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Abstract

In many distributed sensing applications it is likely that only a few agents will have valuable information at any given time. Since
wireless communication between agents is resource-intensive, it is important to ensure that the communication effort is focused on
communicating valuable information from informative agents. This paper presents communication-efficient distributed sensing algorithms
that avoid network cluttering by having only agents with high Value of Information (VoI) broadcast their measurements to the network,
while others censor themselves. A novel contribution of the presented distributed estimation algorithm is the use of an adaptively adjusted
VoI threshold to determine which agents are informative. This adaptation enables the team to better balance between the communication
cost incurred and the long-term accuracy of the estimation. Theoretical results are presented establishing the almost sure convergence of
the communication cost and estimation error to zero for distributions in the exponential family. Furthermore, validation through numerical
simulations and real datasets show that the new VoI-based algorithms can yield improved parameter estimates than those achieved by
previously published hyperparameter consensus algorithms while incurring only a fraction of the communication cost.
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1 INTRODUCTION

The increasing availability of compact sensing and process-
ing hardware is fueling a trend in which networks of mul-
tiple low-cost unmanned autonomous agents collaborate to
perform complex missions [1,2]. Examples of such mis-
sions include aerobiological sampling, persistent surveil-
lance, formation control, distributed resource delivery, and
target positioning [1,3–6]. The tasks in these missions of-
ten require the agents to collaboratively sense, estimate, or
reach agreement on global parameters/states, such as the
states of the environment or shared variables related to task
settings and assignments [7–11]. However, while low-cost
agents have the potential to yield benefits such as scalabil-
ity, cost-saving, and resiliency, these agents typically have
limited onboard computation and communication resources.
Hence, efficient distributed inference algorithms are needed
to ensure that agents can optimally utilize the limited on-
board resources while collaboratively estimating global pa-
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rameters/states. This paper develops an adaptive Value of In-
formation (VoI) based distributed estimation framework that
addresses the problem of estimating global parameters in
presence of uncertainties using limited communication re-
sources. Our framework enables significant communication
cost savings with comparable estimation error than tradi-
tionally used consensus and has no no restriction on network
topologies compared with graphical model based estimation
frameworks.

Many distributed estimation algorithms use the notion
of consensus to estimate the parameters/states of interest
(e.g., [9–16]). In a typical consensus algorithm, an agent
attempts to reach an agreement with its neighbors by per-
forming a sequential update that brings its estimate closer
to the states/parameters of (a subset of) all of its neighbors.
This process asymptotically converges to the average of all
agents’ states/parameters under mild assumptions on the
connectivity of the communication network formed by these
agents. For example, Figure 1 depicts a situation in which
several networked agents are estimating the distribution of
a set of parameters θ. In a consensus framework, all agents
would communicate their local parameters to reach consen-
sus on a global estimate. The advantages of a consensus-
based approach is that it is fully decentralized, and often
requires little computational effort by each agent. However,
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Fig. 1. Agents communicate local estimates P (θ|ωi) to estimate
global parameter of interest θ. A consensus based algorithm re-
quires all agents to communicate their estimates at all times to
guarantee asymptotic convergence. However, note that if only two
agents (e.g. the dark colored ones) have valuable information, then
requiring all the other agents to keep communicating will result
in wasted resources.

reaching consensus requires repeated and continuous com-
munication, which can be resource-intensive and it is often
the case that not all agents have valuable information to
contribute at all times (e.g., the updated states/parameters
after new measurements are obtained may not be suffi-
ciently different from the preceding states/parameters, or
not all agents are in a good position to take useful measure-
ments). Thus, requiring all agents to communicate at all
times can result in unnecessary communication that clutters
the network with marginally useful information.

Revisiting Figure 1, we note that if only two agents (dark
colored ones) have valuable information, then requiring all
the other agents to keep communicating will result in wasted
resources. One way to prevent network clutter is to cen-
sor (stop) uninformative agents from communicating. How-
ever, the consensus framework does not easily allow for dy-
namic censoring of uninformative agents (see Section 1.1
for further discussion on the literature on censoring and con-
sensus). This possibly inefficient use of communication re-
sources (and thus energy) could make the implementation
of the standard consensus based algorithms difficult in real-
world applications.

Another set of algorithms for distributed sensing relies
on distributed Bayesian inference using graphical models
(e.g., [7,8,17,18]). In graphical model based algorithms,
agents build local probability models on the parameters
of interest. When new measurements are observed, agents
propagate messages between each other to update their
probability models utilizing a priori known information
about correlations between each other’s probability mod-
els. Graphical model based algorithms are only guaranteed
to work well on acyclic networks, because in that case
there is only one path between any two agents, which
guarantees that the messages are not duplicated. For an
arbitrary network, one needs to use approximate algorithms
(e.g., [19–24]), or implement additional algorithms to re-
structure the network into an acyclic network [25], which

brings in extra complexity.

1.1 Related Work on Efficient Distributed Sensing using
Censoring

Many authors have explored the notion of censoring
agents/measurements based on some VoI metric to reduce
communication cost [26–33]. Censoring has been mainly
explored for centralized estimation frameworks [27,28].
Cetin et al. have explored censoring in decentralized graph-
ical model-based inference frameworks in the context of
a data association problem [26]. In that work, messages
are communicated only when the content exceeds a preset
VoI threshold. The authors numerically show a significant
reduction in communication cost by trading off some esti-
mation accuracy but the paper does not provide theoretical
insights on how to choose the VoI threshold.

In contrast, there appears to have been limited work on im-
proving communication efficiency using censoring in the
consensus literature. One possible reason for this is that it
is not easy to directly apply censoring, such as in [26], to
consensus formulations. Censoring agents would result in
a dynamic network topology, which could adversely affect
the convergence of baseline consensus-based algorithms. In
particular, Oliva et al. have stated that adding an agent to a
network engaged in consensus would still guarantee conver-
gence to the unbiased global estimate, which is desirable,
however, removing an agent from the network introduces a
bias [34]. Saligrama et al. introduced a random censoring
algorithm aimed at reducing communication cost in con-
sensus based algorithms. In their algorithm, each agent ran-
domly selects a neighbor and passes to it a “transmission
permit (token)” [35]. In this way, the communication cost is
reduced because not all agents are selected to communicate
at all times. However, that work shows that consensus with
only a subset of neighbors communicating takes longer to
converge.

1.2 Motivation and Contribution

This research is motivated by the need to develop more
communication-cost efficient algorithms for performing dis-
tributed estimation than those currently available. We present
a Value of Information based Distributed Sensing (VoIDS)
algorithm that achieves a significant overall reduction in net-
work communication cost without sacrificing much accu-
racy. In VoIDS, agents take into account the VoI of the mea-
surements as determined by an appropriate information the-
oretic VoI metric. The idea is similar to [26] in that agents
identify themselves as informative and communicate their
information only when the VoI exceeds a threshold. We go
beyond [26] by theoretically showing that the choice of the
VoI threshold results in a upper bound on estimation accu-
racy. This upper bound drives a dynamic trade-off between
the cost of transmitting information, and the accuracy of the
final estimate. To accommodate this trade-off, an Adaptive

2



VoI based Distributed Sensing (A-VoIDS) algorithm is in-
troduced that adjusts the VoI threshold adaptively to ensure
that the available communication bandwidth is optimally uti-
lized to guarantee asymptotic reduction of estimation error.

