Observation of a diffractive contribution to dijet production in proton-proton collisions at $\sqrt{s}=7\text{TeV}$

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Chatrchyan, S. et al. “Observation of a Diffractive Contribution to Dijet Production in Proton-proton Collisions at $\sqrt{s}=7\text{TeV}$.” Physical Review D 87.1 (2013).

As Published: http://dx.doi.org/10.1103/PhysRevD.87.012006

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/77043

Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of use: Creative Commons Attribution 3.0
I. INTRODUCTION

A significant fraction of the total inelastic proton-proton cross section at high energies is attributed to diffractive processes, characterized by the presence of a large rapidity region Δy with no hadrons, usually called “rapidity gap” [rapidity is defined as $y = (1/2) \ln((E + p_T)/(E - p_T))$, where E and p_T are the energy and longitudinal momentum of the final-state particle, respectively]. Diffractive scattering is described in the framework of Regge theory as mediated by a strongly interacting color-singlet exchange with the vacuum quantum numbers, the so-called “pomeron trajectory” [1]. Diffractive events with a hard parton-parton scattering are especially interesting because they can be studied in terms of perturbative quantum chromodynamics (pQCD). In diffractive events the proton emitting the pomeron either remains intact, losing only a few percent of its momentum, or is found in a low mass excited state. In addition, since the vacuum quantum numbers are exchanged, no particles are produced in a large rapidity range adjacent to the scattered proton (or its dissociation products).

Diffraction with a hard scale has been studied in proton-antiproton (pp) and electron-proton (ep) collisions at CERN [2], Fermilab [3–6], and DESY [7–10]. Such hard diffractive processes can be described in terms of the convolution of diffractive parton distribution functions (dPDFs) and hard scattering cross sections, which are calculable in pQCD. In this approach, the pomeron is treated as a color-singlet combination of partons with the vacuum quantum numbers. The dPDFs have been determined by the HERA experiments [7,9] by means of QCD fits to inclusive diffractive deep inelastic scattering data, and have been successfully used to describe different hard diffractive processes in ep collisions. This success is based on the factorization theorem for diffractive electron-proton interactions, and on the validity of the QCD evolution equations for the dPDFs [11–13]. However, in hard diffractive hadron-hadron collisions factorization does not hold because of soft scatterings between the spectator partons, leading to the suppression of the observed diffractive cross section. The suppression is quantified by the so-called “rapidity gap survival probability” [14], which is a nonperturbative quantity with large theoretical uncertainties [15–18]. It was measured to be about 10% in diffractive dijet production in pp collisions at the Tevatron [5].

This paper presents a study of dijet production in proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV. The data were collected with the Compact Muon Solenoid (CMS) detector at the LHC in 2010 and correspond to an integrated luminosity of 2.7 nb$^{-1}$. The cross section for production of dijets is presented as a function of ξ, a variable that approximates the fractional momentum loss of the proton, for events in which both jets have transverse momenta $p_T^{\text{j1,2}} > 20$ GeV and jet axes in the pseudorapidity range $|\eta^{\text{j1,2}}| < 4.4$. Pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$, where θ is the polar angle relative to the anticlockwise proton beam direction, and is equal to the rapidity in the limit of a massless particle. The measurements are compared to the predictions of nondiffractive (ND) and diffractive models, and the rapidity gap survival probability is estimated.

The paper is organized as follows: in Sec. II a brief description of the CMS detector is provided. The definitions of the kinematic variables are introduced in Sec. III. The event selection is explained in Sec. IV. Section V describes the main features of the Monte Carlo (MC) generators used in this analysis. The cross section determination for dijets as a function of ξ and the systematic uncertainties of the measurements are discussed in Sec. VI.
The results are presented in Sec. VII, and the summary is given in Sec. VIII.

II. EXPERIMENTAL SETUP

A detailed description of the CMS detector can be found elsewhere [19]. The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL) and the brass-scintillator hadronic calorimeter (HCAL). The tracker measures charged particles within the pseudorapidity range $|n| < 2.4$. ECAL and HCAL provide coverage in pseudorapidity up to $|n| < 3$ in the barrel region and two endcap regions. The HCAL, when combined with the ECAL, measures jets with an energy resolution $\Delta E/E = 100%/\sqrt{E} \ (\text{GeV}) \ \oplus 5\%$. The calorimeter cells are grouped in projective towers, of granularity $\Delta \eta \times \Delta \phi = 0.087 \times 0.087$ at central rapidities and 0.175×0.175 at forward rapidities, where ϕ is the azimuthal angle in radians. In addition to the barrel and endcap detectors, CMS has extensive forward calorimetry. The forward part of the hadron calorimeter, HF, consists of steel absorbers and embedded radiation-hard quartz fibers, which provide a fast collection of Cherenkov light. The pseudorapidity coverage of the HF is $2.9 < |\eta| < 5.2$. In the current analysis only the range $3.0 < |\eta| < 4.9$ was used, thus restricting the data to a region of well-understood reconstruction efficiency. The first level of the CMS trigger system, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select the most interesting events in a fixed time interval of less than 4 μs. The High Level Trigger processor farm further decreases the event rate from around 100 kHz to around 300 Hz, before data storage.

