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ANALYSIS OF Bow CRUSHING IN SHIP COLLISION

by

JI YOUNG KIM

Abstract

Collision of ships with oil tankers poses, next to grounding, one of the most serious

environmental threats at sea. In many previous analyses of the collision problem, the bow

of the impacting ship was considered rigid. The objective of the present research is to

include the finite strength of the bow in the overall collision simulation. The emphasis

will be placed on typical raked shapes because some work already has been reported in

the past on bulbous bows. The main structural members will include side shell and the

deck. Transverse and longitudinal stiffeners will be taken into account by means of a

smearing technique. A structural model is developed by identifying localized zones of

plastic deformations from photographs of damaged ships. Then, the contributions of the

membrane and bending resistance is assessed and a simple computational model is

developed. The solution includes determination of the force-indentation relationship, a

number of folds and a total amount of damage for a given speed of a ship. Five scale

model tests were run and the force-deflection characteristics were recorded. A good

correlation was obtained between the analytical solution and experimental results.
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Chapter 1

INTRODUCTION

1.1 Background

A ship undergoes wave loads as well as extreme accidental loads in its lifetime. Among

many types of ship accident, collision is directly related to the ship structural strength.

Especially, collisions of the hazardous substance carriers such as oil tankers,

LNG/LPG... can cause serious environment threats when occurring near the coastal areas

or narrow channels.

The accident of the Exxon Valdez off the Alaska coast in 1989, and the accident of the

Sea Empress in the channel near the Wales in England in 1996, and several other tanker

accidents have created serious need for the sea environmental protection and initiated

prompt discussions on the methods, which will prevent perilous substance spills such as

oil. As a result, the U.S. Oil Pollution Act was introduced in 1990 (OPA 90) that requires

double hull tankers in U.S. waters by the year 2015. The International Maritime

Organization (IMO) has also established compatible regulation which contains design

rules against accidental or extreme loads such as MARPOL 73/78 Annex 13F, 13G.
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In preventing environmental disaster the reduction of the human error and the

improvement of the traffic system must be first considered. However, it is very difficult to

avoid human errors totally. Therefore, it is important to establish rational ship structural

design guidelines that minimize the perilous substance outflow of ships. To establish new

design guidelines many researchers analyzed mainly two accident scenarios. One is ship

grounding and the other is ship collision. Furthermore, the ship collision also can be

classified into two groups, side collision and head-on collision. The side collision

generally represents a ship-to-ship collision situation. In other words, a striking ship

collides with the side structure of the struck ship. A typical head-on collision represents a

situation when a bow of a ship collides into a fixed embankment such as pier or bridge

crossing international shipping route or gravity-supported offshore installations.

Even though the head-on collision might be treated as a less serious case as compared

with grounding case and side collision, there must be no priority in preventing disaster.

Moreover, for more than four decades the value of contributions of many design

guidelines in this field is questionable. When we evaluate of the progress of the science

and technology in late 2 0th, better methods must be developed in this field.

1.2 Current Methodologies

In the history of the ship collision research there have been many methodologies since

Minorsky (1959) proposed an energy method for predicting collision damage to protect

nuclear power plants. These methods can generally be classified into three categories that

are numerical based, empirical based, analytical method.
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The numerical method is mainly based on the commercial finite element computer

programs such as DYNA3D, PAM-CRASH, ABAQUS, ADINA, MSC/DYTEAN. This

method is becoming popular as computer programs are being sophisticated, and is being

widely used especially for a parametric study. However, it needs enormous computing

time and efforts in modeling.

The empirical based method was first introduced by Minorsky[2]. He proposed a linear

relationship between the resistance and penetration based on statistics of 26 ship-to-ship

collision. This method has been widely used by industry, and has been confirmed and

modified by many researchers such as Woisin[3 7], Akita[5], Kitamura[3 8],Vaughan[3 9],

Hysing,[40], Choi[41],and others.

The analytical method is mainly based on the application of the theory of large plastic

deformation of shells. It is appears that Wierzbicki[14] first applied this theory to ship

collision analysis with his insightful modeling skill. The paper on the "Intersecting plates

method" was published in 1982. Later this theory has been extended and modified by

Amdahl[16], Abramowicz[20], Yang,&Caldwell[24], Kierkegaard[29], Paik[33],

Pedersen[28].etc. Since this method is deeply rooted in principles of classical mechanics,

it is gains increasing popularity and also enjoying high accuracy.

1.3 Previous Research

It is difficult to predict the mean crushing force of the complex bow structure of a ship in a

frontal collision. Thus, it was necessary to study simplified bow structure, and many

researchers approached the problem through the study of axial crushing of circular

cylinders or square tubes. In fact, the mechanism of axial crumpling of thin-walled

structures is a common phenomenon in damage of ships' bow during a collision, and it is

a crucial element to understand the energy absorption characteristic of structural elements

that constitute the bow structure and control its crushing performance.
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An extensive literature surveys by Jones[10] ,van Mater & Giannotti[9] had set up the

foundation of the ship collision research.

Nagasawa et al [7] performed structural model tests, simulating the collision of ship side

with the buffer placed on the corner part of a bridge pear. They used two kinds of buffer

models, referred to as grid-type and composite-type. Through this experiment they

compared force-deformation curves of both types of the buffer models and estimated the

amount of energy absorbed by the composite-type of buffer in both side and bow collision

cases.

Ohnishi et al [15] performed a theoretical calculation by the F.E.M. on an ideal

mathematical frame model of bow construction, and compared it with 1/10 scale bow

model test results. Through this process they estimated the collapse loads of bow

construction of actual ships and obtained the load-deformation curves.

Wierzbicki[14] developed a new method and introduced the term "Crashworthiness". He

assumed that a typical ship's hull section consists of an assemblage of plastic plates with

"L" "T", "X" shaped "super-folding elements", and calculated mean crushing force of the

each elements through equating the rate of the external work and the linear superposition

of the bending energy dissipation rate and membrane energy dissipation rate.

Meng et al [17] calculated the mean crushing force of axially loaded square tube using the

concept of the moving plastic hinge, and found that the linear relation holds between the

folding modes and the ratio of plate thickness per plate width.

Amdahl derived a formula for the mean crushing force of the bow collision with the same

assumption as Wierzbicki's and verified it through various types of bow model tests.

Abramowicz and Jones [20] develop analytical method to determine the effective crushing

distance in axially compressed thin-walled metal columns, and derived an expression for

the mean crushing force of the stiffened and unstiffened tube.

4



Abramowicz & Jones[23] performed dynamic axial crushing tests on the square tubes

which have two different ratios of the plate width to thickness . Through this experiment

they checked validity of some assumptions such as asymmetric folding mode, and

observed the Euler collapse of the longer columns. They used the effective crushing

distance ratio for the calculation of the static mean crushing force, and included dynamic

effects by considering the material strain rate sensitivity.

Kawai et al [22] developed the numerical method for estimating the energy absorption of

the structural impact in which they modeled structure as a mass spring system based on

the Finite Element Method and the axial crushing theory of square tubes due to Wierzbicki,

and Abramowicz. In the tests they ignored the inertial force and took the 73% of the initial

length as an effective crushing distance, and found good correspondence between the

theoretical solution and test results.

Yang & Caldwell [24] proposed a formula based on Wierzbicki's collapse mechanism to

predict the mean crushing strength of complex structures and applied to the ship's bow

structure collision into a concrete pier. Their formulation included the increment of the

crushing strength due to material strain-rate effects and longitudinal stiffeners in the

analysis of the energy absorption behavior of panels.

Toi et al [25] performed numerical and experimental study on axially loaded square tube.

The experimental data on the buckling load, deformation mode, and mean crushing force

were compared the conventional analytical based method, numerical based method, and

empirical based method.

Jones & Birch [27] performed experimental study on the axially stiffened square tube. In

the experiments the ratio of the column length to plate width was held constant. Studied

were effects of the stiffener height, number, inside stiffened case and outside stiffened.

They tested both stiffened and unstiffened square tubes under static or dynamic load. In

their calculation of the mean crushing force the effective crushing distance were not

considered but the dynamic effects were included.

Kierkegaard[29] used an orthotropic theory of plated to take into consideration the effect

of stiffeners.

5



Pederden et al [28] presented a basis for the estimation of the collision forces between

conventional vessels and large volume offshore structures. They derived an expression for

the crushing loads as a function of penetrations for different bow structures, and crushing

forces as functions of vessels size, vessel speed and bow profile. They also integrated

analysis results into the probabilistic procedure for the design of the fixed marine

structures against ship collision, based on an accepted maximum annual frequency of

severe collision accidents.

Ohtsube and Suzuki [30] improved Yang & Caldwell's technique of deriving simplified

equation of mean collapse force, and applied to the ship bow structure. The finite element

analysis using MSC/DYTRAN was applied to verify the validity of the approach. The

comparisons are made with experiment result of Nagasawa et al [11].

In 1995, Wang Susuki [32] proposed a simple one-term formula for predicting the

crushing strength of ship bow structures, through introducing energy absorption ability of

structures and energy absorption reduction effect which is caused by inclination load.

6
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1.4 Motivation

Large ship such as crude oil carrier or container carrier can be considered to be composed

of three parts that are bow, mid-parallel, and stem part. In frontal collision usually the

damage is confined within the bow part. This is because of a smaller cross-section

horizontally and vertically. Furthermore, the bow can also be conceptually divided into

two parts that are tetrahedral part Fig. (1) and the remainder. Since the bottom plate does

not support the tetrahedral part, it can be considered the most vulnerable part of the ship.

In fact, the crushing force and deformation curve of this part of the formulas of the

previous researches [16], [24], [28], [32] and tests results show the steep angle increase of

the crushing force to indentation depth. Thus, this thesis will focus on the analysis of this

tetrahedral part.

TetrahedraPart Tetrahe Part

The rnainder

bottom

Figure 1: Conceptual Division

As far as previous methods for the bow crushing analysis were concerned, they all were

derived through a microscopic approach based on Wierzbicki's intersecting plates method

using super-folding elements ("L", "T", "X") whether those were improved or expended.

Recently, Wang and Suzuki [32] considered the inclination of plate intersection to

collision load. However, it is obvious that the reasonable method in mathematics and

mechanics to represent an approximate 3-dimensional bow crushing force requires the

macroscopic 3- dimensional approach at least for the shell part of the bow.

7



Moreover, to develop design guidelines for the ship building industry, solutions must be

able to provide an optimum spacing for the stiffeners of the bow structure. Therefore, the

author will develop a simple formula that is reasonable both mathematically and

mechanically. Through the combination of the kinematic approach due to Wierzbicki's

[14] and the formula obtained for the unstiffened shell part, a one term formula for the

mean crushing force is derived, and application to the bow models and the comparison

with the theoretical solution is made.

1.5 Problem Formulation

A ship with an orthogonal stiffened bow structure is considered. The ship is moving

forward with the initial velocity V and hits the embankment. It is assumed that the contact

point of the ship is above the bulbous bow and below the upper deck sideline. The

encounting impact angle is 90 degree. vertically and * (bow angle) horizontally. The bow

elevation and the trim effect are neglected, thus no friction force between the bow and

embankment is considered.

The embankment is assumed to be rigid right angle-edged. The collision is assumed to be

perfectly inelastic, thus the external kinetic energy is fully converted to the structural

damage of the striking ship.

