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ABSTRACT

MODBASE, a collection of tools and practices built around the open source SciDB
multidimensional data management and analytics software system, provides the Earth Science
community with a powerful foundation for direct, ad-hoc analysis of large volumes of Level-1B
data produced by the NASA Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument. This paper details the reasons for building the MODBASE system, its design and
implementation, and puts it to the test on a series of practical Earth Science benchmarks using
standard MODIS data granules.
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Chapter 1: Introduction and Background

1.1 Introduction

Many scientific, governmental, and commercial organizations can now cost-effectively collect,

generate, and store data at rates that test the organization's ability to analyze the data using

conventional storage and analytics tools. Relational database management systems (RDBMS),

which have been a dominant technology for data storage and analysis for decades, have begun to

age and are showing fundamental scaling limitations in the present era where large-scale

horizontal scalability and distributed computation are required to perform complex analysis on

very large sets of data [1].

While not every data storage and analysis application experiences the challenges

described above, the number that do appears to be growing. In response, the market has coined

the term "Big Data" to refer to both the classification of problems that cannot be easily addressed

with conventional analysis platforms and to a new industry segment rapidly arising to fill the

void. Though traditional RDBMS technology, with its maturity and support infrastructure, will

likely remain the dominant technology for use in many conventional applications for the

foreseeable future, it is evident that platforms built from the ground-up with a mandate to store

and process very large volumes of data in a distributed manner will supplement or even displace

RDBMS solutions for certain applications [2]. To meet the demands of some of the most

challenging applications, such as the ones faced in many areas of science, database systems may

well be in need of a complete, ground-up rewrite [3]. Because new systems constructed using

techniques gleaned from decades of post RDBMS research often post a 1-2 order of magnitude
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improvement in performance over conventional technologies in the market, it is likely they will

also end up challenging expensive purpose-built systems created to achieve similar gains over

legacy RDBMS systems.

With the landscape of database technology in a state of flux, a plethora of systems having

widely varying specializations are competing in the overall marketplace [4]. Some examples of

next-generation database technologies include: object-oriented, on-line analytical processing,

column-oriented, parallel DBMSs, map-reduce, NoSQL, stream, and multi-dimensional among

many others. Though many of the new technologies appear at first glance to compete directly

with each other, in some cases apparent conflicts are actually better classified as complementary

relationships [5], which can lead to confusion and misunderstanding.

As a natural result of the emergence of this complex new database technology landscape,

it can be challenging for organizations, application engineers, and end-users to determine which

technology may best suit their particular requirements. Apparently gone are the days when

organizations can ensure a project's success simply by selecting the dominant RDBMS vendor.

In such an environment, one of the most effective and powerful tools available to determine the

applicability of a given technology to a given class of problem is a proof-of-concept (POC)

project. POC projects serve to demonstrate the ability of a platform to perform particular tasks by

designing, implementing, and ultimately characterizing the performance of a working prototype.

As will be detailed in the sections that follow, this thesis can be broadly characterized as

a POC project aimed at characterizing the applicability of the SciDB multidimensional array

analytics platform to perform tasks relevant to members of the Earth remote sensing community.

9



1.2 SciDB Primer

In 2007, the first extremely large databases conference (XLDB) convened, hosted by the

Stanford Linear Accelerator Center (SLAC) [6], to discuss trends and needs unique to the

handling of "extremely large databases", an ever-evolving term that presently refers to databases

that may reach at least petabyte scale and which resist analysis by conventional tools and

techniques. One precipitating factor to the convening of the first annual XLDB conference was

the set of challenges faced by the Large Synoptic Survey Telescope (LSST) project team (part of

SLAC) with storing and performing complex scientific analysis on the 50-100 petabytes of data

expected to be collected by the project [7]. From the first 2007 XLDB conference onward, a

community congealed around the core realization that better technologies must be developed to

address the requirements of meaningfully analyzing such voluminous and complex datasets.

Following the XLDB 2007 conference was the generation of a set of common

requirements [8] that served to represent some of the most salient features that next-generation

analysis systems should implement. It was determined that the analysis requirements for science

projects were not fundamentally different from many complex analysis problems being faced in

industry and that a multidimensional array-oriented data model was specified despite the open

recognition that it would not suit the needs of all areas of analysis. Additional requirements

included specifications that the project would: be open-source, have a no-overwrite policy, have

traceability (provenance), be based on a shared-nothing distributed architecture, have built-in

extensibility, and support multiple language bindings. These requirements become some of the

earliest objectives of the SciDB project. Around the same time frame, a standard science

benchmark document [9] was released which outlined an analysis task loosely based on
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workload pertinent to the field of astronomy. As is typically the case with any benchmark, the

goal was to create a test against which the performance of multiple systems could be compared.

The benchmark document further contained the results of implementing the benchmark on

MySQL and an early incarnation of SciDB. Perhaps unsurprisingly, for the given benchmark,

SciDB vastly outperformed MySQL overall. In Table 1, we can see the results of SciDB versus

MySQL in the 2009 benchmark. In nearly all cases, SciDB showed its potential by

outperforming MySQL by orders of magnitude.

DBMS Dataset Loading/Cooking [min] Query Runtimes [min]
Load | Obs | rop Ttal 1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 I Q9 | Total

small 760 110 2 872 123 21 393 0.4 0.36 0.6 0.6 49 50 638
MySQL normal 770 200 90 1060 54 44 161 50 32 51 52 395 395 1234

(scaleup) (1.0) (1.8) (45) (1.2) (0.4) (2.1) (0.4) (125) (89) (85) (87) (8.1) (7.9) (1.93)
small 34 1.6 0.6 36 8.2 0.2 3.7 0.007 0.01 0.01 0.01 1.8 1.9 16

SciDB normal 67 1.9 15 84 3.6 0.07 1.7 0.015 0.017 0.02 0.11 2.2 2.3 10
(scaleup) (2.0) (1.2) ( 2.3) (2.) (0.4) (0.4) (10.) (5.7) (36) (2) (11) (1.2) (1.2) (0.63)

_MySQL small (22) (69) (33) (24) (15) (105) (106) (57) (36) (60) (60) (27) (26) .(40)
/SciDB) normal (12) (105) (6) (13) (15) (630) (95) (3330) (1880) (2550) (470) (180) (170) (120)

Table 1: 2009 Results of MySQL versus SciDB [91

In 2009 Paradigm4, Inc. was incorporated to provide a commercial version of SciDB and

SciDB, Inc. was incorporated as a non-profit organization to provide the community version.

With SciDB, as with many open source products, there is a dual model providing a usable, freely

available community version of the product as well as a generally more feature rich commercial

version with professional support options. Also in the same year, the SciDB system was

officially announced to the academic world as part of the 2009 VLDB conference [10] and a

specified feature set very closely matching that of the requirements presented earlier that year

was indicated. From 2010 through 2011, as additional development work on SciDB took place,

more concrete details emerged about the inner working of the database, the reasoning behind
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particular design decisions [11], and the overall architecture [12]. As of April 2012, version 12.3

of SciDB has just been released and provides enough generalized functionality to perform

significant analysis.

SciD Coordinator Node

cjQd Client En e
([: : Python) System Catalog

Store

Connections

En ine En ine: En ine En ne

Local Loca Local Local
Store Store Store Store

S9108 Worker Nodes

Figure 1: SciDB System Schematic [13]

While the core of SciDB is written primarily in C++, some supporting utilities (e.g.,

iquery) are written in Python. In terms of platforms, SciDB is currently supported on the Linux

operating system, particularly the Red Hat and Ubuntu distributions. PostgreSQL is currently a

required dependency of the SciDB system as it is leveraged for providing support for the

metadata catalog. True to the early stated requirements, SciDB can run as a cluster of one or

more shared-nothing instances on the same machine and/or across a network. Figure 1 shows the
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system schematic for a 5-instance SciDB cluster. Clients interact with the database though a

SciDB client application and the multiple database instances work together to automatically

distribute storage and processing requirements with one instance acting as a coordinator.

Basic 2D Ragged Array Cell

Dimension 1 (a,, a2 l
5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 Dimension 2

Basic array: MyArray [3,7]
Enhanced array: MyArray {16.3, 27.6}

Figure 2: Basic 2D Ragged SciDB Array [101

At the core of the SciDB data model is a multidimensional array. In Figure 2, we can see

a representation of a ragged (sparse) 2 dimensional SciDB array. SciDB arrays are defined in

terms of both dimensions and attributes [13]. Dimensions are always signed 64-bit integers.

Other data types such as strings and floats can also be used as dimensions, but they are ultimately

mapped to 64-bit signed integer values by the system. Attributes, on the other hand, can take on

one of many data types and exist within the cells representing the intersections of the

dimensional indices. An important realization about multidimensional arrays is that they may be

either dense or sparse depending on what fraction of the cells in the array are empty. SciDB has

built-in support allowing the efficient handling of sparse arrays, but the dimensionality and

sparseness of an array may have an impact on performance.
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In SciDB, one can think of an array as being composed of one or more pieces called

chunks. Chunks are somewhat analogous to the concept of pages on disk, but are defined on a

per-array basis. Chunks allow potentially large logical arrays to be physically partitioned into

smaller, more manageable pieces. When defining an array in SciDB, one specifies not only the

dimensions and their valid ranges, but also the number of cells along each dimension that should

be included in a chunk. Furthermore, since SciDB is also a column-oriented database, each

chunk contains the values for only a single attribute. In Figure 3, we see a demonstration of how

the SciDB storage manager physically stores the values of a logical array. The logical array is

first partitioned by attribute and then each attribute array is decomposed into physical chunks.

1 [0] [1] [2] [3] [4]

[0]
[1]
[2]

[3]

[4]

Step 1: Vertically partition atibutw in the logical wray.
(A) {B}

2 5 4 2 1 0.7 0.5 0.9 0.8 0.2

5 3 5 5 5 0.5 0.5 0.9 0.5 0.5

4 6 6 2 7 0.3 0.1 0.5 0.1 0.4

4 6 6 1 0 0.25 0.45 0.3 0.1 0.3

6 1 5 2 2 0.5 0.6 0.5 j 0.15 0.4

Step 2: Decompose each attribute array into equal sized, and
potentially overlapping, chunky.

( {A, } 2) { } ({A }) ({A })

2 7
1 1 1

Figure 3: SciDB Storage Manager Behavior [11]
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(2,0.7) (5,0.5) (4,0.9) (2,0.8) (1,0.2)

(5,0.5) (3,0.5) (5,0.9) (5,0.5) (5,0.5)

(4,0-3) (6,0-1) (6,0.5) (2,0.1) (7,0.4)

(4,0.25) (6,0.45) (6,0.3) (1,0.1) (0,0.3)

(6,0.5) (1, 0.6) (5,0.) 1(2,0.15)1 ( 2,0.4)



Presently, chunk sizing is a very important concept to architects of SciDB schemas and

selecting optimal values for chunk sizes is critical to realizing the full performance potential of

the SciDB database. Chunks are also allowed to overlap each other. In Figure 4, we see a

visualization of 3 chunks of size 5x5, which have a specified overlap of 2 (darker gray). This

feature can provide enhanced performance for certain operators, which may require accessing

cells that are part of an adjacent chunk. If one chunk resides on one instance and the adjacent

chunk on another instance, it might be necessary to transmit chunks over the network to perform

an operation. With appropriate overlaps defined, this transfer may be avoided at the expense of

storing extra information per chunk.

{A,} {A)

Figure 4: Visualization of Chunk Overlap [11]

Finally, interaction with SciDB is accomplished through the use of language bindings

(such as Python) or via the iquery utility provided with the database. Two languages are

available for executing commands against the database: an SQL-like language called Array

Query Language (AQL) and a functional language called Array Functional Language (AFL).

15



1.3 MODIS Primer

Figure 5: Illustration of MODIS Scanning Earth from the Terra Satellite [14]

The Moderate Resolution Imaging Spectroradiometer (MODIS) [15], is a scientific instrument

built for use by the National Aeronautics and Space Administration (NASA) as part of its Earth

Observing System (EOS) program [16]. The MODIS instrument [14] has been installed on two

separate NASA satellites: Terra (a.k.a EOS AM, Launched December 1999) [17] and Aqua

(a.k.a. EOS PM, Launched May 2002) [18]. Figure 5 illustrates the Terra satellite in the process

of scanning a swath of the earth. MODIS is designed to collect detailed remote sensing data

relevant to Earth scientists. MODIS senses data for 36 spectral bands and 3 spatial resolutions

and continuously collects data at rates up to 11 Mbps. Refer to Figure 6 for detailed
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specifications for the MODIS instrument. Aqua and Terra both have polar orbits that enable

them to encircle the Earth approximately every 90 minutes and view nearly the entire surface of

the planet every 1-2 days.

