
ARCHIVES

Map Folding

by

Thomas D. Morgan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2012

@ Massachusetts Institute of Technology 2012. All rights reserved.

A u th or
Department of Electrical Engineering and Computer Science

May 21, 2012

Certified by............................
Erik D. Demaine

Professor
Thesis Supervisor

Accetedby D

Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

Accepted by

2

Map Folding

by

Thomas D. Morgan

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2012, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In 1997, Jack Edmonds posed as an open problem the computational complexity of
deciding whether a given m x n map-rectangular paper with horizontal and vertical
creases, each marked mountain or valley-has a flat folded state. This problem has
remained open since then, even for the 2 x n case. This thesis presents several
theoretical contributions to this problem. Most significantly, it presents an O(n9) time
algorithm for deciding the flat foldability of a 2 x n map. To achieve this result, this
thesis makes a sequence of reductions which ultimately lead to a new general hidden
tree problem, where the goal is to construct a "valid" tree on a given polynomial set of
candidate vertices, given oracles to navigate hypothetical partially constructed trees.
To complete the algorithm, it is shown that the hidden tree problem can be solved in
polynomial time using dynamic programming. Additionally, several faster algorithms
are given for special cases of 2 x n map folding. This thesis goes on to extend this
algorithm to optimization variants of the problem. In particular, by certain metrics
it finds the simplest flat folded state achievable by a given 2 x n map in polynomial
time.

This thesis also provides results for the general m x n map folding problem. It
presents a set of nontrivial necessary conditions for an m x n map to be flat foldable,
that are checkable in polynomial. Additionally, this thesis presents a fixed parameter
tractable algorithm for the m x n map folding problem, where the parameter is the
entropy in the partial order induced by the mountain valley pattern on the cells of
the map.

Thesis Supervisor: Erik D. Demaine
Title: Professor

3

4

Acknowledgments

I would like to thank my advisor, Erik D. Demaine for his valuable guidance through-

out this project. He has made himself available whenever I needed help through these

last three semesters, and I could not have achieved as much as I have without his help.

I would also like to think Eric Liu for his close help in the early stages of this project,

when it started as a final project for Erik's geometric folding algorithms class. He

was a very motivated collaborator.

Much of this thesis hinges on the idea of the ray diagram, which was introduced

by David Charlton, and further elaborated by Yoyo Zhou, in the context of an open

problem session held as part of an MIT class 6.885 on Geometric Folding Algorithms

in Fall 2007. I thank the participants of that open problem session for helpful early

discussions about 2 x n map folding.

5

6

Contents

1 Introduction

1.1 Map Folding Basics

1.1.1 m x n Map Folding Basics

1.1.2 2 x n Map Folding Basics .

1.1.3 Valid m x n Folded States .

1.2 C ontributions .

2 Ray Diagram for 2 x n Map Folding

2.1 Top-Edge V iew .

2.2 R ay D iagram .

2.2.1 Constraints on Valid Ray Diagrams

2.2.2 A Simple Application .

3 Algorithms for 2 x n Special Cases

3 .1 C on e .

3.2 Interlocking Teeth .

3 .3 S p iral .

4 Algorithm for General 2 x

4.1 Hidden Tree Problem

4.1.1 Validity Oracle

4.1.2 Separation Oracle

4.1.3 Algorithm . .

n Map Folding

. .

. .

. .

. .

7

9

10

10

11

12

12

15

15

18

20

23

25

25

26

29

33

33

34

35

35

4.1.4 Correctness .

4.2 Reducing Ray Diagrams to

4.2.1 Tree Structure.

4.2.2 Loop Partition

4.2.3 Separation Oracle

4.2.4 Validity Oracle

4.2.5 Correctness .

4.2.6 Running Time.

5 2x

5.1

5.2

5.3

.

.dden Tree Problem

.

.

.

.

.

.

.

.

.

n Map Folding Extensions

Sum of Constrained Segments

Maximum Constrained Segment

Sum of North and South Nestings

6 m X n Map Folding

6.1 Necessary Conditions .

6.2 Fixed Parameter Tractable Algorithm

A Ray Diagram Greedy Algorithm

37

38

38

42

43

44

46

47

49

50

50

51

53

53

54

57

8

Chapter 1

Introduction

Determining whether a crease pattern is flat-foldable is one of the most fundamental

problems in the field of geometric folding algorithms. A crease pattern is a set of line

segment creases on a piece of paper. For our purposes, every crease pattern will have

a mountain-valley assignment, which specifies which direction each crease should be

folded in. A flat folding must fold 1800 along each crease in the direction specified by

the mountain-valley assignment, and must not have folds anywhere else. It is known

that in general, deciding whether a crease pattern has a flat folding is NP-hard [2].

In this thesis, we will examine a natural special class of crease patterns, those

which form a m x n rectangular lattice. We refer to this problem as the map folding

problem because informally, it describes how to refold a road map while respecting the

intended crease directions. Arkin et al. [1] considered the related problem of folding

an m x n map via a sequence of simple folds (each folding one line in its entirely),

which turns out to reduce to a series of ID folding problems, solvable in polynomial

time. However, when the restriction to simple folds is lifted, the problem becomes

much more complex.

Jack Edmonds1 posed the problem of deciding whether a given map has a folded

state as interesting from a computational complexity perspective, conjecturing that

it is NP-complete in general. This problem has remained open, even for 2 x n maps,

for the past 15 years.

'Personal communication with Erik Demaine, August 1997.

9

Figure 1-1: NEW map.

1.1 Map Folding Basics

1.1.1 m x n Map Folding Basics

An unfolded m x n map has two rows and n columns of cells. The creases either lie

along one of the m - 1 evenly spaced horizontal lines or along one of n - 1 evenly

spaced vertical lines. There are n(m - 1) horizontal creases, and (n - 1)m vertical

creases. By possible inversion of all crease directions (which preserves foldability),

assume that the upper leftmost horizontal crease is a valley.

NSEW vertex labels. By Maekawa's Theorem [5], every vertex must have one

mountain and three valleys or vice versa. We can therefore label each vertex by the

unique crease direction that is different from the other three, one of north, south, east,

or west. This labeling was introduced by Justin [6]. Figure 1-1 shows the 2 x 4 map

corresponding to the sequence NEW. There are 2 2(n+n-3)+(n-2)(m-2) possible vertex

assignments for an m x n map. This follows from assigning the vertices sequentially

row by row. After the first row and column have been assigned, each subsequent

vertex has only two possibilities.

Folded state. A flat folded state of a map is a total order of the cells that induces

no crossings and respects the mountain/valley labels.

For consistency, view the top-left cell as having a fixed position; this also fixes the

orientation of all cells (imagine attaching coordinate axes to each cell). The cells can

10

I I I

V I V M V

VI VI VI

I I I
I I I
I I I

be indexed by a a pair (i,j) with i E {1,. . ,m} and j E {1,. ... ,n}. Then the cells

can take one of four possible parity values given by (i mod 2, j mod 2). In a valid

flat-folded state, all cells of the same parity will have the same orientation in the

folded state. Using the fixed orientation of the top-left cell and the parity relations,

mountains and valleys also translate into above and below relations for cells of paper

in the folded state.

1.1.2 2 x n Map Folding Basics

We introduce additional definitions, specific to the case when m = 2.

Centerline. The centerline is the single horizontal line running through the paper,

and its n corresponding horizontal creases.

Segments. A segment refers to a pair of cells (in the same column of cells) touching

a common centerline crease. A segment may also refer directly to that common

centerline edge.

Tunnels. A tunnel is a (contiguous) sequence of all-mountain or all-valley horizontal

creases along the centerline. For example, the NEW map (Figure 1-1) has three

distinct tunnels. For a given horizontal centerline crease (tunnel), we will refer to the

two cells bordering that crease as the "walls" of that tunnel.

Intuitively, a tunnel can turn or be manipulated in all the ways that a 1 x m strip

could, by suitable settings of the vertical creases. Adjacent tunnels either nest inside

one another or they have disjoint interiors. In particular, they cannot intersect. Note

that a tunnel on the interior of another tunnel must at least follow the containing

tunnel's folds, but the interior tunnel may have extra folds.

East and west vertices create new tunnels by changing the centerline fold from

mountain to valley or vice versa. North and south vertices change the direction (or

orientation) of the current tunnel. Note that, in different tunnels, only north vertices

can fold inside of other north vertices, and similarly for south vertices.

11

1.1.3 Valid m x n Folded States

The m x n map problem, is to determine, given an m x n map, whether it has a

valid folded state which, as described earlier in the section, we represent by a total

order of the cells. In order for a folded state to be valid, it must fulfill two conditions.