V

Figure 2: Collision Over view
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V

Rigid
Embankment

21

Figure 3: Collision Side View

The above assumptions simplify the external dynamics of the ship motion. However, the

result of the internal mechanics of the collision process to be developed in this report can

be used for an overall collision analysis with small modifications.

9



Chapter 2

THEORETICAL BACKGROUND

2.1 General

The deformation mode during the collapse of ship's bow structures naturally involves

very large strains, and strain rates well into the plastic range. The material behavior after

yielding is nonlinear and elastic effects are negligible. Therefore the behavior of

structures can be treated as rigid-plastic. The Following three sections provide review of

the elementary theory of plasticity.

2.2 Yield Criteria

For a one-dimensional body under a one-dimensional stress state, it is relatively simple to

define and find experimentally the yielding point. Plasticity occurs when the stresses

attain a certain material-dependant value termed the yielding stress. However for more

than one-dimensional bodies under combination of stresses, the situation is not so

straightforward and several theories were advanced to define yielding criteria that help us

to find a direct comparison with simple uniaxial yield stress of the tension test. The most

important three yielding criteria are the criterion of Rankin, the criterion of Coulomb-

Tresca, and, von Misses yielding criterion.

10



A. Criterion of Maximum Principal Stresses of Rankin and the

Deviator Tensor

This criterion, for which good agreement with experiments on brittle material was

found, assumes that yielding limit of the material is defined by the simple uniaxial

test. For a two-dimensional stress state, this can be represented by the quadratic

yielding boundary sketched in Fig.4. This simple yielding criterion encounter

difficulties related to experimental observation such as hydrostatic pressure that

has no effect on yielding. The experimental fact implies mathematically that

yielding is not affected by the first invariant of the stress tensor, I=

ax+oy+az =a I +a2+3 ,as shown in the following analysis.

Thus a- = o-,, o-, o (1)

can be regarded as the result of the superposition of two stress

ax -P Ua, ax P
a= [o-, - -P og + P (2)

U.,, Ue, a -P_ P_

where P is the hydrostatic pressure

1 1 1
p =-(o + Y+o- + )= -(o- 1 + 2 +o)= -I (3)

3 3 3

G 2

Figure 3: Rankin Field Criterion
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The tensor notation is:

7-, =a,+pI (4)

where, I is the unit spherical tensor and aij is the stress deviator tensor simply

referred to as the deviator, and yielding depends of the deviator only.

B. Coulom-Tresca Criterion of Maximum Shearing Stresses

There is also an experimental observation which may agree with the intuitive

expectation that yielding in the case of a two-dimensional tension-compression

stress state will occur earlier than for tension-tension or compression-compression.

In this way, another criterion due to Coulomb and Tresca can be viewed.

Mathematically, Coulomb-Tresca yielding can be stated as follows:

[(os -a~2) -U )[(0~2 -0a)2 _.)[ )2 -o )]= 0 (5)

The plasticity boundaries given by this criterion are shown in Fig 5. for the two-

dimensional stress state.

G3

CYyI

Figure 5: Tresca Field Criterion

When (GI, u2=G3=0), one obtains a1=a y. As expected, it is reduced to the known

one-dimensional stress state yielding. When a1=-03, C2=0, one obtains ai=±1/2a

y. As the smallest yielding stress, it is only the half the value of the unaxial test.

12



C. von Mises Criterion

A yielding criterion developed by Beltrami, Huber, von Mises and Hencky, and

which stood better with experimental results, especially for ductile material, is

that of maximum distortion energy which is frequently referred to as the von

Mises yielding criterion. Mathematically, this leads to the condition.

(o- a2) +(o - +(o -0a) 2 = 2-, (6)

In two-dimensional stress space, this condition forms an ellipse such as that

shown in Fig.6. When a 2 =a 3=0,one obtains ai=ay while in the case of

11
S= ± Ia, as compared to o = ± -o-, in the previous case of the Coulomb-

73 2

Tresca yielding condition. In Fig. 7 all these conditions are compared together and

it be seen that they are identical for four points only and that the difference

between the condition of Tresca and von Mises is minor.

G3

>/ I

Figure 6: von Mises Field Criterion

The Tresca criterion is often applied to derive analytical solution of elastic-plastic

problems, due to its simple linear form. The von Mises criterion has a nonlinear form in

terms of stress components, and is therefore more complicated to use. Various plasticity

theories exist. For strain hardening materials, the most common are the deformation

13



theory and the incremental theory. The deformation theory totally neglects the loading

history dependency, and is therefore the simplest and the one most extensively used in

engineering practice. The incremental theory does consider loading path dependency, and

is thus somewhat more complex.

When the material is idealized as perfectly plastic the analysis is greatly simplified. For

such materials, the limit theorems of plasticity may be established. These theorems can

be used to develop methods for estimation of load-carrying capacity of structures.

Perfectly plastic materials may be described by the flow theory, which is presented in

next section.

von Mises
ellisp

G3

$ ay

Figure 7: Comparison of the Critera
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2.3 The Flow Theory of Plasticity

The yielding function is considered to remain constant as plastic deformation progress for

a perfectly plastic material. Thus the yielding condition can be expressed as:

f(o-1 ) = 0 (7)

The total strain increment tensor can be assumed as the combination of the elastic and

plastic parts:

dc =de' + ds (8)

The ratio of the components of the plastic increment tensor de that defines the direction

of the plastic strain increment vector de in the space, and is called flow rule can be

expressed as:

de? =dA (9)

where dA is a positive scalar factor of proportionality that is nonzero only when plastic

deformation occurs.

The combination of the flow rule and yielding criteria will give us the components of the

plastic strain increment. The very general properties of the yielding material are the

Druckers' stability postulate, which considers that a material body subjected to certain

surface and body forces, including certain displacements, strain, and stresses. He

postulated that stable system that satisfies equilibrium and compatibility conditions is one

that satisfies the following conditions

A. When an additional set of forces are applied, the work done by the additional

forces and the associated changes in displacement are positive.

S> 0 (10)

B. Over a cycle of adding and removing an additional set of forces, the work

done by the additional forces and the associated changes in displacements are

non-negative

Both conditions imply that the yield surface must be convex, and the plastic increment

vector must be normal.

15



2.4 Limit Analysis

Development of an estimation method for the collapse load of a structure requires an

idealized body. Two basic assumptions are made for such a body.

A. Perfectly plastic material: The material shows perfect plasticity character with

the associate flow rule without strain hardening or softening

B. Small structural deformations: Changes in geometry of the body or structure

that occur at the limit load are negligible hence, the geometric description of the

body or structure remains unchanged during the deformation at the limit load.

The second assumption allow for the use of the virtual work principle:

JT,Su, dS+ JF,8u, dV = f-,Se dV (12)
S V

where Ti are surface forces and Fi are body forces, and ,a is a set of stress state in

equilibrium with Ti and Fi while &Y is a set of strain increments compatible with

the displacement increments u,. The left hand side represents external work

increment 8Ee, on the body, and the right hand side represents internal work

increment gEint dissipated in the body.

For the above equation, any equilibrium set may be substituted into. For example, the rate

of change of displacements and strains(tu, ) can be used, and expressed as follows:

JTiidS + f Fj *1i dV f=a, dV (13)
SVV

Generally, there are three basic relations that must be satisfied for a solution of a problem

in solid mechanics. These are the equilibrium equations, the constitutive relations, and

the compatibility equations. In the limit analysis, a lower-bound solution is found by only

considering the equilibrium equations and constitutive relations, and an upper-bound

solution is found by only considering the compatibility equations and the constitutive

relations. This approach leads to formulation of the limit theorems of plasticity.

16



C. Lower Bound Theorem: If an equilibrium distribution of stress o can be

found which balances the body force F in the volume V and the applied load T,

on the stress boundary Sr and is everywhere below yield f(o) <0 then the

body at the loads T, F will not collapse.

D. Upper-Bound Theorem: If a compatible mechanism of plastic deformation

O.P *P

ei;,u,; is assumed which satisfies the condition ui, =0 on the displacement

boundaryS, then the load T, F, determined by equation energy dissipation will

be either higher than or equal to the actual limit load.

When applying the upper-bound theorem, a kinematically admissible displacement field

is used to equate the rate of work done by external forces of the internal energy or rate of

energy dissipation. In practice application, the collapse mode can often be predicted

from geometrical consideration. Kinematically admissible displacement fields can then

be found, and the upper bound theorem is therefore particular useful.

17



Chapter 3

REVIEW OF THE THEORY

3.1 Crushing Strength of Plate Intersection

A typical cut through a ship's hull consists of an assemblage of plates with various

shapes of stiffeners. However, one can distinguish three structural configurations, that is

Angle elements "L" (Two intersecting plates), "T" elements (Three intersecting plates),

"X" elements (Four intersecting plate). The crushing strength of plate intersection can be

represented by the mean crushing strength of these elements that can be calculated

through the energy absorption of the super folding elements. As a simple example of the

method, the calculation of the mean crushing force of the thin square tube is considered.

A. Mean Crushing Strength of a Square Tube

The analysis of the crushing mechanism of the thin plate structure provides a

solution for the relation between the load and displacement. But it is very difficult

to find the instantaneous force, and it is more convenient to calculate the mean

crushing force as shown in Fig.8, which means that if we know the mean crushing

force, we can find the corresponding amount of the absorbed energy for a given

crushing distance.

18



ultimate strength
Pu

mean crushing strength
end of loading

Pm

rigid behavior
crushing behavior

Indentation 6

Figure 8: A Typical Plot of Load vs. Axial displacement for Square Box Column

B. Simplified Deformation Mode

There can be many deformation modes, and if the ratio b/t is very large, typically

over 100 often collapses in asymmetric, irregular deformation modes, and the

incompatibility of folding modes is of frequent occurrence. Shown in the figure

below are two typical symmetric A and B, and the calculation is based on mode A.

Figure 9:Deformation Mode

H

Folding Mode A
Figure 10

Folding Mode B
Figure 11

19
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The known parameters are width b, thickness t, flow stress ao, and the unknown

parameters are crushing strength P, half folding wave H.

C. Principle of Virtual Velocity

The crushing strength can be found through the Principle of Virtual Velocity.

PS -= &+&M (14)

The left hand side represent rate of external work, and the left hand side

represents a sum of the rate of the bending energy dissipation and membrane

energy dissipation.

P

H

H

Figurel2: One Folding Element

From the geometry of a single fold:

5 = 2H(1 - cos a)

S = 2Hsinaa

5max =2H

The integral form of the principle of virtual work is.