NASA not only provides raw MODIS data to the scientific community free of charge, but

also offers a very rich, hierarchical ecosystem of free derived data products [19]. These data

products are divided into the following categories: low-level calibration, atmosphere, land,

cryosphere, and ocean products. Each category has several data products available beneath it and

each data product is the result of established analytical techniques in the field of Earth Science.

NASA had to make decisions and assumptions about which analytical techniques and final

representations it should use for its ecosystem of products. Though these decisions are ostensibly

made with the goal of meeting the needs of the greatest number of potential consumers of the

products, no set of decisions could ever perfectly suit every research group that makes use of

MODIS data and many Earth Scientists would like to have the flexibility to efficiently perform

analysis starting from low-level data.

In the area of support, NASA and other organizations have contributed a variety of tools,

which make the processing of data products even more manageable (e.g., [20]). These tools are

used for data extraction, re-projection, gridding, stitching, sub-sampling among other things and

most of them are also freely available and generally well documented. NASA presumably

provides tools and packaged products because of the difficulty many research groups may

experience with writing software and analyzing the large volumes of raw MODIS data

themselves.
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Orbit: 705 km, 1030 a.m. descending node or 1:30 p.m.
ascending node, sun-synchronous, near-polar, circular

Scan Rate: 20.3 rpm, cross track
Swath Dimensions: 2330 km (across track) by 10 km (along track at nadir)

Telescope: 17.78 cm diam. off-axis, afocal (collimated),
with intermediate field stop

Size: 1.0 x 1.6 x 1.0 m
Weight: 250 kg
Power: 225 W (orbital average)

Data Rate: 11 Mbps (peak daytime)
Quantizatlon: 12 bits

Spatial Resolution: 250 m (bands 1-2)
(at nadir): 500 m (bands 3-7), 1000 m (bands 8-36)

Design Life: 5 years

Primary Use Band Bandwidth' Spectral Required
Radiance2  SNR3

Land/Cloud 1 620-670 21.8 128
Boundaries 2 841-876 24.7 201
LandCloud 3 459-479 35.3 243
Properties 4 545-565 29.0 228

5 1230-1250 5.4 74
6 1628-1652 7.3 275
7 2105-2155 1.0 110

Ocean color/ 8 405-420 44.9 880
Phytoplankton/ 9 438-448 41.9 838
Biogeochemistry 10 483-493 32.1 802

11 526-536 27.9 754
12 546-556 21.0 750
13 662-672 9.5 910
14 673-683 8.7 1087
15 743-753 10.2 586
16 862-877 6.2 516

Atmospheric 17 890-920 10.0 167
Water Vapor 18 931-941 3.6 57

19 915-965 15.0 250

Primary Use Band Bandwidth1  
Spectral Required

Radiance
2  NEAT(K)

4

Surface/Cloud 20 3.660-3.840 0.45 0.05
Temperature 21 3.929-3.989 2.38 2.00

22 3.929-3.989 0.67 0.07
23 4.020-4.080 0.79 0.07

Atmospheric 24 4.433-4.498 0.17 0.25
Temperature 25 4.482-4.549 0.59 0.25
Cirrus Clouds 26 1.360-1.390 6.00 1503
Water Vapor 27 6.535-6.895 1.16 0.25

28 7.175-7.475 2.18 0.25
29 8.400-8.700 9.58 0.05

Ozone 30 9.580-9.880 3.69 0.25
SurfaceCloud 31 10.780-11.280 9.55 0.05
Temperature 32 11.770-12.270 8.94 0.05
Cloud Top 33 13.185-13.485 4.52 0.25
Altitude 34 13.485-13.785 3.76 0.25

35 13.785-14.085 3.11 0.25
36 14.085-14.385 2.08 0.35

1Bands I to 19, nm; Bands 20-36, pm2
(Wm 2

-pm-sr)3SNR=Signal-to-noise ratio Performance goal is 30%-40%
4NEAT=Noise-equivalent temperature difference J better than required

Figure 6: MODIS Technical Specifications [21]
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MODIS products are provided using a highly condensed and optimized binary file format

called Hierarchical Data Format (HDF) with EOS-specific extensions (a.k.a HDF-EOS [22]).

According to the HDF Group, the organization that oversees the HDF format standards, NASA

will provide 15 petabytes of data in the HDF-EOS format during the 15-year duration of the EOS

project [23]. Any tools that perform down-stream processing of MODIS data must first be able to

read data from the HDF-EOS file format. To aid in performing that inevitable task, the HDF

Group and others offer libraries and tools enabling a variety of programming languages to access

the contents of HDF files [24].

In summary, MODIS is not only an instrument built to collect Earth Science data, but

also an entire set of products, tools and support put in place to enable very efficient study of

various aspects of Earth Science. For common research cases, the benefits of this integrated

approach to the scientific community are innumerable. As one can imagine, however, researchers

whose work falls outside the common lanes supported by NASA still face significant challenges.

1.4 Problem Statement

While many Earth scientists benefit from the significant standardized product offerings that are

made available by NASA, there are also many occasions where research groups want to perform

analysis on the raw or calibrated data before any additional analysis or projection is performed.

An obvious example is for research that generates analytical results not directly covered by any

NASA product, but several other examples are conceivable that would necessitate processing

from raw or calibrated data.
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Without being able to benefit directly from the purpose-built infrastructure provided by

NASA in these cases, research groups must be equipped and prepared to store and process very

large, low-level datasets packaged in HDF-EOS file format. The natural and typical first

response is to construct purpose-built software systems that must be able to extract data from

HDF-EOS, hard-code the desired analysis, manage intermediate byproducts, and ultimately store

the desired results.

Performing those steps efficiently, however, becomes a potentially costly challenge when

dealing with the large MODIS datasets. Experience with writing highly parallel, error-prone code

for distributed computing, both across processor cores and across physical machines in a

networked cluster, is a prerequisite for this class of large-scale data analysis. Not all Earth

Science research groups possess the time and resources to design, execute, and validate complex

software engineering projects. Additionally, any changes made to underlying code or

assumptions during the course of the project may make it necessary to perform some or all of the

resource-intensive processing steps over and over again.

What is needed is a system that is capable of importing large volumes of HDF-EOS data

and automatically handles the issues of parallel storage and computation management, freeing

researchers to focus on the core analysis tasks at hand while enabling high-performance, ad-hoc

analysis. Such a system, constructed with sufficient capacity, could ingest most or all of the

available MODIS data set and could be centralized in a high-performance computing center and

shared amongst various research organizations wishing to perform various analyses based upon

the same raw data.
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1.5 Objective

The primary objective of this project is to design, implement, and characterize the performance

of a system for analyzing MODIS data, built around and upon the SciDB multidimensional array

database. Using SciDB as the core of the system is a natural choice because of the

multidimensional nature of the MODIS data and the inherent horizontal scalability of the SciDB

platform. The resulting system should be able to import MODIS data in HDF-EOS files,

transparently persist the imported data across one or more database instances, support distributed

analysis across the database instances, and enable ad-hoc analysis without requiring advanced

programming skills on the part of the researcher. Detailed performance metrics should be

collected for each stage of the processing pipeline as well as for a small set of simple Earth

Science analysis benchmarks.

1.6 Related Work

Some early work that is relevant to this project includes the Sequoia 2000 project [25] and its

corresponding benchmark [26]. Many of the same challenges and approaches that were taken

then are still applicable now. Other relevant benchmarking work done using SciDB to perform

analysis in other scientific domains includes the aforementioned "Standard Science DBMS

Benchmark" [9] and "Using SciDB to Support Photon Science Data Analysis" [27]. Finally, this

work is also directly influenced by use cases [28] written by representatives of various research

areas including Optical and Radio Astronomy, Earth Remote Sensing, Environmental

Observation and Modeling, Seismology, ARM Climate Research and others.
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Chapter 2: MODBASE System Overview

2.1 Design Considerations

2.1.1 Pipelined Workflows

A primary goal of this project is to demonstrate a system that could ultimately be used by the

Earth Science community to accomplish intensive analysis of large volumes of MODIS data. It is

important to consider the potential end users and the way they are already accustomed to

working. In general, it appears that many Earth Science projects are making use of pipelined

workflows made up of independent, specialized tools and utilities that, when strung together,

produce desired results. Since the nature of the analysis being performed seems a natural fit for

the workflow metaphor, this project strives to use a similar structure.

2.1.2 Traceability Management

It is important to realize that the deeper and more complicated workflows get, the more inflexible

and error prone they may become. Additional workflow stages necessitate the storage and

management of more intermediate byproducts for the sake of debugging and provenance.

Researchers who wish to have full traceability through their analysis must persist not only the

source and result data, but all intermediate data as well. Hence, this system should ideally

support the ability to manage the persistence of all intermediate data in as consistent a way as

possible. There should also be a high-level bias to keep all workflows moving forward only such

that a given stage in the workflow is dependent only on the results of earlier stages. In general, it

is not anticipated that cyclic workflows should be required for most Earth Science analysis.
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2.1.3 Minimization of Rework

Where possible, workflows should be designed in such a way to minimize the amount of costly

rework that must be performed when an underlying analysis parameter or technique is changed.

Accomplishing minimum rework often amounts to performing the most general, unavoidable,

and uncontroversial static analysis steps early in the workflow and persisting those results so that

later analysis can at worst fall back to those results when changes are made rather than having to

start from the very beginning of the workflow. In some cases this principle may affect the

ordering of workflow stages, but in other cases it may simply dictate that more complex

workflow stages be broken up into sub stages, permitting the establishment of "checkpoints".

2.1.4 Selective Denormalization

As is the case for any system responsible for loading, persisting and analyzing data, important

decisions have to be made for how best to represent data in such a way as to enable efficient

analysis while also being mindful of storage and memory constraints. There are often tradeoffs

between representations that minimize storage requirements and representations that maximize

the performance of analysis. Though SciDB is not a relational database, it is not immune to the

possibility of benefiting from selective denormalization.

2.1.5 Parallelization

A conscious effort should be made to recognize and exploit natural parallelizability of

processing, storage and analysis. This consideration has become more salient as trends are

moving toward massively distributed storage and computing systems. Failing to identify

opportunities for parallelization can leave modem systems grossly underutilized.
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2.2 High-Level Data Flow

Figure 7 shows a high-level view of how data moves through the MODBASE system. Data

originates in HDF files provided by NASA and is first processed by a preprocessor that performs

several functions that will be covered in detail in later sections. The output of the preprocessor is

comma-separated text files (CSV), which are processed by another tool called that converts CSV

into SciDB dense load format in a way that supports parallel loading of data into SciDB. Once

data is in SciDB and has been analyzed, it can optionally be exported to an external utility (e.g.,

MATLAB or R) for visualization purposes.

Figure 7: MODBASE High-Level Data Flow Diagram
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2.3 System Components

2.3.1 Hardware

A single server costing on the order of $5000 was used for all benchmarking done in the course

of this project. Detailed specifications for the server can be found in the appendices. The server's

available memory and processor cores allowed for benchmarking SciDB clusters of between 1

and 5 instances running on the same physical machine.

2.3.2 Packaged Software

Aside from a suitable Linux OS installation, packaged software components used as part of the

MODBASE system include: the SciDB database server, the iquery utility that comes packaged as

part of the SciDB distribution, and a suitable version of the PostgreSQL RDBMS. MATLAB

was also used for the purposes of displaying resulting image data.

2.3.3 Custom Software

Custom software components provide the "glue"needed to create a complete system for MODIS

data analysis. Table 2 lists basic information about the custom software components of the

MODBASE system. These components are covered in more detail later.

mod2csv Java Any Java Preprocess MODIS data and convert from HDF to CSV.
pcsv2scidb Java Any Java Convert CSV to paralelized SciDB DLF format
load2scidb Bash Script Linux Coordinates conversion and loading of CSV data.
rgb composite Bash Script Linux Benchmark for creating an RGB composite image.
ndvi Bash Script Linux Benchmark for performing NDVI analysis.
ndsi snowmap Bash Script Linux Benchmark for performing NDSI+Snowmap analysis.
grid Bash Script Linux Benchmark for gridding result data.
visualize MATLAB Any MATLAB Creates image plots of analysis results.

Table 2: MODBASE Custom Software Components
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Chapter 3: Preprocessing MODIS Data

3.1 Overview

This chapter details the design and operation of the preprocessor component (mod2csv) of the

MODBASE system. At the highest level, the mod2csv utility ingests pairs of two different

MODIS data products in HDF format and emits CSV files containing data useful for typical

Earth Science analyses. Since it is stand-alone and emits CSV, the mod2csv utility can be used

independently of SciDB and can be used with other tools and databases as well. This flexibility

is especially helpful for providing a common starting point for benchmarking multiple systems

against each other. One drawback of the decision to emit CSV is that the resulting text files are

significantly larger than the highly compressed binary HDF files from which they are derived.