First, the map's attachments between cells must not cross each other. Second, the

crease directions (mountain or valley) must be obeyed. The first condition can be

checked by looping over every pair of creases on each of the four sides, and checking

if they intersect. To check the second condition, we first fix the position of the upper

leftmost cell. This cell and all cells with the same parity must lie above any cell

with which they share a valley crease, and below any cell with which they share a

mountain crease. For cells with the opposite parity, these conditions are reversed.

This implicitly gives us an 0 ((mn)2) algorithm for checking the validity of a folded

state, thus showing the problem to be in NP.

We do not concern ourselves with what sequence of folds is necessary to reach a

valid folded state. This is because these folds may necessarily involve complex origami

folds. Furthermore, it is known that folded state can be reached by a continuous

folding motion (using additional intermediate creases) [4]. Were we restricted to

simple folds, in which at each step we fold completely along a single line through the

paper, many of valid folded states would be unreachable.

1.2 Contributions

These results are joint with Erik Demaine and Eric Liu. This thesis provides a number

of theoretical contributions to the m x n map folding problem. The most significant

of which is the polynomial-time algorithm for the 2 x n special case of the problem,

which runs in 0(n9) time. This algorithm is achieved through a series of reductions.

First, in Section 2.1, we show equivalence between 2 x n and finding a two-dimensional

diagram called the "top-edge view". Next, in Section 2.2, we prove that this top-edge

view is equivalent to the "ray diagram", which is another two-dimesnional structure

which further exploits the fact that there is only a single centerline in the diagram to

12

expose useful local properties. The last reduction, in Section 4.2, reduces the problem

of finding a ray diagram via a kind of dual transform to the problem of finding a valid

"tree structure". In Section 4.1, we show how to solve the resulting "hidden tree

problem" in polynomial time using dynamic programming techniques. This results

results in an overall running time of 0(n 9) for map folding.

By further making use of the ray diagram, we present several faster than O(n 9)

time algorithms for special cases of 2 x n map folding in Chapter 3. In particular, we

present an 0(n') time algorithm for the case when the ray diagram forms "interlocking

teeth", and an O(n 4) algorithm for the case when the ray diagram forms a "spiral".

In Chapter 5 we present algorithms for solving certain optimization variants of

the 2 x n map folding. In particular, rather than simply finding if any folded state

exists for the given 2 x n map, they find the folded state that is, by some metric,

simplest.

Finally, in Chapter 6 we present results for m x n map folding for any m. First,

we develop a set of necessary conditions for an m x n map to be flat foldable that are

checkable in polynomial time. Then, we develop a fixed parameter tractable algorithm

for deciding the flat foldability of an m x n map, which runs in 0((mn)2 5
2 oe(P))

time, where log e(P) is the entropy in the partial order induced by the mountain

valley pattern of the map.

13

14

Chapter 2

Ray Diagram for 2 x n Map

Folding

In Section 2.1, we will prove that 2 x n map folding is equivalent to finding a two-

dimensional diagram called the "top-edge view", which represents each cell of the

map by a horizontal segment and represents their stacking order by vertical position.

Next, in Section 2.2, we prove that this top-edge view is equivalent to another two-

dimensional diagram called the "ray diagram", which represents the "tunnel" between

vertically adjacent cells by a single horizontal segment and uses vertical position to

represent the "nesting" of these tunnels. The ray diagram structure will be the basis

for the algorithms we develop for 2 x n map folding in Chapter 3 and Chapter 4.

2.1 Top-Edge View

One way to represent the 2 x n map folding problem is the top-edge view. A flat

folded state of the map can be visualized as a stack of cells. If the paper lies in the

xy plane with upper left corner at the origin, the top-edge view looks down on the

xz plane (imagine that the paper has nonzero thickness).

The middle of Figure 2-1 is an example of a valid top-edge view for the sequence

NEW. The top-edge view initially consists of two parallel lines, representing the

walls of the current tunnel. That is, the straight lines of the top-edge view directly

15

correspond to an edge of one of the 2 x n cells of the map. The semicircular curves

represent creases; these are drawn with nonzero thickness for clarity. The centerline

is not drawn explicitly, but conceptually it lies between the two walls. The blue bars

in figure Figure 2-1 connect the two walls of each separate tunnel component; their

value in checking the non-intersection condition is explained in the next paragraph.

Figure 2-2 shows how the paths of these two lines are affected by the four atomic

components of a top-edge view: W, E, S, and N folds. These patterns are easily

verified with folds of a 2 x 2 piece of paper. In Figure 2-2, the walls are drawn left-

to-right; rotate the figures 1800 if the path is right-to-left (e.g., after the N fold in the

middle part of Figure 2-1).

Figure 2-1: A valid folded state (left) and corresponding top-edge view (middle) for
the sequence NEW, and an invalid top-edge view (right) for the same sequence.

The construction of a top-edge view for a given crease pattern is nontrivial. For

example, the right side of Figure 2-1 displays an invalid top-edge view for NEW; the

red bar highlights the walls of the fold that induce self-intersection. When proceeding

'Hence there are four blue lines since there are four horizontal centerline creases in NEW.

West East

South North

Figure 2-2: The top-edge view representation of west, east, south, and north vertices.

16

left-to-right through a given vertex sequence (e.g., NEW), there are multiple possible

choices for each turn. Two possibilities for NEW are shown in Figure 2-1. However,

not all of the possible outcomes are valid. For example, the top-edge view in the right

side of Figure 2-1 uses only the four atomic components shown in Figure 2-2, but it

is invalid because one tunnel intersects another.

The nonintersection condition can be specified as follows. First, number the walls

of the top-edge view from bottom to top, starting at 1. Then the crease (or tunnel

component) connecting walls i and k crosses the crease connecting walls j and I if

i < j < k < 1. This condition cannot be applied to any wall-pair i, k; it only applies

if i, k are walls of the same tunnel (as shown by the vertical bars in Figure 2-1). In

the middle and right parts of Figure 2-1, the noncrossing condition is satisfied by

all wall pairs connected by blue bars. However, in the right side of Figure 2-1, the

problematic walls are those connected by the red bar; they would have to intersect

the centerline creases represented by the two right-most blue bars to "physically"

produce this top-edge view.

A valid top-edge view and a flat folded map both provide an ordering of the

map cells in the flat folded state. Because the two representations contain the same

information, they are equivalent. Thus we can reduce the problem of deciding flat

foldability of a 2 x n map to the problem of finding a valid top-edge view.

The top-edge view does not easily generalize to m x n map folding for m / 2. In

the 2 x n case, the top-edge view visually represents all information about the folded

state except for the centerline crease. But the walls of all tunnels remain visible,

allowing the location of the centerline (and hence the complete folded state) to be

deduced. For m > 2, in addition to the centerline(s) being invisible, some walls may

be obscured as well. In this case, it is not clear how to deduce the complete folded

state.

Unfortunately, the top-edge views are generally complex and difficult to study.

Tracking two separate lines for each tunnel edge quickly gets unwieldy as the number

of creases grows. In particular, constructing a valid top-edge view is difficult because

there is little obvious locality in the structure. The "ray diagram" introduced in the

17

West East South North

Figure 2-3: The ray diagram representation of west, east, south, and north vertices.

next section alleviates this issue.

2.2 Ray Diagram

The ray diagram is a convenient two-dimensional representation of a folded state of

a 2 x n map. Note that as with the top-edge view, the ray diagram does not apply to

m x n map folding for m # 2. The ray diagram's usefulness for solving map folding

can be seen through its equivalence to the top-edge view. Since finding a valid top-

edge view is equivalent to deciding flat foldability, the 2 x n map folding problem

reduces to deciding whether a valid ray diagram exists.

The ray diagram represents the centerline with a solid, black line. By convention,

the centerline is drawn from left to right.2 Mechanically, the four atomic components

of the top-edge view (shown in Figure 2-1) have equivalent ray diagram representa-

tions (shown in Figure 2-3). Because east and west vertices correspond to changes

in tunnel direction from valley to mountain (or vice versa), these two vertex types

are represented by 1800 turns in the centerline. West corresponds to an upward turn;

east corresponds to a downward turn, as shown in Figure 2-3. The green dotted ray

extends downward to infinity; it marks the location of a east or west vertex. North

and south vertices do not change tunnel directions. They are denoted by a red ray

(South) or a blue ray (North) extending downward from the centerline. Points where

the red and blue rays cross the centerline (including the rays' starting point) are called

north and south markers, respectively. The point of origin for east and west rays is

an east or west marker; further intersections of these green rays with the centerline

2Given the previous notion of tunnels, we can arbitrarily label a rightward centerline as a valley
tunnel and a leftward centerline as a mountain tunnel.

18

Figure 2-4: A valid ray diagram representing the sequence NEW, equivalent to the
top-edge view in Figure 2-1 (middle).

) (
I1

Figure 2-5: The two valid top edge views for the sequence NEN and their correspond-
ing ray diagrams.

are irrelevant. In Figure 2-4, we give a ray diagram representation of the sequence

NEW equivalent to the top-edge view for NEW in Figure 2-1.

