
MAN/MACHINE INTERACTION

IN

COMPUTER ASSISTED PAGE LAYOUT

by

Paul Byers Trevithick

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF BACHELOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1981

Massachusetts Institute of Technology 1981

Signature of Author

Certified by
/

/

Debirtdent/ 'of Electrical Engineering
May, 1981

-- Supervisor

Accepted by
MASS Departmental Committee on Theses

-. - -1-
ARCHIVESAU G b 5181



TABLE OF CONTENTS

Introduction.......................................4

CHAPTER ONE: PREVISUALIZATION

Previsualization............................8

The Hardware...............................10

Anti-tAliase:D isolay........................12

Digital Fonts..............................15

Font Digitization..........................19

Font Display Techniques using
a Run Length Data Base ......... 22

CHAPTER TWO: THE USER INTERFACE

The User Interface.........................28

An Implementation of Do-What-Do ............ 33

Example of an Interaction..................37

The Overlord...............................39

Conclusion........................................44

References........................................45

Bibliography.......................................46

-2-



TABLE OF FIGURES

CHAPTER ONE

figure

figure

figure

figure

figure

figure

figure

figure

figure

CHAPTER TWO

figure

figure

figure

figure

figure

figure

figure

figure

figure

figure

figure

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

2.1..

2.2..

2.3..

2.4..

2.5..

2.6..

2.7..

2.8..

2.9..

2.10.

2.11.

figure 2.12.

...Alternative Frame Buffers..

Anti-aliased2 Diagonal- line.

...Font Storage Methods.......

...Runs for the Letter I......

...Font Data Base Segment.....

...Run Table Example..........

...Filtering..................

...Multi letter per Pixel.....

.Intra?Pixel1Spacipg........

..Mesh Example.............

.. Mesh Example.............

..Mesh Example.............

..Mesh Pruning Example....

..The System Mesh..........

..Screen Layout............

..Topic Button.............

..Mesh Example.............

..Tutorial Example........

..Topic Dictionary.........

..Block Data Base.........

..Topic State Transitions.

, .28

... 29

... 29

...31

...34

... 35

...36

.. 37

... 38

...40

... 40

.... 41

-3-

.11

.14

.16

.20

.21

.22

.23

.24

.25



INTRODUCTION

This thesis examines the man/machine interface of a

prototypical text and image handling system for the

production of printed material. It also describes software

written by the author on the human interface part of the

system. Where necessary or applicable, other hardware

and software parts of the system will be described.

The "text and image handling system" under development

at the Visual Language Workshop is defined this broadly

because it attempts among other things to combine the

individual functions of contemporary "word processors,"

page layout systems, typesetters, graphic design systems,

editors, and text formatters. It will ultimately be

capable of accepting high resolution input imagery, high

quality type, text input-, and. to manipulate and format pages

of material which are ultimately output by high quality

scanners.

The hardware is shown in Figure 1. It consists of a

32 bit "super-mini" computer, a digital tablet, a 300

Mbyte disk, a high resolution CCD scanner, a frame buffer,

and a high resolution video monitor. The tablet and video

-4-



monitor comprise the user's workstation. For the remainder

of this thesis, two color monitors will be assumed; however,

at present, one monitor switches between two images.

z3 _r P

Figure 1.

The human interface on this system has been designed with

three broad criteria in mind. First, immediate "pre-visuali-

zation" is provided to the user so that an instant evaluation

can be made of the action just taken or function performed.

Second, whenever possible and applicable, graphical methods

of input have been substituted for keystrokes. And third,

the control methodology and system documentation should be

-5-



based on an epistemological structure of the process of

text and image manipulation, which allows the creation

of a self-consistent, straightforward, personalized and

self-documenting user interface.

The need for "pre-visualization" is very evident. The

turnaround time for even the fastest typesetting systems

is weveral minutes. A mistake in such a system must

propagate through to the final hardcopy before it can be

detected.. Several entire cycles throught such a system

are inevitable. These systems can be though of as "batch"

systems since they operate in entire cycles and not

incrementally. In the same way that batch computer processing

has become superceded by interactive processing, it is hoped

that batch typesetting will be replaced with interactive

typesetting. How the previsualization is generated and

displayed is discussed intChapter One.