P -dt = 0

fP - dP-dt =
0

1"'"

0

bdt+ U,, dt
0

P(S)dS = { P(S)dS}SPma , ,-2H
max 0

20

Ub : rate of bending energy

Um :rate of membrane energy (15)
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Mean Crushing Force is defined as:

,5max

P, =n {TP(c)d9}
5max 0

And
I=

Ub = Jadt (17)

1I

Um = JU,,dt
0

3.2 Membrane Resistance

The rate of membrane energy dissipation can be expressed as follows:

Un = N,, a, dS (18)
S

The assumption for the strain tensor, and the fully plastic membrane force tensor are:

0
0

0

0
(19)= N 0

0 0

An approximation of the total membrane stretching energy can be obtained by

considering only final stage of deformation. The velocity rate of the strain follows:

'd u
e d= (20)
dx

From the deformed model A, the displacement field can be found as linear function of y:

u(y) = Y H = y (21)
H

all 0 u(y)

HJY

Figure13: Tension Field for Mode A, B
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Substituting equations (19), (20) into (17), the equation becomes

A'

H b

U = 2f N
0 0

du H

dx dxy = 2JfNou(y)dy
0

u(y) =u(x = b, y) - u(y = 0, y)

Therefore, the membrane energy for the model A becomes:

H

Urn = 2N0 fu(y)dy = NoH 2

0

For the alternative model B, the membrane energy becomes:

Ur =No H
2

H
where H becomes H

2

Normalization with respect to M.

energy of one plate intersection:

002
= -tgives the

4

Ur =Mo
t

final expression for the membrane

(25)

3.3 Bending Resistance

The rate of bending energy dissipation can be expressed as follows:

n

U, = MoOi b, =4MO Ob
i=0

Therefore, the bending energy for the model B becomes:

;r

2

Ub = JUbdt= 4Mob dO = [Mob0] = 21rMob
0 0

22
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(22)

(23

(24)

(26)
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3.4 Global Equilibrium

Energy balance equation for the one complete folding that does not involve the current

indentation depth, 6:

P,,, -2H = U, +Ub

H 2
P, -2H = 2MO -+2;r Mob (28)

t

P H b

Mo t H

It is postulated that H adjust itself so as to minimize the mean indentation force. Which

means that the length of the folding wave Hopt is still to be determined, and it can be

found by minimization of Pm with respect the H.

PM1

Bending
Contribution

Membrane
Contribution

O Hopt H

Figure 14: Minimum Plastic Energy

dP.

dH
-z b = 0 (29)

t H 2

=>Ho, = bt

Eliminating the wavelength H from the equation (27), the final expression for the mean

crushing force per one contributing flange becomes.

Pb 2 i -
Mo t (30)

P = 2 -ot b
20

A
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Chapter 4

SIMPLIFIED MODEL

4.1 Simplified Geometry

Since the bow has a complex three-dimensional shape, it is necessary to simplify the bow

geometry. As already mentioned in Chapter 1, this thesis deals with the tetrahedral part

that is most vulnerable part of the bow structure. In this thesis the tetrahedral part will be

called just "bow" for convenience.

A. Boundary of the Deforming Part

The first step is to specify the contact point between the ship and the rigid obstacle,

and defining the tetrahedral part on the bow structure. From the observation of the

actual accidents and model tests it was determined that the contact point divides the

bow length in two parts with same length, and the vertical extension of the line

from the end of the bow length to the deck plate defines the extent of the deforming

part of the tetrahedral part of bow structure Fig 1, Fig 15.

B. Bow Parameters

The second step is to define the bow model with simple geometric variables

keeping the number of variables as few as possible. In this thesis the simplified
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model involving three input parameters, which are the bow length (1), bow angle

(p), deck angle (0). The bow length is twice of the length between the apex and the

contact point. The bow angle, as shown in Figure 15, is the angle between the upper

deck and contact line. The deck angle shown in Figure 16 is the approximate angle

taken in the upper deck horizontally and between the forefront and 15 vertically.

C. Defining the lines

The third step is to define all the edge lines in terms of the given parameters (1, p,

0). By this step the approximate computation procedure of the internal energy

dissipation including all the edge lines will be simple and the final formula for the

mean crushing force will be compact. Fig 15.

A.

Figure 15: Boundary of the deforming Part of the Bow
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I

Figure 16:Geometric Parameters

Figure 17: Deck Angle
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L3

Figure 18: Defining Edge Lines

The length of the edge lines in Figure 3.4 can be expressed as:

l =2lcosqp

/2 2 1 Cos (

cos 0

13 =lsinq(
/4 =lcosp (31)

15 = 4l cos ptan0

16 = 1cos2 tan 0+sin2 3

27



Chapter 5

SIMPLIFIED DEFORMATION MODEL

5.1 General Considerations

In constructing a deformation model it is important to keep the folding mode simple, and

still reproducing the real deformation shape. In search for the kinematically admissible

displacement fields, photos and various paper models were used. In this crushing

scenario it is assumed that the velocity of the ship is constant for the entire crushing

process. Alternatively, it can be also assumed that the bow part is fixed with suitable

boundary conditions and the embankment crushes the bow with a constant velocity V.

Since the indentation displacement changes from zero to 6i the mean crushing force Pm

over the range (0 6 61) can be defined as:

I' =i f'P(85)dd 32

where P(6) is the instantaneous crushing force

So, the total work of the external forces becomes:

E, = P(5)d5 = P,,-. (33)

Three bow models were developed. Historically, the model with outward folding (Model

A) was developed first. However, the crushing force predicted by the corresponding

solution was approximately ten times higher then the measured force. Subsequently, new

28



models (Model A and Model B) were created with inward folds that gave satisfactory

results. The 'outward' model calculation is performed in section 6.1, 6.2 and the inward

folding models for the first folding were calculated in section 6.3, 6.4. Since the inward

first folding model gave us a satisfactory result, this model B was used for the calculation

of the second folding case and transversely stiffened case in section 6.5, 6. 6.

5.2 Real Ship Collision

Photographs of the real accident observed show quite a complex deformation mode,

Fig.18. However, by careful inspection, it is observed that there are four major internal

energy dissipation areas, which are side shell folding, deck tilting, frontal bow stretching,

and side shell stretching. It is also noticed that one fold of the side shell of the bow

matches one bent on the deck and the large stretching area from the contact point and

small stretching area on the sides.

Figure 19: Diagonal View of damaged DALEDDA
(Courtesy of M..Maestro and A. Marino)
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5.3 Three Dimensional Paper Model

Figures (20-26) show the paper models used in computation. Shown in these photos are

simplified membrane and bending zones. The displacement field was defined in terms of

the simple geometric parameters defined in the previous section.

Model A

Figure 21: Front view (Model A) Figure 22: Side view (Model A)

Figure 23: Diagonal view (Model A) Figure 24: Close look (Model A)
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Model B

Figure 25: Front view ()

gure 26: Side view (Model B)

e 2/: Uiagonai view ivioaei
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Chapter 6

STRENGTH OF THE BOW STRUCTURE

6.1 Mean Crushing Strength (Model A)

The calculation of the mean crushing strength of the deformation model A that folds

outwardly is constructed, and two computational methods are tried in the subsection I

and 2. The first method is based on the final deformation shape and the second is based

on the deformation paths.

1. Method-1

A. Kinematics of Deformation Mode A

While the embankment moves horizontally along the 16 the initial contact point

is divided in two part, as shown in Figure (28, 29), and moves along the RI and

R2 with radii I and 13. When the indentation depth becomes 6, the vertically

overlapped distance of the initial contact point is denoted as t, the other point Q
follows similar procedure, and stretches out with distance A. Consequently, the

stretched zones Si, S2, S3, S4, S5 , and S6 are formed and the side shell is folded.

This procedure can be restated that the upper bow part and lower bow part

divided by middle horizontal cross section rotate by the angle P, and the side

shell is folded with wavelength 2H. For simplicity, the above lengths are

expressed in terms of I, p, p as follows:

p = 2/{sin(9 + ,8) - sin y}

A = 21sin qp( - cosfp) (34)

H =-6 sin 
2

Thus, the angle P and the length of the folding wave 2H uniquely define the

geometry of the fold.
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Figure 28: Kinematics of deformation mode (Model A Side View)
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Figure 29: Kinematics of deformation mode (Model A Over View)
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B. Frontal Bow Stretching

The areas SI, S2 , S3, and S4 that are made up of two triangular shaped cross-

sections visualizing deformation zones of frontal bow stretching. Those

stretching areas are developed from the contact point where the contact line and

the rigid-embankment meet. As the embankment penetrates deeper, the angle 2p

in between two horizontal cross sections will be increased. However, the areas

will grow only to a certain angle of P. When the initial contact points rotate up

to p, the indentation depth 5 becomes 2H.

x
Z

S2

$422P

Figure 30: Simplified stretched areas (Bow part)

Assumption is made that for the strain is uniaxial in the local coordinate system

0 0
0 (35)

Rigid perfectly plastic isotropic material is assumed:

0 0
N - 0 N (36)

where No = -ot is the fully plastic membrane force per unit length and o-o is the

average flow stress of the material, see Figure 31.
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GTo M0

Figure 31: Flow Stress

With the above assumptions the membrane energy dissipation becomes:

E, = s N ,pdS = J No e,,,dS (37)

As shown in Figure 32, in this deformation zones the strain rate is uniform in x

direction and varies in y direction, thus the displacement function Ui and U2 for

the stretching zones (0 la) and (0 ! 17) are found as:

u 1 A
2 18 

(38)

U 2 =
217

In performing integration over the deformation zones S1, S2 , S3 , and S4, a local

coordinate system (71, 4) is introduced. Therefore, the strain &s, over the

deforming zones is a function of a and 4:

dU, dU2
s,,, = , 39
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Figure 32:Membrane Stretching Zone (Bow)

The membrane energy dissipation for total deformation zones by the above

expression can be expressed as:

SdU
EM = 2f NO d dqd = NS, = -- cot/p

00 d7 4

As shown in Figure 32 the deformation zones SI, S2, and S3, S4 are identical,

therefore the total membrane energy of the frontal bow stretching becomes:

Embo= EmI + Em 2 +Em3 +Em4 = 2 Emi +2Em2

= 2Nl12 cot/p{sin(cp +p) - sin } 2  (41)

+2NO1 2 cot/p sin 2 p(1 - cos/p) 2

Since the angle p is assumed small, the above expression can be written as:

Embo =2NOl 2/fcos 2 (p (42)

where sin/p = p, cos/ p=1
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C. Side Shell Stretching

The areas S5 and S6 that are the areas found between two folding elements

simplify the deformation zone of the side shell stretching. In this deformation

model the side shell folding is idealized in the triangular and rectangular shapes

and fold is formed as the l rotates in clockwise. Since the length Is rotates,

there must be a stretched area to meet the difference of the length. As shown in

Figure 32 the stretched length U can be expressed as:

UX =A - A

2H (43)

2

The membrane energy dissipation of the one side can be expressed as follow:

EMS = E 5 +E 6

=NO(S 5 +S 6 ) (44)
=No( 3s+S

2

where E5 and E6 are:

E, 5 = No C,,,,dS = 2 fNos,10 d7 d
S 0 0

2 NOUod't= NoS 5
0

2Hq

E. 6 = Noerr7dS = 2 f JNOerd d"':
S H 0 (45)
2 H

2 NOU0dg= NOS 6
H

Therefore, the side stretching in both sides becomes as:

E,,st = 2Ems
= 3NOAH (46)

=3NO1 2# sin 2 cp(1 - cosp)
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S6~ H

S5___ H

Figure 33:Membrane Stretching Zone (Side)

D. Side Shell Folding

The rate of the bending energy of the side shell folding is calculated from the

folding element. In this model (Model A) four identical folding elements are

deformed at the same time by the external load. A folding element has four

stationary hinge lines, and the bending energy dissipation is calculated from the

rotation of these hinge lines. As soon as the as external force is applied the side

shell is being folded with wavelength H until another folding is formed. The rate

of bending energy of the one folding can be calculated as a sum of the

contribution from the four straight hinge lines:
4

EbI = MOi 13i (47)

In the above expression it is also assumed that the fully plastic bending moment

develops is defined by:

MO = a* t2 (48)
4
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Figure 34: Folding element

As shown in Figure 34 the length of the each hinge line is different. However, if

the angle P is assumed small, all hinge lines can be treated as having the same

length 1. With the above assumption the expression for the bending energy can

be written as:

