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Abstract

Many if not most of the core problems studied in operations management fall into the

category of multi-stage stochastic optimization models, whereby one considers multi-

ple, often correlated decisions to optimize a particular objective function under uncer-

tainty on the system evolution over the future horizon. Unfortunately, computing the

optimal policies is usually computationally intractable due to curse of dimensionality.

This thesis is focused on providing provably near-optimal and tractable policies for

some of these challenging models arising in the context of inventory control, capac-

ity planning and revenue management; specifically, on the design of approximation

algorithms that admit worst-case performance guarantees.

In the first chapter, we develop new algorithmic approaches to compute provably

near-optimal policies for multi-period stochastic lot-sizing inventory models with pos-

itive lead times, general demand distributions and dynamic forecast updates. The

proposed policies have worst-case performance guarantees of 3 and typically perform

very close to optimal in extensive computational experiments. We also describe a

6-approximation algorithm for the counterpart model under uniform capacity con-

straints.
In the second chapter, we study a class of revenue management problems in sys-

tems with reusable resources and advanced reservations. A simple control policy called

the class selection policy (CSP) is proposed based on solving a knapsack-type linear

program (LP). We show that the CSP and its variants perform provably near-optimal

in the Halfin- Whitt regime. The analysis is based on modeling the problem as loss

network systems with advanced reservations. In particular, asymptotic upper bounds

on the blocking probabilities are derived.

In the third chapter, we examine the problem of capacity planning in joint ven-

tures to meet stochastic demand in a newsvendor-type setting. When resources are

heterogeneous, there exists a unique revenue-sharing contract such that the corre-

sponding Nash Bargaining Solution, the Strong Nash Equilibrium, and the system

optimal solution coincide. The optimal scheme rewards every participant proportion-

ally to her marginal cost. When resources are homogeneous, there does not exist a
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revenue-sharing scheme which induces the system optimum. Nonetheless, we propose
provably good revenue-sharing contracts which suggests that the reward should be
inversely proportional to the marginal cost of each participant.

Thesis Supervisor: Retsef Levi
Title: J. Spencer Standish (1945) Professor of Management
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Chapter 1

Introduction

Multi-stage stochastic optimization models have been prevalent in the field of opera-

tions management, whereby operations manager considers multiple, often correlated

decisions to optimize a particular objective function under uncertainty on the system

evolution over the remaining time horizon. Unfortunately, for most of these mod-

els computing the optimal solutions is usually computationally intractable due to

curse of dimensionality. Alternatively, one may resort to designing heuristics that

can generate efficient solutions with possibly good quality. Some of the most suc-

cessful attempts include exact and approximate dynamic programming, stochastic

approximation algorithms, sampling-based methods and robust optimization.

This thesis is focused on constructing provably near-optimal and tractable poli-

cies to several core models in operations management, in particular, in the areas

of inventory control, revenue management and capacity management. These algo-

rithms are computationally tractable and admit worst-case performance guarantees.

The notion of worst-case performance guarantees has been used extensively in com-

puter science in the analysis of approximation algorithms for combinatorial NP-hard

problems (Vazirani (2001)). Put formally, an algorithm is called an a-approximation

algorithm or is said to have a worst-case guarantee of a (for some constant a > 1) if

it is a polynomial time algorithm, and for any instance of the problem the algorithm

is guaranteed to provide a solution with cost that is at most a times the optimal cost.

Traditionally, approximation algorithm techniques have been applied primarily
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to deterministic combinatorial optimization problems. The work on approximation

algorithms for stochastic combinatorial problems goes back to the work on stochastic

scheduling problem of Mdhring et al. (1984a) and Mhring et al. (1984b) and the more

recent work of Mhring et al. (1999). Recently, there has been a growing stream of

approximation results for several two-stage stochastic combinatorial problems. For a

comprehensive literature review, we refer the readers to Stougie and van der Vlerk

(2003), Dye et al. (2003) and Shmoys and Swamy (2004, 2006a). In contrast, this

thesis is focused on the relatively harder multistage stochastic optimization models,

for which there has been relatively little work (for example, see Dean et al. (2004),

Shmoys and Swamy (2006b), Chan and Farias (2009), Levi et al. (2005, 2007, 2008a,d)

and Levi and Radovanovic (2010)).

The concept of approximation algorithms has been applied to several problems in

operations management, but again primarily to deterministic problems; for examples,

see Silver and Meal (1973), Roundy (1993), and Levi et al. (2006, 2008b,c). Until

recently, there have been relatively few examples of worst-case analysis of heuristics for

stochastic optimization models within operations management (Chen (1999)). In fact,

with relatively few exceptions (e.g. Gallego and van Ryzin (1994), Lu et al. (2006),

Halman et al. (2009), Chu and Shen (2010)), most of the heuristics and algorithms

that have been proposed for operations management models were evaluated merely

through computational experiments on randomly generated instances. This does not

necessarily provide strong indications that the proposed heuristics are good in general,

beyond the instances that were actually tested. In contrast, worst-case performance

analysis has the advantage that it provides a priori and posteriori guarantees on the

quality of the solution produced by the algorithm. Moreover, the performance analysis

provides insights on how to design algorithms that have good typical (empirical)

performance, which in most cases is significantly better than the worst-case analysis.

In this thesis, we will present some of the recent work to develop provably near-

optimal approximation algorithms for operations management models. We shall de-

scribe the respective algorithms and their theoretical (worst-case) and typical (com-

putational) performance analysis. In addition, we shall highlight some of the central
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techniques that have been used, and point out interesting future research directions.

As will be demonstrated, the respective techniques span ideas from many disciplines,

such as optimization, computer science, and stochastic analysis. The discussion in this

thesis is focused on three classes of models, specifically, stochastic lot-sizing problems

and their capacitated counterparts ( Levi and Shi (2009, 2010)), loss network systems

with advanced reservations (Levi and Shi (2011b)) and modeling joint ventures in

operations management (Levi et al. (2011)).

Chapter 1: Stochastic Lot-sizing Problems

We address several classical stochastic inventory control models in the presence of

fixed costs. We develop the first provably near-optimal randomized algorithms for

stochastic lot-sizing problems and capacitated stochastic lot-sizing problems which

are core problems inventory theory. The goal is to coordinate a sequence of orders of

a single commodity, aiming to supply stochastic demands over a discrete finite horizon

with minimum total expected cost, including fixed, ordering, holding and backlogging

costs.

These models capture two very important aspects of managing inventory in prac-

tice, the first being uncertainty and the second being economies of scales. First,

uncertainty is a significant aspect in modeling real life situations. However, model-

ing uncertainty in inventory models usually makes them significantly harder to solve

compared to their deterministic counterparts. Our models allow the most general

exogeneous demand processes including auto-correlated and non-stationary demands

as well as dynamic forecast updates. Secondly, in stochastic lot-sizing models, we

also need to consider fixed cost that arises in many real-life scenarios. Fixed cost

reflects the fact that ordering, production and transportation in large quantities lead

to economies of scales.

The models. Stochastic inventory theory provides streamlined models with the

following common setting. The goal is to coordinate a sequence of orders over a

planning horizon of finitely many discrete periods, aiming to satisfy a sequence of
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random demands with minimum expected cost. The cost consists of a fixed ordering

cost incurred in each period, in which a strictly positive quantity of supply units

is ordered regardless of the size of the order; a per-unit holding cost for carrying

excess inventory from one period to the next; and a per-unit backloqging penalty cost

that is incurred in each period for each unit of unsatisfied demand. Specifically,

at the beginning of each period one needs to decide how many units to order. If

an order is placed then the fixed ordering cost is incurred and the order arrives

after a given lead time of several periods. Then the period demand is observed and

satisfied to the maximum extent possible from the inventory on hand. Excess supply

or unsatisfied demand are carried to the next period incurring appropriate holding and

backlogging costs, respectively. The goal is to find an ordering policy that minimizes

the overall expected costs over the entire horizon. The models studied in this work

capture very general demand structures. In particular, demands in different periods

can be auto-correlated and the information about the joint distribution of future

demands can evolve over time as more information becomes available to the decision

maker. Allowing general demand structures captures many important aspects, such

as forecast updates. However, it usually gives rise to very complex models since the

underlying state space becomes multidimensional, even in simpler models without

fixed ordering costs.

Our contributions. First, we propose a new policy that can be applied under

very general assumptions, i.e., with positive lead times and general demand struc-

tures. The policy is called randomized cost-balancing policy and has a worst-case

performance guarantee of 3. That is, the expected cost of the policy is guaranteed to

be at most 3 times the optimal expected cost., regardless of the specific instance. We

also propose a similar policy for a related model. This model is called the stochastic

lot-sizing problem with uniform capacity constraints. The worst-case performance

guarantee for this model is 6. One of the novel aspects of these policies is the use

of randomized decision rules. Specifically, the policy randomly chooses among differ-

ent ordering quantities. While randomized algorithms have been used extensively for
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many optimization problems, we are not aware of any applications to inventory con-

trol models. The worst-case analysis of these algorithms employs several novel ideas

that provide new insights on the respective stochastic lot-sizing models; we believe

that this will contribute to the future research on these models.

Secondly, we show how these policies can be parameterized to create a broader

class of policies. A simulation based optimization is used to find the 'best' parameters

per a given instance of the problem. This clearly preserves the same worst-case

guarantees. Moreover, computational experiments that we conducted indicate that

it can lead to near-optimal policies that perform empirically within few percentages

of optimal, significantly better than the worst-case performance guarantees.

Chapter 2: Revenue Management of Reusable Resources with

Advanced Reservations

We consider a class of revenue management problems that arise in systems with

reusable resources and advanced reservations. The work is motivated by both tradi-

tional and emerging application domains, such as hotel room management, car rental

management and workforce management. For instance, in hotel industries, customers

make requests to book a room in the future for a specified number of days. This is

called advanced reservation. Rooms are allocated to customers based on their re-

quests, and after one customer used a room it becomes available to serve other cus-

tomers. One of the major issues in these systems is how to manage capacitated pool

of reusable resources over time in a dynamic environment with many uncertainties.

In particular, one wishes to choose the most profitable customers to maximize the

resulting revenue.

Models with reusable resources and advanced reservations are typically very hard

to analyze, particularly due to the existence of advanced reservations. There has been

relatively little related work both on finding provably good policies for these important

models and structural properties of optimal or even practically good policies. In this

chapter, we analyze the performance of conceptually and computationally simple
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policies. We show that they perform provably near-optimal in the Halfin- Whitt (see

Halfin and Whitt (1981)) heavy-traffic regime. That is, the expected long-run revenue

of the policy is guaranteed to obtain at least a constant fraction of the optimal revenue

regardless of the input instance. Moreover, the analysis builds upon novel approaches

to analyze the important class of loss network models with advanced reservations. The

latter class of models is fundamental in the analysis of many applications in operations

management, communication networks and other domains. There has been very little

known about the structural properties of models with advanced reservations, and we

believe that our work could open new opportunities to analyze additional models.

The models. There is a single pool of resources of integer capacity C that is used to

satisfy the demands of M different classes of customers. The customers of each class

arrive according to an independent Poisson process with a specific class-dependent

rate. Each customer requests to reserve one unit of the capacity for a specified service

time interval in the future according to her class.

Consider a customer of class-k arrives at the system at some random time, re-

questing to reserve a service time interval in the future. The time between her arrival

and her requested start of service is distributed according to a reservation distri-

bution, while her service time is distributed according to a service distribution. In

this model, we assume that the reservation distribution and the service distribution

are arbitrary discrete distributions that could be correlated per each customer, but

are independent of the arrival process and between customers. If the request is ac-

commodated, then upon the arrival of each customer a decision is made whether to

accommodate the request. During the time a customer is served, the requested unit

cannot be used by any other customer; after the service is over, the unit becomes

available again to serve other customers. If the resource is reserved, the customer

pays a class-dependent revenue rate per unit of service time. The resource can be

reserved for an arriving customer only if upon her arrival there is at least one unit of

capacity that is available (i.e., not reserved) throughout her requested service interval

in the future. Specifically, a customer's request can be satisfied if the maximum num-
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ber of already reserved resources over the requested service interval is smaller than

the capacity C. However, customers can be rejected even if there is available capacity.

Rejecting a customer now possibly enables serving more profitable customers in the

future. Customers whose request is not reserved upon arrival are lost and leave the

system. The goal is to find a feasible admission policy that maximizes the expected

long-run revenue rate.

Like many stochastic optimization models, one can formulate this problem using

a dynamic programming approach. However, even in special cases (e.g., no advanced

reservations allowed and with exponentially distributed service times), the resulting

dynamic program seems computationally intractable because the corresponding state

space grows very fast. This is known as the curse of dimensionality. Thus, finding

provably good policies is a very challenging task.

Our contributions. The contributions of this chapter are two-fold. First, we em-

ploy a simple knapsack linear program (LP) to devise a conceptually simple policy

that is called the class selection policy (CSP). The optimal solution of the LP guides

the policy regarding which classes of customers should be admitted service and which

ones should be declined service. A similar policy has been analyzed before by Levi

and Radovanovic (2010) for models without advanced reservations that are signifi-

cantly easier. In fact, the analysis in Levi and Radovanovic (2010) does not carry

through to models with advanced reservations. Instead, we develop an entirely new

analysis that shows the policy performs provably near-optimal in the Halfin-Whitt

heavy-traffic regime (C = p + 3#/p + o(p) - oc, where 3 > 0 is a scaling factor.)

In particular, the CSP is guaranteed to obtain at least <b(#) of the optimal long-run

revenue in the Halfin-Whitt regime, respectively. (Note that <b(.) is the cumulative

density function of a standard norminal. Thus, <b(#) approaches 1 when # is large.)

Moreover, we propose a modified version of CSP that is guaranteed to asymptotically

obtain 1 - e fraction of the optimal revenue, for every fixed e > 0.

Secondly, the analysis approaches we develop are based on modeling the prob-

lem as a loss network system with advanced reservations (specifically, a M/G/C/C
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loss system with advanced reservations). These models are concerned with the set-

ting in which customers arrive to the system according to a stochastic process and

are being served as long as there is available capacity. Customers who find a fully

utilized system are lost (see, for example, the survey paper by Kelly (1991)). We

are able to derive explicit upper bounds on the steady state blocking probability, i.e.,

the probability that a random customer at steady state will find a fully utilized sys-

tem, and analyze them asymptotically in the above regimes. To the best of our

knowledge, there have been very few successful attempts to characterize the blocking

probabilities for loss network models with advanced reservations (see, for example,

Coffman-Jr et al. (1999) and Lu and Radovanovic (2007a) that studied several special

cases). The assumptions in our model are fairly general: a time-homogeneous Pois-

son arrival process. a general finite discrete service distribution and a general finite

discrete reservation distribution. Models with advanced reservations are significantly

harder to analyze than those without advanced reservations. One of the major dif-

ficulties in models with advanced reservations is the fact that a randomly arriving

customer effectively observes a nonhomogencous Poisson process that is induced by

the already reserved service intervals. Moreover, analyzing the blocking probability

of an arriving customer requires considering the entire requested service interval in-

stead of the instantaneous load of the system. Analyzing the load over an interval

immediately introduces correlation that is challenging to analyze. The upper bound

on the blocking probability is obtained by considering an identical system with in-

finite capacity, where all customers are admitted (a M/G/oo system with advanced

reservations). The probability of having more than C customers reserved in the in-

finite capacity system provides an upper bound on the blocking probability in the

original system; we call this the virtual blocking probability. Through an innovative

reduction to a random walk setting, we obtain an exact analytical expression for this

virtual blocking probability and then analyze it asymptotically. The analysis of the

virtual blocking probability is tight and constitutes a contribution for the analysis of

M/G/oo systems with advanced reservations.
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Chapter 3: Joint-ventures in Operations Management

A proliferation of joint ventures has been witnessed across the globe since last decade

(see Bamford et al. (2004)). A joint venture is when two or more business partners

pool their resources and expertise to achieve a particular goal for a contractual pe-

riod of time. Joint ventures stand in the middle ground between non-cooperative

competition and merging. They provide companies with the opportunities to gain

new capacity and expertise, enter related businesses or new geographic markets, gain

new technological knowledge access to greater resources, and share risks with other

venture partners.

The models. We consider settings where n players take part in a joint venture of

capacity pooling seeking to satisfy random demand. Each player contributes one type

of resource. We distinguish two types of resource pooling in joint ventures, depending

on whether the resources are heterogeneous or homogeneous. When resources are

heterogeneous, they are not substitutable. Thus, the effective capacity of a joint

venture is limited to the the minimum level of resource contributed among all the

players. In other words, the lowest contribution by one player becomes the bottleneck

in planning the capacity for the joint venture. On the other hand, when resources are

homogeneous, the resources pooled from all the entities are perfectly substitutable

and the overall effective capacity of the joint venture is determined by summing up

the individual contributions.

Consider n players building capacity (according to the different resource pooling

schemes) to meet stochastic demand in a newsvendor-type setting. That is, stochastic

demand is satisfied by the pooled capacity to the maximum extent possible. Each

satisfied unit of demand incurs a revenue. Revenue-sharing contracts are very common

in practice, whereby each player receives a fixed fraction of the expected collective

revenue. The profit of each player is the fraction of the revenue allocated to her minus

the cost. In addition, each player incurs a cost that is convex and increasing in her

investment level.

For a. pre-fixed revenue-sharing contract, we examine the capacity investment
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problem by using the concepts of Nash equilibrium from non-cooperative game the-

ory and also Nash Bargaining Solution from cooperative game theory. These are

compared to the system optimum that is obtained if all the players would act as one

centrally coordinated unit. We are interested in finding an optimal revenue-sharing

contract that aligns the selfish objectives and incentives of the n separate players

and induces the system optimum. We also quantity the loss of efficiency (price of

anarchy) if such a contract does not exist. Finally we study the setting in which both

the revenue sharing and capacity investments are negotiated simultaneously.

Our contributions We have shown that in joint ventures with heterogeneous re-

source pooling, any Nash equilibrium induces an equal contribution from every player,

despite of them being asymmetric. The intuition is that since the revenue received

by each player depends solely on the bottleneck capacity (minimum capacity con-

tributed by some single player) when resource-sharing is heterogeneous, any further

investment beyond the bottleneck capacity only increases her cost and decreases her

profit.

Although multiple Nash equilibria could exist, we show that there always exists

a unique Strong Nash equilibrium. Next, we focus on a Nash Bargaining model

which is a natural framework to define and design fair assignment of the capacity

investment levels between multiple players. We conclude that there exists a unique

revenue sharing contract such that the corresponding Nash Bargaining Solution, the

Strong Nash equilibrium, and the system optimal solution coincide. This revenue

sharing contract indicates that the award each party receives must be equal to the

ratio of her marginal cost to the total marginal cost bore by all partners evaluated at

the optimal investment level.

For joint ventures with homogeneous resource pooling, we first prove some struc-

tural properties on the effective capacity under any demand distribution with convex

costs. The analysis is challenging as the investment of each player could only be

determined by solving a system of implicit equations. We show that joint venture al-

ways underinvests as the effective capacity is always lower than that of a coordinated
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setting.

We then focus on quadratic-linear cost functions and show that, through an

intercept-argument, the effective capacity in a joint venture with respect to any rev-

enue sharing ratio is at least 1/n of the optimal level. Moreover, the ratio between

the capacity level could be upper bounded in terms of the cost asymmetry between

the two players and the revenue sharing ratio. While we show that there does not

exist a fixed marginal revenue sharing contract which can coordinate the players, we

propose an interval for the revenue sharing ratio which induces an outcome that is

guaranteed to achieve at least 50% of the optimal profit for a 2-player model. This

interval depends on the cost asymmetry between the two players and the demand

concentration.

Next, we consider general convex cost in the homogeneous resource pooling model

with an arbitrary number of asymmetric players. We show that a lower bound to the

efficiency of the original setting with the nonlinear convex costs is that of a modified

setting with linear costs, where the coefficients are equal to the marginal cost of each

player evaluated at the Nash equilibrium of the original problem. As a result, we

show that the comparative analysis on profit can be reduced to analyze the joint

investment level made in the Nash and the system in the setting with linear costs.
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Chapter 2

Stochastic Lot-sizing Problems

2.1 Introduction

In this paper, we develop new provably near-optimal algorithms for stochastic in-

ventory control models with fixed costs, general demand distributions and dynamic

forecast updates. Fixed costs arise in many real-life scenarios, and reflect the fact that

ordering, production and transportation in large quantities lead to economies of scales.

Specifically, we study several general variants of the classical stochastic lot-sizing prob-

lem. Finding optimal policies in these settings is often computationally intractable.

Instead, we develop new algorithmic approaches that yield a 3-approximation, i.e.,

they have a worst-case performance guarantee of 3. This implies that the algorithms

are guaranteed to have expected cost at most three times the optimal expected cost,

regardless of the input instance.

2.1.1 Contributions

The new algorithmic and performance analysis approaches that are developed in this

paper depart from the previous work of Levi et al. (2007), and provide multi-fold

contributions to the study of stochastic inventory control as well as more generally

to the design and analysis of randomized algorithms. The paper extends the recent

stream of work to develop cost-balancing algorithmic techniques for computationally
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challenging multi-period stochastic inventory control problems. This stream of work

has been initiated by Levi et al. (2007) and subsequent work ( Levi et al. (2005,

2008a, 2007, 2008d)), which primarily studied stochastic inventory control problems

with no fixed costs. The conceptual idea underlying cost-balancing based algorithms

is a repeated attempt to balance opposing costs, for example, in models without fixed

ordering cost one seeks to balance the cost of over-ordering (holding cost) and the cost

of under-ordering (backlogging cost) based on the notion of marqinal cost accounting

schemes ( Levi et al. (2005, 2007, 2008d)) (see also the discussion in Section 2.4.1).

The existence of fixed costs adds a third nonlinear component to the cost, and

makes the cost balancing more subtle. Levi et al. (2007) did study a very special

case of the model studied in this paper, in which orders arrive instantaneously and

demand in each period is known deterministically at the beginning the period before

the ordering decision is made. They proposed the triple-balancing policy that aims to

balance the fixed ordering cost, the holding cost and the backlogging cost over each

time interval between consecutive orders. Their policy is a 3-approximation. However,

the algorithm and the worst-case analysis can be applied effectively only to models,

in which there is no lag, commonly called lead time, from when an order is placed

until it arrives. In fact, in models with positive lead times the assumption in Levi

et al. (2007) is equivalent to knowing deterministically the cumulative demand over

the lead time. This is clearly a very restrictive assumption, since in many scenarios

forecasting the demand over the lead time is the major challenge. Moreover, in Section

2.3.2, we show that if this assumption does not hold, the triple-balancing policy can

perform arbitrarily worse than an optimal policy. This stands in contrast to most

of the analytical work done on inventory models with backlogged demand, for which

the extensions from models with no lead time to models with positive lead time are

often immediate.

To address the nonlinearity induced by the fixed costs, a novel randomized deci-

sion rule is employed to balance the expected fixed ordering costs, holding costs and

backlogging costs, in each period. In particular, the order quantity in each period

is decided based on a carefully designed randomized rule that chooses among vari-
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ous possible order quantities with carefully chosen probabilities. To the best of our

knowledge, this is the first randomized policy proposed for stochastic inventory con-

trol policies. Levi et al. (2007) used a straightforward randomized rule for the model

with no fixed costs, but merely as a 'rounding' technique to address the constraint to

order in integer quantities. Unlike the triple-balancing policy that balances the costs

over intervals, the newly randomized policy balances the costs in each period. Like

the triple-balancing policy, the randomized cost-balancing policy proposed in this pa-

per has a worst-case guarantee of 3, but this holds under very general assumptions,

i.e., general demand distributions and positive lead times . The worst-case perfor-

mance analysis of the randomized policy employs several fundamental new ideas that

depart from the previous work of Levi et al. (2007). Like the previous work, the anal-

ysis is based on an amortization of the cost incurred by the balancing policy against

the cost of an optimal policy. However, all of the previous work is entirely based

on sample-path arguments. In contrast, the analysis in this paper is based on more

subtle averaging arguments. We believe that the new algorithmic and analysis tech-

niques developed in this paper will turn out to be effective in the design of provably

near-optimal algorithms for other stochastic inventory control problems.

Our proposed randomized policies can be parameterized to create a broader class

of policies. A simulation based optimization is used to find the 'best' parameters

for a given instance of the problem. This preserves the same worst-case guarantees.

Moreover, relatively extensive computational experiments that we conducted indicate

that it typically leads to near-optimal policies that perform empirically within few

percentages of optimal, significantly better than the worst-case performance guaran-

tees.

In addition, the work in this paper contributes to the body of work on randomized

algorithms. The last two decades have witnessed a tremendous growth in the area

of randomized algorithms. During this period, randomized algorithms went from

being a tool in computational number theory to finding widespread applications in

other fields, such as data structures, geometric algorithms, graph algorithms, number

theory, enumeration, parallel algorithms, approximation algorithms and online algo-
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rithms. Part of the reason why randomized algorithms are attractive is the fact that

they are usually conceptually simple and computationally fast. Randomized decision

rules have been used extensively to obtain approximation algorithms with worst-case

guarantees for many deterministic NP-hard optimization problems, including several

examples of deterministic inventory management problems (see for example, Teo and

Bertsimas (1996); Levi et al. (2008c)). In addition, randomized decision rules are

very common in the field of online algorithms (see Borodin and El-Yaniv (1998)),

in which there are used to obtain algorithms with competitive ratios. However, in

spite of the increasing use of randomized algorithms, there have been relatively few

successful attempts to incorporate randomized decision rules to obtain algorithms

for multistage stochastic control problems. Rust (1997) proposed random versions of

successive approximations and multi-grid algorithms for computing approximate so-

lutions to Markovian decision problems. Prandini et al. (1999) designed a randomized

algorithm to obtain an estimate of the probability of aircraft conflict. Bouchard et al.

(2005) studied a maturity randomization technique for approximating optimal con-

trol problems to price American put options. Shmoys and Talwar (2008) proposed

a randomized 4-approximation algorithm of the a priori Traveling Salesman Prob-

lem. Shmoys and Swamy (2006b) gave a fully polynomial randomized approximation

scheme for solving 2-stage stochastic integer optimization problems. However, the

techniques developed in this paper are different and we believe they have a promising

potential to apply in other multistage stochastic optimization models.

2.1.2 Literature review

The dominant paradigm in most of the existing literature has been to formulate

stochastic inventory control problems (including the models studied in this paper)

using a dynamic programming framework. This approach turned out to be effective

in characterizing the structure of optimal policies. For many of these models, it can

be shown that state-dependent (s, S) policies are optimal. The ordering decision in

each period is driven by two thresholds. Specifically, an order is placed if and only

if the inventory level falls below the threshold s. In addition, if an order is placed
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the inventory level is brought up to the threshold S. The thresholds s and S are

determined based on the state of the system at the beginning of the period. Scarf

(1960) and Veinott (1966) have established the optimality of (s. S) policies in models

with independent demands. Clieng and Sethi (1997) have extended the optimality

proof to exogenous Markov-modulated demands that capture cycles and seasonality

to some extent. Callego and Ozer (2001) have shown that (s, S) policies are optimal

under advance demand information, a demand model that allows correlation and

forecast updates.