The man/machine interface on even the most expensive

state-of-the-art systems are designed to be used by skilled

users who have assimilated the contents of the inevitably thick

"User's Manual" for the system. The actual interface protocols

-6-



themselves have very little to do with the page layout or

typographical process much less the design process. In Chapter

Two a methodology of interaction is presented which is based on

a knowledge structure of the processes which the system will

be required to perform. This means that how the user controls

the system is directly and intimately related to what it is

he is trying to achieve. The interface is exceedingly easy to

learn and offers the additional advantages of self-documentation

based on the user's current level of understanding,. and

personalization.

-7-



CHAPTER ONE

Previsualization

Current typesetters work in a "batch" mode. They require the

user to specify the position of the text to set, as well as

several parameters like font, point-size, indentation and

so on. The machine then runs hyphenation and justification

as desired and begins to typeset the page using some form of

hardcopy printer for output.

The process is blind. The user has no feedback of his actions

until the film of paper page is produced. It is only then that

he can perform any sort of evaluation. Unless the user counts

the number of words in his text column, and does the arithmetic

to predict how long the column will be, he has no way of

knowing what the column will look like.on the page. He is

forced to do the design in his head and then to transmit his

idea of the page to the machine through formatting commands

which are often only specifiable numerically.

Better page layout systems (like the CAMEX system), do offer a

schematization of the final page. A line drawing display provides

the user with a form of previsualization in which the dimensions

of the various parts of the page are shown. The user can

-8-



interactively scale, crop and position the page

elemnents useing a tablet for .graphical input. The display

completes the control loop by giving the user instant feedback

on his every action. This is a tremendous advantage.

The system under development at the VLW offers an even better

form of previsualization. It uses a color raster scan display

for the previsualization display. This allows images to be

rendered and displayed in a form which allows aesthetic decisions

to be made on the best position, shape, etc, for each image

on the page. The line drawing displays described above do not

have this capability. Images are usually shown as rectangles

with a line through them.

The system also attempts to combine many of the functions of

previously discrete systems. It tries to offer the advantages

of previsualization to areas which have never had its benefit.

In order to make typographic dec-isions about the appearance of

text on a page, it is necessary to have either an actual or a

mental picture of how the type will look. At present type

must be produced in some manner and then placed before the

typographer who uses them as references in deciding how the

page should look. The prototype system allows the typographer

to see "exactly" what the final output will look like before

it is produced. The word exactly is in quotation marks because

-9-



what that word means is a compex subject. For the

present let "exactly" be defined-as follows:

the equivalent image to what a high quality'
scanner of the same resolution would produce
when given the eventual hardcopy as input.

The Hardware

Since it is impossible for the main computer to produce

a video image 30 times per second (the standard screen

refresh rate) that task is offloaded to a device called

a frame buffer. This device stores the color of each dot,

called a pixel, in a large memory. This memory is scanned

out 30 times per second to the video screen while these

locations are also available to be altered by the "host"

computer.

In this way the computer can draw into the buffer the new

or altered sections of the page image (frame) , while

leaving the other memory locations, each of which corresponds

to a dot on the screen, untouched. This greatly lowers the

computational load on the computer while allowing full color

images on the screen. Depending on the degree of color

realism, the cost and complexity of the frame buffer can

vary widely.

-10-



There are two ways to achieve color. The first is called

pseudocolor. The frame buffer stores a number for each

point on the screen. This number is mapped to an arbitrary

color through a lookup table. This is the least expensive

method, although only a palette of less than 1,024

colors are typically available at once.

The second method requires roughly three times the memory

and thus adds considerably to the cost of the device. In

this method three numbers are stored per pixel instead of

one. The three numbers correspond directly to the amount

of the three color primaries, red, green, and blue, at

that position on the screen. The system used in this paper

is of this latter type.

In many applications color is not required. However,

-11-



it is easily shown that a choice of several brightnesses

must be available at each pixel for the most accurate and

legible page. A "one bit" (black or white only) display

will produce the stairstepping problems so often seen

in computer imagery.

The amount of memory storage required per pixel is related

to how many grey levels or color levels desired. The

number of memory bits required is related to the log

base 2 of the number of grey levels desired. Thus one bit

of storage per pixel will produce a two level black or white

display; two bits will produce four grey levels; three bits

will produce eight ; and so on.

Anti-aliased Display

There is a paradox involved in raster scan display. To a

certain extent, a blurrier display can result in a display

with more visual acuity. It is not necessarily true that

a hard black and white edge will result in a more readable

image. On a standard video monitor alternate lines are

refreshed at a 30Hz rate which can cause scintillation in

some cases unless grey levels are used to smear horizontal

edges. This blurring or smearing of the image is technically

called anti-aliasing and is of major concern throughout the

-12-



computer graphics field. Crow has written an excellent

paper on this topic.