III. KINEMATICS AND CROSS SECTIONS

Diffractive dijet production (Fig. 1) is characterized by the presence of a high-momentum proton (or a system Y with the same quantum numbers as the proton) with fractional momentum loss smaller than a few percent and a system X, which contains high-p_T jets and is separated from the proton by a large rapidity gap, with $\Delta y \gtrsim 3$ or 4 units. The kinematics of this reaction is described by the masses of the systems X and Y, M_X and M_Y, and the squared four-momentum transfer t at the proton vertex. For the events selected in this analysis both M_X and M_Y are much smaller than \sqrt{s}.

The cross section for single-diffractive (SD) dijet production (i.e., when the forward-going system Y is a proton) is usually expressed in terms of the variable $\xi = M_X^2/s$, which approximates the fractional momentum loss of the scattered proton. Under the assumption of QCD factorization, the cross section can be written as

$$d\sigma/d\xi dt = \sum x_1 x_2 d\sigma(x_1, \mu) f_p(x_1, \mu) \frac{d\sigma(\hat{s}, \hat{t})}{dt},$$

where the sum is over all parton flavors. The variables $x_{1,2}$ are the parton momentum fractions in the pomeron and proton, the scale at which the PDFs are evaluated is indicated with μ, and $\sigma(\hat{s}, \hat{t})$ is the hard-scattering subprocess cross section, which is a function of the partonic center-of-mass energy squared \hat{s} and momentum transfer squared \hat{t}.

The function $f_p(x, \mu)$ is the inclusive PDF of the proton that breaks up, while the dPDF of the surviving proton is written as $f_{diff}(\xi, t, x_1, \mu) = f(\xi, t) f_0(x_1, \mu)$, where $f(\xi, t)$ is the so-called pomeron flux and $f_0(x_1, \mu)$ is the pomeron structure function. The cross section dependence on ξ and t is driven by the pomeron flux, usually parametrized according to Regge theory as

$$f(\xi, t) = \frac{e^{\alpha_P t}}{\xi^{2\alpha_P(t)}},$$

where $\alpha_P(t)$ is the pomeron trajectory and B is the slope parameter. This ansatz is consistent with the HERA ep data [7–9], but is known not to hold between the ep and the Tevatron (p\bar{p}) data [3–6], where an extra suppression (gap survival probability) factor is needed.

In this analysis ξ is approximated by the variables ξ^+ (system X going in the $-z$ direction) and ξ^- (system X going in the $+z$ direction) defined at the level of stable particles as

$$\xi^\pm = \sum (E^i \pm p^i_z)/\sqrt{s},$$

where E^i and p^i_z are the energy and longitudinal momentum of the ith final-state particle with $-\infty < \eta < 4.9$ for ξ^+ and $-4.9 < \eta < +\infty$ for ξ^-. In the region of low ξ^\pm, this variable is a good approximation of ξ for single-diffractive events. This is illustrated for single-diffractive dijet events simulated by PYTHIA8 [20] in Fig. 2, where the correlations between the values of ξ^\pm and \hat{t}, determined at
generated and reconstructed (see Sec. IV) levels, are shown. The mass of the forward-going system Y, which includes all particles with $\eta > 4.9$ (or $\eta < -4.9$), was also estimated with the PYTHIA8 generator; the mass is limited by the pseudorapidity range and is typically smaller than 30–40 GeV, with average ~ 5 GeV.

IV. EVENT SELECTION

The data were collected with the CMS detector in 2010 at low luminosities. The average number of extra pp interactions for any given event (the so-called pileup interactions) in the data is 0.09. The low number of pileup interactions simplified the extraction of the diffractive signal, since the particles produced in such interactions may fill the rapidity gap and hence reduce the visible diffractive cross section. However, the requirement of low pileup limits the available data sample since only a small amount of low-luminosity runs was collected.

At the trigger level events were selected by requiring at least one jet with uncorrected transverse-momentum greater than 6 GeV. The efficiency of the trigger, estimated using a minimum-bias data sample, was found to be greater than 95% for the dijet events considered in this analysis.

Offline, the jets were reconstructed with the anti-k_T inclusive jet finding algorithm [21] with a distance parameter of 0.5. The jet clustering algorithm was used to reconstruct jets from particle-flow (PF) objects [22], which are particle candidates obtained by combining the information of the tracking system and of the calorimeters in an optimal way. The reconstructed jet momenta were fully corrected to the level of stable particles (with lifetime τ such that $c\tau > 10$ mm, hereafter referred to as “particle level”), by means of a procedure partially based on MC simulation and partially on data [23].

The quantities ξ^+ and ξ^- were reconstructed using Eq. (3) from the energies and longitudinal momenta of all PF objects measured in the $|\eta| < 4.9$ range. For charged PF objects ($|\eta| < 2.4$, the region covered by the tracker) a minimum transverse momentum of 0.2 GeV was required. In the forward region, $3.0 < |\eta| < 4.9$, particularly relevant for this analysis, PF candidates were selected with energy greater than 4 GeV. A constant scale factor $C = 1.45 \pm 0.04$, determined from the MC simulation by comparing the generated and reconstructed values of ξ^\pm, is applied to the measured ξ^\pm. The error on the correction factor C is estimated by changing the MC models used to evaluate it. The value of C reflects the fact that not all final-state particles are detected because of the limited acceptance and imperfect response of the detector. It also takes into account the inefficiency of PF object reconstruction. In practice, C acts as a scale calibration for ξ^\pm: it depends only slightly on the value of ξ^\pm and on the MC generator used. This dependence, of the order of a few percent, is included in the systematic uncertainty. The resolution of ξ^\pm, in the region of the present measurement, is $\sim 25\%$, and practically independent of ξ^\pm.

