation behind this
is that the choice of sequential pattern mining algorithms as the means to generate candidate event-sequences only
finds frequent event-sequences. Since about 80-90% of the dialogue lines in the logs are only used once (even when
combining word-cluster-identical lines), this means that very few frequent sequences would contain any dialogue lines

at all without further clustering.

In terms of the form of the input, there are two main categories of clustering algorithms. One type is algorithms
that take as input a point in some feature space corresponding to each datum to be clustered. The other type is
algorithms that take as input a similarity matrix representing how similar different pairs of data are. In all three of
the event-sequence discovery cases (word clustering, dialogue and action clustering and sequence clustering), pair-
wise similarity matrices are more intuitive. This is because I am combining several different similarity measures (e.g.
surface similarity and context similarity) with different weights for each, so it is not obvious how this would map well
to a feature space. Some of the popular clustering algorithms that work with similarity matrices are affinity propagation

[39], the spectral clustering class of algorithms [40], and k-centers.

Based on the work of Grénqvist and Gunnarsson [41] and my own experiments with a wide variety of approaches, the
main component of the similarity measurements for all three types of elements is based on the narrow contexts the
elements appear in. Furthermore, these narrow contexts are in terms of the current cluster assignments of the elements
rather than the elements themselves (see section 3.3.2 for more details of the implementation). This required that the
similarity measurements be updated throughout the clustering process. Since spectral clustering methods do not use the
similarity matrix directly, it would require frequent restarts of the clustering algorithm to use spectral clustering with
cluster-based context similarity. Therefore affinity propagation was selected because it uses the similarities directly,

and it is typically faster than k-centers because it is deterministic and does not require many random restarts.

My initial work focused on clustering words and dialogue lines simultaneously using a method I called layered clus-
tering. As noted previously, word cluster assignments influenced the context similarity used to cluster words as well

as the surface similarity used to cluster dialogue lines, while dialogue line cluster assignments influenced the context

32

similarity used in clustering dialogue lines. With just these links, word clustering and dialogue clustering can be done
separately, with their similarities being updated during clustering. Layered clustering added a third type of similarity
called parent similarity and a new link in which dialogue line cluster assignments determined the value of the parent
similarity between words. This required words and dialogue lines to be clustered simultaneously, greatly increasing

the complexity of the program as well as the time and space requirements.

The idea was that the context a word appears in within a game log itself is useful in determining the semantic meaning
of the word, particularly in cases where the word-level context was very small (e.g. a single word utterance). The
problem is some words appear in predominantly single word utterances (e.g. hello, yes, thanks), or other utterances in
which the context of the utterance gives more information about the meaning of the word than the context within the
utterance. This game-log context information could be given in terms of the context of the dialogue line the word ap-
pears in. The problem with that is that dialogue line context information is most useful in terms of dialogue line cluster
assignments, and dialogue line cluster assignments are in-part determined by word cluster assignments. This created
a catch-22 situation leading to the idea of clustering both simultaneously and having the cluster assignments of each
iteration influence the similarities used in the next iteration. This is similar to the idea of expectation-maximization
used to estimate parameter values in statistical models, where current parameter values and hidden variable values are

used estiamte one-another iteratively [42].

Parent similarities
Letters Words Dialog Sequences
Surface similarities Context similarities

Figure 2.5: The interaction between neighboring layers in layered clustering in terms of the way current cluster assignments in one
layer influence the similarity measurements in another layer.

The hope was also to ultimately add in a sequence layer, although this proved to be even more difficult due to the fact
that the event-sequence discovery system requires logs to be rewritten in terms of dialogue and action clusters before
sequences can be mined. Figure 2.5 shows how the different layers would influence one another. Initial experiments
were promising, producing good results for word clusters and decent results for dialogue clusters when using just 10
games (examples are shown in figure 2.6). Ultimately however, the complexity and time and space requirements were
deemed too high when dealing with the entire dataset to justify the limited benefit layered-clustering provided over
separate clustering stages. The following subsections go into more detail about other research related to clustering

words, dialogue lines and sequences separately.

33

tea tooth beer order

mhorinara :Le;f;t e o oY C2w_and_this_bil C2W._yes_please
sit day vodka start WZC__and_me__bgrry _pie w2acC _yes__sir
spagetti typing drink C2W_and_the_pie C2W_yes_i_am
speghetti plate pay C2W_and_the_lobster C2W_yes
steak cakes hear C2W_and_soup_de_jour W2C_yes_faster
meatballs dc C2W_tea_please
apologies rape C2W_be_nice_to_the_chef = C2W_yes_thanks
asdgas C2W_ah_nice
messages C2W_give_it_ to_me
myself C2W_bite_the_chef
(a) Sample word clusters (b) Sample partial dialogue clusters

Figure 2.6: Sample output from layered clustering being run on data from 10 games. This shows some of the word clusters found
and parts of some of the dialogue clusters found. C2W means the customer said the line to the waitress, and W2C
means the waitress said the line to the customer.

2.4.1 Word Clustering

Word clustering is an important part of many natural language processing systems, it can be used to find synonyms
for words [43], studying properties of language [41], as part of many dialogue systems [25] and more. Most word
clustering, including that used in the event-sequence discovery system, seeks to group words by semantic similarity
(how similar the meanings of the words are). Measuring word similarity in some form or mapping words to some
feature space is a necessary prerequisite for word clustering and is also useful for many applications of its own, such

as catching misspellings, learning word senses, automatically building or expanding thesauri etc. [6].

My initial efforts focused on similarity measurements that represent semantic similarity directly, such as thesauri-
based methods including Lesk [44], the Wu & Palmer measurement [45], the Leacock and Chodorow method [46] and
others [47]. These thesauri-based measurements approximate semantic similarity using pre-constructed semantic data
structures such as WordNet. They measure the similarity of two words based on the relative positions of the words
in the data structure as measured by, for example, the number of is-a relationships to reach a common root. These

similarity measurements are limited in that they require a pre-built thesaurus which can be very difficult to create.

My experiments with these word similarity measures first applied spelling correction then part of speech tagging.
From this I extracted lists of verbs and nouns which I applied a number of thesauri-based similarity measurement
methods to prior to clustering. I encountered several problems, first the need for word sense disambiguation which I
attempted to overcome by selecting the maximum similarity from all pairs of word senses to be the similarity for those
two words. Another problem I encountered was that many of the words in my dataset were not present in WordNet
or just did not work with some of the methods, a testament to the fact that the thesauri necessary for these methods

are very difficult to create. Furthermore, such thesauri only contain certain types of words, like nouns and verbs, so

34

they could not be used to cluster all the words in my dataset. I also did some experimentation with measuring noun
semantic similarity by comparing bag-of-word representations of the Wikipedia articles associated with the words
based on the idea some semantic similarity measurements use of comparing the glosses of two words. I did not make
much progress with this, but it might be interesting to pursue further in future work. I quickly discovered that context-
based similarity measurements were much more effective for my particular case and later combined them with surface

similarity measurements.

Context similarity and co-occurrence based clustering is a commonly used technique for word clustering in natural
language processing applications. Chotimongkol and Rudnicky use context similarity-based (in the form of mutual
information-based and Kullback-Liebler-based clustering) in their work with learning in and unsupervised dialogue
system [25]. Gronqvist and Gunnarsson use very narrow context similarities based on the current assignment of
words to clusters to hierarchically cluster Danish and Swedish words from spoken language corpora [41]. Nenadi¢,
Spasi¢ and Ananiadou used automatically discovered context patterns to find similarities between domain-specific
terms [48]. Some of their other term clustering research has used context similarity as one component of the overall
similarity measurement between words [49, 50]. I based my word clustering system off of this multitude of previous
research and my own experimentation on my particular dataset. See section 3.3 for more details about my particular

implementation.

2.4.2 Dialogue Clustering

Clustering of dialogue lines specifically has not been throughly explored in prior NLP research, but the similar problem
of semantic sentence clustering has been tackled several times. Frey and Dueck used it to find exemplary sentences
for their own research paper in order to demonstrate the effectiveness of their affinity propagation clustering method
[39]. Radev et al. group sentences based on their information content as part of their multi-document summarization
system MEAD [51]. Wang et al. used spectral clustering in conjunction with a sentence similarity matrix derived
from semantic analysis based on WordNet-driven comparisons of the terms used in the sentences [52]. Zha used a
similar spectral clustering method to group sentences by topic, but also incorporated the proximity of sentences into

the clustering algorithm [53].

There are some differences between typical sentence clustering problems and the dialogue clustering step in event-
sequence discovery. First of all, the nature of the dataset from which the sentences are taken are typically quite
different. In The Restaurant Game the context surrounding a dialogue line can give a lot of information about its
meaning. For example, “coming right up” and “I’ll be back with that shortly” are two dialogue lines that mean the

same thing, but have no obvious internal similarity that could be extracted automatically. However, the contexts they

35

appear in, typically right after a customer places an order and before getting the order from the chef, are very similar,

demonstrating the semantic relationship between the two lines in the context of a restaurant.

Another difference is that the dialogue lines in The Restaurant Game can be short, such as “One please” or “Beer,”
and can’t really be understood independently of the prior context, such as “Table for two?” or “What would you like
to drink?” Although I did investigate some of the sentence clustering techniques used in other NLP research, many
of them rely on the information contained within a sentence. The differences between the problems, coupled with my
own early experiments led me to believe that a clustering system more similar to the one I decided to use for words
would be more effective, see section 3.4 for more information on my specific implementation. In future work it would

be interesting to investigate other methods for clustering the dialogue lines.

24.3 Event-Sequence Clustering

Sequence similarity measurements and clustering have been used in many sequence learning, prediction and catego-
rization applications. For some examples see section 2.3. However, most of the sequence similarity problems have
dealt with complete, contiguous sequences so the similarity measurements they have developed are not as applica-
ble to the event-sequence clustering problem. For example, Lane and Brodley use edit-distance and alignment based
sequence similarity measurements for their anomaly detection problem [10, 22]. Also Yang and Wang developed a

generic sequence clustering algorithm that uses probabilistic suffix trees to group sequences [54].

The event-sequence clustering problem is different from most in the additional information available to use in comput-
ing similarities. There are additional properties of the sequence, such as the expansion factor and where it occurs in the
game logs, as well as contextual information about where it appears in relation to other sequences that I take advantage
of when clustering (see section 3.9 for more specifics). I also make use of surface similarity measurements based on
edit distance similar to some of the other sequence clustering research, but it would be interesting to investigate some

of the other surface similarity measurement options in the future.

2.5 Event-Sequence Labeling

Labeling is one of the final stages in the event-sequence discovery system. The purpose of the labeling step is two-
fold, it provides data by which the system may be evaluated, and it allows for context and certain feature information
to be gathered about the event-sequences in order to better cluster them. The labeling step itself consists of finding

a valid (each action or dialogue line must be in at most one event-sequence) labeling of sequences in each log file.

36

Orkin developed the greedy RUN algorithm which, given a dictionary of all possible event-sequences, does a good
job of labeling sequences in a new game during run-time [17]. The event-sequence discovery system runs completely

off-line, allowing it to find the optimal labeling, rather than requiring it to resort to finding a good labeling.

There are two challenges associated with finding the optimal labeling. The first is determining the criteria that should
be used to define optimality. Ideally the optimal labeling would be the one that most resembles the actual events that
took place in the game. However, there is no way to score a labeling based on this without already having the logs
labeled manually, which defeats the purpose of the entire system. Therefore other scoring systems must be developed
based on this goal by thinking about the measurable properties the perfect labeling would have. First the labeling would
likely cover most of the actions and dialogue lines in the log. Although people enjoy doing strange stuff sometimes,
the majority of most logs is typical restaurant behavior which can be easily assigned to an event by a human annotator.
Our system ideally should be able to do the same thing, although it is only working with frequent sequences, so it
won’t be able to catch as much as a human. This gives us one measurement we can use as part of our optimality score,

the percentage of the log’s elements covered by the labeling.

Other optimality scores can be derived from the intuition behind why and how humans are able to label logs easily.
For example, the event-sequences in a labeling should be typical examples of those events. At the labeling step in the
event-sequence discovery system, the sequences have not yet been clustered into event groups, but this does provide
a basis for another component of the optimality score. We can measure the normality of the sequences in a labeling
by looking at how similar their arrangement is to the average for that sequence in all the logs (see section 3.8 for the
detailed implementation). Designing a system that iteratively labels logs and clusters sequences in order to be able to

score normality better might be interesting work for the future.

The second challenge in selecting an optimal labeling is figuring out how to find it among all the valid labellings.
There could potentially be many conflicting sequences, leading to a very large number of valid labellings for a single
log, possibly making it difficult to enumerate them all. One possibility I explored was optimizing the labeling within
sections of the log then combining them into an overall optimal labeling. The difficulty is that sequences can span
potentially any part of the log so finding a way to split the log that does not break sequences into different sections may
be impossible. One might still be able to make this work as an approximate method. Another option I experimented
with was selecting one optimal sequence at a time for each set of conflicting sequences. The problem I found with
this is that sets of conflicting sequences can be large, complicated and overlapping. For example, one sequence might
conflict with three others none of which conflict with each other so you are actually choosing between one sequence

and three sequences instead of selecting one out of four.

I decided that it was important to select the optimal labeling according to my scoring criteria, not just an estimated

37

optimal labeling. My reasoning was that there would be one fewer components that might impact the overall per-
formance of the very complex event-sequence discovery system. Therefore, I ultimately decided to use the slow
method of enumerating all possible valid labellings and finding the one that scored the highest (see section 3.8 for the

implementation). Future work could look at improving this stage of the system.

2.6 Evaluation

The goal of the event-sequence discovery system is to find sequences corresponding to events and cluster them ac-
cording to the event they correspond to. Determining how well the system is accomplishing this goal is a difficult
task by itself. Of course one could observe the output and qualitatively evaluate it, and perhaps develop a quantitative
evaluation system by having humans assign scores to the output in some way. However, it is surprisingly difficult
to qualitatively evaluate the performance of the system, making a human-based scoring system (which would require

many human subjects unfamiliar with the project) infeasible.

There are several reasons qualitative evaluation is difficult. The most straight-forward is that it is difficult to present
the output in an easily interpretable way. Sequences are built up from action and dialogue clusters which are built
up from word clusters, making it difficult to interpret exactly what is happening in a particular sequence. Of course
on could list out all the specific instances of a sequence, but that brings us to the next difficulty, the amount of data.
There are so many sequences that it is difficult to keep track of how many seem right and how many seem wrong. One
possible solution to this would be to present only a small portion of the data to each human evaluator, but then it would
be difficult to assess the clustering of the sequences, because clusterings can’t really be evaluated well without looking
at them in their entirety. These and other factors make it difficult for anyone besides those with expert knowledge of
the system to qualitatively evaluate its performance, which makes a quantitative measure based on human evaluation

difficult.

Without being able to have humans compare the output to their intuitive ideas of events, we are limited to comparing
the output to something else. In conjunction with the development of EAT & RUN [17], Orkin manually labeled the
event-sequences in 100 game logs. We also have Orkin’s manual clustering of event-sequences in terms of the event
label he applied to each. This allows us to evaluate the system by comparing its labeling of those 100 games logs to
Orkin’s manual labeling or by comparing its clusters to Orkin’s. Orkin also worked to reduce unique dialogue lines by
modeling dialogue as an unordered set of salient phrases. This creates a problem for comparing clusterings because
the event-sequence discovery system deals with dialogue in a different way so there is no direct mapping between the

model of sequences in the manual clustering with the model of sequences in the automatic clustering.

38

We chose to evaluate the system by comparing the automatic labeling with the manual (gold-standard) labeling in
terms of sequence instances and event / cluster labels. One approach I explored was based on Allen relations [55].
These are the set of relationships that can exist between two temporal intervals in terms of the relative occurrence in
time of their beginnings and ends. The idea was to compare the intervals defined by the event-sequences in the golden
labellings with the intervals defined by the event-sequences in the automatic labellings based on these relations and
compute a score depending on how much they aligned. The theory being that the more closely an automatic event
aligns with a manual event, the better the labeling is, even if there are a few differences in the actions and dialogue

lines contained in each.

I believe this is a very practical theory and would like to pursue this further in future work, but as of yet I have had
challenges implementing such an evaluation system. The problem is that it is difficult to find a mapping between
manual event-sequences and automatic event-sequences within a log, so it is hard to determine what to compare
intervals between. The difficulty of the mapping stems from several factors, particularly the fact that sequences can
overlap arbitrarily within a log and that the automatic labellings tend to be more sparse because they only label frequent

sequences. Consequently, I chose to pursue other evaluation methods for the time being.

The evaluation method I settled on makes use of extrinsic clustering evaluation metrics to compare the golden label-
ing to the automatic labeling by treating the process of assigning game-actions to event-sequences as the process of
assigning elements to clusters. The motivation stems from a relatively intuitive idea: if a pair of actions is in the same
event-sequence in the golden labeling, then they ought to be in the same event-sequence in the automatic labeling,
and vice-versa if they are not in the same event-sequence in the golden labeling, they should not be in the same event-
sequence in the automatic labeling. By treating event-sequences as clusters, we can evaluate an automatic labeling by
measuring how true these statements are overall in that labeling using extrinsic cluster evaluation metrics. For details

on the implementation and metrics used see section 3.10.

39

40

Chapter 3

Implementation

This chapter details the design of the system developed in conjunction with this thesis. The first section describes the
overall system, what the components are and how they fit together. The subsequent sections provide more detail on
each of the components. The terms stage (because they are run in a particular order) and component (because they are

all necessary parts of the overall system) are used interchangeably to refer to the separate parts of the system.

3.1 Overview

The system as a whole takes as input logs of human game play from the restaurant game (see figure 3.2) and produces
several forms of output at different stages in the process, as detailed in figure 3.1. The outputs of the final stage are
several scores that evaluate the overall performance of the system by comparing its labeling of logs to a gold-standard
manual labeling on a particular subset of the logs. The system is composed of a number of stages, each one being its
own executable or script written in C++ or Perl (although many share some of the same C++ code-base). The output
of each stage is typically in the form of human-readable text files (or a2 human-readable version is output as well)
and is fed as input into one or more future stages. Although, for the most-part, only the overall performance of the
system was evaluated quantitatively, the intermediate output from the various components was evaluated qualitatively
in order to modify algorithms and adjust their parameters. Furthermore, the outputs from many stages are useful and

interesting in and of themselves, such as the word clusterings, or dialogue and action clusterings.

While figure 3.1 depicts the interaction of the components, their inputs, outputs and function are described briefly

below. More detail on the algorithms and processes used in each stage are presented in the following sections.

41

Log
processing

Processed logs

i Word 3 Action -
{ clustering ! t clustering ! logs with
clusters

..

s’

Filtered
sequences

—
Labelling
logs with

sequences

I Logs with sequences labelled

s Sequence

Sequence i clusters Gold-standard labelled logs

Evaluation

&
<

0
............................

Performance scores

Figure 3.1: A flow chart showing the components and subsystems that make up the different stages of the event discovery system.
For the components with dotted outlines, all the inputs to that component are passed along with the output to any
components making use of the output. For example, the word clustering component produces clusters of words, but
any other component that uses those clusters also receives the original words, because the two go hand-in-hand. Thick
arrows represent multiple inputs/outputs.

42

1. Log Processing

Input Raw logs

Output Words, Actions, Processed logs

The raw game logs (see figure 3.2a) are processed to extract sets of words and actions (including dialogue acts)

appearing in the logs and to make them more human-readable and easier to process further (see figure 3.2c).
2. Word Clustering

Input Words, Dialogue lines

Output Word clusters
Words are clustered based on surface similarity and context similarity.
3. Action Clustering

Input Words / clusters, Dialogue lines, Actions, Processed logs

Output Dialogue clusters, Action clusters

Dialogue acts are clustered based on context similarity and surface similarity, while other actions are clustered

based only on context.
4. Rewriting Logs with Clusters

Input Processed logs, Dialogue lines / clusters, Actions / clusters

Output Logs with actions labeled with their clusters

Given processed logs and action cluster information append the cluster information to the logs so that sequence

mining can run on clusters.
5. Pattern Mining

Input Logs with actions labeled with their clusters

Output Sequences
A modified sequence mining algorithm finds frequent sequences that meet certain basic criteria.
6. Sequence Filtering

Input Sequences

43

Qutput Filtered sequences
Sequences are further filtered to remove sequences unlikely to correspond to events.
. Labeling Logs with Sequences

Input Logs with actions labeled with their clusters, Filtered sequences

Output Logs with sequences labeled
For each log, label a good, non-conflicting set of sequences in the log.
. Sequence Clustering

Input Dialogue lines / clusters, Actions / clusters, Filtered sequences, Processed logs with sequences labeled

Output Sequence clusters
Cluster the sequences based on surface similarity and context similarity.
. Evaluation

Input Filtered sequences / clusters, Logs with sequences labeled, Gold-standard labeled logs

Output Performance scores

Uses extrinsic cluster evaluation measures and other measure to produce a set of scores comparing the system-

driven labeling of sequences to the gold-standard labeling of sequences in a subset of the logs.

3.2 Log Processing

This is the first stage, which converts the raw log files into a more usable form. This stage actually consists of multiple
steps implemented in several different Java and C++ programs. The first few steps are taken from earlier work done by
Orkin. These steps involve filtering out all the unused information from the logs (e.g. debug information, movement
information etc.) leaving only dialogue acts and actions. Additionally, an action lexicon is created which associates an
index to the actor, object, state changes and verb of a particular action. The lexicon is reduced by limited clustering of
game objects based on the similarity of the actions they are used in (e.g. all the different chair objects, all the different
forms of the wine object etc.). The logs are then rewritten in a reduced form with actions replaced by indices into
the action lexicon. These initial steps, borrowed from Orkin’s earlier work take the logs from their raw form as in

figure 3.2a to an intermediate form as in figure 3.2b.