Since every doubling of display resolution requires four

times the memory storage and bandwidth of the display

device, there are technological considerations which limit

the maximum attainable resolution. 1000 lines is about

the limit of current CRT display technology.

The precise number of grey levels required, and the exact

legibility tradeoff, are somewhat subjective; however,

when type becomes very small, on the order of a few pixels

in height, grey tone capability makes the difference

between an almost random black and white dot pattern, and

legible type.

Without the use of grey levels, a computer rendering of

an angled line looks like that of Figure 1.2a. Figure 1.2b

shows the desired line with the raster grid super-imposed

If each pixel is shaded according to the percentage overlap

in that pixel of the line, the resulting line will be that

shown in Figure 1.2c. The result, when viewed from the ,

correct distance, yields a subjectively smoother line.

-13-



Fit 1. I.? (O)

I I I I -T F T

5,11. 1.2. ()

- 14-

I I FT- ONe -arr DISLAY

AN-T IAdAE
Lf lx-



Digital Fonts

A digital typesetting system requires an internal digital

representation of the fonts it will be called upon to use.

This internal data base can be generated in a number of

ways. Commercial systems allow fonts to be loaded into the

machines via diskettes or cassettes onto which have been

copied digital fonts from a master file in some central

system.

Since our system is being developed from scratch, and most

commercial font packages are proprietary, we had to generate

our own font data base. There are two broad ways of generating

this data base. The first is to use a font generation system
2 3

such as Metafont or Ikarus . Each of these systems allows

the user to specify, numerically or graphically, parameters

from which characters of the typeface are generated.

The second method involves digitizing type from existing
4

collections of printed typefaces. Chris Schmandt , at the

MIT Architecture Machine Group,. has developed a digitization

system which uses original printed masters and a high quality

vidicon connected to a computer graphics system for input.

The vidicon image of each character master was about 250

pixels in each direction. From this image a one bit black

-15-



and white master was produced using a thresholding technique.

The Run-length Data Base

The choice of a font storage scheme was motivated by a

desire for rapid display and for compact sStorage

requirements. Since it was intended that both one bit

black and white, and soft, or multi-grey, level type be

displayable, the data base had to lend itself to either

output method. All of the schemes considered involved

digital storage since it was a necessity that the fonts

be intimately connected with the computer system.

One possibility was to use a vector outline storage method.

This is the most concise description of a character. (See Fig.1.3a)

for a given quality of result. The problem with this method

of storage is that the output display routines are

relatively complex and are therefore slow. The output

0aa 00

0 0 0

-16-

4



routine must slice the character at appropriate vertical

intervals to scale it to the desired output size, and then

find the intersection points of each slice with the vector

outline. These points are then scaled in the X direction to

yield the endpoints of a horizontal line to be drawn on

the screen. Adding soft font capability to the output

routine causes further complications.

The method shown in Fig. 3b has been extensively tested

at the Workshop using eight bits per pixel storage, although

four is definitely sufficient. The problems are threefold.

First, the data base is very large. Second, the output

routine is slow,-.and third, it is time-consuming to generate

multiple font sizes. At the present, each font size is stored

separately to speed up the display rate, which is still quite

slow, causing enormous storage waste. The main advantages

are that it is easy to implement,and gives soft fonts automati-

cally since the pixel grey leveIs have been precomputed.

A filtering program is used at present to shrink a master

character to produce each smaller character. It also performs

the blurring process referred to earlier. The output of such

a program produces an array of grey levels which are then

stored for each character.

- 17 -



The third method, shown in Fig. 3c, enjoys nearly the same

compactness of storage as method (a), but makes it easy to

display variable sized fonts rapidly. The masters of each

character are stored as a list of horizontal runs. The

letter E shown in Fig. 3c has a maximum of four runs. The

first run is assumed to be white (background); the next

black; the next white, and so on. By using this convention,

the only information which must be stored is the horizontal

x-coordinate (position) of where each run ends.

The master storage for the letter E, for example, consists

of about 200 sets of horizontal runs where the maximum number

of runs per set is four (for this font). Since the maximum
8

resolution of the master is less than 256 (2 ) units in

each dimension, the position information can be stored

in one byte (8 bits). Thus the total storage for a capital E

is about 800 Bytes. This means that the whole alphabet of

one font can be stored within 64KBytes which is the maximum

size of a data segment on the VLW 3220. Since it is now

possible that the whole master font be resident in core at once,

all core swapping is eliminated. When a new font is desired,

it is brought from disk and written over the old one.

