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Abstract

The reconstruction of regulatory networks is one of the most challenging tasks in

systems biology. Although some models for inferring regulatory networks can make

useful predictions about the wiring and mechanisms of molecular interactions, these

approaches are still limited and there is a strong need to develop increasingly univer-

sal and accurate approaches for network reconstruction. This problem is particularly

challenging in mammals, due to the higher complexity of mammalian regulatory net-

works and limitations in experimental manipulation. In this thesis, I present three

systematic approachs to reconstruct, analyse and refine models of gene regulation.

In Chapter 1, I devise a method for deriving an observational model from temporal

genomic profiles. I use it to choose targets for perturbation experiments in order to

determine a network controlling the responses of mouse primary dendritic cells to

stimulation with pathogen components. In Chapter 2, I introduce the algorithm Exi-

go, for identifying essential interactions in regulatory networks reconstructed from

experimental data where regulators have been silenced, using a network reduction

strategy. Exigo outperforms previous approaches on simulated data, uncovers the

core network structure when applied to real networks derived from perturbation stu-

dies in mammals, and improves the performance of network inference methods. Lastly,
I introduce in Chapter 3 an approach to learn a module network from multiple high-

throughput assays. Analysis of a diffuse large B-cell lymphoma dataset identifies

candidate regulator genes, microRNAs and copy number aberrations with biological,
and possibly therapeutic, importance.

Thesis Supervisor: Aviv Regev, Ph.D.

Title: Associate Professor of Biology
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Chapter 1

Introduction

1.1 Overview

The reconstruction of regulatory networks is one of the most challenging tasks in

systems biology. Although some models for inferring regulatory networks can make

useful predictions about the wiring and mechanisms of molecular interactions, these

approaches are still limited and there is a strong need to develop increasingly univer-

sal and accurate approaches for network reconstruction. This problem is particularly

challenging in mammals, due to the higher complexity of mammalian regulatory net-

works and limitations in experimental manipulation.

In this thesis, I present a broadly-applicable approach to reconstruct, analyze

and refine models of gene regulation. In Chapter 1, I introduce existing approaches

and their limitations. In Chapter 2, I devise a method for deriving an observational

model from genome-wide temporal expression profiles and use it to choose targets

for perturbation experiments, in a study of the network controlling the response of

Dendritic Cells (DCs) to stimulation with pathogen components. In Chapter 3, I

develop an algorithm for distinguishing relevant from irrelevant interactions in the

perturbation network and to refine the initial model. In Chapter 4, 1 reconstruct and

analyse an integrative regulatory model of Diffuse Large B-Cell Lymphoma (DLBCL)

and use it to suggest perturbation experiments. I conclude this thesis in Chapter 5

with a summary of the chapters and a discussion of future work.
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1.2 Regulatory network reconstruction

Regulatory networks are the information processing devices of cells, transforming cel-

lular signals into coherent transcriptional responses. However, even for well character-

ized systems we do not fully understand how a regulatory network processes signals,

encodes the relevant information at different layers of the network, and achieves the

fine-tuned change in expression in each target gene. In particular, reconstruction of

regulatory networks in mammalian cells has been a challenge [1], given the system

complexity and the obstacle of performing targeted genetic perturbations on a large

scale in a mammalian animal model.

There are three main approaches to reconstruct regulatory networks: (1) obser-

vational models look for statistical associations between regulatory elements (in pro-

moter sequences [2]) or factors (in mRNA expression [3]) and target gene expression;

(2) perturbational models examine the effect of genetic perturbation (deletion [4],

overexpression [5], knockdown [6], or natural genetic variation [7]) on gene expres-

sion; and (3) physical models examine direct binding between regulatory proteins and

promoters or enhancers. In many cases, heterogeneous models attempt to integrate

one or more of these approaches.

Inferring regulation from observational models

Two major 'observational' strategies have been used to associate regulators with

putative targets on a genome scale [8]: (1) cis-regulatory models, which consider

the presence of predicted transcription factor (TF) binding sites in the promoters of

target genes [1, 8]; and (2) trans-regulatory models, that infer interactions based on

correlations between regulator and target expression [1, 3, 8]. The latter approach

relies on the fact that many trans-regulators are embedded within transcriptional

feedback and feedforward regulatory loops [3, 9], and hence their own expression

may be transcriptionally regulated within processes that they control. These two

types of models have some inherent limitations. In particular, cis-regulatory models

cannot predict expression because they are not condition specific, and trans-regulatory

14



models only account for changes in mRNA levels, not activity. It is, though, still

challenging to estimate the success of most of the models. Two major reasons for

this are the lack of systematic experimental follow-up and the limited scale of most

datasets. It is thus important to establish standard methodologies and data sets on

which the performance of different models can be compared.

Module-based algorithms

Many of the observational models developed rely on the assumption that gene mo-

dules (rather than individual genes) are the units of gene regulation. The rationale

for this grouping is based on several examples in which the same regulatory circuits

coordinate activation or repression of a regulon of genes that are involved in the

same process (e.g., all ribosomal protein genes are regulated by common transcri-

ption factors). Module-based models have been extensively used in genomics ([3, 10])

because they achieve greater statistical power by using fewer parameters.

Module Networks algorithm

Module Networks [3] is a procedure based on probabilistic graphical models [11]. It

takes as input a data set of gene expression profiles and a large precompiled set of

candidate regulator genes, and determines both the partition of genes to modules and

the regulatory programs, that explain the behavior of the genes in the modules as a

function of the expression level of sets of regulators (Fig. 1-1).

In Module Networks, the action of regulators on each module is described by a

logical program represented as a decision tree . Each node in the tree consists of

a regulatory gene and each leaf of a regulation context, that is, a configuration of

the regulator genes, determined by the path from the root to the leaf. A regulation

context determines the gene expression probabilistically. For example, in Fig. 1-1,

when regulator gene A is downregulated and regulator gene B is upregulated, the

module genes are repressed.

A module network is learned by both partitioning the genes into modules and

learning the Bayesian network between the module nodes. This is accomplished

15



using an Expectation-Maximization (EM) algorithm. In the M-step, it learns the

best decision tree for each module, given the partition of genes into modules. In other

words, given the module assignments, the algorithm builds the regulatory program

for each module by choosing the regulator whose split best predicts the behavior

of the module genes, creating a node on the decision tree for this regulator and

then recursing on the two branches. In the E-step, the gene pool is partitioned into

modules, given the regulatory programs. Basically, for each gene in a module, we can

obtain a probability value that a gene expression value was obtained by a particular

regulatory program. In this case, the algorithm simply assigns the gene to the module

that best predicts it. Each reassignment therefore is guaranteed to improve the overall

predictiveness.

The Module Networks algorithm has been applied to yeast [3] and mammals [12],

showing its ability to make reasonable predictions and to provide a deeper under-

standing of the functionality of a regulatory network. By pooling many similar genes

together, the module network framework significantly increases the statistical power

to identify regulatory influences. For that reason, it has inspired the development of

other algorithms. For example, Segal et al. [13] present a probabilistic model over

both gene expression and sequence data to identify transcriptional modules and the

regulatory motif binding sites that control their regulation within a given set of ex-

periments; Geronemo [14] automatically constructs a set of co-regulated genes whose

regulation can involve both sequence variations and expression of regulators; LIRNET

[15] solves a SNP-eQTL module network involving sequence variations, expression of

regulators and prior knowledge; and CONEXIC [16] integrates matched copy num-

ber (amplifications and deletions) and gene expression data from tumor samples to

identify driving mutations and the processes they influence.

Linear regression models

Linear regression models have provided a robust alternative to module-based algo-

rithms as observational models [17]. In a multiple linear regression, the objective is

to find weights or regression coefficients for the independent variables such that the
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linear combination explains the variance of the dependent variable as well as possible.

The weights describe the relative importance of each independent variable.

Linear regression models have been applied to learn both cis-regulatory models

[18], by modelling gene expression as a function of one or more known or potential

transcription factor binding site variables based on the gene's regulatory region (e.g.

motif counts, position weight matrix (PWM) scores, ChIP-chip quantities), or trans-

regulatory models of gene regulation [19], by modelling target gene expression as a

combination of TFs expression levels.

High dimensionality of microarray data can lead to models that are very complex

and pose challenges in prediction and interpretation. For this reason, penalized re-

gression methods have received much attention over the past few years, as a proper

way to get sparse models. The use of penalties facilitate fitting models with predic-

tors that run into thousands, including many irrelevant to the response, far exceed

the sample size, or are highly correlated. Three regularized linear regression mo-

dels often used in genomic studies (e.g. [15]) are ridge regression [20], least absolute

shrinkage and selection operator (LASSO) [21], and elastic net [22]. The ridge re-

gression uses a L2 penalty and is best used when there are high correlations between

predictors. However, it could be influenced by irrelevant variables since it uses all

the predictors in hand. The LASSO uses the L1 penalty and does both continuous

shrinkage and automatic variable selection simultaneously. However, in the presence

of multicollinearity, it has empirically been observed that the prediction performance

of the LASSO is dominated by ridge regression [21]. Elastic net attempts to keep

the advantages of both ridge and LASSO, overcoming their limitations by combining

the L1 and L 2 penalties. In addition, it has a grouping effect, i.e., if there is a set of

variables among which the pairwise correlations are high, the elastic net groups the

correlated variables together.

Reconstructing models from temporal data

Biological systems are predominantly dynamic [23] and analysis of temporal gene

expression profiles can provide valuable insights about a system. For this reason,
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systems' dynamics over a period of time have been investigated in computational

modeling of cellular processes [24, 25].

Different methods have been extensively explored to infer causal relationships

from time series gene expression data, such as ordinary differential equations [26],

dynamic bayesian networks [27], Granger causality [28], Hidden Markov Models [29]

and mutual information approaches [30]. However, these expression-based inference

methods have had only limited success for several reasons: (1) the insufficient time

resolution of the available samples often limit our ability to distinguish signal from

noise and results in fast responses being missed; (2) it is hard to distinguish between

regulators that actually regulate a gene (i.e., that have a direct causal effect) and

regulators that are merely co-expressed with a gene; and (3) some methods lack a

systematic way to determine a biologically relevant transcriptional time lag, which

may be due to the combined effects of the translation, folding, nuclear translocation

and turnover time-scales for the regulatory protein and for elongation of the target

gene mRNA. Not modeling the time that it takes for the regulator gene to express

its protein product and the transcription of the target gene to be affected by this

regulator protein prevents from capturing expression dynamics and may result in low

accuracy.

Perturbational models can uncover cellular wiring diagrams

Perturbational models associate targets to factors based on the effect of the factors'

genetic manipulation on gene expression. Recent advances in genomics technology,

such as mRNA profiling and the development of genome-scale lentiviral RNA inter-

ference (RNAi) for efficient perturbation, make it possible to reconstruct complex

circuits. For example, Baym et al. [31] present a technique to infer the Rho-signaling

network in Drosophila from microarray data on perturbation experiments.

Systematic perturbation experiments can be important for validating the regu-

latory interactions predicted by an observational (non-perturbational) model. Such

experiments have been successfully employed in modeling regulatory networks in sea

urchin [32] and yeast [33], calling for new computational strategies. In particular,
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effective ways to distinguish the indirect effects of a perturbation from the direct ef-

fects, since many of the network interactions, identified by gene knockdown instead

of by direct measurements of transcription factor-promoter binding, are likely to be

indirect.

A starting point to distinguish direct from indirect effects has been proposed

by Wagner [34-36]. This approach uses gene perturbation experiments to build a

directed graph (perturbation graph), where an edge is introduced from gene A to

gene B if perturbing A results in a significant expression change in B. It then uses

graph-theoretic methods of transitive reduction [37] to reconstruct the minimal (most

parsimonious) subgraph. However, this approach presents several limitations, such

as radical pruning and the pre-requisite that the perturbation graph is acyclic. To

overcome these issues, several other strategies have followed [38-40], but they are

generally computationally expensive and fail to take into account the effect of indirect

interactions while globally explaining the experimental data. These approaches are

extensively discussed in Chapter 3.

Accurate computational methods to analyze perturbation graphs are essential in a

time when RNAi screening is becoming part of the standard experimental repertoire.

In the future, RNAi screens will only be the first step in the comprehensive analysis

of biological phenomena. Iteratively integrating experimentation and computation is

a promising approach to refine our understanding of the inner working of the cell.

Physical models examine direct binding

Physical models associate regulatory factors with the targets whose promoters they

bind [41, 42]. Indeed, chromatin immunoprecipitation (ChIP) has revolutionized the

study of transcriptional networks: maps of TF-DNA binding can be coupled with

measurements of expression output to build models of regulatory circuits [8]. Even

though binding information should be interpreted with caution, as the presence of

a regulator at a promoter region binding does not necessarily mean functional regu-

lation, measurement of TF binding before and after a stimulus can help distinguish

between direct and indirect targets [33, 42, 43].
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Measurements of trans inputs are still limited by the effort and cost in genera-

ting the needed reagents and data, such as the development of an epitope-tagged

version of every TF and the large amounts of material required in large-scale screens.

Automated methods for systematic mapping TFs, that increase the throughput and

sensitivity, while reducing the labor and cost for ChIP experiments, can assist in

further understanding mammalian regulatory circuits across a range of cell states,

conditions and perturbations.

1.3 Heterogeneous models capture regulatory cir-

cuitry at several levels

Biological systems employ heterogeneous regulatory mechanisms that are frequently

intertwined. Recent technological advances have made available several types of ge-

nomic and proteomic data, some already mentioned above. Among them are miRNA

and gene expression, copy number aberrations (CNAs), single nucleotide polymor-

phisms (SNPs), and protein-protein/gene-gene interactions. Each of these data types

provides a different, partly independent and complementary, view of the whole cir-

cuit. However, understanding functions of genes, proteins, and other components of

the genome requires more information than provided by each of the datasets. For

example, Huang et al. [44] derive a network of protein-protein and protein-DNA in-

teractions that explains the functional context of genes and proteins detected in these

assays and uncovers diverse pathways not obvious from the input.

Integrating data from different sources can bring many challenges. Genomic data

arise in the form of vectors, graphs, or sequences, and it is important to carefully

consider strategies that best capture the most information contained in each data.

Moreover, data from different sources might have different quality and informativity.

For example, probe design and experimental conditions are known to influence signal

intensities and sensitivities for many high-throughput technologies.
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Data integration in clinical setting

The need for integration of heterogeneous data measured on the same individuals

arises in a wide range of clinical applications. In this regard, the best example is

perhaps the challenge that cancer researchers and clinicians face in the diagnosis,

treatment, and prognosis of this complex disease. Cancer is thought to be prima-

rily caused by genetic alterations and, as such, genomic data like gene expression

and CNAs can be used together to develop models that learn novel regulation func-

tions [45]. The critical challenge is in differentiating between alterations that drive

the cancer growth and other seemingly random alterations that accumulate through

instability induced by tumorigenesis. For example, the CONEXIC algorithm [16]

combines DNA copy number with gene expression levels to identify driver mutations

and predict the processes that they alter. The model assumes that a driver mutation

should co-vary with a gene module involved in tumorigenesis (i.e., it assumes that

the modules expression is "modulated" by the driver), and that expression levels of

the driver control the malignant phenotype rather than copy number (because other

mechanisms may lead to similar dysregulated expression of the driver gene). This

approach predicted two new tumor dependencies in melanoma and the processes that

they alter. Other studies tracked the causes of abnormal gene expressions by corre-

lating them with gene mutations, DNA methylations or microRNA expressions (e.g.,

[46, 47]). However, integrative studies are often restricted to pairwise comparisons

between two types of data and lack a unifying framework to integrate multiple types

of data in the same model.
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Figure

Expression data Candidate regulators

7/
ter fGene partition

Regulatory Gene
program reassignment
earning to modules

Modules

Figure 1-1: Overview of the module networks algorithm. The procedure takes as
input a data set of gene expression profiles and a pre-compiled set of candidate regulator
genes. The method itself (dashed box) is an iterative procedure that determines both the
partition of genes to modules and the regulatory program (below the dashed box) for each
module. Red/Blue - high/low expression. Figure adapted from [3].
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Chapter 2

Reconstruction of a Mammalian

Transcriptional Network Mediating

Pathogen Responses

2.1 Abstract

Deciphering the regulatory networks that control dynamic and specific gene expres-

sion responses in mammalian cells remains a major challenge. While models inferred

from genomic data have identified candidate regulatory mechanisms, such models

remain largely unvalidated. Here, we built on the framework of graphical models

and Elastic-Net regression to learn an observational model of gene regulation from

temporal expression profiles. We used it to identify candidate regulators that act on

target genes in the transcriptional response to pathogens in primary Dendritic Cells

(DCs). We then tested the regulatory function of 125 of the candidate regulators

(consisting of transcription factors, chromatin modifiers, and RNA binding proteins)

by systematic perturbions with shRNAs, followed by measurement of a gene expres-

sion signature during response to the same pathogen components. This approach

accurately assigned 32 known regulators (e.g. NFB, IRFs, and STATs) to their tar-

get genes and discovered 68 additional functional regulators that were not previously
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implicated in this response. This unique dataset provided a valuable resource to es-

timate the quality of the observational model. We observed that it identified many

correct regulators but revealed numerous false positive relations, confirming that in-

ferring regulatory activity from expression levels alone limits the model's ability to

distinguish between causality and correlation. Generally, this study establishes a

broadly-applicable, comprehensive and unbiased approach to identifying the wiring

and function of a regulatory network controlling a major transcriptional response in

primary mammalian cells.

2.2 Background

Regulatory networks controlling gene expression serve as decision-making circuits

within cells. For example, when immune dendritic cells (DCs) are exposed to viruses,

bacteria, or fungi, they respond with transcriptional programs that are specific to each

pathogen [48] and are essential for establishing appropriate immunological outcomes

[49]. These fast and dynamic responses are initiated through specific receptors, such

as Toll-like receptors (TLRs), that distinguish broad pathogen classes and are prop-

agated through well-characterized signaling cascades [49]. However, little is known

about how the transcriptional network is wired to produce specific outputs.

Systematic unbiased reconstruction of regulatory networks in any mammalian cell

remains a fundamental challenge. Two major strategies have been previously used to

associate regulators with their putative targets on a genome scale [8]: cis-regulatory

models rely on the presence of predicted binding sites for a factor in the promoters

of target genes [1, 8, 50], whereas trans-regulatory models rely on the dependence

between the activity of expression of a regulator to that of its targets across samples

[1, 3, 8, 50]. In innate immunity, such observational models have led to the successful

identification of a few key regulators Atf3 [51], Tgif [1], and CEBP/6 [52], but have

failed to provide a comprehensive model that explains the complexity and specificity of

the response. This is due to the limitations inherent in each approach: cis-regulatory

models are biased to regulators with known binding sites and explain little of the
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observed expression [8], whereas trans-models are under-determined to distinguish

correlation from causation [3, 8].

A complementary strategy is to infer a perturbational model, by systematically

perturbing every regulatory input and measuring its effect on the transcriptional

output of target genes. This strategy has been successfully employed in yeast [4, 33,

43] and sea urchin [32], but not in mammals, due to the lack of efficient genetic tools

and the prohibitive cost of large-scale profiling studies. Recent technological advances

in gene perturbation and multiplex detection [8] can mitigate these limitations.

Here, we combined an observational model and perturbations to develop the first

unbiased perturbational model of a regulatory network in a mammalian cell (Fig. 2-1).

