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Abstract

Growing populations, increasing middle-class, and rapid urbanization - for today's urban dweller, all of
these escalating factors continue to contribute to problems of excessive energy use, road congestion,
pollution due to carbon emissions, and inefficient personal transit. Considering that the average vehicle
in a city weighs thousands of pounds, usually caries only one person per trip, and expends significant
proportions of its gasoline simply searching for resources such as parking, new efficient and inteiligent
modes of transportation are in need of exploration.

This dissertation presents the design and development of an electric vehicle called the “CityCar” that
confronts the aforementioned problems of urban mobility with a novel vehicle architecture. The
assembly of the CityCar derives from a subset of “urban modular electric vehicle” (uUMEV) components in
which five core units are combined to create a variety of solutions for urban personal mobility.
Drastically decreasing the granularity of the vehicle’s subcomponents into larger interchangeable
modaules, the uMEV platform expands options for fleet customization while simultaneously addressing
the complex rapport between automotive manufacturers and their suppliers through a responsibility
shift among their respective subcomponents.

Transforming its anatomy from complex mechanically-dominant entities to electrically-dominant
modular components enables unique design features within the uMEV fleet. The CityCar for example
exploits technologies such as a folding chassis to reduce its footprint by 40% and Robot Wheels that
each are allotted between 72 to 120-degrees of rotation to together enable a seven-foot turning circle.
Just over 1,000 pounds, its lightweight zero-emitting electric platform, comprised of significantly fewer
parts, curbs negative externalities that today’s automobiles create in city environments. Additionally,
the vehicle platform developed from the assembly of several core units empowers a consortium of
suppliers to self-coordinate through a unique modular business model. Lastly, the CityCar specific uUMEV
confronts problems within urban transit by providing a nimble folding mobility solution tailored
specifically to crowded cities. Benefits, such as a 5:1 parking density and its reduced maintenance
demands, are especially reinforced in the context of shared personal transportation services like
Mobility-on-Demand.
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INTRODUCTION

Continual climate shifts, increasing petroleum costs, rapidly growing populations, and the
considerable increase of the world’s middle class causes many of us to reanalyze how we use today’s
global resources. One factor that has influenced these changes has been the automobile. Providing
unprecedented mobility, the automobile has increased access to resources and productivity. Yet this
century old marvel also bears significant responsibility for increasing pollution, traffic jams and excessive
resource consumption of both materials and energy. In addition to the continual shifts in interrelated
parameters of climate, petroleum and population, projections by the United Nations show that the 50%
of the world’s population, currently residing in urban areas, is projected to increase to 60% over the
next twenty years. Understanding all of these factors, it soon becomes easy to forecast that a growing
global middle class will increasingly demand more sources of mobility. So do we simply provide more
automobiles to the masses? Such vehicle solutions like the Tata Nano address the demand for
inexpensive mobility, but do so by reinforcing existing technologies that only exacerbate the
aforementioned problems.

In order to create significant environmental changes while providing sustainable solutions for the
growing demand, we must consider a radical paradigm shift. MIT professor William J. Mitchell
illustrated the paradigm of today’s typical automobile; “The typical automobile weighs 20 times as much
as its driver, requires more than 100 square feet for parking, travels over 300 miles without refueling,
and attains speeds well over 100 miles per hour. Each of these characteristics is considerably more than
what is needed in major cities worldwide, where most of the world’s people now live. In fact, while
today’s vehicles are designed to meet almost all conceivable needs for transporting people and cargo
over long distances, these requirements drive considerable cost, energy, mass, and space inefficiency
into the vehicle.”! Although impressively engineered, today’s typical sedan or sport utility vehicle seems
to be over-equipped for the urban commuter. Considering the moderate commuting speeds, shorter
distances, and the growing congestion & pollution within cities, compact and clean vehicles with
reserved performance and range become highly suitable in these dense urban areas. The paradigm of
the do-all mega vehicle may no longer be sustainable for the planet’s growing cities.

What if tomorrow’s paradigm instead offered a relatively lightweight, affordable, compact, clean
and sustainable option? Imagine vehicles designed around core electric platforms that conserve energy
in idling traffic; vehicles that can take an exceptionally sub-compact footprint to ease parking and
preserve precious real estate. Visualize tomorrow’s vehicles drastically simplified and tailored to
operate in urban environments — vehicles specifically built to operate and adapt to the city.

! {Mitchell, Borroni-Bird, & Burns, 2010)
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1 BACKGROUND

The automobile has provided for unprecedented mobility over the past century allowing us to
access resources, expand our interactions, and broaden our ranges of commute. lts impact on modern
society has been profound. Vehicles today continue to advance as engineering marvels by improving
their performance, increasing their intelligence of surroundings, and integrating more sophisticated
technologies than ever before. However, today’s automobiles do create negative externalities that
provide for challenges especially in major cities around the world. Inefficient energy use, air and noise
pollution, and carbon emissions damage our environment while consuming a significant proportion of
energy sources. Additionally, the dependence on fossi! fuel resources continues to stimulate geo-
political conflict.

On a local level, the abundance of vehicles within cities results in urban congestion and large
proportions of paved land dedicated to roadways, access points, and parking areas. For example, a
relatively less metropolitan city such as Cambridge, Massachusetts dedicates roughly a third of its
landscape solely to paved vehicle surfaces (roads, parking, and access ways). In many metropolitan
areas around the world, one-third of the land is dedicated to parking structures alone.> The need for
vehicle parking also creates a burden on residential and commercial building developers, requiring new
construction to provide corresponding spots for each of their residents and employees.

As the world’s population continues to grow, more people are living in cities today than in rural
areas. Billions flock towards cities in order to access resources, carry out careers, and socialize within
their communities. Additionally the global middle-class continues to expand, especially in Eastern
countries like India and China. Such upward class shifts result in an up swelling of citizens who seek to
improve their status, especially in means of transportation. Areas of Taiwan for example have over 14
million registered scooters which make up for two-thirds of its ridership.> These Taiwanese streets and
lots are already overwhelmed by scooters; however as growing families seek safer means of
transportation, problems of congestion and parking will only be made worse by larger vehicles.

The combination of growing populations, increasing middle-classes, and rapid urbanization
collectively exacerbate problems of excessive energy use, road congestion, pollution from carbon
emissions, and ineffective personal transit in major cities around the world. As cities adopt more
inhabitants and more vebhicles, space is at an all-time premium — resulting in escalating parking prices,
congestion zoning, micro-sized living spaces, and mega-sized parking lots.

? (Ben-Joseph, 2012)
* (The China Post, 2011)
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Cities around the world continue to address the challenges with smaller apartments, deeper
garages, increasing energy costs, and zone pricing (as implemented in cities like London, Hong Kong, and
Mexico City). Radical fundamental changes can be explored instead on our actual means of personal
mobility. The automobile, which has not fundamentally varied much in its make-up since its actual
inception in the 1800’s, can instead be rethought. Urban vehicles can be redefined specifically for the
needs of urban transit. Tomorrow’s personal mobility solution should strive to increase its accessibility,
maneuverability and connectivity, while becoming lean on energy and space consumption in order to
curb the rapid consumption of our planet’s resources.

Aside from the urban challenges that come from the overwhelming number of vehicles, the
automobile sector itself has seen its share of recent industry woes. The United States car industry
especially has stumbled in the face of daunting labor and pension burdens, vertically integrated
inflexible supply chains, and delayed embracement of innovative technologies. Detroit has begun to
turn around, but even foreign companies like Toyota that have recently dominated the market also face
real trials of decreasing profit margins. Even the utmost efforts of value engineering do little to
maintain revenue margins in the saturated market.
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1.1 LARGE SCALE PROBLEMS IN TRANSPORTATION

Urban mobility faces three major challenges. Environmental — How do curb the negative
externalities that the automobile has on our planet from its resource consumption and polluting
exhaust? Transit — As populations rise and economies expand globally, how do we provide sustainable
and efficient mobility options for the masses? Industrial — With shrinking profit margins in a saturated
automobile sector, what novel strategies can be taken to enable new vehicle markets either for existing
or emerging companies?

1.1.1 ENVIRONMENTAL SIDE EFFECTS

Crowded, congested, polluted,
and expanding —these are
unfortunately common traits of many
major metropolitan cities. As ecological
concerns continue to rise, we must ask
ourselves what condition our
environment will be in over the next
decades. Making worse these
problems is the fact that cities are only
exploding in population. Within the
last years our global population has
witnessed a shift as we now have more
people living in cities than in rural areas.
This urban population shift is projected
to rise to 70% by 2050 as even more of
the world’s population will dwell in
cities. Currently there are no signs of
these numbers turning around anytime
soon as roughly 80% of the world’s
wealth will also be concentrated in cities
by the same year.

Understanding these trends and
how they affect our environment, we
can begin to focus in on a number of
opportunities to make substantial _ £,
changes to the urban landscape and Figure 1-1: Congested and expanding cities (Google maps)
how many of its own features impact its
surroundings.

Considering that cities are major consuming and producing environments, there are two obvious
contributors which we can initially focus on in these areas - buildings and transportation. While urban
pollution does not account for all greenhouse gas effects (other significant contributions come from
agriculture, forestry, and industrial plants), it is a major contributor considering that transportation,
buildings, and power consumption account for half of global emissions. In 2005 transportation alone
tied for the fourth largest contributor to carbon emissions.” Unfortunately, by 2030 it is projected to
move up to the second most polluting factor, producing 11.4 gigatonnes of carbon dioxide (CO;)
equivalents.

* (United Nations, 2008)
° (McKinsey & Company, 2009)
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The increase of carbon dioxide and other gasses, such as methane, lead to greenhouse effects in
which these gasses trap infrared radiation. This containment of the sun’s radiation refers to the
phenomenon of “global warming.” Secondly, the combustion of hydrocarbons in internal combustion
engines result in not only CO, but also, poisonous carbon monoxides (CO), and unburned hydrocarbons
{HC) which are responsible for carcinogens and nitrogen oxides (NO,) which also lead to smog. Finally,
besides all the potential environmental health benefits that would come from reducing the volume of
internal combustion engine exhaust byproducts, minimizing noise levels in crowded cities is also very
desirable for the comfort of its inhabitants.

Steps are being made to incorporate more environmentally conscious components (hybrid
platforms, increased range through the combination of improved engine performance and
aerodynamics, biodegradable materials, more energy efficient LED lights); still they are few and
incremental. An aggressive approach should instead be taken to address the escalating challenges in
transportation. Not only must we exploit new technologies that that allow vehicles to behave more
efficiently but we must consider how personal mobility solutions can exploit local intelligence and
networking to behave even more cohesively as a proficient system. We cannot only design “green”
vehicles, but also green vehicles that are networked to each other and effectively communicate to their
surroundings to enable efficient flow of transit. It is only then that we can start to make significant
impacts through a multi-faceted approach — a comprehensive green approach.

1.1.2 PROBLEMS IN URBAN TRANSIT

Whether it is cities in the United States like Boston, New York, and San Francisco or across the
seas in London, Berlin, or Hong Kong, many of the world’s major metropolitan areas are facing serious
challenges from current means of transportation. Problems in parking, safety, and congestion plague
these areas and commuters are left with few alternative solutions.

As cities become denser with people and vehicles, finding parking continues to grow as a
problem. Given that space is in high demand in crowded cities, parking prices can easily exceed $500 a
month in New York City and over $400 a month in Boston.® The top ten cities in the United States
average a monthly parking price of $312, and the national average is $155 a month. This expense plays
a large factor in the actual total cost of car ownership. Even more, in large European and Asian cities
monthly parking cost can skyrocket over $1000 (London: $1083, Zurich: $822, Hong Kong: $745, Tokyo:
$744). In many cases, especially in US cities, up to 50% of public parking prices are subsidizes by local
governments. The value of this urban landscape is at a premium and large percentages of it are
occupied by dormant automobiles. Such high parking prices create complexities for car owners, building
developers and managers, and managers of larger vehicle fleets.

For individual automobile owners, the cost of parking in major cities increases their annual
transit costs by 21% on average. The average person spends roughly $9,000 a year to own an
automobile.” This cost does not include parking. Given that the average annual parking cost in US cities
is around $1860 (5155 per month), having the means to store their vehicle when it is not in use is
significantly prohibitive to some owners in larger cities like New York, Boston, San Francisco, and
Philadelphia (each with monthly rates of $541.%°, $438.%, $375.%°,303.% respectively).

® (Moore, 2011)
7 (AAA, 2009)
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For building developers, the challenge to provide sufficient parking accommodations can be just as
daunting. Parking lots creates significant burdens on new construction. Residential buildings must
incorporate large structures
underground or adjacent to the main
structure. Parking structures demand a
significant amount of space and become
very costly when built underground. As
construction costs in major US cities
exceed $30,000° per car with each of
these cars requiring just under 300
square-feet (parking space, access
pathways, and surrounding structures),
costs and land requirements can easily
exceed five million USD for 100 parking
spaces. One of the underground
parking levels in MIT’s Stata Center, for | - -
example, that can accommodate 340 el S sl

vehicles, requires over 120,000 square |~ | E g . i o |
feet and can easily exceed $7M USD for LTT‘“_‘ “1 : 1 _;1 L | F J—LL' 1 H‘ 3 HEG ARESERARS
each of its levels. Figure 1-2: MIT Stata Center parking lot
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Adding to the problems of urban transit is congestion. Roadways space is being occupied more
and more by vehicles. Overwhelming traffic causes many to spend a large percentage of time stuck in
the commute. Commuters in some of the worst US cities (Washington D.C., Chicago, Los Angeles, and
Houston) spend around 70 hours every year stuck in traffic.’ That's practically three days strait sitting
still in a vehicle. Cities worldwide that can no longer manage the vehicle congestion, such as London,
Florence, Hong Kong, and Mexico City, resort to congestion pricing, which financially discourages the
high influx of automobiles within the city centers. Unfortunately, such policies lead to inequitable
resolutions in which the have-nots are more inconvenienced from commuting into the city core - the
areas where the majority of business and wealth is developed.

Congestion continues to grow as a significant problem worldwide. Although there have been
slight reductions in the rate of growing traffic in the US, this side effect of economic recession is only
temporary. Urban mobility reports illustrate that congestion continues to worsen in both cities and
rural areas. Vehicle congestion causes Americans to purchase an extra 1.9 billion gallons of fuel, costing
$731 per commuter and $101 billion nationally.’’ Also, this squandered time adds up to 4.8 billion hours
a year nationally — 34 hours per commuter each year. Future projections estimate that time wasted will
grow 28% to 41 hours per commuter (7.7 billion hours) by 2020. By this time, the amounts of wasted
fuel will grow to 3.2 billion gallons, costing the average commuter $1,232 a year ($175 billion nationally).
Swelling traffic jams not only cause driver inconvenience and frustration but significant financial
repercussions and inefficient use of fuel resources.

® (Shoup, 2011)
? (Halsey 1ll, 2011)
10 (Schrank, Lomax, & Eisele, 2011)
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1.1.3 AUTOMOTIVE INDUSTRY WOES

The struggles of the automobile industry in 2008 validated close examination of the business
strategies for many of the major manufacturers. Although there’s no consensus on a single tactical error
that led to the significant shortcomings, drops in sales of larger vehicles like SUVs and trucks as result of
the combined energy and financial crises proved too overwhelming for most original equipment
manufacturers. Many manufacturers had focused much of their resources on these larger vehicles give
that they provide the most substantial profit margins. Besides the energy and financial hurdles of the
twenty-first century, automotive manufacturers face other swelling challenges that complicate business:

- CAFE Standards: New corporate average fuel economy, or “CAFE,” standards place demanding
requirements on all United States manufacturers and foreign manufacturers that sell vehicles within
the US. CAFE standards that were first started in the mid 70’s were developed to improve the fuel
economy for light trucks, cars, vans and sports utility vehicles. The legislation requires that a
company’s fleet of automobiles meet an estimated combined average fuel economy — currently 34.1
miles per gallon (MPG) for vehicles produced from 2012 to 2016."* Even with redirected marketing
efforts to encourage the purchasing of small and hybrid vehicles, automobile companies will not be
able to control the purchasing habits of the general public. It is therefore tempting to remain
reactionary to sales trends, market research and stakeholders. Nevertheless, the development of
smaller more fuel efficient options will grow as long as CAFE standards require such. Balancing
fleets with a variety of vehicle profiles will be necessary even if the end goal remains to sell greater
quantities of larger vehicles. Overall, more fuel efficient smaller vehicles will be increasingly needed
to even permit the sales of larger less fuel efficient SUVs and trucks. Optimists may be hopeful that
the general public will utilize this emerging opportunity to assess the greater selection and variety of
vehicle types in order to reevaluate their true personal mobility needs.

- Low Profit Margins: Multiple factors play into the low profit margins that OEMs are seeing. The
market is relatively saturated with multiple companies, each competing to out-engineer and price
undercut their competitors to gain customers. Also, options previously perceived as new
technologies eventually become expected entry-level features; therefore manufacturers are
challenged to find even more clever ways to cut costs. This 100 year old industry is fairly mature
and as natural resources become more sparse, specifications more stringent, and technologies more
common between competitors, margins will continue to diminish unless a radial game-changer is
introduced.