As previously defined, a segment on a ray diagram is represented by the region

on the centerline between two adjacent markers. Here, the two end points of the

centerline are counted as markers. For example, the colored parts of the centerlines

in Figure 2-6 and Figure 2-7 are segments. Unlike segments (walls) in the top-edge

view, segments of the ray diagram's centerline do not directly represent lengths of

paper. Variations in distances are for convenience only. In a ray diagram, only the

relative position of markers is important, not the actual distances between them.

We say that a segment s is constrained if its downward projection intersects other

segments at every point of s. That is, at each point along s, cast a ray downward

19

to infinity. If all of these rays intersects other segments, then s is constrained. For

example, the left and middle of Figure 2-6 depict constrained segments, while the

rightmost drawing depicts an unconstrained segment. Figure 2-7 also contains addi-

tional examples of constrained and unconstrained segments. Recall that each segment

represents a part of a tunnel. Intuitively, the set of all segments intersected by rays

cast from s correspond to other tunnels "tucked" inside of the tunnel represented by

S.

Lastly, note that a ray diagram for a particular crease pattern is not unique;

neither is the top-edge view. There are often multiple choices for how to perform a

particular folding, and neither representation makes assumptions about such choices.

For example, Figure 2-5 shows two valid top edge views and ray diagrams for the

sequence NEN. In the left figure, all segments are unconstrained; as a result, the first

N has no bearing on the rest of the diagram. In the right figure, one segment is

constrained. As we will discuss, having the two N rays intersect in the ray diagram

indicates that the folds are "tucked in" to each other, an effect which is clearly visible

in the top-edge view.

2.2.1 Constraints on Valid Ray Diagrams

If the ray diagram satisfies the following three constraints, then the 2 x n map it

represents is flat foldable. Again, the converse is also true. The constraints are as

follows:

1. The centerline cannot self-intersect.

2. North and south rays can only be (vertically) intersected by a ray of a matching

type; additionally, any north or south ray reaching the centerline must intersect

a matching ray.

3. There must be equality between the number of north and south markers vis-

ible to a constrained segment;3 this constraint does not count the endpoints

bounding a constrained segment.

3A marker is visible to a segment if the upward projection of that marker first intersects the
segment in question.

20

Figure 2-6: Constrained and unconstrained segments. The highlighted (pink) seg-
ment is: (left) constrained, satisfying constraint 3; (middle) constrained, violating
constraint 3; (right) unconstrained.

Figure 2-7: An example of a valid ray diagram. The diagram has two nontrivial
constrained segments (orange), which satisfy constraint 3. It also has one nontrivial
unconstrained segment (cyan). Reading from the upper left, this diagram represents
a way to flat fold SSESNSNSWSNWNSN.

Figure 2-6 shows the three possibilities with segments: a valid constrained seg-

ment, an invalid constrained segment, and an unconstrained segment. Figure 2-7 is

an example of a more complex and valid ray diagram. Generally, a ray diagram that

violates the constraints corresponds to a folding that self-intersects or attempts a

nonphysical vertex labeling (e.g., labeling a vertex north and south simultaneously);

more specifics about the necessity of these constraints are given below.

These conditions are necessary for the ray diagram to correspond to a valid flat

folding. Note that a flat foldable sequence may have multiple ray diagram represen-

tations (as with top-edge views), but not all of these representations will be valid;

consider SENNS, for example. The necessity of the first condition is straightforward;

violating it corresponds to self-intersection of the paper or the formation of a closed

loop.

The second constraint represents the previously discussed idea that only a north

can fit inside another north on a different tunnel (and similarly for souths). This idea

21

should be intuitive because the crease directions would not match if one tried to place

a north inside of a south. So if an outer tunnel has a N or S, the tunnels contained

on its interior. must match those norths or souths to prevent self-intersection. For

example, in the right side of Figure 2-5, the second N is folded inside the first N. If

the sequence were NES instead, then an arrangement similar to the left of Figure 2-5

would still be possible. However, the right side arrangement would be impossible

since an S cannot be tucked inside an N. But having the N and S markers match is

not enough on its own. As mentioned in regard to the top-edge view, N and S folds

correspond to turns in the centerline. So for an S to fit in another S, their centerline

"states" must match, as discussed in the next paragraph. Finally, it is not valid for

an outer tunnel to have N (or S) markers while the inner tunnel(s) do not. This is

easily seen with the top-edge view, where it is clear that an inner tunnel must follow

all the folds of its containing tunnel, although it may have additional folds.

The third constraint ensures that the tunnel "states" match to prevent self-

intersection. Consider the nonflat folding sequence ENWS; one ray-diagram repre-

sentation is shown in Figure 2-8. This sequence is not flat foldable because it violates

constraint 3. The top-edge view (Figure 2-9) makes this clear: the S fold has nowhere

to go. Notice that adding an extra S after the N (ENSWS) to satisfy constraint 3

results in a flat foldable sequence.

In the intuition for a constrained segment, we noted that the segments constraining

it (i.e., those segments below the constrained segment) correspond to folds occurring

on the interior of the tunnel represented by the constrained segment. Constrained

segments are problematic because their tunnel region must be compatible with the

other tunnel(s) on their interior. Having a mismatched number of N and S markers

visible to a constrained segment means that the states of the tunnels will not match.

For example, with an odd number of extra N markers, the interior tunnel will be

pointed in the wrong direction. This causes ENWS to be non-flat foldable as show

in Figure 2-8 and Figure 2-9. Or with an even number, the interior tunnel will be

pointed in the right direction, but it will have spiraled in on itself. The arrangement

on the right side of Figure 2-5 can also be used to see why NESN and NESSN cause

22

problems whereas NESNN is flat foldable.4 As long as the number of N and S markers

is mismatched, self-intersection can occur, which should be clear from the top-edge

view. Satisfying constraint 3 resolves this issue with constrained segments.

Finally, note that constraint 3 is not an issue for unconstrained segments. Un-

constrained segments are essentially independent of the rest of the folding in that

their bounding markers can be removed without affecting the global foldability. Con-

tiguous sequences of unconstrained segments are trivially folded flat just based on

Maekawa's local foldability conditions. Unconstrained region can be folded-flat and

then appended to a tunnel at the beginning or end of the vertex sequence or tucked

inside of an existing tunnel.

I'

Figure 2-8: One possible ray dia-
gram for the nonflat folding sequence
ENWS. This diagram (and all other
possible diagrams for ENWS) violates
constraint 3. Note that this example
is minimal in the sense that removing
any one of the four markers results in
a flat foldable sequence.

Figure 2-9: One possible top-edge
view for the nonflat folding sequence
ENWS. See Figure 2-8 for the ray di-
agram for this sequence. The S vertex
is not drawn fully; it is noted in red
because there is no valid way to draw
it.

2.2.2 A Simple Application

Certain 2 x n crease patterns simplify into ID folding problems. In particular, if

the centerline is a single tunnel (mountain or valley), deciding flat foldability is easy

[1]. This case is represented by a ray diagram with no E or W markers. Then the
4This is more of a thought experiment, since all of these sequences are flat foldable unless we

require that the first and last N rays intersect.

23

entire centerline is unconstrained, and any sequence of N and S markers will be flat

foldable. The other ID case occurs when only E and W markers are present. Then

every vertical crease is either entirely a mountain or entirely a valley-reducing the

problem to ID. Again, the ray diagram shows that any sequence of E and W markers

will be flat foldable, because a single line with 1800 turns need not self-intersect.

These two 1D cases only use simple folds, covering the cases discussed in [1].

24

Chapter 3

Algorithms for 2 x n Special Cases

In this section, we will describe efficient algorithms for various special cases of 2 x n

map folding. A summary of these algorithms can be found in Table 3.1.

3.1 Cone

Here we examine the case when we have a vertex sequence without any Es or without

any Ws. In either case, we can construct a ray diagram in a "cone" shape, as shown

in Figure 3-1. With this shape, we draw each layer larger than the one below it

and put all Ns and Ss to the side so they don't hit any anything below them. As a

result, there are no intersections between segments and N or S rays, and there are no

constrained segments so the diagram is always valid. Therefore, we know that any

vertex sequence without any Es or without any Ws is flat foldable. Thus we have an

Table 3.1: 2 x n Map Folding Special Case Results

Special Case Vertex Restriction Running Time
Cone No Es or no Ws 0(1)
Interlocking Teeth One alternation between Es and Ws 0(n3)
(only Ns or Ss) and no Ns or no Ss
Interlocking Teeth One alternation between Es and Ws 0(n5)
Spiral No consecutive Es or Ws 0(n4)

25

Figure 3-1: A valid ray diagram construction for a 2 x n map with no Ws.

optimal 0(1) time algorithm for checking if a 2 x n map without any Es or without

and Ws is flat foldable - the answer is always yes.