[cOGLOG] 15097868 EVENT WAITRESS(Player)
FACING CHEF (DBChef)

{COGLOG] 15097868 EVENT WAITRESS(Player)
FACING BARTENDER(DBBartender)

{COGLOG]) 15097868 EVENT WAITRESS(Player)
FACING CUSTOMER{Player)

7 ATECHANGE WATTRESS(Player
E%ﬁ‘u&;ﬁi‘v"'&%‘?ﬁs%sﬁ‘ﬁ.zmm -o.a?%m)x > ‘55"‘“""-5}‘;‘03';5'6‘% AITAEAS~TINE 15097868> .

(2 H lere is ir menu. 2
E%.“g";‘_’ﬁloﬁ‘.";'ﬁsgsf‘s‘g‘"‘”“zm_§5‘g‘;‘ln‘ss(Tayer) 92.1.1 KAAGATIME 151012125 you 10000.500142 <TAG=TIME 15097868>
[COGLOG) 15097868 SPEECHACT WAITRESS(Player) 36.1,2 <TAG=TIME 15112477> 92.1.1 <TAG=TIME 15101212>

“Here s your menu.” DIRECTIVE_PREPARE_FOOD <TAG=TIME 15129852> 36.1.2 <TAG=TIME 15112477>
[WAITRESS] Here is r ment. /7 15129852 WAITRESS: “water, please.” 10000. 5060143 <TAG=YIME 15129852>
SELECTED: WATTRESS CUSTOMER 1208 310.513 367.943 32.4.1 <TAGSTIME 15130852> 52.4.1 <TAGWTIME 15130852>
243.188 0.684043 0.545956 0.483754 94.4.1 <TAG=TIME 15133024> 94.4.1 <TAG=TIME 15133024>
Mapping string: onGive to index: 16 EXPRESSIVE. THANKS_OTHER <TAG=TIME 15140868> 10001.10002 <TAG«TIME 15140868>
REACH: WAITRESS CUSTOMER 2 // 15140868 CUSTOMER: “thank you,” eee
[COGLOG] 15101212 STATECHANGE WAITRESS(Player) .

ATPOS="(311.714 367.582 240.556)"
[COGLOG] 15101212 ACTION WAITRESS(Player)
GIVE ic1216(DBMenu)
[COGLOG] 15101212 STATECHANGE dynamicl216(DEMenu)
ATTACHEDTO="CUSTOMER (PTayer)”
(a) Raw log (b) Intermediate log (c) Processed log

Figure 3.2: Example excerpts of the raw log input, intermediate form (after using Orkin’s tools), and final processed log output
of stage one. While the later two excerpts correspond to the same set of actions and dialogue acts, the first excerpt
corresponds only to the first two lines of the other two.

A similar process is repeated on the logs, this time focusing on dialogue acts and words. The intermediate form logs
are reread and two things are generated simultaneously, a dictionary of words and a list of all unique dialogue lines.
The word dictionary contains: words; their occurrence count; and their Inverse Document Frequency (IDF), treating
dialogue lines as documents. The dialogue line files contain: the dialogue lines, in the form of a list of word dictionary
indices; whether it was said by the customer or waitress; and the total number of occurrences. While those data files
are being generated the logs are being rewritten to replace the dialogue lines with indices of unique dialogue lines.

This takes us to the final processed log shown in figure 3.2c.

Separating the dialogue lines and actions from the log files makes it easier to deal with each. Having logs be a Sequence
of integer identifiers makes pattern mining easier, and it allows us to treat all instances of a unique dialogue line across
different logs as references to the same object. Furthermore, words can be clustered using just the word file and the

dialogue file as described in the following section.

45

3.3 Word Clustering

The goal of this stage is to group words based on their semantics. This is a useful first step for grouping together
dialogue lines based on their semantic meaning. The following sub sections describe the algorithms used and the

motivation for selecting those particular algorithms.

3.3.1 Clustering Algorithm

The word clustering stage is run second, it uses affinity propagation [39] to form hard clusters of words. Affinity
propagation is a method of clustering that takes in a possibly incomplete matrix of similarities between data points and
outputs an exemplar for each data point. The exemplar is the data point that best represents the cluster of points that
have selected it. The algorithm for selecting an exemplar for each data point consists of iterative message passing. One
message, responsibility, represents how much one data point wants another to be its exemplar out of other possible
exemplar. The other message, availability, represents how much one data point wants to be an exemplar for another
data point based on support from other points selecting itself as an exemplar. The messages are computed based on

messages received from other data point in the previous iteration as well as the pair-wise similarities of the data points.

Affinity propagation was chosen as the clustering algorithm for all clustering steps in the system because of several

desirable properties it has.

It uses pair-wise similarities as input
This is useful because when dealing with words, dialogue lines, sequences etc. The feature space is not obvious,

making computing pair-wise similarities easier to work with and more intuitive.

It is deterministic
Unlike k-means and some other algorithms with random components, affinity propagation is deterministic. This
is useful because a single run of many clustering stages can take a long time and non-deterministic algorithms

often require multiple or many runs to perform best.

Similarities can be updated while running
Unlike spectral clustering, which reduces the dimensionality of the similarity matrix rather than using it directly,
affinity propagation uses the original similarity matrix when computing messages at each iteration. This allows

similarities to be modified during clustering based on the current soft assignments of elements to clusters.

Affinity propagation is also quite efficient for our purposes, the duration of clustering being dominated by the simi-

46

larity updates. Although the final output of the clustering algorithm is a set of hard assignments to exemplars, soft-

assignments are used while the clustering is still running to update the similarities.

3.3.2 Similarity Measurements

Affinity propagation takes as input a matrix of similarities, which are updated during clustering in this system. The
similarity between words is based on two factors, a surface similarity and a context similarity, each one measure on a
scale from O to 1. The final similarity, also on a scale form 0 to 1, combines these two scores based on an algorithm
parameter determining the weight of each. Surface similarity is a measure of how alike two words appear. It is intended
to ensure typos and misspellings are clustered together. Context similarity is a measure of how similarly two words are
used in terms of the words that appear next to them. Context similarity is used to represent semantic similarity. Other
methods of measuring semantic similarity require outside data sources, and don’t work on all word types, as described
in section 2.4.1. Only the context similarity is updated during clustering by using the current clusters of words, rather

than the words themselves, when evaluating contexts.

Surface Similarity

The surface similarity is derived from Levenshtein distance [56], also sometimes called edit distance. Levenshtein
distance is the number of character insertions, swaps or deletes it takes to get from one string to another. A fairly
straight-forward dynamic programming algorithm can be used to compute levenshtein distance [57]. An example of

computing levenshtein distance based on this algorithm is shown for the words “salmon” and “slaomon” in figure 3.3.

However, levenshtein distance increases with dissimilarity. Therefore, to create a surface similarity measurement I
normalize it so be on a scale from O to 1 and subtract it from 1. Normalization is done by dividing the Levenshtein
distance by the maximum possible for the two words. The maximum possible edit distance occurs when every char-
acter of the shorter word must be swapped and the remaining characters of the longer word inserted. This comresponds

to the length of the longer word.

Context Similarity

The context similarity measurement I use is derived from the context similarity section of the Jurafsky and Martin
NLP textbook [6]. The basic idea is that each word has a context vector representing all the contexts it appears in.
Thus the context similarity of two words can be measured by comparing their context vectors. They pointed out that

there are several options for both constructing the vectors and comparing the vectors. Each dimension of a context

47

sjiL|{ajo|mM|oO]|N Getting from
"SALMON" to "SLAOMON"
a1 f-24-3- -G {5t 6L 5P
T cdaladalelse | s Insert a character
S |1 [ea)2-3-1-4--5-1% > from "SLAOMON"
Af2l1l1|%}2344)38
1 YA i O Delete a character
L131211]2]2)3 418 v from"SALMON"
Mida13]2]2 3 '2,r3 4 .. Substitute a characte
3 T R % from “SALMON" for
015{4|3|3|2 ¥ 2438 A one from “SLAOMON"
N[B X Y Y| ¥[3[Y(S

Figure 3.3: This figure shows the dynamic programming process the system uses to compute the levenshtein distance between the
words “salmon” and “slaomon.” Each entry D(i,j) in the grid gives the number of operations needed to get from the
first i characters of “salmon” to the first j characters of “slaomon”. Thus the complete edit distance between the words
is 2 as seen in the bottom right of the table. If we think of the grid as showing how to get from “salmon” to “slaomon.”
a move to the right represents inserting a character from “slaomon;” a move downward represents deleting a character
from “salmon;” and a diagonal move downward and to the right represents substituting a character from “salmon” with
one from “slaomon.” Each move has a cost of 1, with the exception of a substitution when the two characters are the
same. The algorithm then is basically just finding the least-cost path from the starting location in the top-left to the
ending location in the bottom-right. The least-cost paths to each grid cell are shown in the figure by the dotted lines.
The green grid cells show the least cost path of the solution. This shows that it only takes two edits to get from “salmon”
to “slaomon.” The first, an insertion of an L between S and A and the second a substitution of an O for an L. There are
often multiple least-cost paths, but only one is marked for each cell in the figure.

vector represents a particular context feature. For example: word A appears immediately prior; word B appears two
words before; word B appears two words before and word A appears immediately prior etc. Furthermore, each value
in a particular word’s context vector represents the affinity between that word and that context feature. Therefore
method of context similarity measurement has three components: context feature choice; affinity function; and vector

comparison function.

Curran has shown that t-test affinity as an affinity function and Dice similarity as a vector comparison function are

good choices when trying to use context similarity to relate words semantically [43]. The t-test affinity function is:

P(w, f) — P(w)P(f)
VP(w)P(f)

3.1

asS0Cest(W, f) =

where f is the context feature and w is the word. P(w, f) is the probability that word w occurs with context feature
f (i.e. the number of times they appear together divided by the total number of times and feature and word appear
together). P(w) is the probability of word w (i.e. the frequency of the word). P(f) is the probability of feature f (i.e.

the frequency of the feature). The Dice vector similarity function is:

)= 2 x Zf\;l min{v;, w;)

SiMpice (¥, W .

3.2)

48

where v’ and w/ are the context vectors of the two words being compared and v; and w; are the corresponding compo-
nents of the vectors (i.e. the t-test affinity between each word and the same context feature). Dice is not only effective,

but efficient to compute as compared to dot product for example.

| would like a berry pie.

Could | get the berry tart. — Pie « Tart
T — —_————
Here's your pie sir. 0.61
R o H -
oOriginal dialogue line context Context vectors Final context similarity

Figure 3.4: This shows how the context similarity of “pie” and “tart” is computed from the sample original contexts they appear in
on the left. First a context vector is generated for each word which stores the t-test affinity between that word an each
context feature it appeared with. Then the context vectors of the two words are compared using Dice to produce the
final context similarity.

In terms of the selection of context features, [41] suggests that very small contexts can be sufficient when clustering
words and interpreting context in terms of the clusters. Building on this idea, the context features in this system are
re-computed after every few iterations of the clustering algorithm, and only concern one or two words. For example,
some context features might be: a word from cluster A appears immediately prior; a word from cluster B appears two
words before and a word from cluster A appears one word before. The weight associated with a context feature is the
frequency it occurs with, which is used in the calculation of t-test affinity (3.1). The process of updating the context

similarity is as follows:

1. Get the current soft-assignment of words to clusters (these sum to 1 over all the clusters a word is in).

e The clustering algorithm produces a list of exemplars, and rather than assigning each word to the most
similar exemplar as is done for hard assignments, the assignment is distributed among the N most similar

exemplars, weighted by the similarity to the exemplar.
2. Create a new set of context features based on word clusters.

e When reading in the dialogue lines, the context feature prototypes are stored in terms of the exact words.
When generating the actual context features, the words’ clusters are referenced and the weight associated
with the prototype is distributed among the appropriate context features. So one context prototype will

contribute weight to multiple context features, and one context feature will receive weight from many

49

context prototypes. There are much fewer features than prototypes because there are fewer clusters of

words than words.
3. Create a new context vector for each word using the new context features.

e Words point to the context prototypes that they are associated with. In order to generate context vectors
based on the context features the words distribute their affinity to a prototype across the features that it

corresponds to.

4. Compute the context similarity for all pairs of words that we are updating.

¢ To make the process more efficient, as clustering progresses, similarity stops being computed for pairs of

words that have remained relatively dissimilar.

Soft-assignments
Word
Words Clusters
¥ h
Context feature
Contexts word Words vectors word clusters
appears in context context feature
Ppe: contains contains
Y
Weight distribution
Context 4| Context
Prototypes Features

Figure 3.5: This shows how the various objects used to compute word context similarity are linked together. A context prototype
such as “berry .” in figure 3.4, has references to the words it contains, in this case “berry”. After computing new
context features based on current cluster assignments, the prototype also has pointers to the context features it has been
distributed among. Context features only refer to word clusters. For example, “berry” might have a soft-assignment
of 0.9 to the “fruit” cluster and 0.1 to the “flavor” cluster, so the context prototype for “berry _” would be distributed
among the context features “fruit - and “flavor .”” with a weight of 0.9 and 0.1 respectively. Word objects, such as “tart”
refer to the context prototypes they are associated with (e.g. “berry _”) in order to update their context feature vectors
based on how the prototype is distributed among the features.

Figure 3.5 shows how words, word clusters, context prototypes and context features are related. While figure 3.4
shows a simple example of computing context similarity using word-based context features (rather than word-cluster

based as is actually used).

3.4 Action Clustering

The action clustering stage produces three sets of clusters, waitress dialogue line clusters, customer dialogue line
clusters and action clusters. The process is pretty much identical to the one used in the word clustering stage (3.3)

with a few small differences.

50

First, because the output is separate sets of clusters for each type of object, the clustering of the objects is done in
separate instances of the clustering algorithm, not all together. However, because all the objects use the same set of
context features, the clustering of the objects must be stopped frequently in order to update the context features across

the board. Context features are still very limited in size, and are obtained from the processed logs.

In this stage, surface similarity is only computed for dialogue lines and is still only a minor factor in the overall
similarity computed. Surface similarity is not computed for actions for two reasons: actions are much more limited
in number and form; and some surface similarity-based combination of actions has already taken place prior to this
stage during log processing. There are some changes to the way surface similarity is computed. The biggest change
is that the base unit of levenshtein distance is now a word rather than a character. This allows for more complicated
weighting of the cost of insertions, substitutions and deletes. Instead of being only either 0 or 1, the cost of an edit is
now based on the TF-IDF weight of the words involved in the edit. The last significant difference is that a substitution

has a cost of O if the two words are in the same cluster, not just the same word.

3.5 Rewriting Logs with Clusters

This stage is very simple. Given the clusters output by the previous stage, it prepends a cluster id to every action
and dialogue line in every processed log. No information is removed, the cluster an action or dialogue line belongs
to is just added to the front. This allows the pattern mining performed in the next stage to work with clusters rather
than individual unique action and dialogue lines. This is necessary since the pattern mining only finds frequent sub-

sequences, and the vast majority of dialogue lines occur only once or twice.

3.6 Pattern Mining

As discussed in the background section 2.3, a lot of experimentation and research went into selecting and modifying
the pattern mining algorithm, arguably one of the most important components of the system. Ultimately, the imple-
mentation used is a modified version of the PLWAP algorithm presented in [29]. PLWAP is used in the system for two
reasons: it is relatively efficient in both time and space; and the data structure used to assist with mining allows for a
lot of early pruning of sequences unlikely to correspond to events. This stage was built off the open source PLWAP
implementation released by the original creators of the algorithm [58]. Most of the modifications to the algorithm
deal with pruning non-event-sequences early. By default, PLWAP counts support for patterns in terms of how many

sequences (in this case log files) they appear in. Since many events can be repeated multiple times in the same log

51

(such as eating, ordering cleaning dishes etc.), the algorithm was modified to compute support count in terms of the
total number of independent (not intersecting) times a pattern appears in the sequence database. The other modifica-
tions, designed to help with pruning are described below. An example of the modified algorithm running on a simple

sequence database is shown in figure 3.7.

3.6.1 Pattern Pruning

The original PLWAP algorithm already is designed to select only patterns that occur a certain minimum number of
times and are less than a certain maximum length. The minimum frequency criteria is useful to the system because
the goal of this stage is to find the most typical event-sequences. The maximum length criteria is useful because valid
event-sequences usually consist of only a few game-actions. It turns out that with some slight modification, PLWAP
can also prune patterns during mining based on other criteria useful to the system. This greatly increases the speed
of pattern mining and also reduces the number of candidate event-sequences that have to go through the additional

filtering stage. The sub-sections below describe two other forms of pruning which take place during pattern mining.

Besides the minimum frequency parameter which was chosen through experimentation, the parameters which control
the various pruning mechanisms were chosen based on examination of the values for real event-sequences from the
manually-labeled golden log set. The values used for each parameter, including those used to do post-mining filtering,

are given in appendix B in section B.3.

Expansion Factor

One of the reasons that finding event-sequences in a log is hard is that the action and dialogue lines that make up
the sequences might not be consecutive. Action and dialogue lines corresponding to other events or no event at all
may be interleaved with those of a single event. However, it is still the case that an event-sequence is complete, no
other actions or dialogue lines are needed in order to complete that particular event. Furthermore, this system works
only with the lowest level of events in the event hierarchy, which are predominantly simple, short-term behaviors such
as ordering food or cleaning a plate. As a result, one would expect that the majority of the components of a event-
sequence tend to be consecutive or, at least close together. Or in other words, the number of game-actions between the
first and last game-action of a event-sequence (the real length of the event in the log) should not be significantly more
than the total number of game-actions in the event (the sequence length of the event). I refer to the ratio of the real
length of a particular instance of an event-sequence to the sequence length as the expansion factor of that instance (see

figure 3.6). As expected, the average expansion factor found for real event-sequences in the golden logs was relatively

52

low, mostly varying between 1.0 and 1.6 depending on the event label !. Certainly some event instances are outliers
with expansion factors as high as 10, but since we are only mining frequent patterns and using the average expansion

factor, they do not have a big impact on the pruning.

C_ARRIVES _ C_GETS_MENU

:i_u ; my ,. ”

C_GETS_SEATED

WAITRESS: CUSTOMER

€6 eicome . taies 5 SITS_OM Chair.d
e T : AT Table.d

1z} » 15}

Figure 3.6: This excerpt from a manually-labeled golden log shows three event-sequences instances corresponding to the customer
arriving, the customer getting a menu and the customer being seated. The blue and green instances have expansion
factors of 1.5 while the pink instance has an expansion factor of 2.0.

The pruning of sequences based on expansion factor that occurs during mining is only approximate. This is because,
in order to make the mining more efficient, sequences are pruned as soon as a prefix of the sequence has an excessive
average expansion factor. The ideal way to prune based on expansion factor would be to only prune completed
sequences, because the completed sequence will likely have a different expansion factor from its prefixes. However,
if this was the only expansion factor filtering that took place, it would not speed up pattern mining at all and only
be necessary in the post-mining filtering stage. Therefore, the system performs expansion factor filtering twice, once
during mining with a higher maximum expansion factor, and once in the filtering stage with the maximum expansion
factor chosen to reflect the observed values from the golden logs. In practice though, pruning just during mining with
the lower maximum does not seem to have much of an impact on the final set of filtered sequences. This is logical
because just as one would not expect a valid event-sequence to have a high average expansion factor, one would not

expect and subsequence of that event-sequence to have a high average expansion factor for the same reasons.

In order to properly compute the average real length of a pattern during mining, the algorithm had to be slightly
modified to select the shortest instance of a pattern when more than one intersected in the same log. This was handled
by essentially throwing away the prefix that started earlier when two prefixes were extended to the same node in the
mining trie. The real length of a pattern instance was easy to compute from the binary encodings of the first and last
element of the sequence. The real length is just the difference in the number of set bits in the bit-codes of the two

nodes, because each additional 1 appended to the code represents another level deeper in the trie.

The “Customer Departs” event had a much higher average expansion factor than all the other events (greater than 5.0). This calls into question,
how suitable it is to be a lowest level event in its current form.

53

Transition Probability

Based on the same argument used above, that valid event-sequences of game-actions are complete and don’t need any
other game-actions inserted, patterns are also pruned using the transition probability between game-actions. Patterns
that contain consecutive game-actions with transition probabilities of near zero are removed during mining as soon
as the low transition probability is encountered. This is because such a low transition probability implies that even
though this pair of game-actions is frequent, there is always, or almost always, another game-action in between the
two, suggesting that the corresponding event-sequence is incomplete. This method of pruning is primarily used to
filter out sequences in which some of the actions can not occur consecutively due to restrictions of the game engine.
For example, in the restaurant game it is impossible to have a pick-up action twice in a row because the first item to

be picked-up must be given away or put down before a new item can be picked-up.

The transition probability of all pairs of game-actions was computed and stored in a matrix indexed by the ids of the
game-actions at the same time that the trie for mining was constructed. Then they were looked up for comparison to

the minimum threshold during the actual mining

3.7 Additional Sequence Filtering

The filtering that takes place during pattern mining does not filter out many of the non-event-sequences. Some of
the filtering is easiest to do after mining is complete, which is where this stage comes in. Section 3.6.1 refers to an
additional pass of expansion-factor based filtering that takes place at this stage. This is one of several minor filters that

catch a small number of bad sequences. The most important filters at this stage use the notion of closed-sequences.

In sequential pattern mining, a closed sequence is a sequence that is not the sub-sequence of any sequence with the
same count. This notion is useful because by this definition, a non-closed sequence is one that always occurs as part of
a larger sequence. For example, suppose you have a sequences database in which the subsequence ABA only occurs
within instances of the subsequence ABAC. In this case, ABA is not a closed sequence because it has the same count
as a super sequence in the database, ABAC. It is easy to see how capturing only closed sequences can help in this
system, eliminating incomplete sub-sequences of event-sequences which would otherwise pass all the other filtering
criteria. However, due to the great variety in behavior and dialogue, I have found that using a slightly broader notion
of closed sequences, which I refer to as pseudo-closed sequences, to be more useful. Instead of requiring the counts
to be identical between a super and sub-sequence, I require that they be within the minimum frequency count of one
another. That is, if I am mining only sequences that occur at least 50 times, I remove all sequences with a support

count that is less than 50 away from the support count of one of their super-sequences.

54

Header Table WAP Tree

Element count - a:8, b:5, c:6. d:1, e:2.f:3
Frequent elements (threshold countof 4) - a.b.c

WAP tree structure - represents actual sequences

» from the sequence database.

Preorder Linkages - indicates the order the nodes
wunde were inserted into the tree and provides a way to
iterate through nodes of the same element.

