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Abstract

This thesis consists of three independent essays on Financial Economics. In chapter
one I investigate the possible mispricing of European-style options in the Mexican
Stock Exchange. The source of this problem is that when the Mexican Stock Ex-
change introduced options over its main index (the IPC) in 2004, it chose Heston’s
(1993) "square root" stochastic volatility model to price them on days when there
was no trading. I investigate whether Heston’s model is a good specification for
the IPC and whether more elaborate models produce significantly different option
prices. To do so, I use an MCMC technique to estimate four different models within
the stochastic volatility family. I then present both classical and Bayesian diag-
nostics for the different models. Finally, I use the transform analysis proposed by
Duffie, Pan and Singleton (2000) to price the options and show that the prices im-
plied by the models with jumps are significantly different from those implied by the
model currently used by the exchange.

Next, I turn to a problem in behavioral portfolio choice: It has been shown that
the portfolio choice problem faced by a behavioral agent that maximizes Choquet
expected utility is equivalent to solving a quantile linear regression. However, if
the agent faces a vast set of assets or when transaction fees are considerable, it
becomes optimal for the agent to take non-zero positions on only a subset of the
available assets. Thus, in chapter 2, I present a portfolio construction procedure
for this context using L1 penalized quantile regression methods and explore the
performance of these portfolios relative to their unrestricted counterparts.

In chapter three, co-authored with Victor Chernozhukov, we present the Ex-
tended Pareto Law as an alternative for modeling operational losses. Through
graphical examination and formal goodness of fit tests we show that it outperforms
the main parsimonious alternative, Extreme Value Theory, in terms of statistical
fit. Finally, we show that using the Extended Pareto Law as a modeling technique
also leads to reasonable capital requirements.
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Chapter 1

Bayesian Estimation and Option

Mispricing

1.1 Introduction

The Mexican derivatives market (MexDer) introduced options on the main index of
the Mexican stock exchange (the IPC) in 2004. Banks and other financial institu-
tions buy these options in order to hedge their positions on the IPC and often hold
them until maturity. Thus, there is little trading in these products and in fact most
days there is no trading for many of the options. In spite of this, by law, MexDer
is required to publish a price for the options each day, even if there was no trading.
These prices are then used by banks and investment firms to mark-to-market their
positions.

MexDer bases its pricing procedure on Heston’s (1993) "square root" stochas-
tic volatility model (MexDer (2008)). This specification offers more flexibility than
the classical Black-Scholes (Black and Scholes (1973)) setting. While the latter
assumes a constant level of volatility, Heston’s model assumes that volatility fol-
lows a mean reverting diffusion process and thus allows for episodes of volatility-
clustering. Further, Heston’s model retains one of the most useful characteristics
of the Black-Scholes setting: a closed-form option pricing formula. Thus, Heston’s

model becomes a natural candidate when modeling stocks or indices that exhibit
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volatility-clustering.

Nonetheless, there is more than one way in which asset dynamics can depart
from the geometric Brownian-motion assumption of Black-Scholes. In particular,
stocks and stock indices tend to have days with extremely large returns (either
positive or negative). This fact has led to a large literature including the work by
Bakshi et al. (1997), Bates (2000), Pan (2002) and Eraker et al. (2003) that shows
that models without jumps tend to be misspecified for stock indices. Although most
of this research was conducted on data from US markets, the presence of days with
crashes and large positive swings in the IPC suggests that models without jumps
will also be misspecified for this index. Hence, a model that accurately describes
the dynamics of the IPC will most likely have to include jumps in the return series
or simultaneous jumps in the return and volatility dynamics.

In this paper I investigate whether the model used by the exchange is, in fact,
misspecified for the IPC. Next, I test whether models with jumps represent a better
alternative. Finally, I examine whether the more elaborate models imply signifi-
cantly different option prices.

To formally show that jumps are necessary to fit the IPC data I estimate models
with and without jumps for the IPC and test their relative performance. However,
estimation in the context of stochastic volatility models is not trivial. The main
complication arises from the fact that the volatility series is not observed. Including
jumps complicates the estimation further in two directions. First, jumps increase
the number of unobserved state variables in the model. Second, and perhaps more
importantly, it is sometimes difficult for estimation algorithms to disentangle the
variation arising from the diffusive element of the dynamics and that arising from
the jump component (see e.g. Honore (1998)) .

In spite of these difficulties, several techniques have been developed to estimate
and test this family of models. These have included calibration (Bates (1996)),
Implied State GMM (Pan (2002)), Efficient Method of Moments (Andersen et al.
(1999)) and Markov Chain Monte Carlo (Jacquier et al. (1994) and Eraker et al.
(2003)).

When choosing an empirical technique for this problem, an important require-
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ment was that I could use the output to price options. Hence, I need not only
estimates of the parameters of the models, but also of the unobserved state vari-
ables. The MCMC technique of Eraker et al. (2003) does precisely this: it produces
estimates of both the parameters and unobserved variables, and thus serves as the
appropriate tool for the purpose of this paper.

Beyond the actual estimation, I am interested in the relative performance of the
different models under consideration. To investigate this, I perform two kinds of
tests. The first is a standard normality test of residuals, while the second is based
on Bayes factors and is particularly useful for comparing nested models. Just like
option valuation, this procedure depends crucially on estimating the latent variables
as well as the parameters, and so, can only be conducted after certain estimation
procedures.

From the estimation and model selection results, I conclude that the current
stochastic volatility model used by MexDer is misspecified. Further, I find that the
model with jumps only in returns is still misspecified, but is an improvement over
Heston’s model. Finally, I show that models with simultaneous jumps in volatility
and returns represent a much better fit for the index dynamics.

Using the transform analysis introduced by Duffie et al. (2000), I then estimate
option prices and show that those implied by the stochastic volatility and jumps
models are significantly different than those implied by Heston’s model. Hence, 1
find that the option prices implied by a better fitting model for IPC dynamics are
significantly different than those currently used to mark-to-market positions.

The rest of the paper is organized as follows: section 2 introduces the family
of stochastic volatility and jumps models that we will be working with, section 3
presents the estimation methodology, section 4 describes the data, section 5 presents
the estimation and model selection results, section 6 presents the option pricing

results, and section 7 concludes.
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1.2 Models of Price Dynamics

The Black-Scholes model introduced in 1973 is one of the most widely used tools in
finance. Not only does Black-Scholes provide a set of reasonable assumptions for the
dynamics of asset prices, it also has the great advantage of implying a closed-form
formula for the pricing of European-style options. Formally, the Black-Scholes model
assumes that the prices (S;) of the underlying asset follow a Geometric Brownian
Motion, which implies

dSt = mStdt + (TStth,

where W is a standard Brownian motion process and m and o are fixed parameters.
By a simple application of Ito’s lemma it implies that Y; = log (S;) behaves according
to

This formulation provides an immediate interpretation of the model: dY; can
be thought of as an instantaneous measure of log-returns. Thus, the model tells
us that log-prices grow according to a deterministic trend (udt) that is perturbed
by a Brownian motion with volatility ¢. Putting together these two assumptions
we have a very reasonable starting point for modeling asset dynamics. Further,
under no arbitrage assumptions, the Black-Scholes model implies that the price of

a European call that matures at time 7" with strike price K is given by
SN (dy) — e " T"VKN (dy), (1.1)

where N is the standard normal cumulative distribution function, r is the risk free
rate and d; and dy are functions of K, S, (T —t), o and r.

However, the dynamics of stocks and stock indices exhibit phenomena that are
not consistent with the assumptions of the Black-Scholes model. In particular, stock
indices tend to experience volatility-clustering; that is, there are periods when the
volatility of returns is very high and periods when it is low.

Further, all the variables in the option pricing formula are observable, except

o. Thus, if option prices are observed, o can be calculated from the option pricing
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formula, and if the Black-Scholes model were true, the estimated o should be the
same for every option regardless of its strike price or time to maturity. However,
a well-known result is that the implied volatility is highest when the strike price
is very high or very low. This result, known as "volatility smiles" or "volatility
smirks", is extensively documented in Stein (1989), Ait-Sahalia and Lo (1998) and
Bakshi et al. (2000).

Thus, stochastic volatility models were introduced as generalizations of the
Black-Scholes framework that allows for volatility-clustering and potentially pro-
vides a solution to the "volatility smiles" issue. Some of the first models to include
a volatility term that could vary with time were those of Scott (1987), Hull (1987),
and Wiggins (1987). However, it was Heston’s 1993 model that became widely used
because it shared a crucial characteristic with the Black-Scholes model: it offered a
closed-form solution to pricing European options. Formally, Heston’s model assumes

the following asset dynamics:

dS; = mSdt + \/VtStthl
dVy =k (0 — Vi) dt + O’\/thWtQ,

where W} and Wtz are Brownian motion processes with correlation p. Thus, Heston’s
model is a generalization of Black-Scholes, where the volatility of the price diffusion
is allowed to vary with time. In particular, the volatility is allowed to follow a
diffusion similar to an Ornstein—Uhlenbeck process, but where the volatility of the
diffusive element is proportional to v/V;. In spite of this difference, it is important
to note that a feature that the volatility process shares with Ornstein—Uhlenbeck
processes is the mean reversion of the deterministic drift. This gives an immediate
interpretation to 6 as a long-term value the process tends to return to and « as the
speed with which the process will tend to return to 6.

Precisely because volatility is allowed to vary, this specification can accommodate
periods when returns will be very volatile, but the model also implies that volatility
will tend to return to its long term value 8 and thus periods of high volatility will
be transient.

This added flexibility, together with the availability of a closed-form pricing for-
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mula for European-style options, makes the Heston model a considerable improve-
ment over Black-Scholes. However, the added flexibility provided by the introduction
of stochastic volatility does not seem to be enough.

Episodes of "crashes" cannot be captured by these dynamics. For instance,
under Heston’s model, a crash like that of 1987 when the S&P 500 lost more than
20% in a single day would imply an observation of more than 8 standard deviations
away from the mean. In order to capture these crashes, models with jumps in the
return series were introduced. These jumps take the form of occasional shocks to
the return series which will explain large (either positive or negative) returns in a
single day which could not be explained by a continuous diffusion such as those in
Black-Scholes’ or Heston’s specification.

The use of jumps in returns goes back to, at least, Merton’s 1976 model which
augments the Black-Scholes model by adding normally distributed jumps that oc-
cur according to a Poisson process. So, following the notation I have been using,

Merton’s model implies

dY; = pdt + odW; + EYdNY,

where NV is a Poisson process, and £Y is a Gaussian random variable.

This family of models will be able to explain days with sudden large returns.
However, since it assumes o to be fixed throughout time, it will not be able to
describe processes where there are periods of high volatility and periods of low
volatility. Thus, a natural idea is to combine stochastic volatility and jumps in the

return series. Following this direction, Bates (1996) introduces the following model:

dY; = pdt + V'V, dW; + EYdN}
dVy = k(0 — Vi) dt + o/ VidW2.

This gives us a specification that can accommodate both volatility-clustering via
the stochastic volatility element and sudden large returns through the jump compo-
nent. So far, we have a model built around Black-Scholes, with added characteristics

tailored to explain the phenomena that Black-Scholes cannot. Hence, we would ex-
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pect this new model to provide a good fit to the data of stock indices. In spite of
this, Bakshi et al. (1997), Bates (2000) and Pan (2002) find that models with jumps
only in the return series are still misspecified for stock index data. The rationale is
the following: having jumps in the return series can explain an isolated episode of
a very large return. However, data shows that frequently, when there is a day with
a very large loss, the next day tends to have a very large gain. In contrast, under
Bates’ specification, jumps arrive according to a Poisson process with arrivals a few
times per year. Thus, observing consecutive days with jumps on several occasions
would once more imply that we are observing very low probability events.

A natural extension of Bates’ model is to add a jump process to the dynamics of
the volatility series. This will allow for a sudden increase in the volatility of returns,
therefore allowing for periods when there are very large returns on consecutive days.
Although this is achieved partially by introducing stochastic volatility, by introduc-
ing jumps in V we allow for a sudden "burst" in the returns instead of a gradual
increase in their dispersion. Thus, Duffie et al. (2000) introduce a family of models

that generalize Bates’ as follows:

dY; = (m — §V;) dt + V/VidWy + AN}

(1.2)
dVi = k(0 — Vi) dt + o/ V,dW?E + E/dNY,

where NV is a Poisson process, and £¥ represents the magnitude of jumps in volatility
at time ¢. Although Duffie et al. (2000) allow for a variety of distributions for £,
we will be interested in the case where £; is exponentially distributed. Clearly, the
model described by system (1.2) is a very general specification that allows for jumps
in both returns and volatility. Thus, sudden "bursts" in the volatility of returns can
be described in this framework. Further, since it retains jumps in returns, it can
potentially encompass all the phenomena that we have described above and that
simpler models are not capable of capturing.

For the rest of this paper, we will work with a variation on model (1.2). We
begin by presenting this general stochastic volatility with jumps model and later
describe restrictions that will allow us to test whether jumps are necessary for the

particular index we are modeling.
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1.2.1 General Stochastic Volatility with Jumps Model

Let S; denote the price of the index at time ¢ and let Y; = log(S;). The most
general form of stochastic volatility model with jumps which we are interested in

can be expressed as

dY; = pdt + /ViedW} + €YdN}

(1.3)
dVy = (0 — Vi) dt + /Vi—o, (deJ + /1 pzwf) +EdNY,

where Vi_ = limgp Vs, (Wl,WQ) is a standard Brownian Motion in RZ?, N} and
Ny are Poisson processes with constant intensities A, and A, respectively and & ~
exp (u,) and &/ ~ N (,uy +pJ§}’,0§) are the jump sizes in volatility and returns
respectively.

Thus, we are assuming that log-prices behave according to a Brownian motion
with drift x and volatility v/V. The departure from standard Brownian motion with
drift is that this process is hit by normally distributed shocks with arrival times that
follow a Poisson process. Furthermore, the volatility vV itself behaves according
to a mean-reverting diffusion with long term value 6 that is hit by exponentially
distributed shocks. These shocks also occur according to a Poisson process. Finally,
the Brownian motions driving both diffusions are assumed to have a correlation of
p.

This general specification includes the Black and Scholes (1973) and the Heston
(1993) specification as particular cases: if 0, = 0 and N/ = NY = 0 for all ¢,
Y would follow a geometric Brownian motion, as described by the Black-Scholes
model. If instead we only restrict N/ = NP = 0 for all ¢ we have Heston’s "square
root" stochastic volatility model (SV model from now on). In addition, we will also

be interested in the cases where:

1. N/ = 0 the case where there are jumps only in the returns and not in the

volatility (SVJ model).

2. N/ = N} the case where there are correlated jumps in both returns and

volatility, but they are restricted to occurring simultaneously (SVCJ model).
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3. The case where there are jumps in both returns and volatility and these jumps

occur at independent times (SVIJ model).

1.3 Estimation Methodology

With all the models presented above, we face a common problem: all of these mod-
els describe continuous time dynamics, but the data will invariably be discretely
sampled. Thus, the estimation of the parameters will always be for a discrete time
analog of the continuous time model we are interested in. Nonetheless, evidence that
goes back at least as far as Merton (1980) shows that estimates of parameters based
on discretization of continuous time models can be biased. Further, Melino (1994)
offers a broad overview of the possible problems that may arise when estimating
discretized versions of continuous-time models. However, through simulation exer-
cises, Eraker et al. (2003) show that, for the range of parameters we are interested
in, these biases become negligible when the discretization is at the daily level.

The structure of the Black-Scholes model or Merton’s Jump-Diffusion lead to
moment conditions and likelihood functions which are straightforward to construct,
thus allowing for GMM estimation as in Fisher et al. (1996). The estimation of sto-
chastic volatility models is more challenging, however, since the volatility series can-
not be observed. Thus, several authors have estimated the unobserved parameters
by using data contained in the prices of options. For instance, Ledoit et al. (2002)
use the Black-Scholes implied volatilities of at-the money short-maturity options as
a proxy for volatility. A more elaborate method presented in Pan (2002) calculates
the implicit volatility from option prices, but using the option pricing model that
corresponds to the asset dynamics she is assuming instead of the "naive" Black-
Scholes implied volatilities. This then allows her to construct moment conditions,
and form a variation of GMM, known as implied state GMM.