We first used transcriptional profiles and an observational model to select candidate

regulators (transcription factors, chromatin modifiers, and RNA binding proteins) for

a perturbation screen, working with the model system of primary DCs responding to

pathogens. Next we used a lentiviral shRNA library [53] to silence 125 of the candi-

dates in primary DCs. We then used an innovative and accurate multiplex detection

technology to monitor a representative signature of target gene expression following

each perturbation. The result was a perturbational model of cause-and-effect relation-

ships in the regulatory circuit controlling this transcriptional response. The unique

data generated in this work allowed us to estimate the quality of the observational

model and will assist in the development of new computational approaches to infer

regulatory models (Chapter 3). Furthermore, this systematic and unbiased approach

not only re-discovered 32 known regulators of TLR-dependent gene regulation (e.g.

NFKB, IRFs, API, STATs), but also identified another 68 regulators, which have

not been previously associated with the innate immune response and could only be

discovered by an unbiased approach.

2.3 Profiling of mRNA levels

To determine the output of pathogen-sensing regulatory networks, we measured genome-

wide expression profiles in DCs exposed to PAM3CSK4 (PAM), a synthetic mimic of
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bacterial lipopeptides; polyinosine-polycytidylic acid [poly(I:C)], a viral-like double-

stranded RNA; lipopolysaccharide (LPS), a purified component from Gram-negative

Escherichia coli; gardiquimod, a small-molecule agonist; and CpG, a synthetic single-

stranded DNA. These compounds are known agonists of TLR2, TLR3, TLR4, TLR7,

and TLR9, respectively. Poly(I:C) also activates the cytosolic viral RNA sensor MDA-

5, and LPS can also act through co-receptors such as CD14; we therefore refer to the

ligands rather than their receptors for clarity. On the basis of pilot experiments (see

materials and methods), we measured mRNA expression at nine time points - 0.5, 1,

2, 4, 6, 8, 12, 16, and 24 hours - after stimulation with these pathogen components.

These agonists and time points reflect the most dramatic gene expression changes in

DCs.

2.4 Detection of response specific genes

We focused on regulator genes whose expression change during pathogen sensing,

a reasonable assumption for many mammalian responses. We defined induced and

inhibited probesets for each condition (TLR agonist) as probesets that display at

least 1.7 fold up- or down- regulation in both duplicates of at least one time point, as

compared to the control. This set consisted of 3635 genes (Fig. 2-2). Control values

were defined as the median expression calculated over control non stimulated samples

times 0, 1, 2 and 4 hours.

Clustering the expression profiles of induced genes (Fig. 2-3A) we observed that

the transcriptional response can be classified into two major distinct 'programs' -

a 'TLR2-like' program and a 'TLR3-like' program - and a shared response (24.5%

shared by TLR2/3/4). The TLR4 response is largely the union of the TLR2 and TLR3

programs (Fig. 2-3). This is in line with the known signaling pathways controlled

by the different sensors: TLR2 depends solely on the Myd88 pathway, TLR3 and

MDA-5 depend mostly on the TRAM/TRIF and IPS-1 pathways, while TLR4 acts

through both the MYD88 and TRIF pathways [54]. It is also consistent with previous

reports of the induction of an anti-viral program by TLR3 and TLR4 [55]. The genes
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responsive in each of these programs are consistent with the type of pathogen that

elicits each response: the TLR2-like program is enriched for NFB and inflammatory

responsive genes (P< 6.1 x 10-8), whereas the TLR3 program is enriched for viral- and

interferon-responsive genes (P< 8.3 x 10-24). We thus term them the "inflammatory-

like" and "antiviral-like" programs. The TLR7 and TLR9 responses are very similar

to the TLR4 response (more than 82% shared with TLR4) suggesting that these

pathways converge on many of the same responses as the MYD88- and TRIF- TRAM

dependent pathways. A notable exception is the small number of genes that are

specific to a single stimulus (e.g. - 250 for TLR3). For example, IFNB1, which is

crucial to elicit elimination of viral infections, is induced at high and sustained levels

in response only to TLR3 stimulation, but transiently and at substantially lower levels

in response to TLR4.

2.5 Reconstruction of an observational trans-model

of gene regulation

We next asked which regulators could account for the observed transcriptional re-

sponses. The strategy consisted in identifying potential regulators based on changes

in their own expression level (a reasonable assumption for many mammalian responses

[9, 56], including pathogen-sensing [1, 48]) that are also predictive of changes in those

of other (target) genes. To this end, we developed an extension of the Module Net-

works algorithm [3] to reconstruct an observational trans-model of gene regulation

from transcriptional profiles collected along a time course (Fig. 2-1B, top). Our

method assumes that co-regulated genes have a similar regulatory program and con-

sists of two steps: (1) divide genes into modules using the Module Networks algorithm;

(2) use a regularized linear regression model [15, 22] to learn regulatory programs with

time delays for each module that attempt to explain the expression of each module

as a function of the expression of specific regulators. This approach would capture

multiple candidate regulators with a similar role, while eliminating weak spurious con-
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tributors, and would learn the temporal lags between grouped regulators and target

genes.

Learning a network of interacting modules

We started our approach by applying the Module Networks algorithm as originally

developed [3], which assumes that the expression of the target genes in each modu-

le is governed by the same regulatory program. Module Networks uses an iterative

learning procedure using the Expectation Maximization (EM) algorithm. Each ite-

ration consists of two steps: an E-step and an M-step. In the M-step, the procedure

is given a partition of the genes into modules and learns the best regulatory program

(as a decision tree) for each module. In the E-step, given the inferred regulatory

programs, it re-assigns each gene to the module that best predicts the genes behavior

(it does not assign a regulator gene to a module in which it is also a regulatory input,

directly or indirectly). The regulatory program is chosen from a pre-defined set of

candidate regulators (typically including all known and putative regulatory factors in

a genome).

Here, we initialized Module Networks from 10 to 250 modules (in increments of 10)

and using a set of candidate regulators from a curated list of 3287 proximal regulators

of mRNA levels, including 1885 transcription factors, 1069 RNA binding proteins and

333 chromatin factors. We then chose the model whose likelihood score was 70% of

the best score, to avoid overfitting of the model to the data (at this point, a straight

line with slope approximately 1 crossed the likelihood score plot). The chosen model

consisted of 80 modules (Fig. 2-4A) of 3635 co-regulated genes.

Regulation as linear regression

The original Module Networks algorithm [3] describes the regulatory programs as

regression trees (as explained on page 15). One potential limitation of this algorithm

is that it allows only a single regulator in each split in the tree, so many correct

regulators may not be selected (see Fig. 2-5 which shows Klf4 as the top regulator).
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Once Module Networks selects one regulator that seems to split the samples well,

other regulators that are probably almost as good are not going to be added to the

regulator set: since they are correlated with the original regulator they will not add

additional information beyond the original split. To this end, a regression model

could overcome this limitation. We also reasoned that a regression tree is not an

appropriate model for time course data and that it does not exploit its full power. In

particular, Module Networks does not reflect any temporal relations in the data that

would allow for time lags. Allowing such lags is based on the observation that when

induced regulators affect a target gene's expression through their own differentially

regulated mRNA level, the induction of the target gene's mRNA expression may occur

with a time lag relative to the induction of the regulator [57]. Therefore, a regression

model could also have the potential of learning lagged relationships between groups

of regulators and target genes. In addition, a regression model seems appropriate

for our dataset since all sample are related (same cell type and system, not many

different ones where context really matters).

Thus, we decided to infer regulatory programs for the modules using Elastic Net

(EN, [22]), an L 1/L 2 -regularized linear regression procedure. EN is an algorithm

based on a regularized least square procedure with a penalty which is the sum of an

L1 penalty (like LASSO [58]) and an L 2 penalty (like Ridge Regression [59]). The

first term enforces the sparsity of the solution, doing automatic variable selection,

whereas the second term prevents arbitrary choice of only one out of several highly

correlated variables. As shown in [22], EN outperforms LASSO in terms of prediction

accuracy and tends to select strongly correlated genes into the model together when

applied to microarray data. Next, according to [22], we introduce the naive elastic

net, followed by a scaled version, the elastic net.

Elastic net regularized regression

Given a dataset with n observations (experiments) and p predictors (candidate regu-

lator genes), let y = (yi,. .. ,y be the response and X = [x1 ] ... [x,] be the model

matrix (candidate regulators' profiles), where xj = (x1,. .. ) j = 1, ... ,p are
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the predictors. With a location and scale transformation we can assume the response

is centered and the predictors are standardized,

n n n
1y = 0, Ixij=0, and x = 1, for j = 1, 2,... , p.
i=1 i=1 i=1

For any fixed non-negative A, and A2 , the naive EN criterion is defined as

P P

L(A, A2, )IY - X011 2 + A2 1 3+±A lEjI|,
j=1 j=1

and the naive EN estimator # is the minimizer of that equation, that is

3 = arg min {L (A,A, #)}.

However, Zou and Hastie [22] showed that the naive EN does not perform satis-

factorily unless it is very close to either ridge regression or the lasso. This is why it

is called naive. The naive EN estimator consists of a two-stage procedure: for each

fixed A2 it first finds the ridge regression coefficients, and then does the LASSO-type

shrinkage along the LASSO coefficient solution paths. Thus, it appears to incur a

double amount of shrinkage. A scaling transformation can improve the prediction

performance of the naive elastic net by correcting this double-shrinkage. Defining an

artificial dataset (X*, Y*) so that

X* = (1 + A2)-1/2

where I, is the p x p identity matrix, and

Y
Y* = ,

(0)

where 0 is the p x 1 0-vector, Zou and Hastie [22] showed that the naifve EN solves a
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LASSO-type problem [21] given by

(elastic net) = 1 + A20.

This kind of scaling undoes the overshrinking effect when the L1 and L2 penalties are

combined. To choose the coefficients we performed a two dimensional cross validation.

The least-angle regression (LARS) extension which implements the EN algorithm,

called the LARS-EN, outputs a sequence of variables corresponding to a given A2. A,

has a one to one correspondence with the number of iterations that the LARS-EN

algorithm was run for. Therefore selecting the active model at a given iteration for a

particular A2 would give the EN solution corresponding to particular value of (A,, A2 ).

To estimate the model parameters, we chose different values of A2 (0, 0.01, 0.1, 1,

10, 100) and the other tuning parameter was chosen using standard cross validation

procedure. The chosen A2 was the one giving the minimum cross-validation error.

The MATLAB implementation of LARS-EN available in http: //www2. imm. dtu. dk/

pubdb/views/publicationdetails .php?id=3897 was used for this work.

So, for each module generated with Module Networks, we used the LARS-EN al-

gorithm to regress the mean profile of the module's genes with a selected combination

of candidate regulators (to avoid cyclicity, we eliminated the regulator genes from the

modules in this step). Simultaneously, to maximize the utility of the temporal data,

we allowed a 'lag' of up to three time points between the expression of the regulators

and that of the target module. This reflects a possible maximum delay of two hours

between regulators and target genes (Fig. 2-6).

The EN target function optimizes only for prediction error, which is a proxy

for the goal of identifying causal variables. Since not all predictive variables are

necessarily causal, we further decided to reduced the number of selected variables

using non-parametric bootstrap [60]. We randomly sampled the module's genes with

replacement to obtain 1000 bootstrap datasets, holding off 20% of each module's genes

at a time. We applied the described EN regression to each bootstrap dataset to obtain

a set of regression coefficients /3 B, B = 1, .. . , 1000, where B indicates the index of the
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bootstrap set. Those variables with a non-zero coefficient in / 3B, defined a sparse set

of regression solutions for the bootstrap set B. In order to obtain statistically robust

variables, we computed the selection frequency, 7y,, for each variable p, defined as:

1000

6, B 6( 0) /1000,
B=1

B-

where af is the coefficient of variable p in bootstrap model B, and 6 is an indicator

function. We obtained set X* according to yp:

X* = {X, | , > 0.5, p: index of variable}.

Thus, the set X* includes variables that had non-zero coefficients for at least 50% of

the bootstrap runs. The elastic net and bootstrap procedures resulted in the choice

of 117 regulators for the 80 modules (Fig. 2-4B). These included known regulators,

from the NFkB, Stat and IRF families and novel intriguing candidates such as the

circadian regulator Timeless and the DNA methyltransferase Dnmt3a.

2.6 Selection of candidate regulators for perturba-

tion and a response signature

To minimize the bias in our choice of regulators, we used two other complemen-

tary strategies to identify additional sets of candidate regulators. First, we added 5

constitutively expressed regulators whose cis-regulatory elements are enriched in the

responsive genes. These included Irf3, Rela, Nfe212, Etsl, Creb3. Second, we com-

pared the transcriptional profiles of several known regulators to those of their targets

and found that several relations will likely be missed by the model either because of

specific 'windows' of regulation or highly non-linear relations; to maximize our ability

to understand such relations, we incorporated any other regulator that had at least

a 2-fold change in expression (22 added regulators). Overall, this resulted in 144

candidate regulators for further analysis (Fig. 2-7). The expression of the candidate
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regulators covers the full transcriptional response (27% 'TLR2-like', 46% 'TLR3-like',

30% in both responses, albeit with different kinetics).

Notably, the transcriptional profiles and timing of activation of the regulators

under TLR4 activation are conserved between DCs and the functionally similar

macrophages especially at early time points (Pearson correlation r - 0.9 at 1h,

Fig. 2-8A) and between human macrophages and mouse DC (r - 0.6 at 2h, Fig.

2-8B). This conservation supports the relevance of the regulator's transcription to

the network's function.

To facilitate large-scale perturbation and monitoring, we next determined a rep-

resentative gene signature and a time point post-stimulation that captures the com-

plexity of the different programs. We devised GeneSelector, an information-theoretic

approach, for selecting genes that are highly informative about the stimulus. In this

approach, the expression levels of all genes depend on the experimental stimulus,

and we employ conditional entropy as a measure of the remaining uncertainty about

the stimulus once the expression levels of the signature genes are known. We used

a greedy procedure to incrementally select genes that maximally reduce the entropy

given the previously selected genes. We applied this approach repeatedly to select

multiple disjoint gene sets, until we reached a set of 80 genes (the set size was limited

by the experimental detection method). We used the same approach to choose a single

time point, six hours post activation, at which the conditional entropy was minimal

and hence best distinguishes the stimuli (see materials and methods). Finally, we

chose a single treatment (LPS), since it activates both the viral and inflammatory

gene programs. By this principled selection of a 'reporter signature' and a single time

point post-stimulation we can adequately represent the complexity of the transcrip-

tional response. Notably, we added two types of internal control genes. First, we

added 10 genes whose expression level is unchanged under any TLR stimulation, but

whose (constant) basal levels vary from very low to high. Second, we added to the

reporter genes the 37 candidate regulators that had a significant mRNA level at the

6 hours time point chosen for the screen. These added genes would allow us to assess

knockdown efficacy and the sensitivity of our statistical methods. The final set thus
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included 118 'reporter' genes and 10 controls.

2.7 Perturbation experiments and network recons-

truction

To provide causal data and to rigorously test the model just described, we used

RNAi libraries to test the roles of the selected candidate regulators in controlling

gene expression. We generated a validated lentiviral shRNA library for 125 of the

144 candidate regulators (Fig. 2-9) and used it to systematically perturb each of

the regulators in DCs. To carry out our perturbational study, we selected a single

treatment, LPS, that activates the majority of both the "inflammatory-like" and

"antiviral-like" programs. After stimulation of shRNA-perturbed DCs with LPS for

6 hours, we profiled the expression of a signature of 118 marker genes (see [6] for

details on this selection) with the Nanostring nCounter system that provides a fast

and cheap multiplex assay [61].

The changes in signature gene expression resulting from infection with each shRNA

were used to construct a model that associated regulators to their targets. We ex-

pected increases in the transcript levels of reporter genes whose repressors are targeted

by knockdown, and decreases in reporters whose activators are targeted. Our false

discovery rate (FDR) model estimates the statistical significance of a change in tran-

scripts in DCs infected with a given shRNA. We controlled for gene specific noise

by comparing to changes in the expression of each gene after perturbation with the

control shRNAs (Fig. 2-10A), and for shRNA-specific noise by comparing to changes

in the expression of the control genes after a given shRNA perturbation (Fig. 2-

10B). We estimated the sensitivity of our calls from the 37 regulators, which are also

included as target reporters (Fig. 2-11).

On the basis of these results, we identified a densely overlapping network with 2322

significant regulatory connections, including 1728 activations and 594 repressions (Fig.

2-10C, red and blue, respectively, at 95% confidence). Of the 125 tested regulators,
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we confidently identified 100 with at least four targets. Among those were 24 hub

regulators that were predicted to regulate more than 25% of the 118 genes measured,

as well as 76 specific regulators each affecting the expression of 4 to 25 genes. On

average, ~ 14 (±8; SD) regulators activated a target gene, and 5 (±5.8) regulators

repressed it. Indirect effects may account for the large number of regulators we

observed for each target, and we discuss how to address those in Chapter 3.

The perturbational model captured many known regulatory relations - for exam-

ple, the NF-kB family of transcription factors (Rel, Rela, Relb, Nfkbl, Nfkb2, and

Nfkbiz) regulating their known inflammatory gene targets. Our network provided

evidence for the involvement of at least 68 additional regulators in the response to

pathogens, of which 11 were hubs not previously associated with this system.

Focusing on the network architecture, we found multiple feedforward circuits in

this response, where an upstream regulator controls a target gene both directly and

indirectly through a secondary regulator [62]. The majority (76%, 4892 of 6444) of

these feedforward circuits were found to be coherent [62], having the same direct

and indirect effect on the regulated gene. The vast majority (80%) are type I loops

[63] with all-positive regulation (e.g., Nfkbiz activates E2f5 and both activate IL-

6). Such feedforward circuits respond to persistent rather than transient stimulation,

protecting the system from responding to spurious signals, as was shown for one circuit

in LPS-stimulated macrophages [52]. Our finding suggests that coherent feedforward

loops, especially class I [62], are a general design principle in this system and may

have a physiological impact on this response.

2.8 Comparison between the observational and the

perturbation model

When we compared the results from the observational and the perturbational models,

even though there were some true positive associations in the observational model,

there were also substantial discrepancies. Fig. 2-12 illustrates the correspondence
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between the models. For example, the perturbational model indicates (confidence

value above 0.95) that Arid5a represses Cxcl5, but the pair was not captured in the

observational model (Fig. 2-13A). More importantly, we found a substantial number

of false positive relations in the observational model, mostly due to the fact that both

the correct regulator and many others have indistinguishable expression patterns

(Figs. 2-14 and 2-15). This phenomenon is observable regardless of the specific

variation of the observational model, using different time lags (none, variable lags)

and different number of treatments (all treatments or only LPS). Fig. 2-13B shows

gene pair Bbx and Hbegf which was predicted in the observational model due to the

high correlation, but where the regulatory relation was not confirmed by perturbation.

Furthermore, from the perturbational dataset, we observed that correlation is not

a good indicator of the type of activity of a gene. For example, Stat2 positively cor-

relates (r ~ 1) with Acpp and Isg2O, but the perturbational model identified Stat2

as a repressor of Acpp and as an activator of Isg2O. On the other hand, Cebpz nega-

tively correlates (r - -1) with BC006779 and Tcf4, but Cebpz activates BC006779

and represses Tcf4. These observations indicate that expression data alone do not

suffice to provide functional information about gene regulation. However, most of the

regulators predicted by the observational model were functional.