4

E = fEbidt =4Mo l3  ' dt (49)
i=10 0 (49

where 9 is the rotation rate of the plastic hinge, and the 9 293, and 94 are

assumed same. The ti is the total time for the whole deformation process when

the 0 reaches 0 max. Therefore, the above expression can be expressed as:

Eb = 4M 1o d. d" dt
b103J 0  46H -- 5 2

-[-g 2 H

= 4MO 13 cos-I (1 - )1 2 (50)
12H -0

= 2;rMO 13 sin (p

Since the four folding elements are deforming at the same time, the total energy

dissipation of the side shell folding is:

E,, = 8crMO l sin(p (51)
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E. Deck Bending

As shown in Figure 35 the rigid body motion of the upper frontal part of the bow

is supposed to bend the deck plate. If the thickness of the deck plating is the

same as the thickness of the side shell, the expression of the deck bending

energy dissipation can be written as:

=db M= Nis (52)

Edb = Ebbdt =Mo15 f /dt

= 4MO1/cos ptan0

= 4MOS cos(ptan0

When the indentation depth 6 reaches 2H, the above expression becomes:

Edb = 8MO H cos p tan9 (53)

/

Figure 35: Deck bending
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F. Global Equilibrium

With the calculated membrane energy and bending dissipation the crushing force

can be found from the global equilibrium. The total external work is:

Eet, = P,,, -2H (54)

where Pm is the mean crushing force. The integrated form of the principle of the

virtual work is:

P,2H(E, Eb)cosO (55)

Using equations (41), (51), (53) and (55), the mean crushing force becomes:

P-l/, sin p =(E,.b, + E,,,, + E + Edb ) cos0
(56)

= (2No 12 / cos 2  + 8xMol sin 9 + 4M 01l cos y tan O)cos O

P,, (2Nolcot p cos p + 8MO -+ 4M cotytan0)cos0 (57)

It is postulated that the wavelength H adjusts itself to minimize the mean

crushing force. In order to find the unknown H, the mean crushing force is

minimized with respect to H (l,1p)

dP,,, P,,, 8l 8Pm, 8/3- (8-=, - -, l+ ap 1 = 0 (58)
dH al 8H 83 8H

We can find optimum H:

H,, =-t tan " 9 (59)
2

Substituting the equation (59) into (57), we can obtain the expression for the

mean crushing force:

P = o-tcot oty{81 cos p+t tan0}cos0 (60)
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Following table shows the
equation (59), (60)

optimum H and Mean Crushing Force (Pm) predicted by the

Table 1: Predicted Mean Crushing Strength and Optimum Wave Length

p 0 L(rnm) t(mm) cro(Mpa) Hopt(mm) Pm(N)

Bowl 60 30" 130 0.7 312 3.297 56828

Bow2 60" 300 65 0.7 312 3.297 28436

Bow3 600 300 87 0.7 312 3.297 38045

Bow4 600 300 130 1.2 312 5.652 97473
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2. Method-2

The first method gave too high value of the mean crushing force. Therefore, in this

section alternative method is tried by considering the path of the membrane

deformation area for the same model A.

A. Kinematics of Deformation Mode A

All the assumptions and deformation model are same as 6.1, thus the maximum

stretched distances are:

p 2l(sin(p+/) - sin y)

A = 21lsin p(1 - cos p) (60-1)

H = -lp sinyp
2

B. Frontal Bow Stretching

As shown in Figure 36, in this deformation zones the strain rate is uniform in x

direction and varies in y direction, thus the displacement function pa for the

stretching zone (0 x < 14) is found as:

p (q) = 2 {i sin( 9 + p6) - 13 }
21{sin( p + p ) - sin (61)

The strain in the deforming region is then found as a function of P:

d =-= = 2(sin(p +#) - sin p (62)
dx I

If the rotation angle p is assumed small, the above expression can be written as:

eX = sin p( )2 +cosy- (63)
1 1

where 6=2H(1-cosca), 6max= 2H at c=900

1f3= 6max= 2H
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Figure 36: Membrane stretching zone (bow)

The membrane energy dissipation for total deformation zones through the above

expression can be expressed as:

Embo = N -sin <p( )2 + 2 cosp 9 .dS

= 2(No13 2 sin 2 <p cosyp+ NO ,5sinp (cos 2 <p)

where the area of deforming zone S = Hx2/ 3= 2l 2 sinpcosp

when 6 becomes 2H, above expression is:

Embo = 8(No H 2 sin 2 <p cos(p + NolH sin pcos 2 p)

Therefore, the membrane energy dissipation of the both sides becomes:

Embo = 16(NOH 2 sin 2 <p cos(p + NolH sin9cos 2 <p)
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(69)

C. Side Shell Stretching

The deformation field of the side shell can be represented by the function U, see

Figure 37.

U =l13(-)
cos#8 (67)

As assumed in subsection A, the displacement and strain measured in y direction

can be written as:

A = U cos 8 =13 (1 - cosfp)
2

SdA(y) 213(1 - cos p6) = 2(1- cos
dx 13

Since the 0 is assumed small, the strain can be written as:

es, =( = 2(1 - cos p) =(#g2)
13

(8)2

13

x

Figure 37: Displacement function A(y)
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The membrane energy dissipation of the side shell stretching is:

Ems = fNoe dS

= 1 No( -)2dS (70)

82
=2N0  H

/3

where the area of the stretching zone, S =1 3x2H, for both sides:

82
ES =8NO - H (71)

13

when 6 becomes 2H, the above can be written as:

ES = 32 N H (72)
l sin p

D. Side Shell Folding

There are no differences between method I and 2 in the side shell folding

calculation. Thus, the rate of bending energy of the one folding can be calculated

as a sum of the contribution from the four straight hinge lines:

4

Ebi = MO, 3, (73)
i=1

The bending energy for one folding element is:

Eb =f idt =4Mo 13 Z Oidt (74)
i=1

Therefore, the above expression can be expressed as:

Ebt = 2zMO l/ sin p (75)

Since the four folding elements are deforming at the same time, the total energy

dissipation of the side shell folding is:

ES,. = 8rMO lsin p (76)

E. Deck Bending

The expression for the deck bending is same as method 1

Edb =8M0H cosp tan0 (77)
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F. Global Equilibrium

With the calculated membrane energy and bending dissipation the mean

crushing force can be found from the global equilibrium: The total external work

is:

Eext = P,, -2H (78)

Here, Pm is the mean crushing force. The integrated form of the principle of the

virtual work is:

S.2H = (E,, + E,)cos0

Using equations (66), (72), (76), and (77), above can be written as:

P -2H = (E,bo + E,, + Esf + Edb )cos 0

32 l n cos0 + 16(No H  sin 2 <p cosyp+ NolH sin 9cos 2 <)cosO0
l singp

+ (8zM0 1 sin p + 8Mo H cos p tan 0) cos 0

or

(79)

(80)

H 2
P,=18NO . cos0 + 8(No H sin- p cosp + Nl sin

I sin qo

+(4rM0 sin po- +4Mo cos p tan 0)cos 0
H

The mean crushing force is minimized with respect to H:

dP'" =0
dH

1 1
H 3 +--H 2 lsin 2 pcos(p--rl 2 t sin(p=0

4 32
or

<p cos <p)cos 0

(81)

(82)

(83)

H1 H2
(H)' +I(HV- + --

l) 4 l)
sin 2 cosp _

There is a positive real root of the above cubic equation that minimizes Pm.

Table 1, shows H values for each case:
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Table 2: Optimum H

e 0 L (inm) t(m M) EQUATION Hopt(mm)

Bowl 600 300 130 0.7 H-+10.6Hz-1005=0 7.4

Bow2 60" 300 65 0.7 H-+5.3Hz-251=0 4.95

Bow3 60" 300 87 0.7 H-+6.98H2-440=0 5.86

Bow4 60' 300 130 1.2 H3+10.6Hz-1724=0 9.4

Substituting the above values into equation (81) gives the final mean crushing
force:

Table 3 :Predicted mean crushing forces (Model A)

Bowl Bow2 Bow3 Bow4

45949 N 30804 N 37048 N 87540 N

Assuming (P=60', the inverted form of the solution of the equation (81) is:

32 [H )3 1 (H2

1r 32 1

Figure 38

Nondimensional Wavelength to Thickness

0.03

0.025--

0.02-

0.015

0.01 --

0.005

0
0 0.005 0.01 0.015 0.02 0.025

H

(84)

A plot of the function (84) is shown in Fig. 38. For each length to thickness

ratio t/1, the corresponding optimum wavelength can be found.
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6.2 Mean Crushing Strength (Model B)

The calculation of the mean crushing strength of the deformation model A method 1

and method 2 gave higher value than the actual model test results. Therefore, the

improved computation model is made, which folds inwardly. For this model two

computational methods are tried in the subsection 1 and 2.

1. Method -1

A. Kinematics of the Deformation Mode

It is assumed that folds in the side shell are formed inward rather than outward,

as shown in Fig.25, 26, 27. This assumption dramatically reduces the amount of

bending and membrane energies, suggesting that in reality inward folds must be

formed. Indeed, the photograph of the damaged picture shows a multiple inward

folds, resembling much the present simplified model (Model B). In order to give

quick estimates on the mean crushing load, only one fold is considered. The

present computational model captures another important feature that is a drop of

the tip section of the bow. This section rotates almost as a rigid body about a line

on the deck formed by the intersection with the vertical plane. As shown in Fig

39 and 40, the line Lp rotates along the radius R2and the line IM rotates along the

radius R1. Unlike the model A, there is no side shell stretching for model B thus,

the side shell folding mode should be different from model A. As we can notice

from the Figure 39, 40 the active hinge line 16 and 17 allow only the rotation in

the clockwise direction. As the rotation angle P starts to form the initial contact

point is divided into two parts like the model A case. Since we assumed no side

shell stretching and inward folding, the initial length of the H keep constant by

the geometric compatibility while the overlapped frontal stretching are being

developed to the 6 reaches Sma. which is 2H, the stretched zones Sland S2 are

formed and the side shells are folded inwardly to the angle of "
2
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Figure 39:Kinematics of Deformation Mode (Model B-Side View)
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Figure 40:Kinematics Deformation Mode (Model B-Overview)
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B. Frontal Bow Stretching

Two triangular shaped cross section Si and S2 represent the frontal bow

stretching. As already mentioned in subsection A, once the initial P is formed,

the H of the Si and S2 stay constant to the end. Thus, the identical two area Si

and S2 becomes just proportional to H and pt, and for the value of H, and p, in

terms of 1, p, (p as follow:

p = 2l(sin(<p + 6) - sin (p) 2lf8cos(p

1 f(85)
2

~ H 7E/2-9

Figure 41: Membrane Stretching Zone (Side).

Another important feature for the bow stretching of the model B is that the base

line 18 is reduced to 19 by the effect of the side shell folding. However, the

reduction of the base line has no effect on the total membrane energy dissipation

because we only consider the area Si and S2.

19

H

Figure 42: Membrane Stretching Zone (Side Si, S2- Over View)
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With the same material assumptions for the model A the total membrane energy

dissipation can be obtained by the following formula:

(86)
= NoEq7ds

As shown in the figure 42 the sum of the deformed zones SI and S2 become:

1
S1 +S2 =2( pH)=4H2coscp (87)

2

Thus, the total membrane work is equal to:

E,, =4N0 H2 cosrp (88)

C. Side Shell Folding

The side shell bending energy dissipation for the model B is calculated from the

four folding elements. As we already seen for the model A, model B has also

four active stationary hinge lines. The only difference is the direction of the

folding which does not affect the amount of the total bending energy dissipation.