Another problem of having only discretely-observed data for a continuous-time
model, is that the likelihood function of the observations is usually not explicitly
computable. However, Ait-Sahalia (2002) proposes a maximum-likelihood method

that approximates the likelihood function of the observations. To do so, he uses
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Hermite polynomials to construct a sequence of closed-from functions that converge
to the unknown likelihood function. This method was generalized to stochastic
volatility models in Ait-Sahalia and Kimmel (2007). However, a clear drawback of
this generalization is that it requires the prices of options or some proxy for the
unobserved volatility.

Since the purpose of this paper is to show that the prices published by MexDer
come from a misspecified model, we can not use the time series of option prices as
part of the data used for inference. Thus, the methods described so far will not be
useful in our context. Instead, we must explore the options available for estimation
when the volatility series is not observable and option data is not available either.

These methods fall broadly into two categories. The first category comprises
variations of the simulated method of moments proposed by Pakes (1989) and
McFadden (1989). In particular, Gallant and Tauchen (1996) constructed a vari-
ation known as the efficient method of moments that has the significant advantage
of being as efficient as maximum likelihood under certain conditions. This method
has been successfully used by Andersen et al. (1997) and Andersen et al. (1999) to
estimate a wide variety of models for the dynamics of stock indices.

The second approach, which we follow, uses Bayesian MCMC estimators. Their
use dates back to Jacquier et al. (1994) but also includes Kim et al. (1999), Eraker
(2001) and Eraker et al. (2003). A fundamental advantage of these methods is that
they can produce estimates of the unobserved state variables and not only of the
parameters. This is crucial for our purposes, since we are interested in using the
results of the estimation to price options, and the (unobserved) volatility is an input
required by the option-pricing formulas.

The rest of this section will be devoted to describing the Bayesian technique
used for the estimation of the models of interest. This technique is a Markov Chain

Monte Carlo procedure based on Eraker et al. (2003).

1.3.1 Estimated Model and Priors

We begin by constructing the Euler discretization of model (1.3) and we take it as

a true model in the sense that the discretized model will have the same likelihood
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function as the continuous time model sampled at discrete time intervals. Thus,

Vi —Yio1 = p+/Viciel + &7

(1.4)
Vi— Vi1 =k(0—Vi1) +0uV/Vioae} +ELJY,

where J!, J? = 1 indicates a jump arrival and €/, €} are standard normal random
variables with correlation p.

Now, let © denote the collection of parameters we wish to estimate so,

© - {/J/7 ’i,o-meapa ;u'ya Oys PJs My /\y7 )\v} .

In the context of Bayesian estimation, in addition to the model specification
described by model (1.4) we will also need a set of priors for the parameters. Priors
are usually thought of as containing some information about the parameters that
is not contained in the data, but a statistician believes should be included in the
estimation. However, for most of the parameters we wish to impose no such prior
information. Hence, "uninformative" priors are used.

So, let p(©) denote the prior distributions for the parameters. These prior

distributions will be

w~ N(1,25), py ~ N (0,100),
Kk~ N(0,1), o2~ IG (5,20),
K0 ~ N (0,1), ty ~ I'(20,10),
o2 ~ 1G(2.5,0.1), p;~ N(0,4),

prU(=1,1), Ay =Xy~ 3(2,40).

Notice, for instance, that the prior for 4 has a standard deviation of 5. Later,
we will see that our data has an average daily return of around 0.1%. Therefore, by
imposing a prior with a standard deviation several orders of magnitude larger than
the initial guess for the parameter, we are essentially imposing no prior information.
Analogous arguments can be constructed for most of the parameters except for the
case of A and 05‘ These priors restrict the models with jumps so that jumps are

infrequent and of magnitudes larger than what could be explained by the stochastic
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element of the diffusions. We could think that large returns observed infrequently
could be part of a jump process with a much higher rate of occurrence and the
possibility of either large or small jump magnitudes. However, by introducing fre-
quent jumps the estimation procedure might have problems distinguishing between
variation attributable to the diffusive element of the process and the jump element.
These difficulties are described in Honore (1998) and in Ait-Sahalia (2009) and the
references therein. Thus, it is reasonable to impose an informative prior for these
two parameters.

Finally, the choice of the parametric forms of the priors is standard in the lit-
erature. Later we will see that the reason that these distributions have become

standard is that the priors and their posteriors are conjugate distributions.

1.3.2 Estimation Algorithm

Let Q2 be the set of parameters together with the latent variables. Thus, Q includes
the all the values we wish to estimate. Further, if we denote V, J,£Y and £ as the

entire vectors of V;, Ji, £} and £/ sampled at the same discrete intervals as Y;, then

Q={0,/¢,¢"V}.

Thus, the objective of our Bayesian estimation is to find the posterior distribution
of Q given the observed log prices Y. A simple application of Bayes’ theorem tells

us that
p(QY) xp(Y|Q)p(2).

However, p(€2]Y) is not a standard distribution so drawing from it is not a
trivial task. Therefore, to find p (2|Y) we use a hybrid - MCMC algorithm from
Eraker et al. (2003).

MCMC Procedure

The general idea of MCMC procedures is to construct a Markov Chain that has
as its stationary distribution the distribution we are interested in i.e. p (Q]Y). We

begin by dividing €2 into subsets (which will be discussed later). Each element of §2
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is then assigned a starting value Q0 = (w(l), ...,w?). Then, the ¢’th iteration of the
algorithm consists of obtaining a draw for each w; € . Specifically, we draw the
i’th component w$ from the distribution of w$ conditional on the data and the most

current values of all the other components of €2, i.e.
wf ~p (@il 024, Y),

where

c _ c .c c c—1 c—1
Q; = (wl,wQ,...,wi,I,wiH CLwih) .

Hence, in each step we are drawing on the distribution of w; conditional on the
data, and on the rest of parameters taking the values of the most recent draws we
have made of those parameters. Note that here p (wl\ flc_i, Y) is the true conditional
distribution.

These steps are then repeated a large number of iterations until we believe that
the chain has converged. The output of the algorithm can then be taken as a sample
drawn from p (Q|Y). A detailed description of these methods as well as proofs of
the convergence of the algorithm can be found in Johanes and Polson (2009).

The importance of the priors that we chose for the parameters becomes clear

once we note that for each of the w; € Q we will have!

ulQy ~ N (p,,07) psIQ-p, ~ N (u_pJ,UQ_pJ> :
(5, 60) [Q_(m0) ~ N (M, %), M|Q_x, ~ B (ar,,By,)
Ry ~1G (@0, By) s Ml@oa, ~ B (an,8,)
HylQep, ~ N (uuyﬂﬁy) v &gy ~ LN (ugg,cré) ,
022 ~ IG (e, B,), 0 ¢ ~ N (ugg, aé) ,

ol Q—p, ~exp (Ay,) Ji|Q_j, ~ Bernoulli (py,) .

Thus, we can now see clearly the advantage of the prior distributions that were

chosen: they have conjugate posteriors that are easy to draw from. Notice however,

'A detailed derivation of the posteriors and the procedure used to draw from p and V; can be
found in Appendix A.
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that we are missing the posteriors for p and V;.

These elements of {2 unfortunately do not have posteriors that follow a distribu-
tion that is known in closed form. Thus, in order to draw from them, accept-reject
methods must be used. In the case of p we use an independence Metropolis-Hastings
algorithm to draw from p|Q2_,, and in the case of V; a random walk Metropolis-
Hastings algorithm is used. These Metropolis-Hastings algorithms belong to the
family of accept-reject methods used to draw from non-standard distributions. A
candidate w? is drawn from a known distribution and it is accepted or rejected with
a certain probability that is a function of the ratio of its likelihood and the likeli-
hood evaluated at wffl. A disadvantage of these methods is that if each new draw
takes steps that are too far from the previous iteration, the algorithm will tend to
reject new draws very often and thus convergence will be very slow. On the other
hand, if steps are too small, the algorithm will not reject often, but convergence will
still be slow, since it will take the program a long time to explore all the potential
values where the posterior distribution of w; has positive mass. Therefore, when
using these Metropolis-Hastings algorithms one must calibrate them, and the rule
of thumb suggested in Johanes and Polson (2009) is that 30%-60% of the candidates
should be rejected.

Putting all the steps together we have the following:
Algorithm 1 FEstimation of stochastic volatility and jumps model.

1. Set starting values for §2

2. Forc=1...C

e Fori=1..#06
— Draw parameter i from: p(©;|0_;, J, £/, 6], V,Y)
e Draw jump sizes:
— Fort=1:T draw from: p(£}10,J; = 1,&,V,Y)
— Fort=1:T draw from: p(£§]10©,J; = 1,V,Y)

o Draw jump times:
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— Fort=1:T draw from: p(J; = 1|0,£Y,£", V,Y)
e Draw volatility:

— Fort=1:T draw from: p(V4|0;,J,&Y,&},V;, Vi-1,Y)
3. Discard the first C iterations.

By writing the algorithm in this expanded form, we can clearly appreciate that
this method is very computationally intensive. Drawing the parameters is not the
issue, since the number of parameters is less than 11 for all models. However, for each
iteration of the algorithm at least T" latent variables have to be drawn, and for the
models with jumps in both equations, up to 57 state variables have to be simulated
for each iteration. Now, T is frequently in the thousands, and convergence criteria
are usually not met unless C' is in the tens of thousands. Hence, it becomes clear that
computational cost will be one potential drawback of this method. Nonetheless, this
procedure remains the best estimating option available, in spite of its computational
cost, precisely because we need the draws of the state variables for our option pricing
application and for the Bayesian model selection procedure we describe below.

Finally, Johanes and Polson (2009) show that this algorithm will in fact pro-
duce a Markov chain whose stationary distribution will be the posterior distribution
p (Q2]Y) that is of interest here. Precisely because we are interested in the stationary
distribution, we discard the first C iterations and take the draws of Q¢ from C to C
as a sample from the stationary distribution.

Still, we need some criteria to know that the algorithm has achieved convergence.
Although there are no set rules on how to guarantee convergence, there are still
several things we can check. First, we can use very different starting points and check
that the estimators that the algorithm produces are sufficiently close regardless of
the starting point. Second, assuming we believe that C iterations are enough, we
can run the procedure for a considerably longer time (up to an order of magnitude
larger) and compare the distribution of the last C' draws of the chain with the C

draws where we thought that convergence had occurred.
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1.4 Data

The IPC is the main index of the Mexican Stock Exchange. The exchange describes
it as a "representative indicator of the Mexican stock market" (Bolsa Mexicana de
Valores (2011)). It includes 35 stocks chosen for their market capitalization and
liquidity. Nonetheless, a handful of stocks dominates the index; in 2010-2011, the
two most heavily-weighted stocks comprised over 36% of the index. These were
America Mévil (Telecommunications) having a weight of 25% and Walmart-Mexico
(Retail) having a weight of 11.5%. However, having single stocks with very large
weights is not unusual for stock indices; a common example being the Nasdaqg 100,
where Apple Inc. had a 20% weight on the index during 2010. The rest of the
IPC is well diversified sectorwise, including firms as diverse as Pefoles (the world’s
largest silver producer) and FEMSA (a beverage company producer of beer and soft
drinks).

Moreover, a crucial characteristic of the IPC is that it is used as a benchmark
by banks and investment firms in Mexico, and it is one of the most closely followed
economic indicators in the country. Thus, when the Mexican stock exchange intro-
duced options in 2004, European-style calls and puts on the IPC were some of the
first contracts to be issued.

The data used for this paper consists of 6189 daily prices of the index ranging
from 1987 to 2011. Although the index existed before 1987, the methodology used
for the construction of the index was very different, so only data from 1987 onward
was used. Still, the period considered comprises a wide range of economic conditions.
Near the beginning of the series, in October 1987, one of the most volatile periods
in world financial history occurred. For the Mexican case this was compounded by
internal problems that led to an annual inflation of over 100% for that year. Next,
in 1994 Mexico experienced one of the most politically turbulent years in recent
history, which was the prelude to the 1994-95 financial crisis. Later, we will pay
special attention to this period and what some of the models can tell us about the
behavior of the index under these extreme circumstances.

Other periods of worldwide financial instability are also reflected on the IPC.
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These include the Asian and Russian crises of 1997-98, the burst of the .com bubble
in the early 2000s and the global financial crisis beginning in 2008. Finally, between
these highly volatile times, there are periods of low volatility, and thus the returns

exhibit the usual volatility-clustering that is common for stock indices.

1.4.1 Descriptive Statistics

Let us begin the analysis of the data by presenting simple descriptive statistics.
Table 1.1 shows that mean returns for the index were almost 27% per year with an
average annual volatility of 29%, both numbers higher than US stock indices for this
period. More importantly, the series exhibits negative skewness and kurtosis that
considerably exceeds 3. This is a common finding for financial returns, indicating
that log returns are not normally distributed and thus not consistent with the Black-

Scholes model.

Table 1.1 Summary Statistics for Daily Returns

Mean (Annualized) 0.106% (26.82%)
Volatility (Annualized) 1.84% (29.32%)
Skewness —0.508
Kurtosis 21.13
Min. —20.24%
Max. 23.58%

Figure 1-1 shows the time series for the returns. We can see that the data exhibits
periods of very high volatility, particularly in 1987, but also in 1994-95, 1997-98 and
2008-09. This presence of volatility-clustering is yet another suggestion that the
Black-Scholes model will not be able to describe the dynamics of the index and that
stochastic volatility models may be appropriate. However, one can also observe days
of extreme returns with a magnitude that exceeds 10 standard deviations above or
below the mean return. This is an indication that a model without jumps will
not be able to fully capture the dynamics of the index. Further, and especially in
1987, we observe periods when there are returns with very large magnitudes during
consecutive days, suggesting that jumps in returns might not be sufficient, and a
correctly specified model for this data will also have to include jumps in the volatility

series.
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Figure 1-1: Daily log-returns of the IPC index 1987-2011.

1.5 Estimation Results and Model Selection

1.5.1 Estimation Results

The parameters are estimated by setting C' = 150,000 and discarding the first
100,000 iterations. Table 1.2 shows the median of the posterior distributions for
each of the four estimated models.

The parameters that have an immediate interpretation are p and 6. The esti-
mates for p indicate a deterministic drift that remains close to 30% annually re-
gardless of the model. Meanwhile the estimations for # imply a long term annual
volatility of 27.72% for the SV model but only 26.48% in the SVJ model. These re-
ductions in volatility are to be expected: under the SV specification all the variation
in the return series is driven by the volatility of its diffusive element. However, in
the SV.J model, part of this variation is now explained by jumps in the return series.
This can also be seen in the estimates of V. Figure 1-2 shows the SV, SV.J and SVILJ
estimates for V for two of the periods of particularly high volatility. Once more, we
see that the volatility series is lower when part of the variation of the returns can be

attributed to jumps. Yet, it is also important to note that volatility is higher when
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Table 1.2 Medians of the Posterior Distributions
Standard deviation of the posterior distributions in brackets
SV SVJ SVCJ SVIJ
I 0.1170(0.017 0.1174(0.019 0.1178(0.018) 0.1188(0.018

(0.017) ) )
oy 0.0430(0.001)  0.0417(0.001)  0.0423(0.001)  0.0425(0.001)
p —0.0274(0.015) —0.02510(0.015) —0.02894(0.016) —0.0283(0.018)
£ 0.0444(0.005)  0.0462(0.006)  0.04488(0.005)  0.0453(0.005)
0 3.051(0.230) 2.782(0.212) 2.958(0.222)  2.962(0.225)
oy 0.364 (0.12) 0.446 (0.24) 0.453 (0.27)
i, —0.124 (0.83) —2.592(1.00)  —3.420 (3.82)
Ay 0.017 (0.006) 0.003(0.001)  0.002(0.001)
1y 4.54(16.61) 20.81 (9.85)
A 0.007 (0.004)
Py —0.423(1.14)

jumps in the volatility series are considered. The explanation for this is that under
the SVJ specification very large returns will be attributed to jumps in the return
series, without volatility having to rise much. However, once we allow for jumps in
the volatility series, a large return can be the consequence of a sudden increase in

volatility and not necessarily a jump in the return series.
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Figure 1-2: Estimated volatility for two sub-periods under the SV, SVJ and SVIJ
specifications.