Element : count

Element ~—~ o >~— o s Y (0 LG5, Y
node structure

Binary position code

(a) First the sequence database is rewritten, removing all infrequent elements. Then the frequent sub-sequence database
is read into a trie where nodes of the same element are linked together in the order in which they were added to the
trie. A special header table is created to reference the beginning of each of these preorder-linked lists. Each node
in the trie has a count, the number of sequences in the database that pass through that node. Each node also has
a binary position code which allows for easy comparison between nodes to see where they are in relation to one
another in the trie during mining.

(— 7 7 7 7 TPattern:"a"-supportcount8

& 3552

P

(b) An element is selected from the header list and the preorder linkages are used to find all the subtries that begin with
that element. Note that these are all the sub tries beginning with the element, even if one is a subtrie of another.
This is not how the normal PLWAP algorithm works and is part of the modification to count patterns based on
their total number of occurrences. The count contained in each of the new roots is summed up and compare to the
minimum frequency threshold to determine if this is a current sequence and if mining should continue.

(7 Patten:*ac*-supportcount5 Y Another element is selected from the header table, but this time
we only select subtries from the previous set of subtries. Further-

| I
I $ @ | more, each new subtrie is only included once, even if the previous
| * .

set of subtries included it multiple times. For the purposes of real-

— length calculation, the new subtrie is associated with the smallest
@ @ of the old subtries that contains it. For example, in the case shown

the second new subtrie (c-c), is contained in the both of the first

@ two subtries of the previous set. In this new set it is only included

once and associated with the subtrie (a-c-c).
(c)
Figure 3.7: This is an example of how the modified PLWAP algorithm used in this system works (without the various pruning steps

besides frequency). It is running on a simple sequence database mining the frequent sequences “a” and “ac”, assuming
a minimum frequency of 4. This example is borrowed from [58].

55

There are sequential pattern mining algorithms that only mine closed sequences and could be adapted to mine pseudo-
closed sequences (i.e. using my looser definition of closed), but PLWAP has many nice properties as described in
section 3.6 and I am using my notion of pseudo-closed sequences for other forms of filtering at the same time. In
addition to removing all non-pseudo-closed sequences, I also remove sequences that are combinations of other pseudo-
closed sequences. This removes sequences corresponding to two different event-sequences that occur back-to-back
(e.g. we might mine a sequence corresponding to the customer entering and then getting seated because these often

occur next to each other).

The filtering in place is not perfect, many event-sequences are filtered out (in particular infrequent ones), and many
non-event-sequences slip by. There is a lot of room for improvement and I have a lot of ideas for what should be
pursued in future work (see section 5.2.4), but this prototype system performs fairly well over-all as discussed in

section 4.5.

3.8 Labeling Logs with Sequences

Once we have a list of likely event-sequences, we can label the sequences that appear in the game logs. This serves
two purposes: to provide contextual and other information about the sequences for use in clustering; to allow for
comparison to the golden manually-labeled logs in order to evaluate the systems overall performance. Those two
purposes are the final two stages of the system and will be described in the next two sections. This section describes

the process of labeling the sequences in the logs.

The problem with labeling the mined sequences that occur in a particular log is that there may be many different ways
to do it. Many sequences share one or more elements with one another. Therefore, several sequences may occur in the
same log that use the same element instance. However, in a valid labeling of event-sequences in a log, each element
can occur in at most one event-sequence. Therefore, a single log may have multiple valid event-sequences labellings

given a particular event-sequence list. The challenge is to select the best labeling for a particular log.

Finding all the valid labellings for a log is time-intensive but straight-forward:

1. Load all the event-sequences into a trie.

2. Iterate through all sequences in the log. Use the trie to determine if they are valid event-sequences.

3. Find the set of actions and dialogue lines that are part of more than one event-sequence.

4. Find all the valid sequence labellings, by constructing a set of sequences to include for each. To find a single

56

valid labeling the process is:

(a) Start at the first action or dialogue line in multiple event-sequences. Assign it one of its sequences and

place the others in a set of sequences to exclude.

(b) Continue to the next element in multiple sequences. If the element has any sequence not in the set to

exclude, assign it one of those sequences and place the rest in the exclusion set.

(c) Repeat 2 until all multiple sequence elements have been assigned a single sequence or have no sequences

not in the exclusion set.

(@) Iterate through all the dialogue lines and actions, creating a labeling by assigning each element to its

not-excluded sequence if it has one.

To find all the valid labellings, sub-steps 1 and 2 iterate through all sequences available for choosing at each

element.

The tricky bit is determining what makes a labeling good and finding a way to quantitatively measure it in order to

easily determine the best labeling. I measure the goodness of a labeling based on the following:

Coverage
The percentage of actions and dialogue lines in the log that are part of an event-sequence in the labeling. In
general, the majority of the actions in a log can be attributed to some event-sequence when labeled manually.

We want our automatic labeling to reflect this so we consider labellings with greater coverage to be better.

Normality of event instances
How normal the particular instances of event-sequences are relative to the average of all the instances of that
each event-sequence (e.g. does this instance have a much higher expansion factor). This is computed as a score
from O to 1 for each instance and then averaged to get a score for the entire labeling. Each instance’s normality
is simply the normalized difference in expansion factor between the instance and the average. Other factors of

normality (e.g. context and log position) would require prior log labeling or bootstrapping.

Each labelling’s coverage and normality of event-sequence instances is computed on a scale from 0 to 1 and then
combined into an overall goodness score for the labeling. Coverage is given the greater weight in the final goodness
score. There are other notions of goodness that could be factored in. A good one might be some holistic measure that
looks at the typicality of the totality of the labeling rather than individual event instances. For example, how normal

the overall order and number of events is. However, this would require much more computation and complicated

57

algorithms to bootstrap what is typical, or an external model of typicality based on manual labellings or something
similar.

One could also imagine measuring goodness in terms of the overall system evaluation score produced by a particular
labeling. This idea also has several drawbacks. First, it would only work on logs that have been manually labeled and
could be compared against. Second, the coupling of the labeling and the evaluation would prevent examination of the
effects of changing either independently on the final results. Third, there would be a bit of a boot-strapping problem
because part of evaluation requires sequences clusters, and sequences clustering requires labeled logs, etc. The main
benefit of such an approach would be to allow for evaluation of just the sequence mining and clustering (assuming the
boot-strapping problem is solved properly) portion of the system, without having to worry about the possible effects
the choice of labeling is having on evaluation. However, since I am also interested in how well the labeling stage

works, I chose not to pursue this as of yet, though it would be interesting to look at in the future.

3.9 Sequence Clustering

This clustering stage is very similar to the previous two clustering stages. The input is the mined and filtered set of
possible event-sequences, and the logs labeled with event-sequences. The output is a clustering of the event-sequences
in conjunction with an exemplar for each cluster. Levenshtein difference is computed pretty much the same way as in
section 3.4. In this case the units are action and dialogue clusters and the TF-IDF factor for each is computed as the

sequence database is read in.

One major difference between sequence clustering and the other clusterings is the context features used for context
similarity (see section 3.3.2). Instead of the features being just which other sequences occur immediately before or
after the particular sequence, the context relationships are more complex. So now instead of just two possible feature
relationships, immediately before or immediately after, there are eight. For a given pair of sequences A and B that
occur near each other the possible context features that A could have along with an example of each is shown in

table 3.1.

These context relationships are based on Allen relations [55]. There are not as many as there are Allen relations
because of the discrete nature of the log. Within a single labeling of a log, a single action can not be part of multiple
event-sequences. This eliminates the Allen relations of starts, finishes and equals. One other difference is that for my
definitions of before and after I limit it to being at most a few actions apart. This helps keep the size of context feature
vectors down and also helps maintain the notion of these representing contexts. However, it might be useful to include

more relationships for different lengths of time before and after in future

58

Context Relationship Allen Relation Example Description
B is nearby and precedes B before A B_BB_AA_A The last action of B is a few actions
before the first action of A.
B precedes and is adjacent to B meets A B_BBA_AA The last action of B is immediately
before the first action of A.
B overlaps and precedes B overlaps A B_BB_ABA_B__A B starts before A but ends during A.
B covers A during B B_BB__AA_ABB B starts before A and ends after A.
B is covered by B during A A_B.BAB_AA__A B starts after A and ends before B.
B overlaps and follows A overlaps B AA_B_AB_BB B starts during A but ends after A.
B follows and is adjacent to A meets B A_AA_AB BB The first actions of B is immedi-
ately after the last action of A.
B is nearby and follows A before B A_ A ABBB The first action of B is a few actions

after the last action of A.

Table 3.1: This table shows all the possible context relationship features involving a sequence B. An example and the corresponding
Allen relation is given using another sequence A. The underscores in the example are just to demonstrate that the actions

in the two sequences may be interrupted by actions from other sequences or actions without sequences.

The last difference between sequence clustering and the other two clustering stages is that is adds a third similarity
measurement into the computation of overall similarity. I refer to this as feature similarity. Similar to context similarity,
it takes a vector of features for each sequence and computes the similarity using Dice. The difference is that there are
only a few features in each vector and they are not context features. I separated this similarity measurement from
context similarity because I wanted to weight it differently and not let it get diluted due to the sheer number of
elements in a context feature vector. I chose the features based on observation of the golden logs and how the variance

in these features was relatively small within a single event compared to the variance of the features between events.

There four features are:

1. The number of times a sequence appears in the first third of a log.
2. The number of times a sequence appears in the middle third of a log.
3. The number of times a sequence appears in the last third of a log.

4. The average expansion factor of the sequence.

The three similarity scores are combined into one, with most of the weight going to context similarity and then feature

similarity and lastly surface similarity. Clustering then precedes as normal using the matrix of pair-wise similarities.

3.10 System Evaluation

This is the final stage, but it is not really part of the system the way the rest of the stages are. Rather, it is designed

to evaluate the performance of all the other stages holistically using the output of the previous two stages. This stage

59

compares the automatic labellings produced in stage 7 with the golden, manual labellings on a subset of the log files.

There are several comparisons that take place both intra-log and inter-log and a variety of scores are output to a file.

Both the intra-log and inter-log comparisons are based on the idea that assigning actions and dialogue lines to event-
sequences is a similar task to assigning elements to clusters. Several different extrinsic clustering evaluation measures
are used to evaluate how well the event-sequence assignments correspond between the golden labeling and the auto-
matic labeling. The intra-log measurements evaluate whether elements that appear in the same event-sequence instance
in the golden labeling also appear in the same event-sequences instance in the automatic labeling. The inter-log mea-
surements evaluate whether elements in golden event-sequences corresponding to the same event, are also in automatic
event-sequences corresponding to the same automatic event (i.e. event-sequence cluster). See figure 3.8 for pictorial
examples. One thing to note is that if human annotators were just given logs to label with events, they may have
produced many of the same erros my system produces. However, they are also given examples of each event label,

which makes the task easier.

For intra-log evaluation, golden event-sequences are treated as the classes, automatic event-sequences are treated as
the clusters and actions and dialogue lines are treated as the elements. Then several information-theoretic extrinsic
measures are taken and output to a file, including V [59], NVI [60] and B-cubed [61]. V measures homogeneity
(i.e. to what extent do the clusters only contain elements from the same class) and completeness (i.e. to what extent
are elements of the same class assigned to the same cluster) using the entropies and conditional entropies of the
classes and clusters and combine them by taking the weighted harmonic mean. NVI is a normalized version of the
earlier VI (Variation of Information) which also uses the conditional entropies to give a measure reflecting both the
completeness and homogeneity of the clustering. B-cubed uses the notion of precision and recall with respect to a
particular reference element and averages these over all the reference elements. A total B-cubed score can be obtained

by taking the harmonic mean of b-cubed precision and recall.

Each metric has its own advantages and disadvantages. V is nice because it gives values for homogeneity and com-
Pleteness independently allowing you to weight one or the other more depending on what is more important in a given
application [59], but it does not satisfy the metric axioms [60]. All of them lie on a scale from O to 1, with values that

do not depend on the dataset size directly [59, 60, 61]. Only B-cubed satisfies the rag-bag criteria as defined in [62].

The rag-bag criteria is the idea that a clustering which includes one large cluster with many small elements from
tiny classes is better than scattering those tiny class elements throughout other clusters. This is a useful criteria for
evaluating the system because it is better to have one cluster (the other / not in a sequence cluster) to contain all the
actions from golden event-sequences that were missed in automatic event-sequences than to have them stuck in other

automatic event-sequences.

60

Golden labeling
C_ARRIVES e C_GETS_MENU

C_GETS_SEATED

Automatic labeling

C_ARRIVES

C.GE...

(a) Intra-log example. The orange and pink pair of actions show similarities which we want to reward through intra-log
evaluation, the yellow and purple pairs show differences we want to penalize. The orange pair of actions demonstrates
being in the same sequence in both labellings. The pink pair demonstrates being in different sequences in both labellings.
The purple pair is in the same sequence in the top labeling but not in the bottom and the yellow pair is the opposite.

Golden labeling

Automatic labeling

=
ﬁ @
- . Di

(b) Inter-log example. The orange, pink, magenta, and gray pairs of actions demonstrate having the same event label in both
labellings. Note it doesn’t matter if the event labels are the same between the golden and automatic labeling, just within
each labeling as in the orange case. This is because the automatic labeling doesn’t have the same set of events, just event-
sequence clusters. The cyan and green pairs demonstrate another similarity to be rewarded, having different events in both
labellings. The purple and yellow pairs demonstrate differences to be penalized. Purple shows having the same golden
events but different automatic events. Yellow shows having the same automatic events but different golden events.

Figure 3.8: This shows examples of the sort of similarities and differences that are being evaluated between the golden labeling and
automatic labeling both intra-log and inter-log.

These information theoretic approaches also are more suitable than many other approaches (such as matching) because
they are less affected by the number of clusters. This is a useful criteria for evaluating the system because the automatic
labeling system only labels the frequent event-sequences, where as the golden labellings cover all 2 event-sequences
in a log. This creates a situation where there will be much fewer “clusters” than “classes” and one cluster will have

contain a large portion of the elements.

2Based on a human determined list of events and according to a human’s discretion.

61

For inter-log evaluation the same measures are used, and actions are still considered the elements. However, this time
the golden events, rather than the specific golden event-sequence instances are considered the class labels. Similarly

the automatic event-sequence clusters are considered the cluster labels rather than particular sequences instances.

62

Chapter 4

Analysis, Discussion and Results

This chapter evaluates the performance of the event-discovery system and its components. Although only the system
as a whole can currently be quantitatively evaluated, the most important components are analyzed qualitatively. I
discuss and give examples of what the components do well and what they do poorly and my explanations for their
behavior. Chapter five details some of my ideas for future work that could be done to improve the performance and
accuracy flaws I have noticed. This chapter also elaborates on the parameters of the system and how they were tuned in
response to component outputs in order to achieve the best results. The first four sections focus on the key components
of the system, word clustering, dialogue and action clustering, event-sequence mining and event-sequence clustering.
The final section analyzes the overall labeling performance of the system, both qualitatively and quantitatively. All the
components of the system are deterministic so the results discussed are based on the best results achieved using the
parameters given in appendix B unless otherwise noted. Appendix A has sample output from the various components

that was produced using the parameters given in Appendix B.

4.1 Word Clustering

The word clustering stage received a lot of attention in terms of experimentation, research and refinement. The end
result was a clustering component capable of accurately clustering the vast majority of frequently used words and
many of the less frequently used words. Though I have no quantitative evidence, the clustering performed quite well
with respect to its purpose in the event-sequence discovery system, which I will demonstrate with examples. By this I
mean that the clustering does not perform as well as it could if its purpose was just to cluster the words semantically.

If that were the goal, the result would be very small clusters of synonyms.

63

The ultimate goal of this stage is to combine words together that are used similarly in the context of restaurant dialogue.
In fact, the clustering parameters were purposefully tuned to have fewer broader clusters rather than smaller more
semantically accurate clusters (e.g. the preference factor and the context similarity factor etc. see section B.1). This
resulted in clusters such as adjectives that were used similarly (e.g. used to describe food, used to describe a person
etc.) were clustered together even if they were antonyms (see “great” cluster in table A.1 for example). This seems to

be more helpful for the dialogue clustering process than the alternative as discussed more in the following section.

The system was really good at keeping clusters consistent in terms of part of speech type (e.g. noun, verb, determiner
etc.), and to a lesser extent form (e.g. number, tense etc.). This makes sense as narrow contexts are the primary
component of measuring word similarity, and word types and forms vary greatly in the narrow contexts they appear
in. For example, adjectives appear before nouns, noun verb noun is a very common structure etc. some example, word
type clusters are shown in figure 4.1. As described in section 3.3, the affinity propagation clustering method used for
clustering in the event discovery system, automatically produces an exemplar for each cluster it outputs. This exemplar
represent the word, action, dialogue line or sequence within the cluster that is most representative of the clsuter as a

whole. Each of the clusters shown in this section and the section on dialogue and action clustering are labelled with

their exemplar.
ask had put use
. 1lrigh h r
asked hate said wanted alright andsome strange
. awesome hawt sweet
ate live sat work . . .
) awful interesting weird
came love see write
cute nasty welcome
care made seem ,
fantastic perfect yummy
come make stole fast opular
forgot ordered took pop
(b) awesome

(a) ate

Figure 4.1: Two sample clusters of words of generally the same type. The first is mostly past-tense verbs and the second is adjec-
tives.

The system is also good at its primary goal of grouping together words that are used similarly in the restaurant context.
For example, adjectives that describe the customer’s opinion of the food (figure 4.1b), parts of the restaurant (“corner”
cluster in table A.1), etc. In a few cases it performed better with respect to its goal of helping to semantically cluster
dialogue lines than a human probably would have. For example, there were some groups of words that I initially
thought were odd to cluster together. However, as I worked with the dialogue more I realized that they were being
used in very similar ways in the context of a restaurant. For example, “house,” “red,” and “white” were all clustered
together and I realized it was because they were all used in conjunction with the word “wine” (figure 4.2). Another

good example is “enjoy” and “heres,” which are both used by the waitress in contexts like “Enjoy your salad sir.”

One problem with the word clustering system is that it treats words that belong to the same phrase separately, such as

64

filet house red whit white

Figure 4.2: The cluster of words with “white” as the exemplar.

berry nactarine nectarine tangerine
cherry nacterine nectartine
cobb nectar necterine
grilled nectarin nectorine

Figure 4.3: The cluster of words with “nectarine” as exemplar

“fillet” and “mingon.” However, it does succeed for the most part at clustering together the first words of food phrases
(e.g. “cobb” from “cobb salad,” “nectarine” from “nectarine tart,” “grilled” from “grilled salmon,” etc. as seen in

figure 4.3).

Another potential problem with the word clustering system is that it sometimes forms multiple clusters corresponding
to the same category of words. For example, geographic locations, people’s names, numbers etc. In some cases, like
geographic locations and people’s names, these should definitely be combined into one cluster. The likely problem is
that most words of these types are used infrequently and there are several different contexts they may be used in, so
they tend to be grouped according to the particular context they occur in. In other words, tbey don’t have a sufficient
context distribution to combine the separate groups. Examples of these are shown in figure 4.4.In other cases, the
sub-groups make more sense and might actually be useful because they are separated by slight variations in the way
the words of the category are used. For example, the “sixteen” cluster shown in table A.1 has a lot of numbers that

were probably used to refer to ages mostly.

There are two main sets of words the system clusters poorly. Both are clustered poorly primarily because they lack
enough context information to be clustered effectively by this context-focused system. The first is infrequent words,
often in the form of typos or misspellings. These either wind up as random words in otherwise logical clusters or in
large clusters of random words. Table A.1 shows some examples of both. The problem is with only a few context
examples to work with, the system is usually unable to get a good enough context distribution to determine how the
word is typically used and group it with similar words. The other problem-causing group is words that tend to occur

in very small utterances, for example, “hello,” “thanks,” “yes,” and the other words shown in figure 4.5. The problem

belgium england maine alberta czech iceland portugal
boston france san australia europe ireland stranger
cambridge germany spain brasil greece italy
carolina holland texas brazil hector nj

(a) germany (b) portugal

Figure 4.4: Sample word clusters corresponding to geographical locations.

65

bye hey lol ok sure well
haha hi no okay thanks yeah
hello how oh sorry thankyou yes

Figure 4.5: The cluster of words with “hello” as exemplar

here is not that there is an insufficient amount of context information, its just that most of the context isn’t useful. It
doesn’t impart any knowledge about how the word is used in dialogue beyond the fact that it is used by itself. Both of
these problems could be fixed by setting aside words that meet these criteria to be clustered manually. Alternatively,

in the first case, simply removing the least frequent words might be a good solution.

Most of the parameters used by the word clustering stage were empirically determined through trial and error to
balance between accuracy and efficiency. Some were tuned to produce the larger, usage-similarity based clusters as
well. A description of all the parameters and the values used to produce the results described in this thesis are given in

section B.1.

4.2 Dialogue and Action Clustering

The purpose of dialogue and action clustering is to reduce the number of unique elements in the game play logs,
thereby allowing patterns to be found more easily. The goal is to group dialogue lines and actions by the way they are
used, not their meaning. The difference between meaning and usage is apparent in the simple example of “yes” and
“no.” They have opposite meanings, but can both be used to respond to the same questions, so they should be grouped
together in this stage. Any important differences in meaning will be captured by variance in subsequent action and
dialogue. If the customer says “no” to “Would you like another beer?” the waitress will perform a different set of
actions than if the customer had said “yes.” The idea is that the specific objects of actions, and detailed meanings of
dialogue lines, are not needed to determine event labels, rather the types of objects and intent of dialogue lines are.

Although, using the specific objects might be useful in labeling event instances (see section 5.2.4).

With that goal in mind, the dialogue and action clustering system performs well. The action clustering in particular
worked very well. As mentioned before (section 3.2), some action clustering was done in the initial log processing.
This grouped actions by clustering some of the in game objects based on similarities in the way they were used.
However, many actions that serve the same purpose are still separated. Some examples include: different variations of
the customer looking at the menu (e.g. while holding it or while it is on the table); multiple ways the waitress can give
the menu to the customer (e.g. putting it on the table in front of him or handing it to him) etc. The action clustering

stage does a good job of grouping together these different variations of accomplishing the same goal. For example,

66

table 4.1 shows a cluster of actions relating to the customer receiving the menu.

