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ABSTRACT

This thesis presents a time -vector method for extracting the lateral
stability derivatives of an airplane from its fixed-control, lateral oscilla-
tion. The method of analysis is based on the concepts of rotating vectors
long used in the field of electrical engineering. Specifically, the relation-
ships existing between the phases and the amplitudes of the multiple
degrees of freedom, and their time derivatives and integrals, of a linearly
oscillating system are time-invariant. That principle permits a com-
plete analysis with the oscillation "frozen" at any chosen time. '

The time-vector method of analysis can be applied to either the
direct or the indirect stability problem.

1. It can be used to determine the phase and amplitude
relationships between the multiple degrees of freedom
of a lightly-damped, oscillating system when the sta-
bility derivatives are known.

2. It can be used to determine the stability derivatives of
a lightly-damped, linearly oscillating system from
transient flight records.

This report is concerned with the second application. The method
is developed and then applied to the lateral oscillation of a fighter air-
plane. A number of advantages which are a result of the physical insight
afforded by the graphical solution are enumerated.

Thesis Supervisor: E. E. Larrabee
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I. SUMMARY

This report presents a time -vector method for extracting the

lateral stability derivatives of an airplane from transient flight data.

The method has been developed from a consideration of the properties

of rotating vectors. The relationships between the phases and ampli-

tudes of the multiple degrees of freedom of a linearlly oscillating

system are time-invariant. That fact forms the basis of the time-vector

method.

The lateral oscillation of a fighter airpland was analyzed. The

analysis and sample calculations are presented in the appendix. It was

shown that relationships between the stability derivatives could be de -

rived which were commensurate, with the accuracy of the transient data.

The lateral oscillation provided sufficient conditions to evaluate five of

the seven lateral stability derivatives in terms of the other two. A

reasonable estimate for two of the derivatives gave good results for the

others. A similar analysis of the rolling-subsidence and the spiral

modes presents the two additional conditions which are necessary to a

unique solution for all derivatives.

The time-vector method of analysis is direct and easily applied.

The graphical solution permits an insight into the physical character of

the oscillation. That quality facilitates the detection and correction of

any inconsistencies that may be present in the data.
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II. INTRODUCTION

A. A Discussion of the Problem

This report considers the application of a time-vector method to

the extraction of the lateral stability derivatives of an airplane from

transient flight data. The problem of determining stability derivatives

directly from dynamic flight tests has received considerable attention

in recent years. A brief background of the subject follows:

The basis for the study of airplane dynamics was introduced by

Bryan in 1911, Ref. 1. His mathematical description of the fixed-

control motion of an airplane remains fundamentally unchanged.

The fixed-control motion of an airplane is mathematically

described by six simultaneous, linear, differential equations with con-

stant coefficients. The equations are written for axes that are fixed in

the airplane. They are derived with the assumption of small disturbances

from an equilibrium flight condition. By virtue of airplane symmetry

and the restriction to small disturbances, the equations can be separated

into two groups which describe the longitudinal and the lateral motions.

The form of the lateral dynamic equations used in this report is presented

on page 12

The constant coefficients in the differential equations are called

stability derivatives. They represent a change in an aerodynamic force

or moment along, or about, one of the stability axis due to a departure

from equilibrium. Limitations to their use are discussed in texts on the

subject; one such text is Ref. 2.
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Accurate estimates of stability derivatives are essential in the

design of an airplane in order to insure good flight characteristics.

Those estimates must be based on aerodynamic theory and, where

possible, wind-tunnel tests. It would be beneficial to the aerodynami-

cist if he were able to get a direct check on his estimates from dynamic

flight tests. Until recently, the only practical check available was a

comparison between a calculated and an actual flight response to a dis-

turbance. That check was not positive since compensating errors in the

derivatives could mask significant inaccuracies.

It should be noted that the lateral stability derivatives of a Bristol

fighter were extracted from flight tests by British investigators in the

1920's, ref. 3. Some similar work was done in this country in the

1930's and early 1940's. However, those methods were very difficult

to apply and hence were not used generally by aerodynamicists in industry.

The difficulties inherent in estimating stability derivatives

accurately were significantly increased with the use of highly swept

wings and the advent of transonic flight speeds. The need for methods

of checking estimated derivatives by dynamic flight tests of the com-

pleted airplane became more acute. The correlation between theory

and practice would permit improved estimates of stability derivatives

for advanced designs.

Considerable research effort has been expended in recent years

toward the development of methods for extracting stability derivatives

and stability performance functions from dynamic flight tests. Milliken

has discussed some of the results obtained at the Cornell Aeronautical

Laboratories in Refs. 4 and 5. A method developed at that installation

3



and applied in Ref. 6 is considered briefly in this report. The NACA

has devoted considerable effort to the problem. Various methods

developed in their laboratories are presented in Ref. 7 through 11.

There are many other papers relating to the subject. The reader is

referred to the more extensive bibliographies contained in the referenced

documents.