Finally, the estimates of A = (), A,) also have an immediate interpretation.

The frequency of the jumps, the estimations of Ay imply 4.25 jumps in the return

31



series are expected every year under the SVJ specification, but only 2 jumps every
3 years are expected under the SVCJ and SVIJ specifications. Once again, this
result is what we would expect: by introducing jumps in volatility, large returns can
be attributed to a sudden increase in V, without the need for jumps in the return

series.

1.5.2 Implied Jump Process
Results for the SV.J Model

In Figure 1-3 we can see that the days with high probability of a jump are not nec-
essarily the days with the largest returns, but days with large returns and relatively
low levels of volatility. Thus, for high volatility periods, the model still assigns an
important part of the variation in the returns to the diffusive volatility. In fact,
in Figure 1-4 we can observe that on dates when a high probability of a jump is

assigned, practically all the magnitude of the return can be attributed to the jump.
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Figure 1-3: Volatility estimates and probability of jump times under the SV.J spec-
ification.
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Figure 1-4: Magnitude and probability of jumps under the SVJ specification.

Additionally, the fact that the SVJ model very clearly identifies dates with high
probabilities of jumps allows us to look at one of the most interesting periods in
Mexican economic history and link historic events with predictions of jumps (or
lack thereof). In Figure 1-5 we can see the results of the SVJ model for the 1994-
1995 period. 1994 was one of the most politically unstable vears in recent Mexican
history. On New Year’s Day 1994 Zapatista guerillas appeared in the southeastern
state of Chiapas. This represented the first bout of civil insurgency in two decades
in Mexico. Not surprisingly, our estimates assign a large probability of a jump hav-
ing occurred on January 2nd (the first day of trading that year). The next date
with a large probability of a jump is immediately after March 23rd. On this date
the presidential candidate of the official party was assassinated. Given the political
structure at the time, the candidate of the official party was practically assured to
be the next president. Therefore, his assassination represented a particularly im-
portant shock to the confidence in Mexican financial markets. The next instances

of high jump probabilities correspond to June 11th when the Zapatista guerrillas
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rejected the terms of a proposed peace treaty and later on November 1994. The
latter might be thought of as the beginning of the chain of events that triggered the
1995 financial crisis (see e.g. Aspe (1995)). On November 18th the central bank
experienced one of the largest declines in foreign reserves on record. Confidence
had been deteriorating throughout the year, but on November 15th a high ranking
government official accused the official party of orchestrating a political assassina-
tion earlier that year. Given the political structure of Mexico during the 1990s,
instability in the ruling party was perceived to be equivalent to instability in the
government. Further, historically, the party had been characterized by ferocious loy-
alty of party members (see e.g. Preston and Dillon (2004)), so public accusations
of serious misconduct coming from a high ranking party member were interpreted
as a sign of deep instability within the party. Given the other problems discussed

above, and that rumors of a potential sovereign default were beginning to circulate,

it is no surprise that the model identifies a jump on November 18th.
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Figure 1-5: Volatility estimates and probability of jump times under the SVJ spec-
ification for the 1994-95 period.

Finally, the last date marked explicitly in Figure 1-5 is December 19, 1994. On

this date the Mexican president announced rather abruptly that the peso would
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be devalued shortly. This episode has become known colloquially as the "error de
diciembre" or December’s mistake. It is somewhat surprising that the model does
not detect a jump on this date or the dates immediately afterward. Nonetheless, if
we look at the return series we see that there were in fact very large returns around
that date. However, after inspecting the volatility estimates, we see that volatility
had been increasing from November onward. Thus, by the time the announcement
was made, volatility was so high that jumps are not needed to explain the very large
returns observed in late December and early 1995.

During early 1995, while the crisis was unfolding, we observe that volatility
tended to be high and thus no jumps are needed to explain large swings in prices.
Nonetheless, volatility decreased through the first half of the year and once it reached
its lowest point of the year in August, a jump is once more detected. At this point
volatility begins to increase once more, explaining the large returns during late 1995,
and thus no further jumps are detected until 1996, which coincides with the end of

the sub-period of interest.

Results for Models with Jumps in Both Returns and Volatility

In Figure 1-6 we can observe graphically how under the SVCJ a much lower fre-
quency of jumps is estimated (when compared to the result under the SVJ model).
However, we still find that jumps are particularly important in explaining large re-
turns during periods of low volatility. Also, it is important to note that, as we would
expect, periods of high volatility tend to be preceded by large jumps in the volatility
series.

In Figure 1-7 we can see that under the SVIJ specification the probability of
jumps in the return series remains very high for very specific days. In contrast, the
probability of jumps remains almost uniformly low for the volatility series. Nonethe-
less, this does not imply that there is little information in this series of probabilities.
Since what is plotted in the last graph of Figure 1-7 is the probability of a jump
occurring on each particular day, having a period of time with above average prob-
abilities of jumps for each of those days tells us that there is a high probability of a

jump having occurred in that period. So, instead of identifying precise days when
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Figure 1-6: Returns, volatility and expected magnitude of jumps in both series
under the SVCJ specification.
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Figure 1-7: Returns, volatility, probability of jumps in returns and probability of
jumps in volatility under the SVIJ specification.
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a jump occurred (as we can with the return series) for the volatility series we can
only identify an interval of days where it seems very likely that there was a jump.
Further, Figure 1-8 shows the product of the probability of a jump with its expected
magnitude. This gives us a sense of the expected jump on that day. Therefore, by
looking at a given period we can get a measurement of the expected accumulated

contributions of jumps to the volatility.
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Figure 1-8: Returns, magnitude of jumps in returns, volatility and expected size of
jumps in volatitlity under the SVIJ specification.

1.5.3 Model Selection: Test of Residuals

Through the MCMC procedure, we completely characterize the posterior distribu-
tions of the parameters. However, knowing the probability of the parameters lying
in a certain interval will not be sufficient to test the suitability of the models or
their relative performance. Thus, in order to test how well specified the models are,

the following residuals are calculated:

:n_}@,l_ﬂ—jf’éf
Vi1

&t

37



Note that, regardless of the model being considered, under the hypothesis that
the model describes the dynamics of the returns, this residual should follow a stan-
dard normal distribution. Thus, a first approach to testing the fit of the different

models is to construct a QQ plot for the residuals.
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Figure 1-9: QQ plots for the residuals under the four models.

The QQ plots in Figure 1-9 show us how the distribution of the residuals is closer
to normality for the SVJ than for the SV model and even closer for the models with
jumps in both series. Moreover, beyond the graphical data represented by the QQ
plots, we can perform a formal statistical test of the normality of £, for each of
the models. Table 1.3 shows the p—values for a Jarque-Bera normality test of the

residuals.

Table 1.3: Jarque-Bera Test
Model SV SvVJ SVCJ SVIJ
p-value <0.001 0.0199 0.0763 0.0680

For the SV case the normality of the residuals can be rejected at the 99.9% level,
confirming that in fact this model provides a very poor fit for the data. At the 95%
level we can also reject the SVJ model, but not of the models with jumps in volatil-
ity. Thus, models with jumps in both series represent a considerable improvement

relative to the SV model. This confirms the initial conjecture: that models with
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jumps are better specified for the IPC than Heston’s model.

1.5.4 Model Selection: Bayes Factors

So far we have seen that the models with jumps offer a better fit than the standard
Heston (SV) model. However, when assessing the merits of the different models,
we still must take into account the fact that the SV model is the most tightly
parametrized within the set. This should lead us to ask whether the improvements
in fit outweigh the loss parsimony.

Fortunately, our estimation procedure produces estimates for all the latent vari-
ables. This, together with the fact that the SV model can be expressed as a re-
stricted version of any of the other models, allows us to compare the performance
of the models using Bayes factors.

In general, for two models M; and My and data Y, the posterior odds

p(M|Y)

B (M, M) = 2217
(M, M) = )

represent the relative likelihood of the two models conditional on the data. Further,
if we assume prior ignorance by setting p (M;) = p(Ms), a simple application of

Bayes’ theorem yields

_p(Y|My)p(My)  p(Y|M)
B (MM = ) p(0h) — p (YD)’

which is simply the ratio of the likelihoods of the data under the two model speci-
fications. So, assuming we are comparing the SV model to any of the alternatives

(SVX), B(SV,SVX) can be expressed as

p(Y|SV) _ [p(Y|QSV)p(QSV)dQ
p(Y[SVX)  [p(YIQSVX)p(QSVX)dQ

Further, SV is equivalent to restricting the jump vector (or vectors) to zero

in any of the other models, so that p (Y|Q,SV) = p(Y|Q,SVX,J =0). Thus, a
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further application of Bayes’ formula tells us that

p(J=0Y,SVX) p(Y|J=0,8VX) p(Y|SV)

p(J=0lSVX) ~ pY|SVX)  p(Y|SVX)’

where the denominator can be computed directly from the prior distribution of A

(the rate of the jump process) and the numerator will be
1
P(J =0Y,SVJ) = / p(Jy =0\ Y,SVX)p(A|Y,SVX)dA.  (15)
0

Now, since the Markov chain constructed for estimation completely characterizes
p(AY,SVX), we can use the draws from this chain to perform a Monte Carlo
integration of equation (1.5).

Following Smith and Spiegelhalter (1980), in Table 1.4 we report 2In(B) and

the interpretation suggested in that same reference.

Table 1.4: Bayesian Factors

Models 2In(B) Interpretation

SV vs. SVJ -7.5 Positive against SV.J
SV vs. SVCJ 9.1794  Positive for SVCJ
SV vs. SVIJ 15.164  Positive for SVIJ
SVCJ vs. SVIJ 5.9846  Positive for SVIJ

The negative value in SV vs. SVJ indicates that under this criterion the im-
provements in fit from SV to SVJ do not compensate for the less parsimonious
model. However, the positive values for the rest of the factors indicate that there is

otherwise positive evidence in favor of the more complex models.

1.6 Option Pricing Application

The starting point of this paper was the fact that MexDer uses Heston’s model to
price options on the days when there has been no trading. Now, under the naming
convention used in the previous sections, Heston’s model corresponds to the SV
model, and so far I have shown that it is a poor choice for modeling the dynamics
of the IPC and that models with jumps offer a much better description of the asset

dynamics. However, we still have to check whether the option prices implicit in the
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more elaborate models will significantly differ from those estimated using Heston’s
model.

Let us remember that one of the characteristics which make Heston’s model is
so attractive is that it has a closed form formula for the valuation of European-style
options. In contrast, with more elaborate models we cannot always be sure that such
valuation formulas exist. Fortunately, the four models estimated and tested above
belong to the larger class of affine-jump diffusions. Duffie et al. (2000) show that the
pricing formula for European options on assets that follow an affine-jump diffusion
has a closed form (up to the solution of a system of complex-valued differential
equations). Concretely, for an option expiration date 7', at time ¢ the conditional

characteristic function is defined as:
CCF;(z)=FE [eiZYT|Yt] .

Using this definition, Duffie et al. (2000) show that if Y follows an affine process
then CCF; (z) will be of the form

CCF;(2) = ePortov Yt

where ¢, and ¢y, satisfy a pair of complex-valued ordinary differential equations.
Since the CCF; is fundamental for option pricing, in principle every time we wanted
to price an option, one would have to solve (d)ot’ (byt) by some numerical method
(e.g. as Runge-Kutta). However, for the models considered in this paper ¢, and
¢y, are known explicitly as a function of the parameters of the jump diffusions and
the parameters of the options (see e.g. Sepp (2003)).

Further, Sepp (2003) also shows that the particular models estimated above yield
a pricing formula that can be expressed as a weighted sum of the current price of
the underlying asset and the present value of the strike of the option. Specifically,
the price (F) of a European option over an asset with current price S, and strike

price K is given by

F=g[SiP ()= e TIEP (p)]
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where ¢ = 1 if the option is a call, ¢ = —1 if the option is a put, and

_ 1% | otky
Pj(cp)le(p-l-gO(%-l—%A R[%(Z‘:T)]dg (1.6)

where R denotes the real part of a complex number and (¢, ¢,) are functions of the
CCF; and parameters of the option being evaluated. When compared to equation
(1.1) we see why Sepp (2003) calls this a Black-Scholes-style formula.

Using this pricing procedure and the parameters estimated above, prices are
calculated for every call option issued between 2004 and 2009. Then the prices
implied by Heston’s model are compared to those implicit in the SV.J model.

Figures 1-10 and 1-11 show the percentage difference in price of call options under
the SVJ specification relative to the prices under Heston’s model. The graphs show
the difference in price as it varies with the ratio of the strike price of the option to
the current price (a measure of the "moneyness" of the options). In each case the
set of options is separated into those that will expire in under 45 days, those that
will expire in between 150 and 250 days, and those that will expire in more than 300
days. Figure 1-10 shows that for options that are out of the money, the difference
in prices is moderate, although it increases as the expiration of the options becomes
longer, and it also grows as the options come close to being in the money (as K/S;
approaches 1).

These differences in prices would be significant if one could actually trade in
these options, but since the purpose of the prices is to mark to market them, the
difference in prices is not that important.

However, in Figure 1-11 we see that for options that are in the money, the price
differences are much larger and can substantially change the apparent value of the
options that banks hold in their balance sheets. This clearly makes the choice of
the model for the dynamics of the underlying assets a very important decision when

imputing prices to options with no market price.
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Figure 1-10: Percentage difference in price implied by the SVJ model relative to
those implied by Heston’s model for out of the money options.
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Figure 1-11: Percentage difference in price implied by the SVJ model relative to
those implied by Heston’s model for in the money options.
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1.7 Conclusions and Direction of Future Research

I have shown that Heston’s model is misspecified for the IPC and that models
which incorporate jumps offer a better description of the dynamics of the index.
Further, I showed that models with jumps in both returns and volatility improve
the fit sufficiently to compensate for the loss in sparseness. Finally, transform pricing
techniques allowed me to show that option prices will be significantly different under
the assumption of jump-diffusions than under Heston’s model.

The remaining issue is the suitability of the method in a real-life situation. The
estimation procedure is very intensive computationally and may not be practical
if the model needs to be estimated every day. Thus, implementing these results
would require an estimation method that could incorporate new information, such
as new prices at the end of each day, in a computationally-efficient manner. I
conjecture that by combining the MCMC procedure presented here with Bayesian
filtration methods such as those proposed in Johannes et al. (2009), a methodology
for pricing the options can be constructed that is both based on a well-specified
model for the asset dynamics and implementable in a real setting. This would then

enable MexDer to provide more reliable prices on a daily basis.
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1.8 Appendix A. Drawing from the Conditional

Posteriors

Many of the results presented in this appendix can be found in standard textbooks,
in Eraker et al. (2003) or in Johanes and Polson (2009). However, to ease replica-
bility of my results, I present the derivation of all the posteriors.