Waitress give menu
Actor Action Object Precondition Effect Count
Waitress Get off Fruitbowl Waitress sitting on fruit bowl, customer ~ Waitress standing 1
holding fruit bowl
Waitress Get off Menu Waitress sitting on held menu Waitress standing 3
Waitress Give Menu Waitress standing holding menu Customer holding menu 2255
Customer Give Menu Customer sitting holding menu ‘Waitress holding menu 585
Customer Give Menu Customer standing holding menu ‘Waitress holding menu 229
Customer Look at Menu Customer sitting holding menu 2545
Waitress Look at Menu Waitress standing holding menu 678
Customer Look at Menu Customer standing holding menu 329
‘Waitress Look at Menu Waitress standing, menu on table 145
Customer Look at Menu Customer sitting, menu on table 1086
‘Waitress Look at Menu Waitress standing, customer holding 69
menu
Customer Look at Menu Customer sitting, menu on CHAIR 93
Customer Look at Menu Customer sitting, waitress holding menu 134
Waitress Pickup Menu Waitress standing, menu in menu box Waitress holding menu 3966
Customer Pickup Menu Customer sitting, menu on table Customer holding menu 950
Waitress Pickup Menu Waitress standing, menu on table Waitress holding menu 1824
Waitress Pickup Menu Waitress standing, customer holding Waitress holding menu 492
menu
Customer Pickup Menu Customer sitting, menu on CHAIR Customer holding menu 94
Customer Pickup Menu Customer sitting, waitress holding menu Customer holding menu 331
Customer Pickup Menu Customer standing, waitress holding Customer holding menu 117
menu
Customer Pickup Pan Customer sitting on pot, pan on stove Customer holding pan 1
Customer Putdown Menu Customer sitting holding menu Menu on table 1895
Waitress Putdown Menu Waitress standing holding menu Menu on menu box 2503
Waitress Putdown Menu Waitress standing holding menu Menu on table 1482
Waitress Putdown Menu Waitress standing holding menu Menu on podium 219
Waitress Putdown Flower Waitress sitting on flower holding flower ~ Flower on trash 1
Waitress Putdown Menu Waitress standing holding menu Menu on floor 200
Waitress Putdown Menu Waitress standing holding menu Menu on CHAIR 235
Waitress Putdown Menu Waitress standing holding menu Menu on register 25
Waitress Putdown Menu Waitress standing holding menu Menu on menu 6
Customer Putdown Menu Customer standing holding menu Menu on menu 6
Customer Putdown Menu Customer standing holding menu Menu on fruit 1
Spawn Menu 4131

Table 4.1: A sample output action cluster relating to the waitress giving a menu to the customer. Note, if we implement pruning of

rare actions, many of the inappropriate actions in the cluster above would no longer be present.

The actions in the original lexicon are also defined by the state of the objects and actors involved, such as how many
bites have been taken out of the food, the location of the object and actor etc. The action clustering system does a
good job of combining actions that only differ by states unimportant to the purpose of the action. For example, in the

cluster shown in table 4.2, the customer eating food with no bites taken is clustered with eating food with one or two

bites taken and eating held food is clustered with eating food on the table among others.

Table 4.2: A sample output action cluster relating to the customer eating food and drinking beverages.

sipped once

Customer eat FOOD
Actor Action Object Precondition Effect Count
Delete Register Customer holding register Register deleted 7
Customer Eat BEVERAGE Customer sitting, BEVERAGE on table =~ BEVERAGE sipped 3082
Customer Eat BEVERAGE Customer sitting, BEVERAGE ontable, ~ BEVERAGE sipped 2979

continued on next page ...

67

Actor Action Object Precondition- Effect Count

Customer Eat BEVERAGE Customer sitting, BEVERAGE ontable, BEVERAGE sipped 2685
sipped twice

Customer Eat OLD FOOD Customer sitting, OLD FOOD on table OLD FOOD bitten 767

Customer Eat OLD FOOD Customer sitting, OLD FOOD on table, OLD FOOD bitten 778
bitten once

Customer Eat OLD FOOD Customer sitting, OLD FOOD on table, OLD FOOD bitten 770
bitten twice

Customer Eat FOOD Customer sitting, FOOD on table FOOD bitten 3479

Customer Eat FOOD Customer sitting, FOOD on table, bitten ~ FOOD bitten 3463
once

Customer Eat FOOD Customer sitting, FOOD on table, biten =~ FOOD bitten 3406
twice

Customer Eat BEVERAGE Customer sitting holding BEVERAGE BEVERAGE sipped 920

Customer Eat BEVERAGE Customer sitting holding BEVERAGE, BEVERAGE sipped 767
sipped once

Customer Eat BEVERAGE Customer sitting holding BEVERAGE, BEVERAGE sipped 645
sipped twice

Customer Eat FOOD Customer standing, FOOD on table, bit- FOOD bitten 92
ten twice

Customer Eat FOOD Customer standing, FOOD on chair FOOD bitten 2

Customer Eat DIRTY DISH Customer sitting, DIRTY DISH on table 1258

Customer Eat WINE Customer sitting, WINE on table WINE sipped 175

Customer Eat DIRTY DISH Customer sitting holding DIRTY DISH 180

Customer Eat Flower Customer sitting, flower on table Flower bitten 893

Customer Eat Table Customer sitting 371

Waitress Eat Flower Waitress standing, flower on table Flower eaten 340

Customer Eat Menu Customer sitting, menu on table 150

Customer Eat Vase Customer sitting, vase on table 213

Customer Eat WINE Customer sitting, WINE on OLDFOOD WINE sipped 3

Customer Eat ‘Waitress Customer sitting, Waitress standing 184

Waitress Eat DIRTY DISH Waitress standing, DIRTY DISH on ta- 81
ble

Waitress Eat BEVERAGE Waitress standing, BEVERAGE on BEVERAGE sipped 1
floor, sipped twice

Waitress Eat FOOD Waitress sitting, FOOD on ground, bit- FOOD bitten 1
ten twice

Customer Eat DIRTY DISH Customer sitting on BEVERAGE hold- 1
ing DIRTY DISH

Customer Eat BEVERAGE Customer sitting, BEVERAGE on floor, BEVERAGE sipped 1
sipped twice

Customer Eat WINE Customer standing, WINE on blender, ~WINE sipped 1
sipped twice

Customer Eat FOOD Customer sitting on bartender holding FOOD bitten 4
FOOD, FOOD bitten once

Customer Eat FOOD Customer sitting on bartender holding FOOD bitten 4
FOOD, FOOD bitten twice

Waitress Eat FOOD Waitress sitting on FOOD, FOOD on FOOQOD bitten 2
counter

Customer Eat Trash Customer sitting 1

Waitress ~ Eat FOOD Waitress standing, FOOD on OLD FOOD bitten 1
FOOD, bitten once

Customer Eat Menu Customer sitting, menu on fruit 1

Customer Eat Waitress Customer sitting on counter, waitress 1
sitting on FOOD

Waitress Get off Register Waitress sitting on register on table Waitress standing 1

Customer Get off Flower Customer sitting on flower on podium Customer standing 1

Customer Look at FOOD Customer sitting, FOOD on table 160

Customer Look at BEVERAGE Customer sitting, BEVERAGE on table 86

Customer Look at Flower Customer sitting, flower on table 253

Customer Look at DIRTY DISH Customer sitting, DIRTY DISH on table 76

Customer Pay Bill Customer standing, bill on OLD FOOD 1

Customer Pickup Flower Customer sitting, flower on table Customer holding flower 476

Customer Pickup FOOD Customer sitting, FOOD on table Customer holding FOOD 652

Customer Pickup BEVERAGE Customer sitting, BEVERAGE ontable, Customer holding BEVER- 317
sipped once AGE

[continued on next page ...]

68

Actor Action Object Precondition Effect Count

Customer Pickup BEVERAGE Customersitting, BEVERAGE ontable, Customer holding BEVER- 187
sipped twice AGE

Waitress Pickup Trash Waitress sitting on fridge, trash on Waitress holding trash 1
fridge

Customer Pickup WINE Customer standing, WINE outside Customer holding WINE 1

Waitress Pickup FOOD Waitress standing, FOOD on floor, bit- Waitress holding FOOD 6
ten twice

Customer Pickup BEVERAGE Customer sitting, BEVERAGE on floor, ~Customer holding BEVER- 1
sipped twice AGE

Waitress Pickup Trash Waitress standing, trash on food Waitress holding trash 1

Customer Pickup Trash Customer sitting, waitress holding trash Customer holding trash 1

Customer Putdown FOOD Customer sitting holding FOOD, bitten = FOOD on table 107
once

Customer Putdown BEVERAGE Customer sitting holding BEVERAGE BEVERAGE on table 518

Customer Putdown BEVERAGE Customer sitting holding BEVERAGE, BEVERAGE on table 451
sipped once

Customer Putdown BEVERAGE Customer sitting holding BEVERAGE, BEVERAGE on table 286
sipped twice

Customer Putdown DIRTY DISH Customer sitting holding DIRTY DISH ~ DIRTY DISH on table 835

Customer Putdown FOOD Customer sitting holding FOOD FOOD on table 890

Customer Putdown Flower Customer sitting holding flower Flower on table 250

Customer Putdown Fruit Customer standing holding fruit Fruit on trash 1

Customer Putdown WINE Customer standing holding WINE WINE on bar 4

Customer Touch BEVERAGE Customer sitting, BEVERAGE on table 129

Customer Touch Waitress Customer standing, waitress standing 353

Customer Touch Flower Customer sitting, flower on table 54

Customer Touch Table Customer sitting 57

Action clustering isn’t perfect, it often mis-classifies actions that occur very infrequently. For example, we see some
random actions in both table 4.1 and table 4.2, including the waitress putting down flowers she is sitting on and the
customer paying a bill that is on top of food while standing. This is because only context information is being used to
cluster the actions. If other features were added into the similarity computation, such as the objects, verbs and states
associated with the actions. We could probably improve the performance for these infrequent actions, and probably
action clustering in general. Modifying this stage to do such action clustering first and then following up with context
and surface similarity based dialogue clustering would be an interesting approach for future work. However, most rare
actions are bizarre, like picking up the trash while sitting on the refrigerator, and it is not that important to get them

correct for the purpose of event discovery.

Another mistake the action clustering system makes is to sometimes cluster together actions that occur at similar
points in a game, but don’t correspond exactly to the same goal. For example, in table 4.1, we see that actions relating
to the customer getting the menu are clustered with actions corresponding to the customer looking at the menu, and
the waitress putting away the menu. This type of error is likely because of the very limit context (one, element to
either side) used to compute context similarities for the dialogue and actions. This was chosen as a necessity to keep
the stage from consuming too much memory and being too slow. Some efficiency improvements, as discussed in
section 5.2.1, should allow us to use larger contexts and resolve this issue. In practice this does not seem to cause t00

many problems, because it is not that common and because the actions that are clustered together because of this are

69

can i get a beer ? can i have some water ?
how can i help you ? how may i serve you ?
coffie please beer please

coffe please beer please

some water please a beer please

spaghetti please steak please

cheese pie please filet minon please

white wine red wine

comin right up coming right up

may i get you something to drink ? | cani get u anything to drink ?
right up right away

here is your beer here is the wine

house red

did you need something ? do you need anything ?

Table 4.3: Example pairs of dialogue lines found to be identical in terms of the sequences of word clusters they are composed of.

typically of the same event.

The dialogue clustering worked well, but was not perfect. The dialogue clustering is done in two stages: first lines that
are identical in terms of the sequence of word clusters they are composed of are grouped together; second the resulting
groups of unique lines are clustered simultaneously with actions as described in section 3.4. The success of the word
clustering directly translated into the success of the first phase of dialogue clustering. A few examples of pairs that

were found to be identical by this method are shown below.

The second phase of dialogue clustering is somewhat less successful. The sheer magnitude of possible dialogue lines
(about 50,000 unique lines for each character in only 5,000 games) leaves many unusual dialogue lines in clusters to
themselves (of about 10,000 total clusters for each character, about 9,000 are individual dialogue lines). A different
approach to dialogue or a modified approach in which these unclustered lines are forced into other clusters might help
with this situation. On the positive side, the output contains many clusters of dialogue lines, where the purpose is
easily identifiable by a human. In most of these cases, the exemplars of the clusters are very representative of this

purpose. One good example is the following excerpt from the cluster with the exemplar “thank you.”

e thank you
— thank you please
~ thank you yet again
- thank you dear
— thank you beautiful
— thank you p
- thank you misses
— thanks but
- thanks rachel
— thanks alot
— thanks toots
— thanks kindly
~ thanks slave

70

— thanks for that

— thanks for asking

— thanks a lot

~ sorry for the trouble

—~ thanx a lot

~ please and thank you mam
— thank you much

— thank you though

— thank you mam

— thank you darlin

— thank you babe

— thank you darling

— thank you kindly

— thank you slave

— thank you alice

- thank you jenni

— oh thank you mam

— why thank you maam
— hello and thank you

— thanks for a nice meal
— thanks for the fine service
— thanks have a nice day
— thanks have a good one

One drawback of the way the current system handles dialogue is the inability to stick dialogue lines in multiple clusters.
This would be very useful as people frequently use complex dialogue lines to fulfill several purposes simultaneously.
For example, the dialogue line “Excuse me, but my table is dirty. Water would be great” both complains about
the cleanliness of the table and requests a water. It would be useful to be able to interpret the dialogue as either
purpose for mining and labeling sequences. Being able to put dialogue lines in multiple event-sequences in the same
game would go hand-in-hand with this. Anoother option might be to have support for chopping up dialogue lines on
boundaries found statistically, or based on punctuation. Another challenge with dialogue comes from the fact that the
game limits the length of a dialogue line. When people reach the limit they usually continue what they were saying
in an immediately following dialogue line. This means that in addition to one dialogue line having multiple purposes,
sometimes two dialogue lines combined have one purpose. Analysis of the time between the dialogue lines and the

length of the first dialogue line could fix this by combining the two dialogue lines into one.

The dialogue clustering system has many of the same weaknesses that the word clustering system has. It handles
many of the most unique dialogue lines poorly, typically placing them in their own single-element cluster. In some
cases these lines would be be useful to put in a more correct cluster, but overall these types of mistakes don’t affect
the performance of the system as a whole to any great degree. This is because these dialogue lines are often unique

to the point where they do not belong to any typical event-sequence anyway, so they do not have an impact on our

71

attempts to discover event-sequences. Some examples of these lines include “I take blue color pills,” “I thought you
were exploded,” and “Here I come dinosaurs.” If we wanted to capture sequences corresponding to more unusual

events, or less typical sequences for normal events then we would have to resolve this issue.

Another challenge faced by the dialogue system is that the ideal solution contains a few very large clusters corre-
sponding to the most common types of restaurant dialogue such as “I’ll have the ????,” and many small clusters
corresponding to less common things such as flirting and talking about the game itself. When choosing the parame-
ters, particularly the preference parameter (see section B.2), I had to make a trade-off between fewer large clusters,
which would group many of the small clusters together, and more small clusters, which would split up some of the
larger clusters. It was basically a trade-off between homogeneity and completeness of the clustering. I found for my
purposes that leaning toward fewer, larger clusters produced the best results in the following stages of the system.
More examples of partial sample output clusters (most clusters were too large to list in their entirety) are given in

appendix A section A.2.3.

4.3 Event-Sequence Mining

The sequence mining and filtering system works pretty well. It does a very good job of finding the most typical
event-sequences, but does not find all the event-sequences. It also finds a fair number of non-event-sequences, which
may be incomplete event-sequences, combinations of parts of different event-sequences, or often silly behaviors on
the part of the players that somehow occurred frequently enough to get mined. The sequence mining and filtering
stage is efficient, taking at most 10s of minutes to run on a several year-old laptop. Furthermore, it finds a reasonable
number of candidate event-sequences, on the order of a few thousand depending on the exact parameters. Some typical

event-sequences that it finds are shown below.

One of the most common types of errors the system makes is to find incomplete event-sequences. Even with the
pseudo-closed-sequence filtering in place (see section 3.7), many incomplete sequences are mined. Sequences that are
missing elements in the middle rather than at either end will not get caught by the pseudo-closed sequences filtering.
In addition, sometimes different event-sequence instances have a common sub-sequence but vary greatly in their other
components, so that even if they are mined in their entirety, the common sub-sequence will also be mined separately.

Some examples of incomplete sequences are shown in figure 4.7.

Another common error is mining candidate sequences that overlap multiple events, as defined by Jeff’s previous work
(see section 2.5). For example, candidate sequence 1 shown below corresponds to parts of both the customer entering

the restaurant event and the customer getting seated event. The second sequence has parts of both the waitress serving

72

e Waitress picks up food from counter - Waitress puts down food on table - Waitress says “enjoy sir”

o Waitress says “beer” - Waitress picks up food from counter - Waitress puts down food on table - Waitress says “here is your
meal’,

o Customer says “could i have the bill please” - Waitress touches register - Waitress picks up bill - Waitress puts down bill on
table - Customer picks up bill

e Customer says “could i have the bill please” - Waitress touches register - Waitress picks up bill - Waitress puts down bill on
table - Customer looks at bill

o Waitress says “what would you like” - Customer says “spaghetti marinara” - Waitress picks up menu from table - Waitress
puts down menu on menu box - Delete menu

e Customer looks at menu - Customer says “spaghetti marinara” - Waitress says “ok coming right up”
e Customer looks at menu - Customer puts down menu - Customer says “spaghetti marinara”
e Waitress says “hello sir”” - Customer says “hello” - Waitress picks up menu

e Customer says “hello” - Waitress says “table for one”

Figure 4.6: Examples of good candidate event-sequences mined by the system.

e Waitress puts down food on table - Waitress says “‘here is your meal”
e Waitress touches register - Waitress picks up bill
e Waitress puts down bill on table - Customer says “thank you”

e Waitress gives food to customer - Customer puts down food on table

Figure 4.7: Examples of candidate event-sequences that correspond to partial actual event-sequences.

food and the customer eating events. This is not necessarily a big issue, as these events were defined subjectively by a

single person, and may not be the only way to divide up the steps of a typical restaurant interaction.

1. Waitress says “hello” - Customer says “table for one please” - Waitress says “follow me” - Customer sits down

2. Waitress puts down food on table - Waitress says “here is your meal” - Customer eats food - Customer eats food - Customer
eats food

One other mistake the system makes is finding a fair number of candidate sequences that basically correspond to the
waitress and or customer doing silly and random things. These are sequences that occur just frequently enough to be
mined by the system, and are close together when they do appear in order to not be filtered out based on the expansion
factor (section 3.6). The majority are composed of just two actions as shown below. Having a higher minimum
frequency count for shorter sequences could help prevent this. Another option might be to remove all the silly actions
from the logs before mining. However, we do want the final A.I. system to be able reproduce unusually behavior as

well as typical behavior.

73

o Waitress sits on vase - Customer touches fruit

e Customer gives menu - Customer gives vase

e Waitress eats trash - Customer puts down trash

e Waitress puts down pan - Customer puts down dirty dish

o Customer eats fruit - Customer picks up bill

o Customer gets off wine - Waitress cleans dirty dish - Delete dirty dish - Customer looks at menu

Figure 4.8: A cluster of unusual candidate event-sequences mined by the system.

4.4 Event-Sequence Clustering

Given the event-sequences that are mined, the event-sequence clustering system works very well. Most of the clusters
are consistent enough to be identified as a particular event by a human. The excerpt below is from a cluster I identified

as corresponding to the event of the waitress serving food.

Most of these good clusters also contain a few mistakes, such as the ???? sequence in the cluster above. However, most
of the strange sequences mentioned in the previous section tend to wind up in their own clusters. About 10-15 percent
of the clusters are primarily strange sequences like in figure 4.8. The fact that candidate sequences might be partial or
have components of multiple events also messes things up a little bit. Some of the events that Orkin defined are not
represented by their own mostly uniform cluster. For example, the customer getting a menu is split between clusters

mostly related to the customer arriving, getting seated and ordering, as seen in the example clusters in section A.3.

4.5 Opverall Performance

The evaluation of the system overall is difficult to analyze, as I can only readily compare the performance of the
system to itself using different parameters. That being said, looking at how the overall performance metric varies with
changes to the system is interesting. Unfortunately I have so far only been able to do this to a limited degree due to the
time required to run the system from beginning to end. It is also interesting to look at particular logs that the system

scores well on and particular logs that it scores poorly on to see what leads to each case.

As described in section 3.10, a variety of extrinsic clustering measures were used to evaluate the system by comparing
how it assigned game-actions to event-sequences relative to the gold-standard of Jeff’s manually labeled logs. Each
of the metrics behaved slightly differently, but the one that seemed to correspond most accurately with actual perfor-
mance' for this application was b-cubed [61], so I will be discussing the performance of the system in terms of that

measure.

Based on empirical qualitative evaluation.

74

o Waitress serves customer food

— Waitress puts down food on table - Waitress says “here is your meal”
— Waitress puts down food on table - Waitress says “here is your meal” - Customer picks up food
— Waitress says “beer” - Waitress picks up food from counter - Waitress puts down food on table

— Waitress puts down food on table - Waitress says “here is your meal” - Customer eats food - Customer eats food -
Customer eats food

— Waitress puts down food on table - Customer says “thank you” - Customer eats food - Customer eats food - Customer
eats food

— Customer says “where is my salad” - Waitress says “ok coming right up” - Waitress says “beer” - Waitress picks up
food from counter - Waitress puts down food on table

— Waitress puts down food on table - Waitress says “this is on the house” - Customer eats food - Customer eats food
— Waitress gives blender to customer - Customer eats flowers

— Waitress puts down food on table - Customer says “this looks good” - Customer eats food

— Waitress looks at fridge - Customer eats trash

— Waitress puts down food on table - Waitress says “that is filet mingon” - Customer eats food

— Waitress says “beer” - Waitress picks up food from counter - Waitress puts down food on table - Waitress says “here
is your meal”

— Waitress puts down food on table - Waitress says “anything else sir”

— Waitress puts down food on table - Waitress says “anything else sir’” - Customer looks at menu

— Waitress says “beer” - Waitress picks up food from counter - Waitress puts down food on table - Customer eats
— Waitress puts down food on table - Customer picks up food - Customer eats food - Customer eats register

— Waitress picks up food from counter - Waitress puts down food on table - Waitress says “enjoy sir”

— Wiaitress puts down food on table - Waitress says “enjoy sir” - Customer picks up food - Customer eats food - Customer
eats food - Customer eats food

— Waitress puts down food on table - Waitress says “enjoy sir”” - Customer eats food
— Waitress gives food to customer - Customer puts down food on table

— Waitress puts down food on table - Customer says “thank you” - Customer picks up food - Customer eats food -
Customer eats food

— Waitress picks up food from counter - Waitress puts down food on table

Figure 4.9: A sample event-sequence cluster, predominantly corresponding to the waitress serving food event.