This report is concerned principally with a time -vector method

for extracting stability derivatives from transient flight data. The method

is especially applicable to lightly-damped, oscillating systems. It is

applied herein to the extraction of the lateral stability derivatives of a

fighter airplane by analyzing its lateral oscillation.

The rotating vector diagram employed in the method has been used

by electrical engineers for many years. The first known application in

aeronautics was by Mueller of MIT in 1937, Ref. 12. He-used it to de-

termine the character of the longitudinal oscillatory modes of an airplane

when its stability derivatives and inertia properties were known. Thus,

he used it in the sense of synthesis. The principle lay dormant for

many years. It has been considered by several people since World War

II. Doetsch, a German scientist working in Great Britain, has prepared

a report, Ref. 13, in which he considers an application similar to

Mueller's in greater detail. He also applies the method in a synthesis

sense.

The time-vector principle has been recently applied in the sense of

analysis: the problem of determining the stability derivatives when the

transient motion of the airplane is known. The only thorough development

4



and application of the method known to the writer was that of Professor

Larrabee of MIT in Ref. 14. The development in this report closely

follows that of Professor Larrabee.
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B. Nomenclature

wing span, ft

airplane center of gravity location, % M. A. C.

equilibrium lift coefficient
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K g/b 2 w (Iz - x ) sin rt cos ri
p p

L rolling moment, ft-lbs

M Mach number

M. A. C. mean aerodynamic chord, ft

N yawing moment, ft-lb

lateral acceleration in g's

OAT outside air temperature, 0F

p angular velocity about X-axis, rad/sec

r angular velocity about Z-axis, rad/sec

S wing area, ft

t time, sec

Vc calibrated airspeed

Vi indicated airspeed

V0  equilibrium true airspeed

W gross weight, lb

Y side force, lb

a angle of attack, deg

P angle of sideslip, rad

o( flight path angle, rad

6 pressure ratio, ambient/sea level

6 total aileron angle, deg

eD sin~I,, damping angle, rad

0 angle of roll, deg
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p phase angle of p relative to P, deg

phase angle of n relative to P, deg
n y

r phase angle of r relative to p, deg

rolling subsidence mode root

X ~spiral mode root

M pbairplane density parameter

angle between principal axis and stability axis

angular velocity of oscillation, rad/sec

Won undamped natural frequency, rad/sec

W . T W , nondimensional undamped natural frequencyn 0 on

p0  NACA std. sea level atm. density, slugs/ft3

atm. density ratio, ambient/sea level

b
-rT ro , aerodynamic time reference, sec

9Q L airplane reference axis angle of zero lift, deg

angle of yaw, rad

lateral oscillation damping ratio
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III. THEORY AND DISCUSSION

A. Properties of Rotating Vectors

Consider a freely oscillating system composed of a mass, a

viscous damper, and a spring. For small disturbances, its motion can

be described mathematically by a linear, second-order differential equa-

tion.

S-x + + k x= 0m-~-- dt
dt

where

x = displacement

m = mass

c = damping constant

k = spring constant

If the damping of the system is less than critical, the roots of the

equation may be expressed as

-on- n

With initial conditions which eliminate one root,

- ont + iW ;1_-72 t
x=x e n

The first derivative of x can be written:

~n ei(I X + 9g0 +e D)

9



where E.D = amping angle

= tan-

= sin~ -

Similarly,

fx dt ei(i - 900 - ED

n

Those quantities can be plotted as vectors in the complex plane.

Irni.
dx n1Ika n %r

Reat
X

a- W.~L W -

so C ., i

Wn

Fig. 1, Derivatives and Integrals of Vectors

The quantity x, its time -derivatives, and its integrals all rotate with the

same angular velocity, o, in the complex plane. Also, each of the vectors
-Go t

has its magnitude decreased by the same multiplicative factor, e n it

follows that the relationships existing between the amplitudes and phases

of the vectors are not functions of time.
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For the simple mass-spring-viscous damper system described by

the equation

mi + ci + kx = 0,

oscillatory solutions can be represented by closure of a vector in which

each of the terms is represented by a vector as shown in Fig. 2.

Fig. 2, Vector solution for one -degree -of -freedom oscillation

The concepts established for the one-degree-of-freedom system

can be extended directly to a system. with multiple degrees of freedom.

All components of the system, and all derivatives and integrals of the

components, will rotate with the same angular velocity and decay with

time by the same factor. Hence, phase and amplitude relationships be-

tween the components of a linearly oscillating, multiple-degree-of-freedom

system are time-invariant. That conclusion is important; it is the foun-

dation of the time-vector method for analyzing oscillating systems. The

phase and amplitude relationships between the components to comprising

the motion may be determined by considering the oscillation frozen at any

11



instant. The relationships may be used to solve for the constant

coefficients of the linear differential equations which describe the com-

plete oscillation.

B. Application of the Principle to Airplane Lateral Dynamics Analysis

This report considers the application of the method to the short

period, lateral oscillation of an airplane. The relatively light damping

of that motion makes it especially susceptible to time-vector analysis.