We begin by re-stating the discretized model (1.4) as

AY, = p+Viiel + €T}
AV, = a+ BVio1 + op/Viiel + £}

where we have, 8 = —k and a = k8, AY; =Y; — Y,y and AV; =V, — V;_;. Then a
distribution that will be useful throughout is
p (A}/tv AW‘W—I, 6) =

(AY,—p—g} g}

Via
]. 1 AV, — _BV 'Eny>2
= exp | ————~ _|_( tTOTPVE-1 76y
2. Vi_1+/1 — 02 2(1—p? o2V
MOy Vi-1 P (1-p?) 72p((AYL—u—£i’Jty)(Aa/tl—a—ﬁvt_l—5’;‘Jty))
ouVio1

Drawing from p

First, we have that the prior for p is

p(p) =

and applying Bayes’ rule,
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Ul% t=1 2V
12— 2up, 1 QET: 1, i (AY; — €VJY)
X exp —T exp 5 M 4 W_l 1% . ‘/'t*l
t=1 t=1
(AY:—¢ Jy)
2
-2 1 E 1
X exp _%> eXp — — u2 o u/ t= ‘/t 1
O 9 (ZtT:I ﬁ) Zt 1 ‘/t 1 )
T
1 1 1 Iz (AY; — £1J7)
x exp | =3 I R — —2u<a—g+z—v—tt—
F(s o) P E Ve

X exp SR ¥
0’2‘( =1 thfl) (23:1 Vt;—l) +ok
—1 —1
(S wis) +e 7 (Z )
and thus,
(avi-gray) -1
Crt e (L o)
plY,Q_, ~ N

- ; 1
((Z‘T=1 th—l) +0‘2‘> (ZtT:I %_1) + UIQL

pa
2 T 1
Th (Ef':l Vt—l)

Drawing from ¢, and o,

Since

AV a+ BVio1 + o/ Viael + €7 JY,

AVilVie1,Q ~ N (a+ Vo1 + &I, 05Viea) .
First, for the case of 02 we have

03 NIG(Q,B).
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Which implies

S0,

p (012)|Y’ Q—U%) x p (V\U%, Q—a%,V) p (012))

. T 9
—a1 1 a+ Vi + T — AV,
x (a2) exp (g) I]exp <_( AL 2102ét_1t ?) )

7 T (e4BVia+el Iy -Av)?
ﬁ + Zt:l 2Vti1t

2
0%

- (0_12])—5¢—1—T/2

Thus,

Yy 2
10 o - )

2Vi

For the case of « and 5 the priors are

a o~ N(ua,ag),

B~ N (pg,03)

So we have

P, B0 ap) xp (V] 8,02 ap)p(a, 8),

which implies

p(a, BlQ—a,ﬂ) X

2 RY: ,
x exp (‘% <(a_f“) L) ))Hexp (—%(“W‘lJff?Jty—A%))

2 2
Ua U,ﬁ t—=1 av%—l

S0,
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p (aa ﬁlQ—a,ﬁ) X

T T T
o (& + Sl + 9 (3 A T Vi) + 22

1 ( nyfAV)
o 1 T t Yt t
X exp —5 -2« (;f 2 z :t—l T Vil

v

»

25 (4 - AEL (€ - aw)
Now, (o, B|Y,Q_q ) are jointly normal if and only if

p(e, BlY,Q_qp) x exp(€),

where,
2
P 1 (o — pg)? n (B—ng) _ 2pap (a0 — o) (B = 1g)
2(1-p2,) L 74 o} Ta0s
Moreover, if
2 B2 Pa,
- p

2(1- ) | +28 (s - 1) + 20 (tste - 1)

we will still have that p (o, B|Y,Q_q ) x exp (é) since exp (8) = Kexp(€) for

some K that does not depend on « or 3. So if we have

p(a, BlY,Q_q ) x exp (g)

with

E=0?A+ BB -2(af)C +26D +2aE. (1.8)

Hence, to find the parameters of p(a,B|Y,Q_, ), all we need to do is solve the
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following system of equations:

“'123(1_'0121,13)’
— Pa,B
C= ity (1.9)
D pa,/j‘iu'a “[3
caos(1=p% 5)  o5(1-25) )’
E pa,B/"’a IU’B

Solving system (1.9) yields

_ BE+CD
/'('a - CQ—AB )

2 _ B
o = AB_C2

ng = SE5E (1.10)

g

0.2 _ A
8~ AB-C?’

_ _C
pa,ﬁ  VAB®

Since expression (1.7) is of the form described in equation (1.8), we can conclude
that (o, B|Y,Q_, ) are distributed as a joint normal, and the parameters are given

by matching the values of A — £ in equation (1.7) and then using result (1.10).

Drawing from p,, oy, p, and p;

The priors of u, and o, imply that

12
pny) x exp (5%)

1 ap+1 B
p (05) x (U—@%) exp (—U—g> .

Now, let J ={t: J; =1}. Thus, the set J will contain the values of ¢ where a
jump has occurred and we denote #.7 the number of elements in this set, i.e. the
number of days when a jump occurred. Then, we restrict £¥ = {£} : t € J} i.e. the

magnitude of jumps for days when in fact there was a jump. For ease of notation,
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let us consider first the case where there are no jumps in the volatility series. Then

Dieg (€ - “y')z) .

p (éyiuy’ UZ) X €xXp (—‘ 205

So we have

p (1yl€¥, o2) < p (€Y, 02) p (1),

which implies

p(nyl€¥,05) o exp

_ZteJ (31 *“y)Q _ “_33)

202 25
x exp |- Lreg My = 123 heg 8 _ “_12/
202 25
1| SFHT)ue — 20,8 Y e s & + 1ios
- ox exp|—=
2 028

1 \ SY s &
)

(#T-S+02

For O'Z we have

p(o2e¥, 1) o p(¥py,02)p (o)

1 ap+1 ﬁp 1 1 o
< (7)o (%) (Mo (o @ n))
y

Y teJ /O
#7
1 (apt+2L)+1 1 (1 9
< (%) e (H (5T E-mrn).
Y Y teJ

Now, for the models with jumps in volatility, we simply substitute £/ by Ef =

ﬁ/ —ps&t -

For u,, the prior implies

Qmy — 1
p(u,)oc(i) exp —(ﬁ—) ,
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and we also have

1 1
plEln) x —exp (—M—U€2’>

v

p(€) (%)#Jvexp (—iZ&’),

v thJ”
S0,
#jyu'f'am'v_l
1 1 1 1
p(1ol&7) o (—) exp ——( )—— &
vISt oy Ky /BMU My t;u t
1 #ITV+ome—1 1 1 ‘
< () Y e e
o o \ P 55,
1 #T ' +ome—1 (L)
Hy
R (e -
Qv
MU 1+B/,u) ZtEJU 6:5/
Therefore,

B
&8 ~ T oy + #T°, ~ U).
a ’é-t <a # 1+B;w Ztejv gt

In the case of p; we have

T v Y\ 2
_ + —
p(£Y]0) x exp (_ > io ((r“y . /;Jgt) §t) > _
Ty
Further, the prior for p; implies
1 2
plps) xexp| =55 (ps)" |-

0%y

o1



Hence, we have

p(pslEl) o« p(€Y1©)p(py)

Zo et =) L

X exXp 203 B 20§J )
T

()T E) Tie208 (- &) (0))°

x exp 202 202 202
y Y pJ
T
x exp | — 1 (pJ)Z _ 2p Zt=2 5? (gg - /J‘y)
-1
& (02, o €0 +02) fo2,
0305,

Therefore, p;|Q_,,,Y ~ N (mpj,szJ) where,

Z?:Z 6? (5% - N’y)

(02, 5o &) +02) /2,
. _ («f?,‘,z?:?(e;’)%oz)‘l.

2 2
03057

Drawing Jump Times and Jump Frequency

Drawing from A\, and A, is an identical procedure except that in one case the

posterior depends on JY and in the other of JY but both work as follows:

A ~ B(Oé)\,ﬁ)\)
p(A) o AMTHI— NPT

and if
p(JIA) x AT (1 — X\)T#T

then

p(AlJ) o< p(JIN)p(N)

x M\Tra-1 (1- )\)T—#J-i-ﬁx—l )
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Thus,
MJ ~Blay+#T,8,+T —#J).

For the jump sizes, the prior distributions for £} and £/ are given by

& ~ exp (i)

and
§1E ~ N (g + 980, 03)
Therefore, |
P (E]€7) o exp <~ ({1 + p;fé’) e ) |
Then

p <§?|Jt = 1,9_53,‘4—1,1@) x

x p(Ylél, Jy =1,Vi—1,0) p(€]1O)

e (LAY = =)yt pu8)) — €1
P 2V; 4 207

X exp <_ [_26% <(AYt — ) 05 + (Ny + P.Jgf) W1) N (6?)2 M

)

20’2‘/;"‘1 20':3%__1
! (AY: — p) oy + (uy + ps€7) Vi 2
R e R G L
-yt (o-y+‘/t—1)
(U§+%w1)

Thus,

ENQ v ~ N ((AY;5 — W 012/ + ('“y + 06¢) Vi1 ‘712,Vt—1 )
182 gy ~ _

(0§+Vt—1) ’ (U%—l—Vt,l)

Next, for the case of £ we have that by two successive applications of Bayes’

formula
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p(gﬂ‘]t = 1767‘/1‘--—17 Y'tagty) X

X P(Yt,%[f?affu]t = 17 Vt—h@)p(fﬂc]t = 17@a§ty)

X p(Y—ta W|£?7£€7Jt = 17 Vvt—la@)p(gﬂ']t = 1a@7£1t))p(§}t)|Jt = 176) .

So,
p(§§|Jt = 1a@,V;t—1,Ytaf?) X

(AYi=p)=€))" | (0 48,Vi s +er Vi)
I | Vi1 o2Vi—1
2(1—p2%) _ 2p((AYi—p) =&} ) (@u+B, Ve 1+€) - Vi)
O'El/'t—l
)

x  levsoexp

+p €
((“y—sza?t_)_ o€t

((AYi—m) =€) (0, +8,Vi1+€/-Vi)?
Wi 1(1-p2) 202V,_1(1-p?)
2p((AYe—p)—&Y ) (0w +B, Vi 1+ — Vi)
+ (=) V
. ((nytrse0)-€) v
T A Pt

x  lersoexp

g2 [heshotvin (o)
&) | TV

X lersgexp ps(1y =€) Vi1 (1-p%) | p,0%02Veo1(1-p?) ’
t _og? 20202V;_1(1—p?) 202022\4 1(1—p%)
¢ +(au+ﬁv‘/t—1—%)0§ _ pavoi((AYz—u)—f’Z)
20202Vi-1(1—p?) 2(1-p%)o20o2Vi 1

and therefore &} |J; = 1,0, V;_1,Y;, &/ is distributed as a truncated normal, with left

truncation 0.

To draw from J, we use the fact that

P(Jt: 1‘%5%—173/&&%79) X /\p(Y;f)VZlJt: laQ—Jt) (111)
p(Je =0V, Vi1, ¥4, €/,0) o (1= X)-p(Ys, Vi|lJe = 0,Q,) (1.12)
we define ¢ = Pr(J; = 1|{Q2_;,) . Then we can define the odds ratio

q =p(Jt:1‘Vt7Vt—1aYta§?79)
1_q p(‘]t:O“/;fa‘/t—la}/tvgi/v@).

Now, notice that the constants that would make (1.11) and (1.12) equalities instead
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of proportions are indeed the same. Thus, we can calculate O as

A 'p()/ta th']t =1, Q—Jt)

0=
1=X)-p(Ys, V3| =0,0_,,)
_ 0]
1= (1+0)

Therefore,

Ji|Vi, V-1, Y1, &, © ~ Ber (q) .

Thus, covering all the state variables and parameters except V; and p.
Drawing from Non-Standard Distributions

First, for the case of V; notice that by successive applications of Bayes’ rule

P (Vi|Vig1, Vic1, AY3 41,0, J, €Y, €Y) x

x p(Vi, Vi1, Vi1, AY1]O)
X p(V;H’].aA}/tt#’lH/t*FlawflaQ)p(‘/t,‘/tfllg)
p (‘/t+1|‘/t1 ‘/tﬁla AY't+la @)p (AYtl‘/H—la V;ﬁ—la @) )

p(Vi|©, Vie1) p (Vi-1]O)
X p(A}/t-}—lH/tﬂ@)p(‘/t—l-l“/lfa@)p(%l%—l')@)

We also have that
p(AY:41|V2, ©) p (Vi[Vie1,0) p (Vis1|Vi, ©) x

1 (Vi1 —(Yi+p))?
th/z CXp {*“ti*l'wf—}
Vi— v vV, 2
x Uvélff exp{.,( : (C;U—%F‘//i_lt 1)) } (1.13)
(Vi1 — (e +8,V0))?
vatl/z exp{_ t41 207V t }
_ (Y1 —(Yetp)?
2V;
2
x VlteXp _(Vr(g(vygéi‘f_ﬂ) ) . (1.14)
_ Ver1—(aw+8,W))°
202V,

Thus, V, does not seem to follow any standard distribution, so to draw from it we

use a random-walk, Metropolis-Hastings algorithm, where a candidate V¢ is drawn
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as V71 4 ¢ where € is a mean 0 normal random variable. Expression (1.14) is then
evaluated at the candidate V¢ and at V. If the likelihood of V/ is greater than
that of Vtc_l, V¢ is immediately accepted, otherwise it is accepted with probability
equal to the ratio of the two likelihoods. Finally, the variance of the step ( is
calibrated so that candidate draws are rejected between 30% and 60% of the time.

Drawing from p implies a similar procedure called an independence Metropolis-
Hastings. In this case, instead of drawing from a random walk, the algorithm draws
candidate p°s from a uniform distribution. The decision to accept or reject a given
draw is then made following the same likelihood comparison step as in the case for V;.
The details of this drawing procedures can be found in Johanes and Polson (2009).

With this, we now have procedures for drawing from all the parameters and state

variables.
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Chapter 2

Pessimistic Portfolio Selection

with Many Assets

2.1 Introduction

The portfolio selection procedure of Markowitz (1952) was a milestone in the de-
velopment of financial theory. Nonetheless, as a theory of individual choice it is
inscribed in the rational choice paradigm and thus will be unable to reflect the prefer-
ence of non-rational (or behavioral) individuals. Furthermore, from the perspective
of institutional investors it rests crucially on using variance as a measure of risk.
However, recent literature on risk measures (most notably Artzner et al. (1999))
has established a number of desirable properties for risk measures and shown that
variance does not enter the set of so-called "coherent" measures.

In this context, Bassett et al. (2004) present a portfolio construction procedure
that can be interpreted as the choice of a pessimistic individual or that of an insti-
tution concerned with a coherent risk measure. From the practical perspective, this
procedure can be constructed as a quantile regression and can thus be implemented
on standard statistical software.

However, if the number of available assets is very large and the optimal portfolio
has non-zero positions in all the assets it could imply significant fees for a small

investor. It is the purpose of this paper to extend Basset’s analysis by proposing
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a procedure that will restrict the number of assets with non-zero positions. To do
so I introduce an ¢; constraint in the vector of portfolio weights. This idea has
been implemented in the context of Markowitz portfolios by Fan et al. (2009) and
by Brodie et. al. (2009). Moreover, in the context of regression analysis it has led
to the LASSO regression of Tibshirani (1996) as well as ¢;-Quantile regression as
presented, for example, in Belloni and Chernozhukov (2011).

Now, in the context of Markowitz portfolios Fan et al. (2009) find that adding
the £; restriction is in fact equivalent to restricting the number of active assets (the
¢y norm). I will show that this relationship is not so direct in the case of Choquet
portfolios, but still useful in terms of restricting the number of active assets.

More importantly, using simulations and US market data I will investigate the
effects of adding the ¢; constraint to Choquet portfolios. My main focus will be
to analyze how expected and realized performance is hindered by adding the #¢;
constraint. In order to do so, I construct portfolios without the ¢; constraint and
their performance is recorded as a benchmark. Then the expected and realized
returns and risk are measured for portfolios with the ¢; norm restricted.

I find that the loss in expected return or gain in expected risk tends to accentuate
as 1 restriction approaches the no-short selling restriction (¢; norm equal to 1). This
indicates that most of the expected loss of performance occurs only when we come
close to this extreme case. Thus, as long as the restriction does not approach 1,
portfolios can be constructed with the benefits of adding the ¢; norm in terms of
lower fees, and with relatively small losses in terms of expected performance.