Unfortunately, the rather simple forms of these optimal policies do not usually lead

to efficient algorithms for computing the optimal policies. There are very few cases, in

which there are efficient algorithms to compute the optimal policies. Federgruen and

Zipkin (1984) proposed an algorithm to compute the optimal stationary (s. S) policy

in a model with infinite horizon and independent and identically distributed demands.

Federgruen and Zheng (1991) described a simple and efficient algorithm to compute

the infinite horizon optimal policy in a continuous-reviewed system with demand that

is generated by a renewal process. (In this setting, (s, S) policies are equivalent to

(R., Q) policies, in which one places an order of Q units, whenever the inventory level

drops below U.) For other more complex variants of the model, there are currently

no known exact algorithms, but only heuristics. Bollapragada and Morton (1999)

proposed a simple myopic policy, assuming that the demands in different periods have

the same form of distribution function with the same coefficient of variation but with

different means. Gavirneni (2001) designed an efficient heuristic to compute (s. S)

policies for nonstationary and capacitated model. Song and Zipkin (1993) considered

uncapacitated models with exogenous Markov-modulated Poisson demand. They

developed an algorithm to compute the optimal (s, S) policy using a modified value

iteration approach. However, they impose strong assumptions on the structure and

the size of the state space of the underlying Markov process. Gallego and Ozer (2001)

and Ozer and Wei (2004) considered uncapacitated and capacitated inventory models

with advance demand information, respectively. They proposed backward induction

algorithms to numerically solve problems with a relatively short planning horizon,
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and conducted computational experiments to study the impact of advance demand

information on the optimal policy. (In the computational experiments in Section

5, we have applied the newly proposed policies to the instances they considered.)

Guan and Miller (2008b) proposed an exact and polynomial-time algorithm for the

uncapacitated stochastic economic lot-sizing problem if the stochastic programming

scenario tree is polynomially representable. Guan and Miller (2008a) extended these

algorithms to allow backlogging. Huang and Kiigkyavuz (2008) considered similar

problems with random lead times. These models allow stochastic and correlated

demands. The main limitation comes from the fact that the number of nodes in the

stochastic programming scenario tree (the size of input) is likely to be exponentially

large in the size of the planning horizon. To the best of our knowledge, all of the

existing heuristics and algorithms, either lack any performance guarantees or can be

applied under restrictive assumptions on the demand distributions or the input size.

2.2 The Periodic-Review Stochastic Lot-Sizing In-

ventory Control Problem

In this section, we provide the mathematical formulation of the stochastic lot-sizing

inventory control problem. We consider a finite planning horizon of T periods indexed

t = 1,..., T. The demands over these periods are random variables, denoted by

D...., D, and the goal is to coordinate a sequence of orders over the planning

horizon to satisfy these demands with minimum cost. As a general convention, from

now on we will refer to a random variable and its realization using capital and lower

case letters, respectively. Script font is used to denote sets.

In each period t = 1,. . . T, four types of costs are incurred, a per-unit ordering

cost ct for ordering any number of units at the beginning of period t, a per-unit holding

cost ht for holding excess inventory from period t to t + 1, a per-unit backlogging

penalty bt that is incurred for each unsatisfied unit of demand at the end of period

t, and a fixed ordering cost K that is incurred in each period with strictly positive
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ordering quantity. Unsatisfied units of demand are usually called backorders. Each

unit of unsatisfied demand incurs a per-unit backlogging penalty cost bt in each period

I until it is satisfied. In addition, we consider a model with a lead time of L periods

between the time an order is placed and the time at which it actually arrives. We

assume that the lead time is a known integer L. Following the discussion in Levi

et al. (2007), we assume without loss of generality that the discount factor is equal

to 1, and that ct = 0 and ht, bt 2 0, for each t.

At the beginning of each period s, we observe what is called an information

set denoted by f. The information set f, contains all of the information that is

available at the beginning of time period s. More specifically, the information set f.

consists of the realized demands di. . . , d,_ 1 over the interval [1, s), and possibly some

exogenous information denoted by (wi, .... w,). The information set f, in period s

is one specific realization in the set of all possible realizations of the random vector

F, - (D 1 , .. D 1 , W1, ... , W,). The set of all possible realizations is denoted by

,F,. The observed information set f, induces a given conditional joint distribution

of the future demands (D ,..., DT). For ease of notation, Dt will always denote the

random demand in period t according to the conditional joint distribution in some

period s < t, where it will be clear from the context to which period s it refers. The

index t will be used to denote a general time period, and s will always refer to the

current period. The only assumption on the demands is that for each s = 1,..., T,

and each f. E F,, the conditional expectation E[Dt I f,] is well defined and finite for

each period t > s. In particular, we allow non-stationary and correlation between the

demands in different periods.

The goal is to find an ordering policy that minimizes the overall expected dis-

counted fixed ordering cost, holding cost and backlogging cost. We consider only

policies that are nonanticipatory, i.e., at time s, the information that a feasible pol-

icy can use consists only of f, and the current inventory level. The superscripts PL

and OPT will be used to refer to a given feasible policy PL and an optimal policy,

respectively.

Given a feasible policy PL, the dynamics of the system are described using the
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following notation. Let D[,,t] to denote the cumulative demand over the interval

[s, t], i.e., D[s,t] - = , Dj.In addition, let NIJ denote the net inventory at the end

of period /. Thus, NI+ = max(NIt, 0) and NI- = max(- NIt,0) are net holding

inventory and net backlog quantities in period t, respectively. Since there is a lead

time of L periods, one also considers the inventory position of the system, which

is the sum of all outstanding orders plus the current net inventory. Let Xt be the

inventory position at the beginning of period t before the order in period t is placed,

i.e., X Nh:= N _1 + L Q (for t = 1, . . . , T), where Qj denotes the number of

units ordered in period j. Similarly, let Y be the inventory position after the order in

period [ is placed, i.e., Y = Xt + Qt. Note that for every possible policy PL, once the

information set ft E Ft is given, the values nit-, x and yt are known, where these

are the realizations of NJta, Xt and Y, respectively. At the end of each period t,

the costs incurred are htNIt+ holding cost and btNI- backlogging cost. In addition,

if the order quantity Qt > 0, then the fixed ordering cost K is incurred. Thus, the

total cost of a feasible policy PL is

~ 2PL ->3(hNJPL + N PL + t K (QPL > 0)) (2.1)W(PL) (htN~tu+ +btNI L + K -1Qt
t= 1

2.3 Triple-Balancing Policy - Bad Example

In this section, we briefly discuss the triple-balancing policy proposed by Levi et al.

(2007) for a special case of the stochastic lot-sizing problem. The discussion sheds

light on the limitation of this policy, and motivates the newly proposed randomized

cost-balancing policy discussed in section 5. Levi et al. (2007) considered a model

in which in each period / - 1,. . . , T, conditioning on some information set ft E t,

the conditional distribution of future demands (Dt,.. . , DT) is such that the demand

Dt is known deterministically (i.e., with probability one). This implies that the

order in period t is placed after the demand in that period is already known. The

underlying assumption here is that at the beginning of period t, our forecast for

the demand in that period is sufficiently accurate, so that we can assume that it is
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given deterministically. A primary example is make-to-order systems. However, this

assumption does not hold if there is a positive lead time and one considers Dt+L

instead.

2.3.1 Description of the policy

First we briefly discuss the original triple-balancing policy in Levi et al. (2007), de-

noted by TB. This policy is based on the following two rules.

(I) When to order. At the beginning of period t, let s be the last period in which

an order is placed before t. An order is placed in period t if and only if by not placing

it in period t, the cumulative backlogging cost over the interval (s, t] will exceed K.

Once a new order is placed, s is updated to be equal to t. Observe that since, at

the beginning of each period t, the conditional joint distribution of future demands

is such that Dt is known deterininistically, this procedure is well-defined. Notice that

an optimal policy will never incur any backlogging costs in a period when an order is

placed, since the cumulative backlog quantities are known prior to placing the order.

(II) How much to order. Suppose that an order is placed in period t < T. Focus

on the holding cost incurred by the units ordered in period t over the interval [t, T].

The order is set to the maximum quantity q[, such that the conditional expected

marginal holding cost incurred does not exceed K. (The exact definition of marginal

holding cost is provided in Section 4.1.)

Worst-case Analysis. The analysis in Levi et al. (2007) showed that the triple-

balancing policy has a worst-case performance guarantee of 3. In particular, one

can show that, for each time interval between two consecutive orders of the triple-

balancing policy, the expected cost incurred by an optimal policy over that interval

is at least one-third of the expected cost incurred by the triple-balancing policy over

the same interval. However, this is only valid under the restrictive assumptions of no

lead times and period demand known at the beginning of the period.
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If the period demand is not known at the beginning of the period (or there is a

positive lead time), then (I) above is enforced on expectation. It turns out that this

policy can perform arbitrarily bad compared to an optimal policy and does not have

a worst-case performance guarantee where the assumptions are dropped. As a result

this policy may not be applicable in more general and realistic settings. The example

that shows this fact is discussed in section 3.2.

2.3.2 A bad example

The triple-balancing policy can be applied in general settings and one might hope

to obtain a worst-case performance guarantee in general. However, the following

example shows that such guarantee fails to exist in general. Consider the following

instance with infinite horizon T = oc, let ht - h = 0, b= b = 1, Vt E Z+, L = 1 and

K E Z+, and

AK with probability
Dt = A K(2.2)

0 otherwise

where c is a positive number satisfying 0 < e < K. Moreover, the demand drops to 0

in all periods after the first positive demand. Note that the per-unit holding cost is

h = 0, and therefore there is no penalty for holding extra units in the inventory. The

optimal policy orders AK units at the beginning of period 1. The demand AK will

eventually come in some period with probability 1. Thus, the optimal cost incurs fixed

ordering K only. However, if no demand has arrived, the cumulative backlogging cost

is 0, and the expected backlogging cost upon not ordering is K - E. This implies that

the policy does not place any orders before the positive demand AK occurs. Thus, the

policy incurs a cost of K + AK. If we let A -a oc, the cost ratio goes to 0G, indicating

that the triple-balancing policy can perform arbitrarily bad compared to the optimal

cost, and does not admit a worst-case guarantee. This example illustrates that the

policy fails to make a good ordering decision, when there is a potential impulse in

demand with a positive but small probability. Thus, the policy may incur potentially

a very high backlogging cost.
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2.4 Randomized Cost-Balancing Policy

One of the difficulties in the stochastic lot-sizing problem is the need to balance the

nonlinear fixed ordering cost against the backlogging cost that may have large spikes

because of the variability of the demands. The new policy we propose aims to strike a

better balance between these costs by randomization. The policy is called randomized

cost-balancing policy. To strike this balance the policy employs randomized decision

rules. That is, in each period, the decision whether to order and how much to order

is based on a suitably chosen randomized decision rule; the policy chooses among

various order quantities with certain respective probabilities. Before the description

of the new policy, we briefly discuss a marginal cost accounting scheme that is used to

employ the policy. This cost accounting scheme was introduced by Levi et al. (2007).

2.4.1 Marginal cost accounting scheme

Following Levi et al. (2007), we next describe an alternative cost accounting scheme

that is called marginal cost accounting scheme. Unlike (2.1) that decomposes the

cost by periods, the main idea underlying this approach is to decompose the cost by

decisions. That is, the decision in period t is associated with all costs that, after that

decision is made, become unaffected by any future decision, and are only affected by

future demands. This may include costs in subsequent periods.

Focus first on the holding costs and assume, without loss of generality, that units in

inventory are consumed on a first-ordered first-consumed basis. This implies that the

overall holding cost of the q, units ordered in period s (i.e., the holding cost they incur

over the entire horizon [s, TI) is a function only of future demands, and is unaffected by

any future decisions. Specifically. the total marginal holding cost associated with the

decision to order qs units in period s is defined to be Ejs+L hi (q- (D,, -z)+)+

Note that at the time the order q, is made, the inventory position x. is already

known and indeed the marginal holding cost is just a function of future demands.

In addition, once the order in period s is determined, the backlogging cost a lead

time ahead in period s + L, i.e., bs+L (D[s,s+L] - (Xs+L + qs))+, is also affected only
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by the future demands. This leads to a marginal cost accounting scheme. For each

feasible policy PL, let HFL be the holding cost incurred by the Q/L units ordered

in period I (for I = 1, .. , T) over the interval [t, T], and let fPL be the backlogging

cost associated with period t, i.e., the cost incurred a lead time ahead in period t + L

(t = 1 - L, .. ., T - L). That is,

T

HPL = Ht(QfL) = h (QPL - (Dit,j] - X+ (2.3)

j=t+L

U PL fit(QPL) = bt+L (D[t,t+L - (Xt + QfL))±+ (2.4)

Let %(PL) be again the cost of the policy PL. Clearly, we have

0 T-L
W(PL) = 3 yjPL + (-,o] +H( (K 1(QrL > 0) + H/)L P urL) (2.5)

t=1-L t=1

where H(_oo,ol denotes the total expected holding cost incurred by units ordered be-

fore period 1. We note that the first two expressions Et HfL and H(_o are

not affected by any decision (i.e., they are the same for any feasible policy and each

realization of the demands) and, therefore, we will omit them. Since they are nonneg-

ative, this will not affect our approximation results. Also, observe that without loss

of generality, we can assume that QPL HL= 0 for any policy PL in each period

t - T - L + 1,... , T, since nothing ordered in these periods can be used within the

given planning horizon. We now can write the effective cost of a policy PL as

T-L

W(PL) = (K. 1(Qft >0) + HfL L (26)
t-=1

2.4.2 Description of the policy

To describe the new policy, we modify the definition of the information set ft to also

include the randomized decisions of the randomized balancing policy up to period

t - 1. Thus, given the information set ft, the inventory position at the beginning of

period t is known. However, the order quantity in period t is still unknown because

38



the policy randomizes among various order quantities. We denote the randomized

cost-balancing policy by RB. The decision in each period, whether to order and how

much to order, is based on the following quantities.

" Compute the balancing quantity 4t which balances the conditional expected

marginal holding cost incurred by the units ordered against the conditional

expected backlogging cost in period t + L. That is, St solves

[HRB() fl FIRB(4t) Ift] ,(2.7)

E (Ht I ft]=E(UBt t, -

where II/B and flRB are defined as in Section 4.1, respectively. Let Ot = Ot(ft) 

E[IH 4B(t) t] = Ej[UB(S) ft] denote the balancing cost. The solution to

(2.7) is unique and can be computed efficiently via bi-section search (Levi et al.

(2007)).

" Compute the holding-cost-K quantity 4t that solves E[HB( jt) ft] = K, i.e.,

4t is the order quantity that brings the conditional expected marginal hold-

ing cost to K. Note that ijt can be computed readily since E[//B(' t] is

monotonically increasing.

* Compute E[HfB(qt) ft], i.e., the resulting conditional expected backlogging

cost in period t + L if one orders the holding-cost-K quantity 4t units in period

t.

* Compute E [UHB(0) ft], i.e., the conditional expected backlogging cost in

period I + L resulting from not ordering in period I.

Based on the above quantities computed, the following randomized rule is used in

each period t. Let Pt denote our ordering probability which is a priori random. With

the observed information set ft, the ordering probability pt = Pt I ft in period t is

defined differently in the two cases below.
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Case (I)

If the balancing cost exceeds K, i.e., Ot > K, the RB policy orders the balancing

quantity qftB = 4t with probability pt 1. The intuition is that when Ot > K, the

fixed ordering cost K is less dominant compared to marginal holding and backlogging

costs. Moreover, if the RB policy does not place an order, the conditional expected

backlogging cost is potentially large. Thus, it is worthwhile to order the balancing

quantity qt? - qt with probability pt = 1.

Case (II)

If the balancing cost is less than K, i.e., Ot < K, the RB policy orders the holding-

cost-K quantity (i.e.. q 4t = ) with probability pt and nothing with probability

1 - pt. That is,

qB _ f with probability pt (2.8)

0, with probability 1 - pt

The probability pt is computed by solving the following equation

ptK - pt - E [FB(4t) ft] + (1 ~ pt) -ELYIB(0) ft (2.9)

The underlying reason behind the choice of this particular randomization in (2.9)

is that the policy perfectly balances the three types of costs, namely, the marginal

holding cost, the marginal backlogging cost and the fixed ordering cost associated

with the period t. In particular, since we order the holding-cost-K quantity with

probability pt and nothing with probability 1 - pt, the conditional expected marginal

holding cost in this case is

E[HB (qB) t ptE[HB t ft] + (1 ~ Pt)E[HPB t ptK. (2.10)

By the construction of pt in (2.9), the conditional expected backlogging cost is

E[URB (qPB) ft] ptEH1RB (4t) ft] + (1 - pt)E[1-ItRB(0) ft] = ptK. (2.11)
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Since pt is the ordering probability in Case (II), the expected fixed ordering cost is

ptK. It can be shown that (2.9) has the following solution,

E[IIRB(0) 1 ft]0 < Pt E ft < 1. (2.12)
-EK - E[fJB(Qt) ft] + E[11JfB (0) ft]

The inequalities in (2.12) follows from the fact that Ot < K and 4t > 4t, which implies

that E[HfIB (4t) I ft] < E[FJHR(dt) I ft] - t < K. Figure 2-1 illustrates how the RB

policy computes the ordering probability pt in Case (II) where Ot < K.

This concludes the description of the RB policy. In the next section, we shall

show that the RB policy has an expected worst-case performance guarantee of 3.

Cost )kmarginal holding cos Cost)k

E n(0) ftj Etn(0)|fti

marginal backlogging cost Pt E [ n(q) I ft]+ (1-Pt)E [ n(o)| fti

K ------ ------------------------------ K ----------- ------------------------

Pt K

E n(q)|Ift=------------ --------- -------------- E n(q)| ft -------- ----------------------------
holdin6-cost-K quantity

0 balancing holding-cost-K Size of order (q) 0 pt Probability

Figure 2-1: A graphical depiction of how the RB policy computes the probability of

ordering pt when the balancing cost 0 is below the fixed ordering cost K (Case (II)).

2.4.3 Worst-case analysis

To obtain a 3-approximation, one wishes to show that on expectation the cost of an

optimal policy can 'pay' for at least one-third of the expected cost of the randomized

cost-balancing policy. The periods are decomposed into subsets in which we will

define explicitly. For certain well-behaved subsets, we want to show that the holding

and backlogging costs incurred by an optimal policy can 'pay' for one-third of the

cost incurred by the RB policy. The difficulty arises in analyzing the remaining

subset of problematic periods, for which it is not a priori clear how to 'pay' for their

cost. These problematic periods are further partitioned into intervals defined by each

two consecutive orders placed by the optimal policy. It can be shown that the total
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expected cost incurred by the RB policy in problematic periods within each interval,

does not exceed 3K. This implies that the fixed ordering cost incurred by an optimal

policy can 'pay' on expectation one-third of the cost incurred by the randomized cost-

balancing policy in problematic periods. Next we discuss the details of this approach,

and we defer all proofs to Electronic Companion for ease of presentation.

Let ZPB be a random variable defined as

ZRB. q RB QRB) | Ft] -M a(B t-213Z/?:~114JJB(QB)Ft [I{IRB(QRB) I U]. (2.13)

Note that ZPB is a random variable that is realized with the information set in period

t. Observe that by the construction of the RB policy, the random variable ZPB is

well-defined since the expected marginal holding costs and the expected marginal

backlogging costs are always balanced. That is, the conditional expected marginal

holding cost is always equal to the conditional expected backlogging cost. In the

following lemma we show that the expected cost of the RB policy can be upper

bounded using the ZPB variables defined in (2.13).

Lemma 2.4.1 Let W(RB) be the total cost incurred by the RB policy. Then we have,

T-L

E[W(RB)]<3- E[ZR B214
ti

To complete the worst-case analysis, we would like to show that the expected cost

of an optimal policy denoted by OPT is at least t_1 E[ZB]. This will be done

by amortizing the cost of OPT against the cost of the RB policy. In particular,

we shall show that on expectation OPT pays for a large fraction of the cost of the

RB policy. In the subsequent analysis, we will use a random partition of periods

t = {1, 2, ... T - L} to the following sets:

The set 371H O{t > 8 ; K and YOPT > YRB} consists of periods in which the

balancing cost 89 exceeds K and the optimal policy had higher inventory position

than that of the RB policy after ordering (recall that if 8t > K then the RB pol-

icy orders the balancing quantity with probability 1 and the value Yj is known
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deterministically (i.e., realized) with F).

The set in A {t : Ot 2 K and YOPT - YtB consists of periods in which the

balancing cost exceeds K and the inventory position of the optimal policy does not

exceed that of the RB policy after ordering (see the comment above regarding 31iH).

The set 2H t: Ot < K and Yt < + consists of periods in

which the balancing cost is less than K and, in such periods, the inventory posi-

tion of the RB policy after ordering would be either X/IB if no order was placed, or

X/B _ RB if the holding-cost-K quantity is ordered, depending on the randomized

decision of the RB policy. However, the inventory position of OPT after ordering ex-

ceeds even XRB + QB. (Note again that the quantity QB is known deterministically

(i.e., realized) with Ft.)

Analogous to 2H, the set 2n A {t : 8t < K and <B 2 Yf'T} consists of

periods in which the inventory position of OPT after ordering is below XJ?.

The set 2 {t <K and XB <yOPT < XB +Q } consists of peri-

ods in which the balancing cost is less than K and the inventory position of OPT

after ordering is within (XB, XB + QjB). Thus, whether the RB policy or OPT

has more inventory depends on whether the RB policy placed an order.

Note that the sets (1H - _2M) are disjoint and the union makes a complete set.

Conditioning on ft, it is already known which part of the partition period t belongs.

Next we will show that the total holding cost incurred by OPT is higher than the

marginal holding cost incurred by the RB policy in periods that belong to 1H U 2H,

and that the total backlogging cost incurred by OPT is higher than the backlogging

cost incurred by the RB policy associated with periods within 91m1 U 2n.

Lemma 2.4.2 The overall holding cost and backlogging cost incurred by OPT are

denoted by HOPT and UlOPT, respectively. Then we have, with probability 1,

HOPT > ( HyRB '_(t C $1H U C2H), HOPT > R - 1(E 1n U 2n.

Note that the periods in the set 2M introduce some uncertainties in the relation

between the inventory positions after ordering of the RB policy and OPT. Thus,
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we are unable to carry out an analysis similar to Lemma 2.4.2. For this reason, we

call Y2M a problematic set of periods. Naturally, we also define the non-problematic

set of periods to be 9N - '1H U -7 m U 2n U "2H. The analysis of the problematic

periods in the set 2M will be done in two steps. In the first step, we will conceptually

create a bank account A that will be used to pay some of the cost of the RB policy

in these problematic periods. In particular, for each period t E /2m, we borrow an

amount of ZRB from the bank account. Thus, the total amount of borrowing from

the bank is given by A = , Zt, and so E[A] = [ Z - 1(t E 2M.

The following lemma shows that, with the borrowed amount A from the bank,

the overall holding cost and backlogging cost incurred by OPT exceed ZTL E[Z?BJ.

The next step will be to show that E[A] is at most the expected fixed ordering cost

incurred by OPT. That is,

~T - L I( O TE[A] < E [ K1(QPT>) . (2.16)
t=1

Lemma 2.4.3 The expected holding cost and backlogging cost incurred by OPT plus

the expected amount borrowed from the bank account A are at least z_ E [ZpB]

That is, the following inequality holds

T-L

E (HOPT + HOPT ) + A] > E E [Z?B]. (2.17)
t= 1

By Lemmas 2.4.1 and 2.4.3, the overall holding and backlogging costs incurred by

OPT, plus the borrowed amount A from the bank, account on expectation for one-

third of the overall expected costs incurred by the RB policy. To complete the worst-

case analysis, we will show in Lemma 2.4.4 that the expected amount borrowed from

the bank account does not exceed the expected fixed ordering cost incurred by OPT,

i.e., E [ T-/ K. 1(QOPT > 0)]. We will highlight the key steps involved in proving

this lemma. We decompose the problematic periods in the set 2M into intervals

between ordering points of OPT, and we want to show that, for each such interval,

the fixed ordering cost K incurred by OPT will cover the expected amount borrowed
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from the bank in periods that belong to set 2M. Conditioning on f- (the entire

evoluation of the system excluding the randomized decisions of the RB policy), we

construct a decision tree based on the randomized decisions of the RB policy. We then

show that, by a tree traversal argument and Lemma 2.4.5, the expected borrowing

from the problematic nodes (which belong to the set 2m) within an interval between

ordering points of OPT does not exceed K.

Lemma 2.4.4 The following inequality holds

E[A] E K. 1I(QPT >0)1 . (2.18)
t=1 .

In other words, the expected borrowing E[A] is less than the total expected fixed or-

dering cost incurred by OPT.

Lemma 2.4.5 Let {p,} 1 satisfy the condition 0 < pi < 1 for all 1. Then the

following inequality holds,

p2 + N < 1-p)p k 51 (2.19)
1=2 S=1 (k=1

As an immediate consequence of Lemmas 2.4.3 and 2.4.4, we obtain the following

lemma and theorem.

Lemma 2.4.6 Let W(OPT) be the total cost incurred by the cost-balancing policy

RB. Then we have,
T-L

E[W(OPT)]'> E[Z B1P1[%(O(IT) ] > L-RI (2.20)
t-=1

Theorem 2.4.7 For each instance of the stochastic lot-sizing problem, the expected

cost of the randomized cost-balancing policy RB Zs at most three times the expected

cost of an optimal policy OPT, i.e.,

E[(RB)] < 3 - E[W(OPT)]. (2.21)
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2.5 Numerical Experiments

The randomized cost-balancing policies described above can be parameterized to ob-

tain general classes of policies, respectively. The worst-case analysis discussed above

can then be viewed as choosing parameter values that perform well against any pos-

sible instance. In contrast, find the 'best' parameter values, for each given instance.

This gives rise to policies that have at least the same worst-case performance guar-

antees, but are likely to work better empirically, since we can refine the parameters

according to the specific instance being solved. Using simulation based optimiza-

tion, we have implemented this approach and tested the empirical performance of

the resulting policies. The policies were tested under the model of advanced demand

information proposed by Gallego and Ozer (2001) and Ozer and Wei (2004). To the

best of our knowledge, these are the few papers that report computational results (by

brute-force backward induction algorithm) on the stochastic lot-sizing problem with

correlated demands.

2.5.1 Parameterized policies.

We describe a class of parameterized policies involving parameters 3, -y and Ti where #
controls the holding-cost-j3K quantity, -y controls the ratio of marginal holding costs

and backlogging costs and q controls the level of expected backlogging cost resulting

from not ordering.

* The balancing quantity 4t that solves E[HtB(4t t] = Y -E[rflB(4t) ft t

* The holding-cost-#K quantity q, that solves E[HB(it) | f 3 = K.

* Compute E[17"(4) I ft], and r0. E[HB ftl-

(I) If Ot > # - K, the R13 policy orders q/?B = 4 with probability pt - 1 in period

t.