The differential equations which describe the fixed-control, lateral

motion of an airplane are presented below.

ox 1 2 Z Cj D)0+ (2AK D- TC D)J (CA2 2 0 x 2 19'

(2#OK D - i" Cn D)0 + (ZAOK 2D - C D) -C 0

p r p

-(CL )0 +((2p D - CL tan Y )qj + (24 0 D - C )p = 0

The form of the equations corresponds to NACA practice.

It is noted that a total of seven stability derivatives in the equations

are unknown. It is of interest to consider the number which may be eval-

uated uniquely by analyzing the lateral oscillation.

The instrumentation recommended for lateral oscillation testing

includes provisions to measure the rate of roll, the rate of yaw, and the

lateral acceleration. The flight test records then yield information con-

cerning the ratios:

12



Those ratios provide four known conditions which permit the solution of

four of the unknown derivatives in terms of the other three. The side

force equation, as written, assumes that sideslip is the only means of

generating a side force. With that condition, the side-force derivative

can be evaluated from a nondimensional form of Newton's Second Law of

Dynamics,

It also follows that the phase angles of P and n differ by 180. The side
y

force assumption is excellent for conventional aircraft. If an unuspxally

large vertical tail is employed, the contribution of roll rate and yaw rate

to the side force should be investigated.

In the usual case, the lateral oscillation, with the side-force

assumption, provides sufficient information to determine five of the

seven unknown stability derivatives. In order to evaluate them uniquely,

the magnitudes of two derivatives must be estimated or obtained from an-

other source. It may be possible to separate the rolling subsidence mode

and the spiral mode from the lateral oscillation. If so, they will provide

the two additional conditions necessary for a unique solution of all deri-

vatives. That possibility will be discussed later in the report.

C. Transient Analysis

The first step in analyzing a transient is to determine:

1. the frequency of the oscillation,

13



2. the damping ratio,

3. the relationship between the amplitudes of the degrees
of freedom,

4. the relationship between the phase angles of the degrees
of freedom.

That information can be obtained by plotting the oscillation data in the

following manner:

First, plot the times at which all components of the oscillation

cross the zero axis as shown in Fig. 3.

sec,
U

0 TtME ~ SEC.

Fig. 3, Frequency Plot

The common slope of the curves of Fig. 3 precisely determines the

frequency and the period of the oscillation. The horizontal distance be-

tween the curves provides the relationship between the phase angles of

the degrees of freedom. The data points for each oscillatory component

14
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should generate a straight line. If they do not, it is an indication that

nonlinearities are present.

The second graph should have the logarithms of the maximum

amplitudes of the oscillation plotted versus their times of occurrence.

CSE

0

TIME~ SEC.

Fig. 4, Amplitude Plot

The slope of the curves of Fig. 4 establishes the damping of the motion.

The decay of the vectors of Fig. 1 was shown to be represented by:

Ln x = Ln C -

and n L ri C- - L
t

where

(It)

C = max. amp. at t = 0

x = max. amp. at t = t.

15



Also recall that

The values of the damping ratio () and the undamped natural

(wn) can be solved with relations (1) and (2).

The relative amplitudes of the degrees of freedom may

ascertained by considering the motion frozen at any instant.

tude relationships may be determined along vertical lines as

Fig. 4.

frequency

be

The ampli-

shown in

Misalignments of the rate instrument input axes and improper

location of the lateral accellerometer have significant effects on the

measured phase and amplitude relationships. When those conditions

exist, corrections must be applied to the data. A method of correcting

phase and amplitude relationships for instrument geometry is given on

page 24

The corrected data can be presented as a vector diagram in the

complex plane. The general appearance will be that of Fig. 5. It was

shown that measuring p is usually unnecessary. The phase of p can be

considered to differ from that of ny by 1800. The nagnitude of p can be

established by the side-force vector diagram. That is indeed fortuitous

since sideslip is inherently difficult to measure accurately.

16
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dt
= roll

r ate.

I atet-all
accell,

9 sabe-si
angle

=ryaw rafe
dit

Fig. 5, Vector Diagram of Oscillation Components

D. Construction of the Vector Diagrams

It is convenient to consider the side-force equation first. It may

be written as

CYfS+ CLO

Construction of the side-force diagram facilitates critism of the transient

data. The magnitudes of all terms on the right hand side of the equation

are known. It is not uncommon for the vector diagram to fail to close.

The appropriate adjustment is to alter the phase of r with respect to p

17



and ri as required. The employment of identical rate gyros for the
y

roll and yaw freedoms will minimize the phase distortion between those

components. However, some phase distortion can be expected between

the rate gyros and the accellerometer. The phase distortion considered

here is of a random nature. The instrument dynamics should be known

before they are installed in the airplane.

02

- I D~II.Z D'Y~S3c)

MO IY0
-Z-DW

n.y CLOC_4) \/9iD

Fig. 6, Side-Force Vector Diagram

The side-force diagram has yielded:

1. consistent relationships between the phases and
amplitudes of r, ry , and pi

18



2. the magnitude of C ;

3. an opportunity to criticize the accuracy of the phase
and amplitude data.