Both VoIDS and A-VoIDS are theoretically and experimen-
tally compared with a Full-Relay algorithm, a censoring-
based Random Broadcast algorithm, and a Hyperparameter
Consensus (HPC) algorithm [15]. Simulation shows that A-
VoIDS incurs only a fraction of the communication cost of
HPC, while arriving at an even better estimate of the hyper-
parameters. The algorithm is also tested on a real dataset
(the Intel temperature dataset [36]), where similar results are
obtained. Furthermore, strong theoretical results are estab-
lished to guarantee almost sure convergence of the commu-
nication cost and the estimation error to zero for probability
distributions in the exponential family. A notable advantage
of both VoIDS and A-VoIDS is that they can work on any
dynamic network topology, as long as the network remains
strongly connected.

This work contributes to the goal of developing the next
generation intelligent distributed sensing and distributed in-
ference algorithms. It provides a more efficient framework
for performing distributed parameter estimation than exist-
ing consensus or graphical model-based approaches (e.g.,
[8,13,37–42]). Furthermore, it is significant to the distributed
inference literature because it extends the notion of censor-
ing marginally useful information in a centralized estimation
framework (e.g., [27,29–31]) to VoI-based self-censoring in
a distributed inference framework. The algorithms discussed
here, and their possible variants, could lead to significant re-
source savings in real-world distributed sensing applications
by preventing irrelevant and marginally useful information
from cluttering the network. A preliminary version of this
work appeared in a conference [43]. The main contributions
over that work here are significantly more in-depth mathe-
matical and experimental analysis.

This paper is organized as follows. Section 2 introduces
related probability, graph theory, and distributed inference
concepts. Section 3 sets up the VoI metric and concepts of
exponential families. Section 4 develops the VoIDS algo-
rithm. Section 5 presents the A-VoIDS algorithm. Numerical
simulation results are provided in Section 6, and the paper
is concluded in Section 7.

2 BACKGROUND

2.1 Bayesian Inference

We use Bayesian framework to estimate the parameters of
interest, because it can model the uncertainty of parameters
with probability distributions and sequentially update the
distributions with measurements of the parameters.

Let θ ∈ Rd denote the parameters of interest, p(θ) denote
the prior distribution, and z = {z1, z2, · · · , zk} denote a set

of measurements with the likelihood p(z|θ). Bayes’ theorem
states that the posterior distribution p(θ|z) is (e.g., [44]):

p(θ|z) =
p(z|θ)p(θ)∫
p(z|θ)p(θ) dθ

. (1)

Consistency is one of the basic metrics on performance of
estimation problems. It describes when unlimited measure-
ments are used to update the posterior, whether the estimate
will converge, and what it will converge to [45].

Definition 1 Assume the measurements are independent
identically distributed (i.i.d.) drawn from the likelihood
function p(z|θ0) with parameter θo. The posterior distribu-
tion p(θ|z) is said to be consistent at parameter θ0 if p(θ|z)
converges to Dirac delta function δ(θ0) almost surely (a.s.)
when the number of measurements that are used to update
the posterior goes to infinity [45].

The Schwartz’s consistency theorem outlines a sufficient
condition for consistency of Bayesian inference:

Theorem 1 (Schwartz’s consistency theorem, [45]). Let
p(x|θ) be a class of probability distributions, p(θ) be a prior
on θ, and {z1, z2, · · · } be i.i.d. measurements with likelihood
function p(x|θ0). Suppose for every neighborhood U of θ0,
every θ ∈ U satisfies

P

(
θ :

∫
p(θ0) log

p(θ0)

p(θ)
dθ0 < ε

)
> 0, ∀ε > 0

then the posterior over {z1, z2, · · · } is consistent at θ0.

Theorem 1 will be used in this paper to test the error of our
Bayesian inference framework.

In general, it is hard or nearly impossible to compute poste-
rior because the integral

∫
p(z|θ)p(θ) dθ has no closed-form

solutions. However, in the case of exponential family distri-
butions, an easily computable closed-form posterior exists,
which gives us an easy way of updating posterior without
computing the integral.

Let p(x|θ) denote the probability distribution of random
variables x ∈ Rm under measure h(dx), given parameters
θ ∈ Rd. The exponential family is a set of probability dis-
tributions that follow the form [46]:

p(x|θ) = exp
{
θTT (x)−A(θ)

}
, (2)

where T (x) : Rm → Rd is the Sufficient Statistic or Poten-
tial Function and A(θ) = ln

∫
exp

{
θTT (x)

}
h(dx) is the

Log Partition or Cumulant Function. It is proven in [46] that
A(θ) is positive, convex and in class C∞ within its domain
that is well-defined.
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The exponential family distributions always have conjugate
priors that give closed-form posterior solutions [44]. The
conjugate priors are also within the exponential family, with
hyperparameters of dimension d+1 [46]. Let ω ∈ Rd, ν ∈ R
denote the hyperparameters and Λ(ω, ν) denote the conju-
gate prior’s Log Partition, then the conjugate prior p(θ|ω, ν)
has the following form under appropriate measure f(dθ):

p(θ|ω, ν) = exp
{
θTω −A(θ)ν − Λ(ω, ν)

}
. (3)

For above exponential family likelihood and conjugate prior,
the posterior p(θ|z, ω, ν) after n measurements z = {zi}n1
are observed always has a closed-form solution [47]:

p(θ|z, ω, ν) = exp
{
θT (ω +

∑
T (zi))−A(θ)(ν + n),

−Λ(ω +
∑

T (zi)), ν + n)
}
. (4)

To simplify notations, define augmented vectors ω̆i =[
ωT , ν

]T
, θ̆ =

[
θT ,−A(θ)

]T
and T̆ (z) =

[
(
∑
T (zi))

T
, n
]T

.
Then the prior and posterior can be rewritten as:

p(θ|ω̆) = exp
{
θ̆T ω̆ − Λ(ω̆)

}
p(θ|z, ω̆) = exp

{
θ̆T (ω̆ + T̆ (z))− Λ(ω̆ + T̆ (z))

}
(5)

It can be seen that the posterior has the same form as the
conjugate prior, only with an additive update in the hyper-
parameters:

ω̆ = ω̆ + T̆ (z). (6)

The following result can be proven from Theorem 1.

Corollary 1 If the likelihood is within the exponential fam-
ily and the prior is conjugate to the likelihood, then the
Bayesian inference is consistent.

Corollary 2 indicates that when the distribution is within the
exponential family, the Bayesian posteriors can get closer
estimates of the true parameters by taking more measure-
ments. It will be used to develop theoretical guarantees of
our algorithms.

2.2 Distributed Inference

First we define graphs that represents connections between
agents and state some assumptions that will be used in dif-
ferent distributed inference algorithms later.

Algorithm 1 Full Relay
1: initiate global priors p(θ)
2: for t do
3: for each agent i do
4: take measurement zi[t]
5: broadcasts zi[t] to neighbors
6: relay each received new message zj [t] to neigh-

bors
7: end for
8: for each broadcast message zi[t] do
9: update the global posterior p(θ|zi[t])

10: end for
11: end for

Let graph G 〈v,E〉 represent a network of collaborating
agents. Set v = {1, ..., N} denotes vertices or agents of
the network. Set E denotes edges, E ⊂ v × v. Vertice pair
(i, j) ∈ E if and only if the agents i can communicate
with, or otherwise sense, the state of agent j [13]. When
(i, j) ∈ E, agent j is called a neighbor of agent i. The set
of all of i’s neighbors is defined as agent i’s neighborhood,
denoted by Ni.
Assumption 1 Graph G is strongly connected. That is, for
every vertics pair (i, j), there exists a path from i to j, which
can be formed using elements in E.
Assumption 2 Every agent has a unique identifying label
that it can transmit to differentiate its message from others.
Assumption 3 Relaying a message is much faster than ob-
taining a local measurement, processing it, and then broad-
casting it.