(II) If O6 < 3 - K, the RB policy orders q B with probability pt and or-

der nothing with probability 1 - pt in period t, where the probability pt -
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r; [R -tIj,+r_ E [UIR t

3 - K - E [UB t t + 1[B ( t

Since T is relatively small, we also introduce an end-of-horizon rule. Suppose we are

in period t, we estimate the total expected cumulative backlogging cost (assuming no

orders are placed) over the interval [t, T]. If this amount is less than K, we do not

order in period t.

2.5.2 Experiment design

Under advance information model, the demand vector in each period I is observed as

D= (Dt,, . .. , Dt,t+N) where Dt,, represents order placed by customers during period

t for future periods s E {t,. .. , t + N} and N is the length of the information horizon

over which we have advance demand information. Note that Dt is a random vector

and is realized only at the end of period t. At the beginning of period t, the demand

to prevail in a future period s (s > t) can be divided into two parts: the observed

demand vector .- 1 D,, and the unobserved demand vector E"_, Dr,s. As a

result, this introduces a correlation between period demands (however the conditional

joint distribution of the future demands is known in each period t). The state space

of the proposed dynamic programming formulation contains the inventory position

and the observed demand vector which explodes exponentially with the length of the

information horizon N when N > L + 2. Gallego and Ozer (2001) verified some

structural properties of the dynamic program via numerical studies for a number of

small instances. The experiments that we performed expand their numerical studies

by incorporating non-zero lead times as well as longer planning horizons. Following

the methodology of Aviv and Federgruen (2001), we generated a total of 90 instances

to test the quality of the randomized-balancing heuristics compared to the optimal

cost. The instances we used have the following combination of parameters: T =

12,15, L = 0,1, 2, N = L + 2, K - 0.5,50,100, h = 1, 2, 3.6, p - 1, 3,6.9 and

(Dtt, Dt,t+1, Dt,t+2) are modeled by Poisson random variables with mean Ao, Ai, A2 .
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2.5.3 Algorithmic complexity

We describe the procedures of finding the optimal parameters for a specific instance

of the problem. First, assume that there exists a positive constant U such that the

optimal parameters #3*, f*, i* are upper bounded by U. In addition, we discretize U

with some step-size A, i.e., [3, E, E [0, U] can only take values as integer multiples of

A. Then we conduct an exhaustive search on a cube of U x U x U for the parameters

/3, 'y and 7. In our numerical studies, U = 10 and A = 0.1 are chosen to be the

upper bound and the resolution for discretization, respectively. The algorithm runs

on every point on this cube, simulates the cost of each parameterized policy and

returns the best possible (#*, -y*, *) that minimize the cost. Secondly, assume that

there exists a positive constant U that serves an upper bound on the balancing and

hold-cost-K quantities. For each t = 1,... , T, the complexity for evaluating marginal

holding cost is 0(T) and the complexity for carrying out bisection search is 0(log U).
The algorithm runs in O(T2 log U), for each set of parameters (13, 'y, 77). Hence,

the algorithm that returns both the optimal parameters and the lowest cost runs

in O(U 3A-T 2 logUg) O(T2 ) since U3 A-a logg is some positive constant. For all

tested instances with T = 12, the average CPU time per test instance on a Pentium

1.58GHz PC is 233s. In contrast, the dynamic programming algorithm takes 1840s

on average per test instance.

2.5.4 Numerical results

The numerical results with (T, L) = (12. 0), (T, L) = (12, 2) and (T, L) = (15, 0) are

tabulated in Table A.1, Table A.2 and Table A.3, respectively (refer to Electronic

Companion). The (*) in both tables indicates that the designated parameters can

take arbitrary numbers without affecting the optimal values of the parameterized

policy. It is observed that (/3*. r*) = (*, *) in all instances where K = 0, since the

holding-cost-#0*K quantity is trivially 0 and therefore the algorithm only considers the

balancing quantities. In some instances where K is relatively large and the holding-

cost-/*K quantity is near-optimal, it is observed that y* = (*) implying that the
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algorithm only orders the holding-cost-#*K quantities. For the rest of instances, the

algorithm uses both the balancing quantity and the holding-cost-K quantity.

In the case where L = 0, on average the parameterized RB policy performs

within 4.6% and always within 7% of the optimal cost for T - 12,15. The numerical

results show that the performance of the parameterized RB policy is insensitive to

the planning horizon T. Moreover, the optimal parameters in the parameterized

RB policy are intuitive: # controls the quantity of each order; -y controls the ratio

in which the marginal holding cost is balanced against the marginal backlogging

cost; q controls the weight put on the do-nothing backlogging cost resulted from riot

ordering. The optimal q* = 9 coincides with the ratio of p to h, which implies that

more weight should be put on backlogging cost so that the ordering probability can

be increased. The optimal * = 2 suggests that the marginal holding cost should be

twice the backlogging cost. The optimal 3* is close to 1 when K is large, implying

that using the holding-cost-K quantity is near optimal. The unparameterized RB

policy (i.e., (#, X, q) = (1, 1, 1)) performs on average within 27% and always within

50% error of optimal cost, which is significantly better than the theoretical worst-

case performance guarantee of 3. The cost ratio is observed to be decreasing in the

magnitude of fixed ordering cost K. In the case where L = 2, the parameterized R13

policy performs on average within 10% and always within 16% error of the optimal

cost. The optimal parameters are similar to those in L = 0. The deviation from the

optimal cost is resulted from stocking more inventory units by the RB policy, as the

lead time induces more uncertainty in future demands. The unparameterized RB

policy performs within 50% (on average 29%) error of optimal cost. It is also noted

that the average CPU time of running the RB policy is insensitive to the planning

horizon T.

2.6 Capacitated Stochastic Lot-sizing Problem

We develop new algorithmic approaches to compute provably near-optimal policies for

multiperiod, uniform-capacitated, stochastic lot-sizing inventory models with stochas-
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tic, non-stationary and correlated demands that evolve over time. Our approach is

computationally efficient and guaranteed to produce a policy with worst-case perfor-

mance guarantee of 6. We also characterize a class of parameterized policies based

on this approach. Empirical studies show that these policies perform close to opti-

mal in computational experiments, which is significantly better than the worst-case

guarantees.

2.6.1 Marginal backlogging cost accounting

In capacitated model, it is no longer true that a mistake of ordering too little in the

current period can always be fixed by decisions made in the future periods. Levi,

Roundy, Shmoys and Truong Levi et al. (2008d) proposed a new backlogging cost

accounting that associates with decision of how many units to order in period t what

is called forced backlogging cost resulting from this decision in future periods.

Consider some period t. Suppose that x is the inventory position at the beginning

of period t and that the number of units ordered in period is qt < u. Let q, be the

resulting unused slack capacity in period t, i.e., qt = u - qt > 0. Focus now on some

future period s > t + L when this order arrives and becomes available. Suppose that

for some realization of the demands. We have that

d[t,,] - (xt + qt + E U) > 0. (2.22)
jG(t,s-L]

This implies that there exists a shortage in period s, and moreover, even if in each

period after period t and until period s - L the orders placed were up to the maximum

available capacity, this part of the shortage in period s would still exist and incur the

corresponding backlogging cost. The actual shortage may be even bigger and equal

to

d[t,s] - (xt + qt + q1) > 0, (2.23)
jE(t,s-L]

(recall that q < u for each period j). In other words, given our decision in period t,

this part of the shortage could not be avoided by any decision made over the interval
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(t, s - L] (clearly, any order placed after period s - L will not be available by time

s). We conclude that, if more units had been ordered in period t, then at least some

of the shortage in period s could have been avoided. More precisely, the maximum

number of units of shortage that could have been avoided by ordering more units in

period t is equal to

min t, d[ts] - (xt + qgt L U) . (2.24)
j(t,s-L]

The intuition is that by ordering more units in period t, we could have averted part

of the shortage in period s, but clearly not more than the unused slack capacity qt,

since we could not have ordered in period t more than additional qt units. In this

case, we would say that this part of the backlogging cost in period s was forced by

the decision in period 1, and hence period / is associated with a backlogging penalty

of

b, imin q, d t,, - (xt + q + ( u) . (2.25)
jE(t,s-L|

This is significantly different from the traditional backlogging cost accounting, in

which this cost would be associated with period s - L. Denote Ws,[p,t] as the back-

logging cost in period s associated with periods [1., t]. Then we can write

W. = 1min { W4,p,t], s(U - qt)} (2.26)

= Iin PS (D[t s] - (Xt + Qt + 1:u) ,P(u - Qt)}.
j=t+1

The miarginal backlogging costs that are incurred by any feasible policy P is given by

T

-i = 3 W. (2.27)
s=t+ L
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2.6.2 Description of the policy

We consider the forced marginal backlogging cost accounting and the corresponding

cost it associates with period s. let E[fB (qRB)|f,] be the expected backlogging cost

associated with period s by the forced marginal backlogging cost accounting scheme

described above, again conditioned on the observed information set fs.
The decision in each period, whether to order and how much to order, is based on

the following quantities.

" Compute the balancing quantity qt which balances the conditional expected

marginal holding cost incurred by the units ordered against the conditional

expected backlogging cost in period / + L. That is, dt solves

E[HRB(gt t] E[flRB(4t) | ft ] A Ot, (2.28)

where HPB and fJ/B are defined as in (2.4) and (2.27), respectively. Let Ot -

t(ft ) A E[HFB(Q) |ft] = E[FJB(~t t denote the balancing cost. Since

fB(u) = 0, it follows that the quantity 4t < u. The existence and uniqueness

of solution to (2.7) have been shown in Levi et al. (2008d). It has also been

shown in Levi et al. (2008d) that p, can be computed efficiently via bi-scction

search.

" Compute the holding-cost-K quantity it that solves

E[HB 4t) I ft] = K. (2.29)

That is, qt is the order quantity that brings the conditional expected marginal

holding cost to K. Since E[IIB(qt) I ftis monotone and continuous and goes

to infinity as qt goes to infinity, it is straightforward to compute i. Note that

in computing 4t, we temporarily ignore the capacity constraint u in each period

t.

* Compute the resulting conditional expected marginal backlogging cost in period
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t + L if one orders the minimum of 4t and the capacity u in period t, denoted

by #t. That is,

Ot= [fl"B(iinnfjj, a}) Ift]. (2.30)

* Compute the conditional expected marginal backlogging cost in period t + L

resulting from not ordering in period t, denoted by Vt. That is,

t0 Eflf'(0) ft]. (2.31)

Based on the above quantities computed, the following randomized rule is used in

each period t (we assume ft is the observed information set).

(I) If the balancing cost exceeds K, i.e., O6 > K, the RB policy orders the balancing

quantity qt? = 4t with probability pt = 1.

(II) If the balancing cost is less than K, i.e., Ot < K, the RB policy orders in period

t the holding-cost-K quantity (i.e., g RB = t) with probability pt and nothing

with probability 1 - pt. That is,

RB minqt, u}, with probability pt 2.32
0, with probability 1 - pt

The probability pt = pt I ft is computed by solving the following equation

ptK = ptot + (1 - pt)t. (2.33)

It can be shown that Equation (2.33) has the following solution,

0 < pt = t < 1. (2.34)
K - #t + Vt

The inequalities in Equation (2.34) follows from the fact that Ot < K and

qt > qt, which implies that #t < Ot < K. Note that pt is a priori random and

is realized with the information set ft E Ft. Following our convention we will
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use Pt to denote this a priori random probability.

This concludes the description of the RB policy. In the next section, we shall show

that the above the RB policy has an expected worst-case performance guarantee of

6. Following the same argument in the uncapacitated case, this randomized decision

rule almost balances, up to the uniform capacity constraint, the three types of costs

associated with the period.

2.6.3 Worst-case analysis

Let ZRB be a random variable defined as

zRB OBt. if 0- > K
ZRB A - (2.35)

PtK, otherwise

Note that ZRB is a random variable that is realized with the information set in period

t. In the following lemma we show that the expected cost of the RB policy can be

upper bounded using the ZPB variables defined in (2.35).

Lemma 2.6.1 Let W(RB) be the total cost incurred by the RB policy. Then we have,

T-L

E[We(RB)] < 3 - E[ZRBI.(.6

To complete the worst-case analysis, we would like to show that twice of the

expected cost of an optimal policy denoted by OPT is at least Zt. E[ZpB]. This

will be done by armotizing the cost of OPT against the cost of the RB policy. In

particular, we shall show that on expectation OPT pays for a large fraction of the

cost of the RB policy. In the subsequent analysis, we will use the following random

partition of the periods I = {1, 2,... T - L} to the following sets:

3I1H = {t Et > K and YtoPT > t }. (2.37)
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The set 31H consists of periods in which the balancing cost Ot exceeds K and the

optimal policy had higher inventory position than that of the RB policy after order-

ing (recall that if 0- > K then the RB policy orders the balancing quantity with

probability 1 and the value YtRB is realized with F).

Ji - {t : t > K and Yt < (2.38)

The set gilm consists of periods in which the balancing cost exceeds K and the in-

ventory position of the optimal policy does not exceed that of the RB policy after

ordering (see the comment above regarding 1H).

2 H t: < K and Yt RB + min R U}. (2.39)

The set 2H consists of periods in which the balancing cost is less than K and, in

such a period, the inventory position of the RB policy after ordering would be either

XPB if no order was placed, or X 1B min tB, '} if minimum of the holding-cost-K

quantity and the uniform capacity u is ordered, depending on the randomized decision

of the RB policy. However, the inventory position of OPT after ordering exceeds even

XB + min "t, u}. (Note again that the quantity Q4 B is known deterministically

(i.e., realized) with Ft.)

2n {t Ot < K and B > OPT (2.40)

Analogous to 2H, the set 2m consists of periods in which the inventory position of

OPT after ordering is below XB.

7 21 = t : Ot < K and X/?B <. (2.41)

/2M consists of periods in which the balancing cost is less than K and the inventory

position of OPT after ordering is within (XB, XRB B minW RB. u}). Thus, whether

the RB policy or OPT have more inventory depends on whether the RB policy placed
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an order.

Note that the sets (2.37) - (2.41) are disjoint and the union makes a complete

set. It is also straightforward to check that conditioning on ft, it is already known

which part of the partition period t belongs.

Lemma 2.6.2 The overall holding cost

denoted by HOPT and 11OPT respectively.

and backlogging

Then we have

cost incurred by OPT are

E[HoPT ] > E (
t

E[J1OPT] > E [
t

E [ K -(QPT > 0) > E

E[HO+PT(K.(QPT >0) >

Z B1H) (2.42)

ZB_ 1(t E in U21)] (2.43)

ZR B I1(t C 2M)] (2.44)

Z/?B 2(t E g2H) . (2.45)

It can be readily verified by summing up inequalities (2.42) to (2.45) that

T2L

t= 1

(2.46)

Following (2.46) and Lemma 2.6.1, we have established that the RB policy has an

expected worst-case performance guarantee of 6.

Theorem 2.6.3 For each instance of the stochastic lot-sizing problem under uniform

capacity constraint, the expected cost of the randomized cost-balancing policy RB is

at most six times the expected cost of an optimal policy OPT, i.e.,

E[C(RB)] < 6 - E[e(OPT)]
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2.6.4 Numerical Experiments

The policies were tested using the demand model of advance demand information

proposed by Gallego and Ozer (2001) and Ozer and Wei (2004), similar to the coun-

terpart model without capacity constraints.

Parameterized policies. We describe a class of parameterized policies involving

parameters 3, -y and q, where / controls the holding-cost-#3K quantity, -y controls

the ratio of marginal holding costs and backlogging costs and r, controls the level of

expected backlogging cost resulting from not ordering. The parameterized policy first

computes several quantities.

* The balancing quantity qt that solves E[Ht"( t) I ft] = y -E[Ilf"(4t) I ft) 6 t.

" The holding-cost-#K quantity 4t that solves E[H/?B(4t) ft] = 0 - K.

" The resulting conditional expected backlogging cost if one orders min{it, u}

units in period t, denoted by #t. That is, #t = E[nlRB(min{jqt. u) I ft].

" The conditional expected backlogging cost resulting from not ordering in period

t, denoted by Vt. That is, Ot = - E[flIB(0) ft].

Based on the above quantities computed, the following randomized rule is used in

each period t.

(I) If t ;> # - K, the RB policy orders qf = 't with probability pt = 1 in period

I.

(II) If O6 < 3 - K, the RB policy orders q/? = min{Qt.a} with probability Pt and

order nothing with probability 1 - pt in period t. That is,

RB min{t, u}, with probability pt , (2.48)

0, with probability I - pt
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where the probability

0 < pt = ' < 1. (2.49)
< - K - pt + pt

End-of-horizon rule. To prevent the policy from over-ordering too much near the

end of horizon, we also incorporate the following end-of-horizon rule. Suppose we are

in period t, we estimate the total expected cumulative backlogging cost (assuming no

orders are placed) over the interval [t, T]. If the amount is less than K, we do not

order with probability 1 in period t.

Numerical results. We have conducted computational experiments under the cost

and demand structure used in Gallego and Ozer (2001) and ozer and Wei (2004).

In this section, we focus on the uniform capacitated model, and the empirical results

are tabulated in Table A.4. The RB policies perform around 30% of the error from

the optimal cost, which significantly better than the worst-case performance guar-

antee. The parameters embedded in the capacitated model have the same intuitive

interpretations as in the uncapacitated case.
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Chapter 3

Revenue Management of Reusable

Resources with Advanced

Reservations

3.1 Introduction

In this chapter, we consider a class of revenue management problems that arise in

systems with reusable resources and advanced reservations. This work is motivated by

both traditional and emerging application domains, such as hotel room management,

car rental management and workforce management. For instance, in hotel industries,

customers make requests to book a room in the future for a specified number of days.

This is called advanced reservation. Rooms are allocated to customers based on their

requests, and after one customer used a room it becomes available to serve other cus-

tomers. One of the major issues in these systems is how to manage capacitated pool

of reusable resources over time in a dynamic environment with many uncertainties.

In particular, one wishes to choose the most profitable customers to maximize the

resulting revenue.

Models with reusable resources and advanced reservations are typically very hard

to analyze, particularly due to the existence of advanced reservations. There has been
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relatively little related work both on finding provably good policies for these important

models and structural properties of optimal or even practically good policies. In this

chapter, we analyze the performance of conceptually and computationally simple

policies. We show that they perform provably near-optimal in the Halfin- Whitt (see

Halfin and Whitt (1981)) heavy-traffic regime. That is, the expected long-run revenue

of the policy is guaranteed to obtain at least a constant fraction of the optimal revenue

regardless of the input instance. Moreover, the analysis builds upon novel approaches

to analyze the important class of loss network models with advanced reservations. The

latter class of models is fundamental in the analysis of many applications in operations

management, communication networks and other domains. There has been very little

known about the structural properties of models with advanced reservations, and we

believe that our work could open new opportunities to analyze additional models.

3.1.1 The model

This chapter is focused on models concerning the revenue management of a single pool

of reusable resources used to serve multiple classes of customers through advanced

reservations. The details of the model are as follows. There is a single pool of resources

of integer capacity C < oo that is used to satisfy the demands of M different classes

of customers. The customers of each class k - 1,... , Al, arrive according to an

independent Poisson process with respective rate Ak. Each class-k customer requests

to reserve one unit of the capacity for a specified service time interval in the future.

Let Dk be the reservation distribution of a class-k customer, and Sk be the re-

spective service distribution with mean pk (see Figure 3-1). In particular, upon an

arrival of a class-k customer at some random time t, the customer requests to reserve

the service time interval [I + d, / + d + s], where d is distributed according to "k and

s is distributed according to Sk. Note that Dk and Sk are independent of the arrival

process and between customers; however, per customer, Dk and Sk can be correlated.

(We assume that both Dk and Sk are finite discrete distributions.) During the time

a customer is served (i.e., [t + d, t + d+ s]), the requested unit cannot be used by any

other customer; after the service is over, the unit becomes available again to serve
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other customers. If the resource is reserved, the customer pays a class-specific rate of

rk dollars per unit of service time. The resource can be reserved for an arriving cus-

tomer only if upon arrival there is at least one unit of capacity that is available (i.e.,

not reserved) throughout the entire requested interval [t + d, t + d + s]. Specifically,

a customer's request can be satisfied if the maximum number of already reserved

resources throughout the requested service interval is smaller than the capacity C.

However, customers can be rejected even if there is available capacity. Rejecting a

customer now possibly enables serving more profitable customers in the future. Cus-

toiers whose requests are not reserved upon arrival are lost and leave the system.

The goal is to find a feasible admission policy that maximizes the expected long-

run average revenue. Specifically, if R,(T) denotes the revenue achieved by policy 7

over the interval [0, T], then the expected long-run average revenue of ir is defined as

7Z(r) A lim infT,,(E[R,(T)]/T), where the expectation is taken with respect to the

probability measure induced by 7r.

Poisson rate X k reward rate rk

arrival requested service
time

Dk Sk

Figure 3-1: Reservation distributions and service distributions

Like many stochastic optimization models, one can formulate this problem using

dynamic programming approach. However, even in special cases (e.g., no advanced

reservations allowed and with exponentially distributed service times), the resulting

dynamic programs seem computationally intractable because the corresponding state

space grows very fast. This is known as the curse of dimensionality. Thus, finding

provably good policies is a challenging task.

3.1.2 Our Contributions

The contributions of this chapter are two-fold. First, we employ a simple knapsack

linear program (LP) to devise a conceptually simple policy that is called the class
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selection policy (CSP). The optimal solution of the LP guides the policy regarding

which classes of customers should be admitted service and which ones should be

declined service. A similar policy has been analyzed before by Levi and Radovanovic

(2010) for models without advanced reservations that are significantly easier. In fact,

the analysis in Levi and Radovanovic (2010) does not carry through to models with

advanced reservations. Instead, we develop an entirely new analysis that shows the

policy performs provably near-optimal under the Halfin-Whitt heavy-traffic regimes.

In the Halfin-Whitt regime C = p+#3y +o(p) -+ oc, where # > 0 is a scaling factor.

In particular, the CSP is guaranteed to obtain at least <b(#3) > i of the optimal long-

run revenue in the Halfin-Whitt regime. (Note that <b(-) is the cumulative density

function of a standard normal. Thus, <(#) approaches 1 when # is large.) Moreover,

we propose a modified version of CSP that is guaranteed to asymptotically obtain

1 - E fraction of the optimal revenue, for every fixed E > 0.

Secondly, the analysis approaches we develop are based on modeling the prob-

lem as a loss network system with advanced reservations (specifically, a A/G/C/C

loss system with advanced reservations). These models are concerned with the set-

ting in which customers arrive to the system according to a stochastic process and

are being served as long as there is available capacity. Customers who find a fully

utilized system are lost (see, for example, the survey paper by Kelly (1991)). We

are able to derive explicit upper bounds on the steady state blocking probability, i.e.,

the probability that a random customer at steady state will find a fully utilized sys-

tem, and analyze them asymptotically in the above regimes. To the best of our

knowledge, there have been very few successful attempts to characterize the blocking

probabilities for loss network models with advanced reservations (see, for example,

Coffman-Jr et al. (1999) and Lu and Radovanovic (2007a) that studied several special

cases). The assumptions in our model are fairly general: a time-homogeneous Pois-

son arrival process, a general finite discrete service distribution and a general finite

discrete reservation distribution. Models with advanced reservations are significantly

harder to analyze than those without advanced reservations. One of the major dif-

ficulties in models with advanced reservations is the fact that a randomly arriving
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customer effectively observes a nonhomogeneous Poisson process that is induced by

the already reserved service intervals. Moreover, analyzing the blocking probability

of an arriving customer requires considering the entire requested service interval in-

stead of the instantaneous load of the system. Analyzing the load over an interval

immediately introduces correlation that is challenging to analyze. The upper bound

on the blocking probability is obtained by considering an identical system with in-

finite capacity, where all customers are admitted (a M/G/oo system with advanced

reservations). The probability of having more than C customers reserved in the in-

finite capacity system provides an upper bound on the blocking probability in the

original system; we call this the virtual blocking probability. Through an innovative

reduction to a random walk setting, we obtain an exact analytical expression for this

virtual blocking probability and then analyze it asymptotically. The analysis of the

virtual blocking probability is tight and constitutes a contribution for the analysis of

AI/G/oo systems with advanced reservations.

The analysis approaches that are developed in this chapter significantly depart

from previous work, and provide multi-fold contributions to queueing theory. We

believe that these new approaches will be very effective in analyzing other important

models in operations management and other application domains.

3.1.3 Literature Review

Levi and Radovanovic (2010) used a simple knapsack-type linear program (LP) to

devise a conceptually simple admission control policy called class selection policy

(CSP) for the model in the absence of advanced reservations (i.e., customers start

service upon arrival). The optimal solution obtained by solving the LP guides the

policy to select the more profitable classes of customers. The LP provides an upper

bound on the optimal expected long-run average revenue and can be used to analyze

the performance of CSP. The analysis is based on the fact that the CSP induces a

stochastic process that can be reduced to a classical loss network model without ad-

vanced reservations. They were able to develop explicit expressions for the resulting

blocking probabilities induced by the CSP, and then showed that the CSP is guar-
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anteed to achieve at least half of the optimal long-run revenue. Also, the CSP was

shown to be asymptotically optimal when the capacity goes to infinity with no other

assumptions.

The knapsack-type LP considered by Levi and Radovanovic (2010) has been pre-

viously discussed by several other researchers (see, for example, Key (1990) and Hunt

and Laws (1997)). In fact, a variant of the CSP has been discussed by Key (1990) and

Kelly (1991), who analyzed the randomized thinning policy. Moreover, Key (1990)

has shown that the variant of the CSP for the single resource case without advanced

reservations is asymptotically optimal in the critically loaded regime. Iyengar and

Sigman (2004) have also used an identical LP to devise a heuristic called exponential

penalty function control for a finite-horizon variant. All of these works have considered

models without advanced reservations.

Loss network models without advanced reservations are well known; they were

introduced over four decades ago and have been studied extensively, primarily in

the context of communication networks (see, for example, the survey paper by Kelly

(1991)) and recently other application domains. Two of the major issues in the lit-

erature on loss networks have been the study and design of heuristics for admission

control (see, for example, Miller (1969), Ross and Tsang (1989), Key (1990), Kelly

(1991), Hunt and Laws (1997), Puhalskii and Reiman (1998), Fan-Orzechowski and

Feinberg (2006)), and the development of approximations and bounds as well as sen-

sitivity analysis of loss (blocking) probabilities with respect to input parameters and

resource capacities (see, for example, Erlang (1917), Sevastyanov (1957), Kaufman

(1981), Burman et al. (1984), Whitt (1985), Kelly (1991), Ross and Yao (1990),

Zachary (1991), Louth et al. (1994), Kumar et al. (1998) and Adelman (2006)).

However, there have been relatively few successful attempts to characterize the

blocking probabilities for the loss network models with advanced reservations. In

particular, all the results mentioned above do not carry through. Coffman-Jr et al.