3.2 Interlocking Teeth

Now we will examine the case in which our vertex sequence consists of a sequence of

Es followed by a sequence of Ws (or Ws followed by Es) with Ns and Ss interspersed.

The restriction here is that there can be only one alternation between Es and Ws.

We refer to this case as "teeth" due the interlocking between the Es and the Ws,

as seen in Figure 3-2. Once we add this single alternation (as opposed to the zero

alternations in the previous case), we can no longer trivially construct a ray diagram

in a way that involves no interaction among the "teeth." Moreover, there are many

possible ways to go about constructing the ray diagram as any of the exponentially

many interlockings of the teeth could be necessary. We will overcome this problem

with a simple dynamic programming algorithm.

The region of the centerline on either side of every other E or W, which protrudes

into the middle of the structure will be referred to as a "tooth". We will work upwards

from the bottom of the rows of teeth, placing one tooth at a time. We can think of this

as incrementally layering one tooth after another onto the stack. A natural element of

the state space is thus which tooth is next to be considered in each row. We observe

26

Figure 3-2: A ray diagram of "teeth"

that at a given step of this algorithm, the only information that affects our future

decisions is what set of rays are 'visible' from where the next teeth will be layered.

How those rays came to be visible (what the previous layering of teeth was exactly)

is unimportant, since it will not effect future tooth placement. Because of this, if we

add to the state a precise representation of the visible rays, then it will be complete.

At a given step of the algorithm there are only three distinct places for rays to be

visible from: to the left of the start of the next left tooth, to the right of the start of

the next right tooth and in between the two teeth as depicted in Figure 3-3. If we

did not have any Ss (or we did not have any Ns) then we could simply encode exactly

how many Ns (or Ss) there are in these three regions, giving us O(n 3) possibilities

and a total state space of 0(n') (including which teeth are next). However, once

we include both Ns and Ss in our diagram, we can no longer easily enumerate the

possible sets of rays visible at a given state as there are now 2" possibilities for a

given segment rather than just n. In order to efficiently encode the state, we will first

need the following lemma.

Lemma 3.2.1. Given a fixed starting place, when selecting which N and S rays to

intersect with below a given segment, it is optimal to cover the minimum number of

N and S rays below the segment.

The proof of Lemma 3.2.1 can be found in Appendix A. Given this lemma, we

observe that the rays visible to the left of the left tooth are uniquely determined

by which left tooth it is (and similarly for the rays to the right of the right tooth).

27

I-

Figure 3-3: The three distinct regions of visible rays in the dynamic program state
for teeth

This is true by induction on the left teeth (working upwards) since the selection and

placement of right teeth does not change the rays visible to the left of the left tooth.

Additionally, what is visible to the left of the left tooth after placing a left tooth is

determined only by what is visible there before placing the tooth as, by Lemma 3.2.1,

there is one optimal way to place the tooth. Thus our dynamic program does not

need any additional information beyond which tooth was last placed on each side

in order to encode the contents of the leftmost and rightmost visible regions. This

observation immediately reduces state space of the case with no Ns or no Ss to O(n 3).

Now all that remains is to succinctly represent the area in between the two teeth.

This can be done by tracking the last (highest) interlocking between a left and right

tooth. We define an interlocking here as the overlap between a left and right tooth

such that no other tooth fits in between them. This can be done simply in O(n 3)
space, as there are O(n 2) possible selections of one tooth from each side, and O(n)

possible ways for them to overlap. We can further reduce the space to specify the

interlocking to O(n2) by observing that the index of the first ray not covered up

by the top tooth simultaneously tells us how the teeth overlap, and what the index

of the bottom tooth. Given this overlap, no rays from teeth below it are visible.

Additionally, as there are no overlapping teeth above this pair (by definition), any

teeth that have been placed above the interlocking pair can be built up in any order,

thus giving us the complete picture of visible rays. Thus our total state space is

O(n4).

28

I

Figure 3-4: A spiral in the ray diagram

As a result of Lemma 3.2.1, once we have chosen which tooth to place, there is

only one way to place it and we can find this placement in 0(n) time. Thus, the total

running time of our algorithm is 0(n'). We can do even better for the case with no

Ss (or no Ns). This is because if we precompute the number of Ns (or Ss) in each

tooth, then we can compute the resulting number of exposed Ns (or Ss) in 0(1) time

so the whole dynamic program takes 0(n3) time.

3.3 Spiral

With the interlocking teeth problem we restricted our sequences of Es and Ws to one

alternation in order to prohibit spiraling. In this section we will show that spiraling,

at least in its simplest form, is not difficult to deal with. We will be working with the

subproblem of 2 x n map folding in which we have an alternating string of Es and

Ws with Ns and Ss interspersed. This sequence does not guarantee a single spiral;

instead, it could generate a double spiral. But for now we will assume that it forms a

single spiral. Once we have an algorithm for checking the sequence assuming it forms

a single spiral, we will extend the algorithm to allow for double spirals.

The basic idea behind the algorithm is: first check the feasibility of the innermost

level of the spiral and then work outwards. In Figure 3-5, we depict the inner-most

section of a spiral. One should note that if the last direction was an E (possibly

followed by Ns and Ss) instead of the W depicted here, then there is nothing to check

as there would just be an A and a C and no B. In this case, all of the Ns and Ss in

29

_____A

B
+

C

Figure 3-5: The inner most layer of the spiral

A

B

D- D D-A

Figure 3-6: One step out from the inner most layer of the spiral

A could be placed to the left of C and there would not be interaction between A and

C. However, in the case depicted in Figure 3-5, a flat folding is not always possible

and we must do some work to check if it is possible to build the ray diagram.

In this case, the Ns and Ss in A are not of interest, since they can all dangle

off the left side, making A independent of both B or C. However, B and C must

interact so we must check if it is possible to build the ray diagram according to

the necessary constraints. In order for a valid ray diagram to exist, B must be a

constrained substring of C. To place B's rays with respect to C we will simply use our

procedure from Lemma 3.2.1. We know that among all possible arrangements this

one is optimal and takes 0(n) to compute. If this procedure reports that no such

arrangement exists then we know that our map is not flat foldable.

30

A'

Figure 3-7: Two steps out from the inner most layer of the spiral

Now, we step out from this center a little bit more, as depicted in Figure 3-6. Not

only must B be a constrained substring of C, but A must be a constrained substring

of the concatenation of D-C, B, and C-B (hereafter we will call this E) where D-C is

the part of D sticking out to the left of C, and C-B is the amount of C sticking out

to the right of B. Also, C must be a constrained substring of D. Our algorithm to

check feasibility is as follows. We already know exactly what B and C-B are from our

previous step thus all that remains in order to place A is D-C. There are only 0(n)

possible D-C, so we will check them all. For each one, we check if A is a constrained

substring of E in 0(n) using essentially the same procedure as in Lemma 3.2.1. If it

is, we then use the procedure from Lemma 3.2.1 to arrange C. If such an arrangement

exists we will have found D-A. By Lemma 3.2.1 it is optimal to maximize the size of

D-A, thus if there are multiple possible arrangements we select the one that maximizes

D-A. The running time of these steps is 0(n 2) as we perform 0(n) computations for

each of the 0(n) possible D-C.

Next, we step out one more level to the diagram in Figure 3-7. B' and C' in

Figure 3-7 correspond directly to A and D from Figure 3-6, respectively. We observe

that by renaming labels, we have the same problem as in the previous step, and

can use the exact same algorithm. Thus, we can check feasibility and compute D'-

A' in 0(n 2). We can then keep repeating this process as we iterate outwards, thus

performing 0(n 2) work 0(n) times for a total running time of 0(n3).

31

Figure 3-8: A double spiral

As mentioned earlier, an alternating sequence of Es and Ws will not necessarily

form a simple spiral; it could form a double spiral as depicted in Figure 3-8. Luckily,

this is easy to account for. There are only O(n) possible distinct double spirals that

a given sequence could form, since there are O(n) points at which it could transition

from one spiral to another. We can simply iterate through these O(n) possibilities,

and check the individual spirals in each case in O(n 3) time. The two spirals do not

interact at all if we position them as in Figure 3-8 and the the top segment can put all

of its Ns and Ss between the two spirals thus avoiding interacting with either. Thus,

we can check the flat foldability of any vertex sequence consisting of alternating Es

and Ws (with any Ns and Ss in between) in O(n 4) time.

32

Chapter 4

Algorithm for General 2 x n Map

Folding

In this section, we will present an algorithm for determining the flat foldability of any

2 x n map. We will present this algorithm in two steps. In Section 4.2, we reduce

the problem of finding a ray diagram via a kind of dual transform to the problem of

finding a valid "tree structure". In Section 4.1, we show how to solve the resulting

"hidden tree problem" in polynomial time using a roughly quadratic-time dynamic

program, which because of the sequence of reductions and oracle calls, results in an

overall running time of 0(n 9) for map folding.