3.2 Inputs

The first input that must be specified to mod2csv utility is the path to one or more MODIS Level

1B Calibrated Radiances (MOD02) files. The mod2csv utility opens each specified MOD02 file

and parses its metadata. In the process, mod2csv finds the name of the associated MODIS Level

1 Geolocation (MOD03) file ID in the metadata (ANCILLARYINPUTPOINTER) and searches

for the MODO3 file in the same path as the MOD02 file. An error is thrown if either file cannot

be opened. Thus, a precondition to using the mod2csv utility is that MOD02 files and their

corresponding MOD03 files should be placed in the same directory prior to processing them. In

addition to specifying the MOD02 input files, a user can also specify a desired output folder by

adding a "-o <output folder>" to the command line options when invoking the mod2csv utility.
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3.3 Geolocation Data Upsampling

Despite the fact that band measurement data is collected by MODIS at 3 different spatial

resolutions (250m, 500m and 1km), NASA provides its MOD03 Geolocation product only at

1km resolution. Therefore, when preprocessing 250m and 500m data, it is necessary to upsample

from the lower resolution 1km geolocation data in order to attribute geolocation values to each

individual measurement. This geolocation upsampling is one of the major functions provided

automatically by the mod2csv utility. All values are upsampled on a per-scan basis using bilinear

interpolation and extrapolation, which has been shown to provide sufficient accuracy in this

domain when compared to more computationally intensive interpolation techniques [29].

3.3.1 Upsampled Data Fields

Table 3 lists all data fields that are captured from the MODO3 data product and upsampled when

applicable. All geolocation data fields are upsampled using bilinear interpolation and

extrapolation. Some fields must be upsampled in a manner that honors the circular nature of their

domains. Particularly, certain angular values have a discontinuity where their values change from

180 to -180 instantaneously. The mod2csv utility handles these special cases automatically

during the upsampling process.

/MODIS Swath Type GEO/Geolocation Fields/Longitude Circular Interpolation/Extrapolation Used
/MODIS Swath Type GEO/Geolocation Fields/Latitude Normal
/MODIS Swath Type GEO/Data Fields/Height Normal
/MODIS Swath Type GEO/Data Fields/SensorZenith Normal
/MODIS Swath Type GEO/Data Fields/SensorAzimuth Circular Interpolation/Extrapolation Used
/MODIS Swath Type GEO/Data Fields/Range Normal
/MODIS Swath Type GEO/Data Fields/SolarZenith Normal
/MODIS Swath Type GEO/Data Fields/SolarAzimuth Circular Interpolation/Extrapolation Used
/MODIS Swath Type GEO/Data Fields/Land/SeaMask Normal

Table 3: Upsampled Geolocation Data Fields
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3.3.2 Upsampling Demonstration

The following examples demonstrate how upsampling is performed for the two cases where we

want to start with the 1km data provided by NASA and end up with geolocation data

corresponding to 500m and 250m measurements. As described in the Algorithm Theoretical

Basis Document (ATBD) pertinent to MODIS Level 1A Earth Location [30], MODIS pixel

values are determined by triangular weighting functions that relate values at each spatial

resolution. These triangular weighting functions break the commonsense notion that (4) 500m

pixels or (16) 250m pixels are equivalent to (1) 1km pixel. Additionally, the location of the

center of each pixel is therefore also offset in a predictable way as shown in Figure 8.

Figure 8: Relative Location of MODIS 1km Spatial Element by Resolution [301
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Bow Tie Effect

The bow tie effect, shown in Figure 9, is an artifact of the very wide scan field of the MODIS

instrument. At high scan angles, the area covered by each pixel becomes larger and each scan

bows out as we can see in Figure 10. As a result, scans may have significant overlap with prior

ones and upsampling must be performed on a per-scan basis.

sca" Scan Angle
T 55 5D 45 40 35 3 25 2D 15 10 5 0 5 10 15 20 25 3D 3 40 45 5D 55Track

Sca 1

Scan 2

Sc23 4

2330 km

Figure 9: Panoramic Bow Tie Effect [30]

IlI. niscan i

20 1020 -- Scan 2

I IScan 3
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550
< 1165km 

Left Half of a IDDIS Scan

Figure 10: Pixel Size Growth and Overlap within a Scan [30]
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Upsampling 1km to 500m

The relationship between 1 km pixel centers and 500m pixel centers can be seen visually in

Figure 11. In the track direction we see the expected 1:2 relationship, since the triangular

weighting functions do not apply in the track direction. In the scan direction, however, we can

see the result of the triangular weighting functions in the offset of 500m pixels versus their

corresponding 1km pixels. One can also see what appears to be 1 missing 500m pixel at the start

of the scans, which was purposefully left out by NASA in order to apparently preserve a 1:4 data

ratio.
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Figure 11: Relative Indices of 1km versus 500m Pixels [31]
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1km and 500m Pixel Centers Near Nadir

Figure 12 shows a plot of a section of 1km pixel centers (plusses) relative to the 500m pixel

centers (circles) that were calculated by mod2csv. This section of pixel centers is located around

nadir (looking straight down on the planet from the satellite) and exhibit fairly regular spacing

and no overlap, as expected.
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Figure 12: 1km and 500m Pixel Centers Near Nadir
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1km and 500m Pixel Centers Near Start of Scan

Figure 13 shows a plot of a section of 1km pixel centers (plusses) relative to the 500m pixel

centers (circles) that were calculated by mod2csv. In contrast to the prior figure, this section of

pixel centers is located at the start of the 2 displayed scans and zoomed a bit further out so that

the bow tie effect can be seen very clearly. It is noticeable that the centers of some pixels from

the second scan fall in nearly the same geographic location as some of the pixel centers from the

scan made before it.
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Upsampling 1km to 250m

The relationship between 1km pixel centers and 250m pixel centers can be seen visually in

Figure 14. In the track direction we see the expected 1:4 relationship, since the triangular

weighting functions do not apply in the track direction. In the scan direction, however, we can

see the result of the triangular weighting functions in the offset of 250m pixels versus their

corresponding 1km pixels. One can also see what appear to be 3 missing 250m pixels at the start

of the scans, which were purposefully left out by NASA apparently to preserve a 1:16 data ratio.
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Figure 14: Relative Indices of 1km versus 250m Pixels [31]

For brevity, plots of actual upsampled data are not provided for 250m, as they are very similar to

the ones shown in Figure 12 and Figure 13, only denser.
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3.4 Field Mappings

This section details the origin and mapping functions used to derive the values for the data fields

present in each emitted CSV output file.

3.4.1 GranuleMetadata.csv

This file contains data relevant to the granule as a whole. The data found in the granule metadata

(detailed in Table 4) is useful for tracking the source of the data back to the NASA and for

debugging. In general, data contained in this file would be used often for analysis. Note that

many of the granule metadata fields are embedded into MOD02 files using another encoding

called Parameter Value Language (PVL), the specification of which can be found at [32].

Field Product Mapping Details

start-time MOD02

Data Type: int64
Derived From: /CoreMetadata.O/RANGEBEGINNINGDATENALUE
Derived From: /CoreMetadata.O/RANGEBEGINNINGTIMN/VALUIE
Pattern: yyyyMMddHHmm
Mapping: Combine date and time, then apply <Pattern>.
Data Type: int64

platformid MOD02 Derived From: /CoreMetadata.O/ASSOCIATEDPLATFORMSHORTNAMEIVALUE
Mapping: "Aqua" => 0, "Terra" => 1
Data Type: int64

resolution id MOD02 Derived From: /CoreMetadata.O/SHORTNAME/VALUE
Mapping: "QKM"=> 0, "HKM' => 1, "1KM" => 2

scans MOD02 Data Type: uint8
From: /Number of Scans
Data Type: uint16

trackmeasurements MOD02 Derived From: resolutionid
Derived From: scans
Mapping: {resolution id: 0 => 40, 1 => 20, 0 => 10) * scans
Data Type: uint16

scan-measurements MOD02 Derived From: resolutionid
Mapping: 0 => 5416, 1 =>2708, 2 => 1354

day_ night flag MOD02 Data Type: string
daynflag MOD02 From: /CoreMetadata.0/DAYNIGHTFLAG/VALUE

fileid MOD02 Data Type: string
From: /CoreMetadata.O/LOCALGRANULEID/VALUE

geo-file-id MOD02 Data Type: string
From: /CoreMetadata.0/ANCILLARYINPUTPOINTER/VALUE

Table 4: GranuleMetadata.csv Field Mappings
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3.4.2 BandMetadata.csv

This file contains values (detailed in Table 5) for deriving measurement values from scaled

integers (per band) [33], which are also provided for reference and debugging purposes.

start time MOD02 Inherited from Granule Metadata
platform id MOD02 Inherited from Granule Metadata
resolution id MOD02 Inherited from Granule Metadata

Data Type: uint8
Prefix: /MODISSWATHTypeL1B/Data Fields
Derived From: <Prefix>/EV_1KMRefSB
Derived From: <Prefix>/EV_1KMEmissive
Derived From <Prefix>/EV_250_Aggrlkm RefSB
Derived From: <Prefix>/EV_500_AggrlkmRefSB

band id MOD02 Derived From: <Prefix>/EV_500_RefSB
Derived From <Prefix>/EV_250_Aggr5OORefSB
Derived From: <Prefix>/EV_250_RefSB
Derived From: <Prefix>/EV_Band26
Attribute: band names (iterate each, keeping track of offset)
Mapping: See appendices for band data mappings
Data Type: double

radiancescale MOD02 From: Same data source as bandid
Attribute: radiance scales (align with corresponding band names offset)
Data Type: float

radianceoffset MOD02 From: Same data source as bandid
Attribute: radiance offsets (align with corresponding band names offset)
Data Type: double

reflectancescale MOD02 From: Same data source as bandid
Attribute: reflectance scales (align with corresponding band names offset)
Data Type: float

reflectanceoffset MOD02 From: Same data source as bandid
Attribute: reflectance offsets
Data Type: double

correctedcountsscale MOD02 From: Same data source as bandid
Attribute: corrected counts scales (align with corresponding band names offset)
Data Type: float

correctedcountsoffset MOD02 From: Same data source as bandid
Attribute: corrected counts offsets (align with corresponding band names offset)
Data Type: float
Prefix: /MODlS_SWATHTypeLiB/Data Fields
From: <Prefix>/EV_1KMRefSBUncertIndexes
From: <Prefix>/EV_1KMEmissiveUncertIndexes
From: <Prefix>/EV 250_Aggrlkm_RefSBUncertIndexes

specifieduncertainty MODo2 From: <Prefix>/EV_50_AggrlkmRefSBUncert_Indexes
From: <Prefix>/EV_500_RefSB_Uncert_Indexes
From: <Prefix>/EV_250_Aggr500_RefSBUncertIndexes
From: <Prefix>/EV_250_RefSB_Uncert_Indexes
From: <Prefix>/EV_Band26_UncertIndexes
Attribute: specified uncertainty (align with corresponding band names offset)
Data Type: float

uncertaintyscalingfactor MOD02 From: Same source as specified uncertainty
Attribute: scaling factor (align with corresponding band names offset)

Table 5: BandMetadata.csv Field Mappings
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3.4.3 Geodata.csv

This file contains geolocation values (detailed in Table 6) from the MOD03 data product,

upsampled when applicable. Note that longitude and latitude values in this file are scaled and

integerized in preparation for their later use as SciDB dimensions.

Field Product Mapping Details

longitude-e4 MOD03

Data Type: int64
Derived Front /MODISSwathTypeGEO/Geolocation Fields/Longitude
Mapping: Multiplied by 10000 and rounded.
Upsamled when applicable. (Circular domain)
Data Type: int64

latitude-e4 MOD03 Derived Front /MODIS SwathTypeGEO/Geolocation Fields/Latitude
Mapping: Multiplied by 10000 and rounded.
Upsampled when applicable.

start time MOD02 Inherited from Granule Metadata
platform id MOD02 Inherited from Granule Metadata
resolution id MOD02 Inherited from Granule Metadata

Data Type: int16
trackindex MOD03 From: Index of point in data array.