(1999) derived explicit formulas for the limiting blocking probabilities in several spe-

cial cases, for instance, in a setting where the reservation distribution is uniform and

all requested intervals have unit length. They extended the result to more general
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reservation distributions by relating the problem to an on-line interval packing prob-

lem. Lu and Radovanovic (2007a) studied the asymptotic blocking probabilities when

the capacity of the system approaches infinity with subexponential resource require-

ments. Some papers are devoted to study the transient behavior or approximations

of blocking probabilities for the Mt/G/oo queue as well as MIt/G/C/C loss systems

(without advanced reservations) where the arrival process is nonhomogeneous Poisson

(see Eick et al. (1993b), Eick et al. (1993a)), Massey (1985) for the details on some

of the results along these lines). The deterministic counterpart of this problem with

advanced reservations has been considered in the scheduling and parallel computing

literature, which is not the main focus of this chapter.

3.2 An LP-based Approach

In this section, we describe a simple linear program (LP) that provides an upper

bound on the achievable expected long-run average revenue. The LP conceptually

resembles to the one used by Levi and Radovanovic (2010), Key (1990) and Iyengar

and Sigman (2004) who study models without advanced reservations. It is also similar

in spirit to the one used by Adelman (2007) in the queueing networks framework with

unit resource requirements again without advanced reservations. We shall show how

to use the optimal solution of the LP to construct a simple admission control policy

that is called class selection policy (CSP). This type of policy was first analyzed by

Levi and Radovanovic (2010) in models without advanced reservations.

At any point of time t, the state of the system is specified by the entire booking

profile consisting of the class, reservation and service information of each customer in

the booking system as well as the customers currently served. Without loss of gener-

ality, we restrict attention to state-dependent policies. Note that each state-dependent

policy induces a Markov process over the state-space. Moreover, by following simi-

lar arguments as in Lu and Radovanovic (2007b) and Sevastyanov (1957), one can

show that the induced Markov process has a unique stationary distribution which

is Ergodic. (Though it is not the main focus of this chapter, for completeness the
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detailed proof of Ergodicity is provided in the electronic companion.) Since any state-

dependent policy induces a Markov process on the state-space of the system that is

ergodic, for a given state-dependent policy ir, there exists a long-run stationary prob-

ability aek for accepting a class-k customer who wishes to start service in i units of

time for j units of time, which is equal to the long-run proportion of accepted cus-

tomers of this type while running the policy 7r. In other words, any state-dependent

policy 7r is associated with the stationary probabilities ak for all possible reservation

time i, service time j and class k. Let Aijky AkIP(Dk = i, Sk = j) be the arrival rate

of class-k customers with reservation time i and service time .j. Therefore the mean

arrival rate of accepted class-k customers with reservation time i and service time

j is aj ijk. By applying Little's Law and PASTA property (see Gallager (1996)),

the expected number of class-k customers with reservation time i and service time

j being served in the system under state-dependent policy 7r is aiyJA'skj. It follows

that under policy 7 the expected long-run average number of resource units being

used to serve customers can be expressed as E_13 aiyjAsJj. This gives rise to

the following knapsack LP:

M

max 3 37 1 jkAijkji (3.1)

M

s.t. ZZ ykAkj C, (3.2)
k=i i,j

0 < aYk < 1, Vi, j.k. (3.3)

Note that for each feasible state-dependent policy 7r, the vector a = {f jk} is a

feasible solution for the LP with objective value equal to the expected long-run average

revenue of policy 7r. In fact, the LP enforces the capacity constraint (3.2) of the system

only in expectation, whereas in the original problem this constraint has to hold, for

each sample path. It follows that the LP relaxes the original problem and provides an

upper bound on the best obtained expected long-run average revenue. The LP can

be solved optimally by applying the following greedy rule. Without loss of generality,

assume that classes are re-numbered such that r 1 > r 2 > ... > rm. Then, for each
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k 1... M, we sequentially set aij= 1 for all i and j as long as constraint (3.2)

is satisfied. If there exists a class A' < A such that

M'-1 M

C =(I-x) Z Z Aijkj +XZZ Aikj
k=1 ij k=1 ij

for some x E (0, 1), we set ajJM, = x for all and j Note that for each class k, the

values of aijk are all equal regardless of i and j. We abuse the notation and drop

the subscripts i and j of Vijk. Then the optimal solution reduces to the following

structure: for k 1, ... , ' -1,ak = 1; am = x ; and for k = Ai' + 1, .. I.. A, we

have ak = 0.

Next, we shall use the optimal solution of the knapsack LP to construct a very

simple admission policy. Let a* - {a4} be the optimal solution of the knapsack LP.

We propose a simple policy that is called class selection policy (CSP). Consider an

arrival of a class-k customer (k = 1, . . . , M). For each k = 1, ... , M' - 1, accept the

customer upon arrival (regardless of the reservation time and the service time) as long

as there is sufficient unreserved capacity throughout the requested service interval. If

k - A', accept the customer with probability x (regardless of the reservation time

and the service time) and as long as there is sufficient unreserved capacity throughout

the requested service interval. For each k = +1,.... Al, reject.

The CSP has a very simple structure. It always admits customers from the classes

for which the corresponding value a* in the optimal LP solution equals to one as long

as capacity permits. It never admits customers from classes for which the correspond-

ing value a* equals to zero, and it flips a coin for the possibly one class with fractional

value a*, = x. The CSP is conceptually very intuitive in that it splits the classes

into profitable and nonprofitable that should be ignored. In fact, we can assume,

without loss of generality, that there is no fractional variable in the optimal solution

a*, i.e., for each k = 1, .... ', ac* = 1. (If a* , = x is fractional, we think of class

Ml' as having an arrival rate A', XAm, and then eliminate the fractional variable

from a*.)
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3.3 Performance Analysis of the CSP

In this section, we discuss performance analysis of the CSP under models with ad-

vanced reservations. The CSP induces a well-structured stochastic process called loss

networks with advanced reservations (i.e., a M/G/C/C loss system with advanced

reservations). Each class k = 1, . . . , M induces a Poisson arrival stream with respec-

tive rate a*Ak, 1 k K M. Thus, for each class k with a* = 1, the arrival process is

identical to the original process, and each class k with (* = 0 can be ignored. For each

class k 1. Al', let Sk (discrete with finite support [1, vp]) and Dk (discrete with

finite support [1, Un]) be the service and reservation distributions of class-k customers,

respectively. We are interested in characterizing the long-run blocking probability of

class-k customers with reservation time i and service time j under the CSP, i.e., the

stationary probability that a class-k customer with reservation time i and service time

j arrives at a random time to the system and is rejected by the CSP because there

is no available capacity at some point within the requested service interval. For each

k = 1, .. l.. A', let Qijk be the stationary probability of blocking a class-k customers

with reservation time i and service time j under the CSP. Since the corresponding

stochastic process is Ergodic, Qijk is well-defined. Thus, the expected long-run aver-

age revenue of the CSP can be expressed as ZA__ rkAikj4l - Q1 3 k). However,

k=1 Zj rkAsjkj is the optimal value of the LP, which is an upper bound on the

best achievable expected long-run average revenue, denoted by R(OPT). Thus, a

key aspect of the performance analysis of the CSP is to obtain a lower bound on the

probabilities (1 - Qijk)'s or, equivalently, an upper bound on the probabilities Qijk's.

Specifically, if 1 - Qijk (, for each 1, j, and k, it follows that

M' M'

R(CSP) = E r Ajj(l - Q17 k) (3( rkAijkJ > R(OPT). (3.4)
k=1 ij k=1 ij
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We want to obtain upper bounds on the probabilities Qijk's and analyze their asymp-

totic behavior under the Halfin-Whitt regime. The traffic intensity

M M

P A AijkJ - ZAkIk-
k=1 ij k=1

Under the Halfin-Whitt regime (see Halfin and Whitt (1981)), the capacity C and

the arrival rates Ak as well as the traffic intensity p are scaled together to infinity

while keeping the service and the reservation distributions fixed (i.e., C = p + #fp +

o(V7-) -+ oc, for some scaling factor # > 0). We next formally state one of the main

theorems of this chapter.

Theorem 3.3.1 Consider the revenue management model with a single pool of ca-

pacitated reusable resources and advanced reservations under the CSP. Let D(.) be the

cumulative density function of a standard Normal distribution. Then:

(a) For each k and j, the blocking probability Qijk has the following asymptotic upper

bound,

lini QOjk < @(N--); lim Qijk - 0, Vi > 1.

(b) The CSP is guaranteed to obtain at least half of the optimal expected long-run

average revenue in the critically loaded limit, and at least 1 - 4(-#) = >() ;2

in the Halfin- Whitt heavy-traffic limit, where # > 0 is the scaling factor in the

Hal/in- Whitt regime.

For the sake of clear exposition, we merge the M'-class arrival process, and the

merged arrival process has an aggregate rate A = Ek1 Ak. A customer upon arrival

has probability of Ak/A to be a class-k customer. Define v = maxk Vk and u - maxk Uk.

Let S (discrete with finite support [1. v] and mean i) and 1) (discrete with finite

support [I. u]) be the 'merged' service and reservation distributions. The joint density

of S and D is fD,S(i, j) A P(D = i, S = j) E - IP(Dk = i, S = j), for

i E [0, u] and j E [1, v]. Similarly, the marginal density functions of S and D are

fs~j) A kP(S = j) = ZA 1 IP(Sk j) and fD(i) _ P(D ==i) = 9 -P(Dk =

respectively, for i C [0, u] and j E [1, v].
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An arriving customer at some random time t requests to reserve the service interval

[t + d, t + d + s], where d and s are drawn according to joint density of D and S.

Thus, I + d is the starting service time. This customer will be blocked if and only if

the maximum reserved capacity over the requested service interval [t + d, t + d + s]

just prior to time t is already C. This system captures the stochastic process induced

by the CSP, and we are interested in deriving upper bounds on the induced blocking

probabilities of this loss network system.

3.3.1 Main Challenges

We consider the counterpart system with infinite capacity (i.e., a M/G/oo system

with advanced reservations) while keeping all other problem parameters fixed. In this

counterpart system, all customers are admitted since there is an infinite number of

resources. Also it is readily verified that, for each sample path and each time t, the

admitted customers reserved to get service in the capacitated system are a subset of

those reserved in the infinite capacity counterpart system. Consider now a customer

arriving at some random time t in the counterpart system with infinite capacity

requesting service interval [t + d, t + d + s]. Define the virtual blocking probability

to be the probability that the maximum reserved capacity over the requested service

interval [t + d, t + d + s] just prior to time t is larger than C. Since the set of served

customers in the infinite capacity system is always a superset of that served in the

original capacitated system, it follows that the virtual blocking probability is in fact

an upper bound on the blocking probability in the capacitated system. Next we shall

analyze the asymptotic behavior of the virtual blocking probabilities under the Halfin-

Whitt regime. In turn, this will provide asymptotic upper bounds on the blocking

probabilities in the original capacitated system.

The major challenges in analyzing the blocking probabilities in loss network sys-

tems with advanced reservations lie in the fact that we need a complete character-

ization of the booking profile (the pre-reserved arrival and departure processes) to

obtain the maximum reserved capacity over a particular requested service interval.

As shown in Figure 3-2 (the capacity C - 2), in the models without advanced reser-
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Models without Adv. Res. - suffices to check the instantaneous load

C = 2

pre-arrivals

arrival requested service
time

s k

point of check

Model with Adv. Res. - needs to scan the entire service interval

C=2

pre-arrivals 0

arrival requested service
time

interval of check

Figure 3-2: Challenges in analyzing the blocking probabilities in loss network systems

with advanced reservations

vation, it suffices to check the instantaneous load of the system upon arrival of a

customer. However, in the models with advanced reservation, we cannot guarantee

one's request by merely checking the instantaneous load of the system at her start-

ing service time upon her arrival, because her request may be potentially blocked by

reserved slots of those customers who booked prior to her but will start services after

her. This introduces much difficulties in handling this correlation issue between the

incoming requests and the booking profiles.

One may suggest regarding the original system with advanced reservation as a

tandem queueing model of two stations, where the first station has infinite capacity

and the second station has finite capacity, customers first enter the system from the

first station, but if the second station is full when customers arrive, they will be re-

jected or lost. When we relax the finite capacity assumption on the second station,

the blocking probability can seemingly be approximated by the probability that the

number of customers in the second station is bigger than C (see Boxma (1984) and

Schmidt (1987)). However, the dynamics of tandem queues of two stations is very
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different from the loss network systems with advanced reservation. From the example

in Figure 3-2, the incoming request will be accepted in the infinite tandem queucing

model of two stations while the request will be virtually blocked in our model. More-

over, the tandem queueing model of two stations checks the instantaneous load of

the second server upon arrival of a customer and therefore cannot be used to upper

bound the blocking probabilities in our system. It may serve as an approximation

of the blocking probabilities but we are unsure how good the approximation is, since

the stationary distribution can no longer be expressed as a product-form.

3.3.2 The Simplest Non-trivial Case

We will start the asymptotic analysis with the simplest non-trivial case, and then

extend it gradually to the more general case. Suppose that S takes only one value

s = 1 deterministically. Then the traffic intensity p = Ap = A. In addition, assume

that D follows a two-point distribution,

0 w. p.

1 w.p. 1 - -Y,

i.e., fD(O) =y and fD(1) = 1 - . That is, an arriving customer either wants to

start the service immediately or in 1 unit of time. Consider the counterpart system

with an infinite number of servers in steady state (note that the steady state exists

due to the induced semi-Markov process). Upon a customer arrival to the system

at some time t, all the starting service times of the customers who had arrived prior

to t are already known in the booking profile. For ease of exposition, we call these

starting service times pre-arrivals. Similarly, we call all the starting service times of

the customers, who will arrive after t post-arrivals. (Note that the pre-arrivals and

post-arrivals are always defined with respect to the current time.) It is important to

note that the virtual blocking probability at time t (as well as the blocking probability

in the original capacitated system) is independent of post-arrivals. Without loss of

generality, we can assume t = 0.
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Lemma 3.3.2 below characterizes the pre-arrival processes observed by a customer

arriving at time 0 in steady state.

Lemma 3.3.2 Consider the counterpart system with an infinite number of servers,

then a customer arriving at the system at time 0 in steady state, observes that the

pre-arrivals follow a non-homogeneous Poisson process with piecewise rate r(r) at

time r

A, if r 0,

TI(r) (1- )A, if 0< r <1

0, if r > 1.

Proof of Lemma 3.3.2. If r < 0, we focus on the interval ([r] - 1, [r]] and its

preceding interval ([r] - 2, [r] - 1]. The arrival process in ([r] - 2, [r] - 1] follows

a Poisson process with rate A. Each arrival has 'y probability of starting services

immediately in ([r] - 2, [r] - 1], and 1 - y probability of starting services in 1 unit of

time in ([r] -1, [r]]. By the splitting argument, the pre-arrivals in ([r] -1, [r]] follow

a Poisson process with rate (1 - 'y)A. By a similar argument, the pre-arrival process

in ([r] -1, [r]] induced by customers arriving to the system in ([r] -1, [r]] follows a

Poisson process with rate '}A. Note that these two processes are independent of each

other since they are generated by customers arriving in disjoint intervals. Now merge

these two pre-arrival processes, and the resulting pre-arrival process in ([r] - 1, [r]]

follows a Poisson process with rate (1 - 7)A + yA = A.

If 0 < r < 1, focus on the interval (0, 1] and its preceding interval (- 1, 0]. By the

similar argument above, there is a Poisson process of pre-arrivals with rate (1 - 'y)A

induced by customers arriving in (-1,0]. There is also a Poisson process with rate

-yA induced by customers arriving in (0,1]. However, the latter process consists of

post-arrivals. Thus, the resulting pre-arrivals at time 0 over (0, 1] follow a Poisson

process with rate (1 - -y)A.

Since the maximum reservation time is 1, it is impossible for customers arriving

prior to 0 to start service at any time greater than 1. Thus, the rate of pre-arrivals

from 1 onwards is 0. 0
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Departure & I &N

Pre-arrival Ni N2 N3

-1 0 1 2

Figure 3-3: One-class departure and pre-arrival processes

Let B be the event that a customer arriving at time 0 in steady state is virtually

blocked. The conditional long-run virtual blocking probability Pi P(B I D) i),

for each i = 0, 1. In Lemma 3.3.3 below, we show how to obtain exact analytical

expressions to PO and P1. Moreover, we analyze the asymptotic behavior of these

expressions under the Halfin-Whitt regime.

Let Ni (i = 1.2, 3) denote the Poisson counting process (see Gallager (1996))

induced by the pre-arrivals over [i - 2. i - 1] as seen from time 0. Also, let Ni(r), for

r E [0, 1], be the number of events over [0, 1]. Next, we introduce the notion of mirror

image of a Poisson counting process. The mirror image of a Poisson counting process

N, denoted by N, is a backward counting process of N. Let N(r) and R(r) be the

number of counted events over [0, r] of the respective processes (r < 1). More formally,

if N is a Poisson counting process from time 0 to 1, then R(r) = N(1) - N(1 - r)

for each r E [0, 1]. It is evident that N is also a Poisson process with the same rate

as N.

Lemma 3.3.3 below characterizes Po and P1 based on the counting processes in-

troduced above. More generally, we will use N(-; A) to denote a Poisson counting

process with rate A.

Lemma 3.3.3 Consider the counterpart system with an infinite number of servers,

if a customer arrives at time 0 in steady state and requests service S = 1 determin-

istically to commence in D units of time (D = 0 or 1 with probabilities ' and 1 -

respectively), the conditional virtual blocking probabilities are given by

Po  P(B D = 0) AIP max N1(1 - r) + N2 (r)} C) (3.5)
(rE[o,1) ]

Pi A P(B D = 1) AP (niax 2 (1 - r) + N3 (r) C (3.6)
r [,1J
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where the process Ni (i = 1. 2, 3) is a Poisson counting process with respective rate

A2, with A1 = A, A2 =(1 - y)A and A3 = 0. The process N (i = 1, 2) is the mirror

image of Ni with rate A2.

Proof of Lemma 3.3.3. Suppose that a customer arrives at time 0 in steady state

and requests the service to commence immediately (D = 0), i.e., requesting the

service interval (0, 1]. Focus solely on the pre-arrivals as seen from 0. By Lemma

3.3.2, the pre-arrivals over the time interval (-1, 0] follow a Poisson process with

rate A, denoted by N 1 . However, this implies that, over the time interval (0, 1], the

customers depart the system following a Poisson process with rate A (a shift of N1

by 1 unit of time). Let N1 be the mirror image of the departure process induced by

N1 over (0, 1]. (See Figure 3-3.) By Lemma 3.3.2, we also know that the pre-arrivals

over (0, 1] (namely, customers starting service within the interval) follow a Poisson

process with rate (1 - -y)A. We denote this pre-arrival process by N2 .

Consider now the number of customers in the system at some time r. These

fall exactly into one of the two types; customers that started service over (0, r] and

customers that started service over (r - 1, 0] and will depart over (r, 1]. It follows that

the number of customers in service at time r E (0, 1] can be expressed as N1 (1 - r) +

N 2(r). Specifically, in time r the number of departures over (r, 1] (equal to N1 (1 - r))

captures customers starting service before 0, and still in the system at time r. In

addition, the number of pre-arrivals over (0. r] (equal to N 2 (r)) captures customers

arriving before 0, starting service over (0, r] and still being served in time r. The sum

of the two is exactly equal to the total number of customers in the system at time r.

Note that by Poisson splitting arguments it follows that N1 and N2 are independent

of each other. The virtual blocking probability is expressed in terms of the maximum

of the sum of these two Poisson counting processes running towards each other (see

Figure 3-4), i.e., Po -P (maxr[o,1j {N1(1- r) + N2 (r) ;> C)

Consider now the case that the arriving customer requests the service to commence

in D = 1 unit of time, i.e., the service will cover the interval (1. 2]. The departure

process in (1, 2] is a shift of the pre-arrival process N2 in (0, 1] by 1 unit of time, and

its mirror image is denoted by N2 . Moreover, by Lemma 3.3.2, the pre-arrival process
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Pre-arrivals over [O,r] Departure over (rI]
(present in system at time r) L - . ." (present in system at time r)

0 r1
(at the 4th occurance ofN 2)

Figure 3-4: Two Poisson counting processes running towards each other

in (1, 2] has rate 0. Thus,

P1AP max N 2 (1- r) +N 3 (r) > C =P (max N2 (1 -r) > C).
rE[0,1) rE[o,1)

The second equality follows from Lemma 3.3.2 above. E

Observe that P and P1 are expressed through rather complex random variables.

However, inl the next lemmas, we show how to analyze the limits Po and P1 under

the Halfin-Whitt regine. We first assume that the probability that an arriving cus-

tomer seeks to start service immediately is positive (i.e., -y > 0), and then relax this

assumption.

Assuming that y > 0, we shall show that under the Halfin-Whitt regime where

C - A + 03VAX+ o(x/N) -± oc and 0 > 0, the conditional virtual blocking probabilities

Po and P1 have the following asymptotic limits limAm Po = <D(-0) and limA. Pi =

0. In fact, we shall prove a more general statement that will be useful in the analysis

of the general case.

Theorem 3.3.4 Let N 1 , N2 and N3 be Poisson counting processes (mutually inde-

pendent) with rates A, 01A and 02 A, respectively, where 1 > 01 > 02 > 0 are fixed

constants. Let N1 and N2 be the mirror images of N1 and N2 , respectively. Let

X A max N1 (1 - r; A) + N 2 (r; 01A)l.
r [0,1 Jl

Y A max N 2 (1 - r; 0iA) + N3 (r; 0 2 A)-
rC[o,1]1 J
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For each 3 > 0, we have linA\ ?(X > C) = 4(--0) and limA+ P(Y > C) = 0.

Note that Po and P1 can be obtained by setting 01 = (1 - -y) and 02 = 0 in X and

Y above. We observe that only customers with zero reservation time are blocked.

This stems from the fact that for a given time slot and unit capacity, these customers

are the last to arrive. Since we have a system where accepted demand is close to

supply, these are the customers that will most likely be blocked.

To prove Theorem 3.3.4, we provide an alternative characterization of X and Y

above based on a downward-drifting asymmetric random walk that takes a down-step,

for each departure, and an up-step, for each pre-arrival. We would like to show that

in the asymptotic heavy-traffic regimes, the maximum level of the random walk stays

relatively close to its starting position by showing that the rate of the random walk

going up is sublinear in v A.

Consider the merged process induced on [0,1] by the two Poisson counting pro-

cesses N1 and N2 . Let Ar = N1 (1; A) + N2 (1; OA) denote the total number of occur-

rences over [0, 1] of the two independent Poisson counting processes of N1 and N2 .

Note that since N1 and N2 are independent of each other, IV is a Poisson random

variable with rate (1 + 0)A. Conditioning on AN - n, the induced merged process

has n points uniformly distributed over the interval [0. 1]. By splitting argument

applied to the merged process, each of these n points has independent probability

p 0 A ( < 1 to be fron the process N 2 and probability q - 1 - p fromP (1±O)A - 1±0 2

the process N1. If we associate +1 with each point from N2 , and -1 with each

point from N1 , then each configuration of these n points induces a downward-drifting

asymmetric random walk of length n. The random walk starts at the origin 0, with

up probability p and down probability q. Let R, denote the corresponding random

walk of length n, Al denote the maxiiumn level attained by R,, and Gr denote the

overall number of down-steps taken by R,. Also let X,, (X | M - n). Then,

we claim that, almost surely, X, = G, + M. Note again that for each r E- [0, 11,

N 1 (1 - r; 61 A) + N 2 (r; A) is equal to the number of occurrences of N1 over (1 - r, 1]

and the number of occurrences of N2 over [0, r). Also observe that the value of X is

obtained either at time 0 or upon on occurrence of N2 . Now condition on R, =- on
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(a specific realization of the random walk R,), and consider the l1 h occurrence of N 2

(l E {0, ... , n}), at time, say r. Then we have (see Figure 3-4),

N1 (1 - r; A) + N 2(r; 01A)

- (# up-steps before and including I + # down-steps after 1)

(# up-steps before and including 1 - # down-steps before and including 1)

+(# down-steps before and including I + # down-steps after 1).

The first term is exactly the location of the random walk after I steps and the second

expression is exactly G,. Since X is the maximum of the above sum over all arrivals

/ = 0,1, . . . , n, it follows that indeed X, I (R, - Wn) = (G + M,) I (R, = w,), from

which the claim follows. However, it should be noted that A, and G, are correlated.

To address the correlation between MI, and G,, we will replace A,, by M.

However, first we would like to obtain an expression for the hitting probability of

a downward-drifting asymmetric random walk. This is done in Lemma 3.3.5 given

below. (Lawler (2006) provided a proof in Chapter 2, Section 2.2; for completeness,

we present a shorter proof in the electronic companion.)

Lemma 3.3.5 Consider a random walk defined by a sequence of independent random

variables E, 1 with probability p and -1 with probability q - 1 - p. Let S,=

Z7_1 Ej. Define M,, C [0, oc) U{oo} to be maximum level attained by the random

walk (i.e., A,, - max,, Srt). Given that 0 < p < q < 1 (downward drifting), then the

probability that the random walk ever hits above level b is P (M,),, > b) = (p/q)b

We are now ready to prove Theorem 3.3.4.

Proof of Theorem 3.3.4. First we shall prove that, for / 0, limA, P(X > C) -

<b(-#3). Let M, be the maximum level attained by the infinite-step random walk

defined above. Since the random walk has a, negative drift, it follows from Lemma 3.3.5

above that IP(M,. > -log A/log 0) < 1/A. (Note that 0 < 1, so -log A/log 0 > 0.)
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Now, we have

P(Xr > C)

=P (Gn + Mrt >C)

=P (Gn + Ml > C Mn > A + P (G, + M > C f lA, <

logA )
log A

+ P (Gil

+ P (G
log A

>- logo)

+ P (G, > C+
log A

log 0 )
>0C + log A
- log )

The third inequality follows from the fact that Al_ > MA almost surely. The fourth

inequality follows from Lemma 3.3.5 above. Since G,' is distributed as (Ni(1; A)

= n), we get from (3.7) that,

= P(X > C)P( = n) <1

S+ P (N1(1; A) > C + A
S+logo)

+ P Gi

1

SC + AP(N = n)
- log 0 )I( n

+ P (Poisson( A) > C+ .logA

By virtue of Central Limit Theorem, we have

lim P(X C)
A-40o-

< lim P Poisson(A)

lim P Poisson(A)
A--o

log A
> C + logOA

-logo)
log A

logo)

= lim P Poisson(A) > A + OV#5A + o(V?)) < b(-#). (3.10)

On the other hand, from the definition of X, under the Halfin-Whitt regime, we have

limA IP(X > C) > liixo iP(N 1 (1; A) > C) = limnx P(Poisson(A) > A + # -+

o(VIA)) = <b(--#).