-18-



Font Digitization

To take advantage of the wealth of existing typeface

collections, direct digitization of fonts was investigated.

At first it was believed that a nUv'icon camera could be used

to scan information into the frame buffer; however, the noise

levels were unacceptably high. Instead, a 2048 photodiode

single line CCD scanner constructed by Professor MacNeil

several years earlier was used. The intensity signal from

every fourth diode was used to generate a 512 x 512 pixel

image on the frame buffer by mechanically scanning the CCD

array.

Despite the fact that the font originals were crisp black

on white, the scanned in image contains greytones caused

by particle overlap of a scanner sensor by a black and white

edge. To extract the edges of each character, a grey level

threshold was chosen which preserved the lightness or boldness

of the type while generating hard black and white edges. The

correct threshold was experimentally determined by using

a program called "one bit." Only a fraction of the alphabet

could be scanned in at once due to the need for high pixel

resolution masters.. The scanning'time including set-up

adjustments was about five minutes per section of the alphabet.

-19-



A program called "newfont" performs the actual font data base

building, and its operation is briefly described. Using the

tablet, the user stretches a box around the next letter to

be scanned in. The program then scans through this box looking

for black and white transitions on each horizontal row of

pixels. Each time one is found, its position is recorded

in a temporary run table. The temporary run table can handle

up to 16 transitions per scan.

A search is then made through this temporary run table for the

true left, bottom, and top of the character. The user is

asked whether the lines at the top, left, and bottom of the

character are the true perimeters of the character.

If so, the letter within those limits is displayed for the

user to judge whether or not the letter has been scanned in

correctly. The user is asked to point to the baseline position

of the character.

-20-



Fig. 1.5

As the scanning process proceeds, the maximum number of

black and white transitions is recorded. This number is used

as the width of the letter run table. For example, the width

for the serif E would be four while the width :forta simple

sans-serif E would be two. By making variable width run tables,

very efficient use of memory is achieved. Thus the width

of table is determined by the horizontal complexity of the

letter.

-21-

-?FAjNWq4L\ OV: S4-:4tAOj



At the very beginning of the font data segment, the font-

height (in scans) is stored. For each letter, number, and

punctuation, there is an entry in a table of contents which

is located near the beginning of the data segment. Four items

are stored there per character; the height and width of

the character's run table, the base line offset, and a

pointer to the beginning of that character's run table.

The run tables for each character are allocated and

stacked one on top of the other in the remainder of the

data segment.

ss Zoo zo

Fig. 1.6

Letter scans and corresponding run table.

Font Display Techniques Using A Run-length Data Base

The display routine for

very simply. Since the

the master, the masters

variable size font in one bit is

font-height (in scans) was stored with

can be thought of as being in their

-22-



own absolute coordinate system. If the font size desired

is specified in points, a conversion factor is used to

scale that number to pixels. (On our system the conversion

factor is 176/200 pixels/point.)

Using simple arithmetic the Y dimension can be scaled by

subsampling,and the X dimension by multiplying the run

numbers by a scaling factor. The result is a sequence of

horizontal strokes which can be rapidly displayed. The time

to display a full screen-sized letter by this method, doing

scaling on the fly, is about half a second at present.

Of course, the result is a hard-edged one bit font, not

a smooth soft font. There are many possible methods of producing

soft fonts with run-length encoding, but all have several

common features. Some sort of filtering must be performed

to generate the required grey levels. Unfortunately, filters

are usually very slow, so operation on the fly will probably

be unacceptable. One possibility is to filter and scale

the masters once to produce a soft font data base

of the desired size, and then to display them as needed.

7~4 --:L~ 3~QMAWTIJ - 6,2 LY

Fig. 1.7
-23-



Professor MacNeil has pointed out that for very small type

this method will not work due to the fact that one pixel

on the eventual screen display covers more than one character

and thus the characters cannot be displayed independently.

Fig. 1.8

As shown in Fig. 1.8, the letters v and e in the word "cover"

both influence common pixels. However, since the blackness

of a pixel is proportional to the ratio-of black to white

area, and for normal type, the characters do not overlap,

the proportional cover of the pixel by the letter e can be

added to the proportional cover of the pixel by the letter v

to yield the true greytone for the pixel. This means that

if the drawing algorithm for the precomputed soft character

added the new value of grey with the existing value at each

pixel instead of blindly overwriting that pixel, the correct

-24-

U fV (CIV j



There is yet another problem, however.