Upsampled when applicable.
Data Type: int16

scanindex MOD03 From: Index of point in data array.
Upsampled when applicable.
Data Type: int16

height MOD03 From: /MODISSwathTypeGEO/Data Fields/Height
Upsampled when applicable.
Data Type: float

sensorzenith MOD03 From: /MODIS_SwathTypeGEO/Data Fields/SensorZenith
Mapping: Divided by 100.
Upsanipled when applicable.
Data Type: float

sensor-azimuth MOD03 From: /MODISSwathTypeGEO/Data Fields/SensorAzimuth
Mapping: Divided by 100.
Upsampled when applicable. (Circular domain)
Data Type: uint32

range MOD03 From: /MODISSwathTypeGEO/Data Fields/Range
Mapping: Multiplied by 25.
Upsampled when applicable.
Data Type: float

solar-zenith MOD03 From: /MODISSwathTypeGEO/Data Fields/SolarZenith
Mapping: Divided by 100.
Upsampled when applicable.
Data Type: float

solarazimuth MOD03 From: /MODISSwathTypeGEO/Data Fields/SolarAzimuth
Mapping: Divided by 100.
Upsampled when applicable. (Circular domain)
Data Type: uint8

landseamask MOD03 From: /MODISSwathTypeGEO/Data Fields/Land/SeaMask
Upsampled when applicable.

Table 6: Geodata.csv Field Mappings
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3.4.4 Band_x_Measurements.csv

This file contains measurement data (detailed in Table 7) for the band specified by "x".

Radiance, reflectance and uncertainty percentages are materialized using the scaled integers and

corresponding band metadata. This is a selective denormalization that is intended to reduce the

need to perform expensive joins and significantly increase analysis performance.

-guM3 nhre(e
latitude e4 MOD03 Inherited from Geodata (aligned by data array index)
laitde e4 MOD03 Inherited from Geodata (aligned by data array index)
start time MOD02 Inherited from Granule Metadata
platform id MOD02 Inherited from Granule Metadata
resolution id MOD02 Inherited from Granule Metadata

Data Type: uintl6
Prefix: /MODISSWATHTypeL1B/Data Fields
From: <PrefLx>/EV_1KMRefSB
From: <Prefix>/EV_1KM_Emissive
From: <Prefix>/EV250Aggrlkm RefSB

si value MOD02 From: <Prefix>/EV500_Aggrlkm RefSB
From: <Prefix>/EV_500_RefSB
From: <Prefix>/EV_250_Aggr500_RefSB
From: <Prefix>/EV_250_RefSB
From: <Prefix>/EV Band26
Data Type: double
Derived From- sivalue

radiance MOD02 Dervied Fron Band Metadata - radiance_scale
Dervied From: Band Metadata - radianceoffset
Mapping: radiance scale * (si value - radiance offset) [331
Derived From: si value

reflectance MOD02 Deivied From- Band Metadata - reflectancescale
Dervied From: Band Metadata - reflectanceoffset
Mapping: reflectance scale * (si value - reflectance offset) 1331
Data Type: uint8
Prefix: /MODISSWATHTypeLIB/Data Fields
From: <Prefix>/EV_1KMRefSBUncertIndexes
From: <Prefix>/EV_1KMEmissiveUncert_Indexes
From: <Prefix>/EV_250 AggrlkmRefSBUncertIndexes

uncertaintyindex MOD02 From: <Prefix>/EV_500 Aggrlkm RefSBUncertIndexes
From: <Prefix>/EV_500_RefSBUncertIndexes
From: <Prefix>/EV_250_Aggr500_ReSBUncertIndexes
From: <Prefix>/EV_250_RefSBUncertIndexes
From: <Prefix>/EV Band26 Uncert Indexes
Data Type: float
Derived From: uncertaintyindex

uncertainty_pct MOD02 Dervied From: Band Metadata - specified uncertainty
Dervied From: Band Metadata - uncertaintyscalingfactor

I Mapping: specified uncertainty * e^(uncertainty index / uncertainty scaling factor) [331

Table 7: Band_x_Measurements.csv Field Mappings
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3.5 Excluded Data

The mod2csv utility does not write all data out to CSV. Aside from data not included in the

mappings specified earlier, some data is purposefully not written to CSV. Particularly, longitude

values that do not fall within the range -180 to 180, latitude values that doe not fall within the

range -90 to 90, measurements having uncertainty index values of 15 or greater, and

measurements having scaled integer values greater than 32767 are all excluded since they are

invalid/unusable data [33].

3.6 Performance Metrics

The mod2csv utility was run one time for each spatial resolution and, during each run, 23

granules were processed into CSV. Table 8 shows the average per-granule metrics relevant to

evaluating the overall performance of the mod2csv utility.

1km 168.8 MB 3 1.1 NM 168.7 s 41 5.81 GB 34.4 MIB/s
500m 167.6 MB 3 1.1 NM 123.0 s 10 5.81 GB 47.2 MB/s
250m 184.1 NM 3 1.1 NM 169.0 s 5 9.55 GB 56.5 M4B/s

Table 8: mod2csv Average Performance Metrics Per Granule

For perspective, the total times to process the batches were: 64.7 minutes for the 1km granules,

47.2 minutes for the 500m granules, and 64.8 minutes for the 250m granules. In comparison, it

takes approximately 115 minutes for the MODIS sensor to collect the raw data and then

additional processing steps are necessary to produce the HDF granules.
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3.7 Observations

The mod2csv utility processes all applicable band data in parallel on a per-scan basis. All threads

that work in parallel to process a scan must complete before starting to process the next scan.

This synchronization is done purposefully to constrain RAM requirements to a level that can run

on a modem laptop computer. The higher resolution data also has higher output rates because the

processors can do more work per scan and there is less disk contention while writing the CSV

output because there are fewer files being written simultaneously.

Faster performance might be realizable if the utility were permitted to make use of more

RAM. This additional RAM could be used to buffer more of the data to be read, processed and

ultimately written to the band_x_measurements files and make use of a coordinator to maximize

disk throughput. The mod2csv utility can, however, already process a large number of MODIS

data files across a large cluster completely independently of other instances. Furthermore, once

the resulting CSV is generated, there is no need to generate it again unless the exact data required

from the MODIS files changes. As a result, the output of the mod2csv utility should minimize

rework by providing a checkpoint step.

For a production system that targeted specifically to SciDB, it would be worthwhile to

consider building an optimized binary loader that can perform the functionality of the mod2csv

utility, but which also can place the resulting data directly into SciDB without producing large

CSV intermediate files. This not only would minimize the logistics required to import the

MODIS data into SciDB, but also could greatly improve performance. Given the extensibility of

SciDB through user-defined functions (UDFs), it is not difficult to extend the database with these

capabilities. In fact, a limited HDF/FITS loader has already been created for SciDB [34].
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Chapter 4: Loading MODIS CSV Data into SciDB

Once mod2csv has generated the CSV output for a set of desired MODIS data granules, the next

step toward analysis is to load the resulting CSV data into SciDB. This chapter describes the

steps that were undertaken to accomplish that task.

4.1 SciDB Built-In Load Options

Aside from any specialized extensions to SciDB, which may allow for binary loading of

particular data format, the database ships with the ability to load two different SciDB-specific

text formats: dense load format (DLF) and sparse load format (SLF). Each load format provides

a particular way of representing array data. As will be discussed a bit later, in addition to these 2

load formats, SciDB includes a utility called csv2scidb, which enables the loading of CSV data

into the database.

DLF is useful when the attributes for every cell in the multidimensional array will be

specified and no cells will be empty (though their attributes might be null). With DLF,

dimension values are not explicitly written into the load file because they are implicit in the

ordering and grouping of the data itself. SLF, on the other hand, is most useful when the data to

be imported is sparse and it is more desirable to specify only the attributes for cells that actually

have data. When using SLF, the dimensions for each cell must be specified in the load file so that

gaps may exist in the data. The choice of which format to use is ultimately dependent on the

nature of the data itself. As will be discussed in the next section, both load formats have an

inherent requirement that may prove to be burdensome for typical real-world data import

projects and directly representing data to be loaded in these formats is not common.
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4.2 Loading One-Dimensional Arrays

An impediment to the ease of use of each SciDB load format for multidimensional arrays

is the requirement that data in the load files be partitioned and organized by chunk. Meeting this

requirement can entail significant preprocessing of the data and forward knowledge of the

dimensions and chunk sizing of the target array. This approach may prove infeasible for many

real-world big data applications. As a result, an alternative approach illustrated in Figure 15 has

been devised, and is currently the recommended way to import data into SciDB: loading data

into one-dimensional arrays and then transforming those arrays into higher dimensional ones

within SciDB. With the help of the provided csv2scidb utility and a SciDB function called

redimensionstore, this process can make loading into SciDB from CSV a straightforward task.

csv2scidb load redimension-store
CSV 1-Ddi

DLF 1D-D n-D
Array Array

Figure 15: SciDB Recommended Load Process

The csv2scidb utility provided with the SciDB database reads CSV and produces a single,

chunked, DLF file suitable for loading into a one-dimensional array. This resulting file can be

loaded only from one instance of SciDB, regardless of the number of instances that are members

of the cluster. In the next section, a custom-built parallel version of csv2scidb is presented, which

allows parallel loading of data across all instances.
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4.3 SciDB Parallel Load with pcsv2scidb

As part of this project, a utility that extends the capability of csv2scidb was developed that

supports the parallel loading capability of SciDB. The pcsv2scidb utility accepts a parameter

specifying the number of instances in the SciDB cluster and rather than emitting a single DLF

file, it emits one per instance as shown in Figure 16. The data is distributed to each instance load

file via a mechanism that distributes chunks across each instance load file. This approach

specifies chunk indices for chunks written into each file in such a way that the chunks loaded by

each instance also end up being stored in the instances that loaded them, preventing shuffling of

chunks across the network during the load process. Since more instances become involved with

the load process and little or no data is shuttled between the instances, the load process using

pcsv2scidb should finish faster as the number of instances increases. Benchmarks covered later

should help to quantify the benefit of taking advantage of SciDB's parallel loading capabilities.

Figure 16: Operation of pesv2scidb Utility
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4.4 Performance Metrics

This section details performance metrics for each aspect of the load process for the same set of

granules for which CSV output was created by the mod2csv utility.

4.4.1 Converting CSV to DLF with pcsv2scidb

Table 9 shows the average per-granule metrics for converting CSV to one-dimensional DLF for a

range of 1 to 5 instances and over each of the 3 spatial resolutions. Note that all CSV files for

each granule were processed in parallel up to 9 at a time, which could be responsible for some

disk contention and performance fluctuations. This approach was experimentally found faster

than processing each file serially and was used instead. The metrics presented in this section do

not include loading of data into SciDB, but rather only the transformation of the input CSV into

the one-dimensional DLF format that is suitable for loading into one-dimensional load arrays.

1 500m
250m

10
5

5.81 GB
9.55 GB

60.6s
102.7s

6.06 GB
9.94 GB

"M.U IM/s
100.0 MB/s
96.8 MB/s

1km 41 5.81 GB 64.6s 6.08 GB 94.1 MB/s
2 500m 10 5.81 GB 60.8 s 6.06 GB 99.7 MB/s

250m 5 9.55 GB 109.5 s 9.94 GB 90.8 MB/s
1km 41 5.81 GB 65.1 s 6.08 GB 93.4 MB/s

3 500m 10 5.81 GB 61.7 s 6.06 GB 98.2 MB/s
250m 5 9.55 GB 118.4 s 9.94 GB 84.0 MB/s

1km 41 5.81 GB 66.4s 6.08 GB 91.6 MB/s
4 500m 10 5.81 GB 64.0 s 6.06 GB 94.7 MB/s

250m 5 9.55 GB 102.3 s 9.94 GB 97.2 MB/s
1km 41 5.81 GB 67.9 s 6.08 GB 89.5 MB/s

5 500m 10 5.81 GB 65.9s 6.06 GB 91.9 MB/s
250m 5 9.55 GB 91.1 s 9.94 GB 109.1 MB/s

Table 9: pcsv2scidb Average Performance Metrics Per Granule
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Figure 17: pcsv2scidb Average Processing Time Per Granule
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Figure 18: pcsv2scidb Average Output Rate Per Granule

With the exception of some small fluctuations, Table 9, Figure 17, and Figure 18, show that the

performance of the pcsv2scidb utility overall holds fairly steady. Performance at each spatial

resolution is a factor of the average amount of data in each CSV file comprising a granule and

the total number of such files. Larger processing times for the 250m granules are directly

attributable to the larger overall size of the granules. We can see from Figure 18 that the output

rates for all 3 spatial resolutions tend to remain within a somewhat narrow margin.
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4.4.2 One-Dimensional DLF Load

Unsurprisingly, loads are performed in SciDB using the "load" operation. For reasons discussed

earlier, data for this project is imported into SciDB using a two-step process: parallel load data

into one-dimensional arrays and then re-dimension them into their multidimensional analysis

arrays. This section presents benchmarking results for the first of those two steps over local

(same machine) clusters of 1 to 5 instances and across all 3 spatial resolutions. Note that there is

a one-to-one mapping between the DLF load files and the one-dimensional load arrays in SciDB.