Events were selected offline by applying the following requirements:

(i) the jets should pass the standard CMS quality criteria [23];

(ii) events should have at least two jets, each with transverse momentum, corrected to particle level, greater than 20 GeV. This requirement ensures high trigger efficiency;

(iii) the axes of the two leading jets (jets were ordered in p_T with the first, leading jet having the highest p_T) should be in the pseudorapidity region $|\eta^{j1,j2}| < 4.4$ so that the reconstructed jets are fully contained in the detector;

(iv) a primary vertex should be within a longitudinal distance $|z| < 24$ cm of the center of CMS;

(v) beam-scraping events, in which long horizontal sections of the pixel tracker are hit by charged particles...
traveling parallel to the beam, were rejected with a special algorithm [24];

(vi) to enhance the diffractive contribution, the requirements $\eta_{\text{max}} < 3$ ($\eta_{\text{min}} > -3$) were also applied. Here η_{max} (η_{min}) is the pseudorapidity of the most forward (backward) PF object. The η_{max} (η_{min}) selection together with the pseudorapidity coverage of the detector, $|\eta| < 4.9$, is equivalent to imposing a pseudorapidity gap of at least 1.9 units, with no PF objects with energy greater than 4 GeV in the HF calorimeter.

The number of selected events before the η_{max} (η_{min}) requirement is 277,953. The number of events passing also the $\eta_{\text{max}} < 3$ ($\eta_{\text{min}} > -3$) selection is 804 (774); of these, 222 (220) have $\xi^+ < 0.01$ ($\xi^- < 0.01$). The differential cross section for dijet production was calculated separately as a function of ξ^+ and ξ^-. The final results were averaged, and the average is presented as a function of $\bar{\xi}$.

The η_{max}, η_{min} requirements reject most pileup interactions. The remaining pileup background was estimated with minimum-bias MC samples (PYTHIA6 Z1 and PYTHIA8; see next section) and was found to be less than 2%.

V. MONTE CARLO SIMULATION

The simulation of ND dijet events was performed with the PYTHIA6 (version 6.422) [25] and PYTHIA8 (version 8.135) [20] generators; the events were generated in PYTHIA6 with tunes Z2 [26] and D6T [27], and in PYTHIA8 with tune 1 [20]. The more recent PYTHIA8 tune 4C [28] yields similar results as the tune 1 used here. Minimum-bias events were generated with PYTHIA6 tune Z1 [26] and with PYTHIA8 tune 1.

Diffractive dijet events were simulated with the POMPYT [29], POMWIG [30], and PYTHIA8 generators. The PYTHIA8 generator can simulate inclusive, nondiffractive as well as diffractive dijet events; separate samples were produced for the two processes. The modeling of diffractive events in these generators is based on the Ingelman and Schlein approach [31], which considers the diffractive reaction as a two-step process: one proton emits a pomeron with fractional momentum ξ and then the pomeron interacts with the other proton. All three diffractive generators were used with dPDFs from the same fit to diffractive deep inelastic scattering data (H1 fit B [7]). The parametrization of the pomeron flux in POMPYT and POMWIG is also based on the QCD fits to the HERA data [7], while it is different in PYTHIA8 [32]. This leads to different predictions for the diffractive cross sections calculated by PYTHIA8 and POMPYT or POMWIG (notably in their normalization). The effect of the rapidity gap survival probability is not simulated in any of the three diffractive generators.

The main difference between POMPYT and POMWIG is that POMPYT uses the PYTHIA framework while POMWIG is based on HERWIG [33]. Both programs generate single-diffractive dissociation. In PYTHIA8 double-diffractive dissociation (DD), in which both protons dissociate, is also included. The contribution from central diffractive dissociation, in which both protons stay intact, was estimated with POMWIG. It amounts to $\sim 1\%$ of the diffractive contribution in the $\bar{\xi}$ region used in the analysis and was neglected. Only pomeron exchange was assumed; the Reggeon exchange contribution in the region $\bar{\xi} < 0.01$ was estimated with POMPYT and was found to be less than 2%, and less than 1% in the lowest $\bar{\xi}$ bin used in the analysis.

The diffractive component of the dijet cross section was also computed at next-to-leading (NLO) accuracy with the POWHEG [34] framework using the CTEQ6M PDF for the proton that breaks up and H1 fit B for the dPDF. The parton shower and hadronization were carried out with PYTHIA8 (tune 1).

The generators used are listed in Table I along with some of their features. All generated events were processed through the simulation of the CMS detector, based on GEANT4 [35] and reconstructed in the same manner as the data. All samples were generated without pileup. The measurements were corrected for detector acceptance and resolution with a suitable combination of nondiffractive (PYTHIA6 Z2) and diffractive (POMPYT) models (see Sec. VA).