2.2.1 Full Relay

Based on Assumptions 1–3, a naive method for distributed
inference is that every time an agent gets a new measure-
ment, it broadcasts the measurement to all of its neighbors.
Furthermore, each agent relays messages for other agents. In
this way, all agents have access to all the information from
others, essentially allowing every agent to act as the center
of the network.

Assume that the network is synchronized and the time
is indexed by an integer t ∈ N. Let mi[t] denote
the number of measurements agent i gets at t, and
zi[t] = {z1

i [t], z2
i [t], · · · , zmi[t]i [t]} denote the measure-

ments agent i takes at t, the Full Relay algorithm is given
by Algorithm 1. It should be noted that this algorithm can
be easily extended to asynchronous scenarios.

Cost: The Full Relay algorithm makes a copy of all mea-
surements over each agent. This could lead to big waste in
communication resources. Assume that the cost for an agent
to broadcast one message to its neighbors is 1 unit. At every
time step, each agent needs to broadcast its own message
and relay messages for all other agents. The total number of
messages every agent sends out at t is N . The step commu-
nication cost at each time t (total number of messages sent
out by all agents at t) is therefore N2.
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Algorithm 2 Hyperparameter Consensus
1: initiate hyperparameters ω̆[0]
2: for t do
3: for each agent i do
4: take measurement zi[t]
5: compute T̆ (zi[t])
6: compute local hyperparameters
7: ω̆i[t] = ω̆i[t] + T̆ (zi[t])

βi
8: run consensus algorithm
9: ω̆i[t+ 1] = ω̆i[t] + ε

∑
j∈Ni(ω̆j [t]− ω̆i[t])

10: end for
11: end for

2.2.2 Hyperparameter Consensus

In consensus-based methods, each agent computes an aver-
age value between its own estimation and estimations from
its neighbors. At each time step, an agent only sends out its
local estimate instead of relaying all messages for others.
Consensus algorithms are proven to asymptotically converge
to global averages (e.g., [11–13,41]).

One example of the consensus-based algorithms is Fraser
et al.’s Hyperparameter Consensus (HPC) [15]. HPC works
on parameter distributions in the exponential family, and
performs consensus on hyperparameters. In addition to As-
sumptions 1 and 2, this algorithm further assumes that the
network topology is known. This assumption can be restric-
tive in some scenarios, but can be relaxed by using topology
identification algorithms (e.g., [48–50]).

Notations t and zi[t] are defined the same as in Section 2.2.1.
Let ω̆i[t] denote the augmented local hyperparameters of
agent i at t. Further let β = {β}N1 denote the eigenvector of
eigenvalue 1 of the corresponding adjacency matrix of the
network graph; the algorithm is provided in Algorithm 2.
Ref. [15] proves that the HPC posterior will asymptotically
converge to the centralized Bayesian posterior.

Cost: Noting that at each time step, each agent sends out
only one message containing an update of its local hyperpa-
rameters, the step communication cost of all agents at time
t is N .

2.2.3 Random Broadcast

In order to avoid network-wide communication at all times, a
random censoring procedure can be used. At every time step,
each agent randomly becomes active and sends messages to
others. The idea is similar to that in [35] in which each agent
randomly select a neighbor to pass a communication token
to.

After recording a measurement zi[t], instead of broadcast-
ing it immediately, agent i stores it in a local buffer. Define
Si[t] as the sum of the Sufficient Statistic of buffered mea-
surements, ni[t] as the number of buffered measurements

Algorithm 3 Random Broadcast
1: initiate hyperparameters ω̆[0]
2: for t do
3: ω̆[t] = ω̆[t− 1]
4: for each agent i do
5: take measurement and update local buffer
6: S̆i[t] = S̆i[t− 1] + T̆ (zi[t])
7: if random number bigger than threshold ε then
8: broadcasts S̆i[t]
9: reset local buffer: S̆i[t] = 0

10: end if
11: relay each received new message zj [t] to neigh-

bors
12: end for
13: for each broadcast message S̆j [t] do
14: update the global posterior
15: ω̆[t] = ω̆[t] + S̆j [t]
16: end for
17: end for

of agent i and S̆i[t] =
[
STi [t], ni[t]

]T
. Agent i sends out a

message containing S̆i[t] only when a locally generated ran-
dom number between [0, 1] exceeds a predefined threshold
ε. The algorithm is described in Algorithm 3.

Cost: Noting that at each step the probability for an agent
to send a message is ε, on average there will be εN agents
broadcasting messages. Each message will be relayed by all
the other agents, therefore on average the step communi-
cation cost would be εN2. As all agents have a chance to
send out their messages, the estimation error is continuously
decreasing. By choosing smaller ε, the communication cost
would be reduced. However, the convergence rate could also
be reduced as agents communicate less frequently [35].

3 VALUE OF INFORMATION METRIC

The algorithms discusses so far communicate measurements
across agents without differentiating the VoI of the measure-
ments to the estimation task at hand. From the discussion in
Section 1.1, a censoring strategy in which only high-value
information is transmitted may lead to significant communi-
cation resource savings. This section first discusses the met-
rics of Value of Information (VoI) and their implementation
in estimation problems. The VoI based Distributed Sensing
(VoIDS) algorithm will be developed in next section.

3.1 Value of Information Metric

The idea of quantifying information dates back to Shannon’s
information theory [51]. Motivated by Shannon’s entropy,
Kullback and Leibler introduced the information measure
on discrimination between two distributions, now known as
the Kullback-Leibler (KL) divergence [52,53]. Renyi gener-
alized KL divergence by introducing an indexed family of
similar divergence measures [54]. Chernoff independently
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introduced another family of information metric, known as
Chernoff distance, which is different from Renyi divergence
only by a multiplicative constant [55]. Further generaliza-
tion beyond Renyi includes f-divergences (or Ali-Silvey di-
vergences, [56]). These as well as some other metrics are
listed in Table 1.
Table 1
Information Metrics

Metric Formula

Kullback-Leibler DKL (p||q) =
∫
p log( p

q
)dx

Renyi Dα (p||q) = 1
α−1

log
∫
pαq1−αdx, α > 1

Chernoff Dc (p||q) = log
∫
pαq1−αdx

f-divergence Df (p||q) =
∫
f( p

q
)dq(x)

Varational V (p||q) =
∫
|p− q|dx

Matusita DM (p||q) =
[∫
|p

1
r − q

1
r |rdx

] 1
r
, r > 0

p(x) and q(x) are two probability distributions

The metrics in Table 1 do not have closed-form solutions
for general probability distributions. A VoI metric with a
closed form solution is desirable, as it would allow VoI to be
computed without requiring a costly sampling procedure. If
the probability distribution is within the exponential family,
Renyi divergence and related metrics have a closed-form so-
lution, thus using Renyi divergence for VoI can help reduce
computational cost. Note that KL divergence is Renyi diver-
gence when α→ 1. Here we pick KL divergence to be the
metric on VoI in our problem. However, other VoI metrics
can also be used with the algorithms developed later.