4.1 Hidden Tree Problem

Before we proceed to our final reduction, we need to introduce the target problem,

called the hidden tree problem. In this problem, our goal is to construct a "valid" tree

on a given polynomial set V of candidate vertices, given two oracles to navigate and

test hypothetical partially constructed trees. Each vertex v E V has a known degree

d, > 1 in any valid tree containing v. Not all of the candidate vertices in V need to

be used in the solution; in fact, selecting some vertices may preclude others.

Validity of a candidate tree T is defined by the oracle Valid, by calling Valid(T, 0).
More generally, Valid(T, P) determines whether a partially constructed tree is so far

33

Figure 4-1: A tree (left) and a partial tree thereof (right). Dark/red vertices are
partial.

valid, and thus could conceivably be completed into a valid tree. More precisely, a

partial tree (T, P) is a tree T = (VT, ET) on a subset VT of V, with the vertices in

P C VT marked partial, meaning that there may be additional edges in the complete

tree missing from the partial tree T; see Figure 4-1. As in the figure, we will guarantee

that every partial vertex in P is a leaf within the partial tree T, and thus the oracle

only needs to be defined for such partial trees.

To help navigate the space of (partial) trees, we are also given a separation oracle.

Given a vertex v E V, Separate(v) divides the candidate vertex set V into disjoint

subsets V1, V2 ,. .. , Vd, such that every valid tree T that includes vertex v has dv

connected components in T - v, and the components can be numbered so that the

ith component uses vertices only from V.

These oracles make the hidden tree problem decomposable in a sense, enabling us

to solve the problem in polynomial time. Before we give this algorithm, however, we

must formally define the axioms we require of the validity and separation oracles.

4.1.1 Validity Oracle

The task of the validity oracle Valid(T, P) is to decide whether a given partial tree

(T, P) is valid under the constraints of the problem. For every nonleaf (and hence

nonpartial) vertex v of T, let v1 , v2 , .. . , Vd, denote the d, neighbors of v in T. Then the

removal of v from T results in d, connected components; label them CI, C2 , ... , Cd,

where vi E Ci. Let C/ denote the tree resulting from Ci by adding vertex v and edge

(V, vi). Then the validity oracle Valid must have the property that the partial tree

34

(T, P) is valid precisely when every component C' is valid, where v is treated as a

new partial vertex in each component. More precisely, we must have

Validity Property: For every vertex v of T, Valid(T, P) =A/\ Valid (C-, (F n Cs) U {v}) .

4.1.2 Separation Oracle

The separation oracle Separate(v) returns d, disjoint subsets Separate(v, 1), Separate(v, 2),

Separate(v, d,) of the remaining candidate vertex set V - {v}. The separation

oracle must fulfill the following three properties:

Separation Property: For any valid complete (or partial) tree T, the removal of

vertex v from T results in d, connected components that can be numbered

C1, C2 , .. ., Cd, such that Ci only uses vertices from Separate(v, i).

Symmetry Property: For any candidate vertices u, V C V, v C U Separate(u) if

and only if u E U Separate(v). Intuitively, either of these memberships repre-

sents that candidate vertices u and v are consistent together, and this consis-

tency should be the same viewed from either side.

Acyclic Property: If u C Separate(v, i), then Separate(u, j) c Separate(v, i) for

all j except the one where v E Separate(u, j). This property guarantees that

recursive application of the separation oracle results in a nested tree structure.

4.1.3 Algorithm

Theorem 4.1.1. The hidden tree problem can be solved in O(| V| 2 (tva1id - tseparate -

A)) time, where A is the maximum degree, tvalid is the time to compute Valid(T, P),

and tseparate is the time to determine which subset returned by Separate(v) contains a

given vertex u.

We prove this theorem by giving a dynamic-programming algorithm for the hidden

tree problem. Define the subproblems of the dynamic program as follows: f(v, i) is a

0/1 value indicating whether there is a tree T on Separate(v, i) U {v}, in which v is

a leaf, such that Valid(T, {v}). There are |VIA such subproblems.

35

We claim that we can compute f(v, i) recursively as follows:

f (v,i) Valid({v, u}, {v}) V
uGseparate(v,i) \

(ISeparate(u) ;> 2 V Valid({v, u}, {v, u})) A A f (u, j
\ j:v VSeparate (u,j)//

(4.1)

Intuitively, this recurrence searches over all possible vertices u that could be adjacent

to v in the subtree. For a given u, it checks two cases. In the first case, the subtree

consists only of a single edge and thus u is a leaf (Valid({v, u}, {v})). In the second

case, u is not a leaf; thus, to compute the validity of the whole subtree, we partition

around u in the manner of the Validity Property. We prove correctness formally

below.

Next we claim that the hidden tree problem reduces to solving the subproblems.

Our goal is to determine whether there is a complete tree T such that Valid(T, 0).

By the Validity Property, this condition is true if and only if there is a candidate

vertex v C V, and trees T1, . . . , Tk sharing vertex v but no other vertices, such that

Valid(Ti, (PnfTi) U {v}) for i C {1, 2, ... , d,}. By the Separation Property, T must be

within Separate(v, i) U {v}, so this condition is true if and only if there is a candidate

vertex v E V such that f (v, i) = 1 for all i C {1, 2, . .. , dv.

Thus, given solutions to all of the subproblems, we can solve the hidden tree

problem by computing VV Aiv1 f(v, i). Using the standard back-pointer technique

of dynamic programming, we can also find the desired tree if it exists, with just a

constant-factor overhead.

By memoizing the recurrence Equation 4.1, we spend O(|Vl(tvalid +tseparate + A))

time once for each of the |VlA subproblems. Therefore the total running time is

O(IV12A(tvalid + tSeparate + A)).

36

4.1.4 Correctness

We prove by induction on |Separate(v, i) that the recurrence Equation 4.1 produces

the intended f(v, i) values.

The base case is |Separate(v, i) 1. In this case, if there is a valid tree T on (a

subset of) Separate(v, i) such that Valid(T U {v}, {v}), then it must consist of only a

single vertex u where Separate(v, i) = {u}. The recurrence in this case simplifies to

just f (v, i) = Valid({v, u}, {v}) as desired.

Suppose that there is a tree T on a subset of Separate(v, i) such that Valid(T U

{v}, {v}). Let u be the vertex adjacent to v in T. The case in which u is leaf vertex

follows immediately from the recurrence, as T then consists of the single edge (v, u),

so by taking the disjunction over all possible u, f(v, i) = 1. If u is a nonleaf vertex,

then by the Validity Property,

Valid({v, u}, {v, u}) A A Valid((Separate(u, j) n T) U { }, {u}) 1.
j:vSeparate(uj)

The recurrence Equation 4.1 checks every possible vertex u that could be adjacent

to v in T. By the Acyclic Property, |Separate(u, j)I < |Separate(v, i) for all j with

v (Separate(u, j). Thus, by our inductive hypothesis, f(u, j) = 1 if and only if there

exists a T' C Separate(u, j) such that Valid(T' U {u}, {u}). Because Separate(u, j)
and Separate(u, j') are disjoint for j / j', AjivgSeparate(uj) f(u,j) - 1 if and only if

A:vgseparate(u,j) Valid((Separate(u, j)nT)U{u}, {}) = 1 for some T. Thus f(v, i) = 1.

Similarly, if there is no tree T C Separate(v, i) such that Valid(T U {v}, {v}), then

f(v, i) = 0 because Equation 4.1 implicitly constructs a T and checks that it is valid.

37

0

Figure 4-2: An example of where the tree vertices lie in the plane relative to the ray
diagram.

4.2 Reducing Ray Diagrams to the Hidden Tree

Problem

4.2.1 Tree Structure

Any valid ray diagram has an underlying tree structure. We will define this tree to

lie in the same plane as the ray diagram. Intuitively, the vertices correspond to the

Es and Ws and their position in the ray diagram. The edges correspond to sequences

of Ns and Ss. To differentiate the vertices in the tree from the vertices and edges of

the original map, we will refer to them as tree vertices and tree edges. We will begin

by describing how tree vertices are placed before defining their role in the tree.

Definition 4.2.1 (Tree Vertex Location). A tree vertex corresponds to an E, W,

or one of the two endpoints of the centerline and the point on the centerline directly

above and below this point. In the plane of the ray diagram, the tree vertex lies just

outside the half circle describing the turn in the centerline due to the E or W, as

depicted in Figure 4-2. In the case of a tree vertex corresponding to an endpoint, the

vertex will lie exactly on the end of the centerline.

Each tree vertex represents a gluing of two points on the centerline through an E

or W.

Definition 4.2.2 (Gluing Line). A tree vertex's gluing line is a line formed by pro-

jecting a line up and down from the tree vertex until it hits the centerline. No part of

the centerline can intersect a gluing line.