250m
1km 41 6.08 GB 6 102.2s 41 59.5 MB/s

2 500m 10 6.06 GB 4 130.6s 10 46.4 MB/s
250m 5 9.94 GB 2 453.5 s 5 21.9 MB/s

1km 41 6.08 GB 6 85.1s 41 71.4 MB/s
3 500m 10 6.06 GB 4 91.6s 10 66.2 MB/s

250m 5 9.94 GB 2 311.3 s 5 31.9 MB/s
1km 41 6.08 GB 6 92.4s 41 73.8 MB/s

4 500m 10 6.06 GB 4 82.3s 10 73.6 MB/s
250m 5 9.94 GB 2 250.9s 5 39.6 MB/s

lkm 41 6.08 GB 6 74.9s 41 81.2 MB/s
5 500m 10 6.06 GB 4 77.6 s 10 78.1 MB/s

250m 5 9.94 GB 2 272.9 s 5 36.4 MB/s

9.94 GB 2 772.9s

Table 10: Average One-Dimensional DLF Load Metrics Per Granule

The concurrency column of Table 10 indicates the number of DLF files that were imported in

parallel in this benchmark. These concurrency values have been purposefully varied between

spatial resolutions to reduce swapping because file sizes vary between spatial resolutions, which

directly impacts memory utilization.
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1 2 3 4 5

Instances

Figure 19: 1-D Load Time by Number of Instances

1 2 3 4 5

Instances

Figure 20: 1-D Load Rate by Number of Instances

From Figure 19 and Figure 20, we can see that load time decreases and load rate generally

increases as we add additional instances to the cluster. One exception is for 250m data being

loaded into 5 instances. The server began to experience contention at this level of parallelism that

was parasitic on the performance. This would not be the case in a true cluster of physically

separate servers. Theoretically the load time should converge asymptotically to a number slightly

larger than the time required to load a single chunk into each instance if the number of instances

was equal to the number of chunks being loaded.
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4.4.3 Re-Dimension Store

The final step to loading data into SciDB is to re-dimension the one-dimensional load data into

the multidimensional analysis arrays using the redimensionstore operation. This section

presents the metrics collected during that second load stage.

2000

2' 1500

1000

500

0

1
IKMf 41 6 98.7 S

1km 41 6 83.4s
2 500m 10 4 134.9s

250m 5 2 470.3 s
1km 41 6 83.7s

3 500m 10 4 130.6s
250m 5 2 469.4 s

ikm 41 6 78.6s
4 500m 10 4 133.6s,
_____ 250m 5 2 673 .5 s

1km 41 6. 93.7s
5 500m 10 41 196.ls
_____ 250m 5 2 2,171.1s

Table 11: Re-Dimension Store Metrics Per Granule

+-1km

-0-500m

"*-250m

1 2 3 4 5

Instances

Figure 21: Re-Dimension Store Time Per Granule by Number of Instances
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From Table 11 and Figure 21, we can see that the time to perform the redimensionstore

operation increased dramatically after increasing the cluster size from 3 to 5 instances. The

reason for this is that the benchmark server was observed to run out of RAM resources and

began swapping heavily. Notably, the SciDB system was able to complete the operation

eventually despite running out of RAM in the process.

Aside from the results for the 4-5 instances, the smaller cluster sizes did show a benefit

from parallelization of the redimensionstore operation. This benefit, however, was not nearly as

dramatic for the load operation in this case because the nature of the operation limits its ability to

scale horizontally. Unfortunately, it appears as though the redimensionstore has to be thought of

as a nearly a constant-time operation despite the number of cluster instances.

4.4.4 MODBASE Schemas

The MODBASE schemas can be found in the appendices of this document. As was mentioned

earlier, there are two schemas: one-dimensional load schema and analysis schema. The one-

dimensional load schema is transient and created only during loads by the load tools themselves.

Once data has been re-dimensioned into the analysis arrays, the load arrays are removed. The

analysis schema is designed to optimize performance of typical Earth Science queries. Each

bands is stored in its own array because many operation operate only on small subsets of bands.

The SciDB join operation makes it trivial to efficiently combine multiple bands together, side-

by-side. Also, by de-normalizing the bands into separate arrays, these arrays can use the SciDB

join operation to join on the geodata array as well. This allows very efficient queries to be

authored, which can filter data based on attributes such as sensor zenith/azimuth.
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Chapter 5: Earth Science Benchmarks

This chapter presents benchmarks that help both qualitatively show how SciDB can be used to

perform basic analysis pertinent to the Earth Science community and quantitatively demonstrate

the time needed to accomplish such analysis on the specified benchmark server. All benchmarks

in this chapter have been run using 500m MODIS data exclusively as it is the highest resolution

having data for all the bands needed to run each of the benchmarks. Source code used to perform

these benchmarks has been provided in the appendices for reference and is implemented as a

series of database queries driven by Bash shell scripts.

While the resolution of the data used for the benchmarks was held constant for all the

benchmarks, the number of instances and the size of the data window to be processed were

varied to help paint a picture of how effectively SciDB can parallelize work across an increasing

number of instances and data. The number of instances was varied between 1 and 5. Through

experimentation, it was found that a 5 instances cluster was pushing the memory limits of the

benchmarking server on certain tasks. Three data windows were used by each benchmark. Each

data window is a geographic subset (filtered on latitude and longitude) of the data that was

loaded into the database. The three windows are 100 x 10*, 20* x 20*, and 30* x 300 in size,

centered over an area having a high concentration of data points.

To help provide additional insight into benchmark performance beyond just the

processing time, the number of cells processed by each benchmark has also been captured and

the number of cells processed per second has been provided. This additional metric helps to

normalize the performance as a function of the amount of work being done per unit time by the

benchmark. Note, all benchmarks were run 3 times and the results were averaged.
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5.1 RGB Composite Images

Figure 22: RGB Composite Image of a Single 500m MODIS Granule

Generating red, green, and blue (RGB) composite images from MODIS data is a relatively

simple, but useful, task that exercises important core properties of the SciDB database. RGB

composite images present MODIS data as a human viewing the Earth from the satellite's

perspective might see it. Figure 22 is an example of an RGB composite image generated as a

result of gridding and visualizing data generated from this benchmark. Three separate band data

sets must be accessed, filtered and combined but no further processing is performed. The
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MODIS bands that most directly correspond to red, green and blue reflectance values are bands 1

(red), 4 (green) and 3 (blue). The resulting metrics are shown in Table 12 and graphed in Figure

23 and Figure 24.

100 x 10* 3,511,861 30.9 s 113,775
1 20* x 20* 9,086,027 68.1s 133,357

30* x 30* 10,994,294 79.9 s 137,658
10* x 10* 3,511,861 20.1s 174,719

2 200 x 200 9,086,027 36.5 s 249,160
30* x 300 10,994,294 42.3 s 260,117
10* x 10* 3,511,861 16.4 s 213,704

3 20* x 20* 906,027 30.4 s 298,882
30* x 30* 10,994,294 33.9s 324,315
100 x 10* 3,511,861 12.2 s 288,646

4 20* x 200 9,086,027 26.2 s 347,237
300 x 30* 10,994,294 28.2 s 389,408
10* x 100 3,511,861 22.7s 154,708

5 20* x 200 9,086,027 34.3 s 265,156
30* x 30* 10,994,294 36.8 s 299,029

Table 12: RGB Composite Benchmark Metrics
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Figure 23: Average RGB Composite Processing Time by Number of Instances
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Figure 24: Average RGB Composite Cells / Second by Number of Instances

From these metrics and graphs, it is immediately apparent that we have again encountered the

same problem that we encountered during redimensionstore when the cluster sized was

increased from 4 to 5 instances. The benchmarking server ran out of RAM resources and

experienced swapping that negatively affected performance. From 1 to 4 instances, however,

performance did increase as expected with the addition of new instances.

Though it is intuitive that processing more data could take more time than processing

less, in an ideal world the cells / second that are processed would be the same regardless of the

number of input cells. However, given the discrete nature of the SciDB storage and processing

engine, which is chunk-based, the possibility of an uneven distribution of chunks across

instances, and the likelihood that not all chunks will have the same cell density, divergence in

performance such as the one see in Figure 24 are probable. As the data window (a subset of the

array dimensions) increases in size, there are more chunks that may be processed in parallel,

which might partly explain why larger data windows exhibit better performance.
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5.2 Normalized Difference Vegetation Index (NDVI)

Figure 25: NDVI Image Created from a portion of a 500m MODIS Granule

The NDVI is a common Earth Science analysis that uses the reflectance properties of vegetation

in the red and near-infrared (nir) bands to identify the relative concentration of vegetation in a

given area NDVI = (nir - red) / (nir + red). For MODIS, band 1 corresponds to red and band 2

corresponds to nir. NDVI can be run on 250m resolution data since data for both bands is

provided at that resolution. For consistency, however, this benchmark was run on 500m data.

Table 13, Figure 26, and Figure 27 present the performance metrics for the NDVI benchmark.
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800.0

600.0
E

400.0

00 -~~

0.0

10* x 100 25,105,811 147.2 s 170,517
1 200 x 200 86,482,367 462.9 s 186,827

30* x 30* 151,772,170 784.5 s 193,455
10ox 10 25,105,811 87.2 s 287,801

2 20 x 20 86,482,367 283.2 s 305,376
30 0 x 300 151,772,170 477.0 s 318,181
100 x 100 25,105,811 80.0 s 313,953

3 20* x 20* 86,482,367 254.9 s 339,324
300 x 30* 151,772,170 399.6 s 379,810
10*x 10* 25,105,811 68.2s 367,941

4 200 x 200 86,482,367 203.0 s 426,091
x30 x30' 151,772,170 38L9 s 397,413

100 x 10* 25,105,811 66.2 s 379,433
5 20* x 20* 86,482,367 189.6 s 456,131

300 x 30* 151,772,170 347.7 s 436,461

Table 13: NDVI Benchmark Metrics
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Figure 26: Average NDVI Processing Time by Number of Instances
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Figure 27: Average NDVI Cells / Second by Number of Instances

The results of this benchmark show that the NDVI calculation also exhibits significant

performance benefits from having more instances in the cluster. Like the prior benchmark, we

see that the cells/second processed on a single instance are closely grouped for each of the

window sizes, but that some divergence is noticeable as the number of instances in the cluster is

increased. In general, larger data windows still seem slightly outperform the smaller ones, with

an exception in this case of the 200 x 20* overtaking the 30* x 30* for 4 and 5 instances.

Despite adding calculations, this benchmark performs very strongly relative to the RGB

composite benchmark, which has joins instead. It is interesting to note that the incremental

benefit of adding additional instances to the cluster appears to decrease with each added instance.

This makes sense from a strictly mathematical examination, however, as each additional instance

represents 1/n of the total capacity of the cluster. As n gets larger, the relative contribution of

each additional instance gets proportionally smaller. Furthermore, as we add more instances to

the same physical machine, they start to compete with each other for limited resources.
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5.3 Normalized Difference Snow Index (NDSI) + Snowmap

Figure 28: NDSI+Snowmap Image Created from a portion of a 500m MODIS Granule

The NDSI and Snowmap provide a means of determining where snow cover in a given scene.

The NDSI is very similar to the NDVI, with the exception that it uses bands 4 and 6 rather than 1

and 2. NDSI = (Band 4 - Band 6) / (Band 4+ Band 6). The NDSI, however, sometimes has

trouble discriminating snow from water or from certain types of vegetation under certain

circumstances [35]. The Snowmap is a binary indicator of snow that is derived from the positive

outcome on three separate tests: NDSI> 0.4, Band 2> 0.11 and Band 4 > 0.1. An additional

lowering of the NDSI threshold is sometimes done in areas with high NDVI, but this test was not
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added to this benchmark. Table 14, Figure 29, and Figure 30 present the performance metrics for

the NDSI+Snowmap benchmark.

10* x 10* 22,357,813 288.5 s 77,497
1 200 x 200 78,252,073 942.3 s 83,047

300 x 30* 139,088,124 1,608.5 s 86,472
100 x 10* 22,357,813 164.6 s 135,831

2 200 x 20* 78,252,073 536.4 s 145,893
300 x 300 139,088,124 939.3 s 148,082
10* x 100 22,357,813 155.8 s 143,473

3 20* x 20* 78,252,073 433.1 s 180,665
30* x 30* 139,088,124 738.2s 188,407
10* x 10* 22,357,813 109.0 s 205,055

4 20* x 200 78,252,073 349.7 s 223,790
30* x 300 139,088,124 624.0 s 222,886
10* x 100 22,357,813 113.9 s 196,351

5 200 x 200 78,252,073 306.5 s 255,309
300 x 30* 139,088,124 571.7 s 243,303

Table 14: NDSI+Snowmap Benchmark Metrics
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Figure 29: Average NDSI+Snowmap Processing Time by Number of Instances
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Figure 30: Average NDSI+Snowmap Cells / Second by Number of Instances

The performance characteristics of the NDSI+Snowmap show stark similarities to the

characteristics of the NDVI benchmark, despite taking nearly twice as long to complete (because

it is doing roughly twice the work). The performance of 30' x 300 and 200 x 200 windows

closely track each other initially and cross over at 4 instances, as they did in the NDVI

benchmark. Additionally, the 100 x 100 window also seems to plateau at 3 and 5 instances, as

was the case in the NDVI benchmark (though this time it slid backward a bit in performance).