2.9 Discussion

This study opens the way for the development of a next-generation of computational

approaches to infer regulatory models from genomic data such as genome-wide expres-

sion profiles. While there are many computational approaches to derive observational

models, it has been exceedingly difficult to estimate their quality [8]. The unique data

generated in this work includes both a comprehensive set of expression profiles for

learning a model (training data), and a large scale perturbational screen for estimate

its quality (test data). The broad utility of our screen is enhanced by the largely

unbiased approach in our choice of candidates for perturbation.

The draft model predicted many of correct regulators ('key players') as well as
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validated regulatory interactions but at a cost of a relatively high false positive rate

in interactions; this was mainly due to the fact that the method is based on a linear

regression and thus many of the regressors that are selected are the ones that have a

very high absolute correlation value with the dependent variable. One potential way of

overcoming this limitation is the incorporation of cis-regulatory information [1, 50].

However, such models are,biased since they can neither detect novel transcription

factors whose binding sites are not known, nor the involvement of chromatin factors

which do not bind specific sequence elements. Indeed, only 25 of our regulators have

a known binding site matrix (at the appropriate protein family level). 12 of these

sites are enriched in our TLR responsive genes (Materials and Methods) and all are

associated with factors that are well known to be involved in this response. Sites for

some of the 12 factors (e.g. Ets1, Sp1, Klf4, Creb, Egr1, E2f, Plagll) were enriched

based on the timing of expression but not the specific pathogen. Overall, while this

analysis is consistent with our model, it did not expand the scope of regulators beyond

those previously known, and it could not discover many of the key novel regulators

in the perturbational model, since they do not have known sites.

A central goal of the study was to address the mechanistic basis for pathogen-

specific responses. Consistent with previous studies [55], we distinguished two key

programs, a PAM (TLR2)-like inflammatory response and a poly(I:C) (TLR3/MDA-

5)-like antiviral response, which are together induced by LPS, a Gram-negative bac-

terial component and a TLR4 ligand. These programs reflect both qualitative and

quantitative differences between the required functional responses, and are consis-

tent with the cross-protection between certain bacteria and virus infections [55]. The

broad effect of LPS allowed us to focus on a single stimulus and time point, but

screens with other stimuli may identify additional unique regulators.

Our study has benefited from several features of the DC system, as well as from

careful design. Most notably, the organization of the DC transcriptional response

allowed us to identify regulators with a scope much broader than the single stimulus

and time point used in our screen. Nevertheless, we except that additional functional

regulators can be identified by testing additional stimuli (e.g. poly I:C for specific
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anti-viral genes) or time points (e.g. early time points to study pulse-like responses).

Generally, this work establishes an unbiased, straightforward, and general frame-

work for network reconstruction in mammalian cells, including several strategies to

leverage shRNA for the study of gene regulation. This approach can be executed at

substantial scale and reasonable cost, and is compatible with the challenge of deci-

phering the multiple regulatory systems that operate in mammals. It can be expanded

to derive increasingly detailed models and to distinguish direct from indirect targets.

2.10 Materials and methods

Mouse dendritic cells

6-8 week old female C57BL/6J mice were obtained from the Jackson Laboratories.

Bone marrow dendritic cells (BMDCs) were collected from femora and tibiae and

plated on non-tissue culture treated plastic dishes in RPMI medium (Gibco, Carls-

bad, CA, Invitrogen, Carlsbad, CA), supplemented with 10% FBS, L-glutamine, peni-

cillin/streptomycin, MEM non-essential amino acids, HEPES, sodium pyruvate, 0-

mercaptoethanol, and GM-CSF (15 ng/mL; Peprotech, Rocky Hill, NJ). These cells

were used directly for all RNAi experiments. For all other experiments, at day 5, float-

ing CD11c+ cells were sorted on the autoMACS separator with the CD11c (N418)

MicroBeads kit (Myltenyi Biotec, Auburn, CA). CD11c+ cells where replated at a

concentration of 106 cells/ml and stimulated 16 hours post sorting.

TLR agonists experiments

All ligands were purchased from Invivogen (San Diego, CA) and used at the following

concentrations: PAM3CSK4 (250 ng/ml), polyl:C (10 ug/ml), LPS (rough, ultra-pure

E.coli K12 strain LPS, 100 ng/ml ), gardiquimod (250 ng/ml), CpG DNA (lug/ml).

We first optimized a synchronized and robust activation of CD11c+ DCs to different

ligands and found that non-charged plastics ('Petri dish') retain the DCs in a naive-

like state on the basis of both cell phenotype and selected gene markers.
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mRNA isolation

Total RNA was extracted with QIAzol reagent following the miRNeasy kit's procedure

(Qiagen, Valencia, CA), and sample quality was tested on a 2100 Bioanalyzer (Agi-

lent, Palo Alto, CA). RNA was reverse transcribed with the High Capacity cDNA

Reverse Transcription kit (Applied Biosystems, Foster City, CA). For experiments

with more than 12 samples, we harvested PolyA+ RNA in 96- or 384-well plates with

the Turbocapture mRNA kit (Qiagen) and reverse transcribed with the Sensiscript

RT kit (Qiagen).

Pilot experiments

To choose the parameters (culture conditions, ligands, and time points) for the full

experiments we conducted several pilots. We first optimized a synchronized and

robust activation of CD1ic+ DCs to different TLR ligands and found that non-

charged plastics ('Petri dish') retain the DCs in a ndive-like state based on both cell

phenotype and selected gene markers. We then used microarrays to profile mRNA

levels at a few time points to identify the time windows when: (a) DCs become

quiescent following CD11c+ positive selection; and (b) TLR ligands regulate DC gene

expression and phenotype. Next, we determined the full set of time points based on

qRT-PCR measurements of a small number of marker genes along a high-resolution

time course. Based on these pilot studies, we profiled mRNA expression at 9 time

points (0.5, 1, 2, 4, 6, 8, 12, 16, and 24 hours) following stimulation with Pam3CSK,

polyIC, LPS, gardiquimod, and CpG.

Array hybridizations and processing

For oligonucleotide microarray hybridization, 1.5g RNA were labeled, fragmented

and hybridized to an Affymetrix Mouse Genome 430A 2.0 Array. After scanning,

the expression value for each gene was calculated with RMA (Robust Multi-Array)

normalization [64]. The average intensity difference values were normalized across

the sample set. Probe sets that were absent in all samples according to Affymetrix
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flags were removed. All values lower than 50 were replaced by 50.

GeneSelector

To choose a set of genes that will capture as much as possible of the information on

the expression of all genes, we used an information-theoretic approach. We modeled

the expression levels X given the experimental condition C with a naive Bayes model

where the expression of gene i under condition c follows a normal distribution Xi|C =

c '- N (pic, u). In this model, the expression levels of all genes depend on the

experimental condition C, and we selected genes that are highly informative about

C.

Formally, for a set of genes Y we used the conditional entropy

H (C|Y) = -( (C = c) Ep(Y = y|C = c) log p(C = c|Y = y)
C y

as a measure of the remaining uncertainty in C once the expression levels Y are

known. We then used this measure and a greedy procedure to select multiple disjoint

gene sets Y1, . . . , Yk, such that for each set Y, H (CYi) < r/ (we set r = 0.5). In

the greedy procedure, we select genes one at a time, and with each selected gene

re-compute the entropy given the genes already selected in the current set. Once a

set is complete (the remaining conditional entropy is below the threshold r/), we add

all the genes to the selected set, and repeat the procedure (excluding all the selected

genes from consideration). We stop when the number of selected genes has reached a

user-defined threshold, set by the number of genes feasible for the experimental assay.

To select a time point, we used the same approach. Here, we measured entropy

under all time points for multiple randomly selected gene sets of several sizes and

plotted the average entropy for each timepoint. We chose the time point with the

minimal entropy.
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Analysis of cis-regulatory elements

Each cis-regulatory element was represented by a Position Weight Matrix (PWM).

We compiled a set of 1651 PWMs from the TRANSFAC matrix database v8.3 [65],

JASPAR Version 2008 [66] and experimentally determined PWMs [67, 68]. Given a

PWM, for each nucleotide position in the promoter of each mouse gene, we calcu-

lated an affinity score defined as the log-likelihood ratio (LOD score) for observing

the sequence given the PWM versus a given random genomic background. We then

found the best conserved motif instance over the entire promoter region. We auto-

matically computed a PWM-specific cutoff, by using the information content of each

motif, computed as the 2-IC quantile of the PWM LODs distribution. We considered

a 'hit' in the promoter if the maximal LOD score was above this cutoff. Finally, we

computed the enrichment of the motif in each of six clusters determined by the mi-

croarray experiments, using a two-sided Wilcoxon rank-sum test between the set and

the background (see Table S13 in the Science manuscript website). To ensure that

enrichment was not due to nucleotide bias within the promoter, we also shuffled the

PWM and computed enrichment for the true PWM compared to the shuffled PWMs.

A motif was considered enriched in a gene set if it passed P-value<0.01.

shRNA Perturbation experiments

We generated validated shRNAs that knockdown each of the regulators by at least

75%. For each regulator, we tested five shRNAs [53] by introducing each shRNA

into in vitro cultured mouse bone marrow cells using a lentivirus expression system

followed by puromycin selection. We tested the effect of each shRNA on the target

transcript using qPCR and found an shRNA with a knockdown efficiency greater

than 75% for 125 of our 144 regulators. Our lentivirus-infected bone marrow cell

population was composed of 90% DCs as determined by FACS using the CD11c

marker. Smaller populations of uncharacterized cells largely retain the expression

profiles of DCs for most genes, including the regulators. Lentivirus infection four

days prior to TLR4 stimulation does not significantly activate the DC population,
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as reflected by the very low expression levels of major cytokines and co-stimulatory

molecules, comparable to that of uninfected cells. Furthermore, the infected cells

retain the ability to robustly respond to a pathogenic stimulus. Finally, knockdown

of the individual regulators does not cause a significant change in differentiation or

basal activation of the DC population prior to LPS treatment, as reflected by staining

of each knockdown with CD11c, a positive marker for mature DC, and with CD86 a

marker for 'activated' DC.

Reproducibility and reliability of perturbation experiments

The results of the perturbation experiments are highly reproducible and reliable as

indicated by several controls of sample variability. First, biological duplicates follow-

ing re-infection with eight of the shRNAs on different cells from the same mouse were

highly correlated (r > 0.995 in all cases; a technical duplicate has r > 0.99989). Se-

cond, biological duplicates following re-infection with 18 of the shRNAs of a new batch

of bone marrow cells from a different mouse were also highly correlated (r > 0.9).

Third, infection with a lentiviral vector harboring a second shRNA construct for 18

of the tested regulators led to correlated effects (r > 0.8). Notably, these additional

constructs resulted in a lesser, though still robust, knock down efficiency greater than

60%. Fourth, the mRNA levels measured by the nCounter assay were consistent with

qPCR validation for four target genes (IL-12, PTGS2, IL6, CXCL1O) tested under

20 different shRNAs in an independent experiment, demonstrating the robustness of

these results. Finally, the mRNA levels measured by nCounter following infection

with five shRNAs targeting regulators and two control non-targeting shRNAs were

highly (r > 0.88 in all cases) correlated to those measured on Affymetrix following

independent infections with the same constructs.

mRNA measurements with nCounter

Details on the nCounter system are presented in full in [61]. CodeSets were constru-

cted to detect genes selected by the GeneSelector algorithm and additional controls as
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described. 5*104 bone marrow cells were lysed in RLT buffer (Qiagen) supplemented

with #-mercaptoethanol. 10% of the lysate was hybridized for 16 hours with the

codeset and loaded into the nCounter prep station followed by quantification using

the nCounter Digital Analyzer.

Normalization of nCounter data

We normalized the nCounter data in three steps. In the first step, we controlled for

small variations in the efficiency of the automated sample processing. To this end,

we followed the manufacturers instructions, and normalized measurements from all

samples analyzed on a given run to the levels of a chosen sample (in all cases we

used the first sample in the set). This was done using the positive spiked-in controls

provided by the nCounter instrument.

In the next step, we relied on ten control genes (1k, Ndufa7, Tomm7, Tbca, Ndufs5,

Ywhaz, Meal, Rbm6, Shfml, and Gapdh) which were included as reporters and were

identified from the microarray experiment as unperturbed upon stimulation by any

of the pathogen components. We found that two of these genes (Gapdh and Rbm6)

showed too much variation and removed them from all subsequent analysis. We used

the remaining eight genes for a second round of normalization. For every sample, we

computed the weighted average mi of the mRNA counts of the seven transcripts and

normalized the samples values by multiplying by the constant m1 /mi. Finally, we

obtained a normalized expression quantity that takes into account the intrinsic noise

in our system. We used the 32 samples treated with control shRNAs (that do not

target any gene in the mouse genome) to define a z-statistic z for each observation

oij of transcript i in each shRNA experiment j: zij = o-m where my and sj are,

respectively, the mean and variance of the expression of transcript j in the control

shRNA experiments.
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Confidence estimates for differential expression in perturba-

tion experiments

We used two permutation-based approaches to estimate our confidence in an observed

z-score value for a transcript in an shRNA experiment. In the first approach, we de-

fined a per-gene confidence score for each measurement, by using the variation in that

gene's expression in the control shRNA experiments. We computed the confidence

scores for each measurement (one gene in one experiment) at a time, by swapping

the measured value of that gene with each of its measurements in the control experi-

ments in turn, and re-calculating a new z-score. We then assessed the significance of

the real z-score, given the distribution of the permuted scores as a null distribution.

More formally, for each of the observed counts oij of the reporter gene i in sample

j we generated r permuted values (where r is the number of control shRNA expe-

riments) as follows. Let ci,... , ci, be the r transcript counts for gene i in each of

the r control experiments. The k permuted z-score is obtained by swapping oij with

Cik and computing a z-score as zy = cik ml, where mik = i**+...+Cik1+Oij+Cik+1+..+Cir

and s . We take the

permuted scoresz as a null distribution and the FDR for a given z-score zij for gene

i in experiment j is given as FDR(z) E( #zij>z;j=,. ,n}) where n is the number

of shRNA experiments. The confidence for z is conf(z) = 1 - FDR(z).

In the second approach, we devised a per-experiment confidence score for each

measurement. We use a similar procedure to control the FDR on the z-statistic,

based on variation in the expression of control genes in each experiment. Formally,

let zij, .. . , zn be the z-scores for the jth experiment (shRNA), and assume the first I

transcripts are control transcripts whose expression does not change in response to any

pathogen component (1 = 8, see above). We defined zij= zs'"fj where now frt and

§j are, respectively, the mean and variance of the z-scores of the control transcripts

1,. ... , 1 in the jth shRNA experiment. We perform I permutations as described above,

by swapping each observed z-scores with a control transcript score and computing z,

then computing an FDR as above.
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False Discovery Based (FDR) model

We used the signature measurement across 125 genetic perturbations to construct a

regulatory model, associating regulators to their targets. We expect an increase in

the transcript levels of a reporter gene whose repressor is targeted by knockdown,

and a decrease in a reporter whose activator is targeted. We devised a statistical

procedure to estimate, at a desired FDR, which transcripts are significantly decreased

or increased in DCs infected with a given shRNA, as compared to their expected

level in the absence of the shRNA perturbation. Our procedure controls for two

potential sources of noise. First, we assess gene-specific noise based on changes in

the expression of each reporter gene following infection with 32 control shRNAs (Fig.

2-10A). Second, we assess shRNA-specific noise based on changes in expression of

8 control genes following a given shRNA perturbation (Fig. 2-10B). (These control

genes do not change following any TLR stimulation in wild type DCs). Together,

these methods allow us to devise two confidence measures to estimate the significance

of change in each reporter gene under each shRNA perturbation.

We estimated the sensitivity of our calls based on our ability to accurately iden-

tify the knockdown of the 37 regulators that are also included as target reporters

and should be knocked down by specific shRNAs (two additional regulators, Fos

and Klfl0, are included as targets but are themselves down regulated in the na-

tive response and hence cannot be scored). At 95% confidence, the gene-specific

FDR accurately scored the knockdown target as significantly repressed for each of

these 37 genes. The shRNA-specific FDR accurately scored 80% of the 37 regula-

tors/targets as significantly repressed. This suggests that our second FDR is likely

an over-conservative estimate of the confidence.
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2.11 Figures

A Measure states
Genomewide mRNA expression

Stimulation

B Gene selection

Select regulators

Select output genes

Selection of minimal set of
regulated genes

C Network perturbation
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Figure 2-1: A systematic strategy for network reconstruction. The strategy consists
of four steps (left to right). (A) State measurement. We use genome wide expression
profiles under different stimuli (S1-S5), at different time points (tick marks). Rows genes,
columns experiments, red induced, blue repressed, white unchanged. (B) Gene selection.
We identify candidate regulators that are transcriptionally regulated and predictive of the
expression of gene modules (top). We select a signature of target genes that maximally
represents the full expression profile (bottom). (C) Network perturbation. We generate a
functionally validated shRNA library for all potential regulators and use it to knockdown
each regulator (top). Following stimulation of genetically perturbed cells (red arrow), we
measure the expression of the signature genes using the nCounter multiplex mRNA detection
system (bottom) (D) Network reconstruction. We combine genome-wide expression profiles
and perturbed multiplex measurements to reconstruct a regulatory network associating
regulators with individual targets and overall responses.
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Figure 2-2: Expression profiles of the 3635 genes whose expression was at least 1.7 fold

up- or down- regulated in both duplicates of at least one time point as compared to the

control, in CD11c+ DCs stimulated with the indicated pathogen component across a time

course of 0, 0.5, 1, 2, 4, 6, 8, 12, 16, or 24 hours (tick marks). Replicates were collapsed

and genes hierarchically clustered (rows, genes; columns, experiments; red, induced from

baseline; blue, repressed from baseline; white, unchanged from baseline).
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Figure 2-3: Gene expression response to pathogen components. (A) mRNA profiles of the
1800 genes whose expression was induced by a factor of at least 1.7 from baseline level in both
duplicates of at least one time point in CD11c+ DCs stimulated with the indicated pathogen
component across a time course of 0, 0.5, 1, 2, 4, 6, 8, 12, 16, or 24 hours (tick marks;
pIC, poly(I:C); GRD, gardiquimod). Replicates were collapsed and genes hierarchically
clustered (rows, genes; columns, experiments; red, induced from baseline; blue, repressed
from baseline; white, unchanged from baseline). (B) Model illustrating the differential gene
regulatory networks controlling the antiviral ["poly(I:C)-like"] and inflammatory ("PAM-
like") programs.
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Figure 2-5: Example module. Rows are genes,
represents the regulatory program for the module.

columns are experiments, and the tree
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Figure 2-4: A module networks-LARSEN model of candidate regulators and target mo-
dules. (A) Mean expression of each of 80 modules (rows) across the five time courses. Red
- induced; blue - repressed; white - unchanged; all values are relative to the t=0 baseline.
(B) The regulators (columns, hierarchically clustered) associated with each of the modules.
Black/brown - positive/negative coefficients from the regularized regression (the stronger
the color intensity the higher the regression coefficient). Rows are hierarchically clustered
according to the mean expression data in (A).
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Figure 2-6: Three modules and the regulatory programs learned with the LARS-EN

approach across the five time courses of 0, 0.5, 1, 2, 4, 6, 8, 12, 16, and 24 hours (tick marks

show both replicates for each time point) for the five stimulated pathogens. Rows are genes,
columns are experiments, the regulatory programs are above the grey row for each module.