3.2 KL Divergence and Bayesian Inference

Recall that p(z|θ), p(θ|ω̆) and p(θ|z, ω̆) denote the likeli-
hood, the prior distribution and the posterior distribution re-
spectively. If the prior is conjugate to the likelihood as de-
fined in (3), Nielsen and Nock show that the KL divergence
between the prior and the posterior is [57]:

DKL (p(θ|ω̆)||p(θ|z, ω̆)) (7)

= Λ
(
ω̆ + T̆ (z)

)
− Λ (ω̆)− T̆ (z)T∇Λ (ω̆)

where ∇ represents gradient. Because Λ(ω̆) is in the class
C∞ [46], Λ

(
ω̆ + T̆ (z)

)
can be expanded in a Taylor series

around Λ (ω̆):

DKL (p(θ|ω̆)||p(θ|z, ω̆))

=Λ
(
ω̆ + T̆ (z)

)
− Λ (ω̆)− T̆ (z)T∇Λ (ω̆)

=

{
Λ (ω̆) + T̆ (z)T∇Λ (ω̆) +

∫ T̆ (z)

0

(T̆ (z)− x)T∇2Λ(ω̆ + x)dx

}
− Λ (ω̆)− T̆ (z)T∇Λ (ω̆)

=

∫ T̆ (z)

0

(T̆ (z)− x)T∇2Λ(ω̆ + x)dx

=
1

2
T̆ (z)T∇2Λ(ω̆ + δω̆)T̆ (z) (8)

where δω̆ ∈
[
0, T̆ (z)

]
. It is further proven in [46] that

∇2Λ(ω̆ + δω̆) = cov(θ̆|ω̆ + δω̆), therefore,

DKL

(
p(θ̆|ω̆)||p(θ̆|z, ω̆)

)
=

1

2
T̆ (z)T cov(θ̆|ω̆ + δω̆)T̆ (z)(9)

Lemma 1 Assume the likelihood p(x|θ) is within the ex-
ponential family. Denote the conjugate prior as p(θ|ω̆),
and posterior after taking n measurements z = {zi}n1 as
p(θ|ω̆ + T̆ (z)). If all measurements are i.i.d. drawn from
a distribution with static parameter θ0, zi ∼ p(x|θ0), then
lim
n→∞

cov(θ̆|ω̆ + T̆ (z))→ 0 a.s.

Proof 1 From corollary 1,

lim
n→∞

p(θ|ω̆ + T̆ (z))→ δθ0 a.s.

Then,

lim
n→∞

cov(θ̆|ω̆ + T̆ (z))

= lim
n→∞

∫ [
θ̆2 − (Eθ̆)2

]
p(θ|ω̆ + T̆ (z))df(θ).

Since θ̆ is a function of θ, we have

lim
n→∞

cov(θ̆|ω̆ + T̆ (z))

→
∫ [

θ̆2 − (Eθ̆)2
]
δθ0df(θ) a.s.

=θ̆2
0 − (Eθ̆0)2 a.s.

=0 a.s. (10)

since θ0 is a static parameter.

3.3 Single Agent Case

Here we consider a network with a single agent to show
how VoI can be used to improve the efficiency of distributed
sensing. The VoI based Decentralized Sensing (VoIDS) al-
gorithm for multiple agent network will be given in the next
section.

At time t, the hyperparameter of the conjugate prior is:

ω̆[t− 1] = ω̆[0] + T̆ (z[1 : t− 1]) (11)

Assume the agent takes n[t] measurements z[t], |z[t]| = n[t].
The following theorem formalizes the intuitive notion that
as an agent takes more measurements, its estimate of the pa-
rameters improves, while the VoI in the new measurements
z[t] decreases to zero.
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Algorithm 4 VoI based Sensing for a Single Agent
1: initiate hyperparameters ω̆[0]
2: for t do
3: ω̆[t] = ω̆[t− 1]
4: take measurement and update buffer:
5: S̆[t] = S̆[t− 1] + T̆ (z[t])
6: calculate VoI:
7:

V [t] = DKL

(
p(θ|ω̆[t])||p(θ)|ω̆[t] + S̆[t])

)
8: if V [t] > V ∗ then
9: threshold reached, update posterior

10: ω̆[t] = ω̆[t− 1] + S̆[t]
11: reset buffer
12: S̆[t] = 0
13: end if
14: end for

Theorem 2 Consider a single agent that takes a finite mea-
surement at every time instance t and all the measurements
are i.i.d. drawn from an exponential distribution with static
parameters θ0. At time t, define V [t] as VoI of new mea-
surement z[t], i.e, the KL divergence between the conjugate
prior and posterior at t, then lim

|z[1:t−1]|→∞
V [t]→ 0 a.s.

Proof 2 From (9),

V [t] =T̆ (z[t])T cov(θ̆|ω̆[t] + δω̆)T̆ (z[t])

=T̆ (z[t])T cov(θ̆|ω̆[0] + δω̆ + T̆ (z[1 : t− 1]))T̆ (z[t])

δω̆ ∈
[
0, T̆ (z[t])

]
(12)

Given finite measurements z[t], Sufficient Statistic T (z[t])

is finite, so vector T̆ (z[t]) =
[
T (z[t])T , 1

]T
is also finite.

Furthermore, from Lemma 1, lim
|z[1:t−1]|→∞

cov(θ̆|ω̆[0]+δω̆+

T̆ (z[1 : t− 1]))→ 0 a.s. Hence

lim
|z[1:t−1]|→∞

T̆ (z[t])T cov(θ̆|ω̆[t] + δω̆)T̆ (z[t])→ 0 a.s.

that is lim
|z[1:t−1]|→∞

V [t]→ 0 a.s.

Now consider the case in which the agent does not update
hyperparameters immediately after taking a new measure-
ment, but instead stores the measurement in a local buffer
and calculates the VoI first. The posterior is updated only
when the VoI of the buffered measurements exceeds a thresh-
old V ∗. Denote n[t] as the number of buffered measurements
at t, S[t] as the sum of the Sufficient Statistic of buffered
measurements, and S̆[t] =

[
S[t]T , n[t]

]T
. Define tk as the

kth time the agent updates the posterior. This process is de-
scribed in Algorithm 4.

The following result guarantees that if an agent uses Algo-
rithm 4 for inference, then the frequency of the posterior

updates will decrease with time, because the VoI of new
measurements will decrease with time due to Theorem 2.

Theorem 3 Consider the case where a single agent takes
one measurement z[t] at every time instance t and does in-
ference according to Algorithm 4. Assume all the measure-
ments are i.i.d. drawn from a static distribution with param-
eters θ0, z[t] ∼ p(z|θ0). Let tk be the kth time the agent up-
dates the hyperparameters, and n[t] be the number of mea-
surements buffered at t, then lim

t→∞
n[tk]→∞ a.s.

Proof 3 From the definition of tk, at any time instant t,
tk−1, (tk−1 < t) represents the last time the agent updated
the posterior, and tk, (tk ≥ t) represents the next time the
agent will update the posterior.