Any character appears differently on the raster depending

on its exact position on a sub-pixel scale. For example,

the letter 'e' would correspond to different grey level array

depending on where precisely the letter was positioned.

T-io different grey level arrays for different
sub-pixel positions of the letter 'e'.

Fig. 1.9

Fig. 1.9 shows an example of this. Now it is believed by

the author that since the total range of error applies only

over a single pixel at worst, it is not crucial that this

factor in the determination of grey levels be exactly computed.

In other words, if for small type, say four different grey

scale arrays were generated corresponding to four possible

sub-pixel-spacings, this would be adequate for the purposes

of previsualization. This has not yet been experimentally

proven.

-25-

effect would be achieved.



A second solution to this problem is proposed. Assuming that

four sub-pixel character positions are adequate and that

the exact grey level determination need only be computed to

two bits of accuracy, the following method will work. (If

a three bit (8 level) accuracy is desired then this method

can easily be elaborated to achieve it although it will

run more slowly.)

Instead of generating soft grey level arrays for each character,

(or rather four of them if the sub-pixel spacing ideas are

used) and then writing them to the raster buffer as needed

to set a line of text, the problem could be looked at differently.

Assume for the present that each pixel must have a grey level

accurate to one of five levels, then an array of four

sub-pixels can be associated with it. If each of the four

sub-pixels are loaded with the correct black or white (one

bit) level, then the average of the four sub-pixels can be

taken as the grey value of the original pixel.

WL

Fig. 1.10

-26-



In this way, the problem of grey level determination is reduced

to four black and white decisions. Since all of the characters

are resident in core, the display routine can rapidly

access the appropriate characters' one bit (black/white)

run tables and determine whether or not that sub-pixel is

white or black. The four sub-pixel levels are added up

(where 1 is black, 0 is white) and divided by four to determine

the fractional grey level between zero and one. In practice,

it is probably faster to break down a row of pixels into two

double length rows of sub-pixels, and then write the resulting

row out at once.

-27-



CHAPTER TWO

The User Interface

Page layout is a design process. A-system to aid the design

process must not force the user into fixed methodologies to

achieve desired goals. A strict and regid"§interface between

the user and the machine severely impairs creativity.

Unless an extremely well thought out structure of control

exists, too much time and thought is wasted on deciding which

button or key to push next. An interface is presented which

offers the advantages of straightforward protocols, self-

documentation and personalization. Furthermore, little

prior knowledge is assumed on the part of the user.

The interface implementation is based on the application of

Pask's conversation theory 5to interface design as presented

6
by Pangaro.

Consider the topics of a compass, circle, and plane.

Clearly the concept of a circle is derivable from the concepts

of compass and plane. This is diagrammed as follows:

7 -p Fig. 2.1

-28-



The concept of compass is similarly derivable from the

concepts of a circle and the concept of a plane and

the concept of a plane is derivable from the concept of

a circle and the concept of a compass. Diagramatically

this means that the following entailments exist:

Fig. 2.2

Now if all of these possible entailments exist for a

group of topics, the result can be diagrammed as follows:

Fig. 2.3

Such a bundle or block is termed "coherent'' by Pask.

Following these ideas one step further, if topics within

one block are derivable from topics in other blocks, then

those entailments can also be produced wherein the whole

Ce
set of topicAinterconnections is termed an "entailment mesh."

-29-



The word "derivable" was used repeatedly in the above discussion.

This term may be interpreted in two ways. The first is in

a procedural context. Procedurally speaking, one can indeed

produce a circle by the application of the procedure of using

a compass and the procedure of using a plane (which in this

case is held horizontal and stationary). The other context

is a conceptual one. One-can in fact derive the concept

of a circle from the concepts of a compass and the concepts

of a plane.

Pangaro's "do-what-do" idea rests on these two definitions

of the word derivable. His system allows the user to interact

in one of two distinct ways with the topics in an entailment

mesh. The user may either "do" a topic or "what" a topic.

In either case the system responds by "pruning" the mesh to

produce an "ordered derivation" of topics which has as the

head node, the topic in question, and which has the topics

from which that topic is derived as lower topics.

For example, the pruning of the mesh in Figure 2.4a under the

node results in the ordered derivation shown in Figure 2.4b.

-30-



Fig. 2.4

Now, if the "what" context was selected, the system will

generate a tutorial about that particular topic from the

concepts below it in the ordered derivation, and those

concepts will be described in terms of lower concepts,

and so on. The infinite regression stops when a topic is

encountered which the user already understands.