The rolling-moment equation may be considered next. It is

convenient to write it:

2.Ao KZ D$- SC. DY + 2.A. KD' = X C,04+1

One of the three unknown stability derivatives must be estimated or

obtained from another source. The proper derivative to estimate will

depend upon the airplane configuration. CZ was considered estimated
r

in the equation above and in the diagram of Fig. 7.

44
N.dt

Z -, KD4 .

-... c c 04

dt

Fig. 7, Rolling-Moment Vector Diagram
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Cs =

Accurate phase relationships between the degrees of freedom are

essential for good results. If an improbable value is obtained for CI
p

(which can be estimated with reasonable accuracy), it is probably an

indication of a small error in the phase of the roll rate, p. In that event,

the best estimate of C, should be inserted into the vector diagram. The
p

rolling-moment diagram then yields:

1. a good value for C ;

2. an improve phase relationship for p with respect to p.

All improved phase relationships should be used in subsequent diagrams.

The yawing-moment equation may be written:

E.K'LD2 + ZA.KxfD'4 - rCn0) 1n, -w-+Cn,(S

Again, one of the three unknown derivatives must be estimated in order to

permit a. unique evaluation of the other two. The easiest derivative to

estimate depends upon the airplane configuration. Cn was estimated in
r.

Fig. 8.

Z0



Zjx.KI D E)

Cnpi

r
-4

ZM K t~'4
C

--- 4

Fig. 8, Yawing-Moment Vector Diagram

C = --- A

CnP C 2-'Cr p t6

IN
The yawing-moment diagram has yielded:

1. the magnitude of Cn
p

2. the magnitude of C n

An important feature of the time-vector method of transient analysis

should not be overlooked. Since it is a graphical solution, it permits a

visual consideration of the relative importance of the oscillation compon-

ents. The graphical constructions are easily checked by slide-rule

21
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calculations.

Data inconsistencies are easily discovered. The physical insight

afforded by the vector diagrams facilitates logical adjustments.

E. Consideration of the Rolling-Subsidence and the Spiral Modes

It has been noted that it is not possible to evaluate all of the lateral

stability with the lateral oscillation. Two derivatives had to be estimated

or obtained from another source. In some cases, it is possible to separ-

ate the rolling-subsidence and spiral modes from the lateral oscillation

in the flight record. If that can be accomplished, those modes will

supply the additional conditions necessary for a unique solution of all de -

rivatives. The difficulty lies in the accurate identification of the modes

which is essential to a good solution of their roots.

The rolling-subsidence mode may be extracted by back-figuring

the oscillations after their linear parameters have been established.

The difference between the record and the calculated motion is due to

the rolling-subsidence mode as shown in Fig. 9.

R o \\mq-subs idence.

C-ontg-buhonc

Fig. 9, Rolling -Subsidence Mode Separation

22



The rolling-subsidence mode principally consists of a heavy damping

of the roll rate. As such, it is most easily identified in the roll rate

record.

The general nature of the motion may be used to get an approximate

expression for the rolling-subsidence root. By neglecting the relatively

unimportant terms, it can be written as:

Iku K~ C,

b 
xVTime to 1/e initial amplitudes *

= spans flown to l/e initial amplitudes..

When A r and the ratio p:r:p of the rolling subsidence mode have

been determined, they may be inerted into the roll equation as:

That provides another relation between C , C , andC
p r

It. should be noted that X and the ratio p:r:p are also time -invariant

rw

throughout the maneuver. Then

dt

23



and f L( dt e .

The spiral mode is easily identified if the oscillation

is allowed to continue for a sufficient period. However, the

time required to develop a reasonable amplitude is usually so

great the atmospheric turbulence becomes a significant factor.

Since the motion grows or subsides so slowly, it is advisable

to measure roll angles and headings since

P

The spiral root and the ratio p:r:o may be inserted into the

yawing-moment equation to give another relationship between

C h, Ch , and C.

An approximate functional relationship may be written

for Xs as: ( . C

Wr Cot.crjp C11.

~~.r is C~, CraP Cns + CAP' ~

b y___r_
Time to e initial amplitudes if unstable *

spans flown to e initial amplitudes.

F. Corrections for Instrument Orientations and Locations

Roll rates and yaw rates should be measured about the

airplane stability axes; lateral accelleration should be meas-

ured at the airplane center of gravity normal to the plane of

symmetry. The usual flight test

24



instrumentation has the accellerometer aligned in the proper direction.

It is often impractical to fulfill the other conditions.

The X-stability axis is initially aligned with the equilibrium flight

direction; its relationship to the airplane center line is a function of

airplane angle of attack. It would not be practical to make frequent

changes in the roll rate and yaw rate instrument orientations.

The airplane center of gravity may not be accessible for instrument

installation. For example, it may be located inside a fuel cell. In that

event, the lateral accellerometer should be located as near to the air-

plane center of gravity as is possible.