- OEM-Supplier Relationships: Through decades of squeezing out profit margins through maximizing
manufacturing and engineering efficiencies of vehicle components, relationships between original
equipment manufacturers (OEM) and suppliers have been described as “hostile” and “downright
war” at times. Additionally with the recent economic woes that have hit Detroit and manufacturers
abroad, these relations have become stressed even worse. With less than a nickel of profit in a
dollar part (appendix 7.L), many suppliers that were at times scarcely hanging on have gone out of
business. Manufacturers and suppliers are continually in a tug-of-war over razor-thin margins.
However, with many suppliers fighting for the opportunity to develop parts for few manufacturers,
the manufacturers typically are typically in an advantaged position to let go of the rope and find a
new player with to negotiate.

In an era when innovations are needed more than ever for efficient personal mobility in our
growing cities, we need all players collaborating effectively to develop solutions for tomorrow. A

1 (U.S. DOT, NHTSA, 2010)
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myriad of technical breakthroughs will not likely come from one manufacturer, but will be a
concerted effort between the multiple developers. Interactions must be inclusive novel ideas
encouraged between both parties. A platform must be developed that enables suppliers to be
motivated stakeholders by which their relationships are improved with manufacturers through the
joint interactions focused to invent solutions for tomorrow’s challenges in mobility.

1.1.4 INCREMENTAL CHANGES

The automobile’s fundamental architecture has not changed much over the past several decades —
still it has continued to advance in a couple manners despite the hurdles that this longstanding industry
has seen. Government policies will continue to force incremental improvements to the automobile’s
subsystems. Recent aggressive proposals project 54.5 miles per gallon by 2025." Whether this target
fuel economy is met or not, such pressures wili result in multiple improvements engineered into various
subsystems of the car (hybrid platforms, lowered weight, reduced drag from improved aerodynamics,
and lower roll resistance from tires).

Automobiles are already electronically sophisticated, computationally complex machines, and the
level of electronic technologies continue to increase. However most of the sensing and computation is
internalized for its own drive, safety and passenger comfort functions. Improvements are still needed in
external awareness and connectivity to other vehicles, people and surrounding environments in order to
optimize the commute. Such technologies can assist congestion avoidance, finding parking, quicker
access to resources, and overall reduction of wasted time and energy.

There may not be a silver bullet for the vehicle’s energy platform. Internal combustion engines
provide long range, but are only about one-third efficient, burning fossil fuels and emitting local
pollution. Electric vehicles eliminate local emissions and have better local efficiency (80% efficiency
battery-to-wheel*®) but do not provide comparable range. Fuel cell platforms eliminate emissions and
provide comparable range but currently do not have supporting infrastructure. Hybrid options do well
at balancing some of the best qualities of each but are inherently more complex. As we move forward
to tomorrow’s automobile, we are likely to see a growth in diversity of the energy platform. Hopefully
through innovative designs of modular vehicle platforms and cleaver management of supply chains,
vehicles will be provided more custom to their environment — tailored to necessary range, size, and
climate demands.

Advances in Mobility

Hybrid and Electric Vehicles: One of the incremental changes we may see more of over the next five
to ten years is the increasing availability of hybrid and electric vehicles. While internal combustion
based vehicles will likely still dominate the percentage of cars on the road in the near future,
automotive manufacturers do recognize the growing demand for alternative energy vehicles. Many
vehicle platforms today are designed to accommodate hybrid electric options to customers. During
these transitions, manufacturers continually improve their existing platforms through incremental
technologies. Revised stop-start systems allow engines in city vehicles to quickly shut down at stop
lights and rapidly turn back over when the driver reengages. These small frequent idle periods
improve fuel economy up to 10% in urban settings.*

2(U.S. DOT, NHTSA, 2011)
B (Milier, Holmes, Conlon, & Savagian, 2011)
% (Colwell, 2011)
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Shared Mobility Systems: An emerging trend, prevalent in many European cities and growing in the
United States, addresses mobility efficiencies in a different manner — through vehicle sharing. In the
US, the most predominant of these, Zip Car, is a two-way system that expedites the rental process
but restricts the flexibility of use. Car2Go in Austin Texas on the other hand is an example of 1-way
shared personal mobility service. Still, with only a couple hundred vehicles in the fleet, a small
fraction of the potential demand and insignificant to generate large scale environmental benefits,
larger personal mobility systems are still in need. For example, bicycle sharing programs with
greater numbers of vehicles within their fleets such as HubWay in Boston and Bixi in Barcelona begin
to tap into the urban demand. The more established bicycle sharing program in Paris, Velib, began
its initial deployment with tens of thousands of bicycles distributed throughout the major
metropolitan areas. These 1-way bicycle sharing services do witness heavy utilization and are
continuing to grow; however, major challenges exist in the redistribution models which usually
prevent the services from being profitable. Additionally, not all fundamental strategies from these
bicycle sharing programs can be transferred to larger vehicles. For one, the method for
redistribution - collecting dozens of bicycles onto the back of truck beds - cannot be scaled up to
automobiles. Vehicle refueling and/or recharging also presents challenges in fleet management
about which bicycle sharing programs need not worry.

Ubiquitous Network Support: One of the methods to be further explored for clever redistribution
relies on real time networked monitoring of the vehicles. If system operators are able to track the
location and state of each of their vehicles in the shared fleet, they can be better equipped to
deploy distribution incentives and provide timely maintenance in order to maximize the uptime of
their fleet and minimize customer inconvenience. Intelligent utilization of vehicle sensing and
network communications may not only enable efficient travel for the drivers but also streamline
interactions between the system operators and their vehicle fleets. In all existing shared mobility
programs, labor dedicated to redistribution and maintenance tends to be the largest cost factor,
inevitably prevent many of these systems from becoming or remaining profitable. Offering
information at relatively convenient times for the user or contextually sensitive incentives can
encourage the driver to play a part in the management of the vehicle distribution, potentially
providing mutually beneficial outcomes for both parties.
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1.2 MOBILITY ON DEMAND

Concerted efforts from the Media Lab’s former Smart Cities research group and the Changing
Places group focused in on trends in mobility and comprehensive ways in which they could be positively
influenced. Although efforts were focused in on improving the means of mobility, by redefining the
automobile itself, a systemic approach was proposed to more effectively utilize thousands of vehicles
present within the urban fabric. The system of “Mobility on Demand” proposes a network of ubiquitous
vehicles within a-city that can be conveniently borrowed and reused several times throughout the day.

1.2.1 SUMMARY MoD SYSTEM

Mobility-on-Demand (MoD) is a shared system of personal transit in which members can quickly
use one of many fleet vehicles that may be lent and returned at various hubs throughout the city. This
vehicle micro-rental service not only provides 1-way options for mobility but also utilizes existing transit
infrastructures. While both public transit and personal vehicles each have their conveniences,
inconveniences, efficiencies and inefficiencies, MoD attempts to seamlessly bridge the two together in
order to take advantage of each mode’s benefits. As MoD utilizes fleets of personal vehicles at clustered
stations for users to rent and return, these systems rely on significantly less infrastructure than subways,
trains, or other similar public transit systems. Striving to provide effective personal mobility in the most
convenient locations, MoD looks to bookend public transit by providing seamless first-mile and last-mile
mobility solutions.

Instead of trying to replace traditional automobiles or relying on larger infrastructures of public
transportation, MoD strives to supplement each by providing a solution that can expand multi-modal
personal transit. The system operates through coordinated stacks throughout major points of interest
in a city, such as airports, shopping centers, business districts, residential areas, and of course subways,
trains and other public transit stations. Additionally, by utilizing fleets of electric and hybrid vehicles,
the proposed Mobility on Demand system addresses vehicle recharging and peak energy demands from
buildings through a coordinated energy grid.

Figure 1-3: Mobility on Demand
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1.2.2 DYNAMIC INCENTIVES

One of the largest challenges to a Mobility-on-Demand service will be the proper management
of the 1-way sharing option. Throughout the day, vehicles are rented with fluctuations in demand from
unique travel patterns, larger events and occasional errands. These variations in travel can cause a
significant imbalance in vehicle stocks at each parking station. 2-way micro-rental services like Zip Car
manage the variety of demand through strictly controlled reservations. However, 1-way services can
provide more convenient flexibility if vehicles are available to be rented and dropped off at member’s
discretion. To meet user expectations such systems will have to employ clever management of their
large vehicle fleets to ensure reliable availability.

One attractive method to address the challenge of one-way mobility lies in what is called,
“dynamic incentives.” Discounts for the rental or local businesses may influence a driver’s transit
pattern to deposit the vehicle nearby an area preferred by the system operator. Incentives can be
customized to each member, giving consideration to each person’s preferences (comfortable walking
distances, product preferences, and disposable time). The Market Economy of Trips" and Dynamic
Incentive Scheme for Rental Vehicle Fleet Management investigates how the inventory of vehicles can
be better balanced through game theory when basic levels of information are ascertained from the
users. Real-time price or incentive fluctuations can be used to encourage or discourage particular flow
patterns.

T
3

Flgure 1-4: Operator interface dlsplaymg cost at a variety of stations, by Jet Sizhi Zhou

Most of these critical features of MoD depend on a reliable network to feed information in real-
time to the system operator. The system operator(s) may then be able to use for its employees and
inform their staff of maintenance needs to juggle incoming factors as they coordinate thelr fleet in
similar fashion to an air traffic control room.

Along with redistribution challenges, another hurdle that presents itself when transitioning from
bicycle sharing to vehicle sharing is energy (or fuel) management. Ensuring that all vehicles available for

1 (Papanikolaou, 2011)
'® (Zhou, 2012)
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rent have a sufficient state of charge to at least permit the user to get to their desired location with a
determined buffer will be just as crucial to vehicle availability. In most cases with electric vehicles, the
station hubs where these vehicles are parked and monitored may also serve as charging stations.
Ideally, each time the vehicle is returned to one of its stations, the recharging process is immediately
initiated.

1.2.3 METRICS VALUED BY SYSTEM OPERATORS

Customers of a Mobility on Demand system are likely to expect common traits as in other
products and services: convenience of rental, reliability of vehicles, reasonable prices, and perhaps in
today’s digital era some level of intelligent personalization. From the perspective of MoD system
operators however, additional characteristics are valuable in order to manage a viable service.

Listed below are some of the metrics System Operator will need to continually monitor mobility
systems:

- Vehicle location

- Vehicle maintenance (parts in need of repair)

- On-site staff (current task & location)

- State of charge (or fuel) of each vehicle

- Vehicle demand & availability

- Station occupancy

Some of the other MoD engineering challenges will be:

- Vehicle robustness — managing vehicles that are robust enough to withstand high utilization by
many different users (who additionally may not be as attentive to taking care of the vehicle
when in use)

- Personalization — exploiting the vehicle’s capabilities to dynamically alter the vehicle and
experience to best fit each user. Although the end user will rarely ever use the same vehicle,
each time they use MoD, it should feel and/or appear like it’s their vehicle each time.

- Energy management — Not only will MoD system operators need to monitor and manage the
state of charge (or fuel) of each vehicle throughout the day, but in the case where electric
vehicles are used, they also have the opportunity to cleverly manage and redistribute power at
the charging stations (uninterrupted power sources, battery buffers, peak shaving, renewable
energy sinks).
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1.3 CHANGING THE METHODOLOGY

As mentioned, one of the first efforts to address the polluted and congested cities is to continue to
push for alternative energy vehicles — mainly electric. Hybrid electric vehicles have begun to see greater
commercial success as they are able to achieve impressive fuel efficiencies and can minimize carbon
emissions in slow and idle city driving. However their redundant energy systems (internal combustion
engine and electric drive motor with battery — including an intricate transmission negotiating between
the two) result in greater complexity, weight and maintenance. Fuel cell vehicles exhibit a promising
alternative for future vehicles; yet not only do they possess complex energy systems but they also
require large infrastructural investments to provide hydrogen fueling stations. Pure electric vehicles
however can provide clean simple short to medium driving platforms for tomorrow that can be
recharged both at home and in the city.

Of course electric vehicles alone are not a novel idea. They have a long history and are even older
than internal combustion engine vehicles. Their inception at the dawn of the ZO‘hcentury demonstrated
potential; yet with insufficient battery technologies and various competitive factors, including the mass
production of Ford’s Model T, the electric car market faced too many hurdles for immediate commercial
success. Today, with the improved performance of lithium-based batteries and environmental
pressures to implement alternatives to petroleum-based vehicles, we are seeing a resurgence of electric
vehicle programs — electric hybrids, fuel cells with core electric platforms, and fully electric vehicles. In
addition, electric vehicles of shorter range are highly suitable for dense urban settings where the typical
commute is well under 20 miles. With proper city infrastructure (sourcing from the cities electrical grid)
to support more frequent charging schemes, a light short-range electric vehicle may be ideal for the
growing urban populations. Nevertheless, let us first examine both the fundamental opportunities and
constraints of electric energy platforms to successfully propose a new effective design.

One major constraint, that demonstrates no evidence of significantly changing in the near future, is
the considerably smaller power density of batteries compared to that of gasoline. Even the most
advanced battery technologies exhibit power densities an order of magnitude smaller than gasoline.
Therefore when attempting to match the driving range of gasoline vehicles with battery power, some
designers load the vehicle with a large mass of batteries, resulting in excessively greater weight.
Instead, considering an electric vehicle that contains a fraction of the battery capacity and range can
decrease the excessive weight while promoting eased frequent charging solutions.
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1.4 THEORETICAL CONSTRUCT
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1.5 PRIOR WORKS

As in the collaborative nature of the Smart Cities group, many of the developments that led towards
the CityCar and Mobility on Demand breakthroughs we enabled by the collective efforts of many

students that contributed various pieces to the puzzle. The following images and captions

chronologically highlight most of these major design milestones.

Early design
workshops with
Ghery associates
allowed for
~ exploration and
sketch designs of
vehicles that could
be “better citizens
to the city.”
-William J. Mitchell

Will Lark developed a very
rudimentary shopping-cart style
stacking car which Franco Vairani
assisted in animating.

Franco Vairani creates
animation following
brainstorming session
between Patrick, Will,
and himself. Concept
promotes mini-sized
omni-directional car.

Will Lark shares idea of upward tilting vehicle

in order to reduce wheel base and place driver

in standing position.

'7 (Joachim, 2006)
'® (Schmitt, 2007)

Patrick Kiinzler
designed and
promoted
what he called
“Hubless
Wheels”
which
packaged the
major drive
partsin the
space of the
wheel hub.

Mitch Joachim created
concept designs
incorporating soft bodig
surrounded by exo-
skeletal structures.
Designs also utilized the
Hubless Wheel (later
known as “Robot Wheels”).

’ 17

Peter Schmidt
promotes more in-
depth prototyping
of Robot Wheels.
He builds
functional
components at
multiple scales.

Figure 1-6: Smart Cities collaborative contributions (1 of 2)
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Marcel Botha, Phil Liang and Will Lark work together
n “Backpacker” concept that promotes front entry
and customizable add-on modules.

19

20

Andres Sevtsuk explores stackable
vehicle services in which
expandable units can be added and
subtracted as needed at stations.

- Mitch Joachim & Will Lark
design exo-skeletal front
) entry CityCar with “Split
22 f\\ Active Caster” Robot Wheel
@ by Raul-David Poblano.
ranco Vairani designs tandem Will Lark designs and
stacked CityCar, later to be called . )
gt A, . animates 3-point entry
bitCar.” Vairani’'s renderings . .
) ) CityCar with decoupled
begin to show potential space
SR Aike rear compartment.
& ’ First design to separate
y rear storage
Raul-David compartment from
5 Poblano and folding body.
¥~ Will Lark, with
~ much help from
undergraduate
assistants, build Will Lark
. demonstration enters
8 Robot Wheel near-final
and 4-wheeler. designs into

Peugeot
contest.

Will Lark creates design
exploration for
mechanical solutions of
folding chassis and
front door.

Will Lark develops final CityCar design
to showcase combination of explored
features.

Will Lark leads development of
half-scale prototype with major
contributions from Nicholas
Pennycooke, Raul-David
Poblano, Charles Guan and
numerous undergraduates.