Now, we are ready to prove the second part of Theorem 3.3.4, i.e., limo IP(Y >

C) = 0. Since 01 C [0, 1), we can always find a 01 such that 01 < 01 < 1. Then 01 >
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< MO >

1

-logA
logo0)

P(X > C)

(3.8)

(3.9)



01 2 02, and define Y = maxE[o,1] {N 2 (1 - r; 61A) + N 3 (r; 02 A)} . It is easy to see that

Y stochastically dominates Y. Therefore, without loss of generality, we simply drop

the bar of 01 and Y, and assume that 02/01 = 0 < 1. Following the same argument as

in the first part of the proof, we have P(Y > C) K - + P (Poisson(OA) > A + 1) ,

and again by virtue of Central Limit Theorem, we have

( logs A
lim P(Y > C) < lim P Poisson(OA) > C+ (3.11)AAo Aoo log f

= lim P Poisson(A) > A + 3A + o(VN) + log A (3.12)
Ao log (.2

= lim P Poisson(OA) > A + #A + o(VA-) -0. (3.13)

This completes the proof. E

The observation that limA, P1 = 0 < limAs, P suggests us that a customer,

who requests to start service immediately than in the future in these asymptotic

regimes, is more likely to be blocked. We have shown that if 0 <7 1, limsAI Po <

<)(-/3), and limA , P1 = 0. Next consider the case where 7 0 implying that no

arriving customer will start service immediately. Thus, we have limnA, P1 = <D(--

3.3.3 Arbitrary Finite Discrete Reservation Distributions

Next we extend the simple model to allow an arbitrary finite discrete reservation

distribution D with marginal probability mass function fD(i). We still assume that

the service distribution remains fixed at S = 1, deterministically. Now let fD(i) -

for i E [0, u], 0 < -y, < 1 and Z 17 = 1. Lemma 3.3.6 below is a generalization of

Lemma 3.3.2. (The proof is given in the electronic companion.)

Lemma 3.3.6 Consider the counterpart system with an infinite number of servers,

a customer arriving at the system at time 0 in steady state, observes that the pre-

arrivals follow a non-homoqeneous Poisson input process with piecewise rate q(r) at
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time r

A. if r<0,

A(1 - FD(r - 1)), if r > 0,

where FD is the cumulative probability mass function of D and FD( r -- 1

E=O JD 0i~

Departure &2  b 3  N 4

Pre-arrival N N 2  N 3  N 4  NS

-1 0 1 2 3 4

Figure 3-5: One-class departure and pre-arrival processes with general reservation
distribution

Define N (for i E [1, u]) to be the process of pre-arrivals prior to t over (i-2, i-1].

This process induces a departure process over the interval (i - 1, i], and let I denote

its mirror image. (An example is shown in Figure 3-5.) The conditional virtual

blocking probabilities are given in Lemma 3.3.7 below, which is a generalization of

Lemma 3.3.3. (The proof is given in the electronic companion.)

Lemma 3.3.7 Consider the counterpart system with an infinite number of servers,

if a customer comes at time 0 in steady state and requests service (S = 1) determin-

istically to commence in D units of time (D e [0, u]), the conditional virtual blocking

probability is given by, for all i E [0, U],

P P(B | ) = i) --L P max JNi+1(1 -r; Ai+ 2 ) + Ni+2 (r; Ai+ 3 ) > c)
(rc[o,1)

where N, is a Poisson counting process with rate Ai = A(1 - FD(i - 2)), and N1 is a

mirror image of Ni with the same rate.

Theorem 3.3.8 is a generalization of Theorem 3.3.4 with general reservation distri-

bution. (The proof is given in the electronic companion.) The traffic intensity p = A

since the service distribution S - 1 deterministically.
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Theorem 3.3.8 The conditional long-run virtual blocking probabilities have the fol-

lowing asymptotic upper bounds: for each i e [0, u] (the service distribution S = 1

deterministically), P K <I(-3).

3.3.4 Arbitrary Finite Discrete Service Distributions

Next we extend the model further to allow an arbitrary finite discrete service dis-

tribution. The total arrival rate is A, and the reservation distribution D is defined

on [0, u] defined as in Section 3.2. Now assume that the service time S is a general

finite discrete distribution on [I. v]. More specifically, let fs( ) be the marginal service

distribution with .fs(j) = P(S = j) - Kj, where E'=1 ii = 1 and 0 K < 1, for

each j E [1, v].

We partition the arriving customers according to their requested service time,

i.e., the customers are partitioned into o disjoint sets numbered 1, .. . , r according to

their requested service time. For each j E [1, v], the arrival process of customers in

set j follows a thinned Poisson process with rate rjA. Moreover, these processes are

independent of each other. Now, for each set j E [1, v], let the conditional reservation

distribution be fh(i) = P(D = i S - j) =y for i E [0, u]. Note that UJ '/ 1,

for each j E [1, v].

Consider the counterpart system with an infinite number of servers, if a customer

of set j (j E [1, v]) arrives at time 0 in steady state and requests j units of service

time to commence after i units of time (i E [0, u]), the conditional virtual blocking

probability is defined as PA "- P(B | =i, S =j). In addition, the traffic intensity

is p - > jtyA - pA, where y. = _V jy is the mean service time.

Let Ni' (for E E [1. v] and i E [1, u]) denote the pre-arrival process of set-

j customers over (i.e., customers requesting j units of service time) the interval

(i - - 1. i - j]. This induces a departure process over the interval (i - 1, i], and let

Ni' denote its mirror image. The rate of N/ ( and N!) is given in Lemma 3.3.9 below.

(The proof is given in the electronic companion.)

Lemma 3.3.9 Let N and Nj' be defined as above. Then, for each j c [1, v] and each
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i e [1,a], N/ and N/ are Poisson processes with the same rate

i-j-1
A = rA 1 - 7 = Aj(1 - F(i -j - 1)). (3.14)

1=0

Moreover, N/ is independent of N/, for o I' or J".

Departure

Pre-arrival N N N N N

Departure 2 2 2

Pre-arrival N N N N N N

-2 -1 0 1 2 3 4

Figure 3-6: Two-service-set departure and pre-arrival processes

First assume that Ej C [1, v] such that -yd > 0, i.e., the probability of an arriving

customer requesting to start the service immediately upon arrival is strictly positive.

Later we will show that this assumption can be relaxed. Let Ai be the maximum

number of customers in the system over the interval (i, i + 1] for i E [0, a]. In fact,

one cani derive an exact mathematical expression of each A2 for i C [0, U],

e i+j

Ai - > S N (1; A ) + m N+1(1 ~ r; Aj) + E N +1( A++1)
j=2 1=i+2 j =1 j=l

(3.15)

For r E [0, 1], the term J_ N +1(1 - r; Aj+1 ) captures all the departures over (i +

r I the term _, Nj+ (r; Aj+ai) captures all the pre-arrivals over (i, ir), and

the term - -+ Nj(1; Aj) captures all the customers being served over (i, i + 1].

The sum captures exactly all the customers being served at time i + r. It is important

to note that since Rj/ and N/ do not appear together in Aj, for each I C [1, u] and

j E [1, u], all the Poisson counting processes in the expression of Ai are independent

of each other (see Lemma 3.3.9).

We shall further explain (3.15) by providing the following example when v - 2
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(refer to Figure 3-6),

Ao - N2(1; A') + max SN'(1 - r; A') + N(1 - r; A2) + N2(r; A') + N (r; A 2)

rE([0,1}A1, N32(1; A 2) + max Ni 2(1 - r; A') + Sj2(1 - r; A 2) + Ni(r; A') + N42(r; A 2)l

More specifically, Ao represents the maximum customers in the system over the inter-

val (0. 1] (refer to Figure 3-6). At time r E (0, 1], the number of departures over (r, 1]

is equal to N(1 - r; A') + N?(1 - r; A2), capturing customers in both sets starting

before 0 and still in the system at time r. (Note that the service time is at least 1.)

In addition, the number of pre-arrivals over (0. r] is equal to N2(r; A') + N3(r; A2),

capturing pre-arrivals of customers with service time 1 and 2, respectively, starting

service over (0, r]. Finally, N2 captures set-2 customers with service time 2 who

started service within (-1, 0]. These customers will continue service over the entire

interval (0. 1]. Therefore N2(1; A2) appears in the expression AO outside the max.

The same reasoning applies to Ai for each i E [1. u).

Now for each i E [0. u] and j E [1, v], we have P = P(max(Aj, . .. , Ai+j_1) > C).

It should be noted that Ai and Ag can be correlated. To analyze the limiting behavior

of P/, we first analyze the limits of P(Aj > C), for each i E [0, u].

Lemma 3.3.10 Assume that there exists j e [1. v] such that -yj > 0. Let Ai be

defined as in (3.15). The traffic intensity is p = E _jr j A = ]1 jA. Under the

Halfin- Whitt regime,

lim P(Ao > C) = <D(-/3); lim P(Aj 2 C) 0, i E [1. u]. (3.16)
A-*cx ~

Proof of Lemma 3.3.10. The assumption 'y7 > 0 for some j E [1, v] implies that in

the interval (0, 1], the total departure rate is strictly greater than the total pre-arrival

rate, i.e., E _ Aj > E7_= Aj+j. For subsequent intervals (i. i + 1] for i > 1, we have

= + > E= A-+j+i. Therefore the conditions of Theorem 3.3.4 are satisfied.
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Theorem 3.3.4 implies that

lim P(Ao > C)
A--+Cx

= limP

( =2 1=

(3.17)

N (1; A) + RN(1; A)

V

=- li P Poisson Ai
x-+o(j=2 1=2

( (n 
A(imP oisson Y SJA )

j=1

+)
j=1

> C)

)SC)

= lim P(Poisson(p) > C) = (-3),
A--+oC

and similarly limA+I P(A > C) = 0 for i E [1, u]. The third equality of (3.17) follows

from (3.14) in Lemma 3.3.9. D

Theorem 3.3.11 Assume that there exists j E [1, v], such that 'yo > 0. The traffic

intensity is p = jKJA = (" jX . Then we have, for each j E [1, ],

lin Po- 4= (-#) him P/ = 0,
A ---oc

Proof of Theorem 3.3.11. For each j C [1, v], by union bound and Lemma 3.3.10,

we have

lim I = lim P(inax(Ao,.... A j1)
A-oD A-+o

j-1

< lim ZIP(Aj > C)
i-O

i-1

> C) < lim IP(J As > C)
A-+o=O

- lim IP(Ao > C) = -)

On the other hand, it is obvious that, for each j E [Li v),

Him Po= lii IP(max(Ao, . .. , A 1) > C) > lim P(Ao > C) = @(-#),
A--->c A-+oo A-* oo

Similarly, limni,\ P/ = 0 for each i E [1. u] and j E [1, v]. E

As discussed previously, we can relax the assumption that 'yj > 0 for some j C
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[1, v]. Suppose now '.yj = 0 for all j E [1, v]. This implies that no arriving customers

at time 0 will start the service over (0, 1], and hence we can ignore the blocking

probability over this interval. Let /' be the minimal index such that 4, > 0 for

some j E [1. v] and 'j = 0 for i < i' and all j E [1, v]. Observe that no arriving

customers at time 0 will start the service over (0, i' + 1]. For the subsequent interval

(i' + 1, ' + 2], the total departure rate is strictly greater than the pre-arrival rate,

i.e., Q'_J 1 A6 +=1 >A +. Thus, it suffices to show that for each j E [1, v],

limA P, = limA, P(max(A , ... , A+j-1) > C) = 4)(-/3) and limA, P = 0

for each i E [i' + 1, u] and j c [1, v]. The same arguments in Theorem 3.3.11 carry

through.

3.4 An Improved Policy

In this section, we propose a variant of the CSP that improves the asymptotic worst-

case performance guarantee. Fix a small (E < mink(Ak/UkC 1), the variant solves the

following LP:

max rkairjk Aijkj, (3.20)

s.t. a kA ijkj < (1 - )C, 0 < aj, 1, Vi,j. k.
k=1 i,j

Note this LP defined in (3.20) differs from the original LP defined in (3.1) by changing

the right hand side of the capacity constraint to (1-c)C. Suppose the optimal solution

of the original LP defined in (3.1) is {a? }. Now consider {ijk} = {(1 - Elazjkl'

Since
M M

S ijkAijk = (1 - ) ajk ijkJ (1 -)C
k=1 ij k=1 i,j
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{adjk} is a feasible solution to (3.20). Let {&ijk} be the optimal solution of (3.20).

Then we have

M M M

rk>ijkA ij k rkijkJ (ijk -) >jk ijk = (1 - E)R(OPT)

k=1 ij k=1 ij k=1 i,j

It is easy to verify that the optimal solution (again omitting i and j) to (3.20) is

61 = ... = aM'-f 1 1, 6M' = 1 - EC(AM'pMu M') daJ+1 - 0. This

solution then gives rise to the modified CSP: for each k = 1,... , - 1, accept

the customer upon arrival if there is sufficient unreserved capacity throughout the

requested service interval. If k = M', accept with probability 1 - eC(AM/pM'>i if

there is sufficient unreserved capacity throughout the requested service interval. For

k = M1'+ 1, .. ,M, reject.

Theorem 3.4.1 Consider the revenue management model with a single pool of ca-

pacitated reusable resources and advanced reservations under the modified CSP. For

any e such that 0 < e < mink(AkIkC-1),

(a) The blocking probabilities Qijk 's are asymptotically zero, i.e., limp,, Qijk = 0.

(b) The CSP is guaranteed to obtain at least 1 - e of the optimal long-run expected

revenue in the Halfin-Whitt heavy-traffic limit.

3.5 Price-Driven Customer Arrivals

In this section, we follow Levi and Radovanovic (2010) and consider an extension of

the model discussed in previous sections, in which the arrival rates of the different

classes of customers are affected by prices. Specifically, consider a two-stage deci-

sion. At the first stage, we set the respective prices ri, . .. , rM for each class. This

determines the respective arrival rates A1(ri),... , Am(rM). (The rate of class-i cus-

tomers is affected only by price re.) Then, given the arrival rates, we wish to find

the optimal admission policy that maximizes the expected long-run revenue rate. In

particular, we assume that Ai(ri) is nonnegative, differentiable, and decreasing in ri
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for each 1 < i < M. In addition, we assume that all prices are nonnegative real

numbers and that there exists a price r, such that, for each i = 1, . .. , M, we have

Ai(ro) - 0. (The latter condition is required to guarantee that the problem has an

optimal solution.)

Using arguments analogous to the discussion in Section 2, we construct an upper

bound on the achievable expected long-run revenue rate through a nonlinear program,

and then use it to construct a similar policy with the same performance guarantees.

The detailed discussion and analysis can be found in the electronic companion.

Using some of the techniques developed in this chapter, in follow up work (Levi

and Shi (2011a)), we study a dynamic pricing model and derive provably near-optimal

policies.

3.6 Numerical Experiments

In this section, we conduct some numerical experiments to find out the empirical

blocking probabilities in the original capacitated system. We run tests on four differ-

ent reservation distributions and six different service distributions. The four reserva-

tion distributions considered are as follows,

Di ~ Uniform(10)/1000, D2 ~ Binomial(10, 0.5)/1000,

D3 ~ Poisson(10)/1000, D4 ~ Hypergeometric(100, 40, 50)/1000.

The six service distributions considered are as follows,

31 ~1, S 2 ~ Exponential(1),

Sa~ Uniform(10)/10, S 4 - Binomial(10, 0.5)/10.

S5 ~ Poisson(10)/10, S6 ~ Hypergeometric(100, 40, 50)/10.

The arrival process follows a Poisson process with rate A ranging from 1 to 100, and

the capacity is pegged with the traffic intensity. The total number of experiments
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ran is 100 x 4 x 6 - 2400. The computational results are shown in Figure 3-7. We

observe that the blocking probabilities in the original capacitated system go to zero

in the two heavy-traffic limits. This implies that the blocking probabilities converge

to zero asymptotically under the Halfin-Whitt regime (see graphs in the appendix),

and perhaps the asymptotic analysis could be tightened in the future.

3.7 Conclusion and Future Directions

This chapter derives asymptotic upper bounds on the blocking probabilities in loss

network systems with advanced reservations under the Halfin-Whitt regime. The

theoretical results find applications in a class of revenue management problems in

systems with reusable resources and advanced reservations. A simple control policy

called the class selection policy (CSP) is proposed based on solving a knapsack-type

linear program (LP). It is shown that the CSP and its variants perform provably

near-optimal under the Halfin-Whitt regime.

There are several issues that still remain open. From the comparison of the upper

bounds and the simulation results, it is clear that there is a gap between the empirical

blocking probabilities and the theoretical bounds. This gap is due to the approxima-

tion using infinite capacity systems. It opens an opportunity to tighten the upper

bound using another fictitious system between the original capacitated system and

the infinite capacity counterpart.

There are also several plausible extensions into pricing models. The follow-up

work (Levi and Shi (2011a)) will study both the static and dynamic pricing model of

reusable resources with advanced reservations. The static pricing model allows the

arrival rates being affected by prices. Specifically, consider a two-stage decision. At

the first stage, we set the respective prices ri, . . ., rM for each class. This determines

the respective arrival rates A1(ri), . .. , Am(rm). (The rate of class-i customers is

affected only by price r1 .) Then, given the arrival rates, we wish to find the optimal

admission policy that maximizes the expected long-run revenue rate. In particular,

we assume that Ai(ri) is nonnegative, differentiable, and decreasing in r for each
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1 < i < M. In addition, we assume that all prices are nonnegative real numbers

and that there exists a price r, such that, for each i = 1,. .. , M, we have Ai(r.) =

0. (The latter condition is required to guarantee that the problem has an optimal

solution.) We construct an upper bound on the achievable expected long-run revenue

rate through a nonlinear program, and then use it to construct a similar policy with

the same performance guarantees.

In the dynamic pricing model, consider a single-class time-homogenous Poisson

arrival process with rate A. Each customer's reservation and service-time are drawn

from D and S, respectively. The system offers a price from a fixed price menu

r', . . , rn] to an arriving customer with d and s, depending on the current state.

The state is characterized by the booking profile, d, and s. Moreover, we introduce

a reservation price distribution denoted by R. The customer only accepts the offer

if the price offered falls below the reservation price. We construct a different linear

program, and use it to obtain provably near-optimal randomized policies.
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Figure 3-7: Computational Results
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Chapter 4

Joint-ventures in Operations

Management

4.1 Introduction

A proliferation of joint ventures has been witnessed across the globe in the recent

years (see Bamford et al. (2004)). A joint venture takes place when two or more

business partners pool their resources and expertise to achieve a particular goal for

a contractual period of time. Joint ventures stand in the middle ground between

non-cooperative competition and merging. They provide companies with the oppor-

tunities to gain new capacity and expertise, enter related businesses or new geographic

markets, gain new technological knowledge access to greater resources, and share risks

with other venture partners.

In this work, we consider a setting where multiple entities take part in a joint

venture and each of them contributes one type of resources. We distinguish two

types of resource pooling in joint ventures, depending on whether the resources are

heterogeneous or homogeneous. When resources are heterogeneous, they are not fully

substitutable. Thus, the effective capacity of a joint venture is limited to the minimum

level of an individual contribution. In other words, the lowest contribution by one

partner becomes the bottleneck in planning the capacity for the joint venture. This

is in contrast with homogeneous resource pooling, where the resources are perfectly
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substitutable and the overall capacity of a joint venture is determined by aggregating

all individual contributions.

One example that demonstrates the success of a joint venture with heterogeneous

resource sharing is Massachusetts Eye and Ear Infirmary (MEEI), a hospital special-

ized in providing patient care for disorders of the eye, ear, nose, throat, head and

neck in downtown Boston. With the vast majority of its services is outpatient in

nature, MEEI experiences lower profit margins than a regular hospital and has been

pressured to increase its patient volume so as to strengthen its financial status. Since

2005, MEEI has established five satellite clinics through joint ventures by collabo-

rating with community hospitals in the suburbs. A typical agreement specifies that

MEEI provides expertise (physicians and nurses) and its brand name' while the com-

munity hospital is responsible for providing facility and other necessary hardware.

The two types of resources, i.e., expertise and facility, are not interchangeable. The

maximum number of services that can be supported in such a satellite clinics is lim-

ited by MEEI's input as well as the space constraints such as the number of operating

rooms available in the new location.

In 2003, US-based car rental firm Avis has set up a joint venture in Shanghai,

China. The new company named Anji Car Rental and Leasing, 50-50 owned by Avis

Europe and Shanghai Automotive Industry Sales Corporation, takes over the existing

fleet of 1,000 vehicles from Shanghai Anji Car Rental and operates it under the Avis

brand name. The venture expects to establish more than 70 outlets nationwide. This

is a typical joint venture with homogeneous resource sharing, where the capacity in

the new company is supported by aggregating the number of vehicles from the two

companies.

Besides the healthcare industry and car-rental industry, another sector which has

been a flurry to establish joint ventures is the airline industry. An airline alliance is

an agreement between multiple independent partners to collaborate in various activ-

ities to streamline costs while expanding global reach and market penetration. The

presence of alliances in the airline industry has followed an increasing trend since

'The satellite clinic located within the community hospital is labeled as a MEEI branch.
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the first large airline alliance was formed in 1989 between Northwest and KLM. By

March 2009, the three major alliances (Star, Sky Team and Oneworld) combined flew

around 73% of all passengers worldwide (Hu et al., 2012). On the cost side, there are

strong incentives for airlines to operate large networks as the evidences on economies

of scale have been well documented (Caves et al., 1984, Brueckner and Spiller, 1994,

Keeler and Formby, 1994, etc). On the revenue side, one of the fundamental attrac-

tions of an airline alliance is the ability to offer codeshare fights. Code sharing is

ai agreement between two carriers whereby one carrier allows a different carrier to

market and sell seats on some of its flights. Based oin empirical evidences, Brueckner

(2003) conclude that codesharing among Star Alliance partners yielded an annual

benefit of around $20 million. Morever, the information comes with codesharing can

be tremendously beneficial. Jain (2010) show that sharing information on bid prices

yields higher revenues of the order of $100 million for every big partnering carrier in

the alliance.

4.1.1 Results and Contributions

In this work, we study both types of joint venture models and address some issues

pertinent to the success of joint ventures. When several companies agree to a part-

nership, disparate interests often exist as each participant is more concerned with his

or her own gain. Given the misalignment in incentives and uncertainties in demand,

we are interested in measuring the performance of a joint venture by quantifying

the difference in the investment level and the total profit attained with respect to a

system optimal outcome.

We have shown that in joint ventures with heterogeneous resource pooling, any

Nash equilibrium induces an equal contribution from every player, despite of them

being asymmetric. The intuition is that since the revenue received by each player

depends solely on the bottleneck capacity (minimum capacity contributed by some

single player) when resource-sharing is heterogeneous, any further investment beyond

the bottleneck capacity only increases her cost and decreases her profit.

Although nultiple Nash equilibria could exist, we show that there always exists
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a unique Strong Nash equilibrium. Next, we focus on a Nash Bargaining model

which is a natural framework to defiuc and design fair assigmnent of the capacity

investment levels between multiple players. We conclude that there exists a unique

revenue sharing contract such that the corresponding Nash Bargaining Solution, the

Strong Nash equilibrium, and the system optimal solution coincide. This revenue

sharing contract indicates that the award each player receives must be equal to the

ratio of her marginal cost to the total marginal cost bore by all partners evaluated at

the optimal investment level.

For joint ventures with homogeneous resource pooling, we first prove some struc-

tural properties on the effective capacity under any demand distribution with convex

costs. The analysis is challenging as the investment of each player could only be

determined by solving a system of implicit equations. We show that joint venture al-

ways underinvests as the effective capacity is always lower than that of a coordinated

setting.

We then focus on quadratic-linear cost functions and show that, through an

intercept-argument, the effective capacity in a joint venture with respect to any rev-

enue sharing ratio is at least 1/n of the optimal level. Moreover, the ratio between

the capacity level could be upper bounded in terms of the cost asymmetry between

the two players and the revenue sharing ratio. While we show that there does not

exist a fixed marginal revenue sharing contract which can coordinate the players, we

propose an interval for the revenue sharing ratio which induces an outcome that is

guaranteed to achieve at least 50% of the optimal profit for a 2-player model. This

interval depends on the cost asymmetry between the two players and the demand

concentration.

Next, we consider general convex cost in the homogeneous resource pooling model

with an arbitrary number of asymmetric players. We show that a lower bound to the

efficiency of the original setting with the nonlinear convex costs is that of a modified

setting with linear costs, where the coefficients are equal to the marginal cost of each

player evaluated at the Nash equilibrium of the original problem. As a result, we

show that the comparative analysis on profit can be reduced to analyze the joint
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investment level made in the Nash and the system in the setting with linear costs.

The rest of the chapter is organized as follows. We begin with a review on related

literature in Section 4.1.2. Section 4.2 describes the two models and assumptions.

We analyze and present the main results on capacity sharing and substitution model

in Section 4.3 and Section 4.4 respectively.

4.1.2 Related Literature

This paper studies strategic capacity management under uncertainty. In the opera-

tions management literature, there is a vast body of work using the classic newsvendor

model or some variations to capture uncertainties. Federgruen and Zipkin (1986) is

the classic reference for capacitated inventory management. Papers including Ka-

puscinski and Tayur (1998), Angelus and Porteus (2002), Bradley and Glynn (2002),

Van Mieghem and Rudi (2002) consider capacity investment decisions in capacitated

Newsvendor networks. Van Mieghem and Dada (1999) take a different approach at

capacity management and address how the relative timing of the decisions on capac-

ity, inventory, and price impact the sensitivity and profitability. We refer readers

to Van Mieghem (2003) for an excellent survey paper on the recent development on

capacity management. In this work, the capacity of a joint venture depends on the

contribution of multiple participants. Depending on the nature of the resources, the

effective capacity can be the minimum or the sum of individual contributions.

In many settings, capacity-investment decisions are the results after interacting

with other economic agents. Thus, it seems natural for capacity investment models

to incorporate the strategic behavior of self-interested agents. Cachon and Lariviere

(1999) consider the manufacturer's capacity investment and allocation decisions to

several downstream retailers that have private information. Caldentey and Wein

(2003) present contracts that are linear in backorder, inventory, and capacity levels

to coordinate a manufacturer and retailer production-inventory system, including

the capacity decision. Examples on single-resource, multiple-agent also include Carr

and Lovejoy (2000), Porteus and Whang (1991), Kouvelis and Lariviere (2000), etc.

Bassok et al. (1999) and Netessine and Rudi (2003) explore the impact of substitution
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in an inventory context, and its effects are likely to be similar in capacity problems.

In this work, the strategic behavior of participants involving in a joint ventures is

captured in a noncooperative game, as each entity determines his level of contribution

with the goal to maximize his profit. While the revenue each party receives depends

on the effective capacity of the joint venture, the incentive of each entity might not

be correctly aligned to one which maximizes the collective return. We consider a

fixed rate revenue sharing contract described in Cachon and Lariviere (2005) to split

revenue among the participants. To capture the high capital investment incurred in

joint ventures in the healthcare industry, we consider general convex cost function

so as to capture the diminishing returns, in contrast to linear cost function which is

common in the operations management literature (e.g.., Bernstein and Federgruen,

2007, Cachon, 2003, Corbett et al., 2005, Martinez-de Alberniz and Simchi-Levi,

2009). In this setting, we show that an "optimal" coordinating contract which enables

the parties with self-interests to behave as a coordinated entity does not necessarily

exist with homogeneous resources. We then propose a range for fixed revenue sharing

ratio which induces reasonably good outcomes.

Standing in the middle ground between non-cooperative competition and merg-

ing, one of the most fundamental building blocks of joint ventures is negotiation.