Figure 3 shows the comparison between the uncorrected data and detector-level MC simulations for the reconstructed p_T distributions of the leading and second-leading jets with axes in the range $|\eta^{1,2}| < 4.4$. The simulated distributions are normalized to the number of events in the corresponding distributions for the data. The data and MC simulations are in agreement, for both PYTHIA6 Z2 and PYTHIA8 tune 1.

Figure 4 presents the comparison between data and MC simulations for the reconstructed (detector-level) pseudorapidity distributions of the leading and second-leading jets.

<table>
<thead>
<tr>
<th>Model</th>
<th>PDF</th>
<th>dPDF</th>
<th>Parameter tune</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA6</td>
<td>CTEQ6L1</td>
<td>none</td>
<td>Z2, D6T</td>
<td>Nondiffractive jets</td>
</tr>
<tr>
<td>PYTHIA8</td>
<td>CTEQ5L</td>
<td>H1 fit B</td>
<td>Tune 1</td>
<td>Diffractive plus nondiffractive jets</td>
</tr>
<tr>
<td>POMPYT</td>
<td>CTEQ6L1</td>
<td>H1 fit B</td>
<td>PYTHIA6 D6T</td>
<td>Diffractive jets only</td>
</tr>
<tr>
<td>POMWIG</td>
<td>CTEQ6L1</td>
<td>H1 fit B</td>
<td>HERWIG</td>
<td>Diffractive jets only</td>
</tr>
<tr>
<td>POWHEG</td>
<td>CTEQ6M</td>
<td>H1 fit B</td>
<td>PYTHIA8 tune 1</td>
<td>Diffractive jets only</td>
</tr>
</tbody>
</table>
FIG. 3 (color online). Reconstructed transverse-momentum distributions of the leading (left panel) and second-leading (right panel) jets (black dots) compared to detector-level MC simulations (histograms) generated with two nondiffractive models (PYTHIA6 Z2 and PYTHIA8 tune 1). The error bars indicate the statistical uncertainty. The MC distributions are normalized to the number of events in the corresponding distributions for the data. The ratios of the data and MC distributions are also shown.

FIG. 4 (color online). Reconstructed pseudorapidity distributions of the leading (top panel) and second-leading (bottom panel) jets (black dots) compared to detector-level MC simulations (histograms) generated with two nondiffractive models (PYTHIA6 Z2 and PYTHIA8 tuned 1). The statistical uncertainties are smaller than the data points. The MC distributions are normalized to the number of events in the corresponding distributions for the data.

FIG. 5 (color online). Reconstructed pseudorapidity distributions of the leading (top panel) and second-leading (bottom panel) jets after the $|\eta^{1j}| < 3$ selection (black dots) compared to three detector-level MC simulations (histograms). Events with the $|\eta^{12}| > \eta_{\text{min}}^{12}$ condition are also included in the figure with $|\eta^{1j}| > \eta_{\text{min}}^{1j}$. The error bars indicate the statistical uncertainty. The predictions of the nondiffractive (PYTHIA6 Z2) and diffractive (POMPYT, scaled by the value quoted in the legend) contributions and their sum are also shown. The sum of the predictions of the two MC simulations is normalized to the number of events in the corresponding distributions for the data.
Also here, the MC distributions are normalized to the number of events in the data. Data are better described by PYTHIA6 tune Z2 than by PYTHIA8 tune 1.

The pseudorapidity distributions of the two leading jets for events selected with the \(\eta_{\text{max}} < 3 \) requirement are presented in Fig. 5. Events with the \(\eta_{\text{min}} > -3 \) condition are also included in Fig. 5 with \(\eta^{1,2} \rightarrow -\eta^{1,2} \). The pseudorapidity gap condition enhances the diffractive component in the data, and selects events with the jets mainly in the hemisphere opposite to that of the gap. A combination of PYTHIA6 Z2 and POMPYT events reproduces the data reasonably well; the relative normalization of the models is optimized with the procedure described in Sec. VA.

A. Reconstructed \(\xi \) distributions and determination of the relative POMPYT and PYTHIA6 normalization

The reconstructed \(\xi \) distribution is shown in Fig. 6 before the \(\eta_{\text{max}} \cdot \eta_{\text{min}} \) selections. Here again, the shape of the distribution can be described by the combination of diffractive and nondiffractive MC models. The best combination was obtained by minimizing the difference between the \(\xi \) distributions of the data and of the sum of nondiffractive and diffractive models. The relative contribution of diffractive dijet production and the overall normalization of the sum were found in this fit, and the diffractive contribution was scaled accordingly. The overall normalization of the fit result is not relevant. The effect of the calorimeter energy scale uncertainty, estimated by varying by \(\pm 10\% \) the energy of all PF objects not associated with the leading jets, is shown by the band. The solid line in Fig. 6(a) indicates the result of the fit, according to which the diffractive dijet cross section predicted by POMPYT should be multiplied by a factor \(\approx 0.23 \) to match the data. The uncertainty of this correction factor was estimated by changing the fitting procedure and was found to be \(\sim 20\% \). Figure 6(b) presents the same data compared to PYTHIA6 D6T + POMPYT; here the fit requires the POMPYT normalization to be scaled by a factor of \(\approx 0.17 \).

Figure 6(c) compares the data to PYTHIA8 tune 1; both the single-diffractive and the double-diffractive components are added to the nondiffractive part, all simulated by PYTHIA8. The result of the fit is very different from that for POMWIG and PYTHIA6: the normalization of the diffractive components of PYTHIA8 needs to be multiplied by a factor \(\approx 2.5 \) to match the data. This large difference is a consequence of the different implementation of the pomeron flux in PYTHIA8 and POMPYT.