¥ (Lark, 2005)

% (sevtsuk, 2006)
*! (Poblano, 2008)
% (Vairani, 2009)

Figure 1-7: Smart Cities collaborative contributions (2 of 2)
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2 DESIGN SoluTION

One of the first efforts to address the polluted and congested cities includes the push for alternative
energy vehicles — mainly electric. Pure electric vehicles can provide clean simple driving platforms for
tomorrow that can be recharged both at home and in the city. Lightweight electric vehicles have
demonstrated the potential following benefits:

- Zero tailpipe emissions

- Significant reduction of the vehicle’s weight

- Greater flexibility in the design

- Potential reduction in part count

- Reduced maintenance of dry systems

- Less demanding maintenance due to the reduction of subsystems

Increased design freedoms result from the electrical energy platform. Too often, many commercial
and concept electric vehicles do not take full advantage of this flexibility. They instead design around
the same model of traditional automobiles — more or less exchanging the internal combustion engine
based power-trains for electric ones while attempting to match parameters of range and size.
Nevertheless, what may further promote the proliferation of electric vehicles will instead be a radical
redefinition of the vehicle architecture. Battery platforms offer the possibility for a drastic reduction in
necessary mechanical drive components by localizing functions (for example placing independent drive
motors within the wheels) and optimizing components for multiple uses (such as using the same drive
motors for braking and recharging, or even capturing dispersed battery heat for cabin climate control).
Vehicle power can be transferred, distributed and governed by voltages and bits, instead of steel. The
design is no longer limited by hardware but liberated by software. Component locations and spatial
relationships can be reexamined. Electric vehicles can be design more like computers - modular.
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2.1 EXPLOITING THE OPPORTUNITIES OF AN ELECTRIC VEHICLE PLATFORM

As we continue to see incremental advancements to the automobile, improved MPG, increased
intelligence, driver assistance, and a variety of propulsion platforms, the overall architecture of the
vehicle tends to remain the same. For traditional manufacturers, this is a logical progression which
supports their long invested infrastructures and established supply chains. Even in most new hybrid
vehicles that use an internal combustion engine (ICE) and an electric motor in parallel, maintaining the
same platform makes sense given that the vehicle still uses most of the same subsystems and
components that support the gasoline engine. Nevertheless, when developing a vehicle platform whose
core componentry is powered by electricity, many traditional design assumptions can be challenged.

Unlike a gasoline engine powertrain whose complete transference of movement depends on
mechanical couplings outputting from the crankshaft through the transmission, driveshaft, universal
joints, differential, axle shafts, wheels and tires, the inherent nature of the electronic platform allows for
many of these mechanical couplings to be
substituted by the transfer of electrons. Of
course simple substitution of the ICE with an
electric motor provides an electric alternative
on an identical vehicle platform = in this case
the electric motor could output to an optional
transmission (depending on the motor
characteristics), transfer the rotational
movement mechanically to the rear differential
and out to the wheels just as before. Figure 2-1: Automobile Powertrain (BMW)

Yet this substitution does not take full
advantage of opportunities that are given from electronic products (especially in consumer electronics).
Subsystems and components of electronic products communicate through the transfer of data and
energy, all through wire conduit significantly smaller and lighter than mechanical couplings. Such
flexible interfaces allow for tighter packaging, of lightweight modular products. Therefore the challenge
is to mimic these relationships between components in order to share the design and feature
advantages that benefit consumer electronics.

When the traditional mechanical couplings are reduced and in some cases eliminated, a variety
of electric vehicle (EV) configurations can be

used.” The drive train consists of three R r— =" ) e
major subsystems; the propulsion, power, W HH G:!: 1 MHe D]
and auxiliary systems which can are &1 | | & |
compartmentalized in various configurations. L — S =t
The auxiliary system typically consists of 0 ) -
elements such as the HVAC (heating, | — o = Co
ventilation and air conditioning) and other L& g
systems that assist the driver, like power — @i) — @t =
steering. The power unit is made up of the - B o

energy source (the battery module in most re=s == mjf—-T - =
electric vehicles), the energy management —— LARS o
system (battery management system, BMS),  J0inne & B

and the componentry for refueling. Finally N i e CE =) o

the electric propulsion subsystem is made Figure 2-2: Electric vehicle configurations (Ehsani 2010)

% (Ehsani, Gao, & Emadi, 2010)
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from the arrangement of the power converter, the electric motor, the vehicle controller to govern the
behavior of the motor, any necessary transmission elements to obtain specified torque and speed
requirements, and finally the driving wheels to propel the vehicle forward. The propulsion system may
be organized in multiple configurations. Modern Electric, Hybrid Electric & Fuel Cell Vehicles highlights
six basic configurations of a modern electric vehicle drive train, from the most basic substitution of
engines (figure 2.2a) to the most radical mechanically minimized platform with in-hub motored wheels
(figure 2.2f). In-hub motored wheels discard all transmission components and attach the wheel directly
to the outer motor rotor. This type of assembly requires the motor to be built in a manner capable of
running at relatively slower speeds and produce relatively higher torque values (on the order of 600
RPMs and 150 Nm, derived in section 3.2.2). However in some cases, the electric motor’s consequential
cost and weight instead justify the incorporation of a fixed gearing coupled with a smaller, less
expensive drive motor. Such more common commercial motors runs nominally at higher speeds around
5000 RPM with lower torque values of 15 Nm (as seen in figure 2.2e).
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2.2 THE RoBOT WHEEL

When comparing the various EV configurations in Figure 2-2, from “a” to “f” the solutions
become less mechanically complex and more electronically dependent. When the configurations
become less mechanically dependent and more decoupled, the entirety of the drive train can be
compartmentalized in the local region of the wheel. Similar hub-motors have been implemented on
past vehicles — from Porsche cars at the dawn of the 20™ century to recent conversions of Mini-Coopers
by PML Flightlink.** Although the drive trains are further modularized in these examples, the other
supporting drive systems, steering, suspension, and brakes, still remain tightly coupled to the rest of the
vehicle. Actual benefits of modularity however can fully be utilized when all subsystems of the vehicles
movement are grouped into one unit.

The “Robot Wheel” addresses this challenge by
packaging all major drive systems into one interchangeable
module. Drive, steering, suspension, and braking — all
mechanisms responsible to moving and stopping the vehicle
in a determined direction - are packaged into a single unit
that may be repeated at all four corners. Each of the
vehicle's four wheel assemblies is a self-contained mobile
unit, supplying its own motor, suspension, brake, and
steering. There are no mechanical drive linkages necessary
between the Robot Wheels since all drive components are
local to the wheel module. Subsequently, the car is fully
drive-by-wire — each wheel needing only an electric cable,
data cable, and a snap-on mechanical connection to the
chassis. The local drive mechanics also allow each wheel
robot module to be highly maneuverable (in some cases up Figure 2-3: Front left Robot Wheel
to 120 degrees of steering).

Multiple manufacturers have developed a variety of motored-wheel components such as the
Michelin Active Wheel. If we take a modern comparison of the modular electric vehicle platform to the
consumer electronics industry, the Robot Wheel can be thought of as a similar component to the hard-
drive in a computer. It is an independent module, mechanically secured to the computer chassis,
supplied power and data to perform some of the most
crucial tasks of the product (in the case of the EV -
propulsion, in the case of the computer — save and
replicate data).

Each robot wheel corner units requires three
core elements — (1) mechanical connection to the
chassis, (2) power to the drive and steering motors, and
(3) data signals to facilitate information exchanges
between a variety of sensors. Since many automotive
applications utilize brushless direct-current motors,
pulse-width modulated (PWM) power signals will be

used to control each motor. Figure 2-4: Lohner-Porsche hybrid vehicle with
independent motor wheels

* (Hutton, 2007)
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Figure 2-5: Robot Wheel prototypes

Another benefit of localizing the functionality into the Robot Wheel is the containment of the
vehicle’s complexity. This has multiple benefits to the manufacturer, the supplier, and the owner of the
vehicle. For the manufacturer, packaging these core functions into one module reduces complexities in
system integration. If original equipment manufacturers (OEMs) can instead delegate specifications and
interfaces to their supplier(s), their efforts can be more streamlined and focus on other systems and
overall vehicle integration. As for the Robot Wheel supplier, assuming responsibility of a larger portion
of the vehicle can potentially increase their profit margins, allow them to become more integrated into

the design process, more valuable to the ) )
OEM, and maintain a channel for 2 wheelsteering 4 wheel steering

innovation. For the vehicle owner, whether

it be an individual or fleet operator, e % %
modular systems can present expedited FWD
servicing of the units and options for

advantageous customization. Made-to- %

order and assembled-to-order modules can %

allow customers to develop highly tailored RWD

propulsion systems that best fit their needs. @)
®

U

®

For example, at least six different drive
configurations can be derived from various
combinations of Robot Wheels —with and
without drive and with and without 4WD
steering, as seen in Figure 2-6: Various %
propulsion and steering configurations.

Lastly one of the most attractive Figure 2-6: Various propulsion and steering configurations
benefits of the Robot Wheels, from a vehicle
designer’s perspective, is the spatially liberated platform from the localized drive train. The platform is
no longer encumbered by the large front central engine, which is surrounded by its auxiliary systems
and continued through to the four corners by mechanical drive shafts. Typically after the drive train is
completely laid out on a traditional automobile platform, there is not much flexibility to alter the
vehicle’s architecture. However, when utilizing Robot Wheels on an EV the rest of the vehicle practically
becomes a clean slate for design.

L

u

T 3 ¢ 3¢
& $|6 9|8
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2.3 EXPANDING MODULARITY

The modularity that is exploited upon the drive train into the Robot Wheel can be expanded to
other systems and components of the electric vehicle. Properly managed modular products have
greater potential to provide benefits of streamlined supply chains, supplier engagement, and
component customization within the platform.

Since the majority of the power-train connections no longer need to be mechanical but instead
electrical, spatial relationships of the components may be re-imagined. In a modular electric archetype
vehicles of tomorrow can be designed around an architecture that is extremely accommodating,
relatively lightweight and simple. Exploiting highly modular platforms gives us the opportunity to
rethink clean transportation and promote flexible markets for mobility. Already, generally modular
products have demonstrated the following benefits to both manufacturers and customers:?

- Modular platforms and products accommodate uncertainty through higher flexibility by

adjusting to continually evolving markets and emerging technologies.

- Parallel development allows different modules to be worked on concurrently.

- Customers look favorably on loosely-coupled designs if they know they can be later upgraded or

mix and match components in the future.

- Modular platforms encourage flexible manufacturing, minimizing the need to heavily “tool up”

and result in less required production capital.

- Standardized interfaces provide easier servicing, replacement and upgrading.

Modular electric vehicles have the opportunity to capitalize on these benefits while promoting even
more advantages — such as (1) adaptive platforms that may advance their performance and utility, (2)
responsible component lifecycle management schemes, and (3) flexible interfaces that may further
engage suppliers in the development and innovation of various components.

- Adaptive Platforms: Offering diverse and adaptive mobility alternatives can provide efficient
best-fit solutions for unique city characteristics. Instead of pushing a one-size-fits-all model to
varied regions of the world (each having unique demands), a modular electric vehicle platform
can promote minimal tailored transportation solutions. Compartmentalized vehicle
components can be selected, assembled, and tuned for optimal performance and utility
depending on the environment.

Performance, range, utility and capacity characteristics can be customized, adjusted or
exchanged as needed if platform interfaces accommodate for a variety of motor-wheel, battery,
and storage accordingly. Robot Wheels can be packaged with a variety of drive motors,
suspension and steering packages. Therefore, a vehicle’s performance specifications, which also
affect its energy efficiencies, can be altered by exchanging Robot Wheels. An energy
conservative commuter vehicle (city Robot Wheels: small efficient drive motors, narrow tires,
and simple suspension) may potentially be transformed into a sporty weekend leisure car (sport
Robot Wheels: larger high-torque drive motors, wide high-traction tires, and tightly tuned
performance suspension components). Other components that are decoupled via
modularization can greatly impact the vehicle’s utility capabilities, like the storage
compartment. Imagine the convenient compactness of a Smart ForTwo car but also having the
optimal storage capacity of a small sport utility vehicle or truck. With a platform that can
accommodate for an assortment of utility these traditionally incompatible features may become
more attainable. Even more, when interfaces are governed electronically, the potential for

* (Ulrich K. , 1991)
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vehicle components and accessories that may be offered as exchangeable modules becomes
less and less bounded. Such modules can begin to achieve meaningful customization to users,
as opposed to typical superficial choices of paint color and body kits. Modular electric vehicles
can provide the following options to individual and fleet customers:

- Customized drive-by-wire interfaces

- Mobile office amenities

- Dynamic Storage

- Performance-varied Robot Wheels

- Custom and/or Varied Snap-In Body Paneling

- Easily upgraded/downgraded luxury features

- Flexible power-train supplements/options

- Interior design variety
In order to best manage the potentially high variety of modules, careful thought should be given
to their economic value. Understanding the utility and relative cost of all included units can help
system integrators better access the viability of each of these modules. Assessments can be
mapped upon a “cost-utility plot”* to guide strategic positioning within a product.
4 This plot assists in determining which of the
modules best serve as stable, cost effective
staples and which should be positioned as less
valuable options. Research in product family
modeling by Jiao and Tseng define five
categories for product modules:
(1) Common modules are those that contain the
most utility while minimizing cost. (2) Variant
modules however have significantly larger
relative cost but are essential to the product.
(3) Selective modules are generally cheaper and
less effective and therefore lower priority.
Other potential low value modules that are

unjustifiably expensive need to be (4) improved
Figure 2-7: Cost-utility plot or (5) discarded.

Relative Cost

v

Relative Utility

Although more in-depth analysis may better guide industry strategies, this simple economic
evaluation serves as a useful initial tool to manage the modules to determine which ones should
be positioned as core entry-level components and which ones serve best as supportive
accessories.

- Component Lifecycle Management: Reanalyzing the spatial relationships and connection points
of all components of the vehicle is not only beneficial for eased variety, production and
maintenance but also for serious consideration in how components may be later broken down,
reused and/or recycled.

Currently vehicles are so complexly integrated that disassembly is anything but easy.
Components of highly utilized urban vehicles are subject to breakdown and have varied
replacement rates — hence their different lifecycles. After a decade or two, once typical vehicles
are completely useless and defunct, many of them end up compacted in decrepit junkyard piles.
Thorough disassembly and recycling is an arduous task because of the complex fashion in which
unlike materials and massive wire harnesses are integrated. However, if careful consideration is

% (Jiao, Tseng, Duffy, & Lin, 1998)
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given to how the modules are built, assembled, and eventually disassembled, properties that aid
lifecycle management can be embedded into each component. Materials can be easily
decoupled and subassemblies may be simply broken down for reuse or recycling.

Even in the life of the vehicle the manner and ease in which modules are assembled and
disassembled can be influenced by module variety and anticipated rate of change.”’
Commoditized components can be typically fastened with robust stable connections as they
may be seldom exchanged. Variety-intensive modules (such as performance varying Robot
Wheels) must too maintain a stable connection but provide an interface that can support range
of options. Change-intensive modules, in which newer generations render their previous
technologies obsolete (such as evolving battery technologies), may behave more like USB
interfaces where they are embedded with enough flexibility to accommodate continual
advancements. Other components considered dynamic (customized accessories for modular
EVs) require the most interface flexibility to support a high variety of modules that may be
frequently exchanged. Overall, considering variety and exchange rates into the modules design
will assist seamless adaptation and responsible management of the components.

- Engaging Suppliers: How do we best begin to manufacture and deploy such a radical system?
Opening the field to many players in such a budding architecture can accelerate innovation and
adoption of new product archetypes. Accordingly, properly establishing engaging interfaces and
maintaining flexible low-entry platforms may prove the best approach to involve many potential
suppliers into a new market.

Typically mechanically dominant vehicles are optimized by fully integrating functional
components into their form. While this architecture serves well for efficient commodity, it often
results in an overly constrained artifact and many times discourages necessary flexibility for
variety, customization or modification. By instead redistributing functional components in
modular platforms it becomes possible to provide products with enhanced adaptability.

For developers, modular product grammars may enhance a product’s value chain in
multiple stages — standardized interfaces can enable more open input from multiple suppliers,
while at the same time, manufacturers and distributors may offer more product variety and gain
greater abilities to mass customize their products. A potentially more open platform can
promote opportunities within the supply chain for traditionally passive developers.

-
..

Figure 2-8: Assemble-to-order modular vehicle

# (Sanderson & Uzumeri, 1997)

42



2.4 UMEV, THE URBAN MODULAR ELECTRIC VEHICLE

Offering diverse and adaptive mobility alternatives can provide efficient best-fit solutions for unique
city characteristics. Instead of promoting an over-equipped model to crowded cities across the world,
the new urban modular electric vehicle platform seeks to suggest minimal tailored transportation
solutions that are assembled from a variety of modules. Components can be selected, assembled, and
tuned for optimal performance and utility depending on the locational demands.

An urban modular electric vehicle, or “uMEV,” embodies a number of core principles that allow it to
effectively offer an adaptive personal mobility solution for crowded cities.

- regionalize function (local spatial relationships ensures maximum modularity)

- minimize the amount of “stuff’ that needs to be transported around (reducing weight and

energy consumption)
- provide accommodating interfaces

- simplify systems by substituting hardware with software wherever possible (minimize

mechanical components)

- embed local intelligence (enable each module to self-monitor & sense surrounding)

The uMEVs promote the development of vehicles whose components with strongly related design
parameters are spatially contained into units from which derivative products can be efficiently created.
Such technologies can offer great benefits of product variety, mass customization, adaptability, and
efficient component reuse for both customers and manufacturers. Although implementation of
modular systems typically require up to twenty-five percent greater overhead, investments are soon
recuperated by better satisfying customers, promoting both parallel development and testing, reducing

order lead time, and accommodating for market uncertainties.