(A) Target module with no time delay. (B) Target module with 0.5h time delay. (C) Target

module with 2h (maximum) delay.
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Selected regulators
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Figure 2-7: Gene expression profiles of selected regulators. CD11c+ dendritic cells were
stimulated with the indicated pathogen component across a time course of 0, 0.5, 1, 2, 4, 6,
8, 12, 16, 24 hours (tick marks), followed by measurement of whole genome mRNA profiles.
Shown are the expression profiles for the 144 TFs, RNA binding proteins and chromatin
modifiers selected for perturbation. Replicates are collapsed and genes are hierarchically
clustered.
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Figure 2-8: Correlation between mouse DC profiles to mouse macrophages and human
DCs. A) Pearson correlation coefficients between the expression profiles in this study
(columns) and in LPS-stimulated mouse macrophages (15) (rows), when the profiles are
restricted only to the 144 regulators as in Fig. 2-7. B) Correlation between the expression
profiles of human macrophages and mouse DCs both stimulated by LPS, on the basis of
only 89 regulator genes. The 89 regulators are all those out of the 144 candidates (as in
Fig. 2-7) that could be mapped between the two organisms and arrays.

55

B. 89 TFs

Time (hours)

.33

a 66

0. 1

O 1.33
E
e 2

o 4

6

0.8

0.6

0.4

0.2

0

-0.2



-5 shRNAs / per gene

Infect BM cells with
lentiviruses expressing
specific shRNAs

High throughput
vaiainfor all

stimulated DCsLPerturbation of regulatorsI
0.5

Regulators
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Figure 2-9: Validation of shiRNA knockdown efficiency. Five lentiviruses expressing in-
dependent shRNAs targeting each of 144 induced regulators were generated (top). Bone
marrow cells were infected with control or regulator shRNA viruses and stimulated for 2
or 6 hours with LPS (middle). PolyA+ RNA was prepared and reverse transcribed with
random nonamers followed by quantitative real-time PCR with primers specific to each
regulator gene. Relative knockdown efficiency for each regulator was calculated relative to
its level in a set of experiments with control shRNAs ('Ctl') (bottom). 125 of 144 candidate
regulators had an shRNA which caused greater than 75% knockdown.
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Figure 2-10: Gene regulatory programs controlling the response to pathogen components. (A
and B) A strategy to minimize the false discovery rate (FDR) calls of significant changes in an

output target gene resulting from knockdown of a regulator gene. (A) The first FDR procedure

(top) compares the expression of the gene after a perturbation with a regulator shRNA (right) to

its expression upon perturbation with 32 nontargeting shRNAs (left). The dashed lines identify the

gene-specific FDR-based thresholds for induction (blue line) and repression (red line). A discrete

vector of significant calls (bottom) is derived from the raw data (blue, regulator represses the target

gene; red, regulator induces the target gene). (B) A second FDR procedure (top) compares the

expression of the target gene to that of eight control (target) genes upon perturbation with the

same shRNA. In the example shown, the genes induction (left) was significant relative to the vari-
ation in expression among the control target genes, resulting in a high score (bottom, dark blue),
but its repression did not significantly differ from the controls, resulting in a lower score (bottom,
weaker red). (C) A heat map showing all the significant relations between the perturbed regulators
(columns) and the measured targets (rows), colored as in (B). Darker colors - high-confidence calls

passing both a gene-noise model (FDR#1) and an shRNA-noise model (FDR#2) at 95% confidence.

Light colors - calls passing only the gene-noise model at 95% confidence.
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Figure 2-11: FDR values for 39 regulators that were also included in the 118 signature set.
Shown are the FDR values for induction (red) and repression (blue) for each of the 39 regulators
that were also measured as target genes (rows), in the 39 experiments that target these regulators
with shRNA (columns). The rows and columns are sorted in the same order. (A) FDR#1 (gene-
specific) correctly scores all knockdowns, except for two genes (Fos, KlflO) that are repressed by
the response in wild-type cells and hence cannot be assessed. (B) FDR#1 followed by FDR#2
(shRNA-specific) correctly scored 80% of knockdowns (i.e., 20% of shRNAs targets were not called
as significant due to effects on expression of control target genes).
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Figure 2-13: (A) Expression profiles of two genes whose interaction was identified in the

perturbational model, with confidence value above 0.95, but that was not predicted in the

observational model. (B) Expression profiles of two genes whose interaction was predicted

by the observational model but not found in the perturbational model.
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Figure 2-14: Correlation between expression of regulator and that of its target and non-
target genes. Shown are distributions of Pearson correlation coefficients (dark red) and the
best correlation coefficient when allowing a lag of up to 4 time points (3) (blue - no lag, light
blue - 0.5 h lag, green - 1h lag, orange - 2 hour lag). The coefficients are calculated in the
following way. A. between all confident (FDR#1 and FDR#2 > 0.95) regulator-target pairs,
with expression data from all treatments; B. between all confident (FDR#1 and FDR#2
> 0.95) regulator-target pairs, with expression data from the LPS time course only; C.
between all non-regulator-target pairs (FDR#1 and FDR#2 < 0.2), with expression data
from all treatments; D. between all non- regulator-target pairs (FDR#1 and FDR#2 <
0.2), with expression data from the LPS time course only. The distributions for correct
regulator-target pairs and false pairs are highly similar, indicating the high number of false
positives in trans-models.
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Figure 2-15: Regularized regression coefficients between expression of regulator and that

of its target and non-target genes. Shown are distributions of the coefficients from the
L2-regularized regressions chosen when allowing a lag of up to 4 time points (blue - no lag,
light blue - 0.5 h lag, yellow - 1h lag, red - 2 hour lag). The coefficients are calculated in the
following way. A. between all confident (FDR#1 and FDR#2> 0.95) regulator-target pairs,

with expression data from all treatments; B. between all confident (FDR#1 and FDR#2
> 0.95) regulator-target pairs, with expression data from the LPS time course only; C.
between all non-regulator-target pairs (FDR#1 and FDR#2 < 0.2), with expression data
from all treatments; D. between all non-regulator-target pairs (FDR#1 and FDR#2 <

0.2), with expression data from the LPS time course only. The distributions for correct
regulator-target pairs and false pairs are highly similar, indicating the high number of false

positives in trans-models.
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Chapter 3

Systematic identification of

topologically essential interactions

in regulatory networks

3.1 Abstract

Screens monitoring the effects of deletion, knock-down or overexpression of regulatory

genes on the expression of their target genes are critical for deciphering the organi-

zation of complex regulatory networks. However, since perturbation assays cannot

distinguish direct from indirect effects, the derived networks are significantly more

complex than the true underlying one. Previous approaches to identify a minimal

network topology consistent with the results of a perturbation screen only presented

approximate methods with major limitations and are often applicable only to simple

network topologies.

We present Exigo, an approach to systematically find a family of core networks

for an input network of any topology with an arbitrary number of activating and

inhibiting interactions. Using a novel matrix representation of the network topology

we reduce the problem of identifying the core underlying networks to counting self-

avoiding random walks on the original network. This systematic approach allows
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us to globally analyze the network's topology to determine the functional effect of

modifications such as edge removal.

Exigo outperforms previous approaches on simulated data, successfully uncovers

the core network structure when applied to real networks derived from perturbation

studies in mammals, and improves the performance of network inference methods,

thus providing a valuable tool for accurate global analysis of gene regulatory networks.

Exigo is available for download at http://www.broadinstitute.org/regev/exigo.

3.2 Background

Systematic perturbation of genes by genetic manipulation or RNAi is a major tool

in functional genomics [69, 70]. When coupled to a readout measuring mRNA levels,

perturbation screens allow us to decipher the functional relationship between a regu-

lator and its targets, thus providing new insights in understanding the complexity of

gene regulatory circuits [6, 33, 69, 71].

However, genetic perturbations alone cannot distinguish between direct molecular

effects of a transcription factor on its targets and indirect effects through additional

layers in the circuit. These indirect effects result in 'extra' edges in the network, ren-

dering it more complex than the 'real' biological ones. Pruning such indirect edges

is important for the interpretation of biological screens as well as for the develop-

ment of effective network inference networks. In particular, the DREAM4 challenge

[72] indicates that the best-performing inference methods were those that leveraged

information from perturbation screens through various topology analysis approaches

[40, 73].

Previous studies [34, 35, 74] have formulated the problem of the identification of

indirect interactions as finding the sparsest (most parsimonious) network consistent

with the experimental observation, where the experimental observation is represented

by a signed interaction graph reflecting all the experimentally-identified interactions

(many likely indirect). In principle, multiple networks may be consistent with a given

experimental interaction graph (Fig. 3-1). We term all of these as experimentally
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equivalent networks, to indicate that one cannot distinguish between them based on

a single-gene perturbation experiment alone.

The identification of all the experimentally equivalent networks consistent with

the result of a perturbation experiment is a significant theoretical and computational

problem. Published studies [36, 38, 40, 74-76] presented only a few methods for find-

ing the sparsest network, each suffering from inherent limitations. Pioneering work

[34] showed how a graph-theoretical method of transitive reduction could be used to

find the most parsimonious genetic network for acyclic networks. In this transitive

reduction approach, edges whose effect can be recapitulated by alternative interac-

tion paths are considered unnecessary and are iteratively removed. This approach has

been extended to handle some higher-order topological effects [35] or to use associated

experimental data, such as confidence measures [38, 40]. However, these procedures

are limited due to either the nature of approximations made or their extreme compu-

tational intensiveness. On the one hand, most approaches fail to accurately account

for global effects caused by edge removal, when a particular edge contributes to an

indirect interaction between a distant pair of nodes. In an alternative approach, the

TRANSWESD [40] algorithm accounts for this limitation, by the enumeration of all

possible random walks on the network. While this guarantees that for every experi-

mentally observed interaction there is a path in the core network that recapitulates its

effect, it is computationally very intensive [40] and, thus, cannot scale for realistically

large biological networks. Finally, all transitive reduction methods ignore the non-

uniqueness of the most parsimonious graph: sequential edge removal only allows the

identification of a single graph. Thus, to the best of our knowledge there is currently

no systematic procedure to determine if two or more networks have the same outcome

in a genetic perturbation experiment, and hence no formal way to assign networks to

equivalence classes with respect to a set of experimental observations ('observability

classes').

Here, we present Exigo, a comprehensive approach to find multiple core networks

consistent with experimental observations. Exigo uses an adjacency matrix represen-

tation of interacting networks and introduces novel matrix transformations to uncover
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the relation between different networks that can produce the same experimental obser-

vations. Rather than enumerating all possible paths on the network, Exigo leverages

the fact that a signed accessibility graph results from a cumulative effect of all possi-

ble self-avoiding walks on the network. It then computes these efficiently to generate

a reference matrix that encodes a representation of all possible connections for the

entire class of experimentally equivalent networks. Using the reference matrix, Exigo

directly checks if removal of any one or more matrix entries (i.e., one or more network

edges) would change the observability class of the modified network.

We apply Exigo to analyze the network structure of both simulated and biologi-

cally derived regulatory networks, which contain activations, inhibitions and cycles,

and demonstrate that the method is applicable to networks of any topological com-

plexity. Furthermore, we incorporate our topological analysis module into a state-of-

the-art network inference procedure [73] and show that performance is substantially

improved based on DREAM4 benchmarks, surpassing the previous top performer.

3.3 Results

Exigo: a method to identify core networks consistent with

experimental observations

A given network is consistent with that defined by a perturbation experiment if and

only if every interaction that is topologically possible in one network is also possible

in the other, either directly (through one edge) or indirectly (through a multi-edge

directed path with the same composite effect of inhibition or activation). We term

all the networks that are consistent with one perturbation experiment as belonging

to one observability class.

Exigo identifies core networks consistent with an experimental observation by fol-

lowing four steps (Fig. 3-2 A). First, given an original (experimental) network, Exigo

identifies all topologically possible interactions within the network, by computing a

reference network (matrix), which encapsulates all the topologically possible interac-
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tions - direct or indirect - between the nodes of the original graph. Specifically, the

reference network has an edge between two nodes if and only if there is a path (direct

or indirect) between these nodes in the original network. The reference network thus

extends the notion of an accessibility graph as defined originally in [34]: it is defined

for networks with both activating and inhibiting interactions and with arbitrary com-

plex topological elements, such as feedback loops. In particular, networks belong to

the same observability class only if they generate (converge to) the same reference

matrix. Second, Exigo attempts to remove single entries in the experimental net-

work, one at a time, to identify all the edges that can be individually removed, while

still being able to generate (converge to) the same reference matrix. However, this

does not mean that these individual non-essential edges may all be removed together.

Specifically, some subsets of edges are degenerate, they can each be individually re-

moved but they cannot be simultaneously removed (e.g., edges AC and BC in the

network (I) in Fig. 3-2 A). Third, Exigo identifies a subset of individual non-essential

edges contained within such degeneracies. Finally, Exigo simultaneously removes all

the individual non-essential edges that are not contained within the degeneracies in

order to obtain a reduced network that belongs to the same observability class. In

addition, the remaining degeneracies are marked and reported.

Notably, for sufficiently complex networks, some of the edges that were considered

as essential in the initial network become non-essential in the reduced network, due

to the simplification of the global network structure. Thus, Exigo iteratively repeats

steps 2-4 (i.e., removing the edges and testing convergence of the modified network to

the original reference matrix derived from the experimental data, see Materials and

methods) until all the individually non-essential edges that are not contained within

degeneracies are removed and the reduced network cannot be further simplified.

Computation of the reference matrix

To construct the reference matrix (Fig. 3-2 B), we first represent the experimental

network by its signed adjacency matrix, M, with rows corresponding to regulator

nodes and columns to target nodes. Each entry MM is either -1 (inhibition), +1
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(activation), or 0 (no interaction) depending on the functional interaction between

regulator i and target node j. Due to the nature of perturbation experiments, where

the regulator is removed genetically or by shRNAs, diagonal entries are not well

defined, but as we show below should be set to zero.

Next, we use matrix multiplication to identify all paths ('walks') from a given

regulator node i to a target node j in the experimental matrix. We note that the

nth power M" of matrix M has all such paths of length n, with the sign of the entry

corresponding to the effect of i on j through such paths. For example (Fig. 3-2 B),

after squaring matrix M 1 , entry M 2 ,4 ) will be -2, consistent with two paths of length

2 in the experimental network, namely BCD and BAD, each mediating an inhibiting

interaction.

When considering biological networks, one excludes as unrealistic all paths that

pass the same node more than once when connecting node i to node j, such that

only self-avoiding walks are considered [77]. To achieve this, we replace the diagonal

elements by zeros after each round of multiplication (Fig. 3-2 B). Since this violates

the commutative property of multiplication, in order to proceed to the next order we

always multiply the original matrix from the right as,

M x O ""O gonal M2 ; Ml2 x M1 Os on digonal M 3; etc. (3.1)

where M 1 is the matrix representing the original network and M" describes all self-

avoiding paths of length n within M 1 . Naturally, nm,, should not exceed the number

of nodes in M 1 (the largest self-avoiding random walk would involve all nodes).

"Weighing and thresholding" procedure

Notably, until this point, the procedure outlined above is virtually identical to those

previously described for self-avoiding walks [783. Such procedures then follow with

direct enumeration of self-avoiding walks. This is required to distinguish between self-

avoiding walks and loops that end at previously visited nodes, but is computationally

prohibitive, exponentially in the rank of the matrix.
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We address this challenge by a "weighing and thresholding" procedure, where each

matrix Mi is weighted by successively smaller weights. This procedure eliminates the

contribution from loops to the reference matrix. We rely on the fact that for any

interaction between two nodes, the shortest path that connects them is a self-avoiding

path with no loops and, thus, it will determine the sign of the interaction, as long as

shorter paths are weighted higher than longer paths. Thus, once the sign function is

applied to a weighted sum of matrices M, only contributions from self-avoiding walks

will remain.

The weighing factors wi, which allow us to exclude loops from consideration, play

a fundamentally different role than that of the various weighted measures previously

introduced in studies of network topologies. For example, communicability between-

ness [79] reflects the balance between information propagation along the short and

long paths and serves as an effective parameter to tune the importance of the inter-

action length (also, this concept is applied to nodes). In Exigo the weights wi do not

depend on specific biological knowledge on the strength or confidence of individual

interactions.

It is possible for two or more different indirect paths from one node to another

to deliver contradictory signals (e.g. inhibitory vs. activating arms of an incoher-

ent feed forward loop). Since their combined effect cannot be unequivocally iden-

tified on topological grounds alone, we assume that in cases of paths of different

length, the input through the shortest path determines the overall effect on the node.

To reflect this, we choose weights wi as exponentially decreasing positive numbers,

W1 =1 >> w 2 >> W3 >> ... >> 0, thus ensuring that the shortest path always

overpowers any combined contradictory effect of longer paths and hence determines

the sign of the entry in Mum. Similarly, for conflicting paths of the same length we

assume that they cancel each other, since topologically both paths are of the same

"strength". In general, competing paths of any length can be compared through

the use of confidence measures for individual interactions and appropriate rules for

calculating the confidence of multistep path.
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Thus, the reference matrix is obtained through:

nmax

M = flmax wi I (3.2)
i=1

where higher weights are used for shorter paths and nmax is found iteratively by fol-

lowing the convergence of the reference matrix. Upon convergence, Exigo discretizes

all the values in MuNm, setting all positive values to +1, all negative values to -1 and

keeping 0 values.

Complexity

The reference matrix is computed in polynomial time (in the number of nodes, or

matrix rank), since the longest self-avoiding walk cannot be longer than number of

nodes n in the network. The procedure's running time is O(2n') (see Methods for

details).

The reference matrix, Mreference, is akin to the path matrix of the original matrix,

M 1, except that it is signed to represent negative or positive interactions. To compute

the path matrix of a graph is equivalent to creating a data structure that contains

reachability information about a graph. This similarity is explained as follows:

Let G = G(V, E) be a directed graph with n vertices vV2, ... , v,. The path

matrix or reachibility matrix of G is the n-square matrix P = (pij) defined as follows:

1, if there is a path from vi to v
Pij =

0, otherwise

Suppose now that there is a path from vertex vi to vertex vj in a graph G with n

vertices. Then there must be a simple path from vi to v when vi -$ vj, with length

n - 1 or less, or there must be a cycle from vi to v when vi = vj, with length n or

less. This means that there is a nonzero ij entry in the matrix
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where A is the adjacency matrix of G. To generate P, we replace the nonzero entries

in B, with 1.

In Exigo, we added a weighting scheme to this procedure as explained above to

efficiently compute collective, global effects of all self-avoiding walks in the network,

while bypassing the need for exact enumeration of self-avoiding walks of every length

(the exponential complexity of the enumeration problem would be computationally

prohibitive [80]). Exigo's reference matrix computation is a major improvement over

the exponential cost of exhaustive enumeration. To confirm the practical accuracy of

our procedure, we compared our procedure for reference matrix construction to the ex-

act procedure based on "direct enumeration" of self-avoiding walks on a compendium

of 10,000 random networks. Specifically, we have constructed random networks of

various sizes (n < 100) by assigning randomly +1,-i or 0 to every entry of adjacency

matrix. Then, for every randomly constructed network we constructed all possible

self-avoiding directed paths by enumerating all the possibilities. Based on the ob-

tained compendium of these walk, we have constructed a reference matrix for every

network, assigning +1 to indirect interactions when two nodes were connected acti-

vating shortest self-avoiding path; -1, when shortest self-avoiding path was repressing

and 0 when there were no indirect paths connecting two nodes. We then compared

the reference matrix constructed in such way to the one constructed through Exigo's

reference matrix procedure. These two reference matrices were identical for all 10, 000

randomly constructed networks.