As shown in the Fig.42, the rate of the bending energy dissipation for one

folding element becomes:

4
Eb, = EM0 li (89)

With the same material assumption for the model A the total bending energy

dissipation becomes:

Eb = 8xMol (90)

D. Deck Bending

As we can see from the Figure 38 and 39 the deck bending energy dissipation is

exactly same as the model A case. Thus the total deck bending energy becomes:

Edb = 8M 0H cos p tan 0 (91)
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E. Mean Crushing Force

The expression for the total external force for model B is given by:

Eexi = P,, 2H (92)

where, Pm is the mean crushing force over the distance H.

Thus, by the principle of the virtual work the global equilibrium can be

expressed as:

P, 2H=(Eb+ E,,)coS0 (93)

Substituting the expressions (88), (90), (91) and into equation (93), we can get

the expression for the mean crushing force.

P,,2H = (4N 0H 2 cos +8ffMj/+8MH cos ptan0)cosO

(94)4
P,, =(2NOH 2 cos y+--ZMl+4Mcos ptan0)cos0

H

By the minimization of the mean crushing force we can obtain the minimum

length of H:

dP 0

dH

"" 2cos:9

(95)

Substituting the minimized length H into equation (95), the final mean crushing

force can be obtained as:

31

P. = c(2V2)T cos q t 21 2 + t 2 cos (p tan 0) cos 0 (96)

Note that the length I is a distance from the tip to the point of the application of

the load. The solution depends on three input parameters Go, 1, and I.
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Following tables show the Optimum H and Mean Crushing Force predicted by

the equation (96).

Table 4: Optimum Spacing Length of the Transverse Stiffeners

Ip 0 ao(Mpa) J(mm) t (mm)] Pm(N)
Bowl 60 30 312 130 0.71 6394

Bow2 60 30 312 65 0.71 4521

Bow3 60 30 312 86 0.71 5200
Bow4 60 30 312 130 1.2 14352

Taking <p= 6 0 ' and 0=30', the above equation becomes

P, o-(2 2 t + 0.28t 2)cosO = o-0(3.07t 12 +0.25t 2) (97)
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2. Method -2

A. Kinematics of the Deformation Mode

All the Kinematic assumptions are the same as the Method-I but the meaning of

p. In the previous section P represents an angle within /2- but in this section

p= /2- . This assumption makes mathematical calculation simple and neat.

B. Frontal Bow Stretching

As we assumed that the maximum angle P is fixed by initial contact to an

embankment, all the hinge lines are stationary hinge lines, and the stretched two

triangular shaped cross section S1 and S2 can be calculated as following

procedure:

4H 2
u = 2l(1-- cosp) = 21(1 - 1- sin2 ,6)= (98)

H = -lp
2

x

Figure 43: Membrane Stretching Zone (Side).
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With the same material assumptions for the model A the total membrane energy

dissipation can be obtained by the following formula:

E, =VNa,,apds

= c Ne7ds
(99)

The deformed areas in the figure 43 is on the both sides of the bow, thus the sum

of the total stretched areas becomes:

2S = 2(1 pH)=
2

4H 3

1
(100)

Thus, the total membrane energy is equal to:

E, = 4H-NoEm (101)

C. Side Shell Folding

With the same material assumption and kinematic model as the method-i the

total bending energy dissipation becomes:

Eb = 81rMol (102)

D. Deck Bending

As we can see from the Figure 38 the deck bending energy dissipation is exactly

same as the method-i case. Thus the total deck bending energy becomes:

Ed =8MOH cosp ytanO (103)

E. Mean Crushing Force

Considering bow angle the principle of the virtual work the global

equilibrium can be expressed as:

P,, 2H = (Eb+ E,,)cosO
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Substituting the expressions (101), (102), (103) and into equation (104), we can

get the expression for the mean crushing force:

4H 3
P 2H=( No +8fM 0l+8MH cos ptan0)cos0

4H 2
PN

(105)

+-Ml+8Mo cos ptan0)cos0
H

By the minimization of the mean crushing force we can obtain the minimum

length of H:

dPn 0
dH

(106)

H,, =<l}re

Substituting the minimized length H into equation (105), the final mean crushing

force can be obtained as:

P,= a-t2(5.10 +cosptanO)cosO (107)

Following tables show the Optimum H and Mean Crushing Force predicted by

the equation (106) and (107).

Table 5: Optimum Spacing Length of the Transverse Stiffeners

e 0 1-o(Mpa) L(mm) t (mm) Hopt(mm)

Bowl 60 30 312 130 0.71 21.01

Bow2 60 30 312 65 0.71 13.24

Bow3 60 30 312 86 0.71 15.95
Bow4 60 30 312 130 1.2 25.15

Taking p=6 0 and 0=300, the above equation becomes

(5.10 + 0.288)cos0 (108)
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3. Method-3 (Quick Estimation)

A. Analysis of the Kinematics

The present computational model is the same as the method 1 and 2. In order to

give a quick estimate on the mean crushing load, only one fold is considered.

Unlike the method 1 and 2 for which an exact geometry was worked out, the

degree of overlapping plates and the amount of rotation about stationary hinge

lines were determined from measurement taken on the paper model of the bow.

B. Simplified Kinematics

1. There is no overlapping between the triangles ADE and BDE meaning that

the membrane energy is zero over these areas.

2. There is a triangular overlap in the triangle AEF and BEF with the maximum

value - on each side.
2

3. The relative rotation along active hinge lines ADB and AEB is approximately

equal to ar = 7/2 .

4. The energy of deck rotation is small compared to the other contribution and,

this is neglected.

C. Calculation

From the geometry one can find that:

2
A = 2(1 ) = 0.271 (109)

Now, the membrane work is equal to:

A l
E,n =2NO ( .)= 0.066NO12  (110)

2 4

where the coefficient 2 stands for two sides of the bow.

There are eight hinge lines, each of the length 1. The bending energy is thus:

Eb =8MOlaf=4rrMOl (111)

I
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(112)

where, P. is the mean crushing force over the distance 1 / 2.

Substituting the expression (109), (110) and (111) into equation (112) one gets

the final expression for the mean crushing force.

P, = o-(0.134l t +6.28t 2 )cos9 (113)

Note that I is a distance from the bow tip to the point of the application of the

load. The solution depends on three input parameters o, 1, and t .

I

114

D

/
/

/
/

I
/

/

Figure 44: Kinematics of deformation mode (Model B-Method 3)
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The external work is given by:

E, = P,,-
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6.3 Mean Crushing Strength (Two Folding Model)

1. Unstiffened Two Folding Model

A close investigation of the model test results reveals that the tetrahedral part

1 1
generally has natural two folding wave when the ratio - is about 100 < <250

t t

which is also observed in the Force-Indentation graph of model test (Fig.61, 71, 76,

81, 86) except bow model 2 that has ratio of 92. Therefore, this section will treat two

folding cases that are natural two-fold case and stiffened two-fold case. The

mathematical calculation procedure is based on model B-method 2.

A. Kinematics of the Deformation Mode

It is assumed that the first fold is divided by 2:1 ratio as observed in model test

(see figure 45.46). The second fold is divided by 1: 1 ratio as usual. As one can

see from figure 47, the dimension of the lio, wavelength, and maximum side

stretching of the first folds are calculated as follow:

213

Figure 45: Two Folding Model Figure 46: Folding Measurement
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Figure 47: Kinematics of two folding case

H

~I2

Figure 48: Membrane stretching zones
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1
H ~-lp3

4

110 ~1

I 4H 2
u, = f -{ -cos p =--

2 1

Co 2H 2
l(1-cos--)~
~2 1

1 - (sin -)
2

(114)

1 ( 2 H 2

2 1

Once the wavelength H is formed in the first fold, it keeps the H in the second

fold. Therefore, the angle and the length of folding wave uniquely define the

geometry of each fold (see figure 47).

B. Mean Crushing Force for the First Folding

(1) Membrane Energy

The calculation of the membrane energy of the bow part can be calculated by the

superposition of the first fold case and second fold case, and calculation procedure

of the first fold as follows:

The stretched area of the first fold (one side of bow) is:

1
S1 = H(u, +u2)

2

3H 3 (115)

/

Therefore, the total membrane energy dissipation of both side of bow become:

6H'
ENO,, -2S1 No No (116)

Since the lower part of the first fold has the hinge length the bending energy

for the first folding become:

Eg, ~ 6MOlr I
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(2) Bending Energy

2
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(3) Deck Bending Energy

The first deck bending energy dissipation occurs at the -1 54

thus, the first deck bending energy dissipation becomes:

and 15 = 4lcon9 tan0

EdbI =12MOH cos y tan 0 (118)

(4) Global Equilibrium

The mean crushing force for the first fold can be obtained as:

P,,,1 2H=( No +6Molc+ 12M 0 H cos ptan0)cos0

3H
P,= H No + MlIc +6Mo cos ptan0)cos0

/ H

(119)

To find an optimum wavelength, and the mean crushing force, the above equation

is minimized with respect to H:

aH

Ho,,I = 2l 3

Substituting the expression (120) into equation (119),

expression for the mean crushing force for the first folding:

P;,l= t 2{4.82j + 1.5 cos 9 tan O}cos 0

(120)

we can obtain the

(121)

To compare the obtained mean crushing force with the model test result, the

dimension of the bow model 5 (0=30', p=60 ', l=150mm, t=0.71mm.) were

plugged into equation (110):

p,, =o-ot2{4.82K

P,,l ~3876N
H.,,, ~ 18.35mm

+ 0.433)cos0

(122)
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C. Mean Crushing Force for the Second Folding

(1) Membrane Energy

As we can see from the figure 48, the second fold has the increased stretched

areas by 2p.2. Thus, the total membrane energy for the second fold becomes:

Eb. 2 ;2S2No = H(u, + 3u)= 10H 2 No (123)
1

(2) Bending Energy

For the second folding all hinge lines are assumed to have the length l therefore,

the side shell bending energy for both side of bow becomes:

E 2 , 8Molr (124)

(3) Deck Bending Energy

The second deck bending energy dissipation becomes:

Edo2 =16MO H cos 9 tan 0 (125)

(4) Global Equilibrium

The mean crushing force for the second fold can be obtained as:

P,,n 22H=( IO No + 8Molz + 16MOH cos 9tan0)cos0

1 (126)
5H 2  4

P,=( No +-Molc + 8Mo cos9ptan)cos0
1 H

To find optimum wavelength, and the mean crushing force, the above equation is

minimized with respect to H:

= 0
aH

(127)

H 10
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Substituting the expression (127) into equation (126), we can obtain the

expression for the mean crushing force for the first fold:

P,,2 = Cot2{6.921J +2cos yp tan 0} cos O (128)

To compare the obtained mean crushing force to the model test result, the

dimension of the bow model 5 (0=30', <p=6 0', 1=150mm, t=0.71mm.) were

plugged into equation (128):

P,,= Cot2{6.92 + 0.577)cos0

P,,2 5533N (1

Hop, 2 ~ 17.03mm

The visual comparison is made in the chapter 7

2. Analysis on the Stiffened Bow Structure (Two Folds)

As we can see from the figure 44 the transversely stiffened structure is supposed to be

folded two times because the stiffeners played as the bending guide are located at the

wavelength 2H. Therefore, the general deformation mode of the stiffened model

(model 6) can be treated similarly as the natural two folding case (bow 4). The

material character and the thickness of the stiffeners are the same as the shell part.