The uMEVs utilize the fully integrated in-wheel drive systems, Robot Wheels. Because of these
electronically controlled localized mechanical systems, the overall construction and layout of the vehicle
may be completely re-imagined. Similar to General Motor’s HyWire®® concept vehicle, designers are

now afforded a clean slate to create the vehicle’s carriage.
Figure 2-10 illustrates minimum uMEV requirements of (1)
Robotic Wheels connected to a (2) unibody that houses (3)
interior interfaces and an (4) energy & control unit. The form
factor for the robotic wheels is fairly defined and more or less
vary in scale depending on it performance demands. The
energy and control units can take on multiple forms since
lithium based cells can be organized in a variety of geometries.
It is advisable to keep these units low and central to the
vehicle since their relative heavier weight will influence drive
dynamics of the vehicle. The outer body of the uMEV can take
on a high variety of shapes depending on the vehicle’s utility,
passenger capacity, performance requirements, safety needs,
or simply customer preferences.

*# (Markus, 2003)
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The number of modules, or “granularity,” of the uMEV architecture can vary. Some complex
modules such as the energy & control unit can even be further parsed. Utilizing fewer modules of
coarse granularity tends to insure improved reliability since more subcomponents will be directly
designed to function together.”” Assemblies of uUMEVs that are derived from a greater number of
modules (fine granularity) however promote more vehicle variety. A variety of mobility options can be
formed from the fundamental grammar of the urban modular electric vehicle shown in figure 2-10

Given that the final output results in electrical power, the energy module can vary in source.
Prior PowerPod research (appendix 7.B) briefly investigated how battery, fuel-cells, and even small
internal combustion engines could be combined in manners to offer different energy platforms. The
driver interface, or human machine interface (HMI), module is slightly more challenging to group. From
the vehicle designer’s perspective, the HMI is a component very central and fundamental to the interior
interfaces.

The highly modular architecture of the uMEV makes it unique from most electric vehicle
designs. Elimination of the traditional engine and drive train enables modularization of the mechanical

systems and offers great flexibility in design of the body and interior.

w2 (Ericsson & Erixon, 1999)
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Figure 2-12 shoes a diagram of uMEV modules further parsed resulting in more mechanical and
electrical connections between each. While the complexity of each module is reduced, increased
dependencies between all developers must be carefully managed.
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Figure 2-12: Parsed uMEV modules result in finer granularity

Figure 2-13: uMEV variations

Variations in the assembly of the uMEV unibody and payload capabilities of the Robot Wheels
can create a variety of vehicles for commute, delivery, services, or recreation. An example of a relatively
highly developed uMEV is the CityCar. The CityCar exploits the decoupled uMEV modules to push the
functional boundaries of the chassis and Robot Wheels. Because of reduced mechanical impedances,
the chassis is permitted to transform in footprint and Robot Wheels are granted the freedom to rotate
more than usual.
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2.5 THE CITYCAR

The CityCar is an intelligent, clean, lightweight, electric concept vehicle that folds up to provide
space-saving personal mobility. The Shifted propulsion corner elements allow the CityCar to fold to
minimize parking footprint, and to provide front ingress and egress. This dramatically changes its
relationship to streets and cities. It can park nose-in to the curb in far less than the width of a traditional
parking bay, and do so at very high densities. It is possible to park three CityCars in the length of one
traditional parking bay.

Figure 2-15: Folding CityCar

2.5.1 VEHICLE ARCHITECTURE

This vehicle is comprised of six main modules: robot wheels, a folding exo-skeletal chassis, body
panels, an interior sled, energy and control deck, and the rear compartment.

Energy & Control Deck

Interior'S

Robot Wheels
The CityCar utilizes Robot Wheels with particularly high-
degree of turning capability to provide the vehicle
greatly improved maneuverability. Each wheel can turn
up to 120 degrees (95-degrees in one direction and
another 25 in the opposite).
Estimated Weight: 50+Ibs each (200 Ibs. total)
Proposed Materials/Components: Alloy rims, drive
& steering motors, suspension mechanism
Key interface/standard: mechanical, power and data connections required
Estimated Lifecycle: 10+ years (tire likely to require multiple replacements)

Figure 2-17: Robot Wheel module
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Body Paneling
The vehicle is primarily covered by polycarbonate lens modules,

which snap into the chassis. Substituting polycarbonate for the
glazing offers a number of benefits. First, polycarbonate is typically
half as dense as glass — this helps to keep the vehicle light. Second,
polycarbonates are characterized by their high-impact strength and
flexibility which allow us to use the glazing to bear some structural
loads, provide a safe cabin, and maximize surface area viewing. The
side lenses must also maintain their modularity for safety measures.
The side modules will be designed to release from the chassis for an Figure 2-18: Body module
emergency exit scenario where front egress is not possible. In
addition, the side lens modules have high potential for personalization and/or custom design since these
units are fairly independent from the rest of the vehicle’s subsystems.

Estimated Weight: 130 |bs. total

Proposed Materials: polycarbonate

Key interface/standard: mechanical connection only

Estimated Lifecycle: 7 years (potential to haze over time)

Interior Sled
Another module, which has great potential for high customization, is
the interior passenger sled of the vehicle. Since the vehicle is full
drive-by-wire, the design of the interior cabin and drive controls are
almost unbounded. This provides an open platform to find the
optimal city-driving interface and also explore potential driving
controls that may be personally customized to address unique
preferences, requirements or disabilities.

Estimated Weight: 80 Ibs. total

Proposed Materials/Components: high strength  plastics Figure 2-19: Interior module

(potential composites), durable cloths (

Key interface/standard: mechanical and data

Estimated Lifecycle: 10+ years

Energy & Control Deck
The energy and control sled contain the main batteries and central
control system for the vehicle. All power distribution and processing
is hosted here. The densest of these components, the batteries, will
be housed low and towards to front of the vehicle to best maintain a
low center of gravity at all stages. The energy and control sled may
also accommodate a suitable cooling system for the batteries and
computational components since they tend to produce significant
heat. The layout of this vehicle no longer justifies a hood to pop open
for maintenance; instead access panels on the underbelly and front Figure 2-20: Energy & control module
nose may be the best solution.

Estimated Weight: 230 Ibs. total

Proposed Materials/Components: high strength plastics (potential composites), lithium-based batteries,

CAN-bus control system, high voltage wires & connections

Key interface/standard: power and data

Estimated Lifecycle: 8 years — individual ownership, 3 years — shared use
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Rear Compartment

Last, the rear compartment module provides the vehicle vast
opportunity for storage and utility flexibility. The initial primary
purpose for decoupling the rear compartment from the vehicle body
was to ease the vehicle folding by reducing the necessary
components that gets lifted while maintaining a low center of mass.
This decoupling fortuitously results in a highly modular rear
component that can either be swapped out or custom built to best
serve storage or utility needs. In addition to the expandable storage

the rear modules also presents an opportunity to provide the vehicle
with additional power units to supplement the vehicle’s core electric

Figure 2-21: Rear module

platform. While the CityCar will not require such a power unit, uMEV alternatives based on the same
platform can satisfy unique characteristics such as extended range through hybrid power generators or
simply additional battery units to best complement required drive profiles. Supplemental energy
modules such as PowerPods (appendix 0) can be incorporated as needed.

Estimated Weight: 40 Ibs. total

Proposed Materials/Components: high strength plastics (potential composites)
Key interface/standard: primarily mechanical (potential power and data connection for supplemental

energy sources)
Estimated Lifecycle: 15+ years

Folding Exo-Skeletal Chassis

The folding exo-skeletal chassis is designed to maximize
passenger safety while drastically reducing exterior components
of the vehicle. The chassis contains three main safety features:
(1) the exterior (or exo-skeletal) ring that protects the passengers
from any external impediments, (2)the internal beams that help
to distribute impact, and (3) the folding four-bar linkage
structure, which not only reduces the vehicle’s footprint while
parked but also assists to decelerate the passengers in a front or

rear impact collision. In addition to safety features, the exo-
skeleton chassis is also designed with a minimal approach to keep

Figure 2-22: Folding chassis module

the CityCar relatively simple and lightweight. While traditional automobile bodies are constructed with
a unibody chassis covered by relatively delicate sheet metal panels and paint, the CityCar looks to treat
the chassis mare like the construction of eyeglasses in which an external frame houses a polycarbonate
lens. Such an approach not only offers an opportunity to significantly reduce part count but also
presents a platform for highly customizable side panels, or “lens modules.”

Estimated Weight: 300 Ibs. total

Proposed Materials: aluminum alloy exterior and internal steel beams
Key interface/standard: primarily mechanical connections

Estimated Lifecycle: 15+ years
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2.5.2 CORE FEATURES

Four core features enable the CityCar concept to address challenges in the city unlike today’s
automobiles:
1. Wheel Robots - In-Wheel electric motor module with embedded suspension, electronic braking,
and independent electronic steering system. The CityCar utilizes four of these independent
Robot Wheels that each turn up to 120-degrees. The large sweep in each wheel coordinate to
provide the following maneuvers:
- O-turn: allowing the vehicle to spin on a dime continuously
- Translation: allows the vehicle to side-step perpendicularly
- 4-wheel steering: provides tight turning radius and enables slight translation while driving

2. Front Egress - Frontal entry system that integrates front windshield, driver controls, and
accommodates easy ingress/egress for passengers. The CityCar utilizes a door in the front of the
vehicle to ease entry and exit of its passengers onto the sidewalk once the vehicle is folded. In
addition to the eased ingress/egress, the lack of side doors allows the vehicles to park tightly
next to one another, maximizing parking surface area.

3. Folding Chassis - An actuated folding mechanism connects the front passenger cabin with rear
storage module. The CityCar utilizes a dual 4-bar linkage folding system to reduce its footprint
by up to 40% when parking and maneuvering in tight low-speed situations. Passengers can
remain in the vehicle during all states (unfolded, folded, and in-between), and most complex
and weighted systems remain low to the ground to maintain a low center of gravity. When
unfolded and driving normally, the CityCar is slightly larger than the Smart ForTwo car. However
when folded, it reduces its foot print to about 5' x 5' (five feet by five feet).

4. Drive-by-Wire - Vehicle control system built upon a FlexRay bus (or reliably equivalent) and CAN
bus technologies. The control backbone of the vehicle uses redundant systems to ensure all
mission-critical components receive reliable time-triggers information.

Secondary Features provide additional benefits to the end-user:

- The CityCar can utilize either an electronic wheel, yoke controller (similar to airplane controls) or
dual joysticks to control the vehicle. Each interface communicates to the vehicle's drive systems
through a by-wire backbone.

- Anoticeable feature of the CityCar is its large amount of transparent surface area. This is done not
only to improve the visibility of the driver, but additionally to better engage the passengers with
their city surroundings.

- One feature to be further explored on the CityCar is the proposed energy absorption through its
folding chassis. Most traditional vehicles today absarb front and rear collisions through crumple
zones; however, the small CityCar does not have such an option. Instead this vehicle may utilize
shock absorbers integrated with the folding mechanism to better decelerate its passengers.

- The CityCar runs completely on electric power provided by Lithium-ion battery packs.
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Combining the previously listed features provides CityCar occupants the following amplified benefits:

- Reduced footprint and vehicle sweep - folding chassis, front entry/exit, omni-directionality

- Improved maneuverability — tight steering radius from RWs, reducible wheelbase, proximity sensing,
increased visibility

- Eased entry/exit — front door (sidewalk exit), elevated seat from folding, drive-by-wire interface
reduces obstruction

- Safety — open cabin eliminates impeding dashboard, dynamic deceleration from folding, external
vehicle sensing can prepare vehicle for impact, 4-wheel steering, power and brake allow for vector
control at all four corners

CityCars accommodate two passengers, which suits them to meeting the requirements of the vast
majority of urban trips without excess capacity. This CityCar weighs less than a thousand pounds, parks

in much less space than a Smart Car, and is expected to get the equivalent of over 100 miles per gallon

of gasoline. Since it is battery-electric, it produces no tailpipe emissions. They are designed for intra-
urban trips, which are fairly short between recharge opportunities. This fits them gracefully to the
capabilities of battery technologies that are presently available or likely to be available in the near future.
They are not designed for inter-city travel, for which different modes of transportation (such as mass
transit or personal automobiles) are maore appropriate.

Translate

4-wheel steering O-tumn

Figure 2-23: CityCar maneuverability - 4-wheel steering, O-turn, and translation
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The CityCar exploits the most maneuverable types of Robot Wheels, each able to turn up to 120
degrees. This gives the vehicles omni-directional capabilities to translate sideways, spin on a dime, and
engage in precise 4-wheel directional movements. Such nimble capabilities can prove useful in
congested urban environments. Additionally
as roads are populated with more and more
of these omni-directional CityCars (and other
uMEYV types), navigation can become more
fluid allowing them to effectively negotiate
for compact spaces.

The CityCar’s HMI utilizes a by-wire
dual joystick interface, which in conjunction
with localized motor wheels allows for drastic
design freedoms. Without the impeding
steering wheel, dashboard or drivetrain
mechanics located at the nose of the vehicle,
the CityCar is open to front entry and exit Figure 2-24: Drive-by-wire joysticks
capabilities.

To confront the problem of scarce and expensive urban real estate, the CityCar is able to fold up
to reduce its footprint by 40 percent (final folded footprint is only 60” by 60”). This folding maneuver
not only lets the vehicle occupy an ultra-compact space but permits dynamic front impact dampening
and easily allows the passengers to step right out onto the sidewalk as the vehicle conveniently places
you into a semi-standing position. When folded the CityCar is very compact and has an on-street
parking ratio of at least 3:1 compared to traditional automobiles. Initial designs estimate the CityCar to
be very lightweight, at around 1,000 Ibs.

Figure 2-25: Front entry and exit from CityCar onto curb
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CityCar Features

Figure 2-26: Core features of the CityCar
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2.6 CiITYCAR DEVELOPMENTS

Over the past five years, the CityCar has received its share of exposure; from multiple museum
installations in Cambridge, New York, Sidney and other locations worldwide, to media specials like Dean
of Invention (featuring the inventor of Segway and many other ventures Dean Kamen), the National
Science Foundation’s Green Revolution, and spots on CBS and CNN. Combined with companionable
mobility solutions (GreenWheel bicycle, and RoboScooter), the CityCar was a prominent featured
technology that helped capture a first place award in the 2009 Buckminster Fuller Challenge.*

§ 2@9 Winner - Suit-ai.ml:;le-Pe_uoml Mobility: Mobility-on-Demand Systems

3 g ke o ' MIT Media Lab

Figure 2-27: Buckminster Fuller Challenge 2009 winner

Soon after, the same vehicle design shared the cover with GM’s PUMA concept (eventually
named enV) on Reinventing the Automobile, a book that addressed future trends and technologies for
personal mobility in the future. Following the <
publicity successes of the digital designs,
renderings and animations of the vehicle concept,
efforts were dedicated to proving that such a
radical type of vehicle could actually be developed.
Therefore, a half-scale prototype was developed to
demonstrate all of the CityCar’s potential features.
After an abundance of developed material and the
complementary support of Mobility on Demand,
soon it was only a matter of time until the CityCar
concept caught the attention of the correct audience.

In 2010, the intrigue of the proper spectators led to an essential collaboration. Through collective
efforts with Basque manufacturers, a full-scale fully-functional CityCar, named “Hiriko,” was unveiled
towards the end of 2011 in Brussels.

Figure 2-28: Reinventing the Automobile & prototype

Figure 2-29: MIT team in Brussels during Hiriko CityCar debut

30 (Buckminster Fuller Institute, 2012)
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3 EVALUATION

Following the design, engineering, and publication of the main uMEV concept, CityCar, a
variety measures were used to validate the proposed personal mobility solution. Firstto
examine some of the more complex assemblies and functionality of the digital design, a
drivable and foldable functional half-scale prototype was developed. This construction
revealed a number of alterations that would need to be implemented in order to consider
future real-world applications. Soon after, a collaborative venture was formed with an
overseas supporter to industrialize the CityCar concept and develop production version
vehicles. The project “Hiriko” developed the concept vehicle with local supply manufacturers in
a modular vehicle and business architecture. The team, led by core MIT engineers, created a
fully operational vehicle maintaining all core CityCar features in a manner near mass-production
objectives. Specifications of the validated CityCar design were then analyzed within the context
of a shared mobility system (Mobility on Demand) to illustrate the compounding benefits of a
city tailored vehicle in such a personal mobility service. Last, feedback was gathered and
assessed from essential stakeholders in the production and consumption of CityCar (also known
as Hiriko) vehicles.
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3.1 THE HALF-SCALE PROTOTYPE

Throughout 2009 a half-scale prototype of the CityCar was developed. The prototype was not only an
exercise in design, but also a comprehensive study of functioning components. Whereas most smaller-
scale models focus on single aspects of a concept (usually its overall form), this half-scale CityCar
addressed all major components in their fullest possible detail = applying the closest fit proposed
materials, technology, subassemblies, and fasteners whenever possible.

Figure 3-1: Half-scale functional prototype of CityCar

The investigation of design details, the half-scale CityCar served as a platform to further examine the
interfaces between the modules, and as a guide to establish thorough module architecture for following
vehicle iterations.

The construction of the prototype also served as a case study for flexible and open development
processes by dividing module responsibilities between research assistants... Although at this stage it
was not be possible to fully emulate mass production scenarios, the process of outsourcing components
and engaging local suppliers provided insight on techniques in fabrication and the coordination
necessary to develop complex products.
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3.1.1 PROTOTYPE DEVELOPMENT

The first steps of the half-scale development involved
complete remodeling of the vehicle’s geometry in order to
adapt to common available materials and accessible tools.