In 1960, S. Warshall described an algorithm which is more efficient than calculating

the powers of the adjacency matrix [81]. It has a worst case complexity of O(n 3 ) where

n is the number of vertices of the graph. Warshall's algorithm consists in defining

n-square Boolean matrices Po, P1,... , P, as follows. Let Pk[i, j] denote the ij entry

of the matrix Pk, so that

1, if there is a simple path from vi to v which does not use any other

Pk[i,j] vertices except possibly v1 , v2 ,... , Vk

0, otherwise
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That is,

Po[i, j] = 1 if there is an edge from vi to v

P1 [i, j] = 1 if there is a simple path from vi to v which does not use any other

vertices except possibly vi

P2 [i,j] = 1 if there is a simple path from vi to v which does not use any other

vertices except possibly vi and v2

And so on.

The first matrix is the adjacency matrix of G (i.e., P = A), and since G has only n

vertices, the last matrix is the path matrix of G (i.e., P, = P). Warshall noted that

Pk[i, j] = 1 can occur only if one of the following cases occurs:

" There is a simple path from vi to v which does not use any other vertices except

possibly v1, v2 ,... , vk_1; hence

Pki[ij] = 1

" There is a simple path from vi to Vk and a simple path from Vk to V where each

simple path does not use any other vertices except possibly v 1 , v 2 ,. . . ,v1;

hence

Pk_1[i,k]=1 and Pk-_[kj]=1

Thus, the elements of Pk can be obtained by

Pk[i,j] = Pkl[i, j] V (Pk-_[i, k] A Pk_1[k, j])

where the logical operations V (AND) and A (OR) are explained in Tables 3.1 and

3.2 below. In other words, each entry in the matrix Pk can be obtained by looking at

only three entries in the matrix Pk-1.

While Warshall's algorithm is appealing, if we apply it to a graph that has both

positive (+1) and negative (-1) entries, it fails in taking into account the existence of

conflicting paths of the same length. In Exigo, we assume that they cancel each other,

since topologically both paths would have the same "strength". This cumulative effect
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A 0 1 V 0 1

0 0 0 0 0 1
1 0 1 1 1 1

Table 3.1: AND Table 3.2: OR

of all paths is taken into account by Exigo but not by Warshall's algorithm (Fig. 3-3).

Identification of individually essential and non-essential inter-

actions

To identify all the edges in the original network (M 1 ) that are individually non-

essential, we construct all networks Mj that can be derived by removal of a single edge

from M 1 (there are as many Mj networks as there are edges in the original network

M 1 ). We next test whether each Mj converges to the original reference matrix: for

each MI we find the reference matrix Mreference and compare it to the reference matrix

Mreference obtained from the original network M 1 . As long as Mefeence = Mreference,

the removed edge is deemed individually non-essential, since it can be removed with-

out affecting the experimental observations. For edges identified as individually es-

sential (Meference # Mreference), we can explicitly determine which direct or indirect

interactions are lost upon removal of this edge, by comparing M/eerence to Mreference.

Importantly, identification of all the individual non-essential interactions does not

yet directly determine the core network consistent with the experimental results.

Indeed, simultaneous removal of all the individual non-essential edges may result in

a network inconsistent with the original one, due to higher-order network structures.

For example, consider the network in Fig. 3-2 A. It has three non-essential individual

edges (AC, BC and AD, network (III), Fig. 3-2A). However, two of these edges,

AC and BC, have the same effect, and are thus degenerate (networks (IV) and (V),

Fig. 3-2A): either one can be removed as long as the other is intact, but if both (or

all three edges) are removed, the resulting network is no longer consistent with the

data. When such degeneracies exist, there will be multiple core networks consistent
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with a single experimental network. Thus, we next determine which edges can be

simultaneously removed and which are part of different degeneracies.

Identification of non-essential edges embedded in degenerate

topologies

A direct and exhaustive way to identify all degenerate interactions is by systematic

removal of all possible pairs of interactions, all possible triplets, etc., comparing each

time to the reference matrix. This brute force approach is akin to a power-series

expansion classically employed in statistical physics. Unfortunately, this approach

is computationally expensive. As a practical solution, we devised an alternative

procedure that performs well in computational time for the relatively sparse biological

regulatory networks.

Specifically, we use a stepwise, iterative procedure to identify the edges that can-

not be removed simultaneously, by sequentially removing multiple edges and test-

ing at each point the convergence to the original reference matrix (materials and

methods). Once an edge removal breaks convergence, we retain that edge in the

network. We then cyclically permute the order in which edges are removed and re-

peat the same procedure. In this way, we identify all the degeneracies that arise

due to edge redundancy within strongly connected components. In the most general

case, however, this approach does not guarantee the identification of all degenerate

entries in more complex topologies, but rather only a subset of degenerate entries

representing one subset of possible core networks. At this point, upon removal of a

fraction of non-essential edges, the remaining network consists only of essential and

non-essential-but-degenerate edges.

Breaking the degeneracies to identify a minimal core topology

consistent with experimental data

In practice, it is often important to also find a single, specific, parsimonious graph that

is most consistent with the experimental data. In fact, one can leverage experimental
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confidence measures assigned to each interaction (edge) to solve this problem. In

this case, the goal is to break the degeneracies such that only the most confident

interactions are kept among the ones involved in the degenerate subgroup.

To this end, we devised a procedure that guarantees that interactions of lower

confidence are removed first among the degenerate edges. First, we apply Exigo to

identify all the non-essential entries. Given experimental confidence measures for each

interaction, we list all topologically non-essential entries in order of increasing confi-

dence. We then attempt to sequentially remove non-essential interactions each time

testing for convergence to the original reference matrix. If convergence is maintained,

we remove the interaction, otherwise we keep it. The sequential removal ensures that

the most confident interactions within degenerate subgroups will be preferentially

kept in the core network.

Exigo finds multiple non-essential interactions in a mammalian

regulatory network

We applied Exigo to an experimentally measured regulatory network that controls

the transcriptional response of mouse primary dendritic cells (DCs) to lipopolysac-

charide (LPS) [6]. This network connects 144 regulators (each perturbed by shRNA

knockdown) to 128 targets whose expression is measured under each perturbation.

The confidence in each interaction is estimated by an FDR-based model [6].

First, we considered the sub-network composed of the 39 genes that have were both

perturbed as regulators and measured as targets. This subnetwork comprised 253

interactions: 168 activatory and 85 inhibitory. Exigo identified 44 (16%) individually

non-essential interactions in this network, 24 of which were contained in degeneracies

(Fig. 3-4A). It removed the 20 non-essential non-degenerate edges and then used the

remaining interactions' confidence measures to sequentially remove the least confident

degenerate edges, keeping only the ones that would violate the equivalence to the

experimental network. Overall, it removed 37 of the 44 interactions individually

non-essential interactions without breaking the convergence to the original reference
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matrix (Fig. 3-5). Thus, the resulting minimal core network that is most consistent

with experimental observations contains 216 edges between 39 nodes.

To characterize the effect of edge removal on the network's topology, we studied the

local connectivity patterns in the experimental (original) and pruned (core) networks.

We analyzed the number of feed-forward loops of each of 8 possible canonical classes

[63] in each of the two networks (Fig. 3-4 B, 3-6). Despite the fact that only a

small fraction of edges (- 10%) are non-essential, the number of feed-forward loops

decreased by over 30% (from 464 to 310). Importantly, the relative proportions of

different classes of loops remained the same (Figs. 3-4 B, 3-6).

Furthermore, we tested how the choice of non-essential interations identified by

Exigo was related to TF-DNA binding data. To this end, we compared Exigo's

result to a High-Throughput Chromatin ImmunoPrecipitation (HT-ChIP) dataset

(unpublished data) that builds genome-wide binding maps for 29 transcriptions fac-

tors following stimulation of primary innate imune DCs stimulated with the pathogen

component LPS. We focused in 8 of these transcription factors (Egr2, Fos, Irf1, Irf2,

Nfkb2, Rel, Stat1, Stat2) for the comparison, since they are the ones also present

in the perturbation network analysed with Exigo. We found out that 8 out of 9

non-essential interactions have no binding and that 5 out of 7 non-essential degener-

ate interactions have no binding. However, we also identified 49 out of 73 essential

interactions with no binding; this may be due to the fact that intermediate genes

are responsible for the causal effect observed in these 49 essential interactions in the

perturbation screen.

A relatively small number of redundant edges between regulators might lead to

large redundancies in the effects that the regulators exert on other (non-regulator)

target genes. To study this, we next considered the complete experimental network

(144 perturbed regulators, 128 targets) [6]. The adjacency matrix has size 233 x 233

(144 regulators + 128 targets - 39 both regulator and target = 233) and contains

1,774 non-zero entries. Exigo identified 725 individual non-essential interactions, 134

of which were contained in degeneracies. Using the confidence values associated with

each interaction [6], Exigo further parsed the degenerate entries to retain only 1,112
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topologically essential edges, thus removing 38% of the interactions found in the initial

screen as topologically non-essential and hence possibly indirect.

Exigo can be used for the analysis of networks of any complex

topology

Experimentally-determined networks, even small ones, typically include multiple, of-

ten entangled, feedback loops, but all previously published methods are limited in

their ability to handle such structures. To illustrate this, we consider a small syn-

thetic network of 10 nodes and 19 interactions (Fig. 3-7). Exigo uncovered the

structure of the minimal solution, identifying five non-essential edges, two of which

are in a degeneracy. Breaking this degeneracy leads to 2 possible minimal networks,

each with 15 edges. In contrast, despite the small size of the network, none of the

available methods - SOS Pruning [38], NET-SYNTHESIS [39] and TRANSWESD

[40] correctly identified any of these topologies.

In fact, some of the edges determined as non-essential and removed by some of

these alternative approaches cannot be reconstructed (as an indirect path) from the

resulting core network, indicating a significant failure. Notably, only TRANSWESD

(relaying on exhaustive enumeration) ensures that any removed interaction can still be

recapitulated by an indirect path. However, not only TRANSWESD is computation-

ally highly intensive (e.g., more than to 5 hours on an Intel Core 2 Quad CPU Q6700;

2.67 GHz for a 100-node network), it does not account for the length of these indi-

rect paths. This leads to the counterintuitive situation where the shortest (indirect)

path between two nodes A and B in the core network has an effect opposite to that

of the removed direct edge between these nodes (e.g., upon removing an activating

edge A -+ B, the shortest indirect path between A and B is inhibitory). Conversely,

in Exigo all of the experimentally observed interactions are always represented by

shortest paths of the same sign.

To further evaluate the performance of our approach, we analyzed a compendium

of biologically-motivated synthetic networks. First, we generated 60 'ground truth'
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networks by sampling in each case a 100-node sub-network from the S. cerevisiae

real regulatory network, using GeneNetWeaver [82] with settings corresponding to

the DREAM4 challenge (Materials and methods). The sampled genetic networks

had 285 edges on average (±8). Next, we used GeneNetWeaver [82] to generate a

corresponding experimental perturbation network for each 'ground truth network' by

simulating a set of deletion experiments on each of the nodes in each network. On

average, the perturbation networks contained 275 edges (±35), only 125 (±14) of

them true positives. This fraction is consistent with previously published results [40].

On average, Exigo identified 100 (±20 STDV) non-essential edges with 30 (±10

STDV) of them contained in different degeneracies. These non-essential edges con-

sist primarily of false positive edges (Table 3.3 and Fig. 3-8). Thus, the reduced

(pruned) networks contained on average only 67% of the edges in the perturbation

network (183 ± 23 edges), while still maintaining the vast majority (91%, 114 ± 11

edges) of the 125 true positive edges (see Table 3.3 for precision-recall and F-score

computations). Exigo has the highest F-score of all methods. Biologically, a good

reconstruction algorithm should infer as many correct edges as possible, in addition

to the criteria that most of the inferred edges should be correct, and the F-score

represents a compromise between these two objectives. Notably, it is expected that

due to true biological redundancy, not only false positives but also true positives will

be found topologically non-essential, albeit in different proportions.

In contrast, when SOS Pruning [38], NET-SYNTHESIS [39] and TRANSWESD

[40] were applied to the same compendium, the original experimental perturbation

results could no longer be reconstructed from the resulting pruned networks (on ave-

rage 50% of interactions for SOS Pruning, 17% for NET-SYNTHESIS and 12% for

TRANSWESD were not reconstructable from pruned networks), thus indicating that

too many edges, or incorrect edges, have been removed (Fig. 3-8 and Table 3.3).
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Exigo-enhanced network inference outperforms state-of-the-

art methods

Recent studies [72] have shown that information from perturbation screens can readily

improve the performance of network inference methods. In fact, methods that incor-

porate topological analysis of perturbation data have performed best ([40, 73] - first

and third place, respectively) in the recent DREAM4 competition [72] for network

inference methods.

To test whether Exigo's topological analysis can improve such network inference

methods, we combined the confidence values from Pinna et al.'s [73], state-of-the-art

network inference algorithm with Exigo (Materials and methods). Briefly, we use the

same input confidence matrix as Pinna et al. and apply Exigo to a thresholded confi-

dence matrix. Then, the entries found to be topologically essential are upweighted by

its confidence value (see Materials and methods for details) and the confidence matrix

is normalized. We tested the performance of the hybrid method on five DREAM4

benchmark networks, and found that it substantially improved performance compared

to previous state-of-the-art network inference methods: 75.413 points against 71.589

points from Pinna et al. (for AUROC and AUPR values of DREAM4 benchmark

networks see Table 3.4). This improvement was observed for all values of threshold

parameter required by Pinna et al. [73] method, indicating that Exigo's topological

analysis contributes novel valuable information.

Notably, while Exigo's approach can enhance network inference methods, it is

not designed for this purpose. Indeed, there is a fundamental difference between

identifying the minimal topology most consistent with perturbation data (as Exigo

aims to do) and the more general problem of network inference. In particular, Exigo's

goal is to identify the set of essential edges that must be preserved across all possible

topologies. It thus provides a valuable additional input that can be used by various

inference algorithms, and improve the quality of networks that they reconstruct.
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3.4 Discussion

We present Exigo, an approach to systematically identify interactions that are topo-

logically unnecessary, find a core network that is consistent with a given perturbation

experiment and characterize the relative importance of topologically essential edges.

Exigo relies on comparing a reference matrix derived from the original network and

with those derived from networks where one edge is missing. Thus, it explicitly lists

the indirect interactions that depend on the removed interaction.

Exigo is a global approach applicable to full networks that, unlike most other pub-

lished methods [36, 38-40], accounts for the indirect effects that the removal of an

edge between one pair of nodes can have on the interaction between another pair of

nodes. For example, existing approaches that rely on transitive reduction [34] would

consider 109 of 253 of the edges in the mammalian network above as candidates for

removal, since removing the edge from node i to j is compensated by indirect in-

teractions between i and j. Yet, only 41 edges are found to be non-essential if we

consider the global effect of edge removal - in the remaining cases, there always exists

a seemingly unrelated pair of nodes k and 1 whose interaction is destroyed by removal

of edge from i to j. This 'global entanglement' illustrates that a naive approach

to transitive edge removal is unrealistic. Furthermore, when constructing the most

parsimonious network in the above example, only 17 edges out of 41 can be simulta-

neously removed, while 24 edges are contained in different degeneracies and there are

multiple different solutions that can be constructed by removing degenerate edges in

different combinations. Conversely, exhaustive enumeration of all possibilities, as in

the TRANSWESD algorithm [40], is computationally intensive, and does not scale

well for realistic biological networks. Thus, Exigo strikes an effective balance between

global analysis and computational limitations, and substantially improves over exis-

ting approaches. In particular, its complexity is polynomial, it relies exclusively on

matrix-based operations (that can be efficiently implemented in e.g., MATLAB, Fig.

3-9) and it avoids any direct paths enumeration techniques. Exigo's current compu-

tational time is 1-2 minutes (on an Intel Core 2 Quad CPU; 2.4 GHz) for networks
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of 100-300 nodes, a realistic scale for experimental perturbation screens. Analysis of

a 1000-node network takes on average 155 minutes (on the same platform as above).

Finally, as perturbation screens of thousands of genes (followed by signature profil-

ing, as in [83]) are now becoming possible, Exigo's approach is fully parallelizable, as

analysis of each edge can be done independently. It thus can be scaled in principle

to genome-size networks. By comparison, a full version of TRANSWESD algorithm

takes several hours for networks of 100-nodes, while their approximate version takes

less than a minute, much like Exigo's exact version.

Furthermore, while we allow indirect interactions of any length to contribute to

the reference matrix, in some circumstances one might prefer considering only paths

shorter than a certain length (for instance, if longer indirect interactions are biologi-

cally unrealistic). In this case, the procedure for finding the reference matrix can be

modified by restricting the number of terms that contribute to the reference matrix in

Eq. 3.2. Finally, Exigo can be extended beyond purely topological considerations by

explicitly considering the confidence weights associated with each interaction. Specif-

ically, given a "composition" rule for determining the confidence of a multi-step path

from the confidences associated with its constituent edges, the convergence opera-

tion can be modified for the space of matrices that have signed confidence values as

individual entries. In this case, the reference matrix would be obtained by threshold-

ing the resulting matrix that contains confidence measures for all direct and indirect

interactions.

Topological analysis can substantially enhance network inference algorithms [72].

To demonstrate Exigo's utility for this purpose, we have integrated it as a 'topological

analysis module' within a state-of-the-art network inference algorithm used in the

DREAM4 challenge [73]. The substantial enhancement in performance gained by

the addition of Exigo illustrates its utility. Future efforts can further enhance such

integration, for example by introducing novel confidence-based metrics for identifying

the most parsimonious graphs or through comparative analysis of different possible

parsimonious networks.

When applying Exigo, it is important to keep some limitations in mind. The core
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networks identified by Exigo are not necessarily the most parsimonious networks: a

group of individually essential edges may still be removable together without perturb-

ing the experimental observability class of the whole network, even though each edge

is individually essential. In its present form, Exigo does not probe such removal of

multiple essential edges, due to computational complexity. However, the same con-

verging transformation can be used to evaluate if such removal leads to a network of

a different observability class. In this sense, Exigo provides a systematic approach

to critical for the identification of parsimonious networks, analogous to power-series

based approaches for studying critical phenomena in statistical physics [84].

In conclusion, we present a novel systematic approach for analysis and interpreta-

tion of large scale gene regulatory networks derived from gene perturbation screens.

Our approach is robust, flexible and computationally efficient, and presents a sub-

stantial and demonstrable improvement to previous methods. Thus it can assist in

the interpretation and follow-up of biological experiments and provides a systematic

framework for topological analysis and comparison of large gene regulatory networks.

While exact construction of the most parsimonious network for a given experimen-

tal observation remains an unsolved mathematical problem, our approach provides a

direct and systematic path for studying the effects of higher order topological effects

(such as degenerate structures) on the structure of the core network.

3.5 Materials and methods

Exigo

There are four major steps in Exigo: for a given input network, (1) Exigo computes

the reference matrix by applying a convergence transformation. This reference matrix

describes all possible (direct or indirect) interactions with their appropriate signs. (2)

Exigo finds all individual non-essential interactions by comparing the reference matrix

of the input network and those of networks where individual interactions have been

removed. (3) Exigo identifies edges contained in various degeneracies and breaks the
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degenerate structure of the solution by leveraging experimental information on the

confidence of each interaction. Exigo overall procedure is the following:

Input: A matrix M, with regulator genes in rows and target genes in columns.