75

Automatic Labelling

Waitress greets customer | [Waitress greets customer |

(a) Best log excerpt

Automatic Labelling

(b) Worst log excerpt

Figure 4.10: Excerpts from the best and worst log labellings. In the case of the automatic labeling, the labels on the selected
sequences are descriptions of the corresponding sequence clusters.

First, to give a basis of comparison, the best scores I obtained for the system overall were 0.22 for the average intra-log
comparison score and 0.31 for the inter-log comparison score (see section 3.10 for more information on how these two
scores are produced). Within the labeling corresponding to those best scores, the highest single intra-log score was
0.57, while the lowest was 0.024. Excerpts from the best and worst scoring logs are shown in figure 4.10, along with

the corresponding gold standard labeling.

As can be seen in the figure, and not surprisingly, the system performs best with shorter sequences that are not

76

Greedy Optimal
Average intra-log score 0.21 0.22
Inter-log score 0.29 0.31

Table 4.4: The performance of different labeling methods.

Percentage covered factor | Average intra-log score Inter-log score
0.5 0.18 0.30
0.75 0.21 0.32
0.95 0.22 0.31
1.0 0.20 0.30

Table 4.5: System performance versus percentage covered factor.

interrupted. It also helps when all or most of the elements of the sequences are unique to that sequence cluster. For
example, the waitress saying “hello” is almost entirely within the waitress greeting the customer cluster, and picking
up and putting down the menu is almost exclusive to the waitress getting the menu cluster. The system’s major issue
is not finding all the possible sequences, identifying between 3 and 10 sequences in most logs. The worst case log
shown above, was particularly sparse and the sequences found did not match up very well with any of the sequences
in the golden labeling. This log probably performs poorly because it has more abnormal dialogue and actions than
many of those tested. All the golden-labeled logs represent fairly typical restaurant behavior so we don’t have any for
comparison that are completely bizarre to see how well the system performs quantitatively. However, from qualitative

inspection it does not do very well, but no worse than the worst case scenarios that we do test.

I noticed several interesting things while tweaking the system and evaluating the effect on performance. One was
that using a greedy approach (based on Orkin’s RUN algorithm [17]) to labeling rather than my current “optimal”
approach did not lower the performance by a significant amount. On some logs the system did perform worse, but on
others it performed the same or a little better. This may be due in part to the fact that the scoring method used in my
“optimal” labeling approach is quite simplistic. Also, we have noticed that some game-actions are strongly associate
with particular events, which causes greedy approaches to be more effective. A summary of the results when varying

the method of labeling are shown in table 4.4.

In addition to the way labeling was performed, I also evaluated the scoring method used in my optimal labeling
approach. I varied the parameter controlling the ratio of the coverage component of the score and the normality
component of the score. I found that coverage was the most important of the two factors, but that including the
normality a little bit did improve the performance slightly. The results of this experiment are summarized in table 4.5.
Although as long as some coverage score was included, the performance did not vary greatly with what factor of the

score was from coverage.

The time needed to run the system prevented me from doing any performance-metric-based experiments involving,

77

maximum expansion factor
1.7 2.0 23
minimum occurence count

51022031 023,032 0.25,0.31
10 | 0.17,031 0.15,0.30 0.23,0.32
15] 0.12,028 0.15,029 0.14,0.30
20 1 0.09,0.25 0.09,026 0.11,0.28

Table 4.6: System performance versus minimum occurrence and maximum expansion factor. The first number is the average intra-
log score and the second number is the inter-log score.

Preference factor | Average intra-log score Inter-log score
0.6 0.16 0.29
0.8 0.18 0.31
10 0.22 0.31
1.2 0.19 0.32

Table 4.7: System performance versus sequence clustering preference factor.

word, dialogue and action clustering as of yet. However, I was able to do a little bit of experimenting with the
parameters controlling both sequence mining and sequence clustering. The results are summarized in tables 4.6 and
4.7. 1t is not entirely clear what the results mean because of the effects of the labeling process on the overall score, but

they are somewhat interesting.

It appears that in general, modifying the filtering and mining parameters in order to allow more sequences through
improves the performance. This is probably because, since the system is only able to label frequent sequences, many
logs are sparsely labeled. Allowing more sequences through improves the amount of the logs that are labeled, im-
proving the overall performance. Also it looks like there is a sweet spot between very few large clusters and many
small clusters where the system is able to perform best, which intuitively makes sense. Even though increasing the
maximum expansion factor increased the score to a point, it is mostly just due to a denser labeling, and qualitatively
seemed worse because many of the new sequences did not seem to correspond well to events. This is an example of

how it is difficult to quantitatively evaluate the system because of the complex interactions of the different parts.

78

Chapter 5

Conclusion

5.1 Contribution

This thesis makes a lot of minor contributions, but its primary contribution is the entire novel event-sequence discovery
system which tackles an interesting new problem that has not been attempted before. That is the problem of mining
patterns from multi-modal data from human-human interactions, in our specific case a mix of physical actions and
natural language input in a virtual world. With the increasing amount of online social interaction between human,
these techniques may be applicable to a wide-variety of related problems in the future. The event-sequence discovery
system combines algorithms from many different areas of computer science in interesting ways that take advantage of
the nature of the event annotation problem. Another contribution is the modified version of PLWAP (see section 3.6),
which might have other applications. Other useful contributions include the modified way to measure similarity
between words -(section 3.3.2), dialogue lines (section 3.4), and sequences (section 3.9). The particular method of

using affinity propagation clustering while updating similarities based on the current cluster assignments is also new.

Other, less tangible, contributions include some of the theories motivating the design of the system and its components,
which were derived from research into related field, examination of human annotations of logs, and experimentation
with different approaches. These theories help to formulate new concepts like “event-sequence,” which might be a use-
ful in other research. For example, the idea of expansion factor (section 3.6.1), pseudo-closed sequences (section 3.7)

etc.

79

5.2 Future Work

The system is promising, but has a lot of room for improvement. This section describes many of the ideas I have
had for how the system could be improved, but which I have not had the time to explore. The following subsections

mention some of the other opportunities for future work on improving parts of the event-discovery system.

5.2.1 Large-Scale Modifications

Efficiency Improvements

The system in its current state is very slow, taking days to run from start to finish. The log pre-processing,
cluster labelling, sequence mining, additional filtering and evaluation stages are all quite fast, taking at most a
little over an hour combined. The word clustering, sequence-labelling and sequence clustering stages each take
on the order of hours to a few 10s of hours to run. The dialogue and action clustering component takes the most
time, typically about two days. This severely limits the amount of end-to-end testing and iteration that can be
done and makes it difficult to evaluate the effect of changing earlier stages. The most time-consuming stages
are the clustering and log labeling; candidate sequence mining is fairly fast due to all the filtering that takes
place simultaneously. The clustering components spend the vast majority of their time computing and updating
similarities.

Improving the speed of similarity computation would make the system much faster and allow for better evalua-
tion and other possibilities. An easy way to greatly increase the speed would be to parallelize the process, which
could be done easily since it is made up of millions of independent pair-wise similarity computations. Similarly
the log labeling process could be easily parallelized. Porting some of the systems to 64-bit might also be useful
because it would give them easier access to more memory, removing the current need to balance space with
accuracy and efficiency in some cases (e.g. discarding similarities below a certain threshold, see section B.1). I

did not spend much time optimizing my code in general, so it would be worth looking into in the future.

Parameter Optimization
One problem with the system is the massive number of parameters that it uses to control its different components
(see Appendix B). I added these parameters over time based on research and to improve flaws I discovered in
the system. The issue is that it is difficult to determine the optimal value for all these parameters. The system
is very complex and the parameters interact in many ways, so it is not easy to evaluate the effect of changing
a particular parameter. Another problem is that the only quantitative evaluation I have is for the system as a

whole, which makes it even more difficult to set the parameters of an individual component.

30

In order to effectively experiment with different parameter values we would need to either improve the system’s
speed, as described in the previous section, or develop quantitative performance metrics for the output of the
key components of the system. External cluster evaluation metrics could potentially be used with the clustering
components to score them relative to gold-standard clusterings. The challenge there is creating gold-standard
clusterings for tens of thousands of words or dialogue lines. One possibility might be to modify an external
cluster evaluation metric to be able to use a gold-standard that is a subset of the total elements clustered. If
changes in the parameters could be scored efficiently, then automatic parameter optimization might be possible.

Genetic algorithms or other similar machine learning algorithms could be applied to the problem.

Human-Computer Collaboration
Although the ideal system would be able to completely automatically annotate the logs, the goal of the system
is to reduce the amount of human effort needed as much as possible. To that end, it would be worthwhile to
investigate the benefits of human involvement at different stages in the process. It is likely that a small amount
of, possibly expert, human involvement early in the process would increase the accuracy of the system and

greatly reduce the overall time spent by humans.

1 did not have a chance to investigate this fully, but while working on the system I did notice many places where it
seemed human-involvement would be useful. For example, during early experiments with the word and dialogue
clustering systems, I spent about an hour revising the word clusters (e.g. combining separate clusters of numbers,
geographical places, and names or splitting clusters that were too broad), and noted a decent improvement in the
quality of the dialogue clustering. Also, while devising event-sequence filtering mechanisms, I noticed many
kinds of sequences that a human could easily identify as non-event-sequences, but it was difficult to create a
filtering rule to catch. If humans were to edit the list of event-sequences before labeling, it might save a lot of
time.

The event-sequence annotation tool could also be modified to provide information back to the automatic system.
For example, when someone labels a new event-sequence that the system did not catch, or modifies a sequence

that the system labeled, the system could be notified and modify its labeling of all the other logs accordingly.

Larger Contexts and Smoothing
Due to limitations imposed by the space and time inefficiency of the system, the context similarity used in
each of the clustering stages is not as effective as it could be. The contexts used are limited to at most two
neighboring elements in the word case, and one in the dialogue and action case. If the system’s efficiency were
to be sufficiently improved or ported to 64-bit to allow for more memory to be used, it would be interesting to
explore the effectiveness of larger contexts. It would also be worthwhile to explore smoothing possibilities as is

typically done with n-grams, because currently there is no smoothing in the two-context-element word case.

81

5.2.2 'Word Similarity and Clustering

Spell-Correction vs Surface Similarity
Context-based similarity measure have been shown to be effective for semantically clustering words in many
studies (see section 2.4.1). In the event-sequence discovery system, surface similarity is also used when com-
puting word similarities. The purpose was to catch and correctly cluster misspelling, typos and intentional
abbreviations like “filet minion,” “slamon,” and “pls.” In earlier experimental work with word clustering I has
an initial spell-correction step, but discarded it because the system I was using was not the best and treated
each word individually and so would miss many things like “minion.” However, the current surface similarity
solution sometimes clusters together words that shouldn’t be grouped together, and misses others that should.
For example, in table A.1, we can see that “salat” and “saland” are placed in the “salat” cluster rather than the

“tart” cluster with the word “salad.” Also, “ha” is placed in the same cluster as “he,” when it should probably

be with other laughing words like “lol” and “haha.”

Adding an improved spell-correction step back in could have many potential benefits. First, it would greatly im-
prove the speed of the word clustering stage because surface similarity would not have to be computed millions
of times. Second, it would allow me to focus on the two problems of semantic clustering, and error corrections
separately, probably improving the accuracy of both. Also, it would improve context similarity by having the

incorrect words replaced with their correct versions prior to creating context features.

Expanded Dialogue Context
As noted previously in the word clustering analysis section (4.1), one class of words that my system does not
cluster well is words that predominantly appear in one or two word utterances. This is because the majority of the
word similarity measurement is based on context, and the in-utterance context of such words is uninformative.
One way to fix this would be to expand the creation of contexts beyond single dialogue lines. This could
potentially be done by using words from beginning and end of neighboring dialogue lines if the other lines were

sufficiently close in time or some similar method.

5.2.3 Dialogue and Action Clustering

Word Clusters in Surface Similarity Computation
Although interesting in and of itself, the purpose of clustering words semantically is to assist with clustering
dialogue lines semantically. This is implemented through dialogue line surface similarity computation where
words of the same cluster are considered identical for the purpose of measuring the edit distance between two

dialogue lines. However, this is the only way in which word clusters are used, if two words are not in the same

82

cluster than the IDF property of the word itself is used in computing edit distance, rather than properties of the

cluster it belongs to.

Some modifications could allow dialogue surface similarity to make more use of the word clustering informa-
tion. With some additional processing, IDF values could be computed for word clusters, and those could be
used rather than individual word IDF values. A larger change could have the word clustering system output soft
clusters, so words could belong to multiple clusters. This could give even more information about the semantic
meaning of the word and the cost of a word swap could be weighted by the degree to which words share the
same cluster(s). Another elaborate change could use clustering primarily to enhance the accuracy of similarity
measurements between words and then swap costs could be computed from the similarity of the words directly
rather than any cluster information. All of these changes would increase the time required to compute surface
similarity, which is why I have not yet implemented them. Parallelization or other efficiency improvements

would be required to implement significant improvements in dialogue surface similarity measurement.

Stop Words
In early iterations of the word clustering system I removed an automatically generated list of stop words from the
dialogue lines prior to determining contexts. I later removed this due to the added complication of appropriately
determining stop words and because the system was able to cluster stop words effectively anyway. However,
it would be interesting to explore the possibility of removing stop words in order to simplify dialogue lines.
This might make the surface similarity measurements between dialogue lines more indicative of their semantic

meaning as stop words often vary or are omitted between two semantically equivalent phrases.

Semantic Analysis
So far I have avoided some of the typical semantic analysis techniques used in many sentence clustering appli-
cations (see section 2.4.2). This is because I did not believe they would be as effective as the techniques I used.
They rely primarily on the information contained within the sentences themselves, and much of the dialogue I
am working with consists of short utterances with little self-contained meaning. However, it would certainly be
interesting to investigate the effectiveness of some of these techniques at least as an added component of overall

similarity computation.

5.2.4 Candidate Event-Sequence Discovery

Filtering Improvements
Earlier I mentioned that I noticed many candidate event-sequences that the system produces as obviously invalid

event-sequence (in section 5.2.1 under “Human-Computer Collaboration,”). I found it quite challenging to come

83

up with ways to filter out all these false positives. However, I have not spent enough time on this part of the
system as I could have and there are probably a lot of ways the filtering system could be improved. Further
analysis of the properties of the false positives that slip through that make them obviously false positives is in

order.

Dynamic Bayesian Networks
In section 2.3.2, I discussed my early experiments with DBNs as a means to generate candidate event-sequences.
I also explained that I abandoned them for the time being due to scalability issues. However, I still think they
are very promising and would like to try to implement a custom DBN structure learning algorithm that takes

advantage of the properties of my data to improve its efficiency.

Timestamps
Currently the event-sequence mining and filtering process treats the game logs as sequences of integers and
searches them for patterns. These integers represent dialogue and action clusters, but there is other information
in the original game logs that is not being used. Each action and dialogue line is tagged with a time-stamp,
indicating the point in time when it occurred. Intuitively, actions and dialogue lines corresponding to the same
event-sequence should in general have less time between them than unrelated actions and dialogue lines. This
idea could be used during candidate sequence mining to filter sequences both in terms of a maximum average
time between consecutive game-actions in the sequence, and a maximum temporal length of the sequence. I
believe this idea is very promising and easy to implement, so it is probably the first thing I will try in future
work. The game logs also contain information about the location where agents are at the time of particular
dialogue lines or actions. This information could be used filter out sequences occurring in two different places

simultaneously (e.g. the customer and waitress doing two separate things at the same time).

Object and Term Resolution
Another thing that candidate sequence mining currently ignores is the objects and entities involved in an event-
sequence. This information is lost in the process of dialogue and action clustering. It is a very reasonable idea
to believe that game-actions in a particular event-sequence will involve the same object or small set of objects.
Reckman has has success in using the Restaurant Game data to associate terms with in game objects [27]. It
would be very interesting to use her methods to figure out what actions and dialogue lines deal with the same
objects. This could be used to filter out sequences dealing with too many separate objects or somehow provide

a positive weight to object-coherent sequences, perhaps during labeling.

84

5.2.5 Event-Sequence Labeling and Clustering

Iterative Labeling
As described in section 3.8, part of the optimality criteria used to determine the best labeling of a log, is the
normality of the sequences composing the labeling. Currently the normality is only computed in terms of the
expansion factor of the sequence instances relative to the average for all instances of the same sequence. This
is only because at this stage in the system there are no other useful features to base normality on. Most of
the features that vary from instance to instance are gathered from the labeled logs, such as context features,
and location in the log. It would be interesting to explore the possibility of iteratively labeling the logs. After
each iteration, the average context and location features could be computed for each event-sequence and use
to compute normality in the next labeling. Another variation would be to include sequence clustering in the
iterative process as well and compute normality using the average features from the clusters the sequences

belongs to.

Optimality Improvements
One component of the system that I did not spend as much time on as I would have liked is the labeling system.
The optimality criteria used to select the best labeling of a log was primarily based off my intuition. I have
not had the opportunity to carefully examine golden labellings and various automatic labellings well enough to

refine how labellings are scored.

Inexact Sequence Matches During Labeling
Since the existing incarnation of the event-sequence discovery system only finds frequent event-sequences, many
of the event-sequences in logs can not be correctly labeled. Although these unlabeled sequences are infrequent
they are often quite similar to frequent sequences that can be labeled. Consequently, I have been contemplating
possible ways we might be able to label these sequence based using their similarity to identifiable sequences. I
have not fully thought it through, but one approach might be to use timestamps and object recognition to identify
chains of likely related game-actions and compare them to the sequence database. If they are sufficiently similar
to a sequence in the database they can be tentatively labeled with that sequence’s event. Another possible
approach might use subsequences of recognized sequences, testing to see if the subsequences can be grown to
resemble the original sequences by using nearby related game-actions in the game log. Ultimately the idea is

that valid event-sequence are too varied to be entirely caught by a frequent pattern mining approach.

Feature Similarity Improvements
Sequence similarity is composed of three parts, context similarity, surface similarity, and feature similarity.

The latter compares vectors representing several features of the sequences, namely where in the game Jogs

85

they occur (beginning, middle or end) and their average expansion factor. There are probably other features of
sequences that trend with the event the sequences correspond to. For example, the objects or actors involved in

the game-actions of the sequence probably vary more between events than within them.

5.2.6 Evaluation Methods

Custom Extrinsic Cluster Measure
Finding a way to quantitatively evaluate the performance of the system was surprisingly a lot harder than I
thought it would be. I think there is still a lot of room for improvement in the evaluation measures. I used
extrinsic cluster evaluation metrics to evaluate performance based on the idea that elements in the same golden
sequence should be in the same automatic sequence and treated it as a clustering problem. However, I am not
completely convinced this is the best means to evaluate the labellings. Furthermore, I used existing extrinsic
clustering metrics, which may not be ideal for the rather particular case I am working with. For example, 1
do not know what effects the fact that one class and cluster is much larger than the others (the other / not in
a sequence label) has on the metrics. The small size of most clusters and the difference in numbers between
clusters and classes may also have effects I am unaware of. It would be wise to investigate the extrinsic cluster
measure in more detail to ensure they are measuring what I want, and perhaps modify or make a custom measure

more appropriate for this situation.

Human Evaluation
Ultimately human evaluation would be the best way to evaluate the system because humans have a good intuition
of what makes a good labeling, which is hard to capture in an algorithm. Humans could be presented with
golden-automatic labeling pairs or excerpts and be asked to rank the quality of the automatic system on a scale.
Or we could have humans correct the automatic labeling and rank them in terms of the number of changes
made. It might be harder to evaluate the sequence clustering using humans. Also, this could not be easily used
when fast evaluation is needed, such as for genetic algorithms on the parameters, but it would be a good way to

evaluate the final system at some point.

Human evaluation would also be useful earlier in the system, not just to determine the overall performance.
For example, along the lines of human-machine collaboration, humans could assist in labelling semantically
meaningful clsuters for the various clustering stages. Or they could be used to cluster a subset of the elements,

which could be compared to the automatic clustering using specialized extrinsic cluster measures.

86

5.3 Final Thoughts

Although the event-discovery system is not yet at a point where it could completely replace human annotation, the
results are quite promising. The current state of the system does well enough at event-sequence labeling and clustering
to significantly reduce the amount of human effort needed to completely annotate the dataset (see section 4.5). In
addition, there is a lot of room for improvement in the system, it is conceivable that further development efforts could
bring a new iteration of the system almost to the level of a human annotator. However, the sheer variation in human
dialogue and behavior along with the amazing interpretation capabilities of the human mind make it unlikely that a

computer system could fully replace human annotation work in the near future.

87

38

Appendix A

Sample Output

The following sections show some sample output from each of the key stages in the event-discovery system. The

output has been modified from its original form to be more human-readable.