In all three cases, after normalization, the shape of the reconstructed \(\xi \) distribution in the data is described satisfactorily by the MC models (PYTHIA6 Z2 + POMPYT resulting in the best description). However, the predicted nondiffractive component in the lowest \(\xi \) bin varies from about 0.1% for PYTHIA6 D6T to as much as 10%–20% for PYTHIA6 Z2 and PYTHIA8.

The effect of the \(\eta_{\text{max}} < 3 \) \((\eta_{\text{min}} > -3) \) requirement is illustrated in Fig. 7, where the reconstructed \(\xi \) distributions with and without the \(\eta_{\text{max}} < 3 \) \((\eta_{\text{min}} > -3) \) condition are compared to MC simulations. These pseudorapidity gap selections reject events at high values of \(\xi \). The region of low \(\xi \), where the diffractive contribution dominates, is only marginally affected. The data and MC simulations are in

![FIG. 6 (color online). Reconstructed \(\xi \) distribution compared to detector-level MC predictions with and without diffractive dijet production. The predictions of (a) PYTHIA6 Z2 + POMPYT, (b) PYTHIA6 D6T + POMPYT, and (c) PYTHIA8 tune 1 are shown (in all the cases the relative diffractive contributions from the MC simulation are scaled by the values given in the legend). The error bars indicate the statistical uncertainty; the band represents the calorimeter energy scale uncertainty. The sum of the predictions of the two MC simulations is normalized to the number of events in the corresponding distributions for the data.](image)
agreement at low ξ. The relative normalization of PYTHIA6 Z2 and POMPYT in the figure is the same as in Fig. 6.

VI. CROSS SECTION DETERMINATION AND SYSTEMATIC UNCERTAINTIES

The differential cross section for dijet production as a function of ξ is evaluated as

$$\frac{d\sigma_{jj}}{d\xi} = \frac{N_{jj}^{i}}{L \cdot \epsilon \cdot A^{i} \cdot \Delta\xi^{i}},$$

where N_{jj}^{i} is the measured number of dijet events in the ith ξ bin, A^{i} is the correction factor defined as the number of reconstructed MC events in that bin divided by the number of generated events in the same bin, $\Delta\xi^{i}$ is the bin width, L is the integrated luminosity, and ϵ is the trigger efficiency. The factors A^{i} include the effects of the geometrical acceptance of the apparatus, and that of all the selections listed in Sec. IV, as well as the unfolding corrections to account for the finite resolution of the reconstructed variables used in the analysis. Various unfolding techniques (bin-by-bin, singular value decomposition [36] and Bayesian [37]) yield consistent results and the bin-by-bin correction was kept. In addition, the measured number of events, N_{jj}^{i}, is corrected for the effect of pileup. This correction takes into account the probability of single pp interactions, evaluated on a run-by-run basis, as well as the probability that pileup interactions do not destroy the visible gap, estimated with the minimum-bias MC samples (PYTHIA6 Z1 and PYTHIA8 tune 1); the average correction is 1.07. The cross section is measured for dijets with the axes in the pseudorapidity range $|\eta^{j1,j2}| < 4.4$ and $p_{T}^{j1,j2} > 20$ GeV in the ξ bins $0.0003 < \xi < 0.002$, $0.002 < \xi < 0.0045$, and $0.0045 < \xi < 0.01$. The cross section results for ξ^{+} and ξ^{-} are averaged, yielding the cross section as a function of ξ.

The systematic uncertainties are estimated by varying the selection criteria and by modifying the analysis procedure as follows:

1. The uncertainty on the jet energy scale varies between 2% and 9% depending on the jet p_{T} and η [23]. It decreases with the jet p_{T} and is typically higher at high η. The energy of the reconstructed jets is varied accordingly.
2. The effect of the uncertainty on the jet energy resolution is studied by changing the resolution by up to $\pm 10\%$ in the central region ($|\eta| < 2.3$) and by up to $\pm 20\%$ in the forward regions ($|\eta| > 2.3$) [23].
3. The systematic uncertainty related to the ξ reconstruction is determined as follows: (i) the effect of the calorimeter energy scale uncertainty is estimated by varying the energy of all PF objects not associated with the leading jets by $\pm 10\%$; (ii) the p_{T} threshold for tracks is increased from 200 to 250 MeV; (iii) the correction factor C is varied by $\pm 3\%$, i.e. by its uncertainty (as discussed in Sec. IV).
4. The uncertainty on the correction factor A^{i} in Eq. (4) is estimated by changing the MC models used to evaluate it. In addition, the relative fraction of diffraction is changed by $\pm 20\%$, i.e. by the uncertainty of the scaling factors obtained in the fits discussed in Sec. VA.
5. The sensitivity to pileup is studied by restricting the analysis to events with only one reconstructed vertex.
6. The sensitivity to the jet reconstruction procedure is studied by repeating the analysis with jets reconstructed only with calorimetric information instead of particle-flow objects. This affects the results by 4% at most.
7. The difference in the results obtained for the cross section as a function of ξ^{+} and ξ^{-} is found to be less than 11% and is included in the systematic uncertainty.
8. The uncertainty on the trigger efficiency is estimated from the comparison of the turn-on curves as a function of the jet p_{T} in the minimum-bias data and the MC simulation. The resulting uncertainty is 3%.
9. The uncertainty on the integrated luminosity is estimated to be 4% [38,39].