Furthermore, n[tk] represents the number of measurements
in the buffer at time tk, i.e. the measurements taken be-
tween tk and tk−1. Since the agent only takes one mea-
surement at every time step, tk = n[tk] + tk−1. Therefore,
lim
t→∞

(n[tk] + tk−1) = lim
t→∞

tk ≥ lim
t→∞

t → ∞. We have

either lim
t→∞

n[tk]→∞ and/or lim
t→∞

tk−1 →∞.

(i) In the first case, lim
t→∞

n[tk]→∞, the theorem holds.

(ii) Consider for the sake of contradiction that n[tk] is
bounded, that is lim

t→∞
n[tk] ≤ C < ∞. In this case, it fol-

lows that lim
t→∞

tk−1 → ∞. In other words, this means that

at time tk, the number of buffered measurements (n[tk]) is
bounded, but the number of measurements the agent has
used to update the parameters at the previous step (tk−1)
goes to infinity. Since tk−1 is unbounded it follows from
Theorem 2, lim

|z[1:tk−1]|→∞
V [tk] → 0 a.s., which means

P(V [tk] > V ∗)→ 0. Therefore, there does not exist a finite
time tk such that V > V ∗, hence n[tk] cannot be bounded,
this is a contradiction.

Hence, it must follow that lim
t→∞

n[tk]→∞ a.s.

4 VoI based Distributed Sensing (VoIDS)

In this section we develop the VoI based Distributed Sensing
(VoIDS) algorithm for a network of multiple sensing agents.

In VoIDS, agents start with the same global prior. This can
be accomplished by either externally setting a prior to all
agents or through communication between the agents to
agree on a global prior, as is done in most distributed sens-
ing algorithms without censoring (see Section 1.1). Similar
to the single agent case, upon obtaining a new measurement,
agent i records it into its local buffer instead of immediately
broadcasting it to others. Denote ni[t] and Si[t] as number
and sum of Sufficient Statistic of buffered measurements for
agent i at time t, and let S̆i[t] =

[
Si[t]

Tni[t]
]T

. Denote Vi[t]
as the VoI of agent i’s buffered measurements at t.
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Algorithm 5 VoI based Distributed Sensing (VoIDS)
1: initiate hyperparameters ω̆[0]
2: for t do
3: ω̆[t] = ω̆[t− 1]
4: for each agent i do
5: take measurement and update local buffer
6: S̆i[t] = S̆i[t− 1] + T̆ (zi[t])
7: calculate VoI of current buffer
8:

Vi[t] = DKL

(
p(θ|ω̆[t])||p(θ|ω̆[t] + S̆i[t])

)
9: if Vi[t] > V ∗ then

10: broadcasts S̆i[t]
11: reset local buffer: S̆i[t] = 0
12: end if
13: relay each received new message zj [t] to neighbors
14: for each broadcast message S̆j [t] do
15: update the global posterior
16: ω̆[t] = ω̆[t] + S̆j [t]
17: end for
18: end for
19: end for

The algorithm proceeds as follows. If Vi[t] exceeds a prede-
fined threshold V ∗, agent i labels itself as informative, other-
wise it labels itself as uninformative. All informative agents
broadcast a message containing S̆i[t] to their neighbors, then
clear their local buffers and reset S̆i[t] to zero. Uninforma-
tive agents censor themselves from broadcasting their own
measurements. All agents relay every message they receive
from an informative agent or a relaying agent. Since each
agent has a unique identifying label, it can be ensured that
messages are not duplicated during relay. By Assumption
1, 2, and 3, all agents are guaranteed to get updates of all
informative agents. Then they update their estimates of the
global posterior by adding relayed updates to their hyperpa-
rameters. The process is described in an algorithmic form
in Algorithm 5.

The next theorem shows that the interval between two up-
dates for any agents will go to infinity a.s., which means
the average communication cost of each step will approach
zero a.s. when using Algorithm 5.

Theorem 4 Consider a network of N agents performing
distributed inference with Algorithm 5. Assume the mea-
surements are i.i.d. drawn from a distribution with static pa-
rameters θ0. Denote tik as the kth time agent i sends out
a message to update the global hyperparameters, then for
any agent i, the number of measurements needed to exceed
a predefined VoI threshold V ∗ will go to infinity, that is
lim
t→∞

ni[t
i
k]→∞.

Proof 4 First assume the case where agent i does not receive
any messages from other agents after tik. Define the time
it sends out next message as t̃ik+1 = tik + ni[t̃

i
k+1]. From

Theorem 3, lim
t→∞

ni[t̃
i
k]→∞, so Theorem 4 holds.

On the other hand, if agent i receives one or more messages
from other agents between tik and t̃ik+1, the global hyper-
parameters are updated between tik and t̃ik+1, thus agent i
would have used more measurements to update the hyperpa-
rameters by time t̃ik. This would only make cov(θ̆|ω̆[t]) con-
verge to 0 faster than in the first case due to Lemma 1. Hence
in order to reach the same VoI threshold V ∗, agent i needs to
take more measurements. Denote tik+1 to be the time agent i
sends out the next message, in this case, ni[tik+1] ≥ ni[t̃ik+1].
Since lim

t→∞
ni[t̃

i
k]→∞, lim

t→∞
ni[t

i
k]→∞.

Hence, in both cases, lim
t→∞

ni[t
i
k]→∞.

At time t, let I denote the set of informative agents and Ī
the uninformative agents. Define the estimation error e[t] as
KL divergence between global posterior and the centralized
Bayesian posterior:

e[t] = DKL

(
p

(
θ|ω̆[t] +

∑
j∈I

S̆j [t]

)
|| p

(
θ|ω̆[t] +

N∑
i=1

S̆i[t]

))
(13)

The following theorem shows that the expectation of this
error is bounded when using VoIDS (Algorithm 5).

Theorem 5 Consider a network of N agents that performs
inference with Algorithm 5. At time instance t, if the error
e[t] is defined by (13), then E(e[t]) ≤ N2V ∗.

Proof 5 For a single measurement z, denote ET = ET (z)

as the expected Sufficient Statistic. Then ES̆i[t] = ni[t]ET .
From (7), (9) and (13), take expectation of E(Vi[t]) and e[t]
in terms of S̆i[t]:

E(Vi[t]) =

∫ ni[t]ET

0

(ni[t]ET − x)T cov
(
θ̆|ω̆[t] + x

)
dx (14)

Let y = ET − x
ni[t]

=(ni[t])
2

∫ ET

0

yT cov
(
θ̆|ω̆[t] + ni[t]ET − ni[t]y

)
dy

similarly for e[t]

E(e[t]) (15)

=

∑
i∈Ī

ni[t]

2 ∫ ET

0

yT cov(θ̆|ω̆[t] +

N∑
i=1

ni[t]ET −
∑
i∈Ī

ni[t]y)dy

From Lemma 1, cov(θ̆|ω̆[t] + nx) = ∇2Λ(ω̆[t] + nx)
converges to 0 when n → ∞. It can be further proven
from [46] that cov(θ̆|ω̆[t] + nx) is convex in n. Hence,
cov(θ̆|ω̆[t] + nx) monotonically converges to 0. Therefore,

∫ ET

0

yT cov(θ̆|ω̆[t] +

N∑
i=1

ni[t]ET −
∑
i∈Ī

ni[t]y)dy
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≤
∫ ET

0

yT cov
(
θ̆|ω̆[t] + ni[t]ET − ni[t]y

)
dy. (16)

Furthermore (
∑
i∈Ī ni[t])

2 ≤ N2 maxi∈Ī(ni[t])
2,we have:

∑
i∈Ī

ni[t]

2 ∫ ET

0

xT cov
(
θ̆|ω̆[t] +

∑
ni[t]x

)
dx

≤N2 max
i∈Ī

{
(ni[t])

2

∫ ET (z)

0

xT cov
(
θ̆|ω̆[t] + ni[t]x

)
dx

}
(17)

Or, E(e[t]) ≤ N2 maxi∈Ī E(Vi[t]). Because E(Vi[t]) < V ∗

for agent i ∈ Ī , we have E(e[t]) ≤ N2V ∗.