Now, the available data for US markets allows me to perform ex-post perfor-
mance analysis under very different environments. I present three scenarios, one
baseline "non-stress" scenario with no significant market turmoil in the out-of sam-
ple period and two stress scenarios one with the 1987 crash and the second with the
collapse of Lehman Brothers in the out-of-sample period. Under the stress scenarios
I find that risk predictions tend to be unreliable regardless of the portfolio selection
procedure being used. However, the difference between expected and realized risk
tends to be much larger for unrestricted portfolios than for their restricted counter-

parts. This indicates that adding the £ restriction might also have the benefit of
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rendering more reliable estimates of risk.

The rest of the paper is organized as follows: section 2 introduces Choquet
portfolio selection, both in the context of Choquet expected utility and coherent
risk measures. Section 3 presents the main results illustrating the effect of adding

an ¢ constraint to the portfolio selection process and section 4 concludes.

2.2 Choquet Expectation and Choquet Expected
Utility in Portfolio Selection

2.2.1 Choquet Expected Utility as an Alternative to Expected
Utility

The study of choice under uncertainty dates back to at least Bernoulli’s (1738)
work. However, throughout the second half of the twentieth century expected util-
ity theory as presented by von Neumann and Morgenstern (1944) and axiomatized
by Savage (1954) became the standard tool used to model choice under risk (i.e.
when probabilities are known). Later Anscombe and Aumann (1963) formalized the
concept of subjective probability and thus extended the analysis to the uncertainty
case.

Nonetheless, the limitations of expected utility have been widely documented in
the experimental and behavioral literature (see for example Camerer (1995) for an
extensive survey). Many of the violations seem to stem from the fact that the valu-
ation of lotteries is not linear in probabilities as expected utility assumes. Hence, in
order to model the situations where the standard expected utility theory is violated,
a number of alternative choice theories have emerged.

In this context, one of the most popular alternatives to expected utility is
prospect theory. It was introduced by Kahneman and Tversky (1979), generalized
in Tversky and Kahneman (1992) and axiomatized in Wakker and Tversky (1993).
One of the key tenets of prospect theory is that small probabilities tend to be over-
weighted and large probabilities tend to be underweighted. This has been modeled

by introducing decision weights obtained from a nonadditive transformation of the
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probability scale.

In Anscome and Aumann’s (1963) exposition of subjective probability they show
that if an individual has rational preferences over a set of lotteries with unknown
probabilities of the outcomes, they will in fact be behaving as if they were maximiz-
ing expected utility even though they do not know the explicit probabilities of the
outcomes they are facing.

In contrast, under cumulative prospect theory agents act as though they maxi-
mize expected utility with respect to a nonadditive measure (i.e. a functional where
the measure of the union of disjoint sets is not necessarily the sum of the measure of
the individual sets). In order to find expectations with respect to such a nonadditive
measure (also called capacity) the Choquet functional (or Choquet integral) is used.

Formally, a Choquet Capacity (also called non-additive probability or simply

capacity) and the Choquet integral are defined as follows:

Definition 2 For a state space S and an associated o-algebra £, a Choquet Ca-

pacity will be a function W : &€ — R with the following three properties:

1. (Monotonicity): If A,B € £ and A C B then W (A) < W (B)
2. (Normalization): W (&) =0 and W (S) =1

Definition 3 Let W : £€ — R be a Choquet Capacity. Then for any function
¢ : S — R the Choquet Integral of ¢ with respect to W, denoted as [ ¢dW is

0

/OOOW({iES:¢(i)2t})dt+/ W{ieS: o) >t} —1]dt

—00

Note that a probability measure is a particular case of a capacity, and for any ca-
pacity that is also additive, the Choquet integral will be the usual Lebesgue integral
(a proof is shown in Wakker (1989)).

Evaluating lotteries through Choquet expected utility encompasses a wide va-
riety of models, such as those proposed by Quiggin (1982), Schmeidler (1989) and
Yaari (1987). In all these models, cumulative, rather than individual probabilities

are transformed.
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Now, the relationship between expected utility and Choquet expected utility
can be illustrated as follows. Let X be a lottery with monetary outcomes and an
associated CDF, Fx. Under expected utility theory the value an agent assigns to X
is given by the expectation of a monotonically increasing utility function u under Fx.
A change of variables allows us to express expected utility in terms of the quantile

functions as follows:

oo 1
Eru(z) = / u(z) Fx (z) = /0 u (Fy'(t)) dt.

— o0

This representation "adds" equally likely slices on the interval [0, 1] and since the
integration is done with respect to the Lebesgue measure, we have that each of the
"slices" will have the same weight. This representation is very useful to emphasize
what changes once we move to Choquet expected utility. Bassett et al. (2004) show

that the valuation of a lottery X can be expressed as

1
Poru(X) = [Cu(FF @) av ),

where v : [0,1] — [0, 1] is monotonically increasing and v (0) = 0 and v (1) = 1. The
difference with expected utility is that the "slices" are no longer weighted equally.
Thus, through the weighting function notions of pessimism and optimism can be
introduced. That is, whenever v implies an overweighting of the left tail of the
distribution, we will be in the domain of pessimism and when it overweights the right
tail, we will be in that of optimism. Note that, since u is monotonically increasing,
v will introduce pessimism if it is concave as it will overweight the probabilities of
the worst outcomes.

Now, one of the simplest ways to introduce pessimism is by using the following

weighting function:

Ve (1) min{é,l},ae 0,1].

In this case we have that

Ey pu(X) = & /0 " (Fgt (1)) d.

(0%
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Thus, the choice process is ignoring the set of the most favorable outcomes that has

a probability of (1 — ).

2.2.2 Choquet Expectation and Coherent Risk Measures

Models of decision that include pessimism have been developed with individual
decision makers in mind. However, one can interpret some of the most widely used
tools of risk management as including elements of pessimism. In fact, we can think of
risk measures such as Value at Risk (VaR) as being pessimistic in the sense that they
are concerned only with the worst possible outcomes. Nonetheless, VaR might not
be a very good risk measure. Since VaR is simply a statement of the a—th quantile
 of the expected returns, it will not capture any information of the distribution of
returns smaller than that level. Consider the case where two portfolios have identical
distributions above the a—th quantile, and both have a single possible outcome
below the a—th quantile. However, for one distribution, the single "catastrophic"
outcome is very close to the VaR, while for the second distribution, the catastrophic
outcome is extremely negative (e.g. it can represent a loss of all the investment).
It stands to reason that one should consider the second alternative riskier than the
first, nonetheless using the VaR criterion, both are determined to be equally risky.

Another commonly used measure of risk is the variance. Yet, this measure has
the disadvantage that it is not monotone in returns. To see this, note that if a
portfolio has a return that is always equal to that of a second portfolio plus a
constant, using variance will assign both an equal risk. These examples have led to
the idea that when using a risk measure to evaluate a portfolio, there are a number
of desired properties this measure should hold. Following this train of reasoning,

Artzner et al. (1999) provide an axiomatic foundation for "coherent" risk measures.

Definition 4 (Artzner et al.) For real valued random variables X a mapping o :

X — R is called a coherent risk measure if it is:

1. Monotone: X,Y € X, with X <Y = p(X) > o(Y)

2. Subadditive: XY, X +Y e X = (X +Y)<o(X)+o(Y)
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3. Linearly Homogeneous: YA >0 and X € X, p(AX) = Ao (X)

4. Translation Invariant: VA€ R and X € X p(A+ X) = o (X) — A

An immediate consequence is that neither VaR nor Variance will be coherent
risk measures. VaR will violate subadditivity and variance will violate monotonic-
ity. However, using Choquet expected value, we can construct an alternative risk

measure that will be coherent.

Definition 5 The «-risk of a random variable X is

1 1 «
o)== [ @) = [ R @a
0 @ Jo
Thus, the a-risk is simply the negative of the Choquel expected value of X.

Notice that if we denote
QQ(U):U(O‘—I(U<O))’

(the typical quantile loss function) and recall that if £, is the a-quantile of X, £,

will satisfy

&, = argméinE (qa (X —é)) ,

Then, following Bassett et al. (2004), note:

Ban(x-8) = B[(x (e 1(x<d)

= aE[X]—aZf—/_io (w—g)Fx(a:)dm.

If we then evaluate at é =&, we have

€a €a
E(ga (X -&,)) = aF[X]|-af,+ & Fx (a:)da:—/ xFx (z)dz

—00 —00

— aE[X]—a§a+a§a/aF;1(t)dt
0
= aF[X]+ ap, (X)
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then
E(ga (X —&,)) = aB [X] + o, (X)

Which can be rearranged as

00 (X) = ~F (4o (X — £)) — B[X] = émgnE (0 (x-8)) - E1X]. D)

which will serve as the starting point to construct portfolios using a-risk.
Moreover, we can go beyond this simple risk measure by defining a pessimistic

risk measure as any one that can be represented as fol 0o, (X) dp () for some prob-

ability measure ¢ on [0,1]. Then we can see that all pessimistic measures will be

coherent.

2.2.3 Pessimistic Portfolios

We now consider the problem of an agent or a financial institution that faces the
decision of investing in p available assets. Markowitz’s procedure solves the problem
of maximizing expected return subject to a constraint on the variance or minimizing
the variance of the portfolio subject to an expected return constraint. In the con-
text of expected utility this procedure will be consistent with the assumption of an
individual either facing spherical returns or possessing quadratic preferences. Thus,
Markowitz’s procedure imposes very strong assumptions on the preferences of the
agent. From the perspective of an institutional investor, it is implicitly assuming
that the variance is used as a risk measure. This, as I discussed above, implies the
use of a non-coherent risk measure.

In this context, we will first, present Basset et al.’s procedure for portfolio choice
under pessimistic preferences (or a coherent risk measure) and then extend it to the
many assets case.

Let us denote with R = {R;}L_, the set of returns of the p available assets and
let us assume that we observe a random sample {r; = (rtl...rtp)}z;l from the joint

distribution of asset returns. We can use the empirical equivalent of g, to denote
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the a-risk of a single asset as follows:
N .1 .
Ou, = TN 7= > o (re = &) — i,

where f[1,, is an estimator of E (R) and we can see that the a-risk of a portfolio that

assigns a weight w; to asset j will be

0y, (W'R) = (Ta)™ " m1n Z Qo Z wjTt — — [y, -

Thus, to find the portfolio that minimizes a-risk we solve

n p—1
0v, (W'R) = vl g (na) ™! ;(Ia Tip — ]Z; wj (riv = 1ij) = & | — iy

This would give us the minimum a-risk portfolio. Nonetheless, in practice we are
typically interested in achieving a minimum expected return p,. Thus, the portfolio

selection problem becomes

min 9, (w'R) (2.2)
subject to:

wl,r_ = Mo (23)

w'l = 1, (2.4)

which Basset et al. show can be solved by finding the parameters of a quantile
regression (the procedure is detailed in Appendix B). This is in fact very convenient,
since the portfolio selection problem can be solved in a straightforward manner, using
standard statistical software.

However, a drawback to using the setup described in equations (2.2) - (2.4) is
that in practice we might be more interested in maximizing expected return subject
to a certain level of a-risk. A classic example of this is an investment firm trying to

maximize its expected return subject to a regulatory constraint on the amount of
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risk it can be exposed to.

In this case, we now have

max w'r (2.5)

subject to:
oy, (W'R) < K, (2.6)
w'l = 1, (2.7)

which can be reduced to a linear programming problem (shown in Appendix B).

2.2.4 Portfolio Selection when p is Large

Finding optimal portfolios under either Markowitz’s procedure or under Choquet
selection tends to yield solutions where all the available assets have non-zero weights
in the solution. Brodie et. al. (2009)) show that this can be a problem if the investor
is facing a vast set of assets. First, consider the case where the agent is a small
investor. In this case volume independent "overhead" C(;sts can be important. Thus,
restricting the amount of active assets (those with non-zero positions) in the optimal
portfolio might be a good idea. This is equivalent to setting a restriction on the £,
norm of the portfolio. Nonetheless, adding a restriction on the £y norm makes the
portfolio selection problem an NP-complete combinatorial optimization problem.
Therefore, it might become computationally very expensive, or even intractable if
the number of assets is very large.

Further, for a large investor, the volume independent overhead costs will be less
important. Instead, their principal cost will be a fixed bid-ask spread and therefore
transaction costs will be proportional to the gross market value of the portfolio
(which is proportional to the ¢; norm of the portfolio).

For the case of Markowitz portfolios, it has been shown (Fan et al. (2009)) that
adding a restriction on the ¢; norm instead of ¢y will result in an equivalent and
feasible convex optimization problem. Further, in the context of quantile regression

imposing ¢; restrictions on the vector of estimated parameters has been used as a
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form of obtaining models that use only a subset of the available variables (see for
example (Belloni and Chernozhukov (2011)) and the references therein).

Notice that an immediate effect of adding this restriction is that it prevents
individual assets from having extremely large (either long or short) positions. For
instance, by setting ||w||; < 1.6 restricts w; € [w,w] with w ~ —0.3,w ~ 1.3
for every i. We can also note that the extreme case where we set [Jw[l; < 1 will
correspond to the no-short selling restriction.

By restricting the ¢; norm of the weights we are directly restricting the magni-
tude of fees that are proportional to the bid-ask spread. Further, following what
is observed in the ¢; constrained quantile regression setting, I would expect that
by constraining the ¢; norm of the weights, the number of active assets will also
be restricted, contracting the overhead fees that would be significant for a small
investor.

Nonetheless, by imposing this new constraint, we might be hindering the po-
tential performance of the portfolios, since we are now choosing from a smaller set
of possible investments. Because of this, in the next section, T will investigate the
effect of adding an ¢; restriction on the Choquet portfolio selection problem. I will
be particularly interested in investigating the effect that restricting the number of
active assets via an £ restriction has on the performance of the portfolios relative
to that of their unrestricted counterparts.

For the first comparison exercise, I will simulate data for 100 assets based on the
three factor model of Fama and French (1993) calibrated to replicate the behavior of
the US stock market from 2002-2005. This will allow me to analyze the performance
of #; constrained portfolios in a stylized model of the US stock market.

I will then use the daily returns of 100 industrial portfolios formed on size and
book to market ratio from the website of Kenneth French. With this data I will
study portfolio performance for three periods. First a non-stress period having
March 1988-February 1992 as a sample period and February 1992 - February 1993
as an out-of-sample time frame. Then I will consider two stress scenarios having
stock crashes in the middle of the out-of-sample period. One will contain the October

1987 crash and the second will contain the collapse of Lehman Brothers.
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2.3 Performance Analysis

2.3.1 Simulation Exercise: Procedure

Following Fan et al. (2009), I simulate a three factor model based on the findings
of Fama and French (1993):

Ri =bifi +biafo+biafo+ &

where b;; is the factor loading of the i'th stock on the j’th factor and ¢; is the
idiosyncratic noise, independent of the three factors. The realizations of ¢; are
assumed to be independent from each other and follow a Student’s-t distribution
with 6 degrees of freedom and a standard deviation ¢;. Following the calibrations
of Fan et al. (2009) the levels of idiosyncratic noise {o;}}_, are assumed to be dis-
tributed as a Gamma with shape parameter 3.3586 and scale parameter 0.1876,
conditioned on a noise level of at least 0.1950. For each of the p assets o; is drawn
once and then kept constant throughout the simulations. Finally, (b;1, b2, bi3) are
assumed be jointly normally distributed with mean py and variance ¥y with the

following parameters:

0.7828 0.02914 0.02387  0.01018
= | 05180 |, Sp= | 0.02387 0.05395 —0.00696 |,
0.4100 0.01018 —0.00696 0.086856
0.02355 1.2507  —0.0350 —0.2042
pr=| 001208 | ,S;=| —0.0350 0.3156  0.0023
0.02071 ~0.2042  0.0023  0.1930

These parameters were calibrated by Fan et al. (2008) to replicate the behavior of
the US stock data for the May 2002 to August 2005 period.
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2.3.2 Simulation Exercise: Results

First, a return p is set as %f(mi,]) + %f(max). Then I find the portfolio that minimizes
5% a-risk subject to an expected return equal to py. Next, I construct a series of
100 portfolios adding a restriction of the form ||w|; < ¢ where ¢ is allowed to vary
from 1 (the no short-selling case) to the £; norm of the unrestricted portfolio. For
the purposes of comparison, this procedure is then repeated with the variance as

objective function.