For the larger data windows, it appears that each additional instance continued to show

performance gains and another few instances would likely continue that trend. The performance

"stalls" seen in the 100 x 100 to some extent in the NDVI benchmark and to a greater extent in

this benchmark are curious and deserve further study. They may have some relation to the

distribution of chunks across the cluster or the uneven distribution of data within chunks leading

to the particular chunks involved in this benchmark being unevenly distributed.
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5.4 Gridding Data

Gridding data is a very task that is used to down sample data for the purposes of comparison or

display. Attempting to plot 150 million sparse pixels would generally yield unsatisfactory

results. Instead, aggregation functions are used to create a single pixel value in the grid space

from potentially many pixels in a higher-resolution space. SciDB has a built in function to

exactly this operation called "regrid". The regrid operation would be a perfect choice if all pixels

can be treated as point sources. However, because MODIS pixels actually represent data

collected over a significant spatial area, representing the as point sources may not be desirable.

To show that SciDB can accommodate this use case, another technique that amounts to

performing aggregations using overlapping windows was devised. The amount of overlap for

each window corresponds to roughly half of a MODIS pixel, allowing influencing pixels to be

incorporated that would have otherwise been excluded by the regrid operation.

This benchmark measures the performance of the devised method for allowing

overlapping windows rather than that of regrid, which is certainly much more efficient. Because

SciDB currently does not currently have explicit support for an overlapping regrid operation, or a

window operation with start/step syntax, this capability had to be emulated using other SciDB

operations. Though it works as expected, this method of gridding is computationally expensive

and could easily be optimized through the creation of a native operation. Given the

computationally intensive nature of the work being performed, or all the benchmarks run in this

project, the gridding benchmark is the most challenging for the database to perform. Table 15,

Figure 31, and Figure 32 present the performance metrics for the gridding benchmark.
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3000.0

2500.0

E 2000.0
P
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0

500.0

100 x 100 25,105,811 506.2 s 49,592
1 200 x 200 86,482,367 1,556.4 s 55,567

30* x 30' 151,772,170 2,633.5s 57,631
10 x 10' 25,105,811 318.9s 78,735

2 200 x 20- 86,482,367 1,114.4 s 77,604
30' x 30' 151,772,170 1,876.3 s 80,888
100 x 100 25,105,811 208.4 s 120,489

3 200 x 200 86,482,367 743.5 s 116, 318
30* x 30* 151,772,170 1,269.8s 119,528
10'x 10' 25,105,811 189.1 s 132,788

4 20 0 x 20 86,482,367 626.9 s 137,960
300 x 300 151,772,170 1,051.9 s 144,279
100 x 100 25,105,811 169.6 s 148,030

5 20* x 20* 86,482,367 577.2 s 149,831
30 0 x 300 151,772,170 981.9s 154,565

Table 15: Gridding Benchmark Metrics

4 10* x 10*

-e-20" x 20*

.130* x 30*

0.0L

1 2 3 4 5

Instances

Figure 31: Average Gridding Processing Time by Number of Instances
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Figure 32: Average Gridding Cells / Second by Number of Instances

This benchmark displays the same characteristic curves we saw from the prior ones, except that

the deviations in the performance of each of the data windows from the perspective of

cells/second processed are much smaller. As with the others, there are marginal increases in

performance as additional instances are added and there appear to be performance asymptotes to

which each plot appears to be converging. We can see, however, that this is a computationally

expensive benchmark from the time needed to process it and the lower cells/second processed.
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Chapter 6: Conclusions and Future Work

The primary objective of this project was to design, implement, and characterize the

performance of a system for analyzing MODIS data, built around and upon the SciDB

multidimensional array database. In short, MODBASE has met all of the stated objectives. A

preprocessor component was built to extract and upsample MODIS HDF-EOS data and a parallel

loader component was created to increase the ingest rate of the system by taking advantage of

SciDB's ability to perform distributed loading across all cluster instances. One-dimensional load

and multidimensional analysis schemas were designed and data was loaded through a CSV to

SciDB load process. Once the data was loaded, detailed performance metrics were taken over a

cross product of 4 benchmarks x 5 clusters x 3 data windows =60 configurations (each of which

were run 3 times and averaged). In all cases, it was clear that SciDB was making use of

additional instances to spread not only the storage burden, but also the computational burden.

The MODBASE system shows great promise for scalability and provides an intuitive platform

for performing ad-hoc analysis via a query language interface supporting multidimensional array

operations that perfectly suit the Earth Science domain.

For 3 instances installed on the commodity benchmark server used for this project, the

total time to preprocess and load a single granule of data varied between approximately 5-6

minutes for lkm and 500m granules and 20 minutes for 250m granules. Adding more physical

servers to the cluster would decrease the total time needed to preprocess HDF granules while

increasing the number of granules that could be processed in parallel. A cluster with sufficient

capacity should therefore be capable of loading the entire multi-petabyte MODIS Level-1B data

set and incrementally incorporating new granules as they become available. The resulting data
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store could then be analyzed in an ad-hoc fashion using queries such as the ones used to perform

the benchmarks for this project. Analytical results can be persisted to new arrays, which

themselves can be further analyzed. Entire analysis pipelines can be constructed and automated,

allowing for regularly scheduled creation of an ecosystem of analytical products. The

benchmarks performed in this project indicate that, provided cluster instances do not run out of

memory or processing resources, the aggregate number of cells per second that can be processed

by clusters of increasing size also increases proportionally.

As is common with most database systems, loading data into SciDB is time consuming

and warrants further investigation. The approach taken in the course of this project was the one

most commonly used by end-users of the SciDB system today and, therefore, getting

performance data around the CSV to SciDB load process was desirable. Further work might

include diving deeper into alternative options, including the possibility of using a binary load

facility, may help decrease the time needed to get data into SciDB for analysis. Still, the overall

load times using the method outlined in this project is already competitive with commercial data

warehouse products on the market today.

It appears as though all benchmarks start to converge to some lower bound for processing

time that adding more instances will not significantly decrease. Further profiling the system

under those circumstances may lead to insights into increasing overall system performance.

Chunk sizing, chunk cell density and cluster size can interact in ways that are difficult to predict

since the interactions may be data-dependent or affected by the nature of the ad-hoc query being

run. Additional study may yield some generalizations that can help prevent performance

fluctuations and performance regressions. From an Earth Science perspective, some additional
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functionality can be added to SciDB, such as support for overlapping window aggregates and

geographical projection library support, which will further attract members of the community to

the database and also further increase performance of the system using optimized, well-tested

components.

While the benchmarks for this project were limited to well-known, relatively simple

analytical tasks, they represent the most typical operations performed in the domain: filtering

data by time and location, time-series aggregations, comparing and performing arithmetic across

multiple bands of data, and so on. Once data has been loaded into MODBASE, the analysis that

can be performed is practically unbounded. The SciDB system comes loaded with an ever-

growing library of mathematical functions and supports user-defined functions and data types.

Earth scientists wishing to perform analysis of MODIS data now have a powerful tool in their

belt that can import MODIS Level lB data and perform analysis that can diverge from the

NASA packaged product set.
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Appendix: Benchmark Server Specifications

This section details the configuration for the server used to perform all performance benchmarks.
The server was dedicated to the task of running benchmarks and had no virtualization, additional
users, or extraneous processes running beyond the core operating system processes.

Model
Dell PowerEdge R710 - 2U

Operating System
Ubuntu Server 10.10

SciDB Version
12.7

Processors
(2) Intel Xeon E5645 2.40 GHz, 12M cache, 5.86 GT/S QPI, 6 hyper-threaded cores each. 24
total threads.

RAM
48GB (6 x 8GB), 1333MHz, Dual Ranked LV RDIMMS

Hard Drives
(6) 2TB 7.2K RPM, Near-Line SAS 6Gbps 3.5in Hot-plug Hard Drive

RAID
PERC H700 Integrated RAID Controller, 512MB Cache, x6
(3) Raid 0 volumes were configured using the 3 pairs of physical drives and 1 MB stripe size.

Ethernet
Embedded Broadcom, GB Ethernet NICS with TOE

Power Supply
High Output Power Supply Redundant, 870W (330-3475)
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Appendix: SciDB Configuration File

This section provides the contents of the config.ini file used to configure SciDB for
benchmarking purposes. The only difference between the configurations for single and multiple
instance benchmarking runs is the number after the comma on the first line, affecting the number
of SciDB instances that are initialized.

[modisdb]
server-O=localhost,0
dbuser=singleinstance
dbpasswd=singleinstance
installroot=/opt/scidb/12 .7
metadata=/opt/scidb/12.7/share/scidb/meta.sql
pluginsdir=/opt/scidb/12 . 7/lib/scidb/plugins
logconf=/opt/scidb/12 .7/share/scidb/log4cxx.properties
base-path=/data/scidb
base-port=1239
interface=ethO
chunk-segment-size=250000000
io-log-threshold=-1
result-prefetch-threads=4
execution-threads=8
result-prefetch-queue-size=4
chunk-reserve=O
tmp-path=/data/scidb/tmp
merge-sort-buffer=1024
smgr-cache-size=1024
mem-array-threshold=1024
rle-chunk-format=true
repart-use-sparse-algorithm=true
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Appendix: CSV Sample Data

This section provides excerpts of CSV that has been output from the mod2csv utility. Note that
only Band_1 _Measurements.csv is shown as it has the same structure as all
Band_x_Measurements files.

Granule Metadata.csv
start time,platformid, resolutionid, scans,trackmeasurements, scan measurements, daynight_flag, fi
le id,geofile id
201201010000,1,2,203,2030,1354,"Day","MOD021KM.A2012001.0000.005.2012001080421.hdf","MOD03.A20120
01.0000.005.2012001071428.hdf"

Band Metadata.csv
start time,platformid,resolutionid,band id,radiance_scale,radiance offset,reflectancescale,ref
lectanceoffset,correctedcountsscale,correctedcountsoffset,specifieduncertainty,uncertainty_
scaling_factor
201201010000,1,2,0,0.026254319,-0.0,4.965319E-5,-0.0,0.1249733,-0.0,1.5,7.0
201201010000,1,2,1,0.009791818,-0.0,2.9977824E-5,-0.0,0.1249733,-0.0,1.5,7.0
201201010000,1,2,2,0.034223136,-0.0,4.978973E-5,-0.0,0.1249733,-0.0,1.5,7.0
201201010000,1,2,3,0.023708515,-0.0,3.859623E-5,-0.0,0.1249733,-0.0,1.5,7.0
201201010000,1,2,4,0.005847191,-0.0,3.744481E-5,-0.0,0.1249733,-0.0,1.5,5.0
201201010000,1,2,5,0.0026472483,-0.0,3.3473836E-5,-0.0,0.1249733,-0.0,1.5,5.0
201201010000,1,2,6,8.1179396E-4,-0.0,2.7300814E-5,-0.0,0.1249733,-0.0,1.5,5.0
201201010000,1,2,7,0.013242942,316.9722,2.3043067E-5,316.9722,0.12619403,316.9722,1.5,7.0
201201010000,1,2,8,0.0084292535,316.9722,1.3449697E-5,316.9722,0.12619403,316.9722,1.5,7.0
201201010000,1,2,9,0.005361448,316.9722,8.221454E-6,316.9722,0.12619403,316.9722,1.5,7.0

Geodata.csv
longitude e4, latitude-e4,starttime, platform id, resolutionid,track index, scanindex, height, senso

r_zenith, sensorazimuth, range, solarzenith, solar-azimuth, landseamask
1504773,390042,201201010000,1,2,0,0,19,65.53,92.72,1419750,68.23,150.02,7
1505331,390023,201201010000,1,2,0,1,19,65.41,92.75,1415325,68.21,150.07,7
1505885,390004,201201010000,1,2,0,2,19,65.28,92.79,1410975,68.19,150.12,7
1506435,389984,201201010000,1,2,0,3,19,65.16,92.82,1406650,68.16,150.17,7
1506980,389964,201201010000,1,2,0,4,19,65.04,92.86,1402350,68.14,150.22,7
1507521,389944,201201010000,1,2,0,5,19,64.91,92.89,1398100,68.12,150.27,7
1508058,389924,201201010000,1,2,0,6,19,64.79,92.93,1393875,68.09,150.32,7
1508591,389904,201201010000,1,2,0,7,19,64.67,92.96,1389700,68.07,150.36,7
1509120,389884,201201010000,1,2,0,8,19,64.54,93,1385550,68.05,150.41,7

Band_1_Measurements.csv
longitudee4, latitudee4, starttime,platform-id, resolutionid,bandid, si value, radiance, ref lectan

ce, uncertaintyindex, uncertaintypct
1504773,390042,201201010000,1,2,0,3614,94.88311,0.17944662,2,1.996
1505331,390023,201201010000,1,2,0,3668,96.30084,0.18212791,2,1.996
1505885,390004,201201010000,1,2,0,4282,112.42099,0.21261495,1,1.73
1506435,389984,201201010000,1,2,0,2783,73.065765,0.13818483,3,2.303
1506980,389964,201201010000,1,2,0,1467,38.515087,0.07284123,5,3.064
1507521,389944,201201010000,1,2,0,1016,26.674387,0.050447643,6,3.535
1508058,389924,201201010000,1,2,0,988,25.939266,0.049057353,6,3.535
1508591,389904,201201010000,1,2,0,971,25.492943,0.048213247,6,3.535
1509120,389884,201201010000,1,2,0,1452,38.12127,0.07209643,5,3.064
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Appendix: SciDB One-Dimensional Load Schema

This section provides the definitions for each temporary load array used in this project. These
arrays temporarily store the one-dimensional loaded CSV data. Each load array can then be re-
dimensioned in to its corresponding multidimensional analysis array. The band_x_measurements
array actually represents 38 identically defined arrays where x is replaced with the MODIS name
for the band (e.g., 1, 131o, 32). Each band_x_measurement array will contain measurements only
for its corresponding band. The decision to separate band data in such a manner was an
intentional, selective denormalization that allows greater parallelization.