The measured quantities may be corrected for instrument geometry

as shown below

Y o Accenlerome er

h
xA

Fr

Fig. 10, Instrument Orientttion Diagram
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From Fig. 10,

n =n

where
P

h - d --- p -- r

dI

a tz

p pmcosA -pm sinB

p PMcosB -p msinA

Since each quantity is identified by a phase and an amplitude, its expres -

sion in terms of complex variables facilitates combination.

P = IP cos A e - Iri Sin b e

= 0 P,. cos A cos IP,

The yaw rate can be treated similarly to yield

r- - It-I e. ft.

Now recall that

L = I~PI

and

W,~r Ir e-

(~p +~O±Eb)

c (~rO 0 *E~c~)

26
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Those relations should be inserted into the expression for n . The

expression can be solved by:

1. Express n , p, and r as complex variables.

2. Write the equation in terms of real and imaginary
quantities by Euler's equation.

3. Perform the indicated multiplications and summations

4. Recombine the real and imaginary quantities into an
expression containing an amplitude and a phase.

Ratios of the corrected quantities may be combined with the rules of

complex variables. For example,

P lel Y

27



IV. CONCLUSIONS

The following conclusions may be derived from a consideration

of the preceding development and the sample calculations of the analysis

presented in the appendix.

1. The time-vector method of analyzing a linear, multiple-degree-

of-freedom, oscillatory system is straight-forward and easily applied.

It is especially applicable to the analysis of lightly damped systems. It

yields relationships between the stability derivatives of an airplane which

are commensurate. with the accuracy of the transient data. The assump-

tion of reasonable values for some derivatives yields good values for the

others. An analogous application of the method to the rolling-subsidence

and spiral modes permits a unique solution for all of the derivatives.

2. The method of plotting the transient data provides:

(a) the period and frequency of the oscillation,

(b) the damping of the oscillation,

(c) relationships bet'ieen the phases and the amplitudes
of the oscillatory components.

It also indicates any deviations from linearity. Similarly, it permits the

averaging of any experimental scatter which may exist.

3. The method fully exploits the linear qualities of the transient

data of a system which may be described mathematically by a set of

simultaneous, linear, differential equations.

4. The graphical solution clearly indicates the presence of any

inconsistencies in the data. It also assists the engineer in determining

the proper adjustment.

28



5. It was noted that errors due to instrument misalignment or

location are significant. A method was developed for correcting those

errors.
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VI. APPENDIX

A. Sample Calculations of a Time-Vector Analysis of a Lateral

Oscillation

1. General Discussion

The time-vector method was used to extract the lateral stability

derivatives of a fighter airplane from its lateral oscillation. A three-

view drawing of the airplane is presented on page 59 . The lateral

oscillation was excited by a rudder pulse; a representation of the flight

record is shown on page 58

2. Flight conditions

w = 12,880 lb, s =237. 6 ft 2

2
= 12, 540 slug-ft , b =38. 9 ft

xp

I = 31,000 slug-ft2

p

C. G. position: 25. 6% M. A. C.

Altitude: 20, 000 ft

V. = 260 MPH

OAT = +3 0F

3. Calculation of flight constants

(a) It must be assumed that Vi = Vc since no airspeed calibration

data were available.

Then,

M = 493
V0 = Ma

(. 493)(1116)(. 944)
= 519 ft/sec
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(b) CL = 2
o 1481 M 6 S

12, 880

(1481)(. 493)2(. 459)(237. 6)

. 328

(c) m pSb

12, 880
~ (32. 2)(. 002378)(237. 6)(38. 9)

18. 18

b

38. 9
(.-718)(519).

. 1045 sec

4. Flight attitude

Flight measurements indicated that 9
01

CL
5. 10 per radian

= -1. 70

5. 10
57. 3

= .089 per degree
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0= CL

(-)

.328

.089
- 1. 7

=3. 69 - 1. 7

0 T 20

The X principal axis of inettia is estimated 4 0 blwthe reference

axis of the airplane.

q~ = +20.

5. Inertia constants

K 4,= ( )2(I)x m
P

_ (12540)(32. 2)
~2

(38.9) (12880)

-. 0207

K 2 2)z b m
p

(31, 000)(32. 2)

(38. 9) (12880)

= .0512

+20

2- 2

K2 =K
x p

2 2
cos + K

p

34
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s 2
sinq



z 2 o 2
K = (.0207)(cos 2) + (. 0512)(sin..-2

. 0207 + . 0000624

. 0208

2 2 2 2.2
K = Kz cos 2r + K sin \

p p

= (.0512)(cos 20)2 + (. 0207)(sin'20)2

= .0512 + .000, 025,2

= .0512

2 2
K = (Kz - K ) sin rt cos rl

p p

(.0512 - . 0207) sin 20 cos 20

= .001, 064

6. Analysis of the time-histories of the oscillations

The curves on page60 yield the following information:

(a) the frequency of the lateral oscillation,

(b) the phase relationship between degrees of freedom,

The curves on page 61 provide:

(a) the amount of damping present in the oscillation,

(b ) the relative magnitudes of the components of the lateral
ostillation.