Active Assets vs L1 Constraint
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Figure 2-1: Active assets as a function of ¢; constraint.

Figure 2-1 shows the number of active assets as a function of the restriction on
|lwl|;. We can see that when the objective function is variance, the number of active
assets increases monotonically as the #; constraint is relaxed. However, in the case

of portfolios that minimize a-risk, the relationship is not strictly monotonous.
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Expected and realized alpha-risk vs L1 Constraint
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Figure 2-2: Expected and realized a-risk as a function of the constraint on |[lwl|, .

Figure 2-2 shows how the expected a-risk decreases monotonically as the con-
straint is relaxed. Further, the concavity of the expected a-risk as a function of the
constraint tells us that most of the increase in the expected risk occurs close to the
maximum level of constrain, i.e. at ¢ = 1. Moreover, the out-of-sample performance
of the portfolios shows that under this stylized simulation, the empirical risk would
follow a very similar pattern to its expected counterpart. Further, the out-of-sample
alpha-risk is practically flat for ¢ greater than 3, implying that there would be very
small gains from relaxing the constraint beyond this point.

Meanwhile, Figure 2-3 shows the out-of-sample distribution of returns for 5 port-
folios with #; restrictions ranging from 1 (the no short-sell case) to 5 (equivalent to
no restriction). The distributions become concentrated close to the mode as the
restriction is relaxed. The red density corresponds to the ¢ = 1 case and we can
clearly observe that there is much more mass in the tail of the distribution than in
any of the other cases. This is once more an indication that the averse effects of

imposing the ¢ restriction are intensified close to the no-short selling case.
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1.0

08
I

Density

04

02

Figure 2-3: Out-of-sample distribution for 5 portfolios with different ¢, restrictions.

Next, we move to the dual problem, where we select a portfolio that maximizes
expected return subject to an a-risk restriction. I consider two cases, in the first
one I find the minimum a-risk achievable while restricting the ¢; norm to be 1 (we
denote this value «ag). I then relax the restriction on the weights, while maintaining
the restriction on the risk parameter. In the second scenario we find the expected
a-risk of the equally weighted portfolio (i.e. the portfolio that sets w; = 1/p for all
i) and denote this value ag. Then I construct portfolios with this expected a-risk
with the #; norm restriction ranging from 1 to the unrestricted case.

Figure 2-4 shows that, just like in the dual problem, the number of active as-
sets does not increase monotonously as the restriction on the weights is relaxed.
Moreover, as we can see in Figure 2-5, expected return is a concave function of the
constraint on the weights. This shows, once more, that the effects of adding the
constraint will be greater as we approach the no-short-selling level. Further, as we

would expect, Case 2 exhibits larger expected returns and if the weights are left
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Active Assets vs L1 Constraint
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Figure 2-4: Active assets as a function of the 1 constraint when a-risk is restricted
to ap (Case 1) or ap (Case 2).
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Figure 2-5: Expected return as a function of |jw||; .
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unrestricted, it will lead to much more extreme positions.
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Figure 2-6: Ex-ante and ex-post a-risk for both levels of risk restrictions.

Finally, Figure 2-6 shows that in both cases the realized empirical risk is much
larger than its expected counterpart. Further, we can observe that this problem

becomes more accentuated as the £y restriction is relaxed.

2.3.3 Fama-French 100 Portfolios

In order to extend the analysis to real data I use the set 100 industrial portfolios from
the website of Kenneth French. These portfolios are formed by sorting the stocks
in the Center for Research in Security Prices (CRSP) database in two dimensions.
Stocks are sorted according to market equity and according to the ratio of book
equity to market equity. Ten categories are constructed for each variable, yielding

the 100 portfolios.

Non Stress Scenario

For the baseline, non-stress case, I take a sample period of 1000 trading days, from
March 2 1988 to February 12 1992, and an out-of sample period of 250 trading days,
from February 13 1992 to February 11 1993.

I begin by constructing portfolios minimizing expected a-risk subject to an ex-
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pected return. In this exercise the number of active assets as a function of the ¢,

constraint behaves in a similar manner to the simulated data case.

Active Assets vs L1 Constraint
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Figure 2-7: Active assets vs £; constraint for the non-stress scenario.

Figure 2-7 shows that the number of active assets does not grow monotonously as
the £; constraint is relaxed. The same figure shows, in contrast, that when variance
is minimized we get the familiar result of the number of assets growing monotonously
as the Z; constraint is relaxed.

Meanwhile, Figure 2-8 shows that expected a-risk is, once more, a convex func-
tion of the #; constraint, implying that expected risk increases rapidly as we ap-
proach an #; restriction of 1. Further, the fact that the realized a-risk follows
closely its expected counterpart, tells us that under non-stress situations expected
a-risk might be a good predictor of realized a-risk. In particular when the weights
are restricted so |lw||; is smaller than 4 (for this particular exercise). Moreover,
the fact that ex-post risk diverges from its expected counterpart for larger values of
|[w]|, is not surprising, since taking extremely long or short positions makes portfo-
lios much more sensitive to deviations from the distribution implied in the portfolio

selection procedure.
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Expected and realized alpha-risk vs L1 Constraint
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Figure 2-8: Ex ante and ex-post a-risk for the non-stress scenario.
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Figure 2-9: Ex-post cumulative returns for 5 portfolios: equally weighted, mini-
mizing alpha risk (unrestricted and with no-short-sale restriction) and minimizing
variance (unrestricted and with no-short-sale restriction).

79



Further, in Figure 2-9 we can see that the portfolio chosen by minimizing ex-
pected a-risk with no restriction on ||w|; would have outperformed the equivalent
portfolio with ||w||; restricted to 1, and the portfolio with the same expected return
restriction but with variance as the objective function. In fact, all portfolios con-
structed by minimizing a risk measure, with or without restrictions on |lw||; would
have outperformed the "naive" portfolio constructed by setting w; = 1/p for all «.

Next, I consider the dual problem, that is, maximizing expected return subject
to an expected a-risk. As with the simulated data, I consider two cases, one the
minimum a-risk achievable subject to a no-short-sale restriction (ag) and second
the a-risk of the equally weighted portfolio (ag).

When we compare the expected and realized return under these scenarios we find
that when a-risk is most constrained (Case 1) the realized return is relatively flat as
a function of ||w||,. Meanwhile, the second panel of Figure 2-10 shows that, for Case
2 (a less stringent restriction on expected a-risk), realized mean return did rise as the
/1 constraint was relaxed and was therefore much closer to its expected counterpart.
Since portfolios are constructed by setting a restriction on the expected value of
the a-risk, I would expect that under this non-stress scenario the realized level of
a-risk would be relatively constant as the restriction on ¢ is relaxed. Nonetheless,
Figure 2-11 shows how, for both cases, the realized level of a-risk increases as the
restriction on the weights is relaxed. This indicates that expected a-risk becomes
a very weak predictor of the realized c-risk when extremely long or short positions

are allowed.

Stress Scenarios

Finally, I consider two stress scenarios. As in the baseline scenario, I take a 1000 day
sample to construct the portfolios and an out-of-sample period of 250 days to test
the ex-post performance of the portfolios. The first case has an in-sample data range
from March 2004 to March 2008 and an out-of-sample range from March 2008 to
March 2009. For the second stress scenario the sample period comprises May 1983
- April 1987 and the out-of sample period begins in April 1987 and ends in April

1988. These date ranges are chosen so that extreme stress dates occur in the middle
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Figure 2-10: Expected and realized return under the two levels of risk restriction.
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Figure 2-11: Expected and realized a-risk under the two levels of risk restriction.
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of the out-of sample period. For Case 1 the midpoint of the out-of-sample period is
the date of the collapse of Lehman Brothers, and for Case 2 the corresponding date

is the 1987 crash.

Case 1: Lehman Brothers Collapse Case 2: 1987 Crash
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Figure 2-12: Out-of-sample cumulative returns for the stress scenarios.

Analyzing the performance of the different portfolios, I find that none of the
portfolio selection procedures would have prevented significant losses from occur-
ring during these periods. Nonetheless, in Figure 2-12 we can see that during the
1987 crash both the portfolios constructed by minimizing a-risk and variance would
have outperformed the naive portfolio. However, during the 2008 crisis, the equally
weighted portfolio does better than any of the other portfolios being considered.
This leads us to conjecture that even though both stress scenarios represent cases
in which the underlying distribution of returns changed from the sample period to
the out-of-sample period, the nature of the change was quite different for each of
the cases. In particular, it leads us to suspect that in the 1987 case returns fell
but the correlation structure of the returns remained relatively unchanged. Thus,
the assets selected by the Markowitz or Choquet methods still outperform the naive
portfolio. Meanwhile, in the 2008 case, it would seem that it was not only the level

of the returns that changed from the sample to the out-of-sample period. Thus, the
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information in the sample becomes practically useless to predict the performance in

the ex-post period.
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Figure 2-13: Expected and realized return in the stress scenarios.

Further, we can see in Figure 2-13 that regardless of the constraint on the ¢;
norm of the portfolio, the realized returns are considerably lower than the expected
returns. Moreover, the realized returns are no longer monotonically increasing func-
tion of the £; restriction. Nonetheless, we also see that, in both cases, the difference
between the expected and realized returns accentuates as the restriction is relaxed
beyond 12. This indicates that portfolios with extreme positions will tend to be
more sensitive to extreme scenarios like the ones presented here.

Finally, we consider the dual problem, where the expected a-risk is restricted and
expected return is maximized. In this context, Figure 2-14 shows that, as expected,
the observed a-risk is larger than its expected counterpart regardless of the level
of the #; constraint. Further, the variation in realized a-risk as the constraint is
relaxed is smaller in magnitude than the difference with respect to the expected
level. Thus, the effect of being in an extreme scenario is much more important than

the effect that the ¢; constraint might have.
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Figure 2-14: Expected and realized a-risk in the stress scenarios.

2.4 Conclusions

I presented a generalization of the pessimistic portfolio allocation of Bassett et al.
(2004) that introduces an #; constraint on the vector portfolio weights. The initial
objective was to minimize the exposure of the pessimistic investor to fees deriving
from the number of active assets in her portfolio (for a small investor) or from the
magnitude of the individual positions (for both small and large investors).

In contrast with the work on #;-constrained Markowitz portfolios, I find that
the amount of active assets in Choquet portfolios does not increase in a strictly
monotonous fashion when the ¢; constraint is relaxed. This will not be an issue in
the context of a large investor whose fees depend essentially on the magnitude of
the positions. However, if we consider a small investor who is looking to invest in
at most p assets, she will have to find all the levels of £, restriction that imply an
optimal portfolio with p active assets.

My analysis also showed that loss in expected return or gain in expected risk
tends to be accentuated when the ¢ constraint approaches the no-short-selling con-
straint. Thus, indicating that we can get a significant portion of the advantage of

having a constrained portfolio without loosing much of the expected performance
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as long as we do not get too close to the limit case where ||w||; = 1.

Finally, the results also tend to indicate that when portfolios exhibit extreme
positions (|lw||, large), expected a-risk tends to be a poor predictor of future real-
izations of a-risk. Therefore, beyond its application as a way to control the amount
of fees an investor must pay, we now have indications that imposing the ¢; restric-
tion will lead to having a risk measure that is more reliable in the sense that the
ex-post performance of the portfolio will be consistent with the expectations.

Therefore, I have generalized Bassett et al. (2004) portfolio selection procedure
in a way that it can control the fees the investor might be exposed to. Beyond this,
I have also found that restricted portfolios allow for a more reliable estimation of

risk than their unrestricted counterparts.
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2.5 Appendix B. Portfolio Selection as Regression

2.5.1 Markowitz Portfolios )

In the classical portfolio selection theory (Markowitz - 1951), the agent wishes to
allocate her wealth across the different assets in order to achieve an expected level
of return g1, while minimizing the variance of the portfolio

If we let R denote the vector of returns on a set of p assets, let ¥ denote the
vector of mean returns and ¥ the variance-covariance matrix of the returns

Thus, the problem the agent must solve is

min w'Sw

weRM
subject to:

’—

wr = HUg,

w'l = 1

A way to find the optimal portfolio without the need of quadratic programming
tools is by restating the optimization problem as a linear regression.

Note that the variance of the returns of a portfolio can be expressed as

Var (w’r) = mbinE (w’r — b)2

= mbinE (wprp + w11 + oo + Wp_1Tp—1 — b)2

and since ), w; = 1 we can express

p—1 p—-1
wprp = | 1 — E Wi | Tp=Tp— 2 w;Tp
i=1 i=1
so, we then have

Var (w'r) = mbinE (rp — w1 (rp —71) — cwp_1 (rp — 7p_1) — b)?

= mbinE (Y —wi Xy — wp_ 1 Xpq — b)2

86



where,

Y = 1,

Xj = Tp—’r‘j,je{l,...p—l}.

Then finding the absolute minimum variance portfolio is simply a matter of finding
the regression coefficient § = (w*,b) where w* = (w;...wp—1) . Now, to get back the
original portfolio selection problem we need to add the restriction w'r = p,. To do

so we add the pseudo-observation:

Yoy1 = &(Tp— o)
Xpp1 = &(0,fp —T1y--sTp ——771),1)
so we have
Tpl I rpi—7i1 - Tp1—Tp-11
Y = . X =
TpT L rpr—rir -0 TpT = TpLT
| w (R~ o) | |0 k(p—71) o (=)

and this will guarantee that the objective return pg is achieved (as long as k is

sufficiently large).

2.5.2 Portfolios that Minimize a-risk

For a random sample {r;}" , , Bassett et. al. define the empirical analogue of a—risk

as

n
@’Ua = (na)_l Iénelﬂlgz (/06 (Ti - 6) - :[Ln
i=1

where fi,, is an estimator of Er and ¢, () is the quantile loss function. Thus, for a p

asset portfolio with weights w = {w;}!_; we have that the a-risk will be

n

p
Bv, (Pw) = (na) ™" r&i]{Rqua > wiri — €| = iy (2.8)
i=1 Jj=1
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Now, if we note that Z§=1 wj = 1 we have

p
wi=1-> w, (2.9)
j=2

so we can re-write (2.8) as

P
2o, (Pw) = (na)™'mind go | (1= D wi | ria+ Y wiri; —€) i,
- =
P

Thus, finding the portfolio that minimizes a-risk subject to an expected return py

can be expressed as

n p
" wl?é]{gpﬂ Z Go | i1 — Z wj (11 — 7r35) — &
’ =1

j=2
subject to:
TTw = Mo,
P
1—Z’LUj = w1
j=2

This problem has almost the form of a quantile regression optimization problem.
In order to include the mean return constraint, we add a term A (11 — ) to the
response vector and a vector A (0,ry —g,...,71 — rp) to the r matrix (the 0 corre-
sponds to the column of 1s associated with the constant term).