Therefore, if the bending occurs at the stiffened zones, one can calculate mean

crushing force simply by smearing the stiffeners' thickness to the shell plate.

However, the important feature in the stiffened bow crash observed is the side shell

bending occurs by escaping the stiffened areas, which is very difficult case to predict

mean crushing force analytically. But it is not impossible to predict boundary of the

mean crushing forces and also validate the effectiveness of the optimum space of the

stiffeners through the comparison of the mean crushing forces of the stiffened and

unstiffened bow.
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Figure 49: Stiffened bow structure

Figure 50: Comparison of stiffened and unstiffened two folds

A. Membrane Energy Calculation with Equivalent Thickness

The ratio of the width of the stiffeners and the space between the stiffeners is 3

(see figure 51), and the thickness of the shell and stiffener is same, therefore the

fully plastic tension load per unit length can be as follows:

1 4
No =co (1+ )t = -ot 1.33ot (130)

.> 3

t <

t
2/3H '

2H

7

4/3t

Figure 51: Equivalent Thickness
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B. Mean Crushing Force (Bow 6)

As already mentioned, the stiffeners only contribute to confine the pattern of the

side shell folding, and the shell folding occurs by escaping the stiffened areas.

The mean crushing force of the stiffened bow structure should be calculated by

considering the equivalent thickness for membrane energy calculation and

reduced wavelength 2/3H (unstiffened areas) where the actual bending occurs.

(Figure 51):

3H 2  3
P,,,1 ={ No + -MOlrr +6MO cos tan 0}cos O

/ H

3(i-H) 2  4 3 1 1
{o 0(_t)+ + -__Cot-+6-utcos9tan}cosO (131)
1 3 H 4 4

16 27 9 21={ H o-t + -)t lc+ -Ot2 cosp tan 0} cos0
91 8H 2

5H 2  4
P,2=5H No+ Molz+8Mocosptan0)cos0

1 H (132)
80 H 2

0 Ot + 3 0 0t
2 1+2uot 2 cosqtanO}cos0

271 2H

C. Application

To compare the obtained mean crushing force with the model test results, the

dimensions of the bow model 6 (H=18.75mm, 0=30', <p=60', [=150mm,

t=0.71mm.) were substituted into the equation (131), (132), and the mean

crushing forces were obtained as follows:

P,,, ~4586N
P, 6378N (133)

If we assume that the side shell folds were occurred at the stiffened area, we can

obtain the mean crushing force by substituting the 1.33 t into the equation
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(122) and (128) however, these values can be used as the upper limits of the

mean crushing forces of the transversely stiffened bow structure:

PI 6243N (134)
P,,a ~8992 N

Furthermore, if we assume that the values of the mean crushing forces (133)

represent the true value of mean crushing forces, in fact those show good match

with test result (see figure 85), the mean crushing forces increased by stiffeners

is about 18% for Pmi and is about 15% for Pm2 by the comparison with the

natural two folds calculation (Eq.122, 128). These prove that the application of

the transverse stiffeners is less effective to increase bow structural strength than

the use of equivalent thickness because the mean crushing forces Pmi and Pm2

were increased about 62% by the use of 1.33t to (Eq. 134). Although the use of

the transverse stiffeners turned out less effective than the use of equivalent

thickness for above case, transverse stiffeners could increase the bow strength

more effectively by using narrow and thin stiffeners that are barely enough to

create side shell folds. In the next subsection 3 a comparison is made for three-

fold case and smeared natural two-fold case to see the effectiveness in increasing

structural strength.

3. Analysis on the Stiffened Bow Structure (Multi Folds)

If we assume that the bow structure has more transverse stiffeners as shown in figure

52, the general deformation mode will be like figure 53.

Figure 52: Three folds induce stiffened bow structure
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p.l2

Figure 53: Kinematics of the three folding bow

A. Membrane Energy

The calculation of the membrane energy can be calculated by the superposition

of the first fold, second fold, and third fold.

The stretched areas for each folding case are:

1
SH(u

1
S2 =-H(u,

2
1

S3 = - H(u,
2

1 6H 3 2H
+uV2) = -(-+-

2 1 1
1 6H 3

+2u 2 +u3)=( 2 1
1 6H 3

+4u 2 +u3)= -(
2 1

3 4H 3

2H 3  3H3
+2- + - )1 1

2H 3 3H 3
+4-- +-- )

1 1

Therefore, the membrane energies for each fold on both sides of the bow are:

Ebi 2S, No

Eb.2 = 2S2NO

Eb,3 = 2S 3NO

- No

13H 3

= No

17H 3

= N0

(136)
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B. Bending Energy

Since the lower part of the first fold and second fold have the hinge length

1 2/

3bo
become:

the bending energies for the first fold, second fold, and third fold

4 16
Es y= 4Moic +-Molic = MOlIc

3
8 20

Eg2 =4MOl& + -MOlrc = ,0 Mlc
3

Esf 3 4M0 17c+ 4MOIbc= 8MOlff

(137)

C. Deck Bending Energy

2
The first deck bending energy dissipation occurs at 2l, the

3
5

second at- 5 , and
6

the third at 15 = 4/cony tan 0 thus, each deck bending energy

becomes:
EdbI = 8M 0 H cos ptan0

Edb2 =I 0 H cos y tan0

Ed, 3 =12MOH cos y tan 0

D. Global Equilibrium

The mean crushing forces for each fold are:

H=( 8H3

42

dissipation

(138)

16
No +-MOlIc +8MoH cos ytan0)cos0

=( No+ -Molic+4Mocosptan)cos0
/ 3H

P 22H =(3H- No +20MoIc +10MO Hcosqptan0)cos0

13H 2  10
H No + -MOLc+5Mocosytan0)cos0
2/ 3
1 7H 3

P,,2 H = ( No +8Moli +l2M 0H cos ytan0)cos0

17H 2  4
= H No +-Molc +6MO cos ytan0)cos0
21 H
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E. Strength Comparison

By adding two more stiffeners to the bow 6, one more stiffener is in the

undeformable bow tip part, three folds are induced, and equivalent thickness

becomes 1.5t, and the reduced wavelength becomes 1/2H for this time. The

calculation of the mean crushing forces is similar as the calculation of the

equation (131). By considering the increased plate thickness 1.5t for membrane

energy calculation and decreased wavelength 1/2H, the calculation becomes:

40-{ H 7 8 ct 2 Oaot 2
P,,I = ( 0 (1.5t)+ 8r + 4 cos y tan O)cos O

3(1H) 4 4

3H 2  4
= ct + -U 0t

2r +o 0t
2 cosgtanO)cosO

13( H)2  10 0-0t 2  at2

P, 2 o- (1.5t)+ 0 1;rr+5 cosgtanO)cosO
~ 21 3( H) 4 4140)

39H 2  5 5
= 0 0 t + -aCtli +-- 0 t cos 9tan0)cos0

161 3H 4

AP =17(< H co(1.5t)+ 4 4 Ot± lz +6 a 2 cosyotanO)cosO
2l (jH) 4 4

51H 2  2
=7 at + -cot-li + 1.5ot-cospotanO)cosO

161 H

Subsisting the dimensions of the bow 5 (H=18.75mm, 1=150mm, t-0.7mm,

y= 6 0 . O=30 ), mean crushing forces above are found as:

P,,,1 5137N

P'n2 6671N (141)

P,,3 ~7373N

To compare the effectiveness of the stiffeners, the equivalent thickness

1.5t=1.05mm is substituted to the minimized mean crushing forces of natural

two folding case (equation 121, 128):

7635 N (142)
Pn2 ~ 10948N

-4
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Pm2 10948

137.5

Pmlt 7635 Pm3 8122

50
Pm2 6671 s

; 5 25 Pm2 5533

H=37.5 75
Pml 3876

Thickened Bow (1.5 t)
(Natural Two Folds)

Stiffened Bow
(Three Folds)

Bow 5
(Natural Two Folds)

1 2 3 4 5 6 7 8 (cm)

Figure 54: Strength comparison

As we can see from above graph, the comparison is made with unstiffened two

folds case of bow 5. The simple smearing (1.5t) of the transverse stiffeners

increases the Pmi 96% and Pm2 97 %, while the three folds induced bow structure

increases overall mean crushing force by 38%. This results show that the

importance of the using the stiffeners wisely.

F. Crashworthiness Analysis of Multi-Folding Case

In the previous analysis, the effectiveness of the transverse stiffeners was less

than the smeared thickness, which caused by the large width and thickness of the

stiffeners. However, the width and the thickness of the transverse stiffeners of a

real ship bow structure must be much more narrow and thinner than the above

cases. To see the relation between the crashworthiness and the number of the

side shell folds, the thickness and width of the stiffeners are ignored for this time,

and the mean crushing forces of the first fold, the second fold, and the third fold

are compared.

75

-1(kN)

10
9
8

7
6
5

4
3
2
1



The expression of the minimized mean crushing forces and their values applied

to the dimensions of the bow 5 as follows:

One fold: P,,, = cot2{5.10 +cos p tan O}cos O = 4078 (N) (143)

Two folds: P,,,1 = cot2{4.821)3 + 1.5cos p tan 0)cos O = 3876 (N) (144)

P,2= cot2{6.92 +2cos p tan 0)cos O= 5559 (N) (145)

Three folds: P,,,= =ot2{4.90 +cos p tanO)cos0 = 3932 (N) (146)

Sot2 {6.69 1)3 +1.25cos q tan O)cosO = 5365 (N) (147)

=ct2{8.27(1)3 +1.5cos p tan O)cos O = 6630 (N) (148)

If we take the average of the mean crushing forces of the two folds and three

folds, those are 4717 and 5309. Two fold case increased bow strength 15%, and

three-fold case increased 30% by the comparison with one fold case. The visual

comparison is made in Figure 55 and Figure 56.

(kN)

8
7 6630 > Three Fold Case

6 5365 -- ---- Two Fold Case
5 4'

44078 > One Fold Case

3 '-3932

2
12

7 1 2 3 4 5 6 7 8 (cm)

Figure 55: Strength comparison by fold numbers
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As we can see from the above results, it is obvious that the forth folds and fifth

folds will increase the bow strength by 45% and 60%. These are shown in the

following figure.

7000 60%
45%

6000
15%

5000

4000

3000

2000

1000

0
1 fold 2 folds 3 folds 4 folds 5 folds

Figure 56: Prediction of the strength increased by fold numbers

Note that the one fold case is calculated only for the comparison of the

contribution of the each fold because the ratio (-) in our concern (about 165)
t

naturally created two folds in the model tests.
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Chapter 7

DEVELOPMENT OF A BOW MODEL

7.1 Determination of the Ship Type and Dimension

In the development of scale models the bow shape must be specified in advance, because

the results are based on the geometry, material properties, and plate thickness. Since the

bow shapes depend on a type and a size of the ship, the determination of the scale models

must be done carefully. In this report considered are oil tankers and container ships because

of severe consequence of accidents and affect on ocean environment. The following table

shows typical dimension of various categories of ships.

TABLE 6: Dimension by ship type
TYPE DISPLACEMENT DIMENSION(m)

(A) (LxBxDxd)
AFRA 95,000 (ton) 233x41.8x20
MAX x12.2

TANKER SUEZ 150,000 (ton) 264x46x23.6
MAX x15.85
VLCC 310,000 (ton) 318x58x31.25

x21.4

21,000 (ton) 158x27.2x13.8
x 8.75

CONTAINER 35,000 (ton) 184x32.25x 21.2
X 11.3 2

68,000 (ton) 262x40x24x12

draft.(where B and d is the mid ship breadth and moulded

the next section.)