CREATE IMMUTABLE EMPTY ARRAY loadgranule_metadata

starttime int64,
platformid int64,
resolutionid : int64,
scans : uint8,
trackmeasurements uintl6,
scanmeasurements uintl6,
daynight flag : string,
fileid : string,
geofileid : string

i = 0 *, 500000, 0

1;

CREATE IMMUTABLE EMPTY ARRAY load-band metadata

starttime int64,
platformid int64,
resolutionid : int64,
bandid : int64,
radiancescale double,
radianceoffset float,
reflectancescale double,
reflectanceoffset float,
correctedcountsscale double,
correctedcountsoffset float,
specified-uncertainty : float,
uncertaintyscalingfactor : float

i = 0 *, 500000, 0
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SciDB Load Schema [continued]

CREATE IMMUTABLE EMPTY ARRAY loadgeodata

longitudee4 int64,
latitudee4 int64,
starttime int64,
platformid int64,
resolutionid : int64,
trackindex intl6,
scan-index intl6,
height : intl6,
sensorzenith float,
sensorazimuth float,
range uint32,
solarzenith float,
solarazimuth float,
landseamask uint8

i = 0 *, 500000, 0

CREATE IMMUTABLE EMPTY ARRAY loadbandzeasurements

longitude e4 int64,
latitudee4 int64,
starttime int64,
platformid int64,
resolutionid : int64,
sivalue : uintl6,
radiance : double,
reflectance : double,
uncertaintyindex : uint8,
uncertaintypct : float

i = 0 *, 500000, 0
1;
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Appendix: SciDB Multidimensional Analysis Schema

This section provides the definitions for each array used in this project. The platforms,
resolutions and bands arrays are only reference arrays that give meaningful descriptions for all id
values used in the other arrays. All arrays are marked immutable as they are designed so that the
values in a given chunk never change once imported. This helps to minimize overhead and
accidental updates to data The band_x_measurements array represents 38 identically defined
arrays where x is replaced with the MODIS name for the band (e.g., 1, 131o, 32). Each
band_x_measurement array will contain measurements only for its corresponding band. The
decision to separate band data in such a manner was an intentional, selective denormalization
that allows greater parallelization.

CREATE IMMUTABLE EMPTY ARRAY platforms

description string

platformid = 0 : 1, 1, 0

1;

CREATE IMMUTABLE EMPTY ARRAY resolutions

description : string

resolutionid = 0 : 2, 1, 0

l;

CREATE IMMUTABLE EMPTY ARRAY bands

description : string

bandid = 0 : 37, 38, 0

1;

CREATE IMMUTABLE EMPTY ARRAY granule uetadata

scans : uint8,
trackmeasurements : uint16,
scan measurements : uintl6,
daynight flag : string,
fileid : string,
geo-file-id string

starttime = 199900000000 : 201400000000, 1, 0,
platformid = 0 : 1, 1, 0,
resolution id = 0 : 2, 1, 0
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SciDB Multidimensional Analysis Schema [continued]

CREATE IMMUTABLE EMPTY ARRAY bandmetadata

radiancescale double,
radiance-offset float,
reflectancescale double,
reflectanceoffset float,
corrected counts scale double,
correctedcountsoffset float,
specifieduncertainty : float,
uncertaintyscalingfactor float

start time = 199900000000 201400000000, 1, 0,
platformid = 0 : 1, 1, 0,
resolution id = 0 : 2, 1, 0,
bandid = 0 : 37, 38, 0

CREATE IMMUTABLE EMPTY ARRAY geodata

track-index intl6,
scanindex intl6,
height : intl6,
sensorzenith float,
sensorazimuth float,
range : uint32,
solarzenith float,
solar azimuth float,
landseamask uint8

longitudee4 = -1800000 1800000, 50000, 0,
latitudee4 = -900000 : 900000, 50000, 0,
start time = 199900000000 : 201400000000, 1, 0,
platformid = 0 : 1, 1, 0,
resolutionid = 0 : 2, 1, 0

CREATE IMMUTABLE EMPTY ARRAY band xzmeasurements

sivalue : uintl6,
radiance : double,
reflectance : double,
uncertaintyindex : uint8,
uncertaintypct : float

longitudee4 = -1800000 : 1800000, 50000, 0,
latitudee4 = -900000 : 900000, 50000, 0,
starttime = 199900000000 : 201400000000, 1, 0,
platformid = 0 : 1, 1, 0,
resolution id = 0 : 2, 1, 0

];
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Appendix: SciDB Reference Array Data

This section provides the data that is loaded into the 3 reference arrays in the SciDB analysis
schema. The values are shown in SciDB dense load format. Once loaded, these values never
change in SciDB. The corresponding ID values are assigned based on the order of the values,
starting with 0 (e.g., platform id: 0 <=> "Aqua", resolution-id: 0 <=> "250m").

Bands

"1"), ( "2"),( 3" ) , ( "4"), ( " 5") , (" 6" ), (8"7") , (1"8"), (1"9"), ("10"), ("11"), ("12"),
" 131o") , 13hi") "141o" ) , ( "14hi") ( "P15" , ( "'16"I) ,( "#17" , ( " 18" , ( "119" ) ,
"'20'") , ( "21") , ( "22" ) , ( "23" ) , ( "24" ) , ( 25"), "26"1) , 1(271 "), 628"), "29 ") "30 ") "31")
-32"),(33") ("34 ),(35"),("36")

Platforms

("Aqua") ];
("Terra")

Resolutions

("250m") ];
("SOOm") ];
("1km") ]
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Appendix: List of MODIS Granules Used

Below is a list of all NASA MODIS HDF granules that were used in this project.

1km Granules

163MB - MOD021KM.A2012092.1925.005.2012093150459.hdf
161MB - MOD021KM.A2012093.1830.005.2012094181629.hdf
164MB - MOD021KM.A2012094.1910.005.2012095025321.hdf
167MB - MOD021KM.A2012094.1915.005.2012095025322.hdf
162MB - MOD021KM.A2012095.1815.005.2012096183440.hdf
164MB - MOD021KM.A2012095.1820.005.2012096183319.hdf
160MB - MOD021KM.A2012097.1805.005.2012100085003.hdf
158MB - MOD021KM.A2012097.1945.005.2012100084601.hdf
161MB - MOD021KM.A2012098.1850.005.2012100095757.hdf
161MB - MOD021KM.A2012099.1755.005.2012100104612.hdf
164MB - MOD021KM.A2012099.1930.005.2012100104839.hdf
162MB - MOD021KM.A2012100.1835.005.2012101024852.hdf
169MB - MOD021KM.A2012101.1920.005.2012102015232.hdf
165MB - MOD021KM.A2012102.1825.005.2012103015211.hdf
164MB - MOD021KM.A2012103.1905.005.2012104014458.hdf
161MB - MOD021KM.A2012104.1810.005.2012107084207.hdf
163MB - MOD021KM.A2012104.1950.005.2012107083422.hdf
163MB - MOD021KM.A2012105.1855.005.2012107095315.hdf
161MB - MOD021KM.A2012106.1800.005.2012107103510.hdf
153MB - MOD021KM.A2012106.1935.005.2012107103916.hdf
158MB - MOD021KM.A2012106.1940.005.2012107103749.hdf
157MB - MOD021KM.A2012107.1840.005.2012108023204.hdf
154MB - MOD021KM.A2012107.1845.005.2012108023020.hdf

250m Granules

177MB - MOD02QKM.A2012092.1925.005.2012093150459.hdf
171MB - MOD02QKM.A2012093.1830.005.2012094181629.hdf
180MB -MOD02QKM.A2012094.1910.005.2012095025321.hdf
171MB - MOD02QKM.A2012094.1915.005.2012095025322.hdf
176MB - MOD02QKM.A2012095.1815.005.2012096183440.hdf
173MB - MOD02QKM.A2012095.1820.005.2012096183319.hdf
175MB - MOD02QKM.A2012097.1805.005.2012100085003.hdf
178MB - MOD02QKM.A2012097.1945.005.2012100084601.hdf
167MB - MOD02QKM.A2012098.1850.005.2012100095757.hdf
170MB - MOD02QKM.A2012099.1755.005.2012100104612.hdf
179MB - MOD02QKM.A2012099.1930.005.2012100104839.hdf
173MB - MOD02QKM.A2012100.1835.005.2012101024852.hdf
176MB - MOD02QKM.A2012101.1920.005.2012102015232.hdf
171MB - MOD02QKM.A2012102.1825.005.2012103015211.hdf
187MB - MOD02QKM.A2012103.1905.005.2012104014458.hdf
179MB - MOD02QKM.A2012104.1810.005.2012107084207.hdf
175MB - MOD02QKM.A2012104.1950.005.2012107083422.hdf
183MB - MOD02QKM.A2012105.1855.005.2012107095315.hdf
177MB - MOD02QKM.A2012106.1800.005.20121071035 10.hdf
180MB - MOD02QKM.A2012106.1935.005.2012107103916.hdf
181MB - MOD02QKM.A2012106.1940.005.2012107103749.hdf
181MB - MOD02QKM.A2012107.1840.005.2012108023204.hdf
174MB - MOD02QKM.A2012107.1845.005.2012108023020.hdf

500m Granules

161MB - MOD02HKM.A2012092.1925.005.2012093150459.hdf
156MB - MOD02HKM.A2012093.1830.005.2012094181629.hdf
163MB - MOD02HKM.A2012094.1910.005.2012095025321.hdf
157MB - MOD02HKM.A2012094.1915.005.2012095025322.hdf
159MB - MOD02HKM.A2012095.1815.005.2012096183440.hdf
157MB - MOD02HKM.A2012095.1820.005.2012096183319.hdf
159MB - MOD02HKM.A2012097.1805.005.2012100085003.hdf
162MB - MOD02HKM.A2012097.1945.005.2012100084601.hdf
154MB - MOD02HKM.A2012098.1850.005.2012100095757.hdf
156MB - MOD02HKM.A2012099.1755.005.2012100104612.hdf
162MB - MOD02HKM.A2012099.1930.005.2012100104839.hdf
157MB - MOD02HiKMA2012100.1835.005.2012101024852.hdf
160MB - MOD02HKM.A2012101.1920.005.2012102015232.hdf
158MB - MOD02HIKM.A2012102.1825.005.201210301521 1.hdf
169MB - MOD02HKMA2012103.1905.005.2012104014458.hdf
163MB - MOD02HKM.A2012104.1810.005.2012107084207.hdf
159MB - MOD02HKNA2012104.1950.005.2012107083422.hdf
166MB - MOD02HKM.A2012105.1855.005.2012107095315.hdf
161MB - MOD02HKM.A2012106.1800.005.20121071035 10.hdf
165MB - MOD02HKN.A2012106.1935.005.2012107103916.hdf
164MB - MOD02HKM.A2012106.1940.005.2012107103749.hdf
164MB - MOD02HKM.A2012107.1840.005.2012108023204.hdf
158MB - MOD02HKMA2012107.1845.005.2012108023020.hdf

Geolocation Granules

29MB - MODO3.A2012092.1925.005.2012093141114.hdf
32MB - MODO3.A2012093.1830.005.2012094172529.hdf
32MB - MODO3.A2012094.1910.005.2012095023114.hdf
27MB - MODO3.A2012094.1915.005.2012095023107.hdf
32MB - MODO3.A2012095.1815.005.20120%174413.hdf
29MB - MOD03.A2012095.1820.005.2012096174418.hdf
32MB - MODO3.A2012097.1805.005.2012098011338.hdf
27MB -MODO3.A2012097.1945.005.2012098011322.hdf
29MB - MODO3.A2012098.1850.005.2012099012734.hdf
31MB - MODO3.A2012099.1755.005.2012100005923.hdf
30MB - MODO3.A2012099.1930.005.2012100005914.hdf
32MB -MODO3.A2012100.1835.005.2012101020833.hdf
28MB - MODO3.A2012101.1920.005.2012102013603.hdf
31MB - MOD3.A2012102.1825.005.2012103014540.hdf
32MB - MODO3.A2012103.1905.005.2012104012659.hdf
33MB - MODO3.A2012104.1810.005.2012105012255.hdf
27MB - MODO3.A2012104.1950.005.2012105012234.hdf
30MB - MOD03.A2012105.1855.005.2012106011503.hdf
32MB - MOD3.A2012106.1800.005.2012107011640.hdf
31MB - MOD03.A2012106.1935.005.2012107011555.hdf
27MB - MODO3.A2012106.1940.005.2012107011609.hdf
33MB - MOD03A2012107.1840.005.2012108020205.hdf
28MB - MOD03.A2012107.1845.005.2012108020153.hdf
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Appendix: RGB Composite Benchmark Source

Below is the shell script used to process 300 x 30* RGB composite data.