The total systematic uncertainty is calculated as the quadratic sum of the individual contributions. The resulting
TABLE II. Contributions to the systematic uncertainty on the dijet cross section in the three lowest $\hat{\xi}$ bins considered. The total systematic uncertainty calculated as the quadratic sum of the individual contributions is given in the last row.

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>$0.0003 < \hat{\xi} < 0.002$</th>
<th>$0.002 < \hat{\xi} < 0.0045$</th>
<th>$0.0045 < \hat{\xi} < 0.01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Jet energy scale (Calorimeter, PF)</td>
<td>(+ 26; -19)%</td>
<td>(+ 21; -20)%</td>
<td>(+ 28; -16)%</td>
</tr>
<tr>
<td>2. Jet energy resolution</td>
<td>(+ 6; -4)%</td>
<td>(+ 4; -3)%</td>
<td>(+ 3; -2)%</td>
</tr>
<tr>
<td>3. PF energy, p_T threshold, C</td>
<td>(+ 7; -15)%</td>
<td>(+ 14; -8)%</td>
<td>(+ 12; -11)%</td>
</tr>
<tr>
<td>4. MC model uncertainty</td>
<td>(+ 5; -3)%</td>
<td>(+ 2; -14)%</td>
<td>(+ 3; -1)%</td>
</tr>
<tr>
<td>5. One-vertex selection</td>
<td>(+ 6; -0)%</td>
<td>(+ 0; -1)%</td>
<td>(+ 1; -0)%</td>
</tr>
<tr>
<td>6. Jet objects (Calorimeter, PF)</td>
<td>(+ 0; -4)%</td>
<td>(+ 0; -4)%</td>
<td>(+ 2; -4)%</td>
</tr>
<tr>
<td>7. $\hat{\xi}^+$, $\hat{\xi}^-$ difference</td>
<td>±8%</td>
<td>±8%</td>
<td>±11%</td>
</tr>
<tr>
<td>8. Trigger efficiency</td>
<td>±3%</td>
<td>±3%</td>
<td>±3%</td>
</tr>
<tr>
<td>9. Luminosity</td>
<td>±4%</td>
<td>±4%</td>
<td>±4%</td>
</tr>
<tr>
<td>Total error</td>
<td>(+ 30; -26)%</td>
<td>(+ 27; -29)%</td>
<td>(+ 33; -23)%</td>
</tr>
</tbody>
</table>

uncertainty of the cross section measurement is \sim30%, dominated by the jet energy scale. The effect of each systematic check on the cross section uncertainty is given in Table II.

VII. RESULTS

Table III and Fig. 8 present the differential cross section for dijet production as a function of $\hat{\xi}$. The data are compared to the predictions of nondiffractive (PYTHIA6 Z2 and PYTHIA8 tune 1) and diffractive (POMPYT SD, POMWIG SD, PYTHIA8 SD + DD, and POWHEG) models. The normalization of the predictions is absolute, unlike in Fig. 6.

The following conclusions can be drawn from Fig. 8:

(i) The generators PYTHIA6 Z2 and PYTHIA8 tune 1, without hard diffraction, cannot by themselves describe the low-$\hat{\xi}$ data, especially in the first bin, $0.0003 < \hat{\xi} < 0.002$.

(ii) It was noted already in Sec. VA that the contribution of SD MC models, e.g. POMWIG and POMPYT, is needed to describe the low-$\hat{\xi}$ data, reflecting the presence of hard diffractive events in this region. However, these MC models predict more events than are observed, by a factor of about 5 in the lowest $\hat{\xi}$ bin.

(iii) The ratio of the measured cross section to that expected from the POMPYT and POMWIG simulations is 0.21 ± 0.07 in the first $\hat{\xi}$ bin, where the nondiffractive contribution is small. This ratio can be taken as an upper limit of the rapidity gap survival probability (not simulated by the event generators considered). This is an upper limit because the measured cross section includes a contribution from proton-dissociative events in which the scattered proton is excited into a low mass state, which escapes undetected in the forward region; the dPDFs also include a proton-dissociative contribution. If the amount of proton-dissociative events in the data is assumed to be 41%, as estimated at particle level with PYTHIA8, and that in the dPDFs is taken to be 23% [7], then this upper limit can be turned into an estimate of the rapidity gap survival probability of 0.12 ± 0.05.

(iv) POMPYT and POMWIG are LO MC generators. If POWHEG is used to predict the diffractive cross section at NLO in the first $\hat{\xi}$ bin and PYTHIA8 tune 1 is used for hadronization, the ratio between data and predictions becomes 0.14 ± 0.05. With the assumptions just discussed on the proton-dissociative contribution, the rapidity gap survival probability becomes 0.08 ± 0.04.

(v) Figure 8 also shows that the normalization of the SD + DD PYTHIA8 prediction disagrees with that of POMPYT and POMWIG, and would have to be scaled up by a factor of about 2 to match the data. This is a consequence of the different modeling of diffraction in these generators: while they all use the same H1 dPDFs, the parametrization of the pomeron flux in PYTHIA8 is different—and, notably, not the one used in the H1 fit. Because of this, PYTHIA8 (version 8.135) cannot be used to extract the rapidity gap survival probability.