Empirical studies suggest that "the power of a joint venture is only as strong as the

negotiation behind it" (Luo and Shenkar (2002), Lin and Germain, 1998). The topic

on negotiation has gained a lot of attraction in the economics literature since Nash

(1950) (e.g., Myerson, 1979, Binmore et al., 1986, Rubinstein, 1982, etc). In the fast

few years, more results on negotiation have become known in the field of operations

management (see for example, Reyniers and Tapiero, 1995, Miller, 1992, Chod and

Rudi, 2006, etc). Nagarajan and Sosic (2008) present an excellent survey paper on

cooperative game theory in the field of supply chain management. In this work, uti-

lizing the bargaining model, we propose a revenue sharing scheme which induces an

outcome which is coincides with the system optimum.

Our work which measures the performance of an unregulated setting with respect

to a centralized system is related to a stream of literature on price of anarchy, pop-
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ularized by Koutsoupias and Papadimitriou (1999). It compares the performance of

the worst-case Nash equilibrium with respect to the centralized system. The concept

has been used in transportation networks (Roughgarden and Tardos (2002), Correa

et al. (2004, 2007), Roughgarden (2005)), network pricing (Acemoglu and Ozdaglar

(2007), Weintraub et al. (2010)), oligopolistic pricing games in a single tier (Farahat

and Perakis (2010a,b)), and supply chain games with exogenous pricing (Perakis and

Roels (2007), Martinez-de Alberniz and Simchi-Levi (2009); Martinez-de Alberniz

and Roels (2010)).

4.2 Model Formulation

In this section, we first present the model for a joint venture with n players as an

uncoordinated game. As a benchmark, we also present the model in the system

setting, i.e., n entities were merged and coordinated as a single entity with the goal

to maximize the total return.

4.2.1 Joint-venture: an uncoordinated game

Consider a joint venture with nt profit-maximizing players with asymmetric cost func-

tions. The joint venture generates a joint revenue R(p, K) where p is the fixed price

and K = (K 1 , ... , K,) captures the resources contributed by each player. A revenue-

sharing contract dictates that player i receives revenue /3iR(p,K). Let fi(Ki) be

the convex cost associated with investing Ki resources by player i. Based on a pre-

negotiated revenue-sharing ratio # = (#1, . . . , #7), player i tries to maximize her profit

7ri(#) #i R(p. K) - fi(Ki) by choosing her own investment level Ki, which leads to

a Nash equilibrium (NE).

4.2.2 Merger: the system optimum

Consider the centralized system in which n players are merged and coordinated as

a single player. The merger generates the highest possible profit 7ry ' R(p. K) -
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Ei_1 fi(Ki) by collectively choosing the resource investment K. This yields the first-

best or system optimal solution.

4.2.3 Resource-sharing models

We consider two types of resource-sharing models depending on the nature of the

resources pooled from different players. The nature of the resources determines the

effective capacity in a joint venture, which in turn affects the revenue function R(p, K).

We formally define them as follows:

Definition Heterogeneous resource-sharing. The aggregate revenue generated

by the joint venture is given by R(p, K) = pE(min(D, mini(Ki))).

The type of resource provided by each player is heterogeneous and not fully sub-

stitutable. A service can only be performed with a complete portfolio of resource

types. The effective capacity supported by the joint venture is therefore limited to

the minimum capacity level invested by the players.

Definition Homogeneous resource-sharing. The aggregate revenue generated

by the joint venture is given by I?(p, K) = pE(min(I), Z71 (Ki))).

The type of resource provided by each player is homogeneous to each other and hence

fully substitutable. A service can be performed by using the resource contributed by

any (possibly single) player. The effective capacity supported by the joint venture is

therefore the sum of capacity level invested by each player.

In the next two sections, we will study both types of resource-sharing models and

present the differences in the capacity investment and the total profit generated in a

joint venture to those in a system optimum.

4.3 Heterogeneous Resource-sharing Models

With heterogeneous resources, the effective capacity is limited by the minimum ca-

pacity invested among all players, which becomes the bottleneck capacity. Consider
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the merger setting, the central planner tries to maximize the aggregate revenue by

collectively choosing the capacity investment K, i.e.,

wr*± max pE[min(K, D)] - fi(Ki), s.t. K < Ki, i - 1, . n. (4.1)
K,K, i

Let K* and K*,..., K* be the system optimal solution.

Lemma 4.3.1 At system optimality, the capacity invested by each player is the same,

i.e., K* = K for all I1, ... , n, where K* solves P(D < K* ) = 1 - _ ( f j(K*)/p.

Proof of Lemma 4.3.1. Without loss of generality, if there exists a pair of players

i and j such that K2 < K, we can decrease the capacity invested by player j from

K* to K7. By doing so, the profit increases by reducing the cost while maintaining

the same revenue. Hence, we reach a contradiction. At system optimality, K* = K

for all i = 1,... , n, and (4.1) reduces to a single variable optimization in which K*

can be obtained by the first-order condition. E

In the system optimum, each individual capacity investment K* must be reduced

to the bottleneck capacity K* when resource-sharing is heterogeneous, since any fur-

ther investment beyond the bottleneck capacity only increases the total cost and

decreases the total profit.

In a joint-venture with a pre-negotiated revenue-sharing contract #, player i tries

to maximize her profit by choosing her profit-maximizing capacity investment level

K based on other players' strategies K_, which leads to a Nash equilibrium, i.e.,

7rN max /3ipE[min(K, D)] - fi(Ki), s.t. K < K. j 1, ... n,
K,Ki;K_,

Now, let KN and KN,..., KN be the Nash equilibrium solutions.

Lemma 4.3.2 In joint-ventures, any

KN(0) = K1N( ) ... K N(/) min (Ak)
1<k<n
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are Nash Equilibria, where Ak solves

P(D < Ak) = 1 .k Ak
fkP

In particular, KSN(3) = KiSN _ K.. S() = min11k<n(Ak) is a unique

Strong Nash equilibrium.

Proof of Lemma 4.3.2. Without loss of generality, if there exists a pair of players

i and j such that KN(#) < K7(3), player j can decrease its capacity investment

from K(3) to KN() lowering her cost and improving her profit. Thus, at Nash

equilibrium, all players must have the same capacity investment level, i.e., KN(O)

KN(O) for all i = 1, . . . , n.

Now assume that minlk<n(Ak) = A,. Now if Am < KN() = K (3), player m

always has incentives to unilaterally lower her investment level to Am since Amr, is her

profit-maximizer. This forces all players to invest at Am,. Any capacity investment

level Am such that 0 < Am A, is also a Nash equilibrium since no player has

incentives to unilaterally deviate from Am,,. In particular, KSN(3) _- KN(

KSN m() - A, is a unique Strong Nash equilibrium in which no coalition, taking the

actions of its complements as given, can cooperatively deviate in a way that benefits

all of its members. l

Lemma 4.3.2 indicates that the capacity invested by each player must be the

same in a joint venture. Since the revenue received by player i depends solely on

the bottleneck capacity KN(#) when resource-sharing is heterogeneous, any further

investment beyond the bottleneck capacity only increases her cost and decreases her

profit. Lemma 4.3.2 also implies that Ak is the profit-niaximnizing capacity for player

k. Since the resource-sharing is heterogeneous, the player m with the lowest profit-

maximizing capacity (i.e., Am = mii1k<n(Ak)) can unilaterally choose to invest

at her profit maximizing capacity, forcing all other players to invest at the same

capacity level. Note that any capacity investment level no greater than Am is a Nash

equilibrium whereas any capacity investment level above Am is not. As a result, it is
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easy to see that with the existence of multiple Nash equilibria, it is possible for a joint

venture to achieve an arbitrarily bad outcome compared to the system optimum.

So far, we have modeled the decision making process in a joint venture as a Nash

Equilibrium. Next, we will propose an alternative model where the players participate

a Nash bargaining game to determine their respective investment decisions for a given

revenue sharing ratio 0.

Nash Bargaining Solution (NBS). The Nash Bargaining Solution (see Ap-

pendix C) is a natural framework that allows us to define and design fair assignment

of the capacity investment levels between n players, which can derive desirable proper-

ties such as Pareto efficiency and proportional fairness. Based on a particular revenue

sharing contract #, n players choose their capacity investment levels according to a

Nash Bargaining game, i.e.,

max f r (#), s.t. K <K, j 1 n,
K,Ki

which is equivalent to solving

Tt

max log 7rF (#). s.t. K < K ,j = 1, . .. , n. (4.2)
K,Ki

Let KB and K, ... , K. be the Nash Bargaining Solution from solving (4.2).

Theorem 4.3.3 There exists a unique revenue sharing contract,

f;(K*)
n"_ f j(K*) '

such that the Nash Bargaining Solution, the unique Strong Nash equilibrium, and the

system optimal solution coincide, i.e., KB (*) - KSN (/*) _ K*.

Proof of Theorem 4.3.3. Observe that (4.2) is equivalent to a single variable op-

timization,

N

max log (#3 pE[min(K, D)] - fi(K)) . (4.3)
Kl
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The first-order condition gives us

N #3p(D > KB) - (KB)
=p 0.f

(pE[min(KB, D)| - fi(KB()
(4.4)

By Lemma 4.3.2, at Nash Equilibrium, KN <min1<k<n(Ak), where Ak solves

P(D > Ak) = fk(Ak)
#kP

This implies that

(4.5)

Suppose that there exists a solution -y to both the Nash Bargaining game and the

Nash equilibrium, i.e., 7 = KN(3) K B). Then -y must satisfy (4.4) and (4.5)

simultaneously, implying that

OjpP(D > -) - f(7y) = 0 for all i = 1, ... , n. (4.6)

If such ' exists, - = KSN(0), i.e. 7' is the unique Strong Nash equilibrium since

-y = A 1  ... min1kn(Ak) by (4.6).

Now summing (4.6) over all players and K=1 0i = 1, we have

(4.7)pP(D > 0.

By (4.6) and (4.7), we know that # must be of the following form,

, f/)
i n 

,I
j = fj (-Y)

Moreover, note that by Lemma 4.3.1, (4.7) implies that -y = K* . Since K* is the
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unique system optimal solution, there exists a unique revenue sharing contract

fJ(K*)
#* n = "K) i = 11 . .. In,

i" f1(K*)'

such that Ky = * KSN(*) - KB GB*).

Theorem 4.3.3 shows that when resources are heterogeneous, there is a way to

rely on the revenue sharing contract to eliminate the incentive misalignment among

the players and induce the system optimal outcome. In addition, the way to do so

is the same when the players' behavior is predicted by a Nash equilibrium as well as

the Nash bargaining solution.

In addition, besides inducing the efficient decision, the optimal revenue sharing

contract in Theorem 4.3.3 also embodies the notion of proportional fairness. For an

investment level K*, player i bears a marginal cost f!(K*) and the aggregate marginal

cost is given by summing up the marginal cost of every player participating in the

joint venture, E fj(K*). Theorem 4.3.3 specifics that the marginal revenue ratio

which player i is entitled to receive (#h) should be equal to the proportion of his

marginal cost to the aggregate marginal cost (j (K*)/ E fj(K*)). In simple words,

"fairness" in this context suggests that every participant in a joint venture should be

awarded "proportionally" to the risk (cost) she has to undertake.

4.3.1 Numerical Examples

We conduct numerical studies to compare our approach with the existing approach

adpoted by some joint-ventures (such as MEEI). In the existing model, joint-ventures

set the their capacity investment level according to the long-run average demand, i.e.

KEX = E[D]. In addition, they split the revenue based on how much each party

invests in total capacity investment. More specifically, they set the revenue sharing

parameter to be

EX - fi (K EX)

1]n-=1 /j (KEX
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We consider a 2-player game with unit service price p = 1200. Assume that the

demand follows a normal distribution, and the cost functions to be quadratic, i.e.

fi,(K) =aiK2/2 + biKi + ci for i 1, 2. Without loss of generality, we let ai = 1,

a 2 = 0.5, b1 = b2 = 100 and ci = c2 = 0. Table 4.1 shows the simulation results.

Demand Player 1 Player 2 Total
Share Profit (x 105 ) Share Profit Profit (x 105 )

RS EXRS EX % RS EX RS EX % RS EX %
N(800,100) 63.8% 62.5% 2.19 1.70 29% 36.2 37.5 1.11 1.01 8.8% 3.30 2.72 21%
N(800,200) 63.5% 62.5% 2.06 1.40 47% 36.5 37.5 1.06 0.84 26% 3.12 2.24 39%
N(800,300) 63.3% 62.5% 1.86 1.10 69% 36.7 37.5 0.96 0.66 46% 2.83 1.77 60%
N(700,100) 63.5% 62.1% 2.12 1.77 20% 36.5 37.9 1.09 1.08 1.2% 3.21 2.84 13%
N(700,200) 63.3% 62.1% 1.92 1.47 31% 36.7 37.9 1.01 0.90 12% 2.93 2.37 23%
N(700,300) 63.0% 62.1% 1.69 1.17 45% 37.0 37.9 0.89 0.72 24% 2.58 1.89 37%

Table 4.1: Numerical results comparing the revenue-sharing contract (RS) with the
existing contract (EX).

The simulation results show that our approach outperforms the existing approach

by increasing the profit of both players. The profit increases in the variability of

the demand distribution. Moreover, we observe that the proportional sharing scheme

based on marginal costs (our approach) gives slightly more weight to the less cost-

effective player as compared to the proportional sharing scheme based on total costs

(the existing approach).

4.4 Homogeneous Resource-sharing Models

When resources are homogeneous, they are completely substitutable for one another.

The effective capacity is therefore the sum of the individual capacity invested by

each player. The alliances among airlines and car rental companies are some of the

applications of this model.

In a merger (system), the central planner tries to maximize the aggregate revenue

by collectively choosing the capacity investment K, i.e.,

n

7* maxpE[min(L, D)] - f2 (K).

where the total capacity investment L is the sum of all Kj's, i.e., L A Ke with e
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being the column vector with all one's.

Lemma 4.4.1 Define an auxiliary function

g(Z) A max pE [min(L, D)] - f1 (Ki ). s.t.
Ki -

L < L.

Then g(L) is concave in L where l£ is the budget on total capacity investment.

Proof of Lemma 4.4.1. Suppose L* is the optimal solution to the system problem.

It is easy to see that for all L > L*, g(L) = 7r*. For all L < L*, the budget constraint

becomes tight. It suffices to show that

h(l) -= min(
i=1

fi(Ki), s. t. ( Ki=|

is convex in L. For any A C [0, 1],

h(ALi + (1 - A)L2 ) =

Ah(L 1 ) + (1 - A)h(L 2 ) =

min fi(AKi + (1 - A) K,)
Ki,K1

SAt. Ki = L21, K, = L22,

min Ar
Kj,K'

s. Ki = L1

T i

fi (Ki) + (1 - A) >3(K'

i=1

By convexity of function fi for i = 1, . . . , n, for any Ki, we know that

fi(A Ki + (1 A)K') ;> Af (Ki) + (1 A).!i(K').

Taking the minimum with respect to the same constraints preserves the inequality,
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we have

h(AL 1 + (1 - A)L2) > Ah( 11) + (1 - A)h(L 2 ).

This completes the proof. D

In a joint-venture with a pre-negotiated revenue-sharing contract #3, player i tries

to maximize her profit by choosing her profit-maximizing capacity investment level

Ki based on other players' strategy K_i, i.e.

7N max 3ipE[min(L, D)] - fi(Ki,),Ti K,Ki;K-i

which leads to a Nash equilibrium.

Lemma 4.4.2 The total capacity investment level in a joint-venture is no greater

than that in a merger (system), i.e., En KN E_, Kn .

Proof of Lemma 4.4.2. Suppose that. without loss of generality., K N > K*. Then

we have

Op - fj(KiN) p - fj'(K*) p - fj(K*)
3p - 3p p

Take F-1 on both sides (F- 1 is monotonely increasing, so the sign does not change),

then we have EnA K/v E L 1 K. F

The result in Lemma 4.4.2 does not depend on demand distribution or symmetry

among the players. It shows that the effective capacity in a joint venture is always

lower compared to a system optimum. However, when the players have asymmetric

costs, it is likely that some players over-invest as compared to their counterparts in

the optimal setting. In particular, the individual contribution depend on the revenue

sharing ratio 13.

In contrast to the heterogeneous resource sharing case where an optimal revenue

sharing method exists, one can show that there does not exist a fixed revenue sharing

108



method which will induce the system optimal actions in the Nash equilibrium. In

other words, there does not exist # such that <rrN) =F.

In the rest of the section, we will investigate the following questions: (1) For a

fixed revenue sharing ratio , how is performance in a joint venture compared to the

optimum. (2) How to choose 0 such that we can have some performance guarantee.

We will first restrict ourselves to linear quadratic costs. We begin with a 2-player

game and extend our results to a n-player setting. In the end of this section, we will

consider n-player setting with general convex costs.

4.4.1 2-player game with linear-quadratic cost functions

Assume that the cost functions are linear-quadratic, i.e.,

a1(K1 + bi)2 a 2 (K 2 + b 2 ) 2

J i(Ki) a 2 + ci ' f2(K 2 ) - 2 + c2-
22

Without loss of generality, assume that a1 > a 2 . Now define k 1 = K 1 + b1 and

K2 - K 2 + b2 , and their corresponding modified total capacity investment levels,

LN _ LN +b 1 + b2 , L* = L* + b1 +b 2 .

Lemma 4.4.3 For a 2-player game with any demand distribution D and linear-

quadratic cost functions, for all /1 < 0.5, the ratio of the total capacity investment

level in the system to that in the joint-venture is upper and lower bounded by

LN / 1a 2 + 2a 11> - >
L* a1 +a 2  2

Proof of Lemma 4.4.3. The lower bound is proven by Lemma 4.4.2. Now we show

how to obtain an upper bound by utilizing an intercept argument. By optimality

conditions, we have

D ip - a1 (K' - bl) /2P - a2 (K2N - b2 )
P(D < Ki + K2N __2
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CDF

1

LN I*A B C L

Figure 4-1: A graphical proof for Lemma 4.4.3.

By changing of variables,

P(D + bi+<b2 < N -2N _ 1 - a1 31 _ 2P - a 2 2N

- 31p /2P

Then #32a1 kN = /31a2 kN and we have

N _ 31a 2 + I2alN, or N _1a2+ 02a1N
Oia2 I#2ai 2

Thus, we have

P(~b+b <IN) ala2 (N.
S a12+2ai[ (4.8)

By the similar transformation of the first-order condition in the system optimal, we

have

P(D + b1 + b2 < *)- 1- aia2 (49)
p ai +a2)

As shown in Figure 4-1, the horizontal axis is the modified total capacity investment

level and the vertical axis is the cumulative distribution function of the demand. The

upward sloping curve (cumulative distribution function) represents the left hand sides

of (4.8) and (4.9), and the two downward sloping lines represent the right hand sides
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of (4.8) and (4.9). Thus, LN ard L* can be solved graphically. We also observe that

1* 1. C a1 + a2

LN LN A 0 1a 2 + /32 al

where the points C and A are the x-intercepts which can be evaluated from (4.8) and

(4.9). D

Lemma 4.4.3 shows that for a 2-player game with linear-quadratic costs, the ef-

fective modified capacity in a joint venture depends on both the cost asymmetry as

well as the revenue sharing ratio. However, the worst case, L* = 2LN, can happen

under two circumstances: (1) equal revenue sharing (#1 = #2) and independent of cost

asymmetry, and/or (2) with symmiretric players (a1 = a 2 ) and independent of revenue

sharing contracts (with the assumiption that #1 < 0.5. Intuitively, dividing revenue

equally among asymmetric entities sounds like a bad idea. It is surprising to see that

having symmetric players in a joint venture could lead to the worst outcome, and

having different revenue sharing contracts might not mitigate its impact. Note that

when #1 > 0.5, it is easy to construct examples that worst case becomes unbound.

Lemma 4.4.3 also highlights a notable difference between the homogeneous and

the heterogeneous resource pooling. Note that in Theorem 4.3.3 for the heterogeneous

resources, we have shown that the optimal revenue sharing rule suggests that every

player should be compensated proportionally to his share of the marginal cost to the

aggregate marginal cost. That if, if ai > a2 , the optimal way to share revenue must

follow that #1 > #02. Lemma 4.4.3 implies the exact opposite, i.e., in order to have

the worst case performance guarantee, given ai > a 2 , then #1 < #2!
The intuition is that for heterogeneous resource pooling, the effective capacity of

the entire system is constrained by a bottleneck capacity due to certain key players.

To induce these players to produce at K*, they have to be awarded such that they

are willing to produce at K* but not lower. Now consider homogeneous resource

pooling, every player can contribute to the effective capacity, the only difference is

the cost. Therefore, one should encourage the cost efficient player to produce more

and discourage those with higher cost. It is captured by a lower revenue sharing ratio
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for the player with higher marginal cost.

This observation on a 2-player game can be generalized to a n-player game as

shown in the following proposition.

Proposition 4.4.4 Consider a n-player game with cost structure a1 > a2 ... > a,

and revenue sharing contract 01 2 -. - 0,. Under any demand distribution D

and any linear-quadratic cost functions, the ratio of the total capacity investment level

in the system to that in the joint-venture is upper and lower bounded by

aN

With n-players, the worst case in terms of the effective capacity is L* = n, i.e.,

the worst case of a joint venture decreases as the number of participants increases. The

result is intuitive as with more parties involved, it becomes increasingly challenging to

coordinate the joint venture. Similar to the 2-player game studied earlier, the worst

case occurs with symmetric players and/or equal sharing of the revenue when players

are asymmetric.

In the next theorem, we will show that the profit generated in a joint venture can

be bounded by the optimal profit.

Theorem 4.4.5 For a 2-player game with any linear-quadratic cost functions and

any demand distribution with mode m, we have

> - for all ai > a 2 and /1 E
7rFT 2 - 2mp + (a,1/a2 + 1) '

Moreover, the optimal 0* that maximizes the total joint-venture profit falls in the

following interval,

1' mp + 1
[a1/a2 + lV 2mnp + (a1/a2 + 1

112



Proof of Theorem 4.4.5. By Lemma 4.4.3, we know that

LN _ 
3

1a2 + 0 2 al KN
0 - 1 or LN _ 1a2 + /2al RN

/2(1 2

The Nash profit functions can be expressed as functions of LN i.e.,

.Nr(/) = pE [nin(LN
aia2 + a2a 2 2

61 -- b2 , D) - 1  
2  N2

bi b2 Di -(.2 (a2#1+ a1#32)2
C1 - C2 - (4.10)

If we impose a budget constraint L < AN on the system optimal, the budget-

constrained system optimal profit can also be expressed as functions of LN i.e.,

= pE(min(LN -bl - b2 , D)] - ( a1a2

2(a 2 + 1))

L N 2
- C1 - C2 ,

Observe that g(LN) = w(#) when #1 . By Lemma 4.4.3, we know that for all

1 , 2. In addition, g(I) is concave in L by Lemma 4.4.1. Thus, we have

NrN
7T g(L*) -

No

2g(L*/2) 29(LN) 2

Now let D = D + bi + b2 . Since

P(D < LN

dLN

d 1 h

2 A N

LN ala2(al -a2)

p (#1a2+(1-#1)ai)2

(LN + (1a2+(1 )ai
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We have by (4.10),

d7rF(01)
d31

(1 - P(D < LN N ala2(al 1a2)

- 1ty1~ LN))L I(I3a2+(1 i0i)aiiT2

fb(LN) +1 ala2
p #1a2+(1 #1)ai

a 2a 2(1 - 2/31) N2_ 02 + a2a 2(1 -012 NL N

(a2+ aI(1 - /31))3 (A1a2 + (1 - /1)ai)2J d31

N
2  ( 2 a 2(al - a2)(al + a 2 ) 1(1 - 01) 2 2 -2(1)1 ) -+ a a2(1 -21

(#1a2 + (1 - #1)ai) 3  p(# 1a 2 + (1 - f1)ai)ff(LN) + aja 2

If the mode of D is in, then 7r(#1) is decreasing in 31 for all

C mp + a 2  1~

[2mp + ai + a 2 2_

and iry(# 1) is increasing in !1 for all

E L 0, a 2

Iai+a2_

Thus, the optimal #1* lies in the following interval

S (12 ttP + (12

11 + (2 ' 2np + ai + (12_

This completes the proof. D

In Theorem 4.4.5, we propose an interval for which the aggregate Nash profit is

guaranteed to achieve at least half of the optimal profit. The interval depends on

the cost asymmetry between the two players and the mode of demand. In particular,

the interval shrinks as the two players have more similar cost structure, i.e., with two

fully symmetric players, the best revenue sharing ratio asks for an equal division of

the revenue. On the other hand, the interval widens as the mode of demand increases,

i.e., if the demand distribution is flatter, our proposed revenue sharing contracts have

more rooms for error in capturing the peak demand.
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For a n-player game, we show that an equal revenue sharing scheme could guar-

antee a worst case performance of at least 1/n of the optimal profit as shown in the

following proposition.

Proposition 4.4.6 For a n-player game with any linear-quadratic cost functions and

any demand distribution, if we choose #i , 1/n, i.e., dividing the aggregate revenue

equally among all the players, we have

T(#p) 1

T n

Proof of Proposition 4.4.6. From a 2-player setting, one can see that the profit

functions can be expressed as functions of L,

1rT(L) -- pE[min(L + b1 + b2, D)] - a aI _c1 - c2.
(2(a2 + ai))

Note that it is equivalent to 7r(# 1,#12) when # = 2 = 0.5, where

7N () = pE[ini(LN + 1 + b2, D)] - (aa 2 I + 2 - Ci - c2
T -(nT T2(a 2 01 + a1 #32 )2  

-

In Lemma 4.4.1, we have shown the concavity of 7T(I,). Then by making use of the

bound on investment level as shown in Proposition 4.4.4, we obtain the desired result.

4.4.2 n-player game with general convex costs

We consider n-player games with asymmetric convex cost functions. Denote f -

(fi(Ki))_1 as general convex cost functions. Let 7rN(f) and 7r*(f) be the Nash and

system profit of n players with respect to the general cost f, respectively. Define the

Price of Anarchy with respect to f as

POA(f) (f
7r*(f)
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We first show that POA(f) can be lower bounded by POA(f) where f is a set of

modified linear cost functions.

Proposition 4.4.7 The price of anarchy on the total profit of a joint venture is lower

bounded by

POA(f)= N - POA(f),7*(f) 7r* (f)

where f (f1..I) are linear cost functions such that f o = a- K, where a=

fj'(K7).

Proof of Proposition 4.4.7. By convexity of fi for all i = 1, . n, we know that

fi(K* ) > f,(KN) + fN(K7)(K* - Kj).