5 Adaptive VoI-realized Distributed Sensing (A-VoIDS)

With a static VoI threshold V ∗, the communication fre-
quency of VoIDS was shown to decrease over time and the
expected error was shown to be bounded by a constant. In
particular, at the beginning of the estimation process, agents
know little about the parameters of interest, hence new mea-
surements tend to contain more information, so the set of
informative agents is larger and there is more communica-
tion in the network. In contrast, at later stages of the es-
timation process, when agents have developed better esti-
mates of the parameters, new measurements are less infor-
mative, so agents declare themselves as informative less fre-
quently. While this means that the growth of the communi-
cation cost slows down, the error still remains bounded by
V ∗ instead of continuing to decrease. Note that the number
of agents declaring themselves as informative depends on
V ∗. Hence, for a real network that has a fixed communica-
tion bandwidth, the VoI threshold needs to be larger in the
early stages of estimation to guarantee that the network is
not overwhelmed, while in the later stages of the estimation,
V ∗ must be dynamically reduced in order to guarantee con-
tinuous reduction of the estimation error. This implies that
there is a dynamic tradeoff between the growth of cost and
estimation error, and in a network with fixed communica-
tion bandwidth, the tradeoff can be handled by dynamically
adjusting the value of V ∗.

The Adaptive VoI based Distributed Sensing (A-VoIDS) al-
gorithm discussed in this section provides a way to adap-
tively adjust the VoI threshold V ∗ to make most of the avail-
able communication bandwidth (defined by preset commu-
nication limits in a single time step). Because all agents will
get messages from informative agents, all agents know the
communication cost in the network at any given time step.
Therefore it is possible for agents to update V ∗ in the same
manner without introducing extra communication between
them.

5.1 Adaptive VoI-realized Distributed Sensing Algorithm

Let indicator function IVi[t]>V ∗[t] denote whether agent i
is informative and sends out a message at time t. Let C[t]
denote the number of messages sent out at a single time step
averaged among a past window of length l:

C[t] =
1

l

t∑
j=t−l+1

N∑
i=1

IVi[j]>V ∗[j]. (18)

Variable C[t] reflects the average step communication cost
in a fixed length window. It should be noted that because
the VoI of measurements taken by agents is not known a
priori, the step cost C[t] is a random variable. If C[t] is
too high, the communication cost will grow very rapidly,
on the other hand if C[t] is too low, then the error reduces
very slowly. Therefore, it is desirable to regulateC[t] around
a reference value determined by the available communica-
tion bandwidth. A-VoIDS achieves this objective by dynam-
ically adjusting the VoI threshold. In A-VoIDS, each agent
compares the incurred C[t] with a desired step-cost c, and
adjusts V ∗[t] accordingly. If C[t] < c, the communication
cost is lower than desired, which means that the available
communication bandwidth is ill-utilized, hence the algo-
rithm decreases V ∗ to encourage communication by setting
V ∗[t+1] = γ1V

∗[t], 0 < γ1 < 1 (mode 1 of the algorithm).
If C[t] ≥ c, the communication cost is higher than desired,
so the algorithm increases V ∗ to limit communication by
setting V ∗[t + 1] = γ2V

∗[t], γ2 > 1 (mode 2). The above
procedure used by the A-VoIDS algorithm is depicted in an
algorithmic form in Algorithm 6. In the following theorem it
is shown that the A-VoIDS algorithm guarantees that the es-
timation error asymptotically approaches zero almost surely.

Theorem 6 Consider a network of N distributed sensing
agents. Assume that the measurements of all agents are i.i.d.
drawn from a distribution with static parameters θ0. Then
the estimation error e[t] as defined in (13) asymptotically
reduces to zero a.s., that is lim

t→∞
e[t]→ 0 a.s.

Proof 6 Denote the probability distribution of V ∗[t] at time
t as pt(v). At time t, define the probability of being in
mode 1 as P1[t|v] = P(C[t] < c|v) and being in mode 2 as
P2[t|v] = P(C[t] ≥ c|v). From Theorem 4, for any given
VoI threshold V ∗ = v, the interval between two consecutive
updates of any agent i will increase to infinity, hence the
probability of sending out a message at a particular time t
will approach zero, i.e. limt→∞ IVi[t]>v → 0 a.s. Therefore,
for a fixed window length l, the average cost C[t] satisfies:

∀v > 0, lim
t→∞

C[t] = lim
t→∞

1

l

t∑
j=t−l+1

N∑
i=1

IVi[j]>v → 0 a.s.

(19)

Hence, over time the probability of being in mode 1 will
approach 1, while being in mode 2 will approach 0, that is

∀v > 0, lim
t→∞

P1[t|v] = 1, and lim
t→∞

P2[t|v] = 0. (20)
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Algorithm 6 Adaptive VoI-realized Distributed Sensing (A-
VoIDS)

1: initiate hyperparameters ω̆[0]
2: for t do
3: for each agent i do
4: ω̆[t] = ω̆[t− 1], C[t] = 0
5: take measurement and update local buffer
6: S̆i[t] = S̆i[t− 1] + T̆ (zi[t])
7: calculate VoI of current buffer
8: Vi[t] = DKL

(
p(θ|ω̆[t])||p(θ|ω̆[t] + S̆i[t])

)
9: if Vi[t] > V ∗[t] then

10: broadcasts S̆i[t]
11: reset local buffer: S̆i[t] = 0
12: end if
13: relay each received new message zj [t] to neigh-

bors
14: for each broadcast message S̆j [t] do
15: update the global posterior
16: ω̆[t] = ω̆[t− 1] + S̆j [t]
17: step communication cost increased by 1
18: C[t] = C[t] + 1
19: end for
20: adaptively change V ∗[t]
21: if C[t] < c then
22: smaller than bound, too little comm
23: V ∗[t+ 1] = γ1V

∗[t] (0 < γ1 < 1)
24: else
25: bigger than bound, too much comm
26: V ∗[t+ 1] = γ2V

∗[t] (γ2 > 1)
27: end if
28: end for
29: end for

For any given ζ > 0, if V ∗[t + 1] ≥ ζ, there are two
possibilities, V ∗[t] ≥ ζ

γ1
and the algorithm falls into mode

1 at t; or V ∗[t] ≥ ζ
γ2

and the algorithm falls into mode 2
at t, where γ1, γ2 are as defined in Algorithm 6. Therefore,
we have

P(V ∗[t+ 1] ≥ ζ)

=

∫ ∞
ζ

pt+1(v)dv

=

∫ ∞
ζ
γ1

P1(t|v)pt(v)dv +

∫ ∞
ζ
γ2

P2(t|v)pt(v)dv (21)

When t→∞, P1 → 1, P2 → 0, therefore taking limit w.r.t.
time we have

lim
t→∞

P (V ∗[t+ 1] ≥ ζ)