While the rapidity gap survival probability measured at the Tevatron [5,6] is close to that found in the present analysis, the two measurements cannot be directly compared because of the different kinematic regions they cover: 0.035 < $\hat{\xi}$ < 0.095 for the CDF data and 0.0003 < $\hat{\xi}$ < 0.002 for the present CMS data. This difference is

TABLE III. Differential cross section for inclusive dijet production as a function of $\hat{\xi}$ for jets with $p_T^{1,2} > 20$ GeV and jet axes in the pseudorapidity range $|\eta^{1,2}| < 4.4$.

<table>
<thead>
<tr>
<th>$\hat{\xi}$ bin</th>
<th>$d\sigma_{jj}/d\hat{\xi}$ (µb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0003 < $\hat{\xi}$ < 0.002</td>
<td>5.0 ± 0.9(stat)$^3_{-3}$$^3_{-3}$(syst)</td>
</tr>
<tr>
<td>0.002 < $\hat{\xi}$ < 0.0045</td>
<td>8.2 ± 0.9(stat)$^3_{-3}$$^3_{-3}$(syst)</td>
</tr>
<tr>
<td>0.0045 < $\hat{\xi}$ < 0.01</td>
<td>13.5 ± 0.9(stat)$^3_{-3}$$^3_{-3}$(syst)</td>
</tr>
</tbody>
</table>
OBSERVATION OF A DIFFRACTIVE CONTRIBUTION TO

FIG. 8 (color online). The differential cross section for inclusive dijet production as a function of ξ for jets with axes in the range $|\eta^{j1,2}| < 4.4$ and $p_{T}^{j1,2} > 20$ GeV. The points are plotted at the center of the bins. The error bars indicate the statistical uncertainty and the band represents the systematic uncertainties added in quadrature. The predictions of nondiffractive (PYTHIA6 Z2 and PYTHIA8 tune 1) and diffractive (POMPYT SD, POMWIG SD and PYTHIA8 SD + DD) MC generators are also shown, along with that of the NLO calculation based on POWHEG (first bin only). The predictions of POMPYT and POMWIG in the first ξ bin are identical.

relevant because the rapidity gap survival probability depends on the parton momentum x and is expected to increase with decreasing x (and hence ξ): from about 0.05 at $x = 10^{-1}$ to about 0.3 for $x = 10^{-3}$ according to Ref. [40].

VIII. SUMMARY

The differential cross section for dijet production as a function of ξ, a variable that approximates the fractional momentum loss of the proton in single-diffractive processes, has been measured with the CMS detector for events with at least two jets with $p_{T}^{j1,2} > 20$ GeV in the pseudorapidity region $|\eta^{j1,2}| < 4.4$. The results are compared to diffractive (POMPYT, POMWIG, and PYTHIA8 SD + DD) and nondiffractive (PYTHIA6 Z2, D6T, and PYTHIA8 tune 1) MC models. The low-ξ data show a significant contribution from diffractive dijet production, observed for the first time at the LHC. The associated rapidity gap survival probability is estimated. Leading-order diffractive generators (POMPYT and POMWIG), based on dPDFs from the HERA experiments, overestimate the measured cross section and their normalization needs to be scaled down by a factor of ~ 5. This factor can be interpreted as the effect of the rapidity gap survival probability. The results are also compared with NLO predictions. The rapidity gap survival probability, estimated from the comparison of the cross section measured in the first bin, $0.0003 < \xi < 0.002$, with LO and NLO diffractive MC models, ranges from 0.08 ± 0.04 (NLO) to 0.12 ± 0.05 (LO).

ACKNOWLEDGMENTS

We would like to thank M. Diehl, M. G. Ryskin, and L. Trentadue for their valuable suggestions. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NCF (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); DAE and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Austrian Science Fund (FWF); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of the Foundation for Polish Science, cofinanced by the European Union, Regional Development Fund.

[29] P. Bruni and G. Ingelman, Report No. DESY 93-187, 1993; a modified version of POMPYT 2.6 was used.

OBSERVATION OF A DIFFRACTIVE CONTRIBUTION TO...

PHYSICAL REVIEW D 87, 012006 (2013)
S. CHATRCHYAN et al. PHYSICAL REVIEW D 87, 012006 (2013)