Other parameters are defined in
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7.2 Determination of the Bow Shell Plating Thickness

As already mentioned, the bow plate thickness is directly related to bow strength; thus, the

rational procedure to determine the plate thickness is an important task for the development

of the bow model. In this research the plate thickness is determined by the average

thickness specified by of the International Maritime Organization rules.

According to these rules, the minimum shell plating thickness t is to be obtained from the

following equation and is not to extend for more than 0.1 L at the ends between the midship

0.4L and the end 0.1 L the thickness of the plating may be gradually tapered.

Formulas for the determination of the bow shell thickness are as follows:

t=0.0455(L+3)+0.009smm for L<85m

t = 0.035(L +29)+0.009s mm for 85 L ! 305 m (149)

t = (11.70 +0.009 s) mm for 305 -<L !427 m
35

where

s = fore or aft peak frame spacing in mm

2.08L + 438 mm for (L 270 m)

1000 mm for (270 ! L 427 m) (150)

L = Length of vessel in( m)

D = Moulded depth in (m)
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7.3 Determination of the Bow Length

Having determined the ship type and the plate thickness, the bow profile of tanker and

container need to be determined. In this research the most common bow profiles are shown

in figure 57 and 58.

2 / oLA"

71ZL

12D

Figure 57: Bow profile of the tanker

/ 08~\
211"

14 D

1F4 D
i7

Figure 58: Bow profile of the container

From the above typical profiles the bow length 21 can be determined in terms of the

moulded depth. Finally, the relative bow length can be calculated by non-

dimensionalization with respect to the thickness. The bow length of the model will then be

determined from the known non-dimensional bow length to the plate thickness. Following

table shows typical dimensions of six ships.
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TABLE 7: Bow length / Plate thickness

TYPE AFRA SUEZ VLCC CONTAINERS
MAX MAX

DISPLACE- 95,000 150,000 310,000 21,000 35,000 6,800

MENT (ton) (ton) (ton) (ton) (ton) (ton)

MOULDED 20 23.6 31.25 13.8(m) 32.25 24(m)
DEPTH (in) (m) (m) (m)

FRAME 922.64 987.12 1000 766.64 820.72 982.96
SPACING (mm) (mm) (mm) (mm) (mm) (mm)

MAXIMUM 20.3038 23.0841 23.85 15.7998 17.586 22.9466
THICKESS (mm) (mm) (mm) (mm) (mm) (mm)

MINIMUM 17.4738 19.1391 19.5597 13.4448 14.818 19.0316
THICKNESS (mm) (mm) (mm) (mm) (mm) (mm)

AVERAGE 18.9059 21.1116 21.7049 14.6223 16.219 20.9891
THICKNESS (mm) (mm) (mm) (mm) (mm) (mm)

BOW 11.5497 13.6255 18.0422 11.9511 18.359 20.784
LENGTH(21) (m) (m) (m) (m) (m) (m)

NONDIMEN-
SIONAL
BOW 305.38 327.20 415.63 408.66 565.99 495.17
LENGTH

7.4 Determination of the Deck Angle 0 and Bow Angle p

The approximate side angle of the above ship type is measured between forefront and

collision bulkhead. After measuring more than twenty different ships, it is proved that

most tankers and commercial containers have the approximate side angle of 0=300. The

approximate bow angle is assumed to be <p= 600.
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7.5 Model Fabrication

In order to obtain the realistic result from the model test, it is important to keep the

geometric similitude law. Since the nondimensional bow length is obtained in the previous

chapter, the bow length of the model is proportional to the plate thickness. Although the

value of the nondimemsional bow length is approximately 325 (see the previous section,

Table 6, if the inner members such as longitudinal and horizontal stiffeners are considered,

it is obvious that the value of the bow length should be lower than 325. It is shown that by

using the smearing technique the contribution of the inner stiffeners in the bow area is

approximately the same as the twice of the original thickness. Therefore, the value of the

relative bow length taken is 162 for the scenario that a bow contacts the embankment in the

middle of the bowline. However, the contact point on the bowline can vary for collision

situations therefore, the nondimemsional bow length 162 is not the fixed number. In this

report the nondimemsional bow length lit vary from 100 to 250 by loading conditions of

each test. For the bow model fabrication two plate thickness 0.71mm(for bow 1, 2, 3, 5, 6)

and 1.2mm (only for bow 4) were used. For the bow length of the bow model 1 to 4 is

130mm, and the bow model 5 and 6 is 150mm. Figure 59 show detail dimension of the bow

model manufactured from a sheet. All the models are joined by rivets using lap joint join

all models.

Figure 59: Model Dimensions
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7.6 Model Test

A. Variation of the test method

The purpose of this test is to measure the force-indentation relations and observe

general deformation modes. Five different types of the test were performed. For the

thickness 0.71mm model three different tests were performed by changing location

of the contact point, in all cases fully clamped support conditions were used (see Fig.

61).

Bow 1 Bow 4 Bow 2 Bow 3
Bow 5 Bow 6

Figure 60: Loading locations

Figure 61:Fully clamped boundary conditions
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B. Loading Conditions

A real ship accident is a dynamic event. However, relative ship velocities are small

so that local initial effects could be neglected. Therefore, in this test quasi-static

loading is applied. In this test constant crosshead velocity (0.25mm/sec) is applied

from the contact point to the point Q, Figure 62. All tests were performed in the

MTS testing machine with capacity of 90 KN and 150 mm stroke.

-'77

Figure 62: Loading Conditions

C. Material Characteristics

The specimens were made from cold rolled steel. Two tensile tests were performed

on Instron Testing machine to obtained stress-strain characteristics. The tests were

calculated at room temperature and the engineering stress strain data is shown in

table 8 and figure 63, 64. The flow stress ao is defined to be a geometric average of

the yield stress and ultimate stress:

o = V a- (151)
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TABLE 8: Material properties

0.028" steel sheet metal

-- steel01 .... stee102

0.02 0.04 0.06 0.08 0.10 0.12

strain (inlin)

0.14 0.16 0.18 0.20

Figure 63:Stress-Strain Curve (t=0.71mm)

0.047" steel sheet metal

.. stee101 -stee102

70,000 .

60,000

50,000

40,000

30,000

20,000

10,000

00
0.00 0.04 0.08 0.12 0.16

strain (in./in.)

0.20
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Stress
INITIAL ULTIMATE CALCULATED

Thickness YIELD STRESS STRESS FLOW STRESS

0.0071(m) 282.695 MPa 344.750 Mpa 312 Mpa

0.0012(m) 282.700 MPa 320.240 Mpa 301.Mpa

70,000 -

60,000 -

50,000 -

40,000

30,000

20,000

10,000 -

0-
0.00

0.

U
*

Figure 64: Stress-Strain Curve (t=1.2mm)



D. Test Results

test bowl

Cu

9

8

7

6

3

2H,, = 33.36mm Crushing Dis tan ce

S = 64.33mm

12 14

displacement (cm)

Figure 65: Force-Displacement (bow-1)
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Figure 69: 4
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test bow2

4
12

3

0 10

2
8 n

6

4 
Eq. (1 8)

2q Eq. (121

0 -

0 : 6 8 10 12 14

displacement (cm)
2H,= 21.01mm Crushing Dis tan ce

6 = 40.52mm

Figure 70: Force-Displacement (bow-2)
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Figure 73:3 Hgure /4:4
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test bow3

8 = 48.46mm

Figure 75:Force-Displacement

10 12

displacement (cm)

(bow-3)

Figure 76: 1 Figure 77: 2

Figure 78: 3 Figure 79: 4
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test bow4

- 30
4

0 25 -
2

20

15

q.(128)
10

Eq. (121)

5

0
0 2 6 8 10 12 14

2H, 39.93mm Crushing Dis tan ce displacement (cm)
8=77mm

Figure 80: Force-Displacement (bow-4)
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test bow S

12

z 10

4
8

2 3
6 1

4 Eq.(12

2 Eq.(121)2

0

0 2 4 6 8 10

2H, =36.70mm Crushing Dis tan ce displacement (cm)
9 = 70.77mm

Figure 85:Force-Displacement (Bow 5)

Figure 86: 1 Figure 87: 2

Figure 88: 3 Figure 89: 4
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test bow 6
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2H, =37.5mm displacement (cm)

Figure 90: Force-Displacement (Bow 6)
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Chapter 8

VALIDATION AND CONCLUSION

8.1 Comparison with the test results

Equation (107), (113), (121), and (129) were used to predict the theoretical value of the

mean rushing force of the bow model 1~ model 5, and the equation (131) and (132) were

used for stiffened bow model 6. The values of input parameters in all six tests are given in

the table below together with the calculated mean crushing force Pm and the crushing

distance. Note that the derived expression for the mean crushing force of the equation

(113) is valid over the crush distance 6 related to I by.

= -l (152)
2

The theoretically predicted forces are compared with the experimentally determined force-

displacement graphs, Fig. (65 ~ 90). The agreement is good considering simplicity of the

theoretical solution and the complexity of the problem. The percentage error is within

10% with the worse case (Bow 1) reaching +15% for equation (107), and within 5% for

equation (107), (121), and (129). It can be calculated that the Kinematic model B method 2

along with the energy method provide a good first order approximation to the crushing

resistance of the ship running at a right angle into a rigid embankment, and the Kinematic

model for two folding also provided good approximation to the crushing resistance of the

ship running at a right angle into a rigid embankment. The strength of the stiffened bow
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model 6 predicted by the equation (131) and (132) shows the grate accuracy. The recorded

force-displacement diagrams show a considerable increase in the force level for penetration

depth larger than 6. Also, there is a lack of correlation between the number of folds in the

scale model test and real accident shown in Fig.19, Fig.20. In our model test there was only

one or two full folds whereas in the photograph of DELEDDA a number of short wave

folds was observed. This difference can be explained by the presence of transverse frames

in the real ship., which limits and reduces the folding wave to a smaller value equal to the

distance between the frames. However, the contribution of the multi-folds case is explained

in chapter 6.3 in detail. In the model tests we used uniform thickness shell plating and the

internal stiffness were induced using a smearing technique for model 1~5, and Model 6 is

constructed with stiffeners.