89

A.1 Sample Word Clusters

13 corner contd. great contd. portugal contd.
11 14 23 counter microwave window excellent lovely ~ wonderful | brasil hector portugal
12 15 starve delay moon wishes fine much brazil iceland stranger
13 16 X dr note hand czech ireland
3 flavour owner arm hands pants pretty
1 50 0 customers hand mouth ally hittle rather
10 6 few chef flowers tables he extremely most really
2 7 five customer people things ha hes they grey pretty theyre
3 8 three customers players waitresses | he she who kinda quite
4 80 two danke hello salat
5 9 34 dave Nn000000 bye lol sure card listening taxi
3rd absolutely definately nty haha no thanks cheak meny whatever
Ist 5th high ack exactly okaz hello oh thankyou chips pice zZitten
2nd elementary sign awsome excelent pancakes hey ok well drag saland
3rd grade third berrypie exelent peace hi okay yeah feast salat
another brilliant fag roger how somy yes sixteen
another many these buttsecks gladly rum kelly 35 eighteen rape
best more those byeeeee gnite salada attend german kiki 38 fifteen several
cash new virtual cali goodday sandwich bearguy holla maria 45 hs sixteen
different other caroline gotcha shure begin homy obviously couple million ten
last others cheeseburger hablo slap decision janet possibly soda
ate chuckles hahaa slurp deposit keisha shellfish beer milk tea
ask live seem cofe iamoo spagehtti dumbass kelly wellcome bourbon pop tonic
asked love stole coffeee james spagghetti may cocktail shortly vodka
ate made took cries jenny splendid because may why coke skeet water
came make use dam kay tennessee can maybe cunt soda whiskey
care ordered wanted dang kinky tequila let shall god sour whisky
come put work dank lobter thankye minute tart
forgot said write danke maryland thnaks forever moment second cake salmon tarts
had sat danku michigan wassup minute sec cheesecake soup pie
hate see dam nee nectarine lobster steak
awesome Honda bary nacterine neclerine salad tart
alnght handsome strange america female mo cherry pectar pectorine white
awesome hawt sweet canada florida tv cobb nectarin tangerine filet red white
awful interesting weird com london yo grilled nectarine house whit
cute nasty welcome germany nactarine nectartine wile
fantastic perfect yummy belgium england maine okey bf dad husband
fast popular boston france san bien non spent boyfriend developer immediately
cormer cambridge germany spain bon ns tres bucket dog parents
bil floor player carolina holland texas bonjour o voila crust girlfriend wife
chair kitchen rocks great fair okey your
cheff liking servey bad first next muy oui a s ur
clouds machine sky better free nice portugal any my your
cops management summer delicions good pleasant alberta europe italy big some youre
comer manager truth every great real australia greece nj for the

Table A.1: Sample word clusters from the ouput corresponding to the parameters given in section B.1. The heading of each clsuter
is the word that was chosen as the exemplar for that cluster by the algorithm. The clusters and words are arranged
alphabetically top-to-bottom, left-to-right.

90

A.2 Sample Dialogue and Action Clusters

A.2.1 Sample Action Clusters

Pickup pot

Actor Action Object Precondition Effect Count

Waitress Eat Pot Pot on ground 4

Customer Give Pot Customer holding pot Waitress holding pot 10

Waitress Pickup Pot Pot on stove Waitress holding pot 104

Waitress Pickup Pot Pot on table Waitress holding pot 6

Waitress Pickup Pot Pot on floor Waitress holding pot 4

Customer Pickup Vase Vase on floor Customer holding vase 5

Waitress Pickup Pan Pan on table Waitress holding pan 7

Waitress Pickup Pot Pot on microwave Waitress holding pot 2

Waitress Pickup Pot Pot on counter Waitress holding pot 8

Waitress Pickup Pot Pot on dishwasher Waitress holding pot 2

Waitress Pickup Pot Pot on ground Waitress holding pot 2

Waitress Pickup Pan Pan on dishwasher Waitress holding pan 1

Waitress Pickup DIRTY DISH DIRTY DISH on pot Waitress holding DIRTY DISH 2

Customer Putdown Fruit Customer holding fruit Fruit on pan 1

Customer Sit-on Podium Customer standing Customer sitting on podium 27

Waitress Sit-on Register Register on flowers Waitress sitting on register 1

Waitress Sit-on Cuisinart Cuisinart on fruit Waitress sitting on cuisinart 1

Pickup DIRTY DISH

Actor Action Object Precondition Effect Count

Customer Eat DIRTY DISH DIRTY DISH on blender, Customer sit- 2
ting on CHAIR

Customer Give DIRTY DISH Customer holding DIRTY DISH, sitting ~ Waitress holding DIRTY DISH 3
on chair

Waitress ~ Look-at DIRTY DISH Waitress standing, DIRTY DISH on 2
ground

Waitress Pick-up DIRTY DISH Waitress standing, DIRTY DISH on ta- Waitress holding DIRTY DISH 2320
ble

Waitress Pick-up DIRTY DISH Waitress standing, DIRTY DISH on Waitress holding DIRTY DISH 68
floor

Waitress Pick-up DIRTY DISH Waitress standing, DIRTY DISH on Waitress holding DIRTY DISH 3
OLD FOOD

Waitress Pick-up Fruit bowl Waitress sitting on chair, Fruit bowl on ~ Waitress holding fruit bowl 5
table

Waitress Pick-up Bill Waitress standing, Billon OLD FOOD Waitress holding bill 1

Waitress Pick-up DIRTY DISH = Waitress standing, DIRTY DISH on Waitress holding DIRTY DISH 7
OLD FOOD

Waitress Pick-up DIRTY DISH Waitress standing, DIRTY DISH on Waitress holding DIRTY DISH 1
podium

Customer Put-down Bill Customer sitting on DIRTY DISH hold- Bill on chair 1
ing bill

Waitress eat OLD FOOD

Actor Action Object Precondition Effect Count

Customer Give OLD FOOD Customer sitting holding OLD FOOD Waitress holding OLD FOOD 1

Waitress Eat OLDFOOD Waitress standing holding OLDFOOD OLD FOOD is bitten 57

Customer Eat Register Customer standing, waitress holding 2
register

Customer Get off Trash Customer sitting on trash Customer standing 1

Customer Look at Bill Customer standing, bill on trash 1

Waitress Look at Foodprep Waitress standing, foodprep on counter 1

Customer Pickup Vase Customer standing, vase on blender Customer holding vase 1

Waitress Pickup Blender Waitress standing, blender on flowers Waitress holding blender 1

Customer Pickup Trash Customer standing, trash on OLD Customer holding trash 1
FOOD

continued on next page ...

91

Actor Action Object Precondition Effect Count
Customer eat FOOD
Actor Action Object Precondition Effect Count
Delete Register Customer holding register Register deleted 7

Customer Eat BEVERAGE Customer sitting, BEVERAGE on table = BEVERAGE sipped 3082

Customer Eat BEVERAGE Customer sitting, BEVERAGE on table, BEVERAGE sipped 2979
sipped once

Customer Eat BEVERAGE Customer sitting, BEVERAGE on table, ~ BEVERAGE sipped 2685
sipped twice

Customer Eat OLD FOOD Customer sitting, OLD FOOD on table ~~ OLD FOOD bitten 767

Customer Eat OLD FOOD Customer sitting, OLD FOOD on table, OLD FOOD bitten 778
bitten once

Customer Eat OLD FOOD Customer sitting, OLD FOOD on table, OLD FOOD bitten 770
bitten twice

Customer Eat FOOD Customer sitting, FOOD on table FOOD bitten 3479

Customer Eat FOOD Customer sitting, FOOD on table, bitten =~ FOOD bitten 3463
once

Customer Eat FOOD Customer sitting, FOOD on table, bitten =~ FOOD bitten 3406
twice

Customer Eat BEVERAGE Customer sitting holding BEVERAGE BEVERAGE sipped 920

Customer Eat BEVERAGE Customer sitting holding BEVERAGE, BEVERAGE sipped 767
sipped once

Customer Eat BEVERAGE Customer sitting holding BEVERAGE, BEVERAGE sipped 645
sipped twice

Customer Eat FOOD Customer standing, FOOD on table, bit- FOOD bitten 92
ten twice

Customer Eat FOOD Customer standing, FOOD on chair FOOD bitten 2

Customer Eat DIRTY DISH Customer sitting, DIRTY DISH on table 1258

Customer Eat WINE Customer sitting, WINE on table WINE sipped 175

Customer Eat DIRTY DISH Customer sitting holding DIRTY DISH 180

Customer Eat Flower Customer sitting, flower on table Flower bitten 893

Customer Eat Table Customer sitting 371

Waitress Eat Flower Waitress standing, flower on table Flower eaten 340

Customer Eat Menu Customer sitting, menu on table 150

Customer Eat Vase Customer sitting, vase on table 213

Customer Eat WINE Customer sitting, WINE on OLDFOOD WINE sipped 3

Customer Eat Waitress Customer sitting, Waitress standing 184

Waitress Eat DIRTY DISH Waitress standing, DIRTY DISH on ta- 81
ble

Waitress Eat BEVERAGE Waitress standing, BEVERAGE on BEVERAGE sipped 1
floor, sipped twice

Waitress Eat FOOD Waitress sitting, FOOD on ground, bit- FOOD bitten 1
ten twice

Customer Eat DIRTYDISH Customer sitting on BEVERAGE hold- 1
ing DIRTY DISH

Customer Eat BEVERAGE Customer sitting, BEVERAGE on floor, BEVERAGE sipped 1
sipped twice

Customer Eat WINE Customer standing, WINE on blender, WINE sipped 1
sipped twice

Customer Eat FOOD Customer sitting on bartender holding FOOD bitten 4
FOOD, FOOD bitten once

Customer Eat FOOD Customer sitting on bartender holding FOOD bitten 4
FOOD, FOOD bitten twice

Waitress ~ Eat FOOD Waitress sitting on FOOD, FOOD on FOOD bitten 2
counter

Customer Eat Trash Customer sitting 1

Waitress Eat FOOD Waitress standing, FOOD on OLD FOOD bitten 1
FOOD, bitten once

Customer Eat Menu Customer sitting, menu on fruit 1

Customer Eat Waitress Customer sitting on counter, waitress 1

sitting on FOOD

continued on next page ...

92

Actor Action Object Precondition Effect Count
Waitress Get off Register Waitress sitting on register on table Waitress standing 1
Customer Get off Flower Customer sitting on flower on podium Customer standing 1
Customer Look at FOOD Customer sitting, FOOD on table 160
Customer Look at BEVERAGE Customer sitting, BEVERAGE on table 86
Customer Look at Flower Customer sitting, flower on table 253
Customer Look at DIRTY DISH Customer sitting, DIRTY DISH on table 76
Customer Pay Bill Customer standing, bill on OLD FOOD 1
Customer Pickup Flower Customer sitting, flower on table Customer holding flower 476
Customer Pickup FOOD Customer sitting, FOOD on table Customer holding FOOD 652
Customer Pickup BEVERAGE Customersitting, BEVERAGE ontable, Customer holding BEVER- 317
sipped once AGE
Customer Pickup BEVERAGE Customersitting, BEVERAGE on table, =~ Customer holding BEVER- 187
sipped twice AGE
Waitress Pickup Trash Waitress sitting on fridge, trash on Waitress holding trash 1
fridge
Customer Pickup WINE Customer standing, WINE outside Customer holding WINE 1
Waitress Pickup FOOD Waitress standing, FOOD on floor, bit- Waitress holding FOOD 6
ten twice
Customer Pickup BEVERAGE Customer sitting, BEVERAGE on floor, Customer holding BEVER- 1
sipped twice AGE
Waitress Pickup Trash Waitress standing, trash on food Waitress holding trash 1
Customer Pickup Trash Customer sitting, waitress holding trash ~ Customer holding trash 1
Customer Putdown FOOD Customer sitting holding FOOD, bitten =~ FOOD on table 107
once
Customer Putdown BEVERAGE Customer sitting holding BEVERAGE BEVERAGE on table 518
Customer Putdown BEVERAGE Customer sitting holding BEVERAGE, BEVERAGE on table 451
sipped once
Customer Putdown BEVERAGE Customer sitting holding BEVERAGE, BEVERAGE on table 286
sipped twice
Customer Putdown DIRTY DISH Customer sitting holding DIRTY DISH DIRTY DISH on table 835
Customer Putdown FOOD Customer sitting holding FOOD FOOD on table 890
Customer Putdown Flower Customer sitting holding flower Flower on table 250
Customer Putdown Fruit Customer standing holding fruit Fruit on trash 1
Customer Putdown WINE Customer standing holding WINE WINE on bar 4
Customer Touch BEVERAGE Customer sitting, BEVERAGE on table 129
Customer Touch Waitress Customer standing, waitress standing 353
Customer Touch Flower Customer sitting, flower on table 54
Customer Touch Table Customer sitting 57
Waitress clean DIRTY DISH
Actor Action Object Precondition Effect Count
Waitress Clean DIRTY DISH DIRTY DISH on counter DIRTY DISH cleaned 3373
Waitress Clean FOOD FOOD on counter FOOD cleaned 184
Delete DIRTY DISH DIRTY DISH on bar DIRTY DISH deleted 1513
Delete DIRTY DISH DIRTY DISH on counter DIRTY DISH deleted 3621
Delete BEVERAGE BEVERAGE on counter BEVERAGE deleted 327
Delete BEVERAGE BEVERAGE on bar, one sip taken BEVERAGE deleted 219
Delete BEVERAGE BEVERAGE on bar, two sips taken BEVERAGE deleted 159
Delete FOOD FOOD on counter, two bites taken FOOD deleted 192
Waitress Eat DIRTY DISH = Waitress standing, DIRTY DISH on 1
floor
Customer Get off Trash Customer sitting on trash on foodprep Customer standing 1
Waitress ~ Get off Fruit bowl Waitress sitting on fruit bowl Waitress standing 1
Customer Give DIRTY DISH Customer sitting holding DIRTY DISH =~ Waitress holding DIRTY DISH 197
Customer Give DIRTY DISH Customer sitting on BEVERAGE hold- Waitress holding DIRTY DISH 3
ing DIRTY DISH
Waitress Pickup DIRTY DISH Waitress standing, DIRTY DISH on ta- Waitress holding DIRTY DISH 3232
ble
Waitress ~ Pickup FOOD Waitress standing, FOOD on table Waitress holding FOOD 361
Customer Pickup DIRTY DISH Customer sitting, DIRTY DISHon table Customer holding DIRTY 812

DISH

continued on next page ...

93

Actor Action Object Precondition Effect Count
Waitress Pickup FOOD Waitress standing, FOOD on table, bit- Waitress holding FOOD 177
ten twice
Waitress Pickup DIRTY DISH Waitress standing, DIRTY DISH onmi- ~ Waitress holding DIRTY DISH 4
crowave
Waitress Pickup Trash Waitress standing, trash on OLD FOOD Waitress holding trash 1
Waitress Pickup Fruit Waitress standing, fruit on trash Waitress holding fruit 2
Customer Pickup Microwave Customer sitting on trash, microwaveon Customer holding microwave 1
floor
Waitress Pickup Menu Waitress standing, menu on counter Waitress holding menu 167
Waitress Pickup Fruit bowl Waitress standing, customer holding Waitress holding fruit bowl 5
fruit bowl
Waitress Pickup Table Waitress standing 657
Customer Pickup Table Customer sitting 138
Waitress Putdown DIRTY DISH Waitress standing holding DIRTY DISH DIRTY DISH on counter 3273
‘Waitress Putdown DIRTY DISH Waitress standing holding DIRTY DISH DIRTY DISH on bar 1078
Waitress Putdown DIRTY DISH Waitress standing holding DIRTY DISH DIRTY DISH on table 471
Waitress Putdown DIRTY DISH Waitress standing holding DIRTY DISH =~ DIRTY DISH on floor 245
Waitress Putdown Vase Waitress standing holding vase Vase on bartender 4
Customer Putdown EMPTY WINE Customer sitting holding EMPTY EMPTY WINE on flower 1
WINE
Customer Putdown Fruit Customer standing holding fruit Fruit on dishwasher 1
Customer Siton Fruit bowl Customer standing, fruit bowl on Customer sitting on fruitbowl 2
counter
Customer Siton Flower Customer standing, flower on fridge Customer sitting on flower 1
Customer Touch DIRTY DISH Customer sitting, DIRTY DISH on table 72
Waitress Touch FOOD Waitress standing, FOOD on table 2
Customer Touch WINE Customer standing, waitress holding 2
WINE
Waitress pickup FOOD
Actor Action Object Precondition Effect Count
Delete Bill Bill on register Bill deleted 3115
Delete Menu Menu on podium Menu deleted 219
Customer Fail pay Bill Customer standing, bill on OLD FOOD 1
‘Waitress Get off CHAIR Waitress sitting on CHAIR Waitress standing 1077
Customer Get off Register Customer sitting on register on counter ~ Customer standing 2
Waitress Look at Menu box Waitress standing 333
Waitress Look at Menu Waitress standing, menu on counter 56
‘Waitress ~ Look at Bill ‘Waitress standing, bill on OLD FOOD 1
Waitress Pickup FOOD Waitress standing, FOOD on counter Waitress holding FOOD 3827
Waitress Pickup BEVERAGE Waitress standing, BEVERAGE onbar ~ Waitress holding BEVERAGE 3928
Waitress Pickup Flower Waitress standing, flower on fruit Waitress holding flower 2
Waitress Pickup OLD FOOD Waitress standing, OLD FOOD on OLD Waitress holding OLD FOOD 2
FOOD
Customer Pickup Fruit bowl Customer sitting, fruit bowl on menu Customer holding fruit bowl 1
Customer Pickup EMPTY WINE Customer sitting, EMPTY WINE on Customer holding EMPTY 1
OLD FOOD WINE
Waitress Putdown FOOD Waitress standing holding FOOD FOOD on table 3469
‘Waitress Putdown BEVERAGE Waitress standing holding BEVERAGE =~ BEVERAGE on table 3379
‘Waitress Putdown WINE Waitress standing holding WINE WINE on table 258
‘Waitress Putdown Menu Waitress standing holding menu Menu on counter 418
Waitress Put down Flower Waitress standing holding flower Flower on table 644
Customer Putdown Vase Customer sitting holding vase Vase on table 109
Waitress Putdown Vase Waitress standing holding vase Vase on table 235
Customer Putdown BEVERAGE Customer standing holding BEVER- BEVERAGE on register 1
AGE
Customer Putdown Menu Customer sitting holding menu Menu on fruit 1
Customer Siton Table Customer standing Customer sitting on table 263
Customer Touch FOOD Customer sitting, FOOD on table 51
Waitress Touch Customer Waitress standing, customer sitting on 1
BEVERAGE
continued on next page ... |

94

Actor Action Object Precondition Effect Count
Customer Touch FOOD Customer sitting on table, FOOD on 1

CHAIR

Pay bill

Actor Action Object Precondition Effect Count
Waitress Eat Bill Bill on table 2
Customer Eat Bill Customer sitting, Bill on table 2
Customer Eat Bill Customer sitting 3
Customer Fail-pay Bill Customer sitting 79
Customer Give Bill Customer holding bill Waitress holding bill 458
Customer Look at Bill Customer sitting, holding bill 102
Customer Look at Bill Customer standing, bill on table 17
‘Waitress Look at Bill ‘Waitress standing, bill on table 116
Waitress Look at Bill Waitress standing, customer holding bill 9%
Customer Look at Bill Customer sitting, bill on table 53
Customer Pay Bill Customer sitting Bill paid 1327
Customer Pay Bill Customer sitting, bill on table Bill paid 548
Customer Pay Bill Customer sitting, bill on table, bill paid Bill paid 1
Waitress Pickup Bill Waitress standing, bill on table, bill paid ~ Waitress holding bill 921
Waitress Pickup Bill Waitress standing, bill paid Waitress holding bill 811
Customer Pickup Bill Customer sitting, bill on table, bill paid Customer holding bill 97
Customer Pickup Bill Customer sitting, waitress holding bill, Customer holding bill 5

bill paid
Waitress Pickup Register Waitress standing Waitress holding register 41
Customer Pickup Vase Customer sitting, vase on flowers Customer holding vase 2
Customer Pickup Fruit Customer sitting, fruit on table Customer holding fruit 5
Customer Pickup Bill Customer sitting, bill on chair Customer holding bill 7
Waitress Pickup WINE Waitress standing, WINE on flower ‘Waitress holding WINE 1
Customer Putdown Bill Customer standing Bill on table 92
Waitress Putdown Fruitbowl Waitress standing Fruit bowl on OLD FOOD 1

A.2.2 Sample Identical Dialogue Lines

The dialogue clustering is performed in two stages. First dialogue lines that are identical in terms of the word cluster
sequence they are composed of are grouped together. Then the dialogue lines are clustered using context and surface

similarity along with the actions. The following are representative sample identical line pairs from the first stage. 1

Table A.2: Sample action clusters output by the dialogue and action system using the parameters given in table B.4. The capitalized
words and phrases represent clusters of objects that were generated in the log processing step (see section 3.2). The

counts are the number of occurrences in 5000 game logs.

can i get a beer ?

how can i help you ?
coffie please

coffe please

some water please
spaghetti please

cheese pie please

white wine

comin right up

may i get you something to drink ?
right up

here is your beer

house

did you need something ?
how is everything ?
spahgetti marinara

can i have some water ?
how may i serve you ?
beer please

beer please

a beer please

steak please

filet minon please

red wine

coming right up

can i get u anything to drink ?
right away

here is the wine

red

do you need anything ?
how was everything ?
spaghetti marinara

| continued on next page ...

Note that all the sample dialogue lines presented in this thesis are in their post-processed from. Meaning they are in lower-case and have all

punctuation except “?” removed

95

there u go

okay fine

whats your age ?

well ?

what do you need

a lobster

something to drink

ok mister

would you like some more beer 7
hows everything going ?

sit

how bout a wine

how do i work this ?

would you like a table

can i take the menu ?

the lobster will be right here
just a moment please

white whine

would you like the check now
one second please

steak and cheesecake

your cheesecake sir

would you like anything else
here is todays menu

welcome in our restaurant
please take a sit

any food

cani get you wine or beer ?
youre most welcome

yup sorry

wisconsin u ?

would you liek to order something ?
thank you for stopping by have a good evening
more water ?

ahhi see

enjoy your filet sir

heres your bill sir

there ya go

ok good

whats ur age ?

50 ?

what do you want

your filet

anything to drink

yes sir

would you like some more wine ?
hows it going ?

help

how bout a beer

how do you work it 7

do you want a table

shall i take the menu ?

the lobster will be right up
just a sec pls

red wine

do you want the check now
one moment please

salad and lobster

your lobster sir

would you like something eles
here is our menu

welcome to our restaurant
please take your sit

your dinner

can i get you tea or coffee ?
your most welcome

ok sorry

uk you ?

would you like to order something ?
thank you for stopping by have a great day
another beer ?

ohhi see

enjoy your pie sir

heres the bill sir

Table A.3: Sample identical waitress dialogue line pairs. Each row represents a pair of dialogue lines uttered by the waitress found
to be identical in terms of word clusters.

waitress woman

perfect mmm

oh thank you ah thank you

hmm hmmm

yummy mmm

it was very good this is quite nice

more beer please another beer please

now ill take some lobster now ill take some salmon
now ill take some steak now ill take some salmon
oh ok ah ok

now some water now some wine

with spagghetti and spaghetti

ohh thank you ah thank you

i would like a berry pie i would like a filet mignon
thaks thx

no that will be all no this should be all

ill have the cherry cheesecake and a coffee please | id like a cobb salad and a tea please
thats nice looks good

sure cheesecake yes salad

fine thanks mm thanks

have a good day have a nice day

[

continued on next page ...