Considering the available resources at the Media Lab,
building the prototype at half-scale significantly saved the
amount of material used since half-scale models only require
an eighth of material volume and the reduced scale also
saved time and development costs. A fully functioning half-
scale model of a traditional automobile would prove
irrational considering its highly complex mechanical
components, such as the internal combustion engine,
transmission, hydraulic systems, and other intricate
mechanisms. However in the case of the CityCar, the
localized drive components and fully electric platform result
in a highly simplified scalable architecture, which has an
order-of-magnitude less parts compared to a conventional
vehicle.

Some adjustments to the initial model included:

- The exoskeleton was reformed to accommodate the
fabrication of more planar components that once assembled
would collectively create a complex form

- The windshield and side panels were also reshaped in
order to use a single-curvature surface. This redesign
allowed a single half-sphere acrylic dome to be used for all
glazing surfaces.

- The kinematic model of the folding chassis was
adjusted to minimize the tilt angle of the rear powertrain axle
on which the rear storage and battery modules rest.

Figure 3-2: Development process of half-scale prototype (1 of 2)
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3.1.2 LESSONS LEARNED FROM PROTOTYPE

The half-scale prototype served as a base-line test to confirm that such a radical vehicle
architecture could function harmoniously. It also served as the first pass to further consider constraints
in design for manufacturing (DFM) processes. The following vehicle elements revealed some real world
constraints when transferring from the digital to physical realm.

Folding chassis implications
- Introduction of dual 4-bar linkage to maintain full drive operation when folded
- Clash elimination between rear compartment, main cabin, and chassis linkages
- Handling of load distribution throughout chassis

Vehicle Packaging
- Wheel sweep (“butterfly”) accommodations
- Battery and electronics compartmentalization
- In-hub motor and steering packaging

Sliding front door
- Continuous cross-section necessary for opening
- Parallel guide rail integrated into complex form of exoskeleton
- Position of division for front glazing to provide overlapping coverage of the front door once
open and to avoid line-of-sight obstructions.

Side Window operation
- Planar upper window for eased operability
- Side impact reinforcement (also adapts transition from curved side panel to planar window)
- Eased operation through pivot about single axis in front of vehicle
- Fully operational window along curve of exoskeleton jawbone

Table 3-1: Development process of half-scale prototype (2 of 2)
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3.2 INDUSTRIALIZATION OF THE CITYCAR

In 2010, a company named Denokinn became a Media Lab sponsor in order to industrialize the
CityCar concept. Denokinn is a business incubator for emerging projects and technologies in the Basque
region of Spain. The project became known as “Hiriko,” which is Basque for “city.” In order to best
facilitate the collaboration and knowledge transfer, the project was led by core MIT designers and
engineers who moved to Spain for over a year to work directly with local automotive supply
manufacturers. The design for manufacture process through Hiriko became a true litmus test for the
feasibility and viability of the CityCar
concept.

3.2.1 THE HIRIKO PROJECT

The modular strategy of the
CityCar was well embraced as automotive
suppliers local to Vitoria-Gasteiz each
engaged their resources to develop
particular modules of the vehicle. One of
the largest initial challenges was not only
establishing the specifications and
features that would be maintained in this
product version of the CityCar but also to
manage the roles and responsibilities of
each of the suppliers within Hiriko.
Especially since the vehicle architecture is
completely novel to the automobile
industry, there was no initial reference to Figure 3-3: Basque newspaper, El Correo, announces new joint venture
begin.

Hiriko was slated to be developed under a particular classification of vehicle in Europe, the
micro-vehicle or “heavy quadricycle.”*" This particular vehicle classification opened up major
automotive design hurdles as its main restrictions were weight (450 kg without batteries) and power
(15kW nominal max).

In addition to the core CityCar design and features, the complementary principles of Mobility on
Demand were also embraced. Maintaining this larger perspective on developing a vehicle not only for
efficient personal transit but also for a comprehensive system helped to preserve a focused vision. The
final Hiriko vehicle that premiered in Brussels in the fall of 2011 maintained all core features
championed by the CityCar. The Hiriko group continues to progress and expects to release a small run
of production vehicles in 2013.

Figure 3-4: CityCar Design to Industrialized Hiriko

= (European Commission, 2009)
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3.2.2 MODULAR ARCHITECTURE OF HIRIKO

The Hiriko project embraced a modular platform fairly equal to the UMEV proposal. As stated by
the new ventures website, www.hirio.com, the consortium of suppliers has taken on the following roles:
GUARDIAN, an enterprise dedicated to the production and transformation of glass, will be in charge of
developing the glass components for the vehicle.

MASER — MIC, an enterprise devoted to the development and manufacture of electronic and
mechatronic equipment for the automotive industry, will develop the vehicle's electronics.

FORGING PRODUCTS, an enterprise dedicated to developing forged pieces, will be in charge of
developing and manufacturing the vehicle's aluminum chassis.

TMA, an enterprise that offers comprehensive solutions for metallic construction, will be in charge of
developing the vehicle's structure and the front door.

SAPA PLACENCIA, an enterprise devoted to the design and manufacture of electric machinery and
mechanical transmission. SAPA will be in charge of the drive-by-wire system and the haptic steering
wheel.

BASQUE ROBOT WHEELS is a new enterprise that designs and manufactures modular and independent
driven and guided wheels for electric vehicles. B.R.W. is developing the vehicle's robotic wheels.
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While the division of responsibility amongst the core module manufacturers is not completely
isolated, each supplier was able to handle the majority of development independent from one another.
Suppliers such as Forging Products and TMA collaborate on the manufacturing of the folding chassis.
Figure 1-3 illustrates most of the major divisions between modules.

Figure 3-6: Hiriko exploded view of modules, by Marie Le Monnier - ETUD
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Figure 3-7: Evolution of Robot Wheels
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3.2.3 EVOLUTION OF THE ROBOT WHEEL

Throughout Hiriko project the
development of the Robot Wheel sparked much
debate on the best methods to achieve the core
functional requirements. Although the
fundamental concept of the Robot Wheel strives
to package all major drive components within the
corner space of the vehicle, the methods to do so
can vastly vary. Since there are multiple ways of
achieving the main functions with numerous
actuators, gearing and packaging options, the
solution space can rapidly multiply.

First the vehicle and Robot Wheel
geometry had to be further investigated to better
understand the resultant effects of each option on
the overall specifications. Meeting functional
requirements for both the drive and steering
motors became just as paramount as the modular
vehicle packaging. Also the Robot Wheel's effect
on energy consumption, reliability, safety,
manufacturability, and business strategies
weighed heavily on arriving at the best design
solution.



3.2.2.1 Challenges in Design Parameters

Although the fundamental characteristics and packaging explorations of the Robot Wheel have
been well established throughout the research of the Smart Cities and Changing Places groups at the
MIT Media Lab, further studies was needed to engineer their design and specifications for manufacture.
Calculations for each Robot Wheel motor performance characteristics (torque, speed, power, and duty-
cycle) for a particular vehicle weight and capacity, in this case a 450 kg micro-vehicle, needed to be
understood.

Drive Motor Specifications

The derivation of the Hiriko robot wheel specifications (Appendix 7.C) established a minimum
output torque of 136 Nm at the wheels. How that torque is achieved however can vary.

Torque and Speed vs. Degree of Incline for 800kg Vehicle @ 3.75kW/Wheel
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Figure 3-8: Torque and speed vs. incline for 800kg vehicle @3.75kW per wheel

Throughout the design investigations, two different approaches were explored when specifying the
drive motor and its subcomponents that would be necessary to reach the established functional
requirements. Choosing which type of motor to use, (1) a large “hub-type” motor with higher torque
capabilities at lower rotational speeds versus (2) a slimmer high-speed “cylindrical-type” motor with
lower torque accompanied by a gear reduction, resulted in a chief debate.
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Each option has its unique benefits and challenges. The hub-motor version keeps the assembly
relatively simple and fits well with the form factor of the wheel. However the weight requied to support
the larger magnets, coils, and rotor (which the rim directly connects) results in significant drawbacks in
heavier mass. Conversely when using a cylindrical commercial BLDC motor, savings in weight are traded
for an increase in parts and maintenance from the gear reduction, necessary for achieving the proper
torque and speeds.

Tire 175/60/R16

16" Rim (175 mm)

Vertical suspension, Casing,
& mount Module
Required Motor Specifications (Hub-type)
Peak Torque — 195 Nm

Continuous Torque — 136 Nm

Power (nominal) — 3.75 kW

Speed — 600 RPM

Max Size — 280 mm diameter, 100 mm width

Steering & suspension
bracket

Arm

Tire 175/65/R15

15" Rim (175 mm)

Electronic Brake [Vienna Engineeri
1:10 reduction gear box

Vertical suspension, Casing,
& mount Module

_ Steering &
suspension bracket
IBLDC [Cylindrical-type
\nﬂ

Figure 3-9: Assembly comparison between Robot Wheel architectures

Required Motor Specifications (Cylindrical-type)
Peak Torque — 20 Nm

Continuous Torque — 14 Nm

Power (nominal) — 3.75 kW

Speed — 6000 RPM

Gear ratio-10:1

Max Size — 100 mm diameter, 260 mm length

64



Steering Motor Specifications

Although the Robot Wheel can provides significant reductions in vehicle complexity and a
liberated platform upon which to design, the reduction of mechanical element does present new
complications unique to independent corner units. For example now that every drive function, such as
steering, is independently operated within the Robot Wheels, the vehicle can no longer benefit from the
shared reactionary forces that are distributed through the mechanically coupled tie rod and steering
rack assembly.

The turning front wheels of a vehicle
undergo complex and significant forces
throughout the duration of a trip. The contact
between the tire and road present substantial
a scrub friction that the wheels must
overcome to change direction. The scrub
radius, which is dependent upon the position
of the steering assembly’s king pin axis relative
to the center of the contact patch, creates a
force vector in the opposite direction of
propulsion. This force results in a moment
about the king pin which each Robot Wheel|
must independently manage.

These forces from the scrub radius are typically designed into the
behavior of traditional steering assemblies to provide stability benefits or
advantages to the driver when parking. Additionally, the net forces in the
traditional steering assembly are reduced since many of them are
counteracted between the left and right wheels of the vehicle. The
independent Robot Wheels as designed however do not share this
benefit; therefore, the scrub radius becomes an even more critical
parameter to tune in the overall design. Contact

To properly specify steering actuator components of the Robot patch
Wheel, the minimum necessary torque must first be calculated. e

zerosteering offset

Ts = Steering torque

x = steering of fset (Scrub radius) :

Fxn = Normal Force AN

P = pressure at contact patch I Y.
It
N

h NI
Calculating Minimum Steering Torque for a variable scrub radius T’é‘,lu

us = Coefficient of friction :
A = area of contact patch A
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Figure 3-10: Steering friction
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First, the steering torque (ts) at a given location of the contact patch can be calculated from the
frictional force (usFn) applied at distance from the center of rotation. Assuming the tire creates a
relatively round contact patch, the torque is leveraged over its radius, r. Therefore steering torque will
be calculated from the following equation:

Ts = 1TUsFn Equation 3-1

The normal force at the contact patch can then be defined as a uniform pressure over the area of the
contact patch:*

Fn = PA Equation 3-2

Therefore the steering torque equation changes to include the pressure across the contact patch and
the full radius about which the wheel turns (x + r). When the point of rotation resides in the center of
the contact patch, x = 0.

s = (x +1r)us PA Equation 3-3

At this point we can confirm that the necessary steering torque is a factor of scrub offset (x), the tire
width (2r), friction between the tire and road, and the vehicle weight that adds to the pressure (P)
across the contact patch. Therefore the Robot Wheel module will be at an advantage to minimize its
scrub offset and tire width. As torque varies across the area of the contact patch:

dts = (x +r)usP-dA Equation 3-4
in polar coordinates the derivative of the area equals:
dA=r-dr-df Equation 3-5
Therefore, when plugging in equation 3.5 into the previous equation 3.4:
drs = (x + r)usP -r-dr-df Equation 3-6

The integral of both the radius and angle must be taken resulting in the following double integral:

Ts = usP fozn f_Rfo (x+r)r-dr-do Equation 3-7

Finally this results the following equation for the steering torque as result of the scrub friction:

Ts = 2mus P (ﬁ + rz_x) Rt Equation 3-8
3 2

—R:+x0

Given a chosen tire width of 175mm (2R.) and a gross vehicle weight of 700 kg ((Fn/g)*4), the minimum
steering torque values can be calculated for various potential scrub radii, shown in figure 3.2.2 graph.

2 (Carvajal, 2009)
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Steering & Brake Torque vs. Scrub Radius
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Figure 3-11: Steering and brake torque vs. scrub radius (steering offset)

At minimum, 189Nm would be required by each steering
motor in the case where the center of the wheel’s rotation resides
in the center of the contact patch, Omm scrub radius. The value of
the required steering torque more than doubles once scrub radius
approaches 100mm. Therefore it becomes extremely important to
package the Robot Wheel components in a manner that minimizes
the scrub radius by keeping the steering axis, or “kingpin axis,”
central to the tire contact patch. Selecting the drive motor type
(hub or cylindrical) plays a large part in the final scrub radius length
since each motor’s form-factor heavily influences the packaging
options of the kingpin axis. The larger size of the hub-type motor
tends to conflict with the desired location of kingpin elements
while the cylindrical-type and its transmission can be more flexible
to accommodate desired packaging constraints.

Figure 3-12: Zero scrub radius

67

0.3

0.35




3.2.2.3 Iterative Developments of Hiriko Robot Wheel

MIT Initial Proposal Drive gear box

The initial Hiriko Robot Wheel proposal was (reduction)

designed to incorporate essential key features
previously addressed. It included an electronically
actuated disc caliper brake, a vertically positioned
cylindrical motor (which improves packaging,
allows for a level of decoupling from the road
impact, and provides scalability), a vertical rail
suspension with a through-shaft damper and a rigid
steering arm. This single arm maximizes modularity
and provides us an opportunity to house the ECU’s
on the arm local to the robot-wheel.
The orientation of the drive, brake, suspension and Drive motor and transmission
steering components allow for a high level of Figure 3-13: Initial MIT Robot Wheel proposal
scalability. The electronic brake has space to grow
without conflicting with other components. The drive motor power and torque can be increased by
lengthening the motor (it's diameter of course will be limited up to a point, but its length can be purely a
function of incorporated rim diameter). The scalability of the vertical suspension is similar to the drive
motor whereas this can also be increased with a larger diameter rim — still in both drive and suspension,
the tire/rim width does not change. Moreover, the steering component may be removed if the robot
wheel is only needed for propulsion and braking — in this scenario, space needed for storage or other
components may be maximized. With a zero scrub radius, this proposal proved to be the overall most
compact, but complex solution.

I

T

Suspension unit

Steering motor, arm,

~Motor
Supplier Initial Proposal

Early proposals from the initial prospective Robot Wheel
supplier embraced a completely different architecture.
Striving to incorporate an alternating-current
asynchronous hub motor, that had previously been
developed in-house, created packaging challenges for the
other supporting subsystems. As opposed to an external
rotor to attach the wheel, the motor contained an internal
rotor whose axial output resulted in additional assembly
depth. Therefore, no room remained to bundle steering
or suspension within the corner unit. Additionally the
proposed double-wishbone suspension solution required
three complex connection points — eliminating plug-and-
play capabilities. Although the proposal did offer
potential dynamic handling benefits, the relatively large
size of the suspension elements considerably encroached
upon the space of the battery compartment.

Belt

Figure 3-14: Initial supplier Robot Wheel proposal
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3.2.2.2 Satisfying Functional Requirements

The propulsion system of the Robot Wheel can utilize different types of motors — from cylindrical
shaped high-speed brushless direct current (BLDC) commercial motors, to specialty high-torque hub
motors. With several types of independent suspension options at disposal (MacPherson, wishbone,
trailing- and leading-arm), the configuration of subcomponents can take on many forms also. When
crossed with even more options for brakes and steering actuation, the net number of options quickly
escalates. The folloing image illustrates just some of the design options for Robot Wheels. Over a dozen
versions of Robot Wheel concepts have been developed either by the MIT Media Lab research group or
through collaborative projects, each with different tradeoffs.
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Figure 3-15: Robot Wheel matrix

Aside from optimizing the packaging and motor specifications of the Robot Wheel, considerations of the
module’s effect on the vehicle’s other functions must also be preserved. Therefore an evaluation matrix
was developed during the CityCar industrialization to ensure all core features and functional
requirements were met. The most promising designs A2, C3, C2, and B1 were assessed respectively.
The following establisehed CityCar core features from were used as a baseline guide for all evaluations:
1. Wheel Robots - In-Wheel electric motor module with embedded suspension, electronic
braking, and independent electronic steering system.
2; Front Egress - Frontal entry system that integrates front windshield, driver controls, and
accommodates easy ingress/egress for passengers.
3 Folding Chassis - An actuated folding mechanism connects the front passenger cabin with
rear storage module.
Drive-by-Wire - Vehicle control system built upon FlexRay and CAN bus technologies.
5. (Included characteristics) Communications with GPS integration in the city — Smart Interface
inside vehicle (not interlinked with points 1 thru 4). Plus sensing necessary for autonomy.