From those curves

S=.0998, ta =2. 17 rad
sec
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Table 1, Measured Phase and Amplitude Relationships

Measured Quantity

p

r

n
y

Amplitude Relationships

.0664 rad/sec

.0736 rad/sec

.0218 g's

Phase Angle Relationships

144. 3 deg.

265.5 deg.

180 deg.

Those relationships must be corrected for the orientation of the

input axes of the roll rate and yaw rate gyros, and for the location of

the lateral accellerometer with reference to the airplane center of gra-

vity. The instrument orientations and locations are shown below.

G.01 ft.

0 Accellerore+er

.15 ft.

x P-
C.G.

Fig. 11, Fighter Airplane instrument Geometry
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Dp =PM

p =r

n =n
Y ym

S75
g

p

= sin -

= 5.80

6.08
g

p = &n IP ei(p

= (2. 17 rad/sec)(

+ 900 + E )

. 0664)ei( 144. 3 + 90 + 5. 8)

= . 144 rad/sec2 at 240. 10

r = 'n I r e Or
+ 900 + E)

= (2. 17 rad/sec)(. 0736)e i(265. 5 + 90 + 5. 8)

2 0
-. 159 radlsec .at + 1. 3

(.75)(. 144)e i ( 240.

32. 2Z

1i0) (6. 08)(. 159)e i 1. 30)
32. 2

= .0218 ei (180 0 ) -. 00336 e i (240. 10) - . 0300 e i (1. 30)

= . 0502 at 177. 50

Fig. 12 shows the vector relationships before and after correction for the

instrument orientations and location.
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?=Fv =.0rr.4 sad.
se..

I=OZIB 9's

I-adI.r~ r 11(c

Fig. 12, Phase and Amplitude Correction

Rotation of the vector diagram so that the phase of n is 1800 gives:

Table 2, Corrected Phase and Amplitude Relationships

Amplitude

.0664 rad/sec

.0736 rad/sec

. 0502 g's

Phase

146.8

268

1800

The angular velocities must be nondimensionalized for insertion

into the equations of motion presented on page 12 .
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d0p o = -(A)n T

= (. 1045)(2. 17)

DO - t/r) . 226

d0
0 dt

= (.1045 sec)(. 0664 rad/sec)

= . 00694 at 146. 8

D = - d-=T 0 rD$=-o =t -r0

= (. 1045)(. 0736)

. 00770 at 2680

Those relationships, with the nondimensional lateral accelleration should

be suitable for use in the final solution of the problem.

7. Discussion of the validity of preceding results

A preliminary analysis, including diagrams, indicated that the

supporting data and the actual transient recrods were not compatible. An

extensive check of the supporting data, such as airplane weight, inertias,

instrument locations, calibrations, and dynamics, was in order. Un-

fortunately, the flight test had been conducted in 1951; therefore, it was

not possible to accomplish those checks. It then became necessary to

determine the most logical correction to the data which would be con-

sistent with the transient records and with information on the stability

derivatives obtained from other sources.
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A study indicated that the following changes were most probable:

(a) n = . 0073 instead of . 0502

(b) k = 8. 81 ft. instead-of 9. 85 ft.

(c) k = 5. 60 ft. instead of 5. 69 ft.x

-Those changes can be shown to be reasonable.

The lateral accelleration could have been inaccurate for one or

more of the following reasons:

(a) The instrument calibration could have been incorrect.

(b) Improper excitation voltage may have been used when
the test condition was recorded.

(c) The accellerometer location relative to the airplane
C. G. may not have been accurately known.

(d) The accellerometer input axis may have been mis-
aligned.

Moments of inertia have very significant effects on the damping and

the period of the lateral oscillation. An accurate knowledge of the inertias

is thus important. The inertia data received with the flight test records

were not considered especially accurate. It became apparent in the analy-

sis that either Iz of the damping of the oscillation had to be reduced in

order to obtain reasonable yawing moment derivatives from the rest re-

cords. Determination of the damping of the oscillation from the time -

histories was straight -forward and considered reliable. Consequently,

the airplane moment of inertia about the Z-axis had to be reduced. There

are no independent inertia data for the airplane considered which are

available for a check. However, the corrected inertias appear reasonable

when compared to those of geometrically similar airplane.
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8. Calculation of the stability derivatives by means of vector
diagrams

(a) Side-force diagram

From page 12

2MA~
-- Dp = C y

yp

0 = e
n

. 00694
. 226

= . 037 at

, the side-force equation is:

D$

D9 - 900 -E D

ei (146.8 - 90 - 5.8)

51. 00

0 = (.328)(. 0307)

= .01007 at 51.0 0

D$ = (2)(18. 2) (.00770).718

= . 390 at 2680 (The phase angle will be checked
in the diagram).