Therefore

pE [min(LN, D)] -

pE[min(L*, D)] -
("1 f (K,)
E,_ f (K7)

pE [min(LN, D)] - j(" f (K7)

- pE[min(L*, D)] - (f1(K) + f'(K[)(K[ -

Since

0 = fi(0) ;> f 1 (j) + f(K)(-A) = f (K ) - f(K )(K) <o

we add (4.12) onto both the numerator and denominator of (4.11),

pE[min(N 1))]N

pEAmin(L*, D)] -

Zn
i=1 fj(K,)(Ki[)

Now let k, and k be the Nash Equilibrium solution and the system optimal solution

with respect to the same problem but with the modified linear cost functions such that

=a -Ki where ai = fj(KN). Correspondingly, ETN 1 N and f* = _ R".
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Since KN = KN (having the same set of first-order conditions), we have

pE[min(LN, D)] - ff(K7 )(KN) = pE min(LN, D)] -
i=1 i=1

Because ki is the optimal capacity investment level for the modified problem, it

implies that

pE[min(L*, D)] - f((KN)(K ) < pE[min(L*, D)] - aiki.
i=1 i=1

Thus, we have

pEmi(IND) -E"aikN 7__N

POA(f) > p ~E[min(LN, D)] - =n 1 > 7N POA(f).
pE[min(L*, D)] - n_1 aiK; -r*(f)

This completes the proof. D

By making use of Proposition 4.4.7, we can obtain a lower bound on the profit by

using the cost asymmetry factor and the ratio between the investment levels in the

Nash and the system optimum.

Lemma 4.4.8 Price of anarchy on the total profit of a joint venture is lowered

bounded by

N LN
POA(f)= > ~ ,-=f

Pr*(f) L

where the cost asymmetry factor is given by

mini a
<1

maxi a

Proof of Lemma 4.4.8. Assume that, without loss of generality, am = ai1  a 2

... < a = am. Define the set P = {j I aj = am}. If JPJ - s, s symmetric players
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F(x))

0 x

Figure 4-2: A graphical proof for Lemma 4.4.8.

invest in the system optimal solution and therefore * = sk for i E P.

POA(f) - (Y

P 0 N D -(x)dx+pILN FD(x)dT - amLN

1 atN _ I:2 N aLN
ZN + _N N _ am

N (,jN _ kN

1 * - aI*

a,, (n 1)LN LN

aA (n - 1)I* L*

where the cost asymmetry factor d = amrri/aAI < 1. This completes the proof. OI

Note that equal revenue sharing induces equal marginal costs for every player in a

Nash equilibrium, since /3i = a/ E_= aj. Therefore, & = 1, and the comparison

between the profit can be reduced to a comparison between the total investment

level, i.e, __ >

Next, we will present the how the profit in a joint venture can be bounded from

below by the system optimum. Define the demand spread

0~ m max fD(x)
OM min fD (Y)

where x < IN * y L
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Theorem 4.4.9

1 - of
POA(f) > & _

1 - nr + (n - 1)?'

where - maxi (aj/p, and > ; 1 measures the demand spread.

F(x)
1

0

1 -am/ p

x

Figure 4-3: A graphical proof for Theorem 4.4.9.

Proof of Theorem 4.4.9. First we lower bound the ratio of IN to ii*.

LN

L*

>N

LN ( =1  i ~ arm)/(Orp)

> (1 - D'_, ai/p)/Om

(1 - L'_1 ai/p)/OM + Zi 1i - iar)(OnP)

p - ZiI=1 fti + (Li-,1 Gi - }rri)O

p-naM
p - naM + (n - 1)aMO

1 - nf

1 - nf + (n - 1)f5'

where F = aM/p. This result then follows from Lemine 4.4.8. E

Note that when D is uniform, the demand spread 0 = 1, we have

1 - n
POA(f) > d _ .n

1 - r

Figure 4-4, 4-5 and 4-6 show the lower bounds on POA with uniform demand,

normal demand N(400, 100) and exponential demand exp(400), respectively. The
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lower bound on POA decreases as the number of players increases or the marginal

cost to price ratio increases. We also observe that the lower bound on POA has a

steeper rate of decrease when the demand spead is higher. Note that in our simulation,

the exponential demand has the highest demand spread (0 = 7.35), followed by the

normal demand (0 3.86) and then the uniform demand (0 1).

Lower Bound on POA

0.9

0.8- 
n

0.7-

0.6- n= 3
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0L

0.4- n= 4

0.3-

0.2- n= 5

0.1 -

01
0 0.05 0.1 0.15 0.2

marginal cost to price ratio (r)

Figure 4-4: Lower Bound on Price of Anarchy for Uniform Demand.

4.5 Conclusion

In this work, we study resource pooling and capacity planning in joint ventures under

uncertainties. We distinguish two types of resources pooling, based on whether the

resources are heterogeneous or homogeneous. When resources are heterogeneous, the

effective capacity in a joint venture is constrained by the lowest level of contribution

from one participant. We have shown that every participant is committed to make

an equal contribution in a joint venture with heterogeneous resources. We have also

shown that, there exists a same efficient and fair revenue sharing scheme in both

Nash equilibrium and Nash Bargaining solution. The optimal scheme rewards every

participant proportionally to his marginal cost. When resources are homogeneous,

however, there does not exist a revenue sharing scheme which induces actions to
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Lower Bound on POA

O 0.5-

0.4 -

0.3-

0.2 - n = 4

0.1 -

0
0 0.05 0.1 0.15 0.2
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Figure 4-5: Lower Bound on Price of Anarchy for Normal Demand.

achieve the optimum. Nonetheless, we propose some methods to share revenue with

the worst case performance guarantee. The methods suggest that the reward should

be inversely proportional to the marginal cost of each participant with homogeneous

resources.
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Lower Bound on POA
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Figure 4-6: Lower Bound on Price of Anarchy for Exponential Demand.
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Chapter 5

Conclusions

In this thesis, we have surveyed several recent work to develop provably near-optimal

approximation algorithms for operations management models. We would like to sum-

marize our results and point out possible future research directions.

Stochastic Lot-sizing Problems

We have developed new algorithmic approaches to compute provably near-optimal

policies for multi-period stochastic lot-sizing inventory models with positive lead

times, general demand distributions and dynamic forecast updates. The goal is to

coordinate a sequence of orders of a single commodity, aiming to supply stochastic

demands over a discrete finite horizon with minimum total expected cost, including

fixed ordering, holding and backlogging costs. The policies that are developed have

worst-case performance guarantees of 3 and typically perform very close to optimal in

extensive computational experiments. We also propose a 6-approximation algorithm

for the counterpart model under uniform capacity constraints.

We believe that these ideas will be effective to develop new near-optimal algo-

rithms to various core stochastic multi-echelon and multi-item inventory control mod-

els. In particular, we attempt to tackle the stochastic joint-replenishment problem.

In the joint-replenishment problem, we have a cross-docking warehouse that is not

allowed to hold any inventory, and multiple retailers each facing stochastic demands.
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A major set-up cost is incurred whenever the warehouse places an order from some

exogenous supplier, and a minor set-up cost is incurred whenever an order is shipped

to a retailer. Any order made by the warehouse has to be distributed among retail-

ers immediately since the warehouse is not allowed to hold any inventory. The goal

is to coordinate a sequence of orders over a discrete finite horizon to minimize the

system-wide expected cost, including set-up, ordering, holding and backlogging costs.

Another important future research direction is to study the performance of dual-

balancing or, more generally, cost-balancing policies under various assumptions on

the underlying demand distributions. As much as it is powerful to establish general

worst-case analysis, it is equally important to refine this analysis to various parametric

regimes of the underlying demand distributions and other key parameters of the

problem. We call this parametric worst-case analysis.

Revenue Management of Reusable Resources with

Advanced Reservations

We have studied a class of revenue management problems in systems with reusable

resources and advanced reservations. A simple control policy called the class selection

policy (CSP) is proposed based on solving a knapsack-type linear program (LP). We

show that the CSP and its variants perform provably near-optimal in the Halfin-

Whitt regime. The analysis is based on modeling the problem as loss network systems

with advanced reservations. In particular, asymptotic upper bounds on the blocking

probabilities are derived.

There are several issues that still remain open. From the comparison of the upper

bounds and the simulation results, it is clear that there is a gap between the empirical

blocking probabilities and the theoretical bounds. This gap is due to the approxima-

tion using infinite capacity systems. It opens an opportunity to tighten the upper

bound using another fictitious system between the original capacitated system and

the infinite capacity counterpart.
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We believe that these ideas can be effective to analyze dynamic pricing models

with advanced reservation. Consider a single-class time-homogeneous arrival process

of customers. Depending on the current state of the booking profile, the system offers

each arriving customer a price from a fixed menu. The customer accepts the offer

only if the price offered falls below her reservation price. A similar knapsack-type

linear program canl be used to guide the system to dynamically decide what prices to

offer.

Joint-ventures in Operations Management

We have examined the problem of capacity planning in joint ventures to meet stochas-

tic demand in a newsvendor-type setting. When resources are heterogeneous, there

exists a unique revenue-sharing contract such that the corresponding Nash Bargain-

ing Solution, the Strong Nash Equilibrium, and the system optimal solution coincide.

The optimal scheme rewards every participant proportionally to her marginal cost.

When resources are homogeneous, there does not exist a revenue-sharing scheme

which induces the system optimum. Nonetheless, we propose provably good revenue-

sharing contracts which suggests that the reward should be inversely proportional to

the marginal cost of each participant.

We will explore different cost structures and generalize the results as much as

possible. A viable approach is to use piecewise linear or quadratic functions to ap-

proximate any convex cost functions. We are also interested in mechanism design

that aligns the incentives of both parties to achieve system optimum profit. Another

important element of this study is test the validity and quality of our models using

empirical data.
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Appendix A

Appendix for Chapter 2

A.1 Proofs of Technical Lemmas and Theorems

LEMMA 2.4.1. Let W(RB) be the total cost incurred by the RB policy. Then we have,

T-L

E[We(RB)] < 3 - E[Zt]. (A.1)
t=1

Proof of Lemma 2.4.1. Using the marginal cost accounting in Equation (2.6) and

standard arguments of conditional expectations, we express

T-L

E[6(RB)] = E[HPB(Q) + H RB (QRB) +K .(QRB >0)] (A.2)
t=1

= E (E[HBI(Q B) + ± B(QB)K - (QRB >0) Ft]]
t-=1

T-L T-L

- 5 E[2Z B + PtK] < 3E E[ZPB].
t=1 t=1

The third equality follows directly from (2.13). To establish the first inequality in

(A.2) above, we shall show that Zt > PtK almost surely. That is, for each ft E F,

zt > ptK. Given any information set ft, all the quantities ,rt, 0t, (t, #t and pt defined

above are known deterministically. We split the analysis into two cases:

1. If Ot > K, then qt = qt (the balancing quantity) with probability pt = 1
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implying zt = Ot > K. The claim follows.

2. If O < K, then qtB = qt (the holding-cost-K quantity) with probability pt and

qB = 0 with 1 - pt. Thus, by Equations (2.10) and (2.11), we have zt = ptK,

and the claim follows.

This concludes the proof of the lemma. D

LEMMA 2.4.2. The overall holding cost and backlogging cost incurred by OPT are

denoted by 11OPT and H10  , respectively. Then we have, with probability 1,

HoPT ZHB.1(te S1HU32H), HOPT >ZB . (t & 1 1 J 1 m).(A-3)

t t

Proof of Lemma 2.4.2. The proof is identical to Lemmas 4.2 and 4.3 in Levi et al.

(2007). D

LEMMA 2.4.3. The expected holding cost and backlogging cost incurred by OPT plus

the expected amount borrowed from the bank account A are at least [ _' E[ZPBI.

That is, The following inequality holds

T-L

E ((HOPT + UOPT) + A] > E E[Z I (A.4)
t-=1

Proof of Lemma 2.4.3. Using linearity of expectation, it suffices to show

T-L

[ijOPT + OPT] > 1 N B]. ( A.5)
t=1

Using Lemma 2.4.2 and standard arguments of condition expectations, we have

E[H o T ] > E [5 HERB . 1(t C71H U $2H) (A.6)
.t

- E[E[(HtB 1H U 2H)| Fj

= E [ ZB t 1H - 2H)1
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Similarly, we also have

E[YI 0 T ) > E [ ZPB 1(t E 1r- U 2)] (A.7)
It

Equation (A.5) follows from sunning up Equations (A.6) and (A.7). D

LEMMA 2.4.4. The following inequality holds

~T-L

E [A] < E [ K -(QPT > 0) (A.8)
I.t=1

In other words, the expected borrowing E[A] is less than the total expected fixed or-

dering cost incurred by OPT.

Proof of Lemma 2.4.4. First we define the reduced information set f- to be the

information up to period t excluding the randomized decisions of the RB policy over

[1. t - 1]. In particular, given the entire evolution of demand fT , the sequence of

orders placed by OPT is known deterministically. Let 1 < ti < t 2 < . . . < t', < T- L

be the periods in which OPT placed n = n I f7 orders sequentially. Let to = 0 and

tn,+1 = T - L + 1. We shall show that there are no problematic periods within (to, t1)

and that, for each i - 1,... r1, the expected borrowing within the interval [li 1i+1)

does not exceed K. That is,

(to, ti) n -,2u = o,(A9

zR Z/ .1+1 < K. (A. 10)

It is important to note that fT does not include the randomized decisions of the

RB policy. Thus, the set 32M is still random and so is the amount borrowed from

the bank. In particular, the expectation in Equation (A.10) is taken with respect to

the randomized decisions of the RB policy. Equations (A.10) and (A.9) imply that,
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for each fj,

E[Z ZtPB fl K . n I fT = K -n, (A.11)

and therefore

[ A] < K. 17[N] E K. (QOP T > 0) . (A.12)
t=1I

Thus, it suffices to prove Equations (A.10) and (A.9). Figure A-I gives a graphical

interpretation of Equation (A.10), i.e., we want to show that the fixed ordering cost

K incurred by OPT in period t, will cover the expected amount borrowed from the

bank in periods that belong to set 02m within the interval [ti, ti).

K
Period 1 eei I g

1 ti ti ti-1 --- tN T

I order point by OPT * non-problematic period o problematic period (T2M)

Figure A-1: Decomposition of the problematic periods in the set 352u into intervals

between ordering points of OPT

Proof of Equation (A.9). We first show that Equation (A.9) holds. Recall the

definition 2M = : 89 < K and XtB OPT XRB _ RB}. Since at the be-

ginning of the planning horizon, it is assumed that every feasible policy will have

the same initial inventory position, it follows that if period t is in 2M, OPT must

have placed an order and overtaken the inventory position of the RB policy. (The

two policies face the same sequence of demands.) However, (to, ti) denotes the set of

periods in which OPT has not placed any order yet. Thus, the intersection of these

two sets is empty.

Proof of Equation (A.10). Next we show that Equation (A.10) holds. Recall

that fT denotes an entire evolution of the system excluding the randomized decisions

of the RB policy. Given the entire evolution of demands fT, construct a decision tree

based on the randomized decisions of the RB policy. The root node corresponding to

period 1 contains the information set fi - f E fj. The tree is built in layers, each
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corresponding to a period, where the number of nodes in layer t is 2 -1 numbered 1 =

1 . . , 2t-1. In particular, a node 1 in period (layer) t corresponds to some information

set ft E t which includes the realized reduced information set ]J- C f', and the

realized randomized decisions up to period t - 1 of the RB policy. Therefore it is

known whether under this state period t belongs to the set ' 7 2M or not.

The edges in the tree represent the different (randomized) decisions that the RB

policy may make with their respective probabilities. Each path from the root to

a specific node corresponds to a sequence of realized randomized ordering decisions

made by the RB policy. For example, consider again some node 1 in period (layer)

t in which the RB policy will order q-tB units with probability pti and nothing with

probability 1 - pti; then the node 1 in period t (denoted by ti) will have two edges to

two children nodes in the next period I + 1 each containing its distinctive ordering

information. Conceptually one can think about the decision tree as a collection of

independent coins, each corresponding to a node in the tree. The coin corresponding

to node I at layer (period) t has probability of success (ordering) pti.

1-P3d nn
.1Pit nn ....

1-P2b nn pn

1-Pla pn P3d pn Ptf n

P2b p

pn 1-P3e nn

1-Pti pn ....

PP 1-P2e n

nn Pe pn " pn

P ~nn ....
Period P2c nn ....
I a . 8 0
1 2 3 "" t t+1 - T

Figure A-2: An example of a general decision tree

Next we partition the nodes in the tree into problematic nodes (pn nodes), i.e.,

nodes that correspond to a pair (t, ft) for which t E 2M, and non-problematic nodes

(nn nodes). An example of a general decision tree is illustrated in Figure A-2.
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Focus now on a specific time interval (ti, ti+1 ). Suppose we have constructed the

tree from period 1 to T; the number of nodes and paths are clearly finite (possibly

exponential). Let the set W to be the set of all possible outcomes of the randomized

decisions in all nodes in layers within the interval [1, t, - 1] and in all the nn nodes

within the interval [1, T]. In particular, each g E W corresponds to a specific set of

outcomes in all nodes in layers (periods) within the interval [1, t, - 1] and in all the

nn nodes in the tree. Using the terminology of coins proposed before, g corresponds

to the outcome of the respective subset of coins corresponding to all nodes within

[1, t, - 1] and all nn nodes within [1, T].

Conditioning on some g E W induces a path from the root of the tree (in period

1) up to the earliest pn node, say j, where j corresponds to the period (layer) of

that node. Here we abuse the notation ignoring the index of the node within layer

j. (Namely, the exact value will be je for some e.) It is straightforward to see that

j > li. If j falls outside the interval [ii, i+1)., i.e., j > /j+1, it follows that there are

no pn nodes within the interval [ti, tj+1 ), and there is no borrowing over the interval.

Assume now that j falls within the interval [ti, ti+1 ) (j can possibly be in period

(layer) ti). We will show that the expected borrowing does not exceed K. That is.,

E Z B g < K. (A.13)
se[jat+) U M7,1

The proof of Equation (A.10) will then follow.

Recall that node j corresponds to some information set fj E /F. It follows that the

RB th ore. tstarting inventory position xi and the corresponding holding-cost-K quantity qB

are known deterministically. Conditioning on g, the only uncertainty in the evolution

of the system depends on the randomized decisions made in pn nodes within [J. 'i+1).

Consider the sub-tree induced by conditioning on g. The non-problematic nodes (nn

nodes) in the sub-tree have only one outgoing edge that corresponds to the decision

(order/no-order) specified by g to that node. The problematic nodes (pn nodes)

have two outgoing edges corresponding to the order/no-order decisions, respectively.

(Recall that g does not specify the decisions in these nodes.) Moreover, each pn node
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_ -( -..- nodes that require no further borrowing

paths specified by some g
1-Pj.1.b nn

+3 - - - - other paths not specified by g
nn' P+2

1Pja P+3f

pn P+1.b 1-Pj+3,e _

Pia 1 -P+2,c nn 1-pj+4,g pn ....

pn P+3,e pn

Pjal 21 P+ 4 ,g

Period

j j+1 j+2 j+3 j+4 ti+,-1 - T

Figure A-3: An example of a decision subtree: focus on the interval [ti, ti+1 ) and some

g E f, j is the earliest period in which a problematic node (pn) occurs. According to

g, there are two possible outcomes whenever a problematic node (pn) is reached, and

there is only one possible outcome whenever a non-problematic node (nn) is reached.

If a problematic node (pn) orders, there will not be further borrowing until the next

order of OPT in period ti+1-

S E [j, ti+1 ) is associated with the probability ps of ordering. (We again abuse the

notation introduced before and omit the index e of the node within the layer/period.)

An example of a decision subtree specified by some g E W is illustrated in Figure A-

3. Any sequence of randomized outcomes corresponding to the decisions in the pn

nodes induces a path of evolution of the system. The resulting cumulative borrowing

from the bank account A, corresponding to this path, is equal to K times the sum of

probabilities associated with the pn nodes in this path. (For each pn node s in the

path, the borrowing is equal to pK = z,.)

Next we claim that the sub-tree defined above includes at most one pu node in

each layer (period). This follows from the fact that any path between two pn nodes

r, s such that j < r < s < tj+1 in the tree includes only no-ordering edges of pn

nodes. To see why the latter is true, observe that if an order is placed by the RB

policy in a pn node, the resulting inventory position of the RB policy is higher than

OPT. Since both policies face the same sequence of demands, the RB policy will
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not have higher inventory position than OPT at least until the next order placed

by OPT. This excludes the existence of pn nodes in subsequent periods until OPT

places another order, i.e., beyond period /i± - 1.

In light of the latter observation, we re-number all the pn nodes in the sub-tree as

1, 2, . .., M (where 1 corresponds to j, specified before). Moreover, it follows that the

probability to arrive at node m = 1. M and borrow pmriK is equal to ]7J= "_(1 -ps).

(This probability corresponds to no-ordering decisions in all the pn nodes prior to m.)

The total expected borrowing is then

( M n-1

K- p M+1 (1 - p) pm Pk) . (A. 14)
m=2 S=1 k=1

Observe that the probability to borrow exactly K - E" Pk is equal to

m--1

Pm) pm (A.15)

Moreover, we have already shown that the expression in (A. 14) is bounded above by

K (see Lemma 2.4.5). This concludes the proof of the lemma. E

LEMMA 2.4.5. Let {pi} satisfy the condition 0 < p, < 1 for all 1. Then the following

inequality holds,

p + (1-p,)p k i1 (A. 16)
1=2 (s=1 k=1

Proof of Lemma 2.4.5. We construct an increasing sequence {am,.} where

m =p) + P (1 ps)) P1 ( pk . (A.17)
1=2 ts=1 k=1

For each m, if we replace p, by 1, we get

2m'-1 1-1 m-1 m'-1

ari =P + ( (1-p)) (±p)+ (i(1-- p ) (1+ tPk
1=2 P=1 k=1 S=1 k=1

(A. 18)
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such that am < am. Next we will show by induction that am, < 1 for all m from which

the proof of the lemma follows. It is straightforward to verify ai, d2 < 1.

that am < 1 for some m C Z+, we will show that <m 1.

1=2 S=1

=am-1+ f1
.S=1
mr-1

8=1

(1-Ps) Pi (P + (f(i-
(k=1 +s(=1

rSn ±

Prs ( Pk) + (P1- Ps)

k=1 S=1

Ps)) (1

m-1

= am-1+ H
(S=1

(1 -Ps) ) (1
Hence the claim follows by induction.

m

+k
k=1

Pk )

Ps) )

)(1
rm~

(1-pm) + pm Pk
k=1 I

a -1

k=1

]

LEMMA 2.6.1. Let W(I?1H) be the total cost incurred by the IB policy. Then we have,

T-L

(A.19)E[%W(/I 3)] <3. E[ZPB].
t=1

Proof of Lemma 2.6.1. Using the standard arguments of conditional expectations,

we express

E[W(RB)]
T-L

-)7 E[HtR(Q/'B) + f!RB(QRB) + K - I QRB > 0)
t=1

(A.20)

T-L

- 7[E[ JRB(QRB) + fBRB(c2RB) + K -I (QRB > 0) Pt]]

t=1

T-L

< SE2ZB +PtK]
t= 1

T-L

< 3( E[ZB].
t=1

To establish the two inequalities in (A.20), we shall show that ZRB > E[HPB(QfB)

Ft], Z/" = E[IlRB(Q B) Ft] and Z >" 2 PtK almost surely. Given any information

set ft, we know the inventory level xt and all the quantities O, #t Ot, pt defined above
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are also known deterministically. We split the analysis into two cases:

1. If Ot > K, then qt" = qt (the balancing quantity) with probability pt = 1

implying z/B =t > K. In addition, we have zB B - t._

E[fB(qt) ft]. The claim follows.

2. If O8 < K, then q/?B = min{qt, u} with probability pt and q/RB = 0 with 1

pt. Thus, by the construction of the probability pt, we have zR ptK =

E[n B(q ft and tB ptK = E[HpB(B ft E[Ht"(q ft , and

the claim follows.

This completes the proof of the lemma. F

LEMMA 2.6.2. The overall holding cost and backlogging cost incurred by OPT are

denoted by HOPT and 11OPT respectively. Then we have

t
OP

T
] B E (t (E a",

E HOPT+(K.0(Q2PT>0) E YZB. (t 2Hj

Proof of Lemma 2.6.2. The proof of (2.42) and (2.43) is identical to Lemma 4.2

in Levi et al. (2007) and Lemma 2 in Levi et al. (2008d) respectively. The proof of

(2.44) is identical to Lemma 5 in Levi and Shi (2009). Next we shall show that (2.45)

holds true. Recall that

- t:e Kad PT > XPB +min{f QB. u}}. (A. 21),12H t t < K and Yto' > X BR

In other words, -
7 2H consists of periods in which the balancing cost is less than K

and the inventory position of OPT after ordering exceeds even XRB + min {(B, U}

We split the analysis into two cases.
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1. If QRB < u, the RB policy will order the holding-cost-K quantity QB incur-

ring exactly K expected marginal holding cost. Since OPT has more physical

inventory than the RB policy, OPT had already ordered these units before thus

incurring more holding cost.

2. On the other hand, if QJ B > U, the RB policy will order the capacity u incurring

less than K marginal holding cost. We shall show that the fixed ordering costs

incurred by OPT cover this cost. It suffices to show that the number of orders

placed by OPT over the interval [1, 1] is at least the number of orders in which

RB orders up to capacity a over [I, t]. We prove the claim by contradiction.

Suppose otherwise, the number of orders placed by OPT over the interval [1, t]

is m and the number of orders in which RB orders up to capacity u over [L. t] is

n and r < n. The maximum inventory position of OPT in period t is x 1 +m u,

whereas the minimum inventory position of the RB policy in period t is x 1 +n- u.

This contradicts to the fact that OPT has higher inventory position than the

RB policy in period I where t E -2H. Hence the claim holds.

This completes the proof of the lemma. D

A.2 Performance of the proposed algorithms

The first two columns specify the test instances, namely, fixed ordering cost K, per-

unit holding cost h, per-unit backlogging cost p and demand rate vector A. The third

column shows the cost incurred by the optimal policy. The fourth column shows

the optimal parameters of parametrized RB policy. The fifth column shows the cost

incurred by the parameterized RB policy. The sixth column shows the cost ratio

of the parameterized RB policy to the optimal policy. The seventh column shows

the cost of unparameterized RB policy (i.e., the original policy without parameter

optimization). The eighth columns shows the cost ratio of the unparameterized RB

policy to the optimal policy.
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Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (Ao, Al, A2 ) OPT (#*, y*, 7*) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 46.85 (*,2,*) 49.18 1.0497 58.30 1.2444
(0,1,9) (4,1,2) 46.39 (*,2,*) 49.30 1.0627 55.24 1.1908
(0,1,9) (4,1,1) 46.20 (*,2,*) 47.81 1.0348 54.26 1.1745
(0,1,9) (3,1,2) 41.02 (*,2,*) 41.41 1.0095 49.40 1.2043
(0,1,9) (2,1,3) 32.88 (*,2,*) 34.42 1.0468 41.51 1.2625
(0,1,9) (1,1,4) 24.74 (*,2,*) 26.40 1.0671 31.40 1.2692

(5,1,9) (4,1,1) 102.66 (0.2,2,9) 108.28 1.0547 135.37 1.3186
(5,1,9) (1,1,4) 86.47 (0.2,2,9) 90.70 1.0489 128.70 1.4884

(5,1,1) (4,1,1) 71.35 (0.4,1,1) 75.42 1.0570 84.13 1.1791

(100,1,9) (5,1,0) 427.81 (0.9,*9) 451.68 1.0558 605.10 1.4144
(100,1,9) (4,1,1) 424.81 (0.9,*9) 449.65 1.0585 601.29 1.4154
(100,1,9) (3,1,2) 421.76 (0.9,*,9) 443.12 1.0506 595.10 1.4110
(100,1,9) (2,1,3) 418.63 (0.9,*,9) 443.64 1.0597 611.48 1.4607
(100,1,9) (1,1,4) 415.49 (0.8,*,9) 437.36 1.0526 618.36 1.4883
(100,1,9) (0,1,5) 412.29 (0.8,*,9) 435.65 1.0567 593.88 1.4404

Table A.1: Numerical results with lead time L = 0 and finite horizon T = 12.

Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (Ao,A 1 ,A2 ) OPT (*. -y*, r*) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 93.81 (*,2,*) 98.32 1.0481 120.14 1.2807
(0,1,9) (4,1,2) 88.27 (*,2,*) 94.25 1.0677 108.24 1.2262
(0,1,9) (4,1,1) 85.48 (*2,*) 90.21 1.0553 93.97 1.0993
(0,1,9) (3,1,2) 80.04 (*,2,*) 89.73 1.1211 90.40 1.1294
(0,1,9) (2,1,3) 73.98 (*1.5,*) 84.42 1.1411 90.99 1.2625
(0,1,9) (1,1,4) 70.96 (*1.5,*) 81.40 1.1471 87.60 1.2345

(5,1,9) (4,1,1) 137.66 (0.2,2,9) 153.97 1.1185 161.10 1.1703
(5,1,9) (1,1,4) 121.47 (0.2,2,9) 140.26 1.1525 148.47 1.2223

(5,1,1) (4,1,1) 78.18 (0.4,1,1) 90.42 1.1566 97.47 1.2467

(100,1,9) (5,1,0) 434.30 (0.9,*,9) 479.03 1.1030 614.17 1.4142
(100,1,9) (4,1,1) 431.87 (0.9,*,9) 466.33 1.0798 611.96 1.4170
(100,1,9) (3,1,2) 429.41 (0.9,*,9) 453.24 1.0555 551.00 1.2832
(100,1,9) (2,1,3) 426.86 (0.9,*,9) 451.17 1.0570 644.13 1.5090
(100,1,9) (1,1,4) 424.25 (0.9,*,9) 466.43 1.0994 623.56 1.4698
(100,1,9) (0,1,5) 421.56 (0.9,*,9) 461.65 1.0951 595.40 1.4124

Table A.2: Numerical results with lead time L = 2 and finite horizon T = 12.

Demands Cost of Optimal Cost of Cost Cost of Cost
(K,h,p) (AoAi,A 2 ) OPT (#*, -y* *) param. RB Ratio unparam. RB Ratio

(0,1,9) (4,1,4) 57.71 (*,2,*) 58.23 1.0090 61.92 1.0730

(0,1,9) (4,1,2) 57.71 (*,2,*) 58.36 1.0113 60.94 1.0560
(0,1,9) (4,1,1) 57.71 (*,2,*) 58.30 1.0102 60.38 1.0463
(0,1,9) (3,1,2) 50.19 (*,2,*) 51.49 1.0259 53.62 1.0683
(0,1,9) (2,1,3) 41.27 (*,2,*) 41.96 1.0167 43.63 1.0572
(0,1,9) (1,1,4) 30.55 (*,2,*) 30.88 1.0108 31.66 1.0363

(5,1,9) (4,1,1) 128.17 (0.2,2,9) 133.91 1.0448 166.10 1.2959
(5,1,9) (1,1,4) 101.70 (0.2,2,9) 107.34 1.0555 148.85 1.4636

(5,1,1) (4,1,1) 86.07 (0.4,1,1) 90.51 1.0516 104.24 1.2111

(100,1,9) (5,1,0) 535.14 (1.1,*,9) 566.23 1.0581 663.61 1.2401
(100,1,9) (4,1,1) 533.51 (1.1,*,9) 570.65 1.0696 659.29 1.2358
(100,1,9) (3,1,2) 529.77 (1.1,*,9) 566.09 1.0686 682.76 1.2888
(100,1,9) (2,1,3) 523.94 (1.1,*,9) 555.57 1.0604 729.15 1.3917
(100,1,9) (1,1,4) 520.03 (1.0,*,9) 550.36 1.0583 744.45 1.4316
(100,1,9) (0,1,5) 516.05 (1.0,*,9) 550.65 1.0670 711.22 1.3782

Table A.3: Numerical results with lead time L = 0 and finite horizon T = 15.
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Demands
No. (AO, A, A2 ) OPT (#, -y, r) RB Ratio OPT (, -y, 71) RB Ratio

Capacity 3 6

1 (6,0,0) 1027.0 (1, 1,50) 1141.5 1.111 275.9 (1,1, 10) 326.1 1.182
2 (3,3,0) 840.9 (1, 1,50) 914.9 1.088 207.2 (1, 1, 10) 251.8 1.215
3 (0,6,0) 681.9 (1, 1,50) 756.9 1.111 180.5 (1, 1, 10) 237.9 1.318
4 (0,3,3) 552.2 (1, 1,50) 584.4 1.058 169.9 (1,1,10) 218.2 1.284
5 (0,0,6) 446.7 (1, 1,50) 474.3 1.061 154.6 (1, 1,10) 205.1 1.327

Capacity 9 12

1 (6,0,0) 166.4 (1, 1, 1) 243.4 1.462 162.8 (1, 1, 1) 223.4 1.372
2 (3,3,0) 154.6 (1, 1, 1) 223.6 1.446 153.3 (1, 1, 1) 216.8 1.414
3 (0,6,0) 132.1 (1, 1, 1) 210.7 1.595 129.7 (1, 1, 1) 185.9 1.433
4 (0,3,3) 129.4 (1, 1, 1) 197.9 1.529 129.2 (1, 1, 1) 180.0 1.393
5 (0,0,6) 119.8 (1, 1, 1) 174.7 1.458 118.9 (1, 1, 1) 168.4 1.416

Capacity 3 6

6 (6,0,0) 1279.0 (1, 1,50) 1606.1 1.256 526.7 (1,1,10) 625.0 1.186
7 (3,3,0) 1093.0 (1, 1,50) 1224.8 1.121 450.3 (1,1,10) 537.1 1.192
8 (0,6,0) 934.5 (1, 1,50) 1104.5 1.182 410.6 (1,1,10) 513.3 1.250
9 (0,3,3) 804.7 (1, 1,50) 857.6 1.065 377.7 (1,1,10) 486.2 1.287
10 (0,0,6) 698.6 (1, 1,50) 761.0 1.089 343.3 (1, 1,10) 437.9 1.275

Capacity 9 12

6 (6,0,0) 351.9 (1, 1,10) 474.6 1.349 305.8 (1, 1,10) 404.2 1.321
7 (3,3,0) 327.3 (1, 1,10) 403.1 1.231 286.6 (1, 1,10) 392.3 1.368
8 (0,6,0) 287.3 (1, 1,10) 389.0 1.354 250.5 (1, 1,10) 321.3 1.282
9 (0,3,3) 273.2 (1, 1,10) 367.2 1.344 241.3 (1, 1,10) 311.1 1.289

10 (0,0,6) 249.6 (1, 1,10) 406.0 1.626 220.0 (1, 1,10) 284.4 1.292

Table A.4: Numerical results for the capacitated model: h - 1, p = 9, c = 2, T = 10;
K = 10 for experiments 1 to 5, K = 50 for experiments 6 to 10
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Appendix B

Appendix for Chapter 3

B.1 Proof of Ergodicity

In this section, we prove the existence and uniqueness of stationary distribution for the

Markov chain induced by the class selection policy (CSP). Let requests for resources

from a common resource pool of capacity C < oc arrive at time points {r , -0O <

n < oo}. By observing the system at the moments of request arrivals, we define

a discrete time process I, A (Nfc), Li, Di. Si, i - 1,2, . . . Nc)) where NiC) is the

number of active (reserved) requests in the system at the moment of nth arrival T,

Li is the elapsed time from the arrival of the ith request to r7, DI and Si represent

the reservation time (between arrival and actual service) and service time of the i1.

request, respectively. Note that Li < Di + Si for i = 1, 2,... Nnc). The discrete-time

Markov chain I, describes the entire booking profile at the moment of nth arrival T.

We use a discrete version of Theorem 1 in Sevastyanov (1957) to prove the existence

of a unique stationary distribution for {In}, which we state next for completeness.

Theorem B.1.1 A Markov chain homogeneous in time has a unique stationary dis-

tribution which is ergodic if, for any e > 0, there exists a measurable set S, a proba-

bility distribution R on Q, and n1 > 0, k > 0, K > 0 such that

* kR(A) < P, (x, A) for all points x E H and measurable sets A c H; for any

initial distribution Po there exists no such that for any n > no,
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e P,,(H) > 1 - c,

* P,(A) < KR(A) + c for all measurable sets A C H.

Proof of Ergodicity. The proof follows similar arguments as in Lu and Radovanovic

(2007b) and Sevastyanov (1957). Define set H(a, b, c, d) as

II (a, , c, d) A {Nl 0 ) < a, 0 < Li < b.0 i < c. 0 < Si < d} . (B.1)

for some positive finite constants a, b, c., d. Now we show that for any C > 0., there

exists H(a, b, c, d) e I, such that for any initial distribution Po there exists no such

that for all n > no,

P, (H (a, b. c, d)) > 1 - c. (B.2)

Note that

P > a + IP U {L, > b} , N( 1 < a]

+P U {Di > c}, N( < a

iGENo'C

(B.3)

+P U {S, > d}, N( <

iP N O(C)

> b] + aP [Di > c] + aP [S, > d],

where Na21 represents the number of active requests at T, that originated from n

arrivals at ro.. T, ,-_ and the rest of active requests at r., NOg, -N(C - N(C are

those that were active at the initial point To and are still active in the system at the
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moment of nth arrival. Next, since

P [N) + N > a]

< P [N > a

< P [N > ]

< P[ N_ ]

+P [ Nri > 1

I [Do + So > r,

[Nor=m P 1 [Do + So > (1+rPO

mr=o

+P [Tr, - To < (1 - ci)nIE(ri - To))],

where 0 < c1 < 1 is an arbitrary constant and we used N(' > N__ a.s. where N 3

is the active requests under infinite capacity system.

Next we prove that there exists a = ao large enough such that (B.4) is bounded

by 6/4. By virtue of Little's Law, we know that EN,(o) < oc and therefore, uniformly

for all n > 0,

imn P [Nr(t)
a->oo L

(B.5)

Next, note that I [Do + S > (1 - ci)nE(T - To)] < 1 [Do + S? > (1 - Ei)E(Ti - To)]

a.s., and that for any fixed n,

P It [Do + So > (1

< P 1 [o + S'o > (1I

ci)nE(Ti - To)] >

(1 )E(TI - To)] > 4 0

(B.6)

as ( -+ 00,

which by the monotone convergence theorem implies that, uniformly for all n > 0,

(B.7)limn P No,
m>=o
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(B.4)

ro] >

TO)] >

"NO'r

+ P

- Ci)nE(T1 -

> a - 0.
2

= m P I [Do + So > (1 - c1)nE(71l - ro)] > a
i= -



Finally, by the Weak Law of Large Numbers, for all n large enough,

P [Tn - T0 < (1 - c1)nE(T - ro))] < E/12. (B.8)

Thus, by (B.5) and (B.6), for an arbitrary 0 < c < 1, there exists no < o and ao < 0c

large enough such that for all n > no,

P [N)> < /12 (B.9)

I [Sf + Do > (1 - Ei)nE(r1 - To)] > a] < C/12.
..1

Now since EL, < o, EDj < 00 and ES, < o, there exists bo, co and do such that

P [L > bo] <
4ao P [D> co]

4ao
P [Si, > do] < .

4ao

Thus, by (B.8), (B.9), (B.10) and (B.11), we have

C. (B.12)

Next, we show that there exists ni > 0 and k > 0 such that for all points x E

H(ao. bo, co. do) and measurable sets A E H(ao. bo, co, do), the following inequality

holds

P, 1 (x, A) > kI?(A). (B.13)

Let Fv(v) denote a cumulative distribution function of a random duration V, i.e.

P [V < v]. Next, for any ni,

P1 ("x, A) > I(x, wo) P)2 (wo, A)., (B.14)

where n 2 = ni - 1. Let x = (m,l11 ... .lm, di .... dm.. . , Sm) C H(ao. bo, co. do).
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mn=O

(B.10)

(B.11)

= m] P

P' i(a, b, <, d)c5 -> P(//(a. b, c. d1)) '> 1I



Then,

PI(x, wo) > P [T1 - To > A, all m requests depart iII (To, Ti)] (B.15)

> P [T - To > co + do] = 1 - Fa(co + do) - e co+do)

where Fa(u) represents cumulative inter-arrival distribution of a renewal process {T},

i.e. Fa(u) - P [i - To < u]. Next, we derive a lower bound for P, (Wo, A) for some

n2 large enough such that

C
P[T -2 > co + do] 1- -. (B.16)

2

Note that the condition imposed on n 2 is possible due to the Weak Law of Large

Numbers, since for any c > 0 and all n 2 large enough with co + do < (1- e)E(T12 - To),

E
P [rr2 - ro > co + do] > IPl(r 2 - T > (1 - )E(T,, - To)] > 1 - -. (B.17)

Next, pick any x' = (m', l'. 1 ',, d', ... s'.,) E A. Define ' + dx' 

('., l + di'. . . . P, + d1',, d' + dd', .. d'r, + dd' ,, s' + ds' .... , s' , + ds where

dli, ... , d1',, dd', ... , dd',, ds. ds' , are infinitesimal elements. Then the transi-

tion probability into state (', '+ dx') starting from we can be lower bounded by the

probability of the event that there are exactly m' arrivals between Ti and Tr1 2 whose

arrivals times are determined by ( Tn2 - - diP , 2 - l)fori=1,...,', adnoneof

these m' arrivals concluded at time T. 2 and there were no other arrivals. Therefore,

r'
1  rrt

Pn2 (Po, (' + dx')) > e-\ A, 2  [1 - FD+S,D,S(l 1 , di. si)] . (B.18)

where FD+S,D,S(-) is the joint cumulative probability mass function. Now define

probability distribution

R A n' [Si
R(A) ii] ! J7 [I - FD+s,D,S(li, di, .si)] ,(B. 19)
R (A) v JXCA M
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where v is a normalization constant. Thus, we have

Pn2 +1 (x, A) > e- A(co+do)-1 'R(A). (B.20)

Finally, it is left to show that there exists K > 0 such that for every initial distribution

Po, for all n large and for any measurable set A c S(ao, bo, co, do),

P,(A) < K R(A) + e. (B.21)

By (B.16), for all n > n2,

P, (A) P [H,, C A,Tr -T 0 > co + do] + P [7, -T 0  co + do] (B.22)

P [Hn c A,Tn - o > co + do] +

< 1cA { i! 171[1- FD+S,D,S(li, di, si)} + e

< v- 1 R(A)+e.

Wc havc verified the conditions stated in Theorem B.1. 1 and thus the process {/ /17}

has a unique stationary distribution as well implying the existence of the stationary

blocking probability. D

B.2 Proofs of Technical Lemmas and Theorems in

Section 3

LEMMA 3.3.5. Consider a random walk defined by a sequence of independent random

variables Ej = 1 with probability p and -1 with probability q - 1 - p. Let S,,

_1 Ei. Define M. C [0,u] U{oo} to be maximum level attained by the random

walk (i.e., M = = max, 5. Given that 0 < p < q < 1 (downward drifting), then the

probability that the random walk ever hits above level b is P (M. > b) = (p/q)b.
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Proof of Lemma 3.3.5. Define the stopping time T as follows,

T = inf {t > 1 : St < -a or St > b}.

It is straightforward to check the following two conditions,

Vt C T.

The Wald's identity (see Gallager (1996))

G (0) T'
[#(0)]"

is a martingale where the moment generating function #(6) E(e 0 ) > 1. First we

compute 0 that solves the equation E(e0 ) = 1, i.e.,

E(eO) = peO + qe0 = 1
q

-> e5 =
p

By Optional Sampling Theorem (see Gallager (1996)),

[ ( )T
E I- E eST] -- E esul = 1.

This leads to

P(ST > b) E(eos- ST > b) +-(1 - P(S, > b)) E(eOs ST < -a)

Thus, we have

P(S, > b) =
1 - Ea

Eb- E(,
1 - ea

eOb - e-Oa

1-a

1- ( ")
(\ b( U

Let S" a ST be the stopping time location of the process. Let Ba be the event that

the random walk hits b before -a. Observe that P(13,) - P(S" > b) and also note
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(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

E(-r) < oo, E(|Etai -- Et| | Ft) < 2,



that Bi C Bj+1 for all i. Define B = U'lt Bi, i.e., there exists an i that the random

walk hits b before -i. Therefore P(Moo 2 b) - P(B). By properties of probability

measures, we have

P(Moo > b) = P(U B) = lim P(B ) = lim (_) = (B.29)
a- -j4 oca--o ) -a) q7 (.

This completes the proof. D

LEMMA 3.3.6. Consider the counterpart system with an infinite number of servers,

a customer arriving at the system at time 0 in steady state, observes that the pre-

arrivals follow a non-homogeneous Poisson input process with piecewise rate rl(r) at

time r

A. if r < 0,

A(1 - FD( r - 1)), if r > 0,

where FD is the cumulative probability mass function of D and FD( r -

Edo fD(-) = ZFrl >

Proof of Lemma 3.3.6. Lemma 3.3.6 is a generalized version of Lemma 3.3.2. For

r < 0, consider the time interval ([r] - 1, [r]]. By arguments similar to those used

in Lemma 3.3.2, for each I E [0. u), the interval ([r] - 1 - 1, [r] - 1] generates a

stream of pre-arrivals over ([r] - 1, [r]] that follow a Poisson process of rate yA.

These processes are independent of each other and the overall merged process has

rate A = -yoA + 71A + ... +7 A.

For [r] = i for i E [1, u], then the pre-arrivals prior to / over ([r] 1. [r]] are

induced by arriving customers over the intervals ([r] - 1 - 1, [r] - 1], for I E [i, U],
and the total rate is 'yjA + y 11A + ... + %A. Note again that the rate 7A is induced

from the Poisson arrival stream of customers over ([r] - 1 - 1, [r] - 1] who wish

to start in 1 units of time. Since we only consider pre-arrivals prior to t, the terms

yj_-AY,- 2 A,..., 70 A are missing. D
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LEMMA 3.3.7. Consider the counterpart system with an infinite number of servers, if

a customer comes at time 0 in steady state and requests service (S = 1) determinis-

tically to commence in 1) units of time () E [0,u]), the conditional virtual blocking

probability is given by, for all i E [0, U],

P P (B I D = i) P max N+i(1 - r; Ai+ 2 ) + Ni+2(r; Ai+ 3 )} > C
(rEo,1] J

where N, is a Poisson counting process with rate Ai = A(1 - FD(i - 2)), and i is a

mirror image of Ni with the same rate.

Proof of Lemma 3.3.7. By Lemnma 3.3.6, for each i E [1, u], the pre-arrival process

Nj over the interval (1 - 2, i - 1] follows a Poisson process with rate Ai - r(i - 1) =

A(1 - FD(i - 2)). This implies that over the interval (i - 1, i], the customers depart

the system following a Poisson process with rate Ai (a shift of Ni by 1 unit of time).

Let Rs be the mirror image of the departure process induced by Ni over (i - 1, i],

and therefore R1 has the same rate Ai. The rest of arguments is identical to that of

Lemma 3.3.3. ]

THEOREM 3.3.8. The conditional long-run virtual blocking probabilities have the fol-

lowing asymptotic upper bounds: for each i E [0, u] (the service distribution S = 1

deterministically), Pi < (b(-J).

Proof of Theorem 3.3.8. First we assume that -y0 > 0. By Lemma 3.3.7, we have

that A, > A2 and Ai > Aj+ 1 for each i E [2, u]. By Theorem 3.3.4, it follows that,

in Po = <D(-O); lim Pi = 0, for i E Li, a].

Therefore P, < <b(--) holds given that '0 > 0. In fact, we can relax the assumption

of 'y0 > 0. If '0 = 0, it implies that over the interval (0, 1] (recall that the customer

arrives at time 0 in steady state), the departure rate is equal to the pre-arrival rate,

i.e., 1 - A2 A. Theorem 3.3.4 cannot be applied under this case. However, the

fact that 'y0 = 0 implies that no arriving customers will start the service right away.
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Therefore, we do not have to consider the probability PO in the expression of P. Let

i' be the minimal index such that -ye' > 0 and -y = 0 for i E [01i' -1], by the same

argument, we can ignore the probabilities P,...., . Instead, again by Theorem

3.3.4, we have

lim P <(-) lim Pi = 0,. i + 1Iu]
A-o Aoo

Thus, Pi < ((-3) still holds and this completes the proof. E

LEMMA 3.3.9. Let N/ and N/ be defined as above. Then, for each j E [ 1,v] and each

i C [1, u], N/ and N|' are Poisson processes with the same rate

i-j-1

A3 =ijA 1 - E ) Aj(1 - Fj(i -j - 1)). (B.30)
1=0

Moreover, N/is independent of N, for i or j j'.

Proof of Lemma 3.3.9. For each set j E [1, v], and i c [1. u], the pre-arrivals

prior to t (i.e., N/) over (i - - 1, - j] are induced by arriving customers over the

intervals (i - j - 1 - 1, i - j -1] for 1 - max(0, i - j)... ,u, and the total rate A] is

therefore

' ax(0,i-j)A- + ... + - = A - i1 =) Aj(1 - FA(i - j - 1)). (B.31)

Note again that the rate -y is induced from the Poisson arrival stream of customers

over (i 'j -1 i-j - 1] who wish to start in I units of time. It follows from Poisson

splitting arguments that N/ and N, are independent of each other for (i. j) # (i', ').

Note that they are generated by pre-arrivals in disjoint intervals. E
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B.3 Analysis of Price-driven Customer Arrivals

For the model with price-driven demand we use the following nonlinear program

(NLP1):

M

M

s.t. 3 Y. aijkAijk(rk)j < C, (B.33)
k=1 i,j

0 < ajk <l1 Vi,j,k,

0 rk < 1. Vk.

In particular, it can be verified that any optimal solution of (NLP1) has only non-

negative prices. Also, observe that for any fixed prices r1 ,..., rM, the corresponding

solution of {nijk} has the same knapsack structure defined in Section 2 above. Let

(r*. a*) = {rk, aijk } be the corresponding optimal solution. Note that if one can solve

(NLP1) and obtain the solution (r*, a*) then one can construct a similar CSP that

will be amenable to the same performance analysis discussed in Section 3 above. How-

ever, solving (NLP1) directly may be computationally hard. Next, we show that under

relatively mild assumptions imposed on the functions A,(r1), ... , Am (r), one can re-

duce (NLP1) to an equivalent nonlinear program that is more tractable; we denote it

by (NLP2). (By equivalent we mean that they have the same set of optimal solutions.)

Consider (NLP2) as follows:

M

max rkAijk (rk)j, (B.34)
k=1 i j

M

s. t. Aijk (rk)j < C. (B .3 5)
k=1 i,j

0 rk < 1, Vk.

It can be readily verified that as long as Aijk(rk) is nonnegative (and decreasing) it

is always optimal to have nonnegative prices, so the nonnegativity constraints can be
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dropped.

Theorem B. 3.1 The programs (NLP1) and (NLP2) are equivalent.

Proof of Theorem B.3.1. First, we show that for each solution {rk} of (NLP2),

we can construct a solution of (NLP1) with the same objective value. Specifically, con-

sider solution {r', a'.k} such that r' = rk and aJk - 1 if and only if E Aik rk j >

0. It can be verified that the resulting solution is feasible for (NLP1) and has the

same objective value.

Next, we show how to map optimal solution {r*,ak} of (NLP1) to a feasible so-

lution of (NLP2) with the same objective function. For each i = 1,... , M' - 1, set

rk = r, and for each i = M' + 1,..., M set set rk - ro,. It is clear that, for each

i M' - 1, the resulting contributions to the objective value and constraint (3.2) are

the same as in (NLP1). Consider now possibly fractional v'M. The respective contri-

bution of class A' to the objective value is Zj r~f$n,*,Aim(r*,)j. Similarly, the

contribution to constraint (3.2) E a jM A r,)j. Thus, it is sufficient to show

that there exists a price rN, such that E rM y,(rii)j ( ri, uM , AMA(rl,)j

and E, Aijm,(rMi)j ajjlAijM' (r,)-

Since E r , Aijm,(r* j j r a* M,A 2jMl(r*,)j, we know that there exists

& [rmi, roo) such that J FAjjM'(,T) - ' rMcejM,AijM,(r*y,)j by the properties

of AjM, (rm,). Note that r > r*,, and therefore, we obtain Ei r*, Aij,(i)j

Z~irm (r)j - Zj rM ocY ,Aijm,(r*,)j. Therefore, we have that A AijM()j <

a aMAijM'(r*, which concludes the proof of this theorem. El

Theorem B.3.1 implies that instead of solving (NLP1) we can solve (NLP2). How-

ever, (NLP2) is computationally more tractable and can be solved relatively easy in

many scenarios. Specifically, Lagrangify (dualize) constraint 3.2 with some Lagrange

multiplier 0 and consider the unconstraint problem

max ( rk - q)A 2ik(rk)j,
rkC[E,roo) 1<k<M i,j
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which is separable in r 1 ,..., rM. In fact, one aims to find the minimal 0 for which

the resulting solution satisfies constraint 3.2. This can be done by applying bi-section

search on the interval [0. p]. The complexity of this procedure depends on the com-

plexity of maximizing E1k<M Zij(rk - e)Aijk(rk)j for each 1 < k < M. It is not

hard to check that there are at least two tractable cases: (i) Aijk(rk) is a concave func-

tion on [0. r,,), for each 1 < k < Al; (ii) Aijk(rk) is convex, but rkAJik(rk) is concave

function on [0, rx), for each 1 < k < M.
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Appendix C

Appendix for Chapter 4

C.1 Nash Bargaining Game

A n-person Nash Bargaining game consists of a pair (Ar, w), where M C R n is a

compact and convex set and w E IV. Set Nr is the feasible set and its elements give

utilities that the n players can simultaneously accrue. Point w is the disagreement

point - it gives the utilities that the n players obtain if they decide not to cooperate.

Game (Ar, w) is said to be feasible if there is a point v E A such that v1 > w1 and

V2 > w2 . The solution to a feasible game is the point that satisfies the following four

axioms,

1. Pareto optimality: No point in Ar can weakly dominate v.

2. Invariance under affine trans formation of utilities

3. Symmetry: The numbering of the players should not affect the solution.

4. Independence of irrelevant alternatives: If v is the solution for (Ar, w), and

S C R" is a compact and convex set satisfying w E S and v E S C A, then v

is also the solution for (S, w).

Nash Bargaining Solution (NBS) If game (A, w) is feasible then there is a

unique point in Ar satisfying the axioms stated above. This is also the unique point

that maximizes 1(,(vi - wi) over all v M N.
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