96

A.2.3 Sample Dialogue Line Clusters

yes wine please

thanks sweetie

can i get some wine please
can i give my order
everything was great

can i get the check please
thanks for the great hospitality
that sounds great

that looks great

no thank you just the check
brasil

no just the bill

thak you very much

table for 1

a filet mignon please

i want a spaghetti

it was lovely

could i have the bill please
the salmon was wonderful
could i have the check ?
hey cutie

a menu please

no just the bill please

may i sit here ?

its okay

lobster 2

1 salmon

1 salad

1 more lobster
where u from
wher are u from

i would like the cobb salad and a coffee pleaes
i would like the cobb salad and coffee please

ok wine please

thanks babe

can i have a beer please
can i tell the order
everything is fine

may i have the bill please
thanks for the fine service
this looks great

this looks great

no thank you just a check
germany

no just the check

thank you very much
table for one

a cobb salad please

i need a lobster
everything is fine

could i get the check please
the salad was good
could i have the bill ?
hello babe

the menu pls

no just the check please
can i sit here ?

can i have a filet mignon and a tea please
id like a cobb salad and a tea please
im ok

cheesecake 2

one soup

one soup

1 more salad

where you from

where are you from

wassup peace

whoa WOowW

a beer would be great a soda would be great

everything is just fabulous this is just fine

yes i would like a soup yes i would like the spaghetti

i think i ill have the lobster i think i would like some cheesecake
that sounds good this looks great

nice day good evening

ill have the cheesecake ill have the tart

looks delicious looks good

Sample Customer Dialogue Line Clusters

These are whole and partial sample dialogue line clusters. The bolded dialogue line is the exemplar for the cluster.

Note that the dialogue lines listed may represent a set of multiple identical dialogue lines as described in the previous

section.
e thank you
— thank you please
— thank you yet again
~ thank you dear
— thank you beautiful

97

thank you p

thank you misses

thanks but

thanks rachel

thanks alot

thanks toots

thanks kindly

thanks slave

thanks for that

thanks for asking

thanks a lot

sorry for the trouble

thanx a lot

please and thank you mam
thank you much

thank you though

thank you mam

thank you darlin

thank you babe

thank you darling

thank you kindly

thank you slave

thank you alice

thank you jenni

oh thank you mam

why thank you maam

hello and thank you

thanks for a nice meal
thanks for the fine service
thanks have a nice day
thanks have a good one
how you like your tip ?

bye and have a nice day
keep up the good work
thank you that looks very nice
thank you food was wonderful
thank you so much

thank you very kind

thank you very much

thank you very much rachel
thank you very much mam
thank you very much beautiful
thank you verry much
thank you young man

no thank you have a nice evening
no im fine thanks

okay thank you very much
why thank you very much
ohhh thank you very much

thanks looks great
thanks sooooco much
i thank you

thank you

thank yo

thank you

thank zou

thank yoiu

thank yu

o could i have the bill please ?

i will take the check

the bill

or a blowjob

no just the check

no thanks just the bill

just the check

just the check please

just the check maam

then the bill

im ready for my bill please
ill have the bill please

ill have my check now please
ill just have the check please
id like my bill now

im ready for the check now
ill eat it anyway

may i have the check now
may i have my check now ?
may i have my check now natalie ?
let me get the check for you
gave you a tip too

the bill please

the bill now

the count please

and the bill please

check please

ty bill please

maam the bill please

umm check please

worst waitress ever

i have money

could i have the bill ?

could i have the bill please ?
k may i have my check please ?
can i get my check now ? ?
chef

ill pay my bill now

ill take the check please

99

— ill take the check too please
— ill take my check now

- ill take the check

— ill just take the check

— ill just take the check please
— no thank just the check

— then i will take the bill

— hold me now

— i am ready for the bill

— i think im ready for a check
— i guess ill take the check

— im ready for my bill

~ im out of money

- please may i have the bill

~ 1 will not pay that bill

- did you pay your bill

~ could i help you

— lets see the bill

— give me another bill

e wine please
— and spaghetti
-~ to start
— one more beer please
— and more water please
~ yeah another beer would be nice
— and wine
- and chease cake please
- and some coffe
— and as a desert
- and wheres my food
- and berry pie for desert
- alobster and a cheesecake
— acoffee
~ water and vegetable soup
— cobb salad and filet mignon
— cobb salad and grilled salmon
— cobb salad spaghetti berry pie
- vegtable soup and cobb salad
— i will have a red wine
— i will have a red wine please
~ i will have the filet
— i would like a white wine
~ ijust got fired from my job
— i said white wine
~ beer lots of it
— asteak and salad please
— alobster and a salad please
~ acob salad please

fillet mignon and cobb salad please
and a coffee perhaps

and more coffee

and coffee please

medium rare please

goodbye honey

pepper and salt please

salty

salad and water please

soup lobster and tea please
soup salad and lobster please
soup de jour and a coffee
soup de jour and filet mignon
soup du jour and water

soup du jour and water please

vegetable soup and a pint of beer please
i would like a beer and a salad please

i would like a glass of water

i would like a filet mignon please
i would like a berry pie

how about a beer

how about a salad

how about a coffee

how about some tea ?

hey get me a lobster

ok now the steak

could i have a berry pie and a glass of water ?

yes a white wine please

and some red wine please
and a red wine

and more wine

and red wine

and filet migon

wine red wine

the red wine

sure red wine

water and red wine

white and red wine

two glasses of red wine

2 red wine

thank you for sitting on me
can i have a beer with that ?
can i have a soup du jour
can i have the filet mignon ?
can i have my check pleae ?
can i get a nectarine tart please ?
can i try the grilled salmon ?

e im ready to order

101

- iam ready to order

— idont drink

— i think im ready to order

— ithink im ready to order now
— id like to have a salad

— im ready to order

- imready to order now

— im ready now

~ im from brasil

~ ok im ready to order
e how old are you

~ well how oldru
— sohowoldrya?
- howoldru?
~ howoldru?
~ 20 and you ?
-~ chris
— denise urs ?
— nice 2 meetu
~ oh well im done
~ ohits alright
— no im not
~ sohowoldru
~ how about you
~ how old are you
~ how old are you how old are you
— hey you touched me
-~ shucks
— same
e just asking
— just curious
— just asking
- oanly joking
— wont work
- stay
- kiss
- hellooooooco
— thankies
— auf wiedersehen

— wasser

102

Sample Waitress Dailogue Line Clusters

e hello sir

please do come in

hello sir and welcome table for one today ?

welcome to house of pies
hiii
hello come in

please come with me

welcome to good burger home of the good burger
welcome to goodburger home of the goodburger

excuse me sir ?

hi how you doing ?

so how are you today ?

how are you ?

how are you this fine morning ?
how are you this afternoon ?
how are you today sir ?

how are you today ?

how are you doing ?

how are you doing today sir ?
how are you doing tonight ?
howru?

how many are you ?

hey how are you ?

would you like a table for one sir ?
good day then

good evening sir

good evening and welcome
good choice senor

good afternoon sir

good afternoon madam

good eveing sir

come on sir

come on in

come in

come in please

come in follow me

come right in

welcome please come in
welcome to the restaurant
welcome to the restaurant sir
welcome to the cafe
welcome to our fine establishment
welcome to our restaurant
welcome to senor fancypants
welcome to ninja joes eatery

welcome to therestaurant

103

welcome in this restaurant
welcome how are you

um are you ok

hello sir welcome

hello and welcome

hello welcome

oh hello welcome

oh ahaha

oh nvm

hi sexy

o would you like some time beforee you order ?

whenever you are ready sir

why did you bite me ?

have you had a chance to look at the menu ?
just call me when you are ready

just call me when youre ready

just call if you need anything

when you are ready to order

tell me when you are ready

call me if you need anything

i thought i was a stalker ?

have u decided yet ?

have you decided ?

have you decided yet sir ?

have you already choosen ?

have you finished sir ?

have you choose ?

have you choosen ?

please tell me what you exactly want sir
please tell me when youre ready to order

ill give you a few moments

ill give you a minute to decide

do you want any thing to drink ?

just tell me when your ready

just tell me when youre ready to order

give me a holler when youre ready to order
let me know when youre ready to order

tell me when u r ready to order

tell me when your ready

komt eraan

are you ready to order or do you need a few minutes ?
are you ready to order or do you need some more time ?
are you ready to order or do you need more time ?
are you ready to order or need more time ?
just let me know when youre ready

Jjust call me if you need anything

let me know if you need anything

let me know when you are ready

104

let me know when you are ready for that
let me know when your ready

let me know wen you are ready to order
have you decided on any food ?

have you decided on anything ?

u want something to eat ?

you ready to order ?

are you alright sir ?

are you all done ?

are you ready to order sir

are you ready to order sir ?

are you ready to order ?

are you ready 2 order sir

are you finished with that ?

here you go are you ready to order ?

no problem are you ready to order ?
whenever you are ready

whenever youre ready

whenever youre ready sir

e ok coming right up

i will be right back with the wine

i will be right back with your beer
i will be right out with it sir

your lobster should be here shortly
your soup will be ready shortly
your filet will be right up

i will get it for you

i have that right up

ok ill get that foru

i will be back with your beer

i will be right back with your salad
will that be all for today

be right back with your salad

ill be right over here if you need anything
sure be right back with your soup
sure ill be right back with the wine
ok i will get that

ok ill just grab my food

ok ill go get it

ok ill fix it

ok let me get it

great choice one minute please
absolutely one moment please

ill have that right out to you

ill have it right over

ill get it for you now

ill bring that right out

ok i will have that right out

105

wonderful ill bring it right out
right away sir

right away kind sir

right away maam

right over here sir

come right away sir

coming up sir

coming right up sir

here is your soup ill be right back with your beer
all right ill be back in a moment
sure be right back with your beer
alright ill be right back with that
ill be right back to take your order
sure i will be right back with that
sure be right back with that

sure ill get that right away

sure ill bring it right to you

of course i will be back shortly

it will be right up

ok i will be right with you

ok i will be right back

right away

ok right away

great coming right up

coming up

coming right up

coming right up dude

coming rite up

coming righ up

all right just a moment

sure i will be a moment

sure i will give you a minute
sure itll just be a minute

ok just one minute sir

ok just a moment

ok just a moment sir

ok wont be long

ok itll be just a moment

o this is on the house

one beer on the house
compliments of the chef
compliments of the house
beer on the house

on the house

on the house sir

no problem take your time
water is on the house

happy birthday to you

106

— refills on the house
— get out of my shop
— im taller then you
— this one is on the house
— this is a robbery
— this is on the house
— this ones on the house
— its on the house
— happy birthday
~ heres a lobster on the house
— wines on the house
— have some pie on the house
— you can pay at the register
— the salad is on the house
- the pie is on the house
— the bottles are on the house
— this beer is on the house

e my name is amanda i will be your waitress today
- iam sarah
— the table is good
-~ my name is sally
— my name is shayla
— my name is janet
— my name is paula i will
— my name is johanna
— your dinner is ready
— lovely evening isnt it
— schnell
— evan and yours ?
— 1 will be your waitress today
— my name is virginia and ill be your server today
— my name is amanda i will be your waitress today
— my name is amanda i will be serving you today
— my name is sean i will be your server tonight
- my name is miranda ill be your waitress today
— my name is allison ill be serving you tonight
— my name is janet and ill be your waitress for this evening
— my name is paula and what is your name ?
— im alice i will be your waitress today

e look a floating plate

— look a floating plate
- garbage

- W00 money
~ text follow me
~ menus

— soft drink

— common

— hannah

— purrrar

- hy

— agreed

107

A.3 Sample Candidate Sequences and Clusters

The following are sample clusters and partial clusters of candidate event-sequence that were mined from the game

log. The sequences are given in terms of the exemplars of the clusters of actions and dialogue lines that make up the

sequence. The clusters are labelled with a relevant event label.

o Waitress serves customer food

Waitress puts down food on table - Waitress says “here is your meal”

Waitress puts down food on table - Waitress says “here is your meal” - Customer picks up food

Waitress says “beer” - Waitress picks up food from counter - Waitress puts down food on table

Waitress puts down food on table - Waitress says “here is your meal” - Customer eats food - Customer eats food - Customer eats food
Waitress puts down food on table - Customer says “thank you™ - Customer eats food - Customer eats food - Customer eats food

Customer says “where is my salad” - Waitress says “ok coming right up” - Waitress says “beer” - Waitress picks up food from counter
- Waitress puts down food on table

Waitress puts down food on table - Waitress says “this is on the house” - Customer eats food - Customer eats food
Waitress gives blender to customer - Customer eats flowers

Waitress puts down food on table - Customer says “this looks good” - Customer eats food

Waitress looks at fridge - Customer eats trash

Waitress puts down food on table - Waitress says “that is filet mingon” - Customer eats food

Waitress says “beer” - Waitress picks up food from counter - Waitress puts down food on table - Waitress says “here is your meal”
Waitress puts down food on table - Waitress says “anything else sir”

Waitress puts down food on table - Waitress says “anything else sir” - Customer looks at menu

Waitress says “beer” - Waitress picks up food from counter - Waitress puts down food on table - Customer eats
Waitress puts down food on table - Customer picks up food - Customer eats food - Customer eats register
Waitress picks up food from counter - Waitress puts down food on table - Waitress says “enjoy sir”

‘Waitress puts down food on table - Waitress says “enjoy sir” - Customer picks up food - Customer eats food - Customer eats food -
Customer eats food

Waitress puts down food on table - Waitress says “enjoy sir” - Customer eats food

‘Waitress gives food to customer - Customer puts down food on table

Waitress puts down food on table - Customer says “thank you” - Customer picks up food - Customer eats food - Customer eats food
Waitress picks up food from counter - Waitress puts down food on table

e Waitress gives customer bill

Waitress picks up dirty dish from table - Waitress says “I’ll get your bill” - Waitress touches register - Waitress picks up bill - Waitress
puts bill on table

Waitress picks up dirty dish from table - Waitress says “would you like your check”
‘Waitress touches register - Waitress says “I’ll get your bill” - Waitress picks up bill
Customer says “could i have the bill please” - Waitress touches register - Waitress picks up bill - Waitress gives bill to customer

Customer says “could i have the bill please” - Waitress touches register - Waitress picks up bill - Waitress puts down bill on table -
Customer looks at bill

Waitress puts down bill on table - Waitress picks up dirty dish

Customer says “could i have the bill please” - Waitress touches register - Waitress picks up bill - Waitress puts down bill on table -
Customer picks up bill

Waitress puts down bill on table - Customer says “thank you”
Waitress touches register - Waitress picks up bill - Waitress touches customer - Customer touches waitress
Waitress picks up bill - Waitress says “here is your bill” - Waitress puts down bill - Customer looks at bill

Waitress puts down bill - Waitress says “the wine was on the house”

108

Waitress touches register - Customer says “do I have to pay” - Waitress picks up bill - Waitress puts down bill on table
Waitress touches register - Waitress picks up bill

e Customer orders food

Waitress puts down menu on table - Waitress says “the menu sir” - Customer picks up menu from table - Customer looks at menu
Customer looks at menu - Customer picks up Cuisinart

Waitress says “what would you like” - Customer says “spaghetti marinara” - Waitress picks up menu from table - Waitress puts down
menu on menu box - Delete menu

Customer looks at menu - Customer says “spaghetti marinara” - Waitress says “ok coming right up”

Customer looks at menu - Customer puts down menu - Customer says “spaghetti marinara”

Customer puts down menu - Customer says “steak me” - Waitress picks up menu from table - Waitress puts down menu on menu box
Waitress says “what would you like” - Customer says “spaghetti marinara”

Customer looks at menu - Waitress says “what would you like” - Customer says “spaghetti marinara” - Customer gives menu to
waitress - Waitress puts down menu on menu box - Delete menu

Customer picks up menu from table - Waitress says “what would you like” - Customer says “spaghetti marinara” - Customer looks
at menu - Customer puts down menu on table - Waitress picks up menu - Waitress puts down menu on menu box

o Waitress greets customer

Waitress says “hello sir” - Customer says “hello” - Waitress says “follow me”

Waitress picks up menu - Waitress says “hello sir”

Waitress says “hello” - Customer says “table for one please” - Waitress says “follow me” - Customer sits down
Waitress says “hello sir” - Customer says “hello” - Waitress picks up menu

Customer says “hello” - Waitress says “table for one”

Customer says “whats up” - Waitress picks up menu

o Waitress cleans table

Waitress picks up dirty dish from table - Waitress puts down dirty dish on counter - Waitress cleans dirty dish - Delete dirty dish

Waitress says “are you done” - Customer says “im done” - Waitress picks up dirty dish from table - Waitress puts down dirty dish on
counter - Waitress cleans dirty dish - Delete dirty dish

Waitress says “are you done” - Customer says “yes” - Waitress picks up dirty dish from table - Waitress puts down dirty dish on
counter - Waitress cleans dirty dish - Delete dirty dish

Waitress picks up dirty dish from table - Waitress says “was that okay sir” - Waitress puts down dirty dish on counter - Waitress
cleans dirty dish - Delete dirty dish

Waitress eats trash - Watiress says “smile”

Waitress picks up dirty dish from table - Waitress puts down dirty dish on counter - Waitress cleans dirty dish - Delete dirty dish
Waitress says “let me clear that for you” - Waitress picks up dirty dish from table - Waitress puts down dirty dish on counter
Customer says “take this for me” - Waitress picks up dirty dish from table

e Players do silly thing

Waitress sits on vase - Customer touches fruit

Customer gives menu - Customer gives vase

Waitress eats trash - Customer puts down trash

Waitress puts down pan - Customer puts down dirty dish

Customer eats fruit - Customer picks up bill

Customer gets off wine - Waitress cleans dirty dish - Delete dirty dish - Customer looks at menu

109

110

Appendix B

System Parameters

The following tables list the important parameters of each of the system components, the values used that produced
the empirically best! results, and a brief description of what the parameter controls. For specifics on their usage check
out the source code, the URL is given in Appendix C. Most of these parameters are passed into the components in a
configuration file (which is also included in the source code archive), but some are passed as arguments to the program

directly or are hard-coded in.

B.1 Word Clustering Component Parameters

'In most cases best was qualitatively evaluated based on the output of that stage. This was because of the time requirements of running output

from early stages through the entire system and because later stages might have unforeseen effects on the final performance. See chapter 4 for more
details

111

Clustering Parameters

Parameter Value Description

MAX CLUSTERS 3 The number of clusters an element can be in for the purpose of
context similarity updates.

UPDATE INTERVAL 20 The number of affinity propagation iterations between updates of
the clusters and similarities.

UPDATE DAMPING FACTOR 0.7 The damping factor (0.0-1.0) for updating similarities. Similar
to the damping factor below.

DAMPING FACTOR 0.9 The message passing damping factor used by the affinity propa-
gation algorithm [39].

PREFERENCE FACTOR 1.0 Affinity propagation element preferences [39] will be this factor
multiplied by the average similarity. This indirectly determines
the number of clusters, lower being fewer, higher being more.

AFFINITY ITERATIONS 2000 The number of iterations to run the affinity propagation algorithm
for unless the clusters converge in fewer iterations.

CLUSTER ITERATIONS 1 The number of times to run affinity propagation. Each run starts
with the hard-clustering output of the previous run.

CONVERGENCE SIMILARITY 0.1 If the net similarity of affinity propagation [39] changes by less
than this in CONVERGENCE ITERATIONS we consider the
clustering converged.

CONVERGENCE ITERATIONS 40 Used with the above parameter to test for convergence based on
net similarity.

CLUSTER CONVERGENCE ITERATIONS 40 The number of iterations the exemplars must stay the same to be
considered converged.

FREQUENT THRESHOLD 1 The minimum number of occurrences an element needs to be
clustered.

STARTING FREQUENT THRESHOLD 0 If the frequent threshold is 0 we iteratively decrease the frequent
threshold starting with this value and rerun clustering each time.

FREQUENT THRESHOLD INCREMENT 0 The amount to decrease the frequency threshold by each iteration
in the case described above.

CLUSTER MEMBERSHIP THRESHOLD 0.0 The minimum assignment an element needs to keep track of be-

ing in a cluster. For example, a value of 0.1 means that an element
must have a soft assignment of at least 10% to be included in a
cluster for the purpose of updating context similarity.

Table B.1: Word clustering parameters. These parameters control word clustering, they were determined from related research and
empirically from qualitative evaluation of the word clustering results.

112

Similarity Computation Parameters

CONTEXT FREQUENCY THRESHOLD 5

CONTEXT SIZE 2
UNWEIGHTED CONTEXT FACTOR 0.1
CONTEXT POWER 0.25
CONTEXT FACTOR 0.9
SIMILARITY THRESHOLD 0.03

Parameter Value Description

ONLY USE FREQUENT CONTEXTS true If true, when generating context features only keep those that
are only elements that occur at least CONTEXT FREQUENCY
THRESHOLD number of times.

USE CLUSTER FREQUENCY true If true, when determining if an element meets the requirement

below use the size of its primary cluster instead of the element
count.

The threshold below which elements are considered infrequent
and replaced with the infrequent element symbol in contexts.
The size of context to use, e.g. a value of 3 mean that contexts
are three words total, namely two words before a reference word,
two words after a reference word or one word before and one
word after.

The factor by which the flat context (number of contexts shared
divided by total number either appears in) is included in the score
(non weighted) use 0.0 for normal context.

The power the context similarity is raised to before being used
in the total similarity. This is used to make the context similarity
distribution more similar to the surface similarity distribution.
The weight of context similarity versus surface similarity in the
total similarity measure.

The minimum similarity a pair of elements must have for it to
be included in the similarity matrix input to affinity propagation,
otherwise they will never be clustered together. This is used to
limit the size of the similarity matrix and speed up the clustering
process.

Table B.2: Word similarity parameters. These parameters control the way word similarity is measured. They were determined from
related research and empirically from qualitative evaluation of the word clustering results.

THRESHOLD FACTOR 25

INFREQUENT SIMILARITY THRESHOLD 0.3

FREQUENT WORDS ONLY true

Unused Parameters
Parameter Value Description
STOP WORD IDF THRESHOLD -1.0 The minimum IDF / sqrt(sqrt(TF)) needed to be a non stop word.