Gluing lines are drawn as dotted lines in Figure 4-3; arrowheads on gluing lines

38

indicate gluing to infinity. Each tree vertex must maintain some information about

its location and the rays around it in order to construct the hidden tree problem.

Definition 4.2.3 (Tree Vertex). The tree vertex represents a gluing between the E,

W or endpoint and two points on the centerline (Definition 4.2.2). Because this

vertex may lie within a constrained segment (the two rays it lies between in the top

segment), it additionally must track the difference between the Ns and Ss visible to

the top segment on the left of itself (and the number visible to the right must sum with

this to zero).

As a special case for an E, W, or an endpoint that does not have a segment above

or below it, these fields may be empty. This represents the E, W, or endpoint being

glued to infinity.

A tree vertex v tracks at most the following information:

1. v.index, the index of the E, W or endpoint - 0(n);

2. v.top, the index of the ray to the left of its gluing line's intersection with the top

segment - 0(n);

3. v. bottom, the index of the ray to the left of its gluing line's intersection with the

bottom segment - 0(n);

4. v.difference, the difference between the number of Ns and Ss visible to the top

segment on the left of its gluing line- 0(n);

for a total of 0(n 4) possible tree vertices.

Two tree vertices have a tree edge between them if they are visible to each other.

We say that one tree vertex is visible to another if there is a path between them

which does not intersect the centerline or the gluing line of another tree vertex at any

point. By this definition, each endpoint tree vertex has degree at most three. As a

special case, the leftmost tree vertex (one of the two which are glued above and below

to infinity) does not have an edge to vertices below it. This prevents the cycle that

would otherwise occur around the exterior of the ray diagram.

Observe that the gluing lines corresponding to two adjacent tree vertices bound

two contiguous segments of centerline; e.g., the two orange gluing lines bound the two

39

A A

V I

Figure 4-3: A valid ray diagram with its tree representation (red nodes, cyan edges).
Gluing lines are dotted. The two orange gluing lines demarcate the purple segments
of the centerline. In these regions, the labels 2c and 2d correspond to rays checked in
2c and 2d of the validity oracle (see subsection 4.2.4).

purple centerline segments in Figure 4-3. One of these segments is the top and the

other is the bottom. Observe that once the tree vertices are chosen and their gluings

established, no part of the centerline can cross in between these two segments. We

will consider the N and S rays along these segments to "belong" to the tree edge

connecting the tree vertices. The validity oracle will ensure that the N and S rays

along the top segment are arranged relative to the N and S rays in the bottom segment

so as to satisfy ray diagram constraints 2 and 3.

As a special case, the gluing lines might not intersect the centerline (they go up

or down to infinity). In this case, the centerline cannot cross between the segment

(if there is one) and the corresponding infinity. The task of the validity oracle is

much simpler here as regardless of which direction the gluing line goes to infinity in,

constraints 2 and 3 are easily satisfied.

Figure 4-4 depicts a valid ray diagram and Figure 4-5 depicts the underlying tree

structure for that diagram.

This tree exactly defines the layout of the ray diagram, as the location of each E,

W and centerline endpoint is determined by a tree vertex and the location of each N

40

U U

ci
r

7-)

B
V

-W U

L.

V

MIw

- U

Y~v~-Ift-w r a

f

)

Figure 4-4: A valid ray diagram.

Figure 4-5: The underlying tree representation corresponding to Figure 4-4.

41

*1

V

V

(
fCI1

0

Figure 4-6: A representation of the loops that a (black) tree vertex partitions the
diagram into. Here the different loops are colored red, green and blue. In places
the centerline is split in half between two loops. The colored vertices describe which
loop each E, W and endpoint falls into, thus how the set of possible tree vertices is
restricted.

and S is determined by a tree edge or adjacent tree vertex. We can thus determine

the validity of the ray diagram (whether it obeys both constraints) directly from these

trees.

4.2.2 Loop Partition

A tree vertex v gives a gluing which separates the diagram into a set of closed loops.

A loop is defined by a contiguous region of the centerline, together with v's gluing

line. These loops may split the centerline into two halves, as seen in Figure 4-6.

For example, in some regions of the centerline, the green and blue sections represent

the two halves, whereas the regions of the centerline with only one color are not

split. When the centerline is split, ownership of an E or W ray (for separation oracle

purposes) belongs to the loop containing the outer half of the centerline along the

E or W semicircle.1 Responsibility for an N or S ray may be split across two loops.

Imagine that each ray starts in the top half of the centerline. Consider some N ray iN-

The loop containing the top half of the centerline must know about ray iN so that it

can decide whether any ray coming from above intersects ray iN. The loop containing

the bottom half of the centerline must also know about ray iN so that it can decide

whether iN intersects any ray below it. In particular, the loop containing the bottom

'Here, "outer" has the same meaning as it did in the specification of tree vertex locations (Defi-
nition 4.2.1).

42

half of the centerline at iN communicates with rays that iN could intersect with via

their upper centerline halves.

4.2.3 Separation Oracle

Algorithm 1 Separate(v, i)
1. If i = 1: let loop be the loop of centerline to the side of v
2. If i 2: let loop be the loop of centerline above v
3. If i 3:

(a) If v.top = oc and v.bottom = -oo and v is the start of the centerline or
has even parity among E and W rays: let loop = 0

(b) Else: let loop be the loop of centerline below v
4. Let vertices = 0
5. For each E, W or endpoint in loop

For each bottom-side ray in loop

For each top-side ray in loop
For i in [-n,--n + 1,-- -,n - 1, n]

Let v.index be the index of the E, W or endpoint
Let v. top be the index of the bottom-side ray
Let v.bottom be the index of the top-side ray
Let v.difference = i
Append v to vertices

6. Return vertices

The separation oracle Separate(v) is defined as follows. The tree vertex v gives

a gluing which separates the diagram into three loops, as described in the previous

section. Two loops will lie on the interior and one on the exterior. Each of these loops

corresponds to one of the tree vertex sets returned by the oracle. A tree vertex u is

unreachable within one of these loops (and thus does not fall in its tree vertex set)
if the E, W or endpoint of u is not contained in the loop. Additionally, if the top or

bottom segment that u's E, W or endpoint glues to lies outside the loop, then u is not

reachable. From the rays (or parts of the rays) the fall in a loop, we determine which

tree vertices may appear in the corresponding vertex set, as described in Algorithm 1.

Lemma 4.2.4. The oracle given in Algorithm 1 satisfies the Separation Property.

Proof. By the definition of gluing lines and visibility, a tree vertex u falling in one of

the loops defined by a tree vertex v may not have an edge to a tree vertex w falling

43

I

/

13

2-

44

11

I

I
/

Figure 4-7: Special cases for the validity oracle (Property 3) at an E or W tree vertex.
As a special case, the pictured vertex has degree less than three; selecting a dotted
tree edge to keep "solidifies" that dotted edge and deletes its corresponding dotted
semicircle. For example, keeping tree edge 1 deletes the red semicircle.

in one of the other loops defined by v, because the centerline of the loop and gluing

line of v partition the plane. Therefore, removing v must necessarily disconnect all

tree vertices falling in different loops. E

Lemma 4.2.5. The oracle given in Algorithm 1 satisfies the the Acyclic Propertyand

the Symmetry Property.

Proof. Given one of the loops defined by a tree vertex v and a tree vertex u contained

in that loop, all of the loops defined by u will be subsets of the loop defined by v except

for the one containing v. Since the tree vertices are defined as a combination of rays

in a given loop, the Acyclic Property and Symmetry Property follow immediately. E

4.2.4 Validity Oracle

A partial tree vertex set P in this context defines a subset of the ray diagram. Specif-

ically, it defines a closed loop on the centerline after the gluings defined by the partial

tree vertices are made. Informally, this loop could be around the exterior of the di-

agram or on the interior. The validity oracle walks along this loop on the centerline

and returns false if any ray within this region is unaccounted for by the tree vertices

in the tree T. To do this it must check the following properties:

1. Each E, W and endpoint within the loop is used by exactly one tree vertex.

44

2. For each tree edge, there is an arrangement of its corresponding N and S rays

such that:

(a) Each N or S ray coming from the top segment meets a corresponding ray

on the bottom segment. (Constraint 2)

(b) For a given pair of adjacent rays in the top segment, in the set of rays that

lie on the bottom segment in between the top rays, the number of Ns must

equal the number of Ss. (Constraint 3)

(c) The difference between the number of Ns and Ss on the bottom segment

to the left of the leftmost top ray must agree with the number specified by

the left tree vertex. (Constraint 3, see Figure 4-3)

(d) The difference between the number of Ns and Ss on the bottom segment

to the right of the rightmost top ray must agree with the number specified

by the right tree vertex. (Constraint 3, see Figure 4-3)

3. For each tree vertex that is not partial and has degree less than three2 , we need

account for the N and S rays lying in region(s) lacking a tree edge. This check

performs the previous step on an isolated part of the tree. The components of

this special case are shown in Figure 4-7. For example, suppose we had a degree

two tree vertex with tree edges 1 and 3 in place. Then only the blue semicircle

exists, and the parts of Property 2 above would need to be checked for N and

S rays in the blue loop.