P
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Brief desciptions were generated within a matrix for the lead Robot Wheel designs that were up for
debate — analyzing each one’s benefits and drawbacks according to the following fucntional
requirements. Matrix Topics addressed design & packagmg, development & manufacturmg,
function/capabilities, and modularity -

The analysis highlighted some of the following
conclusions:

Compact suspension solutions would be critical to

accommodate the large rectangular battery packs.

Suppliers were most interested in owning and
controlling the propulsion motor technology

An additional connection plate was unlikely to be
used, so a suspension type that was inherently
simple in its connection would have to be used to
expedite module swapping.

Steering solutions were continually addressed last
in the design process of the Robot Wheels. This
misdirected focus typically resulted in incomplete
and incompatible proposals. [Steering integration
was the most difficult challenge.]

Ability to manufacture within the supplier’s
capacity quickly became more paramount than
reducing part count and simplifying the module.
Many compromises were accepted to enable
manufacturability.

The O-turn feature would require each wheel to
turn ~70-degrees — skid-steering would provide
inaccurate movement since it relies on slip
movements.

200 mm minimum suspension travel would be
required from the Robot Wheels

Although the simple elegance of the hub-type
motors is an attractive solution, there are
significant weight disadvantages that may be
unacceptable for a 450 kg micro-vehicle. (The
Hiriko vehicle was developed under the European
quadricycle®® classification which set particular
weight and power limits.)

1 (European Commission, 2009)

70

P

Figure 3-16: Robot Wheel analysis chart




The following chronologically
illustrates some of the major
design milestones of the Robot

Wheel during the Hiriko project:

Will Lark designs vertically
suspended Robot Wheel in
order to minimize scrub

radius and maintain compact
packaging.

Will Lark & Raul-
David Poblano
build and ship

Robot Wheel
prototype to
Spain to
demonstrate
general features.

Patrick Hasselt from
Epsilon/Hiriko designs vertical
suspension RW with Will Lark in
order to incorporate supplier’s

(CIE) motor technology

pL 8

Will Lark adjusts design of
vertical suspended Robot Wheel
to incorporate supplier’s (CIE)
motor technaloev.

Potential Hiriko
supplier (CIE)
proposes double-
wishbone Robot
Wheel that
utilizes their
hub-motor.
Design creates

packaging conflict

Will Lark, Eduardo Perez, David Cameron,
and Raul-David Poblano collaborate on
leading-trailing arm RW that decouples
steering suspension uses 2:connection points.

Will Lark works with
Eduardo Perez from
Epsilon/Hiriko to
develop dual-leading-
arm suspension
solution to reduce
packaging conflict and
accommodate hub-
motor from supplier.

Hiriko supplier,
SAPA, develops
prototype robot
wheels for testing
based on prior
leading-trailing
suspension solution

Figure 3-17: Development milestones of Robot Wheel during Hiriko project
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Final Robot Wheel Developed

Through further understanding of all core functional requirements of both the Robot Wheel and
its surrounding modules of Hiriko, a unique solution was developed to capture the most essential
benefits previously established.

Figure 3-18: Final Robot Wheel developed

The Leading/Trailing arm type of Robot Wheel demonstrated all of the following potential advantages:

- Plug-and-play: single primary mechanical connection with suspension strut (2 connection points)
- No need for tuning or adjustment of steering or suspension (once module is optimized)

- Integration of commercial half-rack-and-pinion — robust and reliable steering assembly

- Outward rotor hub motor provides inner space for central kingpin (reduce steering motor loads)
- Scrub offset equaled 20 mm which required 280 Nm of steering torque

- Packaging compatible for safety redundancy of mechanical drum brake

- Sufficient space for front and rear accessible battery modules

- Use of commercial suspension coil-over

- Compatibility to commercial steel wheel

- Alldry components reduce maintenance and need for additional auxiliary subsystems

- Repeatable swing arm: front right & rear left are same and can be reassembled for mirror side
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Initial 4-bar folding
chassis by Will Lark

PDual 4bar folding

chassis prototyped
. by Will Lark & Nick
Pennycooke

Refined digital
chassis design by
Nick Pennycooke

Final chassis by
Hiriko engineers
using prior designs

Figure 3-19: Folding chassis development

3.2.4 FOLDING CHASSIS IMPLEMENTATION

Previous folding chassis concepts for the
CityCar have been developed at MIT, and other
commercial concept concepts have addressed the
issue of vehicle folding for reduced space while
parking (reference: Renault Zoom 1992). However,
most of these concepts exploit a single pivot arm to
lift and tilt the body of the vehicle. This method, while
perceived as simple, is by nature very limited and
poses greater technical difficulties in execution. In
order to achieve the wheelbase reductions garnered
by the proposed invention, a long single pivoting arm
is needed, which will lift the majority of the vehicle’s
mass up significantly, and restrict chassis packaging
and steering maneuverability. The dual 4-bar linkage
system instead decouples the rear cabin onto the rear
4-bar mechanism which conserves energy since it
translates many of the heavy load components, all
while maintaining the relative kingpin (wheel steering
axis) position - giving the vehicle total maneuvering
capabilities during any state of its fold.

Also early empirical experiments of scaled
models show that the distribution of weight between
the front and rear cabin allows the folding mechanism
to behave as an energy absorbing component for
front and rear impacts/crashes. Although more
thorough and extensive testing is required to prove
commercial viability, preliminary testing shows that
exploiting this type of folding chassis in a front or rear
impact scenario may be able to reduce the rate of the
deceleration in the passenger cabin. Particular
linkages may also be strategically designed to
compress or fail, acting as dynamic crumple zones,
thus reducing crash force transmission to the
passenger cabin.



The folding chassis of the Hiriko reinforced that such a feature would sufficiently reduce the
footprint of the vehicle without compromising the mission-critical components. The kinematic model of
the chassis was adjusted to accommodate a repeatable powertrain axle assembly. This mirrored axle
assembly allowed for savings in development costs; however this adjustment to the geometry resulted
in consequences in its space savings. With each powertrain assembly 750 mm in length and 170 mm of
front and rear buffer space, the 2,630 mm vehicle length was only able to shorten to 2,000mm (15% less
than the initial CityCar chassis).

Folding Chassis
CityCar concept design Hiriko commercial prototype
Space Savings 40% 25%
Manufacturi
SRS Ladder frame Tubular space frame
method
Dual 4-b Primary rear powertrain . .
u,a ar . W . P Mirrored powertrain axle
linkage with rotating front axle
Actuation 2 linear actuators 2 linear actuators
Fold time 5 seconds 20 seconds

Table 3-2: Folding chassis comparison

The folding feature is a core element of the Hiriko vehicle. Although it also contributes to the
eased front entry and exit, improving the percentage of footprint reduction will be essential to justifying
its complexity. Reducing the length of each battery module is one method to compressing the vehicle
even more. One other aspect that can benefit from design improvements is the actuation of folding.
The current Hiriko linear actuator each require up to 10kN of force to initiate the fold, costing over
$1000 for suitable linear actuators. However passive tension springs could drastically reduce the load
requirements of each of the actuators in a similar manner that a garage door spring counterbalances the
door’s weight.
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Joystick
driver
interface
designed by
Will Lark

Driving simulator hardware designed
and built by Will Lark and UROPs

Joystick test

conducted

by Hiriko

L4

Electric wheel
by SAPA on
prototype

Figure 3-20: By-wire driver interface development

3.2.5 ELECTRONIC DRIVER INTERFACE

Since the CityCar is a full drive by-wire
vehicle (throttle, brake, and steering), the human
machine interface (HMI) had to also be developed
since a traditional mechanical rack-and-pinion wheel
would serve incompatible. The initial CityCar design
incorporated a dual-joystick driver interface in which
the operator would simply press forward, backwards,
left and right to navigate the vehicle. The interface
also opens up much of the space within the
passenger cabin, allowing a relatively micro sized
vehicle to feel much larger (no steering wheel,
steering shaft, or dashboard). The joysticks that
frame the driver’s seat also ease front entry and exit.
The minimal controllers create a more seamless
transition to eventual automated driver’s assist and
complete autonomous systems.

This interface was tested by means of a
museum installation in which visitors could interact
with a driving simulator to get a feel of how a
potentially novel controller would behave. Both in
concept and in the driving simulator, the left and
right joysticks moved in unison, allowing the driver to
control the vehicle at any time with either hand.
From observing dozens of volunteered visitors that
tied the dual joystick simulator, it became clear that
a similar type of controller would be suitable for a
slow speed city vehicle. Young teenagers adapted to
the interface the quickest as middle-aged
participants were more apprehensive. Surprisingly,
more elderly participants were fairly comfortable
with the unique controllers as it required reasonably
little dexterity.

During the design phases of Hiriko different
studies were conducted to test the feasibility of a
joystick-type controller. Therefore driver tests and
surveys were conducted on a retro-fitted automobile
that incorporated a small joystick (5” in length) in the
center of the console used for disabled drivers. The
left and right steering were mapped normally to the
left and right tilting of the joystick; whereas the
throttle and brake were inverted to ensure that
forward-generated g-forces when braking only
reinforce the braking motion and do not induce
acceleration. With the throttle and steering
oppositely mapped, controlling a full sized
automobile with a mini-sized joystick proved
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confusing and intimidating. Most participants in the study felt fairly uncomfortable with the interface.
Afterwards, the driving instructor did inform that most users that become trained to drive this vehicle
require around 50 hours before they can become competent and comfortable. Ironically, similar to the
museum simulator, the best driver from the 30+ participants on the test track was a 12-year-old who
obviously had never driven an automobile before, but was very familiar with video game controllers.

Figure 3-21: Hiriko human machine interface

Electric wheel design by
Will Lark and Marie Le
Monnier (ETUD)

Built by SAPA

The final driver interface
that was on Hiriko utilized
wheel-like HMI. The wheel
incorporated both a thumb
activated throttle paddle and a
brake paddle on the back of the
wheel activated by the drivers
fingers. The wheel turns only
90-degreed in each direction,
compared to a traditional
steering wheel that offers three
to four times more rotation.

The limited angle of rotation
requires a more precise input
from the driver since the smaller
angle range must be mapped
onto the same driving wheel
movement. Additionally,
placing a wheel in front of the
driver now created an
obstruction of the front entry
and exit. A pivoting cantilevered

arm was integrated into the middle console to move the controller in and out of position as needed.

As developers performed driving test with this new Hiriko interface, a couple of key points were learned:
Small steering angles were sufficient for directional control in open environment. This interface

would need to be tested on more narrow street/paths.

Lag in steering system requires driver to project and predict trajectory.
Lack of force-feedback proved uncomfortable and unsettling for vehicle control.
The throttle and brake by hand is suitable for short distances; however, fatigue could set in after

about 15 miles.
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Electronic Driver Interface

CityCar

Hiriko

Conclusions

Full electric by-wire

Full electric by-wire

1. Feasible for commercial
applications

2. Micro-vehicle category provides
more leniency

3. Redundant system in need of
development

1. Wheel more intuitive than
joysticks

2. steering wheel pivot arm
complicates design of interior

3. steering wheel and arm create

linconvenient obstruction for entry

and exit

4. joysticks can be easily adapted

|by too expensive and requires

more precise input from driver

1. Electronic interface (joystick or
wheel) needs some type of force

Core
latform : . :
P No mechanical connections No mechanical connections
Dual joystick Haptic Wheel
Human
machine
interface
Open interior Pivoting cantilever arm
Driver simulator di d for MIT L =
Eoeiopr Electronic wheel on Hiriko
museum
1. Fairly intuitive 1. Small steering angles are
2. Youth: simple for to learn sufficient. '
3. Middle-age: more apprehensive 2. Lag in steering system
4. Elderly: simple to use because of eased |requires driver to project and
dexterity predict trajectory.
Driver Retro-fitted automobile with single
feedback central joystick for disabled drivers 3. Lack of force-feedback

1. Similar findings from museum simulator
(easily adapted by young drivers)

Juncomfortable and odd to

control.

4. Throttle and brake by hand

2. Inverting steering and throttle make
vehicle difficult to drive
3. Small joystick requires too much

precision for full size automobile

is suitable for short distances.
Fatigue could set in after 15
miles.

feedback

2. Cruise control feature could
assist in reducing hand fatigue
from throttle and brake paddles

3. Increasing the steering angle
from only 90-degrees clockwise
and 90-degrees counterclockwise
to 120-degrees in each direction
could improve steering precision

Table 3-3: Electronic driver interface comparisons
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3.2.6 FRONT ENTRY SOLUTION

In an effort to reduce the cost of the Hiriko vehicle, the front door utilized a single upper pivot
to rotate it upwards in a similar fashion to an SUV’s tailgate. Gas dampers were used to assist in the
lifting of the door. However with the large size of the door, this solution results in considerable

consequences of weight and size.

Figure 3-22: Front entry development

Even though the folding chassis reduces the size of the vehicle, the door requires over 800
additional millimeters of space in front of it. This can cause a conflict with elements on the sidewalk
such as trees, parking meters, mailboxes, or other objects within the city. The single pivot door also
creates an awkwardly large sweep that the occupant must back up from when entering the vehicle.
Closing the door once in the vehicle becomes even more difficult since passengers must stretch out to

reach the raised door.

Front Entry Solution

Bi-fald
'pivot

Advantage Drawbacks
Most compact. Requires uniform curve
0 mm opening sweep. (consistent guide rail).
Most simple. g Heavy.
Large opening sweep - 825 mm
Requires most room in front.
Robust. Most awkward - difficult to open from

outside and inside the vehicle.

Second most compact solution.
300 mm opening sweep.

Single door panel.

Laterally less stable.

Awkward path of movement for users.

Similar robustness as single-pivot
solution.
Comparable door sweep as 4-bar
linkage solution.

300 mm opening sweep.

Split in door requires additional seal.

Table 3-4: Front entry solution
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3.3 STAKEHOLDER FEEDBACK

3.3.1 AUTOMOTIVE EXPERT INTERVIEWS
Following the CityCar developments — designs, prototypes, and Hiriko — multiple senior
automotive experts were interviewed in order to gain qualitative feedback concerning various aspects of
the vehicle. All interviewees have over 30 years of experience working directly for American automobile
original equipment manufacturers. Each participant was informed that their identities would remain

anonymous in order to maintain frank and open discussions for the purpose of gaining constructive
feedback. Each interview lasted roughly one hour; therefore key quotes were extracted for the purpose
of evaluation. A more comprehensive version of the discussions can be found in appendix 7.K.

3.3.1.1 Industrial opportunities for CityCar

Most of the automotive interviewees share the belief that we are approaching a time where
alternative modes of personal transit are needed in overcrowded cities worldwide. Their perspectives
do vary however on how urgent the need will impact the fundamental technologies within the
automobile. While some believe that supporting markets will mature enough to proliferate the amount
of fully electric vehicles over the next five years, others pragmatically expect incremental shifts over the
next 10 to 15 years.

Topic

Feedback Summary

Quotes

Condusions

Unique Hiriko
business model

Potential exists for small
companies to break ground
in electric vehicles.
Recommends approach
similar to consumer
electronics industry.

*Those models (small EV companies like Tesla and Fisker) are becoming more
feasible and possible.”

"This initiative in the Basque region is pretty interesting to see how it plays out
_.because if it does work out to be safe robust refiable system that they can
actually deploy it then that removes some of the excuses to why you shouldn't do

i that way.”

“The main theme was maintained throughout the project. ..The concept was
faithfully done in the Basque region. | thought they really did a great job.”

re are opportunities for new business models in the electric
vehicle sector. Just as most new or disruptive technologies,
smaller newer companies have the flexibility to assume the risks
and can prove to be a real advantage if they can be first to
market and own the new domain.

Established industries have
less incentive to risk
resources on disruptive
technologies.

“They (OEMs) don’t handle it (disruptive technologies) well. ..The guy that’s
going to do the best, is the guy that’s desperate. The guy on top isn't going to risk
it. And it’s good form. #t’s true, if you're the leading manufacturer _.what is the
imotivation to gambie when you're on top?”

The newer business who has less to lose will be at an advantage
if the development of CityCar/Hiriko's modules is executed
properly.

c
g Disruptive
= Technologies
=
g found in CityCar
E
e
=
=
T
=
o
4
-
Alternative

maobility solutions

CityCar features are
appropnate for cities, just
may be a longer time to see
them in effect. Change
happens slow in automotive
industry.

“But in terms of working inside of a city center like the MIT car — the folding, the
grid, being able to get into the car, being able to mowve to your individual spots — |
think those things will happen — as you know in Europe there already areas that
you can’t bring your car into the ity center _butit's still going to take a long
time”

The technologies in the CityCar have real potential for success
particularly in crowded cities in which their current modes of

“Finding creative solutions to handle personal requirements within the city | think
you know- the vehicle that was developed by MIT does a great job at that [with]
the stacking, the charging, and contributing back to the grid..."

transit are proving unsustainable. Although unique, each of the
CityCar features are feasible and if properly developed, viable.
However, making a significant impact in the automotive sector is
extrememly difficult. Because of long established supply chains

“Now from a transportation standpoint, if you're talking about urban areas, there
are going to be more constraints on cars and parking and road pricing. ..o
twenty years out there are range of scenarios, one of those being peopie are
going to be doing more car sharing, pay-per-use type thing; but one has to figure
(out what are the inflection points to do that.”

and infr , changes will only be seen slowly and
incrementally. Fundamental radial changes will only come from
newer start-ups who define their own processes.