Table 9: Predicted mean crushing strength (Model B, Method 2)

p 0 ao(Mpa) l (mm) t (mm) Crush distance Pm(N) Error(%)
6[mm]=2Hop,(mm)

Bowl 60 300 312 130 0.71 21.01 3890 -5 %

Bow2 60 300 312 65 0.71 13.24 3095 +5 %
Bow3 600 300 312 86 0.71 15.95 3394 -3 %
Bow4 60 300 312 130 1.2 25.15 9571 -15%
Bow5 600 300 312 150 0.71 26.04 4059 -5 %

Table 10: Predicted mean crushing strength (Model B, Method 3)

0 Gao(Mpa) I (mm) t (mm) Pm(N) Error(%) 6 (mm)

Bow 1 600 300 312 130 0.71 4196 +15 % 65

Bow 2 600 300 312 65 0.71 2526 +8% 32.5

Bow 3 600 300 312 85 0.71 3081 -12% 43.3

Bow 4 600 300 312 130 1.2 8191 -15% 65

Bow 5 60 300 312 150 0.71 4633 +5% 75
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Table 11: Predicted mean crushing strength ((Unstiffened two folding model-first fold)

ao(Mpa) 1 (mm) t (mm) Pmj(N) Error(%)
____ _____ ~(mm)

Bow 1 312 130 0.71 3698 -5% 33.36

Bow 2 312 65 0.71 2947 +10% 21.01

Bow3 312 85 0.71 3217 -10% 25.13

Bow 4 312 130 1.2 9108 -5% 39.93

Bow 5 312 150 0.71 3248 -15% 36.70

Table 12: Predicted mean crushing strength (Unstiffened two folding model-second fold)

(ao(Mpa) 1 (mm) t (mm) Pmi(N) Error(%) 21 pt
_______(mm)

Bow 1 312 130 0.71 5303 +10% 33.36-64.33

Bow 2 312 65 0.71 4225 +3 % 21.01-40.52

Bow 3 312 85 0.71 4613 +20% 25.13-48.46

Bow 4 312 130 1.2 13059 -5 % 39.93~77

Bow 5 312 150 0.71 5558 +20% 36.70-70.77

Table 13: Predicted mean crushing strength (Stiffened two folding model)

/O(Mpa) I (mm) t (mm) PmI(N) Error(%) 6=2Hopt
____ __ _______ ___ ___(mm)

Bow 6 312 150 0.71 4586 +10% 37.5

-ao(Mpa) I (mm) t (mm) Pm2(N) Error(%)
____ ____ 1 _ ____(mm)

Bow 6 312 150 0.71 6378 -10 % 37.5~75

8.2 Comparison of Methods

To compare the each method, dimensionless mean crushing forces are obtained for

equation (108). (113), (122), and (129) that gave good accuracy.

The nondimensional equation according to equation (108) is:
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P-'" - ~4.41
G 0

+ 0.249

For the equation(1 13) nondimensional equation can be put into the form:

-P 0116 + 5.43
G ot-~)

(154)

At the same time, the equation (122) and (129) that represent mean crushing forces of the

two folding case can be expressed as a liner combination of each fold, and expression is:

P 4.17('-'
t

, ~ 5.9 -
CY 0t - ()

+ 0.374

+ 0.499

where 0 < - <107
t

where 107 <

(155)

(156)- < 250
t

Figure 95

Nondimensional Comparison of Methods

04 50 100 1504 200 250 300
0.5 N4/ 165

105 Nondimensional Bowlength

It is seen from the above figure that equation (153) and (154) gave similar results

around -=165, which is of practical interest.
t
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Appendix
1. Generalization of The Triangle Supper Folding Elements.

Following types of the triangle elements were used in this thesis, and those have

different ability to absorb external force as shown by the size of the stretched areas.

P

Figure 96: Super folding element 1

P
Figure 97: Super folding element 2

Z

H

H

P
Figure 98: Super folding element 3
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u =1(1-cosa) =l (1- 1-sin 2 a)
where 2H 2

1
1 2H 2

2 1

After minimization 'ne,=0, one can obtain following expression:
aH

P,,,, = 1.2767 0t-t2 (159)

By similar process mean crushing force for element 2 and 3 are found as:

P,,72 = 1.840oot2j

P,, 3 =1.375ot2(

(160)

(161)

To see the linearity of the super folding elements, a pair of the folding elements

is calculated:

PepI = 2P, = 2.55oot 2) (162)

(163)

(164)

Pep2 = 2Pe = 68c 0t

Pep3 = 2PI, 3 = 2.75cot
2()
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(157)

(158)

A. Mean Crushing Forces

Mean Crushing Force for the element 1 can be found as:

Pe2H / No +2Molrr)

H2  1
PI = No+ -Molir

21 H



B. Mean Crushing Force for Different Size of Element 1

Mean crushing force for I case is:
2

1/2 t H

H

P,,,, =1.010-ot 2()

Figure 99: Half-length super folding element 1

Mean crushing force for - case is:
3

H

iH

Figure 100:

P,,, = 0.88-ot

One third-length super-folding element 1

Mean crushing force for 21 case is:
3

PmeI 1.12Oot2Il)'

Figure 101: Two third-length super folding element 1
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2. Calculation Table for Application

The calculation of the mean crushing force can be simplified by standardization. For

example the calculation standard table for the element I is illustrated as follows.

A. Calculation Table for the Element-1

Table 14: Simplified calculation process

Em H3  2H 3H3  3H 3

(a)- No (b)= No (c)= N, (d)= , No

Eb (e)=2MOlr ( ()= M)br (f)=2Mul
3

Coefficient (1)=I forE,,, (3)=1 forE", (5)= for Em. (7)= forE,

o "2 14 2
Pm(4)= for Eb4 (8)= 1 for E,,

(2)=1 foroEb 2 (6)=- for Eh, 6

6
Coefficient similarly as (9).

(9)= (2)1/2t (1)= (12 )=
H2(l) 4 (1 0)= 3

I I (116)

-12t J_

Coefficient I i Similarly as (13). (15) =1.115 (16) =0.885
(13) = (1) (9 )2 + - (9 )-'} ( 1 = . 3

of p 1, (14)=1.013
=1.276

Final
P,, = 1.276= 1.0 t2 =08 80-t

Expression 7t.

B. Application to the previous problems

To illustrate the simplicity of the calculation process, application is made to the

chapter 6.3-two fold case (one fold only), and the whole process can be simply

expressed as follow:

The coefficient for membrane energy for the first fold is:

Em =a =[2(a)+ 2(b)]/2= 3  (168)

The coefficient for bending energy for the first fold is:

Em = f ={[2(e)+2(f)]/2} = 3 (169)
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The coefficient for H is: y = ( . p = (170)
2a 4 2

The coefficient for Pm is: Kc (ay 2-y)rch =4.82 (171)
4

Therefore, the final expression for the mean crushing force becomes:

P,, = 4.82cot 2 (172)

If we only consider the deck bending energy and deck angle 0, the expression

will be exactly like equation (121)

P, =C*Ot2{4.82 - +1.5 cos p tan 9} cos0 (121)

Through the above process tables for the element 2 and element 3 can be made,

and the more development and standardization of super folding elements that

would represent the geometries of crashed bodies will make the calculation

process simple and easy.
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(3) Generalization of the Theory and Application

A. Equilibrium

P,, 2H =(E,,, + E)cos (173)

where Nm =Na,, sgdS (174)
S

EB = fMap Ia dS (175)
S

Pm -2H = N 0 E AAi + M 0 o ,i, (176)

2H

0 2 (177)
2H' H3

- zA

H M1

NOH2Hi+M1Yo 18

P =N { P(A)+d}Z(179

NH= ZA, + M ,l (80

P 21 2H (

where YOil =lfa,

B. Mean Crushing Force and Wave Length

2H. J (179)
max 0

-2H 
2  1~ ol (180)

ti XA + 2H

Pm 2H' / A ~
MO t i 2H la (181)

where EOil, =l1ctO,
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d ''M 0 o
dH

(182)

1 Za9,
-> H = 3F t

2 i iA,

Putting (182) into (181)

P,= o-ot2j) (ZaO,) 2 ( A,) (183)

C. About A

P

H

H H_

Figure 102: One folding element

p=l(1-cosa)=l(1-- 1-sin2 a)

2 1 1

1 H3  H3

Area = -pH A.
2 1 1

therefore A, = 1 for this case
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(4) Application
A. One Fold case (Bow 1, Bow2, Bow3, Bow5)

One fold case includes four triangle super folding elements. Therefore, two pairs

of super folding elements on both sides of the bow

Figure 103 One pair of the super folding elements

Table 15: Calculation of coefficients
-Stretched
areas Sum S S2 3 S4

Membrane l A A3 4

energy
Coefficient
Values 41 l 1 1

Bending 016 02) - 0-- 6
angle

One Values 8zc z ---- r
fold
case Hinge 1 1 12 --- 116

Length
Values l l ..
Bending Total of te .. f

TableO 15 aluaio1f6oficet

energy
Coefficient
Values 87[ .T .. T

-1 -1 -1
2 2 2

e ai 
2n
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A

P,, =}t2()3 a O A cosO (185)

Therefore, the general expression of the mean crushing force for one fold case becomes

P= 5.10uot2  cos O (186)

Considering the Deck bending energy, above expression becomes:

p,=m cot2(5.10 +cosptan0)cos0 (187)

Table 16: Application to the Bow l, 2, 3, 5

Bow l 110 3890
P = Cot 2(5.10 -+ cos ptan0)cos0

Bow2 _ 3089 N

P,,= ot 2(4.04 +cos ptan0)cos0

Bow3 213399 N
P,, = cot 2(4.45 +cos ptan0)cos 0

BowS 1=1 50 Same as Bow 4078N
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B. Two Fold case (Bow 4)

Figure 104: Super folding elements (Two fold case)

Table 17: Calculation of coefficients

105

Stretched
areas Sum S S2 53 S4
Membrane A A, A A3  A4

energy
Coefficient
Values 6 1 122

Bending 0 0 0 016
angle 

1Two First Values 8;r ;i
fold fold - -

case 2 2 2
Hinge I Lower 11 18 Upper 19~116
Length part part
Values 1 ... 1

2
Bending Total 0111 0919
energy 0, / ili ~0 1
Coefficient 0 8 16 16

Values

641 22 47t 2

Sa , 67



General expression of the mean crushing force is:

(188)P,, =at 2 ( 3 0 2 A jcos0
PIIIi 8 0 1 0

Therefore, the mean crushing force of the first fold with consideration of the deck
bending becomes

P,,.= 1 t{4.82 +1.5cos p tan 0}cos0= 9 108 (189)

Table 18: Calculation of coefficients

1 | Stretched areas 1 1 [ | |
Total

Membrane energy
Coefficient
Values 10 2 2 3 3

Bending angle 6 0 02 -- 6

Values 8z 7 z -.

2 2 2
Hinge Length Lower iFI1 8 Upper 19- 116

part part

Values / |
Bending energy TotalF Z6 il, ~ l 0818 lili 09l9 0616
Coefficient

Values z
8xl 47l 2 4 711 2

87,ZacO

The general expression is:

P,, = -O2( 3 A cosO (190)

Mean crushing forces for the second fold with consideration of deck bending becomes:

Second
fold

Pn2=uot2{6.92 () +2cosqtan0}cos0
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B. Stiffened case (Bow 6)

Considering the reduced wave length 2 /3H and the increased thickness 4 /3t for

the membrane energy calculation, the equation 178 can be written as follows

H=N Mol
P,, = No H A, + o Ia0,2m 2H

aZA t) H 2 ot 2l a0, (192)
4 21 8(-2H) i

, 8 H2  3 1
27 It 16H,

Applying the coefficients of the first folding case (A =6 ,a0 =6,), and

considering the deck bending energy dissipation, the expression of the mean

crushing force become as follows:

P,, ={ 6 H2COt + + ot21Z +3 ot cos9tan 0}cos0 (193)
91 8H 2

Applying the coefficients of the second folding case ( =10, ao,82),

and considering the deck bending energy dissipation, the expression of the mean

crushing force become as follows:

, { 807Ht+ 3 up +2t 2costanO}cosO (194)
27/ 2H

We can notice that the above equations are exactly same as the equation 131 and

132. By the application of the H=18.75mm, r=150mm 0=30o, T=60o, t=0.71mm,

above, crushing force become:

Pm~ 4586N (195)
P ~ 6378N
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