4. Every N and S is accounted for by one of the previous two checks.

Checking N, S, E, W and endpoint usage can easily be done in O(n). For a given tree

edge which contains k rays, its properties can checked with a simple greedy algorithm

in O(k) time, as described in Appendix A. We can similarly check the assignment of

O(k) Ns and Ss in a direction missing an edge from a vertex in O(k) time.

Lemma 4.2.6. The validity oracle defined in this section satisfies the Validity Prop-

erty.

Proof. We now argue that this oracle satisfies the Validity Property for any tree vertex
2In the case of the special globally leftmost tree vertex, this condition is replaced by "with degree

less than two".

45

v E T. Intuitively, the second and third properties (the nontrivial ones) are local to

a given tree vertex or tree edge so whichever partition they fall into will account for

them. Specifically, if a tree is invalid because of not having a valid arrangement of Ns

and Ss, then the partition that the Ns and Ss fall in will be invalid. Similarly, if T is

invalid because of not accounting for some rays, then no matter what tree vertex v it

is partitioned around, the partition Ci that is lacking those rays will be invalid. D

4.2.5 Correctness

We will now show that the reduction is a correct one. That is, a valid hidden tree

exists if and only if a valid ray diagram exists. First we argue that, for any tree

T such that Valid(T, 0), T corresponds to a valid ray diagram. By the definition

of -the validity oracle, if Valid(T, 0) then T accounts for all of the rays in the ray

diagram. Thus we must show that the arrangement of these rays fulfills the three

constraints of a valid ray diagram. Non-intersection of the centerline is guaranteed

by the planar and connected nature of the tree. Constraint 2, the fact that each N or

S ray that intersects the centerline must do so at the origin of a corresponding N or S

ray is guaranteed by the validity oracle checks, which explicitly specifies that each top

N or S ray must meet a corresponding ray on the bottom segment. Constraint 3 is

guaranteed by a combination of the validity oracle check and the definition of the tree

vertex. If a constrained segment is not separated by a tree vertex (no tree vertex's

gluing line falls inside the constrained segment) then it will be explicitly checked by

the validity oracle. If a constrained segment is separated by a tree vertex, then by

definition of the tree vertex (and guaranteed by the validity oracle) the difference

between the number of Ns and Ss visible to the constrained segment on the left

will sum to zero with the difference between the number of Ns and Ss visible to the

constrained segment on the right.

Finally, we argue that, for any valid ray diagram, there is a corresponding tree

T such that Valid(T, 0). This follows directly from the definitions. The tree vertices

in T correspond to the parts of the ray diagram described in Definition 4.2.3. As in

Figure 4-5, we place a a tree vertex at each E, W or endpoint with its gluing lines

46

extending up and down to where they intersect the centerline. The edges formed by

the visibility rules described at the beginning of the section. The properties checked by

the validity oracle are all necessary conditions for a ray diagram to satisfy constraints

2 and 3, so Valid(T, 0) = 1.

4.2.6 Running Time

The number |V| of candidate vertices is O(n4). The maximum degree A of a vertex

is 3. The time to evaluate the separation oracle and validity oracle is O(n). Thus, by

Theorem 4.1.1 the total running time is O(n 9).

47

48

Chapter 5

2 x n Map Folding Extensions

The algorithm presented in the previous chapter for determining the flat foldability

of a 2 x n map is a powerful one, and in this section we will extend it to optimization

problems. Rather than simply determining whether a flat folding exists, we will find

the best possible flat folding according to some objective function. In particular, we

will find the flat foldings which are, by some metric, simplest. In order to do this,

we must show that our objective function is decomposable in the same way that the

Validity Property is. Using the same notation as the Validity Property, we much

have an objective function

f(T, P) = g ((C+, (P n C1) uf {v}) , --- ,(Cd PnCs v)

for some function g. Our algorithm will then be identical to that of Theorem 4.1.1,

except that we our dynamic program will select the v that minimizes f at each steps,

among all v that are valid (according to the original dynamic program).

The most well studied measure of simplicity in folding is the maximum crease

stretch, also known as the maximum creep. This is the maximum number of folds

of paper within a single crease in a folded state. Unfortunately, minimizing the

maximum creep has been shown to be NP-complete, even for 1 x n maps [7]. As a

result, the objectives we will be examining will only heuristically minimize creep.

49

5.1 Sum of Constrained Segments

Our first objective function that we will minimize is the total number of N and

S rays that are visible to constrained segments. As described in subsection 2.2.1,

N and S rays that are visible to constrained segments correspond to segments of

tunnel that wind in and then back out of the region that they are nested in. Large

constrained segments therefore result in large creep for the region of tunnel to which

they correspond.

The tree structure that we will use to minimize this functions is exactly the one

described in Section 4.2. We can evaluate the objective for a given tree and set of

partial vertices by looping over all of the edges in the tree and summing the number

of rays visible to the constrained segments corresponding to the regions of centerline

between the two vertices. Conveniently, this is just the number rays in the bottom

segment minus the number of rays in top segment. Note that we do not have to add

in v.difference, because those rays will already be counted by the tree edges. Thus

we can easily minimize the number of N and S rays that are visible to constrained

segments in the same time that we can find any valid folded state, 0(n 9).

5.2 Maximum Constrained Segment

Our next objective function is the maximum number of N and S rays that are visible

to a constrained segment. We first have to slightly modify the tree structure of in

Section 4.2. This is because the value of the objective for an edge does not account for

the tree vertices contribution to it. The rays corresponding to the constrained segment

that spans a tree vertex's gluing line are not accounted for by one any one tree edge.

Thus the vertex itself has to account for them, however v.difference does not contain

enough information, as it only tracks the difference between Ns and Ss while we need

to count the total number of N and S rays. Thus in addition to v. difference, a vertex

v will contain v.leftNs and v.rightNs which are the number of Ns and Ss respectively

visible to the top segment on the left of v's gluing line. Therfore, there are now a

50

total of 0(n6) possible tree vertices.

Evaluating the objective on a given tree and set of partial vertices is also more

expensive than the original algorithm, because when arranging the N and S rays

corresponding to an edge in the tree, we cannot simply use the 0(n) greedy algorithm

described in Appendix A. This is because the arrangement produced by the greedy

algorithm will not necessarily minimize the maximum number of bottom N and S rays

between an adjacent pair of top rays. Instead, we will use a simple 0(n3) dynamic

program to arrange the N and S rays corresponding to a tree edge so as to minimize

the objective for that edge. The state of the dynamic program is the index of leftmost

unmatched top ray and the rightmost matched bottom rays (O(n 2) state space). 0(n)

time is needed to compute the value of each state, as there are 0(n) choices of bottom

rays to match the current top ray to.

The maximum number of N and S rays visible to a constrained segment for a

given tree and partial vertex set is equal to the maximum over each tree edge and the

maximum value of 2(v.leftNs + v.rightNs) for each tree vertex v. The total running

time is now 0(n") since the |V| is 0(n6) and the time to evaluate the validity oracle

is O(n3).

5.3 Sum of North and South Nestings

The objective of interest here is the sum of the heights of each "stack" of Ns or Ss.

A stack here refers to the sequence of intersections of N and S rays. As described

in subsection 2.2.1, N and S rays intersecting other N and S rays corresponds to

nesting the region of tunnel corresponding to on into the other, thus long sequences

of intersecting Ns or Ss corresponds to long nestings of tunnel. Once again, in order

to minimize creep, one heuristic approach would be to minimize this nesting.

Conveniently this objective is equal to the total number of N and S rays, minus

the number that do not intersect the centerline. This is easily maintained with the

original tree structure specified in Section 4.2. The objective function evaluated on

a given tree and set of partial vertices is simply equal to the total number of Ns

51

and Ss contained in the corresponding region, minus the number of Ns and Ss whose

bounding tree vertices are glued below to infinity. This can be computed with no more

time than the original dynamic program, yielding an 0(n9) algorithm to minimize

our objective.

Observe that the problem of minimizing the maximum height of a stack is not

easily solved using these techniques. This is because in order to compute it, the

tree vertices would have to somehow determine what their "height" is within the

tree diagram, however this is a highly nonlocal quantity which does not obey the

decomposability property that we require.

52

Chapter 6

m x n Map Folding

In this section we present some results for general m x n map folding. First, in

Section 6.1, we will give polynomial time testable conditions that are necessary for

an m x n map to fulfill in order to be flat foldable. In Section 6.2 we will give a fixed

parameter tractable algorithm for deciding the flat foldability of an m x n map, where

the parameter is the entropy of the partial order defined by the map's creases.