Table 3-5: Automotive feedback - Industrial opportunities

Most do agree that there are currently strong opportunities, now more than ever, for new business
models in the electric vehicle sector. But just as with most new and potentially disruptive innovations, such a
venture will likely be taken on by a new player to the market — such radical vehicles will not come straight
from the automotive sector. If an enterprise can master particular technologies for future electric vehicles —
such as the Robot Wheels, by-wire platform, or methods for micro-footprints — they will be at a significant
advantage when larger markets are ready to embrace them, such as growing cities in China. Larger
manufacturing markets overseas are ramping up their competencies within the electric vehicle sector. The
aggressive securing of battery technologies by multiple Chinese companies demonstrates this fores:ght

= (Ramsey, 2012)
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Similar opportunities for technology buy-outs can become present for electric vehicle propulsion systems and
other equipment supporting urban vehicles.

Participants believe that the core technologies within the CityCar/Hiriko, such as the Robot Wheels,
by-wire platform, and micro-footprint will eventually make their way to the mainstream market, but as
before, it may take a substantial amount of time to do so.

Key Points from interviewees concerning industrial opportunities
- CityCar’s platform architecture can be viable more so for a new small business as it is lower risk and
satisfies niche needs in crowded cities. .
- CityCar’s disruptive technologies can be at an advantage for small EV market, but it will be difficult to
gain significant shares of automotive market which has well established supply chain
- More time will be needed to observe the successes of small EV companies like Tesla and Fisker
before fundamental transformations trickle to the automotive sector

3.3.1.2 Exploiting Opportunities Granted from Modularity

Discussing the potential opportunities that could come from the vehicle’s high level of modularity
unveiled more benefits internal to the manufacturer than the individual customer. Assemble-to-order
vehicles however can be very valuable to larger customers, such as fleet operators for shared mobility
services, as roughly two-thirds of participants expressed practical value in the ability to customize their
vehicle features (appendix 7.M). Single end users are less likely to take advantage of the combinatorial
options. The business advantages perceptible to customers will instead come through the form of electronic
personalization - being able to customize to behavior and integration of the vehicle to each driver.

The modular core electric backbone allows the uMEV vehicles such as the CityCar to achieve a high
level of platform flexibility. However, there are still substantial risks involved in substituting mechanical
components for all electronic ones. Multiple redundancies must be incorporated and fail-tolerant
countermeasures need to be employed to ensure at least the same, if not better, reliability is achieved than
today's traditional automobiles. It may just be a matter of time before the replacement of mechanical
systems is more commonplace since they are increasingly present in many complex systems, such as
aeronautics. The success of autonomous drive systems may be a key technology needed to proliferate by-
wire vehicle systems. Done successfully, autonomous navigation will reduce the error from the human
element and its need for electro-mechanical actuation will further reinforce the reduction of mechanical
components.

One of the key benefits of the uMEV vehicle architecture, and modular products in general, is the
accelerated parallel development. Clear boundaries between subsystems allow different modules to be
worked on concurrently. As witnessed throughout the Hiriko project, the all-electric modular architecture
did reduce necessary interactions between the suppliers. Suppliers were able to execute design and
engineering relatively independent of each other, only requiring the occasional update of shared
specifications where the modules would intersect.
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Topic Feedback Summary Quotes Conclusions
1Mvouhmw,il’sﬂceevduﬂm-m:wmﬁm.mdmmnl
selection follows. If you don't, it’s like the Model-T issue. Ford ran [the Modei-T)
willd because everyone was buying it, but after a while people were like that's not
what | want because these aiternatives are better. _there was like an 18 month |1, inivial benefit of are likely to be empioy
mmmmmm«nmmnmwnmm' behind the scenes in the manufacturing and integration
of the vehicle. The business advantage perceptibie to
— of “_however the electrification aspect; some of the designs that you guys have wﬂmwmfmym
& | Benefits | modularity for (1) cost done are actually compelling because it’s like a whole dlip - the pr ¥ P - being able to customize 1o behavior and
of _ and (2) muwnﬂmmmwmmmumm integration of the vehicle with each driver. Exploiting
y : i those are interchangeable comers so that's good. _which is dramatically modularity to offer assemble-to-order vehicles may not be
different than an internal combustion engine 5o there could be some savings L as mitially " A to-order
from that standpoint.” vehicles can be very valuable 1o fleet operators for shared
obility services (as roughly two-thirds of participants expressed)
“Much more customization. The days of just picking a car from these nine practical value in the ability 1o customize their vehicle features).
mm-lnnmmsmmmmmmmmsmwm
you can have for your car, each one cost you 52/year. Which ones do you want?
g Iﬁﬁwmmmmiuwmmmm,imm
you're going 1o see it reconfigurable.”
“it's my opinion and e that the electri of al lot of these
traditional mechanical elements is actually in the longer run lower cost — inftialty | There are still i & d in substituting
iMhimﬁmm“mﬁNMW-ﬁehCﬂm mechanical components for all electronics one. Multiple
Electrification does have the | OF Consumer eleCIronics industry _the analogy is similar, not exact, but similar. redundancies must be incorporated and fail-tolerant
potential to reduce cost but _They might be some players that say I will own the space around wheel roborts | COUTE es need to be 10 ensure at lezst the
Elecrification & |you have 1o find other ,or whatever it is,” and they get the cost down and the industry to adapt it same, if not better, refisbility than today's traditional
Z | by-wire systems |compelling motivations, like perhaps and then it becomes less of an impediment.” mmmnmwnm
3 tay he e e o
g fety risks. just be a matter of time before their replacement of mechanical
“You're not just going To see it just because. _ Now Wth by-wire: unless s more The success of autonomous
z you're going 10 get Into Zutonomous vehicle systems where the car can drive drive systems may be the technological inflection point needed
i ftself, now The motiation for by-wire becomes much greater. _ Uniess it's berter |10 Proliferate by-wire venicie systems.
Pl or more reliable, why would you do it?”
“If you modularize things you can speed up Tion. _for the
supplier responsible modules showing up at the plant — the whoie instrument The Hiriko project reinforced some of the feedback from the
panel cockpit or the whoie propuision system for example.” ive experts - it is very ¢ ing to change approaches.
mm::ﬂnmm and pr manufacturers. However, the
Chailenge of frunI! Sodarization must = _the biggest issue is the legacy issues around [the modules] - supplier new p of the CityCar, enabled the
L i - agr , labor unions _ and then how do you design the mterfaces. collaborative efforts to start from a dean siate, and the all
wverification, and |: e slectric modular architecture did reduce necessary interacions
liability 3 with how it gets = _as long as it perfonms 10 a prescribed specification I'm not sure people care the Hiriko were able 1D execute
s where it comes from  The most critical part of a car is integration.” design and engineer of each other,
ing ocrasional update of shared specifications
Tlom:mﬁw’smlu]wbhﬂsie,m-m' all the
y, and how 10 establish, nurture and promote the brand™
ﬁwmomsmwdmmmwwhwMNM&deWWRMM
contributions™ and dozens of players are involved most compiex products. The
it Hiriko project begins 1o hint at potential open development in
only "u‘; -"—‘,ilmmmﬂmﬂ!ﬁ:?ﬁumi‘wt
Expanding the | panels) are built in house mo: 5 S — .‘::
Supplier's Role |anymore - suppliers build |- the vertical integration has continued to become more and mare out | i
More hori " N egr n_mmmﬂmnmnd
e‘mmlr; and horizontal and certamily the future | think is more C g will remain crucial in systems where
integratin. where a number of players have a commi andi safetyis Therefore the role of the integrator, be it
into the final product.” an OEM or its equivalent in the case of Hiriko, will always be
necessary even in the most open technologies.

Table 3-6: Automotive feedback - exploiting modularity

As we see an era where manufacturing is global and product development is more horizontal than
ever, the Hiriko project begins to hint at potential open development strategies. A module supplier has a
platform at their disposal to innovate a variety of solutions that are compatible with the interface and overall
functional requirements. Still, an essential integrator must verify all system functions and communications to
ensure robust reliability. Therefore the role of the integrator, be it an OEM or its equivalent (in this case of
Hiriko) will always be necessary even in the most open technologies.

Key Points from interviewees on modularity

CityCar’s modular platform can reduce development costs
Semi-open vehicle platform enables suppliers or core module manufacturers to initiate innovation
All electric platform will reduce costs over time but must be made reliable

Autonomous driving technologies may be an assisting key technology for future commercial
development of by-wire systems
Modular uMEV can speed up production and reduce development costs, and increase contribution
from supplier; however, integrators must be careful about legacy issues that result from modules
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3.3.1.3 Expanding the Role of the Supplying Manufacturer

It was stated best that interactions between original equipment manufacturers and their
suppliers are “hostile at least and downright war at best.” The last section of the interviews focused on
improving the relationships between both parties by finding opportunities that could be found in the
uMEYV CityCar modular platform. One of the key motivations behind the CityCar and Hiriko projects was
to enable bottom-up innovation — allowing suppliers to initiate new technologies in a relatively more

open manner.

Topic Feedback Summary Quotes Conclusions

e

‘OEM-Supplier F— “1¢'s hostile at least and downright war at best” |Mode| must be reexamined to keep local manufacturing of high-

Relatlonships ual oducts.
§ “..Alko how do you balance the profit sharing If the supplier is taking on more
g responsibility” In order for suppliers to change from their traditional roles and
& Modular ownership requires become proactive module manufacturers, they will have to
g Profit Sharing  |business model equity based | “The only way that you can have a fully integrated supplier is if the amount of become d holders. Module must be

lon contribution money that the supplier get is a combination personal earning of his p and |praperly in order to on the behalf of the
-; the vehicle profit. If he doesn"t have a stick on both of those games, he's only CityCar.
g going to play in the game he’s got money in.”
.E “_..in fact depending on the financial climate that OEMs and supplier will be
; working on in the future and how much more responsibility that the supplier Suppliers are at the ground level of most technologies and well
B takes | think that we'll see more innovation coming from the suppliers.” equipped to lead new innovations. However their priorities
A Given the proper focus refnun:zs on driving vf:lume and mamhmfng their already
‘g e mronment. fonovation i | oA s ke § , ne des atthe razor-thin profit margins. Given the right incentives, whether it
® Supplier Driven s mn;le P, e’ve done things like integrated suppliers at ign phase, be (1) a percentage of unit profits, (2) greater amount of
£ I engineering phase, and at the build & assembly phase we’ve run those trials. And Y. or even (3) participation in the
E :::om up in the automaotive Volkswagen has also done similar tests. _it's fenbh On.- Inwer volume it might design and development process of the vehicle, R&D efforts may
€ or be a safer lower risk way to go. And that's why this initiative in the Basque region |p . ool oo L Combining all three incentives
2 is pretty interesting to see how it plays out. _because if it does work outatthat | .. 14 croate the best lab environment for new module
£ level where the stakeholders are getting their value capture it a robust reliable fnolog
=3 system that they can deploy, then that removes some of the excuses that have
been thrown out to why you shouldn’t do it that way.”

Table 3-7: Automotive feedback - Expanding the supplier's role

In many cases the suppliers are more than competent to lead the innovative efforts as they are
on the ground level of most technologies and well equipped to lead new advances in vehicle
components. However because of their relatively less stable position in the automotive sector and
razor-thin profit margins, the overwhelming majority of their resources focus on driving volume and
maintaining the slim revenues. Some incentives to encourage and justify larger R&D efforts could
include: a percentage of unit profits, greater amount of subcomponent responsibility, or even
participation in the design and development process of the vehicle. Moreover, combining all three
incentives could create a more ideal scenario for a test lab environment of new CityCar module

technologies.

Key Points from interviewees on supplier’s role

Automotive suppliers are struggling to survive even more so than OEMs with slim profit margins
In order for suppliers to change from their traditional roles and become proactive module

manufacturers, they will have to become invested stakeholders.

CityCar.
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Module developers must be properly incentivized in order to innovate on the behalf of the




3.3.1.4 Key Concluding Points

- Although opinions are mixed on the perspective of rate of emergence, electric vehicles will continue to
proliferate. Companies that master the key technologies such as the Robot Wheel (or similar modules)
will be at a substantial advantage.

- Most key benefits from CityCar’s modular platform can be advantageous to Hiriko’s business model.
Still developers will have to be very attentive to integration and validation. Also, embracing to rigorous
a standard can lead to binding legacy issues down the road.

- End users will be less concerned or even interested in the flexibility of the modular platform.
Manufacturers can leverage this feature to provide custom fleet vehicles to larger service providers.
Modules are unlikely to be exchanged during the lifecycle of the vehicle for customization purposes.
Servicing however can still prove beneficial.
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3.3.2 INPUT FROM MODULE MIANUFACTURER

Following the development of the CityCar concept, Hiriko, the core Basque engineers from each
of the module developers were asked to participate in an online survey. The twenty questions
addressed potential benefits of modularity, opportunities for customization, prospects for leveraging
and expanding their core competencies, and details on their perspective modules. The survey was
offered in both English and Spanish (Castellano).

Concerning the features of the CityCar, Hiriko manufacturers had mixed perspectives on the
viability of each. The core features of folding and maneuverability from the robotic wheels are generally
viewed positively. Three-fourths of the Hiriko manufacturers do believe that the folding chassis is a
business benefit; however, only one-third of those same respondents feel that it is an essential feature.
The remaining quarter believe there is little to unfavorable impact on the vehicle. As far as the high
level of maneuverability of the robot wheels (O-turn, tight turning radius, and 4-wheel steering),
manufacturers unanimously agree that it is a beneficial feature. Nevertheless, 37% do believe that the
benefit is marginal. The front entry of the vehicle holds similar opinion to the robot wheel
maneuverability — all agree that it is a net benefit, but a little over a third of the manufacturers find the
benefit marginal. Lastly, while over 62% of the module developers believe that the rear module adds
value for customization, the remaining proportion believes there will be little to no impact from this
module.

IS g Fssential, core feature of business
IEESSSSSSSNSSNNS W Beneficial, provides valuable impact
s = Somewhat helpful, adds marginal value

®m Neutral, feature has no net impact

m Unfavorable, somewhat problematic
Impractical, unfeasibly complex
Detrimental, destructive obstacles to business

Folding Chassis Front Ingress/Egress
Please rate the value of the
following CityCar (Hiriko)
features

M Essential, core feature of business
NN m Beneficial, provides valuable impact
 m Somewhat helpful, adds marginal value
s m Neutral, feature has no net impact

® Unfavorable, somewhat problematic
Impractical, unfeasibly complex

» Detrimental, destructive obstacles to business
Maneuverability

of Robot Wheel

Custom Rear Utility

Figure 3-23: Module manufacturer survey feedback - CityCar features

Most manufacturer suppliers believe there are strong opportunities to customize their modules,
especially the performance characteristics of the robot wheel and design aesthetics of the surfaces. This
is especially important for most end users, as senior automobile designers will reinforce, that end users
maintain an emotional attachment to the look and performance, or “feel,” of an automobile. System
control developers do see opportunities in after-market services that may be deployed to their modules.
As control systems are software based, there are many opportunities to provide applications or “apps”
to supplement their units. Using the vehicle as a platform for customized applications is an attractive
approach as the vehicle becomes more and more electronic and mechanically flexible.



Does the decoupled
(modular) vehicle platform
liberate design and
manufacturing decisions?

Are you likely to propose
changes, improvements, or
variation to your module, or
wait until it is requested?

Compared to your previous
supplier roles developing other
automobile components, does
your role now within Hiriko
permit you to be more
empowered in module
development?

The modules of the
Hiriko platform allow us
to create a variety of
vehicles from most of
the same components.

Incorporating folding into the
CityCar to reduce its footprint
by 40% and enable a 3:1 street
parking ratio can be worth the
added engineering complexity.

Hiriko’s modularity
will expedite future
versions of this
vehicle.

®m Completely liberated, my module can be redesigned fully independent of
other systems.
N = Greatly liberated, most of my module can be reconfigured independently,
yet requires occasional check-in with other system teams.

I = Fairly liberated, some of my module can be altered, but need to consult to

other system teams first.
I = Barely liberated, any alteration to my module requires redesign or
adjustment from other team and surrounding components.
I Mo liberation, any module alteration requires redesign of all surrounding
components and integration strategy must be revisited.

—Il will definitely initiate variations within my module when | believe it offers
business opportunities.

_ ® | might initiate variations within my module if an opportunity arrives; |
will recommend it to the Hiriko consortium.

B = | am unlikely to initiate module variation; | may suggest it to the Hiriko
consortium.

I will only use variation within my module if requested by the Hiriko
consortium.

M Yes, | have total control of my module.

s, § Much more than before, | have a strong influence on how and what gets
developed.
Il " Somewhat empowered, | play a larger part in the decisions of my module.

I v Little empowerment, the influence I have has improved marginally
compared to before,
No change, my role in Hiriko is identical to traditional supplier-
manufacturer relationships.

I = Strongly agree, modules can easily be reconfigured for vehicle variety.