This is used to automatically generate a stop word list based,
which are then ignored in contexts and clustering. This is no
longer used but might be worthwhile to pursue in the future.

If we are only running frequent words through clustering and as-
signing infrequent words to clusters afterward. This parameter
controls how similar an infrequent word must be to some cluster
in order to not be put in its own new cluster.

The minimum similarity needed when assigning infrequent
words to clusters to put that word in the cluster.

Whether or not to assign infrequent words to clusters after fre-
quent words have been clustered.

Table B.3: Unused word parameters. These unused parameters were part of earlier experiments, but they were not used in any of

the final experiments.

113

B.2 Dialogue and Action Clustering Component Parameters

Clustering Parameters

Parameter Value Description

MAX CLUSTERS 1 The number of clusters an element can be in for the purpose of
context similarity updates.

UPDATE INTERVAL 100 The number of affinity propagation iterations between updates of
the clusters and similarities.

UPDATE DAMPING FACTOR 0.7 The damping factor (0.0-1.0) for updating similarities. Similar
to the damping factor below.

DAMPING FACTOR 0.9 The message passing damping factor used by the affinity propa-
gation algorithm [39].

PREFERENCE FACTOR 0.7 Affinity propagation element preferences [39] will be this factor
multiplied by the average similarity. This indirectly determines
the number of clusters, lower being fewer, higher being more.

AFFINITY ITERATIONS 5000 The number of iterations to run the affinity propagation algorithm
for unless the clusters converge in fewer iterations.

CLUSTER ITERATIONS 1 The number of times to run affinity propagation. Each run starts
with the hard-clustering output of the previous run.

CONVERGENCE SIMILARITY 0.01 If the net similarity of affinity propagation [39] changes by less
than this in CONVERGENCE ITERATIONS we consider the
clustering converged.

CONVERGENCE ITERATIONS 50 Used with the above parameter to test for convergence based on
net similarity.

CLUSTER CONVERGENCE ITERATIONS 50 The number of iterations the exemplars must stay the same to be
considered converged.

FREQUENT THRESHOLD 1 The minimum number of occurrences an element needs to be
clustered.

STARTING FREQUENT THRESHOLD 0 If the frequent threshold is O we iteratively decrease the frequent
threshold starting with this value and rerun clustering each time.

FREQUENT THRESHOLD INCREMENT 0 The amount to decrease the frequency threshold by each iteration
in the case described above.

CLUSTER MEMBERSHIP THRESHOLD 0.0 The minimum assignment an element needs to keep track of be-

ing in a cluster. For example, a value of 0.1 means that an element
must have a soft assignment of at least 10% to be included in a
cluster for the purpose of updating context similarity.

Table B.4: Dialogue and action clustering parameters. These parameters control dialogue and action clustering. They were deter-
mined from related research and empirically from qualitative evaluation of the clustering results.

114

Similarity Computation Parameters

Description

Parameter Value
ONLY USE FREQUENT CONTEXTS true
USE CLUSTER FREQUENCY true
CONTEXT FREQUENCY THRESHOLD 10
CONTEXT SIZE 2
UNWEIGHTED CONTEXT FACTOR 0.0
CONTEXT POWER 0.5
CONTEXT FACTOR 0.98
SIMILARITY THRESHOLD 0.05
IDENTICAL THRESHOLD 0.9

If true, when generating context features only keep those that
are only elements that occur at least CONTEXT FREQUENCY
THRESHOLD number of times.

If true, when determining if an element meets the requirement
below use the size of its primary cluster instead of the element
count.

The threshold below which elements are considered infrequent
and replaced with the infrequent element symbol in contexts.
The size of context to use, e.g. a value of 3 mean that contexts
are three words total, namely two words before a reference word,
two words after a reference word or one word before and one
word after.

The factor by which the flat context (number of contexts shared
divided by total number either appears in) is included in the score
(non weighted) use 0.0 for normal context.

The power the context similarity is raised to before being used
in the total similarity. This is used to make the context similarity
distribution more similar to the surface similarity distribution.
The weight of context similarity versus surface similarity in the
total similarity measure.

The minimum similarity a pair of elements must have for it to
be included in the similarity matrix input to affinity propagation,
otherwise they will never be clustered together. This is used to
limit the size of the similarity matrix and speed up the clustering
process.

The minimum surface similarity needed for two dialogue lines to
be considered identical in terms of the clusters their words are in.

Table B.5: Dialogue and action similarity parameters. These parameters control the way dialogue and action similarities are mea-
sured. They were determined from related research and empirically from qualitative evaluation of the clustering results.

115

B.3 Sequence Mining and Filtering Parameters

MINIMUM TRANSITION PROBABILITY 0.01

MAXIMUM EXPANSION FACTOR 1.7

Parameter Value Description
MINIMUM OCCURRENCE COUNT 5 The minimum number of times a sequence must occur.
MAXIMUM LENGTH 7 The maximum number of dialogue lines and actions that the se-

quence can have.

The minimum transition probability required between adjacent
elements of the sequence.

The maximum factor by which the average log length of a se-
quence (the distance between the start and end of a sequence
instance in a log) can exceed the number of elements in the se-
quence.

Table B.6: Sequence mining and filtering parameters. These parameters are used in the mining and filtering components. They
determine which sequences are ultimately selected as candidate event-sequences. The parameters were determined
through investigation of the output and examination of the golden event labellings.

B.4 Sequence Labeling Parameters

Unused Parameters
Parameter Value Description
MAX SEQUENCE JUMP 5 The maximum distance allowed between consecutive game-
actions in a sequence while labeling.
PERCENTAGE COVERED FACTOR 095 The percentage of the total labeling quality score that comes from

the percentage of the log that is covered by the labeling. The rest
of the score comes from the average deviation of the sequence
expansion factor (see section 3.8).

Table B.7: Sequence labeling parameters. These parameters control the process of labeling logs with the discovered candidate
event-sequences. They were determined from theoretical consideration of what makes for a good labeling and qualitative
and quantitative (in terms of the overall system performance) evaluation of the results.

116

B.5 Sequence Clustering Parameters

Clustering Parameters

Parameter Value Description

MAX CLUSTERS 2 The number of clusters an element can be in for the purpose of
context similarity updates.

UPDATE INTERVAL 20 The number of affinity propagation iterations between updates of
the clusters and similarities. i

UPDATE DAMPING FACTOR 0.8 The damping factor (0.0-1.0) for updating similarities. Similar
to the damping factor below.

DAMPING FACTOR 0.9 The message passing damping factor used by the affinity propa-
gation algorithm [39].

PREFERENCE FACTOR 1.0 Affinity propagation element preferences [39] will be this factor
multiplied by the average similarity. This indirectly determines
the number of clusters, lower being fewer, higher being more.

AFFINITY ITERATIONS 1500 The number of iterations to run the affinity propagation algorithm
for unless the clusters converge in fewer iterations.

CLUSTER ITERATIONS 1 The number of times to run affinity propagation. Each run starts
with the hard-clustering output of the previous run.

CONVERGENCE SIMILARITY 0.01 If the net similarity of affinity propagation [39] changes by less
than this in CONVERGENCE ITERATIONS we consider the
clustering converged.

CONVERGENCE ITERATIONS 50 Used with the above parameter to test for convergence based on
net similarity.

CLUSTER CONVERGENCE ITERATIONS 50 The number of iterations the exemplars must stay the same to be
considered converged.

FREQUENT THRESHOLD 1 The minimum number of occurrences an element needs to be
clustered.

STARTING FREQUENT THRESHOLD 0 If the frequent threshold is O we iteratively decrease the frequent
threshold starting with this value and rerun clustering each time.

FREQUENT THRESHOLD INCREMENT 0 The amount to decrease the frequency threshold by each iteration
in the case described above.

CLUSTER MEMBERSHIP THRESHOLD 0.0 The minimum assignment an element needs to keep track of be-

ing in a cluster. For example, a value of 0.1 means that an element
must have a soft assignment of at least 10% to be included in a
cluster for the purpose of updating context similarity.

Table B.8: Sequence clustering parameters. These parameters control sequence clustering. They were determined from related
research and empirically from qualitative and quantitative (in terms of the overall system performance) evaluation of the

clustering results.

117

Similarity Computation Parameters

Description

Parameter Value
ONLY USE FREQUENT CONTEXTS true
USE CLUSTER FREQUENCY true
CONTEXT FREQUENCY THRESHOLD 2
UNWEIGHTED CONTEXT FACTOR 0.1
CONTEXT POWER 0.25
NEAR SEQUENCE DISTANCE 3
CONTEXT FACTOR 0.85
FEATURE FACTOR 0.1
SIMILARITY THRESHOLD 0.0

If true, when generating context features only keep those that
are only elements that occur at least CONTEXT FREQUENCY
THRESHOLD number of times.

If true, when determining if an element meets the requirement
below use the size of its primary cluster instead of the element
count.

The threshold below which elements are considered infrequent
and replaced with the infrequent element symbol in contexts.
The factor by which the flat context (number of contexts shared
divided by total number either appears in) is included in the score
(non weighted) use 0.0 for normal context.

The power the context similarity is raised to before being used
in the total similarity. This is used to make the context similarity
distribution more similar to the surface similarity distribution.
The maximum number of actions or dialogue lines between the
end of one sequence and the beginning of another for them still
to be considered near each other. This is used to create the near
sequence context, see section 3.9 for more information.

The weight of context similarity in the total similarity measure.
The weight of the feature similarity (see section 3.9) in the total
similarity measure. Surface similarity will have a weight of 1 -
CONTEXT FACTOR - FEATURE FACTOR.

The minimum similarity a pair of elements must have for it to
be included in the similarity matrix input to affinity propagation,
otherwise they will never be clustered together. This is used to
limit the size of the similarity matrix and speed up the clustering
process.

Table B.9: Sequence similarity parameters. These parameters control how sequence similarity is measured. They were determined
from related research and empirically from qualitative and quantitative (in terms of the overall system performance)

evaluation of the clustering results.

118

Appendix C

Source Code and Other Resources

The source code, project files and external DLLs used have been archived and can be found at http://web.mit.

edu/~tssmith/www/thesis_source.zip

The official Restaurant Game Project page, with links to the game and research related to the game can be found at

http://web.media.mit.edu/~jorkin/restaurant/

We are currently gathering data from our newest game, Improviso, which we hope to apply our techniques to in the

future. The Improviso home page can be found at http: //gambit .mit.edu/loadgame/improviso.php

Harley’s thesis, which is unrelated to this thesis beyond the fact that this thesis blows Harley’s thesis out of the water,

can be found with the other CS & EE MEng theses at MIT.

119

120

Bibliography

[1] A.M. Turing, “Computing Machinery and Intelligence,” Mind, vol. LIX, pp. 433460, 1950.

[2] A. M. Olney, “Dialogue generation for robotic portraits,” in 5th Workshop on knowledge and reasoning in prac-

tical dialogue systems, pp. 15-21, IICALI, January 2007.

[3] “Home page of the Loebner prize in Artificial Intelligence.” http://www.loebner.net/Prizef/

loebner—prize.html, July 2011.

[4] S.Gandhe and D. R. Traum, “First steps towards dialogue modeling from an un-annotated human-human corpus,”

in 5th Workshop on knowledge and reasoning in practical dialogue systems, pp. 22-27, IJCAI, January 2007.

[5] M. Mateas and A. Stern, “Procedural authorship: A case-study of the interactive drama Facade,” in Digital Arts

and Culture (DAC), 2005.

[6] D. Jurafsky and J. H. Martin, Speech and Language Processing. London, United Kingdom: Pearson Education,
second ed., 2009.

[71 J. Weizenbaum, “ELIZA—a computer program for the study of natural language communication between man

and machine,” Commun. ACM, vol. 9, pp. 3645, January 1966.
[8] K. M. Colby, “Modeling a Paranoid Mind,” Behavioural and Brain Sciences, vol. 4, pp. 515-560, 1981.
[9]1 R. C. Schank, Dynamic memory revisited. New York, NY, USA: Cambridge University Press, 1999.

[10] T. Lane and C. E. Brodley, “Sequence matching and learning in anomaly detection for computer security,” in
In Proceedings of AAAI-97 Workshop on Al Approaches to Fraud Detection and Risk Management, pp. 43-49,
1997.

[11] R. Barzilay and M. Lapata, “Modeling local coherence: an entity-based approach,” in Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, ACL ’05, (Stroudsburg, PA, USA), pp. 141-148,

Association for Computational Linguistics, 2005.

121

[12] J. Jackson, “Ibm watson vanquishes human jeopardy foes” http://www.pcworld.com/
businesscenter/article/219893/ibm_watson_vanquishes_human_jeopardy_foes.

html, Febmary 17 2011.

[13] B. Zimmer, “Is it time to welcome our new computer overlords?.”
http://www.theatlantic.com/technology/archive/2011/02/

is—-it-time-to-welcome-our—new-computer—overlords/71388/, February 17 2011.

[14] J. Orkin and D. Roy, “Automatic learning and generation of social behavior from collective human gameplay,”
in Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS),

2009.

[15] S. Ontafdn, K. Mishra, N. Sugandh, and A. Ram, “Case-based planning and execution for real-time strategy
games,” in Proceedings of the 7th international conference on Case-Based Reasoning: Case-Based Reasoning

Research and Development, ICCBR ’07, (Berlin, Heidelberg), pp. 164-178, Springer-Verlag, 2007.

[16] 1. Orkin and D. Roy, “The restaurant game: Learning social behavior and language from thousands of players
online,” Journal of Game Development, vol. 3, no. 1, pp. 39-60, 2007.

[17] J. Orkin, T. Smith, H. Reckman, and D. Roy, “Semi-automatic task recognition for interactive narratives with
EAT & RUN,” in Proceedings of the 3rd Intelligent Narrative Technologies Workshop at the 5th International
Conference on Foundations of Digital Games (FDG), 2010.

[18] J. McGonigal, “Ted — talks — jane mcgonigal: Gaming can make a better world.” http://www.ted.com/

talks/jane_mcgonigal_gaming_can_make_a_better_world.html.
[19] J. Orkin, “The restaurant game project.” http: //www.test.org/doe/, July 2011.
[20] “Improviso.” http://gambit.mit.edu/loadgame/improviso.php, 2011.

[21] N.R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential pattern mining algorithms,” ACM Comput. Surv.,
vol. 43, pp. 3:1-3:41, November 2010.

[22] T. Lane and C. E. Brodley, “Temporal sequence learning and data reduction for anomaly detection,” ACM Trans-

actions on Information and System Security, vol. 2, pp. 295-331, August 1998.

[23] T. Lau, “A comparison of sequence-learning approaches: Implications for intelligent user interfaces.” University

of Washington Generals Examination, February 1999.

[24] P. Laird and R. Saul, “Discrete sequence prediction and its applications,” in Machine Learning, vol. 15, pp. 43—
68, 1994,

122

[25] A. Chotimongkol and A. I. Rudnicky, “Acquiring domain-specific dialog information from task-oriented human-
human interaction through an unsupervised learning,” in Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’08, (Stroudsburg, PA, USA), pp. 955-964, Association for Compu-

tational Linguistics, 2008.

[26] N. Chambers and D. Jurafsky, “Unsupervised learning of narrative schemas and their participants,” in Proceed-
ings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL °09, (Stroudsburg, PA, USA), pp. 602—

610, Association for Computational Linguistics, 2009.

[27] J. O. Hilke Reckman and D. Roy, “Learning meanings of words and constructions, grounded in a virtual game,”

in Proceedings of the 10th Conference on Natural Language Processing (KONVENS), 2010.

[28] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal, and M. chun Hsu, “PrefixSpan: Mining sequential
patterns efficiently by prefix-projected pattern growth,” in Proceedings of the 17th International Conference on

Data Engineering, pp. 215-224, IEEE Computer Society, 2001.

[29] Y. Lu and C. Ezeife, “Position coded pre-order linked WAP-tree for web log sequential pattern mining,” in Pro-
ceedings of the 7th Pacific-Asia conference on Advances in knowledge discovery and data mining, PAKDD’03,
(Berlin, Heidelberg), pp. 337-349, Springer-Verlag, 2003.

[30] M.J. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,” Machine Learning, vol. 42, pp. 31—
60, 2001.

[31] R. A. Garca-Hernndez, J. F. M. Trinidad, and J. A. Carrasco-Ochoa, “Finding maximal sequential patterns in text

document collections and single documents.,” Informatica (Slovenia), vol. 34, no. 1, pp. 93-101, 2010.

[32] K. P. Murphy, Dynamic Bayesian networks: Representation, inference and learning. PhD thesis, UC Berkeley,
2002.

[33] S.Liang, S. Fuhrman, and R. Somogyi, “Reveal, a general reverse engineering algorithm for inference of genetic
network architectures.,” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 18-29,

1998.
[34] K. Murphy and S. Mian, “Modelling gene expression data using dynamic Bayesian networks,” 1999.

[35] N. Friedman, K. Murphy, and S. Russell, “Learning the structure of dynamic probabilistic networks,” pp. 139—
147, Morgan Kaufmann, 1998.

123

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

(45]

[46)

[47]

K. P. Murphy, “Bayes Net Toolbox for Matlab.” http://people.cs.ubc.ca/~murphyk/Software/

BNT/bnt . html, December 2009.

N. Friedman and G. Elidan, “LibB for Windows/Linux programs.” http://compbio.cs.huji.ac.il/

LibB/programs.html, December 2009.

S. D. LLC., “High performance structure learning: Learning about data relationships” http://www.

structureddatall. com/, December 2009.

B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science, vol. 315, pp. 972-976,
February 2007.

A.Y.Ng,M.I Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an algorithm,” in Advances in Neural
Information Processing Systems (T. Dietterich, S. Becker, and Z. Ghahramani, eds.), pp. 849-856, MIT Press,
2001.

L. Grongvist and M. Gunnarsson, “A method for finding word clusters in spoken language,” in Proceedings for

Corpus Linguistics, pp. 265273, March 2003.

F. Dellaert, “The expectation maximization algorithm,” Tech. Rep. GIT-GVU-02-20, Georgia Institute of Tech-
nology, February 2002.

J. R. Curran, “From distributional to semantic similarity,” tech. rep., The University of Edinburgh, 2003.

M. Lesk, “Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an
ice cream cone,” in Proceedings of the 5th annual international conference on Systems documentation, SIGDOC

’86, (New York, NY, USA), pp. 24-26, ACM, 1986.

Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” in Proceedings of the 32nd annual meeting on
Association for Computational Linguistics, ACL ’94, (Stroudsburg, PA, USA), pp. 133-138, Association for

Computational Linguistics, 1994.

C. Leacock, G. A. Miller, and M. Chodorow, “Using corpus statistics and wordnet relations for sense identifica-

tion,” Comput. Linguist., vol. 24, pp. 147-165, March 1998.

A. Budanitsky and G. Hirst, “Semantic Distance in WordNet: An Experimental, Application-oriented Evalua-
tion of Five Measures,” in IN WORKSHOP ON WORDNET AND OTHER LEXICAL RESOURCES, SECOND
MEETING OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LIN-
GUISTICS, 2001.

124

(48]

[49]

(501

[51]

[52]

[53]

(54]

[55]

[56]

(571

(58]

G. Nenadi¢, 1. Spasi¢, and S. Ananiadou, “Automatic discovery of term similarities using pattern mining,” in
COLING-02 on COMPUTERM 2002: second international workshop on computational terminology - Volume
14, COMPUTERM ’02, (Stroudsburg, PA, USA), pp. 1-7, Association for Computational Linguistics, 2002.

G. Nenadié, 1. Spasi¢, and S. Ananiadou, “Term clustering using a corpus-based similarity measure,” in Proceed-
ings of the 5th International Conference on Text, Speech and Dialogue, TSD ’02, (London, UK), pp. 151-154,

Springer-Verlag, 2002.
“Mining term similarities from corpora,” vol. 10.

D. R. Radev, H. Jing, M. Sty§, and D. Tam, “Centroid-based summarization of multiple documents,” Inf. Process.

Manage., vol. 40, pp. 919-938, November 2004.

D. Wang, T. Li, S. Zhu, and C. Ding, “Multi-document summarization via sentence-level semantic analysis
and symmetric matrix factorization,” in Proceedings of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR *08, (New York, NY, USA), pp. 307-314, ACM,
2008.

H. Zha, “Genperic summarization and keyphrase extraction using mutual reinforcement principle and sentence
clustering,” in Proceedings of the 25th annual international ACM SIGIR conference on Research and develop-

ment in information retrieval, SIGIR ’02, (New York, NY, USA), pp. 113-120, ACM, 2002.

J. Yang and W. W. 0010, “CLUSEQ: Efficient and effective sequence clustering,” in Proceedings of the 19th
International Conference on Data Engineering, March 5-8, 2003, Bangalore, India (U. Dayal, K. Ramamritham,
and T. M. Vijayaraman, eds.), pp. 101-112, IEEE Computer Society, 2003.

1. F. Allen, “Maintaining knowledge about temporal intervals,” Communications of the ACM, vol. 26, pp. 832—

843, November 1983.

V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet Physics Dok-

lady, vol. 10, no. 8, pp. 707-710, 1966.

R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” J. ACM, vol. 21, pp. 168-173, January
1974.

C. L. Ezeife, Y. Lu, and Y. Liu, “PLWAP sequential mining: open source code,” in Proceedings of the 1st interna-
tional workshop on open source data mining: frequent pattern mining implementations, OSDM ’05, (New York,

NY, USA), pp. 26-35, ACM, 2005.

125

[59] A.Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based external cluster evaluation measure,”
in Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-CoNLL), pp. 410-420, June 2007.

{60] R. Reichart and A. Rappoport, “The nvi clustering evaluation measure,” in Proceedings of the Thirteenth Con-
ference on Computational Natural Language Learning, CoNLL °09, (Stroudsburg, PA, USA), pp. 165-173,

Association for Computational Linguistics, 2009.

[61] A. Bagga and B. Baldwin, “Entity-based cross-document coreferencing using the vector space model,” in Pro-
ceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International

Conference on Computational Linguistics - Volume 1, ACL *98, (Stroudsburg, PA, USA), pp. 79-85, Associa-

tion for Cbmputational Linguistics, 1998.

[62] E. Amigé, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of extrinsic clustering evaluation metrics based

on formal constraints,” Inf. Retr., vol. 12, pp. 461-486, August 2009.

126