= lim
t→∞

∫ ∞
ζ
γ1

pt(v)dv

= lim
t→∞

P
(
V ∗[t] ≥ ζ

γ1

)
. (22)

From (22) it follows that

lim
t→∞

P (V ∗[t+ 1] ≥ ζ)− P
(
V ∗[t] ≥ ζ

γ1

)
= 0. (23)

Noting that [t+τ, t] = [t+τ, t+τ−1, · · · , t+1, t], (23) can
be rewritten by adding and subtracting intermediate terms

lim
t→∞

P (V ∗[t+ τ ] ≥ ζ)− P
(
V ∗[t] ≥ ζ

γτ1

)
= lim
t→∞

{
P (V ∗[t+ τ ] ≥ ζ)− P

(
V ∗[t+ τ − 1] ≥ ζ

γ1

)}
+ · · ·

+ lim
t→∞

{
P
(
V ∗[t+ 2] ≥ ζ

γτ−2
1

)
− P

(
V ∗[t+ 1] ≥ ζ

γτ−1
1

)}
+ lim
t→∞

{
P
(
V ∗[t+ 1] ≥ ζ

γτ−1
1

)
− P

(
V ∗[t] ≥ ζ

γτ1

)}
apply (23) to each of the limits

=0 + 0 + · · ·+ 0 = 0 (24)

Now letting τ →∞ we obtain:

lim
τ→∞

lim
t→∞

P (V ∗[t+ τ ] ≥ ζ)− P
(
V ∗[t] ≥ ζ

γτ1

)
= lim
τ→∞

0

(25)
therefore,

lim
t→∞

P (V ∗[t] ≥ ζ)− P (V ∗[t] ≥ ∞) = 0 (26)

Because by definition of probability measures P(V ∗[t] ≥
∞) = 0, hence we have:

∀ζ, lim
t→∞

P (V ∗[t] ≥ ζ) = 0 (27)

Therefore, lim
t→∞

V ∗[t] → 0 a.s. From Theorem 5,

lim
t→∞

E(e[t]) → 0 a.s. Since e[t] ≥ 0, it follows that

lim
t→∞

e[t]→ 0 a.s.

5.2 Comparison of Performance

Table 2 compares the communication cost in one time step
and error of the algorithms discussed in this paper.

6 Experimental Evaluation

In this section, simulated data and a real dataset are used
to compare the performance of VoIDS and A-VoIDS with
existing distributed sensing algorithms (Full Relay, Random
Broadcast, and HPC, see Section 2 for details) in terms of the
communication cost incurred and the error to the centralized
Bayesian estimate (which is assumed to be the truth).
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Table 2
performance Summary

Algorithm Cost in a step Error

Full Relay N2 0

HPC N converges to 0

Random Broadcast εN2, ε tunable random; slowly converges to 0

VoIDS converge to 0 bounded

A-VoIDS cN , c tunable quickly converges to 0

6.1 Evaluation Using Simulated Dataset

The presented simulation considers a group of collaborative
agents estimating the Poisson arrival rate λ of an entity. The
prior distribution of λ is chosen to be a Gamma distribution
Γ(α, β), which is conjugate to Poisson. The Poisson and
Gamma distributions are given in (28) and (29) respectively:

p(z|λ) =
(λ)ze−λ

z!
(28)

p(λ|α, β) =
βαλα−1e−βλ

Γ(α)
(29)

This conjugacy results a closed-form update of hyperparam-
eters when a measurement z is taken:

α = α+ z

β = β + 1
(30)

The total number of agents in the network is set to be 100.
At each time step t, every agent i takes one measurement
zi[t] ∼ Poi(λi). The local arrival rate parameters λi are bi-
ased from the true global value λ = 5 with uniform noise:
λi ∼ U(4, 6). For VoIDS, the VoI threshold are chosen to be
V ∗ = 0.02, 0.1, 0.5 respectively. For A-VoIDS, the parame-
ters are set to γ1 = 0.97, γ2 = 1.01 l = 30, V ∗[0] = 0.5, and
two communication bandwidths are tested c = 0.10, 0.05.

Figure 2 and 3 show the cumulative cost (the sum of all
step costs up to current time) and the error to centralized
Bayesian estimate of Full Relay, HPC, Random Broadcast,
VoIDS and A-VoIDS algorithms (error shown in Figure 3 is
smoothed over a window with l = 30).

Since the step communication costs of consensus-based ap-
proach (HPC), Full Relay, and Random Broadcast are con-
stant (see Section 2), the cumulative costs of these algo-
rithms increase linearly. The cost of HPC is significantly less
than Full Relay, the cost of Random Broadcast is less than
HPC for the chosen probability of communicating/censoring
(see Section 2.2.3). Full Relay converges to the centralized
Bayesian estimation immediately and has zero error, how-
ever, its communication cost is the highest of all the al-
gorithms. Both HPC and Random Broadcast continuously
reduce their estimation error, implying asymptotic conver-
gence.

Fig. 2. Comparison of cumulative cost incurred. The cost of HPC
and Random Broadcast is less than Full Relay. The cost of VoIDS
can be more than HPC at the beginning, but levels off quickly.
Cost of A-VoIDS grows continuously, but its rate of growth is
controlled.

Fig. 3. Comparison of error to centralized posterior. Full Relay
converge to the correct answer immediately and has zero error
(not shown). VoIDS is not able to continuously reduce the error,
while HPC, Random Broadcast and A-VoIDS are able to.

As proven by Theorem 4, the cumulative cost of VoIDS
tends to grow quickly at the beginning (cost of VoIDS with
lower broadcast threshold V ∗ can be higher than the cost of
HPC and Random Broadcast at the beginning), however it
levels off gradually as the step cost (18) approaches zero.
On the other hand, VoIDS has a steady state error because
the fixed V ∗ threshold prevents communication after some
time into the simulation, thus cannot further reduce the error.
In particular, with a high V ∗ threshold, agents have less
communication cost but higher estimation error, and with
a lower V ∗ threshold, agents have lower estimation error
but higher communication cost. This indicates a dynamic
tradeoff between communication cost and estimation error.

On the other hand, A-VoIDS (Algorithm 6) strikes a better
balance between communication cost and estimation error.
The cumulative cost of A-VoIDS also increases linearly, but
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Fig. 4. VoI threshold V ∗ in A-VoIDS (c = 0.10) asymptotically
drops to 0, as postulated by Theorem 6. Since the error is bounded
by V ∗ (Theorem 5), the estimation error also approaches 0.

the rate of growth can be tuned via c to reflect the avail-
able communication bandwidth. The cost of A-VoIDS is ob-
served to be less than HPC for the chosen parameters. The
evolution of V ∗ for A-VoIDS (c = 0.10) is shown in Figure
3, and it can be seen that V ∗ drops to zero as shown by The-
orem 6. This indicates that unlike VoIDS, A-VoIDS tends to
asymptotically reduce the error, since the estimation error is
bounded above by V ∗.