_ (2)(18. 2).718

= 50. 6 Dp

Since side force is almost entirely a result of sideslip, it is reasonable

to assume that n and P have a phase difference of 1800. Then, the phase

41
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angle of DP is:

DP =p + 90 + E D

= 0 + 900 + 5.80

= 95. 80

Continuing with the assumption proposed above,

Cp=CL n
yp L 0 y

= (.328)(. 0773)

= .0254 at 1800

With the information from the side -force diagram,

C = at 1800
yp I p-1

-. 0254
0348

= -. 730

It was necessary to change the phase of D$i with respect to p from

2680 to 273. 10 in order to close the vector diagram. It is most reason-

able to assume that the phase relationship between DO and D$ was correct

as measured. Both quantities were measured by rate gyros with inputs

of the same order of magnitude. The lateral accelleration was measured

by an accellerometer. Its dynamic response characteristics could be

expected to differ from those of the rate gyros. The instruments were
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S DO.6

O0

.coo-8
.22.6a

' /o

++C= o

c.C , p ,ao zs4

Fig. 13, Side-force vector diagram



selected to provide good dynamic response in the frequency spectrum

anticipated for the flight test. However, it should be noted that authori-

ties estimate that an accuracy on the order of t3 0 in phase response is

considered reasonable for the type of instrumentation used. Then,

{D$; p= 273. 10

(D0;pI = 151. 90

In y;p = 1800

(b) Rolling -moment diagram.

From page 12 , the rolling moment equation is:

2 2 2 T2XAK D 0- Cj DL+ 2PK YD2 = Cg DO + CSO 2 r p
CL

Estimate C 0

r

.328
4

= . 082

The terms in the equation are:

D 2 = DD + 900+ 5.8)

(.'226)(. 00694) e i (l51. 9 + 90 + 5. 8)

=.00 1568 at 247. 70
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2 i ( 273. 1 + 90 + 5. 8)D =.226)(. 00770) e

- 00174 at 8.9 0

2)A K D 00ox

SC r

2pK D2@

= (2) 18. 2)(. 0208)(. 001568)

.00 1, 187 at 247. 70

(.718)(. 0802)(. 00770)
2

= . 000, 226 at 273. 10

= (2)(18. 2)(. 001, 064)(. 001, 74)

= 000, 067, 5 at 8. 90

= (.718)(. 00694) C
2 C

p

= . 00249

C = .0 3 48

C Ap at 151. 90

at 00

The rolling-moment vector diagram yielded:

C = -. 527 (estimated)
p

C = -. 0462

= 143. 50
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CAP -. 0029
P .00o2.49

00160e8
.0o348

- 0462.

i . P

+ CC, a

46 -6 . 5

Fig. 14, Rolling-moment Vector Diagram.
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The initial construction of the vector diagram using the numbers

developed on page 44 yielded an unreasonably high magnitude of

C . A study of the rolling moment equation and the vector diagram
p

indicated that the I {D0;P) was most probably in error. C, can be

estimated with good accuracy by well-established methods. Introduc-

tion of a value for CI into the vector diagram permits the solution of
p

C, Pand the correction magnitude of I {D0;p)*

Phase angle errors should be reduced to the minimum instrument

errors by a careful selection of instruments and a precise knowledge of

the installation orientations and locations. It is again noted that the

present data were recorded three and one-half years before analysis.

Checks which normally would be accomplished immediately after noting

unexpected errors were impossible. It has been noted that a mis-

elignment of the input axes to the rate gyros as shown in Fig. 15 could

account for the entire change in the phase of DO with respect to D4.

Actually, a major part of the error could.beedue to instrument dynamic

phase response errors.

4*

Fig. 15, Phase Corrections
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(c) Yawing-moment diagram

From page 12, the yawing-moment equation is:

&Z, K D ' + ZA4.Kx-D -- C D =

Again, one derivative must be estimated.

. Cr +C

For the airplane

considered,

t$ I

C OnCnP0

- oofli-

- oo15eet

call+n

o -4

o-t 8.4"

at '. .

Ot 2*
a~ 0

2. I40 IL

At

2

= .000,O4O,(

Cn,.

.o~4e~ ~

o.t Z13.1 *

.-t O0

9. Summary of Results

The stability derivatives derived from the flight test are compared

with the manufacturer's estimates in Table 3.
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+ W.A.KnD'4. Z-2.Knr

+ Cn,

C -0044-1

-. 160

. 00S,Z.0-
.o34-8

- .092.2.

Fig. 16, Yawing-moment vector diagram.



Table 3, Comparison Between Extracted and
turer's Estimates

Derivatives and Manufac -

Source

Mach No.

Altitude

Weight

C. G. pos.

Time -Vector
Analysis

. 50

20, 000 ft

12, 800 lb

25. 6% M.A. C.

Manufacturer's
Estimates

.60

20, 000 ft

14, 500 lb

27% M.A. C.

12, 540

31, 000

-. 73

-. 0462

-. 527

. 082 (est)

.0922

0 (est)

-. 160

Some additional information which were obtained from the transient

analysis are:

I1
=

IZ.G2 o WL = 2..1 (

x

z

C
yp

C

C I

C I
r

Cn

Cn
p

Cnr

26, 400

52, 200

-. 788

-. 066

-. 545

. 065

.093

.015

-. 136

S=.O99e,

read.
Isec.
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Inyl

B. Lateral Oscillation Analysis by the Method of Ref. 6

The same rudder-pulse flight condition has been investigated using

the imethod of Ref. 6. It was not possible to determine all of the stability

derivatives since the airplane oscillation was not excited in the manner

most appropriate to that method of analysis.