In the derivation shown in Figure 2.4b, there are two ways

of achieving a description of the topic R . The two

equivalent derivations can be thought of as alternate methods

of achieving the descripticn of R. Whichever method

involves the least number of unknown topics is considered

the first one to try. If the resultant tutorial is not

understood, the alternate is given.



If the context "do" was selected, the ordered derivation would

be used differently. The procedural definition of derivable

would be used. That is, the topic R would attempt to be

achieved by the invocation of the procedures of L and

and M, and these would in turn be achieved by invocation

of lower topic/procedures. Again, if there are two methods,

the most apparently expedient one will be used first.

Needless to say, the implementation of these ideas in existing

technology would be difficult. What has been implemented

appears to function in the manner described, but in reality

uses the crutches of contemporary software techniques to attempt

an imitation of the real thing by the use of pre-generated

tutorials (written by a human), the use of pre-written

procedures, by limiting the mesh to-.a very few nodes, and

by precomputing the prunings.

The applicability of do-what-do to page layout rests on the

notion that if a coherent epistomology for the concepts

involved in page layout can be constructed as an entailment

mesh, the mesh can drive the "what" and "do" functions of

the system. The "what" function of the system provides

specific tutorials based on what concepts the user already

understands. The best system to control a set of procedures

-32-



is one which is driven by this same mesh, allowing

procedures to be invoked to achieve goals in the most

straightforward and consistent.manner possible. The reason

that the operation is guaranteed to be straightforward

and consistent is that the mesh which drives the procedural

side of do-what-do (the do side, if you will) is the same

mesh which is guaranteed by the stringent rules of coherence

to describe the process/topic at hand, i.e., page layout.

Page layout is in and of itself bothca topic embodying

a whole wealth of coherent concept blocks, and an equally

coherent set of processes.

It is beyond the scope of this paper to either try to prove

what is stated above or to delve any further into the theory

of entailment meshes, do-what-do, etc. What follows is

a description of the author's implementation of a do-what-do-

like system as the user interface for a page layout system.

An Implementation Of Do-what-do.

The ordered derivation shown in Figure 2.5 is derived from

the mesh used in the layout system. The top node is

"signature," which is a group of 16 pages. This is the

ultimate goal of the system.-- the preparation of 16 pages

of text and imagery. Notice this tree is purely hierarchical.

-33-



When the user sits down at the system, this tree appears on

one of the monitors. By pointing with the tablet at either

the "do" or the "what" button, followed by one of the topics,

(which are also buttons), he controls the layout system.

There are only two types of commands, the "do" command type

and the "what" command type.

s aN A~Ne.

S :u~s~ ~

U~NC ~ ~ 6oLu(OwQ

OF.L4 ~ ~ 71 ?-- - ~v~,ffr ~ o

-re-0r C

c3tzg- $c0N'T

Figure 2.5

-34-

S



The screen appears as shown in figure 2.6. The topic nodes

appear to be one of four colors. They have the following

meanings:

blue: inactive, stopped.
pink: blocked, waiting for some lower goal to be achieved.
red: ready, running on a virtual processor.
orange: running, runningon a physical processor.

The terms blocked, ready, and running have their standard

computer science process control meanings as follows:

Blocked:

Ready:

Running:

means that that topic's process is waiting for
some signal. In this case it means that the
required lower goals/topics have not all yet
been achieved.

means that this topic's process would like to
run if only there were enough physical processors
to go around.

means that this topic's process is actually
running on the one and only physical processor
in our system.

- F~. G(

-35-



In addition (see figure 2.7), there is a strip of yellow on

the bottom of the topic rectangle if that topic has not

yet been learned through a "'what" command. There is a bar

6f yellow on the top of each topic rectangle which is currently

under automatic control, i.e., this topic function has

no meaning when the".user 'pushes the "do" button followed by

this topic. The system will run these nodes when all of the

required sub-goals have been achieved. The white bars on

either side of the rectangle are prompts to indicate that

this topic has yet to be achieved.

ATrO~OM4 F 2UNC7T'O

11 =-OP I CFig. 2.7

rntC

-36-



Example of an Interaction

The user sits down at the system and sees all of the nodes

in blue (let's say). The user wishes to make a region

(collumn) of type. He will hit the "do" button followed by

the "region" button. The automatic function bar is indicated

above the topic "SET" (of lines), meaning that the computer

will determine how many lines are required to set this column.