6.1 Necessary Conditions

As discussed in subsection 1.1.3, any valid folded state must be consistent with the

partial order on the cells defined by the mountain valley assignment of the map. If

this partial order is unsatisfiable, due to having cycles (and thus not be a consistent

partial order) then no valid folded state exists for the map. Thus there being no

cycles in the partial order is a necessary condition for an m x n map to flat foldable.

Because of the non-crossing conditions for the creases, we can draw further impli-

cations about partial order. In particular, take two pairs of adjacent cells, (i, j) and

(k, 1) such that the partial order specifies that i < j and k < 1 and the crease between

each pair lies on the same side (top, bottom, left or right) of the final folded state.

Because we know that we cannot have i < k <j < 1 or k < i < < j, we can draw

the following implications:

e If i < k and j <1, then j< k.

53

* If i < k < j then l < j.

* If i < l < j then i < k.

We can repeatedly apply these rules to the partial order until no more exist or a

cycle forms. If a cycle forms, then the map is not flat foldable. This is clearly testable

in polynomial time, as we can naively try all O(mn) pairs of adjacent cells to see if

one meets this criteria, and we need can only do this at most O((mn)2) times, as the

partial order cannot have more than that many edges.

6.2 Fixed Parameter Tractable Algorithm

Here we present an algorithm for determining if an m x n map is flat foldable in

O((mn)2 .5
2loge(P)) time, where log e(P) is the entropy in the partial order P. We

achieve this by using the algorithm of Cardinal et al. for sorting a partial order

in O(n 2 5) time using 0(log e(P)) comparisons [3]. We run this algorithm, except

at each comparison we branch and try both possibilities, hence the exponentiation.

This will result in every possible total order consistent with the partial order, which

we then check each of in O(n 2) time using the verification algorithm described in

subsection 1.1.3. The total running time is then O(((mn)2 5 + (mn)2)2lose(P)) -

O((mn) 2.5
2loge(P)), where the (mn)2 comes from the verification algorithm. Note that

we can further improve the performance of this algorithm by using the implications

described in Section 6.1, as they will strictly decrease the entropy of the partial order.

54

Bibliography

[1] Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. Demaine,
Joseph S. B. Mitchell, Saurabh Sethia, and Steven S. Skiena. When can you
fold a map? Computational Geometry: Theory and Applications, 29(1):23-46,
September 2004.

[2] Marshall Bern and Barry Hayes. The complexity of flat origami. In Proceedings
of the seventh annual ACM-SIAM symposium on Discrete algorithms, SODA '96,
pages 175-183, Philadelphia, PA, USA, 1996. Society for Industrial and Applied
Mathematics.

[3] Jean Cardinal, Samuel Fiorini, Gwena l Joret, Raphael M. Jungers, and J. Ian
Munro. Sorting under partial information (without the ellipsoid algorithm). In
Proceedings of the 42nd A CM symposium on Theory of computing, pages 359-368,
2010.

[4] Erik D. Demaine, Satyan L. Devadoss, Joseph S. B. Mitchell, and Joseph
O'Rourke. Continuous foldability of polygonal paper. In Proceedings of the 16th
Canadian Conference on Computational Geometry (CCCG 2004), pages 64-67,
Montreal, Quebec, Canada, August 9-11 2004.

[5] Erik D. Demaine and Joseph O'Rourke. Geometric Folding Algorithms: Linkages,
Origami, Polyhedra. Cambridge University Press, New York, NY, 1st edition, July
2007.

[6] Jacques Justin. Towards a mathematical theory of origami. In Koryo Miura,
editor, Proceedings of the 2nd International Meeting of Origami Science and Sci-
entific Origami, pages 15-29, Otsu, Japan, November-December 1994.

[7] Takuya Umesato, Toshiki Saitoh, Ryuhei Uehara, and Hiro Ito. Complexity of
the stamp folding problem. In Proceedings of the 5th international conference on
Combinatorial optimization and applications, COCOA'11, pages 311-321, Berlin,
Heidelberg, 2011. Springer-Verlag.

55

56

Appendix A

Ray Diagram Greedy Algorithm

In this section we give an O(n) algorithm for determining Property 2 of the ray

diagram validity oracle, and prove its correctness. Lemma 3.2.1 will follow from this

as corollary, in which vleft = 0 and Vright is ignored.

Algorithm 2 NsAndSsArrangable(A, B, vieft, Vright)

1. Let b= 1 and diff= 0
2. While diff # -viet. difference and b < |B|

(a) If B[b] = N: Add 1 to diff
(b) Else: Subtract 1 from diff
(c) Add 1 to b

3. For a in {1,2,--- ,Al}
(a) Let diff= 0
(b) While (A[a] # B[b] or diff $ 0) and b < I B

i. If B[b] = N: Add 1 to diff
ii. Else: Subtract 1 from diff

iii. Add 1 to b
(c) If b > |Bl: Return False

4. Let diff = 0
5. While b < BI

(a) If B[b] = N: Add 1 to diff
(b) Else: Subtract 1 from diff
(c) Add 1 to b

6. If diff = Vright. difference: Return True
7. Else: Return False

Algorithm 2 is the greedy algorithm for checking Property 2 of subsection 4.2.4 in

O(k) time, where k is the number of N and S rays in the regions of centerline defined

57

by the tree edge. A is the top segment of the centerline, B is the bottom segment of

the centerline and vieft and Vright are the tree vertices that whose gluing lines bound

them. A and B are implemented here as arrays of Ns and Ss. The basic idea is for

each ray of A to find the leftmost ray of B to intersect with such that the rays match

and constraint 3 is satisfied by obeying vieft. difference and Vright. difference and making

sure an equal number of N and S rays of B appear between adjacent rays of A.

Lemma A.0.1. Algorithm 2 correctly determines Property 2 of the validity oracle.

Proof. We are considering the scenario in which we have some set B of N and S rays,

and we are placing another centerline segment A over it starting from the left (all of

this logic works going right to left as well). Because of the arrangement of the tree

vertices, A is prohibited from extending to past B; thus all rays of A must intersect

with some ray in B. We can then define the arrangement of the rays of A as an

injective mapping f : 1 - -AI -± 1 ... BI from ray indices in A to ray indices of B.

As a matter of notation, let B[i : j] be the set of rays in B from index i to index

j inclusive, which is empty for i > j. Also, let d(R) be the difference between the

number of Ns and Ss in the set of rays R. In order to fulfill Property 2, f must fulfill

the following properties:

A[i] = B[f (i)],Vi E 1..JAl - 1, (A.1)

d(B[1 : f (1) - 1]) = -vieft. difference, (A.2)

d(B[f (i) + 1 : f (i + 1) - 1]) = 0, Vi c 1..JAI - 1, (A.3)

d(B[f (| A) +I 1: B|) = vright.difference. (A.4)

The intuition behind Algorithm 2 is that, when arranging the rays from left to

right, by choosing the left most feasible ray of B to assign a ray of A to, we maximize

the number of options for future rays of A. Given a valid arrangement f, we will

58

A

Figure A-1: Two different ways to arrange a set of
set of rays B

A

rays A that is consistent with a

construct an another arrangement f' as follows. f' will be the identical to f except

for some index k E 1 ... A|, where f'(k) < f(k). Figure A-I gives an example of

possible assignments of f and f'. We will show that the greedy property holds, and

therefore Algorithm 2 is correct, by showing that any f' that fulfills Equation A.2,

Equation A.3 and Equation A.1 for indices 1 - - - k - 1 is a valid assignment.

f' immediately satisfies Equation A.1, because f satisfies it and f' satisfies it

for index k. Similarly, f' clearly satisfies Equation A.3 for all indices greater than

k. All that remains is to show that Equation A.3 is satisfied for index k, that is

d(B[f'(k) + 1 : f'(k + 1) - 1]) = 0. Because f'(k - 1) = f (k - 1), f'(k + 1) = f (k + 1)

and A[k] = B[f(k)] = B[f'(k)],

d(B[f (k - 1) + 1: f (k + 1) - 1]) = d(B[f (k - 1) + 1 : f (k) - 1]) + d(B[f(k)]) +

d(B[f (k) + 1 : f (k + 1) - 1])

d(B[f (k)])

d(B[f'(k - 1) + 1 : f'(k + 1) - 1])

d(B[f'(k - 1) + 1: f'(k) - 1]) + d(B[f'(k)]) +

d(B[f'(k) + 1 : f'(k + 1) - 1])

d(B[f (k)]) + d(B[f'(k) + 1 : f'(k + 1) - 1]).

Thus d(B[f'(k)+1 : f'(k+1) -1]) = 0 as desired. If k < JAI, then f' immediately

satisfies Equation A.4. If k = |AI, then f' satisfies Equation A.4 by an argument

nearly identical to that of Equation A.3.

59

El

60