Output: A core matrix coreM, with the identification of individual non-essential

entries and degenerate entries.

1. Find the reference matrix Mreference for MI using equations 3.1 and 3.2

2. Identify all individual non-essential edges

for each edge (ij)

" create M' from M by setting M(i, j) to zero

" compute Mr/eference, the reference matrix for M'

" compare M/eference to Mreference

if Mreference =Mreference

edge (i, j) is non-essential

else

edge (i, j) is essential

end if

end for

3. Identify non-essential edges embedded in degenerate topologies

3.1. order all non-essential individual edges in an arbitrary but fixed order

3.2. start with the network that has the first edge removed and remove the

next edge in the ordered list

3.3. compute the reference matrix of the network with two removed edges,

Mr/eference, and compare it to Mreference

if rIe'erence - Mreference
e the two edges are non-essential even if they are removed simulta-

neously and are not identified as degenerate edges

e remove the three first edges (the former two and an additional one)
in the ordered list and repeat the convergence test of step 3.3

else * the second edge in the ordered list is degenerate

" keep the degenerate edge intact while proceeding to the next edge
and removing it

end if

3.4. repeat steps 3.2 to 3.3 (removing second, third, etc., edge at each iteration)
until going through the list of all individual non-essential edges

3.5. change the list order by placing the last degenerate entry of the list at the

beginning and keeping the rest of the sequence unchanged
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3.6. consider this modified list as your new ordered list and repeat steps 3.2 to
3.5

4. Break degeneracies by using confidence values

4.1. Arrange all degenerate edges in the order of increasing confidence

4.2. Make matrix with the least confident edge removed

4.3. Remove next edge in the ordered list

4.4. Check if reference matrix of modified network is equal to the original one

if equal

go to the step 4.3

else

recover last removed edge and go to step 4.3

end if

Identification of non-essential edges embedded in degenerate

topologies

We use a stepwise, iterative procedure to identify the edges that cannot be removed

simultaneously: (1) We order all the non-essential individual edges in an arbitrary

but fixed order. (2) We start with the network that has the first edge removed (note

that removal of only the first edge is guaranteed not to change the observability class

of the network because each edge has already been determined to be individually

non-essential). We then remove the next edge in the ordered list, use the convergence

transformation to compute the reference matrix of the network with two removed

edges, and compare it to the reference matrix of the original network. (3) If the

perturbed network converges to the original reference matrix, the two edges are non-

essential even if they are removed simultaneously and are not identified as degenerate

edges, at least at this point, and we proceed to remove the three first edges (the

former two and an additional one) in our ordered list and repeat the convergence

test of step (2). (4) If, however, removal of the edges breaks convergence to original

reference matrix, we identify the second edge in the ordered list as degenerate and

keep this edge intact while proceeding to the next edge and removing it. (5) We

then iterate steps (2)-(4) until we go through the complete list of all individually
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non-essential edges. (6) Once we have reached all edges in the list, we change the list

order by placing the last degenerate entry of the list at the beginning and keeping the

rest of the sequence unchanged; we then repeat procedures (2)-(5) considering this

modified list as our ordered list from step (1). Overall, we perform this procedure

no more than n times, where n is the number of edges in the network, which is also

the number of possible cyclic permutations of initial arbitrary ordered list. Fig. 3-10

shows an example of this procedure for the network (I) shown on Fig. 3-2 A.

Complexity Analysis

Reference Matrix computation Complexity. The algorithm continuously mul-

tiplies the adjacency matrix (adjusting the diagonal to 0 at every step to avoid self-

walks) until either the matrix converges (i.e., Mreft_1 = Mreft) or matrix has been

multiplied by itself 2n times (where n is the number of rows/columns in the adjacency

matrix). Thus, given that matrix multiplication takes 0(n 3 ) time, and this operation

is repeated 2n times in the worst case, the complexity of the reference matrix com-

putation is O(2n x n3 ) = O(2n 4).

Core-finding algorithm Complexity. The algorithm first removes all edges in

the network one by one to determine edges whose removal results in a change in the

reference matrix (such edges are dubbed "essential" edges). The complexity of the

algorithm at this step is O(e2n4 ) where e is the number of edges and n is the num-

ber of nodes in the adjacency matrix. Next, the algorithm goes through each of the

found non-essential edges and finds the sets of degenerate edges (i.e., cannot remove

all edges at the same time and preserve the reference matrix). The complexity of

this step is O(enonessentiai2n'). Next, the algorithm finds the most parsimonious set of

edges to preserve. Briefly, this step involves looping through the set of non-degenerate

edges, removing edges one by one, then restarting until each non-degenerate edge has

been removed at least once with respect to all other non- degenerate edges in the set.

The complexity of this step is O(e2on2sentia2n4 ). Thus, the total complexity of this

algorithm is O(e2n4 + enonessentiai2n4 + enonessential2n4 ).

Degeneracy-breaking algorithm Complexity. The algorithm first removes all
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edges in the network one by one to determine edges whose removal results in a change

in the reference matrix (such edges are dubbed "essential" edges). The complexity

of the algorithm at this step is O(e2n4 ) where e is the number of edges and n is

the number of nodes in the adjacency matrix. Next, the algorithm steps through all

non-essential edges in a sorted manner (according to each edges confidence value) and

removes (without replacement) non-essential edges that do not change the reference

matrix in a degenerate manner. The complexity of this step is O(enonessential2n4 )

where enonessential is the number of non-essential edges found using the previous step.

Thus, the overall complexity of the algorithm is O(e2n4 + enonessentiai2n4 ).

Exigo implementation and test datasets

We provide a website (http://www.broadinstitute.org/regev/exigo/) with exe-

cutable scripts that take networks specified in matrix format (perturbed regulators in

rows) and outputs network analysis that includes the list of individually non-essential

edges, list of edges affected by individually essential edges and the list of degenerate

entries on the website. Additionally, on this website one can find documentation with

a practical application of Exigo on all the networks used in our work: DC networks

(sizes 39 x 39 and 155 x 128), small (10 nodes) synthetic network and sixty large (100

nodes) synthetic networks.

Chimeric network inference method

To combine Exigo within the inference method of Pinna et al. [73], we started with

the same confidence matrix as Pinna et al. (the Z-score normalized raw perturbation

matrix WZR) and the same threshold (t = 2), as the one used in the DREAM

challenge (see Table S3 for threshold variations). We set all entries in WZR to 0,
where IWZR| < t and took the sign of the resulting matrix, M, such that all entries

greater than 0 were set to 1 and all entries less than 0 were set to -1 in M. We

applied the degeneracy breaking scheme of Exigo to M to obtain a matrix E. Finally,

we set all non-zero entries in E to their respective confidence values from the WZR,
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and normalized this confidence matrix by the maximum absolute value, according

to the recommendation for DREAM evaluation. The final confidence output from

the degeneracy breaking matrix E and Pinna et al.'s downRank matrix DR was the

arithmetic mean of the entries in both matrices (ChimericConfidenceij = (DRij +

Ej) /2).

Software and datasets used

GeneNetWeaver. We used GeneNetWeaver [82] to sample 60 100-node synthetic

networks and simulate mRNA levels following knock-out of each of the 100 transcrip-

tion factors in each of those networks. We have produced knock-out time-series and

recorded mRNA concentration at 400 s timepoint, assigning a confidence level to each

genetic interaction using z-scores, akin to those used when handling real perturbation

data [4, 6]: we computed z-scores for each interaction across all the knock-outs and,

thus, found corresponding p-values to observe the specific mRNA level upon gene

knock-down. To construct the perturbation graph we recorded only interactions with

a p-value less than 0.05.

SOS Pruning, NET-SYNTHESIS and TRANSWESD. Based on the code

available in the supplement of [38], we applied the SOS (save our signs) pruning

procedure to several synthetic networks. We also downloaded NET-SYNTHESIS

from http: //www. cs. uic. edu/-dasgupta/network-synthesis/ and applied the al-

gorithm of transitive reduction to perturbation graphs. For TRANSWESD, we used

version 9.9 of CellNetAnalyzer downloaded from http://www.mpi-magdeburg. mpg.

de/projects/cna/cna.html.

Mammalian networks. The interaction matrix for the dendritic cell network was

constructed based on Fig. S14B of [6]. The expanded interactions matrix and confi-

dence values were taken from Tables S6 and S7 of [6].
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3.6 Figures and tables

A Output genes B
A B C A A

C C

Experimental Possible genetic
result regulatory networks

Figure 3-1: Experimental perturbation networks. Shown are a typical output of

a gene perturbation screen (A) and two alternative networks (B), either of which can

produce the same experimental perturbation result. Red and blue square, respectively:

perturbation of the regulator decreases or increases the expression of the output gene. Red

arrow activation; blue blunt edge repression.
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Figure 3-2: Exigo. (A) The sequence of steps in Exigo: given an experimental pertur-
bation network (I), Exigo derives a reference matrix (II) which includes all possible (direct
or indirect) interactions. It then identifies all individual non-essential interactions (III), fol-
lowed by determining which edges are contained in degeneracies (IV). In each panel, shown
are a network view (top), and the corresponding matrix in either color code (middle) or
numerical (bottom) form. Red (blue) arrow/cell: activating/repressing interaction. Solid
colors: essential interaction; faded color: inessential/removed interaction. In bottom ma-
trix: 1 activation, -1 inhibition, 0 no interaction. (B) Deriving the reference matrix.
Shown is the process of deriving a reference matrix by applying a convergence transforma-
tion to the network (I) from panel A. The original network I is shown on the top left, along
with its corresponding adjacency matrix (left, bottom), M 1. The reference matrix (right,
grey shading) is obtained as a weighted and thresholded sum of matrices representing self-
avoiding random walks of different length (Mi). Each matrix can be constructed iteratively
from M 1 by using the rules shown on the figure and described in detail in the text. Bold
blue paths on the networks above M2 and M 3 show indirect interactions of length 2 and
3, respectively that are computed in the transformation and contribute to the reference
matrix. E(.) designates a thresholding function theta that is applied to each element of
the matrix obtained by summation of all indirect-effect matrices Mi in order to obtain the
reference matrix.
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shRNA result Adjacency matrix
A

0 1 1 0

B C 0. 0 0 0 -1

Path matrix
0 1 1 -1
0 0 0 -1

0 0 0 1

_0 0 0 0]

Reference matrix
0 1 1 0
0 0 0-1

0 0 0 1

_0 0 0 0]

Figure 3-3: Comparison between the path matrix and the reference matrix generated by
Warshall's and Exigo algorithms, respectively. Red arrow - activation; blue blunt edge -
repression.
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Figure 3-4: Application of Exigo to a mammalian network. (A) Results of apply-
ing Exigo to the regulatory network controlling activation of dendritic cells in response to
LPS. Shown is a 39 x 39 experimental perturbation network (rows: perturbed regulators,
columns: expression targets; red: activation; blue: inhibition; white: no interaction). Bold
black borders encapsulate interactions that have been found individually non-essential (de-
generate or not), and hatched entries indicate the ones that are contained in degeneracies.
(B) Distribution of coherent and incoherent feedforward loops identified in the input ex-
perimental network (exper, dark left bar) and in the core network after confidence-based
degeneracy breaking (core, light right bar). Note that the distribution remains virtually
the same while the absolute number of loops decreases substantially.
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Figure 3-5: The Exigo procedure consists of two major steps: (1) identification of all
individually non-essential interactions and finding degenerate edges among individually non-
essential interactions; and (2) finding a minimal core network by breaking degeneracies
based on the experimentally measured confidence values. Here we show results of applying
Exigo to the regulatory network controlling activation of dendritic cells in response to LPS
after breaking degenerate entries by the use of interaction confidence values (Note that
Fig. 3-4 of the main text shows the network before degeneracy breaking, i.e., after step 1
only). Shown is a 39 x 39 experimental perturbation network (rows: perturbed regulators,
columns: expression targets; red: activation; blue: inhibition; white: no interaction). Bold
black borders encapsulate interactions that have been removed to produce the final core
network.
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Exigo

SOS pruning
(Tresch et al., 2007)

NET-SYNTHESIS
(Kachalo et al., 2008)

TRANSWESD
(Klamt et al., 2010)

--- - Non-essential
...... Non-essential

in degeneracy

- - - - Non-essential

- --- Non-essential

- - - - Non-essential

Figure 3-7: Performance of different network analysis methods (Exigo (top), SOS Pruning
[38] (middle top), NET-SYNTHESIS [39] (middle bottom) and TRANSWESD [40] (bot-
tom)) on the same synthetic network of 10 edges. Red arrows: activating interactions,
blue blunt arrows: repressing interactions. Shaded arrows: interactions that were found
non-essential by the indicated method. Both SOS Pruning and NET-SYNTHESIS incor-
rectly remove edges that are essential for observing the experimental screening results.
TRANSWESD removes interactions such that interactions reconstructed based on the core
network actually have opposite signs to the original ones: for example, upon removal of
inhibiting interaction E - G, the shortest path indirect interaction is actually an activating
one. Similarly, when removing E -+ F, the reconstructed interaction is actually inhibiting.
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Figure 3-8: Comparison of the performance of different methods on simulated experi-

mental networks derived from a compendium of 60 synthetic 'ground truth' networks (100

nodes each). For each method, shown are the fraction of experimental edges explained by

the core networks produced (blue), the fraction of true positive edges (based on the ground

truth network) that are retained in the core networks (dark red) and the fraction of false

positive interactions in the core networks (yellow). By definition, Exigo always explains

all of the available experimental observations. It also outperforms in the fraction of true

positives retained. Note that some experimental edges are not explained by core networks

produced by SOS Pruning and NET-SYNTHESIS. This means that neither direct nor in-

direct interactions on the core networks produced by SOS Pruning or NET- SYNTHESIS

can recapitulate the effect of some of the experimental edges indicating that inconsistency

have been introduced during the parsing process. Note that Exigo core network is always

consistent with experimental network (see also Table 3.3 and Fig. 3-7).
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Figure 3-9: Timing results (Intel Core 2 Quad CPU; 2.4 GHz) for applying MATLAB
coded degeneracy-breaking version of Exigo to networks of various size.
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C Non-essential edges: AC, AD, BC

D

Incrementally remove Move BC to the beginning Move AC to the beginning
the non-essential edges of the sequence and apply of the sequence and apply

and test convergence the same procedure the same procedure
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AD: -1 0 0 AC: -1 -1 / BC: -1 CO -1

BC: -1 -1 (D AD: -1 -1 0 AD: -1 -1 0
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BC is within a degeneracy AC is within a degeneracy BC was already identified!

(A) (B) (C)

Figure 3-10: Illustration of the mechanism to identify degenerate edges for the network

described in Fig. 2 of the main text (Materials and methods). First (A), the non-essential

individual edges (AC, AD, BC) are ordered arbitrarily and then this order is fixed. The first
edge is then removed, which is indicated by 0 in panel (A). Removal of the first edge (AC)
does not change the observability class of the network which is indicated by the check- mark

below the column on the panel (A). Next, we remove the two first edges in the ordered list

(AC and AD), as indicated by 0 in the second column in panel (A). We find that removal of
the first two edges does not alter the observability class and thus put a check-mark below

this column and proceed to remove also the third non-essential edge (thus, AC, AD and

BC are removed). In this situation we find that observability class changes indicating that
BC, while being individually non-essential, is contained within a degeneracy. We next (B)

modify the order of edges to put BC atop of the list and repeat the procedure described

above to find that AC is contained within a degeneracy and modify the list order to the one

shown on panel (C). Finally (C), we find edge BC as the degenerate one, which has already

been identified and, thus, we stop the procedure.
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I _IIAverage | Std. Deviation] Median
True network Total edges 285.25 7.56 288.00
Perturbation (experimental) Total edges (TP same 274.63 35.02 276 (126+2)
network sign + TP opp signs) (125.15+2.45) (13.97+1.37)

Precision 0.468 0.045 0.464
Recall 0.448 0.055 0.444
F-score 0.456 0.042 0.448

NET-SYNTHESIS (Kachalo et Total edges (TP same 124.65 10.87 124 (90+0.5)
al., 2008) sign + TP opp signs) (89.55+0.7) (8.77+0.91)

Unexplained Experi- 46.00 45.98 46.12
mental Interactions
Precision 0.725 0.054 0.715
Recall 0.317 0.033 0.317
F-score 0.440 0.039 0.440

SOS pruning (Tresch et al., Total edges (TP same 97.92 12.97 98 (43+1)
2007) sign + TP opp signs) (44.15+0.85) (6.59+0.82)

Unexplained Experi- 156.98 21.49 157.00
mental Interactions
Precision 0.462 0.058 0.457
Recall 0.158 0.026 0.153
F-score 0.235 0.033 0.229

TRANSWESD (Klamt et al., Total edges (TP same 130.58 10.09 129 (94.5+1)
2010) sign + TP opp signs) (93.67+0.75) (9.09+0.93)

Unexplained Experi- 33.77 22.67 28.00
mental Interactions
Precision 0.724 0.059 0.722
Recall 0.331 0.035 0.335
F-score 0.454 0.042 0.461

EXIGO Core Network (before Total edges (TP same 201.63 29.20 206.5 (117+1)
degeneracy breaking) sign + TP opp signs) (115.95+1.73) (12.41+1.30)

Unexplained Experi- 0.00 0.00 0.00
mental Interactions
Precision 0.590 0.065 0.583
Recall 0.413 0.050 0.418
F-score 0.483 0.042 0.479

EXIGO Core Network (after Total edges (TP same 183.92 25.73 186.5 (114+1)
degeneracy breaking) sign + TP opp signs) (113.93+1.28) (11.91+1.14)

Unexplained Experi- 0.00 0.00 0.00
mental Interactions
Precision 0.632 0.066 0.627
Recall 0.405 0.048 0.409
F-score 0.491 0.043 0.485

Table 3.3: Statistics for 60 synthetic 100-node networks used in this study. True networks row cor-
responds to the networks sampled from yeast regulatory networks by GeneNetWeaver; perturbation
network row corresponds to the experimental networks constructed based on the kinetic simulations
ran by GeneNetWeaver (page 89); subsequent rows correspond to the networks that result from
application of Exigo and other methods to the perturbation networks. Additional row in the table
describes the number of experimental edges that cannot be reconstructed from core networks pro-
duced by each method. A non-zero number of non-reconstructable experimental interactions means
that this number of interactions is reconstructed incorrectly from core networks obtained by the
pruning methods (SOS Pruning, NET-SYNTHESIS and TRANSWESD) indicating that inconsis-
tency have been introduced during the parsing process. Specifically, in case of TRANSWESD, it
means that incorrectly reconstructed interactions have opposite signs to the real ones. This is due
to the failure of TRANSWESD to account for shorter indirect interactions of opposite signs when
identifying the core network (a simple example of such situation is provided on Fig. 3-7). SOS
Pruning and NET-SYNTHESIS fail to reconstruct the experimental network for the same reason as
TRANSWESD and also simply due to excessive removal of essential interactions (again, a simple
example of such situation is provided in Fig. 3-7). Exigo core network is always consistent with the
experimental network.
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Score 75.413 71.589 71.297 64.715

AUPR

Network 1 0.63684 0.53607 0.512 0.49

Network 2 0.37775 0.37711 0.396 0.327

Network 3 0.40014 0.38983 0.38 0.326

Network 4 0.3851 0.34943 0.372 0.4

Network 5 0.21966 0.21332 0.178 0.159

AUROC

Network 1 0.91481 0.91363 0.908 0.87

Network 2 0.80147 0.80149 0.797 0.773

Network 3 0.8331 0.83304 0.829 0.844

Network 4 0.84228 0.84163 0.844 0.827

Network 5 0.75936 0.75916 0.763 0.758

Table 3.4: Comparison of network inference algorithms on benchmark networks of the

DREAM4 challenge. The 'chimeric algorithm' that includes the topological analysis module

of Exigo outperforms other state-of-the-art network inference methods. Total score, AUPR

and AUROC are computed using DREAM4 evaluation scripts.