The equations presented below have been taken from pages 19

and 20 of Ref. 6. The nomenclature has been changed to correspond

to that of this paper.

MCQP chi,

CA must be known. The method of Ref. 6 relies upon th measurement
p

of the sideslip angle. The value obtained by the vector method will be

used in this analysis

o.C~e.,Cn,(j e2- m o

~ AreCn

Zx (7KCy,-+ C n,+K Ce)
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i(.ooo6 '[- Z4..e c, - (z)(.zie))E z.6S)

Lozo()(osIz)(-:n)+l co) + {.os'z12[

--,tzo Co,-.OZOS Co,= --.oZas

Cn, + .o144 Cr .o i-o

%a

ZK c y + + Z Kt

nf ]l.'Sf =

+ (s(s)OO)Cr +

+ (sz-)

Cnr

Crh . ze Cn,

The value for C
Yp

was obtained in the manner shown on page 42 .

52

K6[ KK -Y, [Z % +4 E
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Co n.C.V .

I1 .0o 1 oGS)(-.4%G)(-zISacn,) +(z.-

C nj {, -- 1 + -(1)(.o 0ZOS) t.-is))



-0.0~14 -

-, 12.8
Cr'

I

I

I

I

.014~1-

*0~,4Q

* lI~~

- .1962.

030~3

.'144-

The solutions are seen to compare very well with those obtained by

the time-vector method.

Table 4, Comparison Between Derivatives Extracted by Time-Vector
and Ref. 5 Methods

Time -Vector

. 0922

-. 160

53
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Method

C

Cnr

Ref. 6

. 0955

-. 1543



C. Rolling Subsidence Mode Analysis With Sample Calculations

The contribution of roll to the lateral oscillation considered in

the preceding analysis was small. The relatively small magnitudes of

the stability derivatives, C, and Cg , were responsible. The separa-

tion of the rolling-subsidence mode from the lateral oscillation was not

feasible.

A second test condition performed by the same airplane was

considered. Since the transient was initiated with an aileron pulse, a

relatively high roll rate was imposed at the beginning of the maneuver.

After the ailerons were returned to neutral, the maneuver was domin-

ated by the rolling-subsidence mode for approximately one second.

The test conditions are summarized below. Since similar

parameters were developed in detail for the lateral oscillation study,

only the results are listed.

w = 13, 830 lb

K =. 0273x

V = 315 MPH M = .592

ALT =20, 000 ft CL =. 244

o= 19. 6

T =.0869

V0 = 625 ft/sec

The analysis to be used assumes that only the rolling component

is significant in the rolling-subsidence mode. That assumption is justi-

fied by:
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1. The initial roll rate is very large relative to the
other motions.

2. CP and C are relatively small for the airplane

considered. C 'O.

It may be noted from the curves on page 58 that over -control

occurred when the ailerons were returned to neutral. The aileron

application opposite to the roll direction acted with the damping in roll

and must be considered.

With the assumption that only rolling motion was significant, the

present analysis could have been completed without quantitative knowledge

of instrument sensitivities if aileron over-control had not occurred.

However, it is necessary to know the aileron setting in order to ascer-

tain the contribution of the ailerons to the damping. Unfortunately,

the instrument sensitivity information for that particular test has been

lost. It is again noted that the tests were cnnducted in 1951.

Although the aileron over-control was small relative to the

magnitude of the pulse, its effect was significant. It was determined

that an initial total aileron angle over -control of one -half of one de -

gree, as shown on page 56 , provides a correction which gives a

reasonable value for C
p

The equation for pure rolling may be written
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where D
do

Sa4 so= t-)

An expression relating p and C is desired, where
p

P
dt

Solution of the differential equation for p gives:

C Sao t-
1P = --

2 ,. m K , T"
+z '

2 ' t,)t
+ CONT. e

The constant can be evaluated with the initial condition, at t = 0,

p = 2. 05 inches of trace deflection.

CA_ S'a

Cj6Is .

After substitution,

+ T . _

{ Zm.KX' T
- l +T

By inserting the values

Po = 39. 2

2
K =.0273

T = . 5 sec

~1= . 716

T =.0869

C
Sa

= -. 126 per radian

6ao =. 5 degree = .00873 rad.
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and the condition

p = . 63 inches at t = . 5 sec

the result C = -. 53 is obtained.

Although C compares favorably with the value used in the
p

lateral oscillation, it si obviously not intended as a check. A pre-

knowledge of Cj was necessary to estimate the aileron contribution
p

to the damping-in-roll. It had been expected that the analysis would

substantiate the magnitude of C, used in the lateral oscillation analy-
p

sis. Calculations were essentially completed while a search was being

conducted for the instrument calibrations. The analysis does illus-

trate a method for evaluating C That is the only justification for its
p

inclusion in this report.
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