The system responds by placing white prompt bars on the

topics below REGION which must be achieved before a region can

be made. These prompt bars will stay on only until the user

makes another action of any kind. They act as suggestion

lights

Perhaps the user does not know what SIZE means. He would then

push "what" followed by SIZE. The system responds with a

partial pruning of the mesh under the node SIZE. The screen

would display this pruning as shown in figure 2.8.

Fig. 2.8

The then selects of the two methods of explaining the concept

-37-



of SIZE. If the explanation in terms of CHARACTERS and

FONT is chosen, a tutorial like that shown in figure 2.9

would appear on the display.

A.. 0O= Twe SA~ME pour

Fig. 2.9

If this is not understood, the user might choose to have it

explained in terms of HEIGHT and POINT. In a fully developed

system the user would be able to push "what" on any term

used in any tutorial and get a tutorial on that topic

however in a prototypical system this is not possible.

If the user now presses "do" followed by SIZE, the system

turns that topic orange and asks the user to type the

desired size,on the keyboard. After the new size has been

stored by the system, the SIZE topic will return to blue.

In a similar manner the fontleading and text input are

specified. When each of these topics has been completed then

all of the required sub-goals under SET OF LINE will have

been achieved. Since SET OF LINE was on automatic, the system

will automatically begin the process of setting type into

-38-



collumn, since all of the required information has been

provided. S6 the net result of the whole process will be

a previsualization of a collumn of type on the other monitor.

The Overlord

The code which runs the whole user interface is called the

overlord. It watches the user's' tablet motions and calls the

required function.

The data structure for the mesh is kept in its own data

segment. There are two main components are the topic

dictionary and the block list. Each topic consists of a PL/l

data structure which includes the name of the topic, a pointer

to the next topic, the x,y position, the current state of the

topic (blocked,running etc.), whether the topic has been

learned, and pointers to parameters which must be passed to the

topic's process. There is also a pointer to the topic's

own parameter structure. The topics in the dictionary are

linked into a list as shown in figure 2.10.

Blocks are stored as a two level linked list. Each block

structure points to a list of the "topicblocks" in that block

as shown in figure 2.11. The topicblocks form a list of the

topics contained in that block. They are analogous to cons

-39-



T rblp EA

2f,~

Tol-I?Ae.4M Siep
BLCCXe~

Fig. 2. 10

T71pc l

'.7 SP S 0

Fig. 2. 11

-40-

OK3AiP-y



cells in Lisp. Each topicblock contains a pointer into the

topic dictionary and a pointer to the next topicblock in the

chain.

A set of programs called "Tstick" manipulates these topic and

block lists, asks the user fdr parameter in the topic struct-

ure, and builds the mesh data base. These routines are derived

from a Pascal implementation of Pask's THOUGHTSTICKER.
7

Each topic can be thought of as a process. A topic process

can be in any one of four states at any one time. Figure 2.12

shows a state transition graph.for a topic process.

5Us ao iNS 0 OT

TT FE

A CEc oO

OA.JNI 
a M

Fig. 2.12

-41-



If the topic process is in the blue-inactive state and the user

pushes "do" followed by that topic, it moves to the pink-blocked

state, and is placed on a list of blocked topics. The user

sees the topic he has pushed turn from blue to pink. The

list of blocked topics is scanned to see if any of the topics

are ready to run. If they are, they are move to the

red-ready state and on the orange-running state when actually

running.

In the present overlord implementation, independent processes

in the computer science sense are not used. Instead a

sequential list of subroutines is used. This does not allow

simultaneous processes, howeve; at the present there is

no need for two topic processes to be running at the same

time. To signal when one process has been completed, a bit is

set in its topic structure. This is instead of true

interprocess signalling, but since there is only realiy one

virtual process, this was not necessary.

To actually run a topic, a call is made to a piece of code by

the same name. If one considers each topic and its associated

parameter data structure to be the data elements in a

new language, then the topic code plays the role of an

"actor"in computer science terminology. The topic code is

a topic handler and can be thought of as a data handler in a

data driven language.

-42-



Since it is necessary to create many instances of columns,

areas, pages, images, text lines and characters, some

mechanism must exist to keep track of exactly which

instance is being created or manipulated. The SET and

SEQUENCE nodes perform this function. As a side effect of

running "DO-SEQUENCE," all of the "topic completed" bits are

reset in the topics which are associated with that SEQUENCE

node.