Downrank (t = 2) DownRank DownRank (t DownRank (t -

+ Exigo (DREAM4 Set- 2.5) 2.5) + Exigo

tings)

Score 75.413 71.589 79.279 81.191

Table 3.5: Performance of chimeric network inference method shown for two threshold

choices: t = 2 corresponds to the threshold used by Pinna et al. in the DREAM4 competi-

tion and t = 2.5 corresponds to the optimal threshold for DREAM4 benchmark networks.

In both cases information added by topological analysis with Exigo improves performance.
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Chapter 4

Inferring transcriptional and

microRNA-mediated regulatory

programs in Diffuse Large B-cell

Lymphoma

4.1 Abstract

Diffuse Large B-Cell Lymphoma (DLBCL) is the most common lymphoid malig-

nancy in adulthood. Although some genetic abnormalities have been related to the

pathogenesis of this disease, the full identity of dysregulated cellular pathways is still

unknown. A system-level dissection of regulatory mechanisms using heterogeneous

datasets can help identify, among other things, new previously uncharacterized regu-

latory elements and the molecular pathways they target and whose disruption might

lead to tumorigenesis. However, integrating different data sources brings many chal-

lenges, since they may have different quality and informativity. We used Module Net-

works to identify modules of co-regulated genes and integrate datasets from multiple

high-throughput assays: gene expression micro-arrays, DNA copy-number SNP ar-

rays, and microRNA arrays. Our analysis associates miR152 and CD63 with survival,
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links MYCBP and COPS5 with a module of genes enriched for oxidative phospho-

rylation and mitochondrial functions, and CREBL2 with a glycolysis module. This

analysis expands the knowledge about causal and combinatorial relationships that

characterize molecular signatures in DLBCL and, generally, provides a systematic

approach for the integration and analysis of different types of datasets.

4.2 Background

Understanding the molecular mechanisms that drive tumorigenesis is a fundamental

question in biomedical research. Genomics research in the past decade has shown

that cancers harbor unique transcriptional signatures that distinguish them from

other cancer types and sub-types and from normal tissue, and that have tremendous

diagnostic and prognostic value [85]. More recently, large-scale projects, such as The

Cancer Genome Atlas (TCGA), are also characterizing the cancer genome for large-

scale genetic aberrations and coding mutations [47]. However, in most cases, we lack

a genome-scale understanding of the mechanisms that 'translate' these genetic aber-

rations to transcriptional changes, and the role that transcription factors, miRNAs

and other regulatory genes play in this process. For this reason, there has been an

increased interest in approaches that provide a systems-level view of the components

and the properties of the system. To this end, integrating data from different sources

has become an important part of research in genomics [86].

In the past few years, some algorithms have been developed to integrate paired

gene expression profiles and somatic copy number alterations (CNAs) information

on the same patients (reviewed in [87]). CNAs, which are differences in the number

of copies of multi-kilobase segments of the genome, are a major source of genetic

diversity, with several variants now conclusively linked to human disease. While we

were working on this project, Akavia et al. [16] published CONEXIC, a Bayesian

algorithm that identifies candidate driver genes in cancer and links them to gene

expression signatures they govern by integrating copy number and gene expression.

CONEXIC is inspired by the Module Networks algorithm [3] and uses a score-guided
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search to identify the combination of modulators that best explains the behavior of a

gene expression module across tumor samples and searches for those with the highest

score within the amplified or deleted regions. The algorithm was applied to data from

melanoma cell lines, where it correctly identified known drivers and connected them to

their known targets. Integrative analysis of CNAs and gene expression has also been

used to identify tumor subtypes or patient groups that have different characteristics

including patient survival, and response or resistance to therapy [88, 89]. In addition,

other computational approaches have been proposed that identify miRNA regulatory

modules by integrating expression profiles of miRNAs and mRNAs (e.g. [90, 91]). To

our knowledge, very few studies have integrated CNA, miRNA and gene expression

profiles simultaneously. An example of such integrative analysis is proposed in [92],

where non-negative matrix factorization-based clustering [93] of mRNA expression

data was used to identify molecular subgroups of medulloblastoma; DNA copy num-

ber, miRNA profiles, and clinical outcomes were then analyzed for each. Here, we use

these heterogeneous datasets to learn an integrative module network that advances

the molecular characterization of Diffuse Large B-cell Lymphoma (DLBCL).

DLBCL is clinically, morphologically and genetically a heterogeneous group of

malignant proliferations of large lymphoid B cells, and accounts for 30 to 40% of

newly diagnosed lymphomas [94]. Based on expression profiling studies, primary

DLBCLs have been categorized into several tumor subtypes [95], including B-cell re-

ceptor/proliferation (BCR), oxidative phosphorylation (OxPhos) and host response

(HR) [96]. The first subset, BCR, is enriched for genes involved in cell-cycle reg-

ulation, DNA repair, cell division and B-cell receptor signaling, and is associated

with BCL6 gene rearrangements. The OxPhos signature includes genes involved in

oxidative phosphorylation, suppression of apoptosis, and mitochondrial and protea-

some function, and it is more frequently associated with the translocation t(14;18),

affecting the antiapoptotic gene BCL2. Finally, the HR signature is enriched for

genes involved in T-cell receptor and cytokine signaling, natural killer cell activation,

dendritic cell maturation and chemotaxis. Studies of the diversity and clinical im-

pact of the BCR and HR signatures have made the transition from transcriptional to
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functional analysis, but little is still known for the OxPhos subset.

Our integrative analysis provides an unbiased way for identifying drivers that best

account for the behaviour of sets of genes. We use Module Networks to infer modules

of expression data and then learn regulatory programs for each module, consisting of

regulator genes, miRNAs and CNAs (Fig. 4-1). The method identified 100 modules

associated with 231 regulator genes (40 of which are in amplified or deleted regions),

108 miRNAs and 39 CNAs. Novel observations include the identification of CD63

and miR152 as biomarkers for predicting survival, a possible role of MYCBP and

COPS5 in oxidative phosphorylation and mitochondrial functions, and the association

of CREBL2 with glycolysis. Our model raises concrete testable hypotheses which can

be tested by perturbation experiments, helping to advance the characterization of

DLBCL and its subtypes.

4.3 Learning of a Module Network for DLBCL

We employed the Module Networks algorithm [3] to learn a network model for DLBCL

that aims to explain changes in gene expression in tumors by underlying molecular

and genetic changes. This model associates modules of co-expressed genes with reg-

ulatory programs that use a combination of regulator' profiles (genetic aberrations,

regulator genes and microRNA expression) to predict these expression changes. It

raises concrete testable hypotheses which can be tested by perturbation experiments.

Module Networks is a probabilistic graphical model [11] that automatically infers

modules of co-expressed genes and their shared regulatory programs. A regulatory

program uses the expression level of a set of regulators to predict the condition-

dependent mean expression of the genes in a module. The algorithm uses an iterative

learning procedure using the Expectation Maximization (EM) algorithm. Each ite-

ration consists of two steps: an E-step and an M-step. In the M-step the procedure

is given a partition of the genes into modules and learns the best regulatory program

(as a regression tree) for each module. In the E-step, given the inferred regulatory

programs, it re-assigns each gene tothe module that best predicts the gene's behavior
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(it does not assign a regulator gene to a module in which it is also a regulatory input,

directly or indirectly). The target function is the Bayesian score, derived from the

posterior probability of the model (see [97] for a detailed description of the algorithm).

The regulatory program is chosen from a pre-defined set of candidate regulators.

In this study we used three different types of datasets to build a comprehensive

map for DLBCL. From the publicly available microarray-based transcription dataset

of 176 primary DLBCLs generated using Affymetrix U133A and U133B platforms

[96], we used 110 of these samples for which paired mRNA and miRNA profiles were

available. After robust multichip average (RMA) processing, using Affymetrix' abso-

lute call data, genes with "present" calls in fewer than 80% of arrays were discarded

(eliminating 17,215 [77%] of 22,283 probe sets) so reducing genes whose expression

were largely in the noise range. We further eliminated probe sets with no Entrez gene

identifier and averaged probes mapping to the same gene. This resulted in a final

dataset with 3,716 genes. Regarding the miRNA data, which was generated with Lu-

minex, we used a list of 155 miRNAs. The chromosomal copy number alterations were

collected from the HD SNP arrays of sixty-two of the 176 primary DLBCL genomic

DNAs, as described in [98].

We initially considered three strategies to integrate these heterogeneous datasets:

(1) search for one Module Network model whose regulatory programs were chosen

from all types of features simultaneously; (2) search for separate Module Network

models for each feature type; (3) search for one Module Network for one feature type

and then learn extra regulatory programs for each module using the other feature

types. However, the first strategy did not work well, since the measurements were

obtained by different technologies and there was a consistent bias towards choosing

regulators from the same data type of the genes in the modules. We found the second

strategy very unstable for an integrative framework analysis, as the three module

networks learned (one for each data type) generated different modules of genes. We

decided to pursue the third strategy, which overcomes these limitations.

First, our approach consisted in applying the Module Networks procedure on the

mRNA dataset, which consisted of 110 samples and 3,716 genes. This list included
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397 genes with a regulatory potential (transcription factors and signaling molecules)

that were used as input candidate regulators for Module Networks. We initialized the

algorithm systematically from 10 to 250 modules (in increments of 10), and chose the

model whose Bayesian score was 85% of the best score (Fig. 4-2). The chosen model

consisted of 100 modules (Fig. 4-3). These modules have a variable number of genes,

with a median size of 35 genes. Twenty-five percent of the clusters have less than 22

genes and 75% have less than 50 genes. The global view of the modules is presented

in Fig. 4-4 and was generated by calculating the average expression over all genes

in each module. Furthermore, for each of these 100 modules, we learned another

two regulatory programs: one using all 155 miRNAs as candidate regulators and

another one using 45 CNAs discrete profiles. These profiles, determined by GISTIC

[99] according to a defined amplitude threshold (Fig. 4-5), are discrete, so that a

'0' indicates that the copy number of the sample was not amplified or deleted, a '1'

indicates that the sample had low-level copy number aberrations, and a '2' indicates

that the sample had high-level copy number aberrations.

4.4 Modules are enriched for specific processes and

functions

In order to identify the potential functional role of assigned regulators, we inspected

the gene set enrichment of the target modules (using the Genomica software). It is

expected that modules are likely enriched with genes whose expression is biologically

affected by the regulators. Thus, the processes represented by genes in a module may

suggest how a regulator gene, miRNA or CNA change the cellular physiology and

contribute to the oncogenic phenotype. We collected functional sets of genes from

GO [100] and MSigDB (C2-CGP: curated chemical and genetic perturbations) [101]

and predicted miRNA target genes sets from MSigDB (C3.MIR) [101] and TargetScan

[102]. TarBase [103] provided a manually curated collection of experimentally tested

miRNA targets in human. In addition, we used the hematopoietic gene expression
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differentiation map (DMAP) [12] to provide us sets of genes that were significantly

over- or under-expressed across lineages in hematopoiesis (and hence relevant to DL-

BCL), and gene sets associated with human ES cell identity collected from microarray

studies [104], since human ES signatures are often related to poor prognosis in tumors.

A total of 78 modules have at least one functional category overrepresented at the

0.05 significance level (FDR corrected P-values). In total, 550 different categories are

overrepresented, some of which are shown in Fig. 4-6. For example, modules 782,

800, 848 and 1087 are mostly enriched for oxidative phosphorylation and mitochondria

related genes (P-values 1.96 x 10-11 and 8.21 x 10-7, respectively), while modules 794

and 1177 are statistically enriched for cell cycle and DNA replication genes (P-values

1.23 x 10-5 and 4.62 x 10-8, respectively). Modules 1129 and 1207 are enriched for

immune response genes (P-values 4.19 x 10-12 and 1.77 x 10-, respectively), module

1123 for inflammatory response genes (P-value 3.37 x 10-5), and modules 963 and 999

for extracellular matrix genes (P-value 1.96 x 10-" and 8.21 x 10-7, respectively).

Several modules are statistically enriched for other functional categories like ribosome

(modules 695, 1041, and 1053, with P-value 2.37 x 106, 1.13 x 10-20 and 6.44 x

10 -50, respectively), splicing (module 1117, with P-value 2.09 x 10-6), endoplasmatic

reticulum (module 926, with P-value 2.04 x 104) and glycolysis (module 969, P-value

4.19 x 10-5).

4.5 Regulatory programs overview

Of the set of candidate regulators, 231 out of 397 were found to regulate at least

one module in the inferred network, 40 of which are in amplified or deleted regions.

Furthermore, the model associated 108 miRNAs with the modules and 39 CNAs. In

particular, 57 regulator genes, 35 miRNAs and 23 CNAs were chosen as top regulators

(Fig. 4-7). Among these sets, COPS5, miR-30e-50 and deletion peak in region 2q33.3

were the most frequent choices (15, 13 and 33 times, respectively).
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4.6 Potential regulators with a role in DLBCL

To show the approach's ability to reproduce diverse features of regulatory programs,

we discuss some of the key modules identified.

Inflammatory response module

The inflammatory response module (1123, fig. 4-8) is inducted by CEBP-#, a gene

important in the regulation of genes involved in immune and inflammatory responses;

in particular, it has been shown to bind to the IL-1 response element in the IL-6 gene,

as well as to regulatory regions of several acute-phase and cytokine genes. CEBP-3

is a crucial regulator of hematopoiesis, it belongs to the family of basic leucine zip-

per (bZIP) transcription factors, and its main function has been implicated to be in

control of myeloid differentiation [105]. On the other hand, the inferred miRNA regu-

latory program specifies miR-223 as the module's top (activating) regulator. miR-223

is a hematopoietic specific microRNA with crucial functions in myeloid lineage devel-

opment and it has been shown to target CEBP-# mRNA 3' UTR [106]. The choice of

these top regulators is consistent with the module's enrichment for genes induced in

the granulocyte/monocyte progenitor (GMP) and common myeloid progenitor (CMP)

clades (P-values 4.96 x 10-1 and 1.33 x 10-7, respectively), as well as in monocyte

and granulocyte lineages (P-values 1.21 x 10-11 and 2.19 x 10-4 , respectively).

Cell Cycle and DNA replication modules

One of the fundamental traits of cancer cells is their ability to sustain chronic prolifer-

ation. While normal tissues control the production and release of growth-promoting

signals that instruct entry into and progression through the cell growth-and-division

cycle, these signals are deregulated in cancer cells. In DLBCL, the "BCR/proliferation"

cluster identified in [96] had abundant expression of cell-cycle regulatory genes. Sim-

ilarly, module 1177 from our model, is enriched for cell cycle and DNA replication

genes (P-values 4.62 x 10~' and 5.58 x 10-7). In agreement with this finding, the

module is induced by RNASEH2A (ribonuclease H2, subunit A), a gene that en-
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codes a protein that participates in DNA replication, and by PBK (a.k.a. TOPK),

a mitotic kinase that enhances Cdkl/cyclin B1-dependent phosphorylation of PRC1

and promotes cytokinesis. The miRNA regulatory program identifies miR-20a and

miR-106b in the first and third levels of the decision tree, respectively. Ivanovska et

al. [107] have shown that miR-106b family members contribute to tumor cell pro-

liferation in part by regulating cell cycle progression and by modulating checkpoint

functions. Furthermore, miR-20a and miR-106b (together with miR-17) are known

to act in concert to modulate E2F activity on cell cycle arrest during neuronal lin-

eage differentiation of unrestricted somatic stem cells from human cord blood (USSC)

[108]. The second level regulator of this module predicted by the model is miR-26b

that, even though not implicated in the previous study, has been shown to cooperate

with their host genes to block the G1/S-phase transition by synergistically activating

the pRb protein [109]. These findings suggest that miR-20a, miR-26b and miR-106b

may act in concern to regulate cell cycle in DLBCL.

Also associated with these biological functions is module 794. It is primarily

regulated by RACGAP1, a gene known to be up-regulated in B cell lymphoma tumors

expressing an activated form of MYC [110], and by miR-30e-5p, whose induction

represses the module genes' activity.

Extracellular matrix module

Extracellular matrix (ECM) components have been implicated in tumor growth, pro-

gression, and metastasis in lymphoid malignancies [111]. Our model associated NBL1

and miR-152 with modules enriched for ECM-related genes, cell adhesion and angio-

genesis. NBL1 is a transcription factor that may function as an inhibitor or repressor

in cell growth and/or maintenance, and plays a role in the negative regulation of the

cell cycle.

Although strategies aiming at inducing modifications in the ECM components

would be hard to conceive, given the high redundancy of the cellular dynamics leading

to ECM regulation, ECM-related cues (such as miRNAs) should be taken into account

as potential cancer-related markers for prognosis [111].
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Oxidative phosphorylation and glycolysis modules

While an oxidative phosphorylation subtype has been previously identified in DL-

BCL, the regulatory mechanisms associated with this cancer subtype are still un-

known. Our model associates module 782, enriched for oxidative phosphorylation

and mitochondrial functions, with regulation by the factors MYCBP and COPS5

(Fig. 4-9). These two factors were previously associated with survival and oxidative

metabolism in breast cancer [112, 113], suggesting a possibly general mechanism. In

fact, in [112], it is found that the mitochondrial signature in breast cancer is induced

by overexpression of MYC or MYC plus COPS5, but not COPS5 alone. MYC is a

proto-oncogene that encodes a transcription factor involved in apoptosis, proliferation

and the overall regulation of hematopoietic homeostasis [114]. It has been identified

in several studies as highly prognostic in DLBCL [115-119] and its over-expression

is often associated with malignant transformations. The MYCBP gene encodes a

protein that binds to the N-terminal region of MYC and stimulates the activation of

E box-dependent transcription by MYC. A second level regulator in module 782 is

RAPIB, a small GTPase, and the module itself includes gene RAP1A. Members of

the RAS-like small GTP-binding protein superfamily are known to regulate multi-

ple cellular processes including cell adhesion and growth and differentiation, and one

study has actually reported the role of this gene in the amelioration of high gluco-

seinduced injury and normalization of mitochondrial functions [120]. While COPS5

(a.k.a. CSN5) was selected as top regulator of module 782, COPS4, another subunit

of the COP9 (constitutive photomorphogenic) signalosome (CSN), is a member of the

module. The CSN complex is composed of eight subunits and is a highly conserved

protein complex that is known to regulate processes such as cell cycle progression and

kinase signaling.