To set this up as a linear programming problem we define variables u; v; as
the positive and negative parts of the residual for the i’th observation and let
v = (w+T,w_T,uT,vT)T and ¢ = (O2p,alni1, (1 — @) 1,41) Finally, let A = [r: —

rilpia: — Inga).
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Thus, finding the portfolio becomes a problem of the form:

minchy

¥
Ay =Y (2.10)
y =2 0

Finally, since many linear programming solvers only take inequality constraints, we

divide (2.10) into two inequality constraints and so we get

mincT*y
¥
subject to:
Ay <Y,
AA,‘)/ S _Y7
v = 0

2.5.3 Portfolios that Maximize Expected Return with an a-risk

Restriction

We wish to solve

min —w'F s.t. p, (W'R) < K,weW (2.11)
w

where w € W C RP iff >°P | w; = 1. First, let
Ga (X,8) =B (0 (X - ) - E[X].
Then, using result (2.1) from the main text, we know that

00 (X) = Ga (X, €,)
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Based on the procedure in Krokhmal et. al. I will show that if (w*,£*) form a
solution to

min —w'7 s.t. Gy (w'R, é) <KweW (2.12)
w,§

then w* will also be a solution to (2.11).
First, note that the Karush—Kuhn—Tucker conditions for the optimization prob-

lem in (2.12) imply
—w*F + AGq (w*'R, §*) < —w'F 4+ MG, (w’R, E) (2.13)

and

A(Go (W'R,E") —K) =0,A>0,w € W.

Therefore, if w* and £€* form a solution of (2.12). Then (2.13) implies that for any
£ eR,
Go (W'R, ") < Gqo (WR,E),

but we know from the main text, that argmine G, (w¥R, §) = &, so,
Go (W'R, &%) = 0, (W'R).
Then for every w € W and £ € R,

—w'T + Xog (W'R) = —w"F+ Go (wR,E)
< —w'F+ MGy (w’R, 5*)

= —w'T+ Ao, (w'R)

and since

A (Ga (w*'R, f*) — K) =) (ga (w*’R) - K) =0

and

A>0,w" e W

we have that if w* and £* form a solution for (2.12) then w* will also be a solution
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to (2.11). So now all that rests is setting up the optimization problem (2.12) as a
linear programming problem. To do so, we once more use the empirical equivalent

of o, (w*R) . Hence, we have the following linear programming problem:
min —w'7
w,§

subject to:
n p
(na)ilea ril_zwj (Til —rij) —£ — 7w < K.
i=1 j=2

2.6 Appendix C. Adding the [; Restriction
We wish to add the following restriction:

Jwll, <k (2.14)

for some k > 1 (the case k = 1 is equivalent to the no-short sale restriction). Now,

P
Jwlly = Jwil
i=1
P
= Juwr] + ) (wf +w;) (2.15)
i=2
and given that portfolio weights must add to 1, we have
P
wy=1-Y (wf —w). (2.16)
i=2

holly = 130 (i = wi) + 3 (i +wp)
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and if wy < 0 (2.15) and (2.16) imply that
p p
|lwl, = —1+Z(wi+—wi_)+2(wi++wi_)
=2

i=2
p
= 2) wf -1
=2

Then in order to add condition (2.14), we add the following pair of restrictions to

the linear programming problem:

p
14+2) wy < k (2.17)
1=2
p
2> wf-1 < k (2.18)

However, note that if for the optimal w, w; > 0 it is sufficient for (2.17) to hold
and if wy < 0 it is sufficient for (2.18) to hold.

What we need to check now, is that if w; > 0 then (2.18) will hold (i.e. that the
irrelevant constraint will not prevent the LP algorithm from finding the optimal w)
and that the converse is true if w; < 0.

Let us assume there is a case where the "true" optimal w has w; > 0 but it
violates,(2.18) . Then, if (2.17) is satisfied (since it is the solution to the optimization
problem) and (2.18) is violated,

14 P
1423wy <k<2d wi-1
1=2 1=2

P
= 2<2z(wl+—w )
i=2
P
= 1f2(wf—wl)<0,
i=2
but,
P P
I—Z(wf—w[):l—Z(w,)—wl
=2 =2
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which we assumed as non negative. Thus, if the optimal has w; > 0 (2.18) will
be satisfied immediately. The proof of the converse is identical, only changing the

direction of the inequalities.
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Chapter 3

Extended Pareto Law as a
Parsimonious Alternative for

Operational Risk Modeling

Joint with Victor Chernozhukov

3.1 Introduction

Banks and other major financial institutions are exposed to risks derived from failed
internal processes, described as operational risk (Basel Committee on Banking Su-
pervision (2008)). These risks include those derived from frauds and legal exposure
and can therefore represent substantial losses for the institutions that suffer them.
In fact, during the 1990s and early 2000s a number of very large operational losses
plagued the financial system: de Fontnouvelle et al. (2006) describe more than 100
operational loss events exceeding $100 million over the course of a decade.

These events led to an increasing regulatory interest in operational risk. Un-
der the Basel II capital accord there are three possible approaches to estimating
capital requirements for operational losses. These are the Basic Indicator, Stan-
dardized (TSA), and Advanced Measurement (AMA) approaches. The first sets

capital requirements as 15% of enterprise-level gross income. The second sets a
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capital requirement for separate business lines within the bank, with each capital
requirement representing between 12% and 18% of the gross income of that partic-
ular line. Finally, the Advanced Measurement Approach allows the institution to
develop empirical models of potential losses and use these models to calculate their
capital requirements.

Clearly, the first two approaches are much simpler to implement. However,
the capital requirements resulting from applying the AMA tend to be lower. In
fact, the results from the Loss Data Collection Exercise for Operational Risk (Basel
Committee on Banking Supervision (2008)) show that for AMA banks the typical
ratio of operational risk capital to gross income is 10.8%, significantly below that
of non-AMA banks. Therefore, even in situations where regulators give banks the
choice of which approach to follow, there will be strong incentives to implement the
AMA.

In spite of this, there are two important issues with the implementation of the
Advanced Measurement Approach. First, institutions might not have sufficient data
on their historical operational losses in order to propose a robust empirical model.
Second, even when, sufficient data is available, the task of setting operational loss
data to an empirical model is not trivial. We will focus on the latter problem.

It will be the main purpose of this paper to present the Extended Pareto Law
(EPL) as an empirical model that is both statistically sound, and leads to reasonable
capital requirements for operational risks. The primary motivation for the Extended
Pareto Law comes from the empirical failure of Extreme Value Theory (EVT) to
give adequate approximation to the operational losses in the tails. While EVT does
well at describing moderately large losses, in many instances it does a rather poor
job at describing extremely large losses.

In fact, Dutta and Perry (2007) examine a number of modeling techniques used
to fit operational losses including simple parametric distributions, generalized para-
metric distributions, extreme value theory, and historical'sampling. Their findings
indicate that, in general, distributions with good statistical fit tend to produce irra-
tionally large capital requirements; with one exception. The g-and-h distribution has

good goodness of fit properties and also produces reasonable capital requirements.
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However, the g-and-h distribution is highly parametrized: in the most general
version used in Dutta and Perry (2007) it depends on 10 parameters. Thus, it will
be the purpose of this paper to present the Extended Pareto Law (EPL) as a parsi-
monious alternative. We will show that even though the EPL depends on only two
parameters it performs exceptionally well in terms of goodness of fit and produces
reasonable capital requirement estimates.

Nonetheless, in practice, EVT is one of the most used tools for modeling opera-
tional losses. EVT implies the use of the Generalized Pareto Distribution (GPD) to
model the tail behavior of losses. Since the GPD is a two parameter distribution, it
also represents a parsimonious alternative. In this context, we will show that in spite
of its widespread use, GPD tends to have poor statistical and economic properties
when used as a model for operational losses.

In order to test the EPL we use a jittered version of the The Operational Riskdata
eXchange Association (ORX) dataset, which compiles operational loss data for 61
financial institutions worldwide. Using this data, first, we check goodness of fit via
Kolmogorov-Smirnov and Anderson—Darling tests. We then compare PP, QQ and
Hill plots for the EPL and GPD distributions to show that the EPL captures the
tail behavior of operational losses much better than the GPD.

Finally, capital requirements were estimated using the GPD aﬁd EPL models
and we find that the capital requirements under the EPL model tend to be smaller.
Therefore, we present the EPL model as a statistically sound alternative that will
also produce reasonable capital requirement estimations.

The rest of the paper is organized as follows, section 2 introduces and character-
izes the Extended Pareto Law, section 3 presents the empirical findings, and section

4 concludes.
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3.2 The Extended Pareto Law

3.2.1 The EPL and its Essential Properties

A random variable X > ¢ follows an Extended Pareto Law (EPL) with parameters
(a, A) if
Flz):=PX <z)=1- o= A@—t) ¢

The EPL was introduced by Pareto (1989) along with the canonical Pareto
distribution. The EPL was previously used in geophysics to model the distribu-
tion of earthquake magnitude and in finance to model asset price dynamics (e.g.
Heyde et al. (1996), Kagan and Schoenberg (2001), Wu (2006)). To the best of our
knowledge, we are the first to use the EPL to model the severity of operational
losses.

It is interesting to emphasize that, in the unbounded support case, EPL is at
least as flexible as the standard Extreme Value Theory, which describes the asymp-
totic distribution for exceedances over high thresholds using the Generalized Pareto

Distribution (GPD), i.e.

1—(1+@)_% L E#0

P X<z)= 1_exp(_(i%t)_+) eso

Note that GPD in the unbounded support case corresponds to either the Pareto Type
II (when £ # 0) or exponential law (when & = 0). Indeed, recall that EVT says
that if the distributions have regularly varying (approximately power) tails, then
the limit distributions of exceedences is a Pareto (power) law; if the distributions
have gamma varying (approximately exponential) tails, then the limit distributions
of exceedences is the exponential law. Now observe that, if A = 0, the EPL variable

X >t follows a Pareto Type I law, i.e.

P(X <z)=1-1tz"°.
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On the other hand, if & = 0, the EPL variable X > ¢ follows exponential law:
P(X <z)=1-e @+,

Moreover, in the unbounded support case, EPL is strictly more flexible than

GPD in that it can capture the product behavior:
P(X >uz)= g e Mt

which GPD cannot capture non-asymptotically. Remarkably, this flexibility comes
at no cost in terms of additional parameters, since EPL relies on two parameters
just like GPD does.

For analytical purposes as well as for simulating the loss distributions, the fol-
lowing stochastic representation for EPL variable is extremely useful. Let P denote
a Pareto variable with the shape parameter « with a lower end-point ¢ > 0, and £
denote an exponential variable with mean A, which is independent of P. Then, by

definition,
P{X >z} =P{P >z} P{E+t >z} =P{min(P, £ +1t) > x}.
Hence,
X =gmin(P,€ +1t) =4 min((¢/U1)Y*, —log(Us) /A + 1),

where Uy and Us are two independent U(0, 1) variables.

3.2.2 Motivation for EPL

Dutta and Perry (2007) offer a very extensive survey of the techniques that are
available for the modeling of operational losses. Among the techniques that they
consider, they find that the g-and-h distribution has the best statistical properties.
Nonetheless, the g-and-h distribution is highly parametrized. Hence, the first im-
portant advantage of the EPL will be that it offers a parsimonious alternative to

the g-and-h distribution.

101



Nonetheless, there are other parsimonious alternatives. In particular, Extreme
Value Theory (EVT) has become one of the most widespread tools in modeling op-
erational losses. However, it fails to give adequate approximation to the operational
losses in the tails. Indeed, we can detect this failure by the means of the Hill plot,

which is the standard device used in the EVT.

Hill Plots: The hill plot offers a very useful way to represent the tail behavior
of a heavy tailed distribution. Let us begin by defining a heavy tailed distribution
following Drees et al. (2000).

Definition 6 By a heavy tailed distribution we mean a distribution F, assumed

for convenience to concentrate on [0, 00) which satisfies
1—-F(x)~z *L(z)

for some o > 0 as x — oo, where L is a slowly varying function satisfying

lim L (1x)

=1 .
AT , Ve >0

Definition 7 The Hill estimator of v := a~! based on the k + 1 upper order

statistics is given by

1 &
,n:EZ

where X ;) represents the J'th upper-order statistic (i.e. Xy 2 o2 X))

X(k+1

If the Xs are drawn from a Pareto Distribution the Hill estimator H;, 1, will
be the maximum likelihood estimator for a~!. Further, Mason (1982) shows that if
the Xs are i.i.d., Hy, » 2 é when k, — oo as long as k,/n — 0. Finally, the Hill
plot is constructed by plotting Hy, ,, for different values of k.

Now, in the context of operational losses, instead of fixing k, a threshold ¢ is
used to determine the start of the tail. A very stable or flat Hill plot can suggest a
canonical Pareto behavior. On the other hand, a “curved" or bending Hill plot can

suggest Extended Pareto behavior, accentuating the importance of the exponential
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deviation from the canonical Pareto shape. Thus, a useful diagnostic for the presence
of EPL versus PL is the “curved" or bending Hill plot.

To prove the latter point we present the following simple computational ex-
periment: First, we simulate a sample from the standard Pareto distribution with
parameter values obtained using real data, and then construct a Hill plot using the
simulated sample. We see from Figure 3-1 that the Hill plot is very stable or flat,
suggesting that the stability of a Hill plot is a good indication for PL’s applicability.
Second, we draw a sample of data points from the EPL with parameter values fit-
ted on the real data (CPBP-2), and then construct a Hill plot using the generated
data. We see from Figure 3-1 that the Hill plot has a curved or bending pattern,
suggesting that the curved Hill plot is a good indication for EPL’s applicability over
PL.

Diagnozing Extended Pareto Laws via Hill Plots (for parameter 1/alpha)

Hill Piot in a Pareto Sample Hill Piot in an Extended Pareto Sample
24200 4950 1990 1180 BO10000 79200 4140
W) e [T I
J
\‘/\J\‘w'fvj
< - s -
o ™ -
o - o -
W.'M'\‘/W—W
O - O -
15 31 47 63 79 95 15 31 47 &3 79 95
MNear-Flat Hill Plot under Exact Pareto Law A Steep Hill Plot under Extended Pareto Law

Figure 3-1: Hill plots for simulated Pareto and Extended Pareto samples. The
bottom z axis denotes n (the number of upper order statistics used) and the top z
axis represents X(,) (the magnitude of the n’th largest loss).
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It is also useful to use qualitative judgement in assessing the probabilities of
ultra-extreme losses. For instance, we may think that typical extremes may well
follow a simple Pareto law, but that the ultra-extreme losses may obey a moderated
version of the Pareto law. To see why this might be the case, consider a scenario
where a bank is faced with a lawsuit in which vast amounts of money might be lost.
In this case, one would expect the bank to defend itself against such a lawsuit with
extreme rigor, making the probability of success for the plaintiffs smaller relative
to less extreme lawsuits. Thus, moderation of success probabilities would lead to a
deviation from the pure Pareto law, and this deviation can be modeled using the

exponential function.

3.2.3 Formal Diagnostics and Estimation of the EPL
Estimation and Computation

Suppose we have an original sample of losses Y7, ..., Y, and would like to fit the EPL
to the losses located above the threshold ¢. For this purpose we create a truncated
sample X1, ..., X by collecting any Y; such that Y; > ¢; here N = Y7 | 1{Y; > ¢}.
Under the maintained modeling assumption, the density function of each X; takes
the form

f(@;0) = (z/t) e (a/z + M(z > 1),

where we define

0 =(a,N).

The log-density takes the form
log f(z:;0) = —a - log(z/t) — Mz — t)4 + log(a/z + A).

Under the i.i.d. sampling assumption on Y7i,...,Y,, the sample X1,..., Xy is also

i.i.d. conditional on N, so that the log-likelihood function takes the form

N
Ly(0) =) log f(Xs0).
=1
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Next, we define the parameter space:
O={0=(x,A):a>0A>0}
The maximum likelihood estimator is defined as
0= Ln(0).
arg max Ly (6)

We also assume that the true value 6y # (0,0), since the latter case would cor-
respond to a degenerate case of X; having a unit point mass at the threshold ¢.
The log-likelihood function is also degenerate at § = (0,0) taking value of —oo.
Therefore, the MLE 6 can never take value (0,0). The MLE estimator can be com-
puted by the standard constrained maximization algorithms. It turns out that the
log-likelihood function is globally concave on ©, which means that the computation
of MLE is an extremely tractable, efficient problem; practical experiences confirm

this.