For example, if it is desired that a new column be created

and added to the sequence of columns already created, the

SEQUENCE node asaociated with the REGION (column) node

is pressed. This causes the next column created when

"DO-REGION" is pressed to be chained onto a list of already

created columns.

The SEQUENCEU-add SET nodes are also used to allow the user

to review what has been created and/or to delete old

instances. An elegant way of configuring these nodes as

concurrent processes to perform the set building operations

has not yet been found.

-43-



CONCLUSION

As the technology of computer text formatting and page layout

systems improve, increasing emphasis will be placed on the

design Qf the user interface. The first chapter of this thesis

showed how immediate full color previsualization of a page of

text and-imagery is possible. This type of display will make

the process of text and image handling less error prone and

undoubtedly less frustrating. It will become no longer

necessary to look at the final output to make aesthetic and

technical judgements on the result which are then used to

produce the second attempt. Instead, the raster

display will provide an image of the result before it has

even been produced 'allowing the changes to be made interactively.

The interface methodology presented in chapter two provides

the advantages of self-documentation, rapid learning rate and

ease of 2use at the expense of some rather advanced, and at

present still experimental programming. Much work remains to

be done before such a system becomes operational even in the

laboratory. At present only the simplest parts of the system

have been implemented.

Work continues at the VLW on both of these aspects of

text &nd image handling systems.

-44-



REFERENCES

1. Frank Crow, "The Aliasing Problem in. Computer Generated
Shaded Images," SIGGRAPH 20(11), 1977..

2. Donald Knuth "TEX and METAFONT: New Directicns in
Typesetting,' American Mathemiatical Society, 1979.

3. Jonathon Seybold, The Seybold Report, #24, 1979?

4. Chrispopher Schmandt, "Soft Fonts," IFIP, 1980.

5. Gordon Pask, Conversation Theory: Applications in Education
and Epistemology, Elsevier, Amsterdam, 1976.

6. Paul Pangaro, personal communication, 1981.

7. Gordon Pask, "An Essay on the Kinetics of Language,
Behaviour, and Thought," SRL, 1979?

-45-



BIBLIOGRAPHY

Crow, Frank., "The Aliasing Problem in Computer Generated
Shaded Images," SIGGRAPH 20(11), 1977

Goodstein, David., "Output Alternatives," Datamation
26(2), 1980.

Ilson, Richard., "An Integrated Approach to Formatted Document
Design," Master's thesis dept. of Electrical Engineering
and Computer Science, M.I.T., August 1980.

Knuth, Donald E., "TEX and METAFONT: New Directions in
Typesetting," American Mathematical Society and Digital
Press, 1979.

Leler, William J., "Human Vision, Anti-aliasing, and the
Cheap 4,000 Line Display," SIGGRAPH 14(3), 1980.

Marcus, Aaron, "Computer-assisted Chart Making from the Graphic
Designer's Perspective," SIGGRAPH 14(3), 1980.

Negroponte, Nicholas, "Raster Scan Approaches to Computer
Graphics," Architecture Machine Group,: working paper
I.T., 1976?

Newman, William M..and Sproull, Robert F., Principles of
Interactive Computer Graphics, McGraw Hill, 17.

Pangaro, Paul, "Thoughtstiker Implementation Note," Systems
Research Ltd., Richmond, Surrey, April 1980.

Pask, Gordon., "An Essay on the Kinetics of Language, Behaviour
and Thought," Systems Research Ltd., Richmond, Surrey,
England, 1979?

Pask, Gordon., Conversation Theory: Applications in Education and
Epistemology, Elsevier Publishing Co., Amsterdam and 1
New York, 1976.

Pask, G., "Conversational Techniques In the Study-and Practice
of Education," British Journal of Educational Psychology,
vol. 46 pp. 12-25, 1976.

-46-



Pringle, A., Robinson, P., and Wiseman, N., "Aspects of
Quality in the Design and Production of Text,"
SIGGRAPH , 1979.

Schmandt, Christopher., "Soft Typography," IFIP, 1980.

Seybold Patricia B., "Wang's lOA,20 and 30 Word Processing,"
The'Seybold Report, 1(1), 1978.

Tilbrook, David., "A Newspaper Pagination System," Masters
thesis dept. of Comp. Sci. University of Toronto, 1976.

Unger, Gerard., "Digitising Type," Paper for Pre-Circulation
to Participants at the Cambridge Seminar on Digitisation,
Cambridge, England 25-27 June 1980.

Warnock, J. E., "The Display of Characters Using Grey Level
Sample Arrays," SIGGRAPH, 14(3), 1980.

-47-