The performance of the algorithms discussed is compared in
Figure 5 in cost-error coordinates. The horizontal axis rep-
resents the final cost at the end of the simulation and the ver-
tical axis represents the average error to the centralized esti-
mate of the hyperparameters (the centralized estimate con-
verges to the correct hyperparameters) in the last 300 time
steps. An ideal algorithm would be situated in the bottom-
left corner of that graph, with low error and low communi-
cation cost. HPC is situated in the bottom-right corner, with
low error but high communication cost. VoIDS with bigger
V ∗ thresholds (e.g., V ∗ = 0.5) is in the top-left corner, with
low communication cost (because the agents do not declare
themselves as informative easily) but high error. When V ∗
is set to lower values, the algorithm results in lower error
but higher communication cost. The Random Broadcast al-
gorithm does a trade off between cost and error, however the
performance is not always consistent due to the randomness
in which agents broadcast the measurement. The bronze cir-
cle represents the average performance of 100 runs, and the
dashed circle around it indicates one standard deviation of
the cost and error. Several instances of A-VoIDS are plot-
ted for different values of c, and increasing c will result in
increased communication cost but lower estimation error.
The general trend observed is that A-VoIDS dominates the
bottom left half of the figure when compared to other algo-
rithms. This indicates that A-VoIDS is capable of achieving
excellent estimates without incurring high communication
cost.

Fig. 5. Error to Centralized Posterior vs Cumulative Cost. A-VoIDS
is closest to the left bottom corner, indicating it has less commu-
nication cost and less error.

Fig. 6. Sensor Layout in the Intel Berkeley lab, 54 distributed
sensors collect time stamped information such as temperature,
humidity, light etc.

6.2 Evaluation Using Real Dataset

The VoIDS and A-VoIDS algorithms are further evaluated
using a real dataset that has been used to analyze distributed
sensing algorithms [32,58]. In this dataset, 54 sensors dis-
tributed in the Intel Berkeley Research lab collect times-
tamped information such as humidity, temperature, light,
and voltage values every half minute [32,58]. The sensor
layout is shown in Figure 6. This dataset reflects real ef-
fects such as sensor noise, sensor bias, and time varying al-
beit slowly drifting parameters. The temperature data was
selected for evaluating the algorithm. Over shorter intervals
(e.g. an hour), the drift in temperature in a climate-controlled
room is typically small (within 0.2◦C) and can be assumed
to be approximately constant. Therefore a record of about
an hour’s temperature measurements is selected to evaluate
the algorithms. The positive results reported in this section
indicate that the algorithms tend to work well even when
the parameters to be estimated are slowly varying instead of
being constant as is assumed in the theoretical development.

The goal is to collaboratively estimate the the average room
temperature denoted by θ. We model the noisy sensor mea-
surements by each sensor using a Gaussian noise model with
constant variance, z ∼ N (θ, 1). Since the conjugate prior of
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a Gaussian distribution is also Gaussian, the Gaussian sen-
sor noise model allows for a closed form update of the hy-
perparameters. Hence, the average room temperature can be
modeled by θ ∼ N (ων ,

1
ν ), where ω, ν are the hyperparam-

eters of the Gaussian conjugate prior. When a new measure-
ment z is taken by a sensor, it updates its hyperparameters
as in [57]:

ω = ω + z,

ν = ν + 1. (31)

The rate at which the sensors check for or relay messages
is a tunable parameter in this scenario, and it can affect the
performance of HPC. In particular, increasing this rate tends
to increase the speed of HPC error reduction but also in-
creases HPC communication cost by increasing the number
of messages sent out. In the presented results, we compare
HPC’s performance over a range of message communication
rates: 1Hz, 1

2 Hz, 1
3 Hz, and 1

4 Hz. Note that the communica-
tion rate does not affect the number of messages sent out
when sensors are running VoIDS or A-VOIDS.

The performance of different algorithms is compared in Fig-
ure 7 for different values of communication rate for HPC, V ∗
for VoIDS, and c for A-VoIDS. At the end of the evaluation
run, HPC (1 Hz) results in an estimate with the least error
but highest communication cost of all HPC runs. Decreas-
ing the communication rate decreases HPC communication
cost, but the error increases. VoIDS significantly reduces the
communication cost compared to HPC, but also has a larger
error. The Random Broadcast reduces cost by randomly cen-
soring agents, but its performance has high variance and is
no better than VoIDS on average. As before, A-VoIDS with
higher values of c are situated closest to the bottom-left cor-
ner of the error-cost figure, indicating that A-VoIDS can give
an estimate with significantly less communication cost than
other algorithms that have similar error.

Figure 8 shows the estimated room temperature over time.
The horizontal axis represents the time in seconds, and the
vertical axis represents the temperature in Celsius. The blue
solid line shows the centralized Bayesian estimate. The per-
formance of the Random Broadcast algorithm has a lot of
variance. The error between HPC (1Hz) and the centralized
estimate drops within 0.1◦C within first 500 seconds and
keeps decreasing. After 1500 sec, the error is within 0.05◦C.
VoIDS (with V ∗ = 0.1) estimation error also drops within
0.1◦C in 500 sec, but does not further decrease, even after
2000 sec, the error is still as much as 0.1◦C. On the other
hand, A-VoIDS (c = 0.1) starts with larger error than VoIDS
(V ∗ = 0.1), but the error quickly decreases, and over time
the A-VoIDS error is less than that of HPC.

7 CONCLUSION

In this paper, Value of Information (VoI) realized Dis-
tributed Sensing (VoIDS) algorithms are discussed in the

Fig. 7. Error to centralized posterior vs cumulative communication
cost on the Intel dataset [32,58]. A-VoIDS tends to cluster near
bottom left half of the figure, indicating that it can strike an
excellent balance between accuracy and communication cost. It can
be seen that A-VoIDS outperforms HPC in cost-error coordinates
for various values of communication rates.

Fig. 8. Estimated room temperature by different algorithms when
new measurements are taken continuously. The centralized esti-
mate is believed to be the truth. The performance of the RB algo-
rithm has a lot of variance. HPC (1Hz) error drops within 0.1◦C
within first 500 sec and keeps decreasing to less than 0.05◦C.
VoIDS (V ∗ = 0.1) estimate also drops within 0.1◦C in the first
500 sec, but is unable to decrease further. A-VoIDS (c = 0.1)
starts with a larger error than VoIDS (V ∗ = 0.1), but the error
drops quickly to within 0.05◦C, which is better than that of both
HPC and VoIDS.

framework of Bayesian inference. VoIDS algorithms are de-
signed to overcome known shortcomings such as excessive
communication cost and slow convergence speed of tra-
ditional consensus-based algorithms. Furthermore, VoIDS
algorithms do not require the knowledge of network topol-
ogy, and are not limited to acyclic networks. Therefore, they
also alleviate known limitations of inference algorithms
based on graphical models. However, it is shown that the
fixed VoI threshold leads to a dynamic tradeoff between
estimation accuracy and communication cost. An Adaptive-
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VoIDS (A-VoIDS) algorithm is presented and shown to
guarantee almost sure convergence to zero estimation error
while attempting to exploit all of the available communi-
cation bandwidth. Numerical simulations indicate that the
A-VoIDS algorithm incurred only fraction of the communi-
cation cost of HPC, a consensus-based inference algorithm,
and Random Broadcast, an algorithm with random censor-
ing procedure, but arriving at an even better estimate of the
hyperparameters than both of them. The algorithms are also
tested on experimental data by using the Intel temperature
dataset [36], where similar results are achieved. The algo-
rithms discussed here, and their possible variants (including
Kalman filter like variants for estimating dynamic states),
would translate to significant resource savings in real-world
distributed sensing applications by preventing irrelevant and
marginally useful information from cluttering the network.
This work therefore contributes towards developing the next
generation efficient and accurate information extraction
systems.
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