64c Scuola Normale Superiore di Pisa, Pisa, Italy
65a INFN Sezione di Roma, Roma, Italy
65b Università di Roma “La Sapienza”, Roma, Italy
66a INFN Sezione di Torino, Torino, Italy
66b Università di Torino, Torino, Italy
66c Università del Piemonte Orientale (Novara), Torino, Italy
67a INFN Sezione di Trieste, Trieste, Italy
67b Università di Trieste, Trieste, Italy
68 Kangwon National University, Chunchon, Korea
69 Kyungpook National University, Daegu, Korea
70 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
71 Korea University, Seoul, Korea
72 University of Seoul, Seoul, Korea
73 Sungkyunkwan University, Suwon, Korea
74 Vilnius University, Vilnius, Lithuania
75 Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
76 Universidad Iberoamericana, Mexico City, Mexico
77 Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
78 Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
79 University of Auckland, Auckland, New Zealand
80 University of Canterbury, Christchurch, New Zealand
81 National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
82 National Centre for Nuclear Research, Swierk, Poland
83 Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
84 Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
85 Joint Institute for Nuclear Research, Dubna, Russia
86 Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
87 Institute for Nuclear Research, Moscow, Russia
88 Institute for Theoretical and Experimental Physics, Moscow, Russia
89 Moscow State University, Moscow, Russia
90 P.N. Lebedev Physical Institute, Moscow, Russia
91 State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
92 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
93 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
94 Universidad Autónoma de Madrid, Madrid, Spain
95 Universidad de Oviedo, Oviedo, Spain
96 Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
97 CERN, European Organization for Nuclear Research, Geneva, Switzerland
98 Paul Scherrer Institut, Villigen, Switzerland
99 Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
100 Universitàt Zürich, Zurich, Switzerland
101 National Central University, Chung-Li, Taiwan
102 National Taiwan University (NTU), Taipei, Taiwan
103 Cukurova University, Adana, Turkey
104 Middle East Technical University, Physics Department, Ankara, Turkey
105 Bogazici University, Istanbul, Turkey
106 Istanbul Technical University, Istanbul, Turkey
107 National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
108 University of Bristol, Bristol, United Kingdom
109 Rutherford Appleton Laboratory, Didcot, United Kingdom
110 Imperial College, London, United Kingdom
111 Brunel University, Uxbridge, United Kingdom
112 Baylor University, Waco, Texas, USA
113 The University of Alabama, Tuscaloosa, Alabama, USA
114 Boston University, Boston, Massachusetts, USA
115 Brown University, Providence, Rhode Island, USA
116 University of California, Davis, Davis, California, USA
117 University of California, Los Angeles, Los Angeles, California, USA
118 University of California, Riverside, Riverside, California, USA
119 University of California, San Diego, La Jolla, California, USA
120 University of California, Santa Barbara, Santa Barbara, California, USA
OBSERVATION OF A DIFFRACTIVE CONTRIBUTION TO ...

PHYSICAL REVIEW D 87, 012006 (2013)

121 California Institute of Technology, Pasadena, California, USA
122 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
123 University of Colorado at Boulder, Boulder, Colorado, USA
124 Cornell University, Ithaca, New York, USA
125 Fairfield University, Fairfield, Connecticut, USA
126 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
127 University of Florida, Gainesville, Florida, USA
128 Florida International University, Miami, Florida, USA
129 Florida State University, Tallahassee, Florida, USA
130 Florida Institute of Technology, Melbourne, Florida, USA
131 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
132 The University of Iowa, Iowa City, Iowa, USA
133 Johns Hopkins University, Baltimore, Maryland, USA
134 The University of Kansas, Lawrence, Kansas, USA
135 Kansas State University, Manhattan, Kansas, USA
136 Lawrence Livermore National Laboratory, Livermore, California, USA
137 University of Maryland, College Park, Maryland, USA
138 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
139 University of Minnesota, Minneapolis, Minnesota, USA
140 University of Mississippi, Oxford, Mississippi, USA
141 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
142 State University of New York at Buffalo, Buffalo, New York, USA
143 Northeastern University, Boston, Massachusetts, USA
144 Northwestern University, Evanston, Illinois, USA
145 University of Notre Dame, Notre Dame, Indiana, USA
146 The Ohio State University, Columbus, Ohio, USA
147 Princeton University, Princeton, New Jersey, USA
148 University of Puerto Rico, Mayaguez, Puerto Rico, USA
149 Purdue University, West Lafayette, Indiana, USA
150 Purdue University Calumet, Hammond, Indiana, USA
151 Rice University, Houston, Texas, USA
152 University of Rochester, Rochester, New York, USA
153 The Rockefeller University, New York, New York, USA
154 Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
155 University of Tennessee, Knoxville, Tennessee, USA
156 Texas A&M University, College Station, Texas, USA
157 Texas Tech University, Lubbock, Texas USA
158 Vanderbilt University, Nashville, Tennessee, USA
159 University of Virginia, Charlottesville, Virginia, USA
160 Wayne State University, Detroit, Michigan, USA
161 University of Wisconsin, Madison, Wisconsin, USA

The authors would like to acknowledge the support of the various national and international agencies that support high-energy physics research. The authors would also like to thank the staffs of the participating laboratories for their hard work and dedication.

a Deceased.
b Also at Vienna University of Technology, Vienna, Austria.
c Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
d Also at Universidade Federal do ABC, Santo Andre, Brazil.
e Also at California Institute of Technology, Pasadena, California, USA.
f Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
g Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
h Also at Suez Canal University, Suez, Egypt.
i Also at Zewail City of Science and Technology, Zewail, Egypt.
j Also at Cairo University, Cairo, Egypt.
k Also at Fayoum University, El-Fayoum, Egypt.
l Also at British University, Cairo, Egypt.
m Also at Ain Shams University, Cairo, Egypt.

n Also at National Centre for Nuclear Research, Swierk, Poland.
o Also at Universite de Haute-Alsace, Mulhouse, Strasbourg, France.
p Also at Joint Institute for Nuclear Research, Dubna, Russia.
q Also at Moscow State University, Moscow, Russia.

012006-19