#!/bin/bash
platform=l
resolution=l
startLongitudee4=-1280000
stopLongitudee4=-980001
startLatitudee4=150000
stopLatitude e4=449999
startTime=201204111825
stopTime=201204111825

iquery -anq "remove(rgb)" > /dev/null 2>&l
attrs="<red:double null,green:double null,blue:double null>"
dims=[x=1:300000,15000,0,y=1:300000,15000,0]"
schema=$attrs$dims
iquery -anq "create immutable empty array rgb $schema" > /dev/null 2>&l

echo "Building RGB composite values..."
time iquery -ang "

redimension store(
apply(
between(

join(
attributerename(
band_1_measurements,
reflectance,
red

join(
attribute rename(
band_4_measurements,
reflectance,
green

attribute rename(
band_3_measurements,
reflectance,
blue

$startLongitudee4, $startLatitude_e4, $startTime, $platform, $resolution,
$stopLongitude-e4, $stopLatitude-e4, $stopTime, $platform, $resolution

x, longitude-e4 - $startLongitude e4 + 1,
y, latitudee4 - $startLatitudee4 + 1

rgb,
avg(red) as red,
avg(green) as green,
avg(blue) as blue

74



Appendix: NDVI Benchmark Source

Below is the shell script used to process 300 x 30' NDVI data.

#!/bin/bash
platform=1
resolution=l
startLongitudee4=-1280000
stopLongitudee4=-980001
startLatitudee4=150000
stopLatitudee4=449999
startTime=201200000000
stopTime=201300000000

iquery -ang "remove(ndvi)" > /dev/null 2>&1
attrs="<ndvi:double null>"

dims="[x=1:300000,10000,0,y=1:300000,10000,O]"
schema=$attrs$dims
iquery -anq "create immutable empty array ndvi $schema" > /dev/null 2>&1

echo "Calculating NDVI values..."
time iquery -anq "
redimension-store(
apply(
between(

join(
attributerename(
band_1_measurements,
reflectance,
red

),
attributerename(
band_2_measurements,
reflectance,
nir

$startLongitudee4, $startLatitudee4, $startTime, $platform, $resolution,
$stopLongitudee4, $stopLatitudee4, $stopTime, $platform, $resolution

x, longitudee4 - $startLongitude-e4 + 1,
y, latitudee4 - $startLatitude_e4 + 1,
ndvi, (nir - red) / (nir + red)

ndvi,
max(ndvi) as ndvi
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Appendix: NDSI+Snowmap Benchmark Source

Below is the shell script used to process 300 x 300 NDSI+Snowmap data.

#1/bin/bash
platform=l
resolution=1
startLongitudee4=-1280000
stopLongitudee4=-980001
startLatitudee4=150000
stopLatitude e4=449999
startTime=201200000000
stopTime=201300000000

iquery -ang "remove(ndsi)" > /dev/null 2>&1
attrs="<ndsi:double null,snowfraction:double null>"
dims="[x=1:300000,10000,0,y=1:300000,10000,O]"
schema=$attrs$dims
iguery -anq "create immutable empty array ndsi $schema" > /dev/null 2>&l

echo "Calculating NDSI values..."
time iquery -anq "

redimension store(
apply(
apply(
between(

join(
attribute rename(
band_2_measurements,
reflectance,
band2

join(
attributerename(
band_4_measurements,
reflectance,
band4

attributerename(
band_6_measurements,
reflectance,
band6

$startLongitudee4, $startLatitude_e4, $startTime, $platform, $resolution,
$stopLongitudee4, $stopLatitudee4, $stopTime, $platform, $resolution

x, longitude-e4 $startLongitude-e4 + 1,
y, latitudee4 - $startLatitudee4 + 1,
ndsi, (band4 - band6) / (band4 + band6)

snowmap, iif(ndsi > 0.4 and band2 > 0.11 and band4 > 0.1, 1.0, 0.0)

ndsi,
max(ndsi) as ndsi,
max(snowmap) as snowmap
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Appendix: Gridding Benchmark Source

Below is the script used to grid the 300 x 30* NDVI data (part of the NDVI benchmark script).

echo "Generating NDVI grid centers..."
xTiles=1500
xCellsPerTile=200
yTiles=1500
yCellsPerTile=200

overlapCells=50
xBlurWindowSize=$(($xCellsPerTile + $overlapCells))
yBlurWindowSize=$(($yCellsPerTile + $overlapCells))

iquery -anq "remove(gridcenters)" > /dev/null 2>&1
iquery -ang "create immutable empty array grid centers $schema" > /dev/null 2>&1

time iquery -anq "
redimension store(
apply(
cross(

build(<x:int64>[i=l:$xTiles,$xTiles,O],
int64($xCellsPerTile * (i - 0.5) + 0.5)),

build(<y:int64>[i=l:$yTiles,$yTiles,0],
int64($yCellsPerTile * (i - 0.5) + 0.5))

ndvi, double(null)

grid-centers

echo
echo "Gridding NDVI results..."
iquery -anq "remove(ndvigridded)" > /dev/null 2>&1
xStart=$(echo $xCellsPerTile 2 | awk '{printf "%d", int($1 / $2 + 0.5)}')
yStart=$(echo $yCellsPerTile 2 | awk 'fprintf "%d", int($1 / $2 + 0.5)}')

time iquery -anq
store(
thin(
window(
merge(ndvi, grid_centers),
$xBlurWindowSize,
$yBlurWindowSize,
avg(ndvi) as ndvi

$xStart, $xCellsPerTile,
$xStart, $yCellsPerTile

ndvigridded

echo
echo "Exporting results to CSV..."
time iquery -aq "scan(ndvigridded)" > -/ndvi-gridded.csv

iquery -ang "renove(gridcenters)" > /dev/null 2>&1
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Appendix: Raw Benchmark Data

1 10* x 10* 1 33.1 158.5 305.3 533.7
1 10* x 10* 2 29.8 141.5 272.4 518.7
1 10* x 10* 3 29.7 141.7 287.8 466.3
1 100 x 10* Ave 30.9 147.2 288.5 506.2
1 20* x 20* 1 71.4 494.4 967.7 1541.9
1 20* x 20* 2 67.8 447.3 946.8 1547.9
1 20* x 20* 3 65.2 447.0 912.3 1579.3
1 20* x 20" Avq 68.1 462.9 942.3 1556.4
1 30* x 30* 1 81.9 815.4 1691.8 2443.7
1 30* x 30* 2 77.5 769.3 1627.2 2703.7
1 30* x 300 3 80.2 768.9 1506.4 2753.2
1 300 x 30" Avg 79.9 784.5 1608.5 2633.5
2 10* x 10* 1 18.5 92.8 168.7 324.2
2 10* x 10* 2 26.0 84.9 160.0 307.5
2 10* x 10* 3 15.8 84.0 165.1 324.9
2 10* x 10* Avg 20.1 87.2 164.6 318.9
2 20* x 20* 1 38.1 306.2 556.9 1163.8
2 20* x 20* 2 35.1 271.2 535.8 1145.1
2 20* x 20* 3 36.2 272.2 516.4 1034.3
2 20* x 20* Avg 36.5 283.2 536.4 1114.4
2 300 x 30* 1 43.2 492.9 953.7 1847.5
2 30* x 30* 2 41.8 471.2 912.7 1906.0
2 30* x 30* 3 41.8 466.9 951.4 1875.5
2 30" x 30* Avg 42.3 477.0 939.3 1876.3
3 100 x 10* 1 17.9 86.4 186.5 215.2
3 100 x 10* 2 14.7 79.1 140.4 194.9
3 10* x 10* 3 16.7 74.4 140.6 215.0
3 10* x 100 Av1 16.4 80.0 155.8 208.4
3 20* x 200 1 35.8 291.0 445.4 781.5
3 20* x 20* 2 28.1 226.2 422.0 696.4
3 200 x 20* 3 27.3 247.4 432.0 752.6
3 200 x 200 Avg 30.4 254.9 433.1 743.5
3 30* x 30* 1 35.8 410.0 752.2 1234.9
3 30* x 300 2 34.4 400.7 743.1 1305.4
3 30* x 30* 3 31.5 388.1 719.4 1269.0
3 30* x 30* Avq 33.9 399.6 738.2 1269.8
4 10* x 10* i 15.9 84.6 127.8 186.1
4 10* x 100 2 10.5 61.7 98.8 190.2
4 100 x 10* 3 10.1 58.4 100.5 190.9
4 10* x 10* Avg 12.2 68.2 109.0 189.1
4 20* x 200 1 28.8 233.3 403.7 622.2
4 20* x 20* 2 21.1 185.6 321.8 648.0
4 20* x 20* 3 28.6 190.0 323.5 610.4
4 20* x 20* Avg 26.2 203.0 349.7 626.9
4 30* x 300 1 36.0 375.0 661.6 1082.0
4 30* x 30* 2 24.2 386.8 626.7 1042.8
4 300 x 300 3 24.5 383.9 583.8 1031.0
4 300 x 30" Avg 28.2 381.9 624.0 1051.9
5 1"x100 1 24.1 85.1 134.6 170.9
5 10* X 10* 2 22.0 56.8 104.3 170.4
5 10* X 10* 3 22.0 56.6 102.7 167.5
5 10* X 10* Avcg 22.7 66.2 113.9 169.6
5 20* x 20* 1 38.8 233.4 320.1 589.8
5 20* x 20* 2 32.7 175.7 282.6 568.3
5 201* x 20* 3 31.3 159.7 316.8 573.5
5 20* x 200 Avci 34.3 189.6 306.5 577.2
5 30* x 30* 1 36.7 329.7 547.9 965.5
5 30* x 30* 2 36.7 366.2 589.0 1022.7
5 30* x 30* 3 36.9 347.3 578.1 957.6
5 30* x 300 Avgi 36.8 347.7 571.7 981.9
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Appendix: MATLAB Visualization Source

Display RGB Composite Image in MATLAB
raw-importdata( '-/griddeddata.csv', ',', 1);
sorted=sortrows(raw.data);
redsc=scaledata(sorted(:,3), 0, 1);
redimg=reshape(redsc, 2000, 2000);
greensc=scaledata(sorted (:,4), 0, 1);
green img=reshape(greensc, 2000, 2000);
bluesc=scaledata(sorted (:,5), 0, 1);
blue img=reshape(bluesc, 2000, 2000);
image(cat(3, red img, green img, blue img));
axis image;
axis xy;
axis off;

Display NDVI Image in MATLAB
raw=importdata( '-/griddeddata.csv', ,', 1);
sorted=sortrows(raw.data);
img=reshape(sorted(:,3), 500, 500);
imagesc(img);
axis image;
axis xy;
axis off;

Display NDSI or Snow Map Image in MATLAB
raw=importdata('-/gridded data.csv', ',', 1);
sorted=sortrows(raw.data);
img=reshape(sorted(:,3), 500, 500);
imagesc(img);
axis image;
axis xy;
axis off;

or (for snowmap):

img=reshape(sorted(:,4), 500, 500);
imagesc(img);
axis image;
axis xy;
axis off;
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