Some cancer cells preferentially metabolize glucose through aerobic glycolysis, a

phenomenon known as the Warburg effect [121]. Module 969 associates CREBL2

(cAMP responsive element binding protein-like 2) with target genes enriched for gly-

colysis (e.g. ALDOA, GPI and PKM2) and for up-regulated marker genes that dis-
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tinguish DLBCL from follicular lymphoma (FL) samples, namely HSPCB, ALDOA,

PKM2 and HMGA1. Our finding associates high expression of CREBL2 with the re-

pression of genes with a glycolytic function. In addition, CREB3L2 shows in the third

level of the regulation program. These findings suggest that genes encoding proteins

of the CREB-family may be involved in regulating glycolysis. Interestingly, miRNAs

can mediate fine-tuning of the cancer-associated glycolytic pathways either directly

or at the level of oncogenes [122]. Our model associates let-7c, a miRNA known to

be important in cell growth, with the glycolysis module, regulated by CREBL2.

4.7 Regulators associated with survival and "con-

sensus cluster"

Our integrative analysis allows to systematically search for genes associated with

survival. Given that the regulatory program is described by a decision tree, we could

look at each first split (root) and assay the probability of survival for patients on each

side of it. These two survival curves are compared using a log-rank test of the null

hypothesis of a common survival curve. This strategy for finding association with

an external phenotype can provide powerful results without the need of testing every

gene assayed. In total, six modules show a first split in the regulatory program that

is statistically significant with survival (FDR < 0.25, Table 4.1).

Worth noting, is the association of poor prognosis in DLBCL patients with high

expression of CD63 (Fig. 4-10). The protein encoded by this gene mediates signal

transduction events that play a role in the regulation of cell development, activation,

growth and motility. It is a cell surface glycoprotein that is known to complex with

integrins and that may function as a blood platelet activation marker. Interestingly,

CD63 has already been shown to be a biomarker for predicting the prognosis in earlier

stage of adenocarcinomas of lung [123]. Module 1075, regulated by CD63 is enriched

for immune response genes. Interestingly, is also enriched for up-regulated genes in

B-CLL (B-cell chronic leukemia) patients expressing high levels of CD38 and ZAP70,
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which are associated with poor survival.

In addition, module 716 strongly associates BCL6 expression with a better prog-

nosis, a finding that has been reported in the literature [124]. BCL6 is the most

commonly involved oncogene in DLBCL and its depletion or blockade in primary

DLBCL samples or human DLBCL cell lines causes cell death, suggesting that these

tumors are often addicted to this oncoprotein and need its continuous function for

survival [125, 126].

Also worth noting is module 1201, that associates high expression of ZMYND11

(also known as BS69) with poor survival. This nuclear protein has been shown to

be a transcriptional repressor through interacting with other proteins like c-Myb or

N-CoR [127, 128].

Also, several modules associate miRNAs with disease prognosis (table 4.1). For

example, high expression of miR-152 (a miRNA associated with modules enriched

for ECM genes) predicts poor prognosis in both modules 963 and 999 (p< 0.0032,

FDR=0.07).

Furthermore, to relate our modules to previous expression-based classifications of

DLBCL, we studied whether any of the regulatory programs' first split correlated with

a consensus cluster (OxPhos, BCR, HR), a sub-grouping of tumors identified in [96].

We found that module 1207, enriched for immune system genes, is the most related

to HR (P-value 1.07 x 10-, two-tailed Fisher's exact test with FDR correction).

Also, modules enriched for oxidative phosphorylation genes (782, 800, 848, 1087) are

highly related to the OxPhos consensus cluster (P-values 3.33 x 10-7 , 8.73 x 10-7,

3.33 x 10-7, 2.22 x 10-, respectively); however, the most statistically significant split

refers to module 1165 (P-value 2.09 x 10-') which has a member of RAS oncogene

family, RAP2C, as top regulator.

These results show that our approach, by consistently isolating a small group

of relevant predictor genes from high-dimensional microarray datasets, efficiently re-

duces the amount of tests required to assess survival prognosis if this handful of

predictor variables were not known.
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4.8 Association between copy number aberrations

and modules

In order to understand the functional importance of the genetic alterations in DLBCL,

we looked for regulatory programs with CNAs as candidate drivers. In total, 39 of

the 45 CNAs were chosen, with 23 assigned as top regulators. The only copy number

alteration that was selected as a top regulator of a module and that is also associated

with survival is a deletion peak in region 7q34 (p=0.0014, FDR=0.13). It is the

top regulator of the inflammatory response module (1123, fig. 4-11), already referred

above (fig. 4-8)). This deletion peak contains the genes PRSS1, PRSS2 and PRSS3P2,

trypsinogen genes that are localized to the T cell receptor beta locus on chromosome

7.

Among the altered regions, there are in total seven gene deserts. For example,

the most frequent aberration in our model was deletion peak in region 2q33.3, a gene

desert that would be interesting to further investigate. Generally, these regions appear

to be depleted of conserved elements, which is not surprising since they are in gene

deserts. A total of ~ 9600bp are in the conserved regions (- 1.1% of the regions),

where in random genomic regions we would expect to get ~ 4.5%. Interestingly, one

of the hits is in deletion peak in chromosomal region 2p16.3 and overlaps with a large

intergenic noncoding RNA.

The CNAs did not split the gene expression in the modules as clearly (see e.g.

4-11B) as when we used mRNA or miRNA profiles for the regulatory programs (an

ideal signature would be, for example, the upregulation of target genes when a region

is amplified). This problem may be due to the distinct nature of the two datasets

(discrete vs. real-valued measurements). Therefore we considered an alternative

approach to study driver alterations. We looked for genes in the regulatory programs

that were located in amplified or deleted regions, since the same gene may be targeted

genetically (amplified/deleted) or epigenetically (up/down regulated). We found that

40 of the 231 regulator genes that were associated with at least with one module by

Module Networks are in amplified or deleted regions. In particular, the following
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genes and were chosen as top regulators in regulation programs: BCL6 (module 716),

CD63 (modules 860 and 1075), CREBL2 (modules 920 and 969), MINKi (modules

740, 842 and 1017), DKFZP564K0822 (module 1111) and G1O (module 1267).

Overall, the integration of CNAs with gene expression profiles can give insights of

how the malignant phenotype relates to genetic aberrations from which it is likely to

have originated.

4.9 Design of experimental validation of biological

findings

We decided to focus on the glycolysis and the oxphos/mitochondria modules for fur-

ther validation given the known role of the modules' regulators. In order to test

whether the predicted regulators for these modules have a functional role, we suggest

a few experiments. First, we looked for cell lines that were high or low expressed

in these contexts. From the Broad-Novartis Cancer Cell Line Encyclopedia [129] we

collected two gene sets, with the genes in modules 782 and 969, comprising 16 cell

lines representative of the histology subtype DLBCL. We performed a Kolmogorov-

Smirnov (K-S) test on the expression of the probes in these two gene sets relative

to background of all probes on array. We then sorted the cell lines by the P-values

of the test and scored the genes by correlation to the K-S P-value vector. Then

the genes were sorted by the correlation values. From these results we suggest to

use cell lines SUDHL5, NUDHL1, SUDHL4, Pfeiffer, A4FUK to knockdown genes

COPS5, COPS4, MYCBP, MYC, CREBL2, CREB3L2, RAP1A, RAPIB, and mea-

sure growth and gene expression. These experiments will test whether cell growth

and signature genes' expression are altered after these knockdowns in these cell lines.

These experiments are ongoing.
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4.10 Conclusion

In the past few years, the importance of data integration has increased, due to the

rapidly increasing amount of genomic and other high throughput data. However,

data from different sources are subject to different noise levels due to difference in

technologies, platforms and other systematic or random factors affecting the exper-

iments. Thus, data might have different qualities and a naive combination of data

is not appropriate in such cases. In addition, the several formats and dimensions in

which data are produced can make simple merging not applicable and in some cases

impossible.

Here, we propose a conceptual framework for genomic data integration. In par-

ticular, we reconstruct an integrative model of genetic aberrations, miRNA and reg-

ulator genes that may explain expression levels in DLBCL. We first use the Module

Networks procedure to learn a model that associates modules of co-expressed genes

with 'regulatory programs' that use a combination of transcription factors and signal-

ing molecules. We further extend this approach to integrate other datasets, namely

miRNA expression and DNA copy-number information. In particular, the effect of

miRNAs on cell pathology and physiology is likely to be complex given the fact that

their activity is exerted in a one-to-many fashion (each miRNA can control transla-

tion of tens or even hundreds of different coding genes) and that a single gene can be

controlled by more than one miRNA.

Among other findings, our analysis associates miR152 and CD63 with survival,

links MYCBP and COPS5 with a module of genes enriched for oxidative phosphoryla-

tion and mitochondrial functions, and CREBL2 with a glycolysis module. The model

raises concrete testable hypotheses which can be tested by perturbation experiments:

for example, using RNA interference to interrogate whether decreased expression of

individual regulators alters the expression of target genes.

Overall, our analysis demonstrates the discovery potential of systems-level ap-

proaches and represents an essential component of a rational strategy for identifying

drug mechanisms and developing new diagnostic tests and therapeutic approaches.
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4.11 Figures and tables
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Figure 4-1: Analysis flow. Unsupervised reconstruction of transcriptional modules was
performed with the Module Networks algorithm using transcription factors and signaling
molecules as candidate regulators. The modules were utilized to study enrichment and
to search for regulation programs with miRNAs and copy number alteration profiles. The
results generate hypotheses about potential DLBCL drivers and genes associated with prog-
nosis.
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Figure 4-2: The average Bayesian Score per gene, as a function of module number, inferred
with the Module Networks algorithm. We chose 100 modules, the model whose Bayesian
score was 85% of the best score.
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Figure 4-3: Birdseye view of the 100 modules. The modules are shown as horizontal
strips (there are 100 such strips and thus 100 modules), and for each module, its samples
are shown sorted by the regulatory program with each split in the tree shown by separate
blocks separated by yellow lines.
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Figure 4-4: Global view of the 100 modules (rows) and 110 samples (columns) generated
with the Module Networks algorithm and hierarchically clustered; the heatmap presents the
average expression of the genes in each module in each sample.
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' ' '., '
Top Regulator # genes

module
in # samples

side of split
# samples right
side of split

746 RAP2B 5 77 33 0.00011 0.0077

926 OPHNI 29 6 104 0.00016 0.0077

1075 CD63 39 69 41 0.00043 0.014

716 BCL6 55 64 46 0.004 0.1

1201 ZMYND11 25 60 50 0.0092 0.17

1011 PGF 16 30 80 0.011 0.17

MIR- 152
MIR-152
MIR-19b
MIR-27b
MIR-27b
MIR-223
MIR- 152
MIR-93
MIR-152
MIR-152
LET-7d
LET-7e
MIR-24
LET-7b
MIR-352
MIR-352
MIR-352
MIR-352
MIR-424
MIR-424
MIR-223
MIR-223
MIR-26a
MIR-26a
LET-7d

MIR- 140Star
LET-7b
MIR-93
LET-7d
LET-7d

10
28
23
24
18
38
14
5
25
44
32
18
39
25
64
53
128
25
13
7
32
37
49
47
40
46
19
29
57
44

65
70
13
78
78
51
68
41
69
69
71
37
48
52
64
64
64
44
42
42
67
67
51
51
44
47
71
16
56
72

18
13
70
5
5
32
15
42
14
14
12
46
35
31
19
19
19
39
41
41
16
16
32
32
39
36
12
67
27
11

0.0014
0.0028
0.0031
0.0035
0.0035
0.0089
0.013

0.0164
0.0168
0.0168
0.0235
0.0239
0.0279
0.0292
0.0328
0.0328
0.0328
0.0354
0.0402
0.0402
0.0435
0.0435
0.0486
0.0486
0.0522
0.0544
0.0584
0.067
0.0744
0.075

0.0696
0.0696
0.0696
0.0696
0.0696
0.147
0.166
0.166
0.166
0.166

0.1911
0.1911
0.1911
0.1911
0.1911
0.1911
0.1911
0.1945
0.1959
0.1959
0.1959
0.1959
0.2007
0.2007
0.2067
0.2071
0.2142
0.2369
0.2474
0.2474

Table 4.1: List of modules whose top regulator in

prognosis.

the regulatory program predicts survival
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Module ID

963
999
920
927
987
1123
1093
746
860
1249
1231
908
1075
1201
782
848
1099
1267
1105
1171
975
1081
854
933
1261
884
830
926
1057
788 I I ,

left P-value
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Chapter 5

Conclusions

5.1 Summary

In this thesis we present several approaches to systematically reconstruct, validate

and refine a regulatory circuit. We take advantage of recent advances in genomics to

advance our understanding of the molecular mechanisms controlling gene expression

programs in dendritic cells and cancer.

In Chapter 2, we use gene expression data and knockdowns to reconstruct a func-

tional regulatory network in mouse dendritic cells exposed to various pathogens. Link-

ing gene expression to the response of a specific cell type after exposure to a pathogen

may facilitate therapeutic targeting of specific pathways to enhance human vaccine

efficacy or to combat the drivers of a disease. We first used microarrays to character-

ize transcriptional responses of dendritic cells to various pathogens at different time

points. Then, building on the framework of probabilistic graphical models and the

elastic net (LARS-EN) regression, we learned an observational model of gene regu-

lation, identifying candidate regulators that act on target genes. The expression of

these regulators was then reduced by > 75% using lentiviral small hairpin RNAs in

dendritic cells. Then, a gene expression signature was measured at a selected time

point, after exposure to a single treatment that activated many of the pathogen re-

sponses. The functional regulatory network reconstructed from these data agreed with

the observational model only to a certain extent. The large amount of false-positive
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interactions of the observational model is due to the fact that a correct regulator

had gene expression profiles that were indistinguishable from other regulators, a clear

shortcoming of models lacking functional approaches.

Each perturbation experiment associates a perturbed regulator with targets that

are repressed or induced by the perturbation. However, it is expected that these

include both direct and indirect targets. To distinguish those, we introduce in Chapter

3 the algorithm Exigo, used to 'prune' likely indirect interactions from perturbation

screens. We used a matrix representation of the network topology to evaluate the

number of self-avoiding random walks that can link a pair of connected nodes in

the original network constructed to describe a set of perturbation experiments. This

gives rise to a reference matrix that is used to generate a set of 'equivalent' networks

consistent with experiments. The method improves on currently available methods to

characterize parsimonious network topologies because Exigo can also analyze global

effects of edge removal in networks. Even though Exigo is not itself a network inference

procedure (but rather a method to distinguish direct from indirect interactions from

experimental screens), we show that combining it with a state-of-the-art network

inference method significantly improves inference results.

Lastly, in Chapter 4, we provide a system-level dissection of regulatory mecha-

nisms in tumorigenesis. In particular, we built a module network for diffuse large

B-cell lymphoma using multiple high-throughput assays (gene expression microar-

rays, DNA copy-number SNP arrays, and microRNA arrays) and clinical data. Our

analysis identified several modules enriched for functional categories and predicted

novel genes and microRNAs that have never been associated to this cancer type.

We are conducting an ongoing perturbation screen to confirm the functions of these

genes and provide a better understanding of how cellular networks are de-regulated

in DLBCL. Overall, this study expands the knowledge about causal and combinato-

rial relationships that characterize molecular signatures in DLBCL, and provides a

systematic approach for the integration and analysis of different types of datasets.
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5.2 Future perspectives

While our work advances the systematic reconstruction of regulatory circuits in mam-

malian systems, the computational approaches are still limited in several aspects.

Here, I will discuss these challenges and propose some directions for addressing them.

The initial observational model connects regulators to target genes based on linear

dependencies between their temporal profiles. The defining property of linear models

is that each regulator contributes to the input of the regulation function independently

of the other regulators, in an additive manner. That is, the change in the level of

each entity depends on a weighted linear sum of the levels of its regulators. Even

though this assumption has a high level of abstraction, it proved, in Chapter 2, to be

efficient in selecting regulators that were functional.

The perturbational dataset further allowed us to test the quality of the initial

observational model, revealing a lot of false positive interactions. This was mainly

due to the fact that a correct regulator had gene expression profiles that were in-

distinguishable from other regulators. This limited explanatory value shows that a

linear model is a crude description of the process of gene regulation. To leverage

the complementary power of both models, a possible next step could be to incorpo-

rate the interventional data in the learning method to refine the initial model. For

example, using a prior to favor edges that correspond to the experimentally iden-

tified interactions in the perturbation screen can lead to a more predictive network

[130]. Furthermore, genes which are affected differently by perturbations should be

more likely assigned to distinct modules, even if their expression profiles are similar,

whereas those with similar regulation may still be separated if their expression is

distinct. The refined model would then give rise to new hypotheses that could be

tested with other single-gene perturbation experiments or combinatorial ones. Itera-

ting this cycle would sequentially improve the model's resolution, providing a deeper

understanding of the specificity of the circuit.

The choice of candidate regulators in the observational model can be diversified

to expand the scope of regulatory circuits. mRNA profiles can assist in identifying
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candidate signaling proteins (e.g., [131]), chromatin factors, large non-coding RNAs,

or RNA-binding proteins. In addition, several other global profiling technologies could

be used in order to expand the circuit components to study, such as mass spectrometry

[132] for metabolite profiling and for measuring protein abundance, and ChIP-seq

[133] and HITS-CLIP [134] (also known as CLIP-Seq) to quantify protein-nucleic

acid binding.

The scale and quality of networks will improve significantly when large-scale per-

turbations are coupled with next-generation sequencing [50]. Multiplexed RNA-Seq

and ChIP-Seq approaches will allow thousands of transcriptomes to be directly linked

to genome-wide binding profiles of thousands of transcription factors. Then it will

be easier to discriminate direct from indirect gene regulation and to interpret net-

works in the context of additional mechanisms of RNA dependent regulation, in-

cluding microRNA binding and alternative splicing. However, the identification of

"non functional " and "redundant" binding is a remaining challenge. Linking predic-

tive networks to function will facilitate the translation of molecular interactions into

therapies.

Since many of the network interactions identified by gene knockdown are likely to

be indirect, we developed Exigo. This method identifies the interactions that are nec-

essary to explain a set of gene-perturbation experiments. Exigo can be extended be-

yond purely topological considerations by explicitly considering the confidence weights

associated with each interaction in the perturbation screen.

In Chapter 4, we present an unsupervised approach for integrating different types

of data. Our integration strategy consisted in examining a module of genes defined

by one data type in the context other data types. In fact, it is particularly difficult

to combine predictors from different date types in a simultaneous learning procedure

since their quality and informativity are usually different. The strategy that we

followed can be useful when the scope of genomic experiments performed is so diverse

that it is not immediately clear how, or even if, one experiment relates to another.

We showed that unsupervised integration can be a powerful discovery tool for finding

regulatory associations, which can then be experimentally validated. However, when
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we searched for regulatory programs of CNAs for the modules (of mRNA profiles), we

noticed that CNAs did not discriminate well between contexts of expression profiles.

This may be due to the fact that we were searching for regulatory programs of discrete-

value measurements to explain modules of real-valued measurements. Thus, it would

be useful to extend the regulatory program search to efficiently evaluate a set of

discrete-valued candidate regulators.

The scale and scope of studies made possible by perturbation screens, along with

the emergence and refinement of genomic, transcriptomic, and proteomic techniques,

are providing a system-wide understanding of gene networks in an increasing number

of specific cell types, tissues, and organisms. This holds great promise for the future

of network reconstruction. The unbiased, systematic and integrative approaches I

describe in this thesis show potential to enhance our understanding of biological

systems. These approaches are general and applicable to almost any biological system,

as well as practical for most laboratory settings, an important step that has broad

implications for the scientific community.
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