Lemma 8 The mapping 6 — log f(x,0) is concave on ©, so that the mapping

0 — Ln(0) is also concave on ©.

The first claim follows by observing that the mapping (a, A) — log(a/x + )
is concave over O, since it is a composition of a linear mapping (a, A) — a/x + A,
x >t > 0, whose values range over a subset of [0,00), with a concave function
u +— log(u) over [0,00). The final mapping 6 — log f(z,0) is then a sum of the
mapping above and a linear mapping (o, A\) — —a« - log(z/t) — A(x — )+, and hence
it is also concave. The second claim follows from the fact that the log-likelihood
function is a sum of concave functions over ©, and hence it is also concave.

For computational purposes, it is useful to have expressions for the gradient and
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the Hessian of the log-density function:

1/z

9 g a0y = | BWD T ams ) (3.1)
00 —(:c — t)+ + ﬁ
—1/22 —1/z
o2 5T o
ooay 08 /@, 0) = | AT el (3.2)

[a/z+A]?  [o/z+A]?

If the true parameter value 6y = (A, ) for parameter § = (A, @) obeys 6y > 0,
that is, the parameter is away from the boundary of the parameter space, then the

MLE is regular, namely it is root-n-consistent, asymptotically normal and efficient.

Theorem 9 (Regular Case) Under the maintained modeling assumptions, and if

0o = (Ao, ) s in the interior of ©, then
V(0 — 60) —a N(0,Z;.1),

where,
2

Too = =500 | G0

log f(X;,00)] .

This result follows as an application of a general theoretical framework in Knight
(1999) to our case.

If either Ao = 0 or ap = 0, that is, if the parameter is on the boundary, then
the MLE estimates are still root-n-consistent, although the limit distribution in this

case is a censored normal.
Theorem 10 (Non-regular Case) Under the maintained modeling assumptions,

and if ag =0 and Ao > 0, then

. 1
9—0 ' —Z'h+ KTy h,
Vn(0 — 6) —q4 arg aein + 51T,

were Z =4 N(0,1Ip,). Under the maintained modeling assumptions, and if ag > 0

and Ay = 0, then

~ 1
Vn( — 6y) —qarg min —7Z'h + ~h'Ty,h.
hER2:hy>0 2
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The result follows as an application of a general theoretical framework in An-

drews (1999) and Knight (1999) to our case.

3.3 Empirical Results

Our focus will be in examining the performance of the EPL model, and contrasting
it with the main parsimonious alternative, namely extreme value theory (EVT).
Since EVT leads to the modelling of tail behavior using the GPD model, we will
present all the results both for the EPL and GPD models.

In order to do so we will use a jittered version of the ORX dataset. This is a
large dataset that contains operational losses grouped in 11 units of measure (UOM).
These units, and their descriptive statistics are shown in Table 3.1.

We can immediately note several things from the descriptive statistics. First,
all the units of measure have minimum values that are very close to $20,000. This
simply reflects the fact that losses below that threshold are not included in the
ORX dataset. This would be a problem if we were trying to characterize the entire
distribution of the losses. However, since we are essentially interested in the tail
behavior of the losses we do not need the information that is not reported. Next,
note that the maximum loss tends to be several orders of magnitude larger than
both the mean and standard deviation. This, together with the extremely large
kurtosis for some of the series (in excess of 1000) confirms that the data, in fact,

exhibits extremely heavy tails.
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Table 3.1: Units of Measure and Descriptive Statistics of the Data

Unit of Measure

Mean

$1,000

Min.

$1,000

Max

$1,000,000

Std.Dev

$1,000

ew

Kurtosis

Business Disruption
& System Failure
(BDSF-1)

Business Disruption
& System Failure
(BDSF-2)

Clients, Products &
Business Practice
(CPBP-1)

Clients, Products &
Business Practice
(CPBP-2)

Damage to
Physical Asset
(DPA-ALL)
Execution, Delivery
& Process Mgmt.
(EDPM-1)
Execution, Delivery
& Process Mgmt.
(EDPM-2)

External Fraud
(EF-1)

External Fraud
(EF-2)

Employ. Practices
& Workplace Safety
(EPWS-ALL)
Internal Fraud

(IF-ALL)

1026 189

93 124

1065 4400

595 1880

42 267

17350 437

2478 447

1461 648

96 349

1020 4380

216 11300

21.9

25.9

21.7

23.9

25.8

21.5

21.3

23.9

23.1

24.7

274

3.47

0.85

557.00

297.00

3.95

202.00

228.00

413.00

11.70

38.50

949.00

341

128

28,600

14,000

638

2,960

5,350

12,700

1,360

1,780

74,800

4.48

2.82

13.30

16.80

4.70

33.90

33.80

28.30 -

6.88

13.60

10.50

25.5

10.7

207.0

333.0

23.8

1710.0

849.0

50.6

240.0

120.0
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3.3.1 Model Validation

In order to asses the validity of both the GPD and EPL models we perform three

sets of procedures.

1. Rigorously check goodness-of-fit using the formal Kolmogorov—Smirnov and

Anderson—Darling tests.
2. Examine goodness-of-fit using PP and QQ plots.

3. Examine if the fitted model generates a Hill plot similar to that seen in the

data.

The first set entails the use of the standard goodness-of-fit tests, which allows
us to see if the fitted model provides an adequate fit from a statistical point of
view. The second set entails the use of graphical diagnostics, which allow us to
see if the fitted model provides an adequate fit from an economic point of view.
This step is needed because, for example, if a very large sample is available, a highly
parsimonious model such as the EPL can be rejected at the conventional significance
level, but it can still provide an excellent fit from an economic point of view. The
latter case occurs when the model’s predictions deviate from the empirical quantiles
by an amount that is not economically significant. The final procedure involves
the application of the qualitative diagnostic based on the Hill plot, which we have
already mentioned earlier. This procedure allows us to see if the fitted model can
reproduce a pattern of the Hill plot seen in the data. The Hill plot is a summary
of the tail behavior of the given data, and so it is important to have the model
capturing this tail behavior.

However, recall that we are interested in the distribution of extreme losses i.e.
the tail of the distribution. Thus, a first step in the modeling procedure would be
to decide where the tail actually starts. We will not focus on this point, and instead
present results that are sufficient to show that the EPL model will perform better

than the GPD regardless of where the threshold is set for the beginning of the tail.
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Goodness of Fit

We begin by running KS and AD tests on the tail data setting the threshold at
different levels. First, we vary the number of elements that constitute the tail data
from 30 to 150. However, the datasets for the different UOMs are of very different
sizes so we repeated the experiment by setting the threshold as a quantile of the
data instead of a fixed order statistic. Figures 3-2 and 3-3 show the results of the

KS test for two of the datasets.
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Figure 3-2: p-value of the KS test for the EPL (black line) and GPD (red dots)
models as a function of the threshold level. Unit of measure: CPBP-2.

In Figure 3-2 we show the p-value for the KS test for the CPBP-2 data. This

is one of the few series where the p-value of the GPD model is not zero at least for
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Figure 3-3:  p-value of the KS test for the EPL (black line) and GPD (red dots)
models as a function of the threshold level. Unit of measure: EPWS-ALL.

some threshold levels. In fact, Figure 3-3 is more representative of what we found
for most series. We can see that regardless of the point at which the threshold is
set, the p-value of for the KS test of the GPD model is zero. Meanwhile, for the
EPL model there is a wide range of threshold levels for which we cannot reject the
null hypothesis of the KS test, namely, that the data is drawn from an Extended
Pareto Distribution.

Now, recall that we are not interested in describing a rule to set the threshold
level (the beginning of the tail). However, we can still show that the EPL model
will exhibit much better goodness of fit properties. Table 3.2 shows the maximum

p-values in the AD and KS tests under the GPD and EPL models. We can see that
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the GPD performs much worse than the EPL and that in fact the hypothesis that
the tail data come from the GPD distribution can always be rejected regardless of
the cutoff point of the tail. At the same time, we can see that there always exists a

threshold level such that neither the KS nor the AD test reject the EPL model.

Table 3.2: Max. p-values in the KS and AD tests

GPD EPL

Unit of Measure KS AD KS AD

BDSF-1 0 0 0.986 0.984
BDSF-2 0 0 0.950 0.991
CPBP-1 0 0.002 0.998 0.999
CPBP-2 0.013 0.040 0.993 0.992
DPA-ALL 0.002 0.015 0.955 0.968
EDPM-1 0 0 0.945 0.981
EDPM-2 0 0 0.976 0.958
EF-1 0.002 0.018 0.713 0.874
EF-2 0 0.001 0.999 1.000
EPWS-ALL 0 0 0.999 1.000
IF-ALL 0.013 0.062 0.994 0.998

We can make this result even stronger by fixing the threshold level at the point
that maximizes the KS p-value for the GPD model and then keeping this cutoff
point estimate the KS p-value for the EPL model. Since many p-values are 0 for the

GPD estimations, many entries from Table 3.2 will be repeated.

Table 3.3: p-values with thresholds optimal for GPD

GPD EPL

Unit of Measure  KS AD KS AD

BDSF-1 0 0 0.986 0.984
BDSF-2 0 0 0.950 0.991
CPBP-1 0 0.002 0.998 0.847
CPBP-2 0.013 0.040 0.963 0.970
DPA-ALL 0.002 0.015 0.955 0.963
EDPM-1 0 0 0.945 0.981
EDPM-2 0 0 0.976 0.958
EF-1 0.002 0.018 0.632 0.874
EF-2 0 0.001 0.999 0.991
EPWS-ALL 0 0 0.999 1.000
IF-ALL 0.013 0.062 0.883 0.933

The bold numbers in Table 3.3 represent the values that are different from the

corresponding values in Table 3.2. As expected, the p-values for the KS test of the
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EPL model are smallest when the threshold is set at the point that maximizes the
p-value for the GPD. Nonetheless, they remain higher than the corresponding values
for the GPD model and they are never in the region that would lead to a rejection of
the EPL model. Thus, even if the threshold is chosen to maximize the performance
of the GPD model, the EPL model continues to perform better in terms of statistical
fit.

Next, we present PP, QQ and Hill plots for the two models. Instead of presenting
the plots for all the units of measure, we present only two chosen as follows. The
first UOM is EPWS-ALL chosen since the KS p-value for the EPL model is one
of the highest and it is achieved with more than 100 observations in the tail. The
second UOM is CPBP-2 which was chosen since it was the UOM where the GPD

achieved the highest KS p-value.

PP-Plot for EPL fit EPWS-ALL ORX PP-Plot for GPD fit EPWS-ALL ORX
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Figure 3-4: PP and QQ plots for EPL and GPD models. Unit of measure: EPWS-
ALL.
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Figure 3-4 confirms what the KS and AD tests had already shown, that the
goodness of fit of the EPL model is far better for a unit of measurement like EPWS-
ALL, where the GPD distribution performs particularly bad, while the EPL exhibits
very high p-values on both tests. Further, Figure 3-5 shows the case when we choose
a unit of risk where the GPD model does better and we set the threshold at the level
that maximizes the KS p-value for the GPD model. Even under these conditions
that are set to favor the GPD model, we find that EPL exhibits a much better fit.

Finally, figures 3-6 and 3-7 show the Hill plots for these same units of measure. Each

PP-Plot for EPL fit CPBP-2 ORX PP-Plot for GPD fit CPBP-2 ORX
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Figure 3-5: PP and QQ plots for EPL and GPD models. Unit of measure: CPBP-2.

figure has the Hill plot of the data, and of data simulated from the estimated GPD
and EPL models. In both cases we can see that the qualitative behavior of the tail
in the GPD model is far from the behavior of the data, and that the EPL model

offers a much better approximation.
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Figure 3-6: Hill plots for the EPWS-ALL unit of measure. In each case the bottom
x axis denotes n (the number of upper order statistics used) and the top x axis
represents X(,) (the magnitude of the n’th largest loss).
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Figure 3-7: Hill plots for the CPBP-2 unit of measure. In each case the bottom
x axis denotes n (the number of upper order statistics used) and the top z axis
represents X(,) (the magnitude of the n’th largest loss).
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3.3.2 Capital Reserve Estimation

We now compare the estimated capital reserve requirements under both the GPD
and EPL models for each UOM. We estimate two canonical cases, in the first we as-
sume the capital reserve requirements to be the 0.999 quantile of the loss distribution
for a year and in the second we use the 0.9997 quantile.

In order to model the number of operational losses in a year, we assume a Poisson
process with a frequency set by industry standards for each of the units of measure.
We then simulate the magnitudes of the losses using the estimated values of the

GPD and EPL models.

Table 3.4: Capital requirements at the 0.1% level (in $1,000,000)

Unit of Measure GPD EPL CRepp—CREPTL
BDSF-1 4.08 6.41 -2.33
BDSF-2 1.00 0.97 0.03
CPBP-1 971.40 724.27 247.13
CPBP-2 1,288.73 385.36 903.36
DPA-ALL 112.30 9.46 102.84
EDPM-1 645.49 492.40 153.09
EDPM-2 7,161.37 455.18 6,706.18
EF-1 635.19 324.92 310.27
EF-2 6.26 9.36 0.90
EPWS-ALL 217.83 96.29 121.55
IF-ALL 818.54 697.36 121.18

In Table 3.4 we can see that with the exception of one unit of measure the EPL
estimates of capital requirements are smaller than under the GPD case. We can
even see that for some units of measure the change is so significant that there is a
change in the order of magnitude of the capital requirements.

Furthermore, Table 3.5 shows that, as expected, at the 0.03% level the capital
requirements are always higher than their 0.1% counterparts. Furthermore, we can
see that the decrease in required capital occurs for the same units of measure. Note
moreover that the units with irrationally high capital requirements under the GPD
model (those with capital requirements in the billions of dollars) tend to have capital

requirements of more reasonable orders of magnitude under the EPL model.
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Table 3.5: Capital requirements at the 0.03% level (in $1,000,000)

Unit of Measure GPD EPL CRgpp—CREPL
BDSF-1 4.62 7.48 -2.86
BDSF-2 1.61 1.23 0.39
CPBP-1 2,150.64 1,030.41 1,120.23
CPBP-2 3,209.69 510.19 2,699.50
DPA-ALL 370.55 11.84 358.72
EDPM-1 913.16 567.22 345.94
EDPM-2 33,893.99 630.46 33,263.52
EF-1 4,238.06 702.17 3535.89
EF-2 23.46 12.85 10.61
EPWS-ALL 445.46 124.96 320.50
IF-ALL 3,204.21 1,353.34 1850.87

3.4 Conclusions

We have presented the extended Pareto law as a parsimonious alternative that can
be used to model operational losses. We also described how to estimate the model
via maximum likelihood. Further, using the jittered version of the ORX dataset we
have shown that the EPL model presents better goodness of fit properties than the
GPD. In fact these results are extremely relevant since extreme value theory is one
of the most widely-used tools in operational risk modeling and it implies the use
of the GPD model for the tails of distributions. Hence, have shown that the EPL
model performs much better than one of the most widely used tools.

Finally, comparing capital estimates implied by the GPD and EPL models we
find that EPL produces smaller capital requirements. Thus, this indicates that
estimating capital requirements via the EPL model will avoid one of the common
problems of statistical modeling of operational losses: capital requirements that are
excessively large.

One last step that would be very useful would be to compare the capital require-
ments to the assets or the gross income of the different institutions. This would
allow us to get a better understanding of the magnitude of the capital requirements
implied by the EPL model vis-a-vis other statistical models and also "rule of thumb"
procedures such as the Basic Indicator and Standardized procedures described in the
introduction. Unfortunately, this information is not easily available due to privacy

concerns of the financial institutions.
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Nonetheless, we have provided enough evidence to suggest that the EPL model
is one of the most useful tools available for modeling operational risk: it is much
more parsimonious than other models with good statistical fit such as the g-and-
h distribution, and it has much better statistical fit than the main parsimonious

alternative, extreme value theory:.
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