N = somewhat agree, the modules of Hiriko can be utilized for a feature
variations.
B = Neither agree, nor disagree — there is no change in product variety

provided by the Hiriko modules.
= Somewhat disagree, the Hiriko modules complicate product variety.

Strongly disagree; the Hiriko modules completely inhibit product variety.

I Strongly agree
NS w Somewhat agree
® Neither agree nor disagree
B 5 Somewhat disagree
I . Strongly disagree

I = Yes, because the systems are separate, | will be able to design the next
modules or vehicles faster.
[N w Perhaps, with the separate systems the next designs may happen
quicker.
® Unlikely, the development time may only be marginally faster.

I No, other versions will take just as long as before.

Figure 3-24: Module manufacturer survey feedback - chief questions
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In general, most module providers believe there are opportunities in servicing their modules
once they are in use. Nevertheless, they have mixed perspectives on the lifecycle management of their
modules. While those involved in the robot wheel, chassis, and surfaces believe they can continue
involvement throughout the lifespan of their modules, those responsible for energy management and
control systems do not see the need for further interaction once the vehicle is assembled. This response
is logical, considering control standards and energy platforms must remain robust, reliable and do not
require alterations within the vehicle. Additionally, the electronics control backbone is not subject to
the same wear and tear of traditional mechanical elements that require routine maintenance. Once
electronic protocols are modified, these improvements are usually implemented in the next version or
model of a vehicle.

BE = Strongly agree NN w Strongly agree
NN = Somewhat agree I w Somewhat agree
Hiriko’s platform presents BE = Neither agree nor disag W m Neither agree nor disagree
opportunities to expand B = Somewhat disagree ® Somewhat disagree
business in the following Strongly disagree Strongly disagree
capacities:
Servicing Customization
NN w Strongly agree mmmm W Strongly agree
NN w Somewhat agree I ® Somewhat agree
B g Neither agree nor disagr mmmm = Neither agree nor disagree
B » Somewhat disagree s ™ Somewhat disagree
Strongly disagree = Strongly disagree
After-Market Life-Cycle Management

Figure 3-25: Module manufacturer survey feedback - business opportunities

The battery module in a shared mobility vehicle is subject to much more frequent utilization.
Shared mobility system experts insist that vehicles will need to be used at least 6-7 times more
frequently in order for the service to be profitable. This frequency of utilization results in a higher
turnover rate for its lithium polymer battery pack that typically needs to be replaces after a little over
1,000 cycles (charge and discharges). In order to maximize usage during the day, battery module
specifications strive to accommodate a full day’s use from one or two charges (for example 70 miles
range per charge if given and average rental distance of 10 miles). Such frequent use of the vehicle’s
battery will result in module replacements every couple of years. This presents an opportunity for
battery module manufacturers to be closely involved in the supply, servicing, and repurposing of these
units.
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3.3.2.1 Cost Utility Measurement

One of the metrics used to relatively compare each of the module’s value is the “cost-utility
plot,” addressed previously in section 2.3). This measurement associates the relative functionality of a
module at its comparative production cost. Modules that are low in cost but maintain high utility are
viewed as “common” as they are cost-effective and enable stability within a product. Such modules
should be reused as often as possible. More expensive modules with high utility are viewed as “variant”
— they maintain their importance but are used more seldom because of their larger costs. Modules that
are comparably expensive to develop but have significantly less function or utility are subject to being
“discarded” since they maintain little value and are not cost effective. Cheaper modules with little utility
are considered “selective” and are of low priority. They are 4
generally less effective but can still be useful considering their
low cost. Lastly, components that fall right in the middle
maintaining significant utility but slightly higher cost than
common modules fall into a vague category that “needs
improvement.” These modules require clever tactics to lower
their cost or drastically improve their utility; otherwise they
cannot be cost-effectively justified.

Manfucturer participants were asked to associate each
module with a quadant in the following chart. For example, if a
survey participant felt that the robot wheel module was reletively

Relative Cost

very expensive but added significant utility to the vehicle, they Relative Utility
are likely to select quandrant “B.” (Note, more answers could

have been used in the survey by adding a mid-range options both
in cost and utility, providing nine answers to chose from instead
of just four. However, concerned that too many participants A- B-

would select the easy middle ground, four options remained to W oot lod iy ik . e (s

solicit a concrete answer.)

Results from the survey entries reflect that most
manufacturer tend to view most modules as expensive as 72% of C D
all answers were in the “high cost” zone. Their perspective on . *

Module Cost

- - Low cost, low utility low cost, high utility
utility was slightly more balanced as 57% of manufacturers
A A Module Utility
Robot Wheel 3 Robot Wheel 5
Folding Chassis 4 Folding Chassis 2
Battery Module 1 Battery Module 7 Discarded A Battery Module
o Cabin/Body 2 Cabrn_/Bodv 2 - By-WarelComtrol
o By-Wire Controls 2 By-Wire Controls 3 8
(@] Rear Compartment 1 Rear Compartment 1 o
(Y]
2 >
= =
) L
(o] Robot Wheel 0 Robot Wheel 0 [
E Folding Chassis 1 Folding Chassis 1 e
Battery Module 0 Battery Module 0
Cabin/Body 2 Cabin/Body 2 wipartment 11100
By-Wire Controls 0 By-Wire Controls 1
Rear Compartment 3 Rear Compartment 3
= >

Module Utility Relative Utility

Figure 3-26: Module cost-utility plots from manufacturer feedback
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viewed the various modules “high utility.” When
further analyzing the responses, each t
manufacturer tended to reflect a cost bias towards
their module, each more likely to rate their model
as high cost than others.

Since the measures of costs and utility are Biscarded

Robot Wheel A, Battery Module

sy (By-Wire Controls

Folding Chassis W

Cabin/Body

Selective Common

Rear Compartment

relative comparisons, the plot was adjusted to

balance the majority of answers considered “high-
cost” — resulting in most answers to be lowered
and widened across the area. For the most part,

Relative Cost

the rear compartment and body are considered
common modules, and the battery and by-wire
units are viewed as "variant." The Robot wheel
needs improvement as it is barely considered a

variant module. The Robot Wheel is at risk of
being discarded as the suppliers continue to value
engineer many of the high tech functions. Unless Figure 3-27: Module cost-utility plot from survey
costs are reduced or its functionality is significantly improved, the folding chassis is likely to be the first
module to be discarded from the perspective of Hiriko suppliers. '

Relative Utility

As features continue to be improved and engineers frivolously find ways to reduce costs, there
are strategies that may improve cost efficiency across the board. The most conservative approach would
suggest that the folding chassis be discarded, robot wheels rethought and simplified in order to
drastically reduce costs, many by-wire systems defaulted back to more mechanical solutions, and that
the lithium-ion battery technology be substituted for an older established chemistry such as a nickel-
metal hydride (despite its high weight and low energy density).

Conversely, striving to preserve most core features of the CityCar/Hiriko, a progressive approach to
improve may also serve as a viable option: y

h
- Reducing the cost of the robot wheel may

be the most difficult challenge. Current
supply chains do not provide enough

compatible mechanical components for the
novel module. The demand for hub motors
is low as they are used on niche vehicles

-=*--=<4{ Folding Chassis

and concepts; therefore, low economies of
scale keep the prices for these typically
custom built units high. Robot wheel
designs that instead use lower-cost

-

N— ; Se\eL
commercial high-speed cylindrical motors -

may help the module remain more Igﬂeammpmmenb ________ ek
economically viable. This choice will —

Relative Cost

v

require a geared reduction, but finding the Relative Utility

right combination of commercial Figure 3-28: Recalibrated module cost-utility plot
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components that are compatible with the module’s form factor will be the key to reducing costs.

- The folding chassis presents a significant challenge to the overall vehicle design. Although the
cost of the folding chassis itself may not be relatively high, there are external implications to the
design of its surrounding components. The structural components of the chassis itself are
simple and inexpensive; still the linear actuators are the most expensive component of the
system. Commercial linear actuators equipped to handle up to 10,000N of initial force for
folding are currently priced around $1,000 USD. Given the target price of Hiriko $16,000 sD,™
a more economical solution must be found. Counteracting some of the weighted force with
inexpensive passive tension springs serves as one approach that will significantly reduce the
load upon the linear actuators and subsequently reduce costs. Still another approach to justify
the folding chassis among its other modules is to increase its utility by adding a substantial
safety feature that could justify higher costs, as addressed in Reinventing the Automobile —
dynamic deceleration.

- Further simplicity to both the body and rear
compartment can ensure both modules remain in the
common and selective categories respectively. Currently
the framing for both the cabin and rear compartment
consist of over a hundred manually bent and welded
aluminum tubing members. Such an assembly process
requires high labor costs and is not scalable. Most of the
curved aluminum tubes follow the general form of the
body and support the thin walled plastic covers. Instead
many of these complex tubes could be substituted for
straight simple members combined with more rigid
exterior panels.

Figure 3-29: Hiriko cabin tubular framing

- Lithium-ion technologies are still relatively new and more expensive than its less energy- and
power-dense competitors. The cost of advanced electric vehicle batteries can expect to
continue reducing over time. Lithium-ion battery costs dropped 14% between 2012 and 2011,
up to 30% since 2009.%° Similarly, as by-wire control systems become more common,
economies of scale will continue to pull down costs.

. (Alvarez, 2012)
** (Doom, 2012)
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3.3.3 INPUT FROM SHARED MOBILITY SPECIALISTS

Throughout the development process of the Hiriko vehicle, numerous associations were formed
with groups and individuals closely involved with urban planning and shared mobility systems. Crefutur,
BCN Sharing Projects, Inno-Z, Better-City, Public Bike System, Opinno, and Barcelona Activa were some
of the major participating groups. Various experiences in system development, fleet operation,
municipal services, utility services, system management, and research offered keen insight on best
practices for the emerging Mobility on Demand service utilizing the Hiriko vehicles.

In similar fashion, following the unveiling of the Hiriko in Brussels, each of the contacts was
asked to participate in a brief online survey. In this case, questions focused on characteristics and
vehicle features particularly relevant to shared mobility services. Out of over 30 questions, four
predominant factors of the Hiriko CityCar stood out: customization, range, reducing maintenance time,
and concentrated parking (through a reduced footprint size).

If the average personal vehicle is used only
an hour or two each day, about how much
more do you believe vehicles in a shared
mobility service are used?

>5hr s w More than twice as much daily
Ahr mesm w About twice as much daily
®m About the same

1hr ™8 = Less amount of time daily
“Must be used at least for 6-7 per day to be

economically viable.” - survey participant

I m Strongly Agree
Fleet operators would consider employing I m Moderately Agree
more expensive vehicles if these vehicles B Slightly Agree

saved them time in servicing and
maintenance.

® Neither Agree nor Disagree

m Slightly Disagree

# Moderately Disagree
Strongly Disagree

Figure 3-30: Shared mobility survey responses (1 of 3)
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Fleet operators will likely utilize the

opportunity to customize the rear

compartment for their own utility or service.

(For example: delivery, maintenance/utility,

cooled or heated compartment).

When selecting vehicles for a
shared mobility program, it
would be valuable to be able to
customize the following
features:

In a shared mobility fleet, how
frequently are the following
modules likely to be changed?

S W Strongly Agree

Range

Storage

5 s

Infotainment system

ra

1Kl

Cabin/Chassis

Shared mobility programs typically use identical
vehicle models within their fleets (although Zip Car
does employ a variety of automobile models).

How important is it to have a variety of vehicle

types in a shared mobility service?

TF |
=)
Capacity

Robot Wheel

Sy

Driver Interface
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mmmms W Moderately Agree
mSlightly Agree
mmmmm m Neither Agree nor Disagree
mmmms @ Slightly Disagree
w Moderately Disagree
Strongly Disagree

H Extremely Important
B Moderately Important
B Slightly Important

® Barely Important

Completely Useless

Footprint (length & width)

I = Extremely Important
EEEE

m Moderately Important

Iy S|ichtly Important

N Barely Important

Completely Useless

Performance &
Handling

m Multiple times within a year

m Rarely during vehicle lifespan

Never
Battery Modules

R W Multiple times within a year
[T P ® About once a year
=== ® Every couple of years
1 VI'S ® Every several years
® Rarely during vehicle lifespan
Never
Rear Utility

I m Extremely Important

IS ®m Moderately Important

I = Slightly Important
I @ Barely Important

BN« Completely Useless

Figure 3-31: Shared mobility survey responses (2 of 3)

W About once a year
® Every couple of years
® Every several years



Incorporating folding into the SN W Strongly Agree

CityCar to reduce its footprint mmm W Moderately Agree
) H Slightly Agree
by 40% and enable a 3:1 street W Neithicr Aui'es fii Disagiee
parking ratio can be worth the m Slightly Disagree
added expenses in a shared ® Moderately Disagree

N ) Strongly Disagree
mobility service.

Mobility on Demand services can operate without CityCars, just as existing enterprises do today.

1 S i
Vehicles with micro- == :i;;:neg::t:ﬁ,r:ree 46% . NeretAmErs
footprints (less than 30 BN g slightly Agree

sq-ft) are very valuable . WsthErAEmsIRERRAreE e . Europe

in crowded urban m5llahily Risagres

® Moderately Disagree

environments .
Strongly Disagree o Asi
54A’ Sla

Figure 3-32: Shared mobility survey responses (3 of 3)

Mobility on Demand services can operate without CityCars, just as existing enterprises do today.
Still, some of the CityCar’s unique features may assist these services by easing operations and offering
specialty urban personal mobility options to their members. According to interviews conducted with
senior developers of shared mobility services, there are particular vehicle factors that can assist the
effectiveness of the service and the transit of their vehicles. The most important factors of the vehicles
in the fleet of MoD are the following:

- Price of vehicles in fleet

- Utilizing premium space

- Reducing maintenance

- Maximizing uptime

- User Customization

The feedback from the online surveys revealed strong favorability toward the ability to customize
their fleet vehicles in some manner. Consistent with the interviews, reducing the necessary
maintenance, extending the vehicle’s range, and reducing the occupied parking area remain paramount
features of the shared mobility fleet. A strong majority of participants believe that each of the fleet
vehicles would be used more than twice as often as personally owned automobiles. Increased rental
factors over six were recommended to maintain a profitable service. Given that vehicles in car2go’s
rental service are used on average at least 4 times a day, utilization frequencies around 4-6 times a day
is a reasonable target.

Lastly the folding feature of the CityCar was well favored among shared mobility managers and
researchers. However, most believe such a feature would be significantly more beneficial in European
cities as opposed to more spread out American cities.

92



3.3.4 STAKEHOLDER FEEDBACK SUMMARY

In order to gain a comprehensive view from the perspectives of all participating stakeholders,
automotive manufacturing, module suppliers, and shared mobility system, all responses have been
combined into a summary chart. The summary chart combines questions of similar topic and their
relative favorable or unfavorable opinions.

Response Value
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Table 3-8: Stakeholder feedback summary - average weighted responses

Servicing

RW mamu verabilrty

CtyCar Foatures

Froat entryfexit

Curtom rear module
Oesign & manufacture
After - ket product

industrial benefits

Cuntomization

At first glance, there seems to be general
favorability towards the front entry feature, potential
to expand into after market services (modules and
electronic applications), and the vehicle’s ability to
achive a micro-footprint through folding. Relatively,
° most apprehensions or disinterest involves the
lifecycle management of the worn modules, the
desgin and manufacturing challenges, and the
complex manuverability of the Robot Wheels.
Nevertheless, most of the feedback was generally

Micro-footprnt

positive. As the novelty of particular features face-off

Ufacycle managamant
Abikty to usloie flest
Service & Mamtenance

with the reality of manufacturing cost, supply chains,

Figure 3-33: Summary plot of weighted responses

system reliability, other methods to achieve similar
features may be expored (such as combining left and
right Robot Wheels to create a more robust “Robot
Axle”).
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Figure 3-34: CityCar in Mobility on Demand

34 CITYCAR IN MOBILITY ON DEMAND SYSTEM

Even though City Cars can work well as privately
owned vehicles, they can provide greater sustainable
benefits when integrated into a shared-use model, like
Mobility-on-Demand. The system operates through a
network of vehicle stacks at major destination points
throughout a city, such as subways, shopping centers,
airports, office complexes, residential areas, sport
facilities, and universities.

The user can expeditiously rent one of the CityCars
by swiping their pre-established membership ID card,
removing a charged vehicle from the stack to run their
errands and finally returning it to any of the
conveniently located charging/parking stations. Vehicles
automatically recharge while they are in these stacks.
This one-way shared-use rental system provides an
urban-friendly embodiment of a ubiquitous valet
service that complements surrounding transportation
options.

Instead of replacing private automobiles or mass-
transit systems, Mobility-On-Demand systems equipped
with CityCars supplement each of these modes of
transportation and expand multi-modal capabilities
through a lean vehicle tailored specifically for city
environments. Major efficiencies are gained by
reconfiguring the relationships of urban mobility,
energy management, and information networks so that
each transportation option can function in a more
harmonious fashion.

Key factors to keep in mind with mobility-on-Demand
- High utilization
- System monitoring
- Land acquisition
- Vehicle redistribution
- Vehicle maintenance
- Recharge/refill
- Power management
- Repairs
- Fleet purchases and turnover
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3.4.1 COLLECTIVE SPACE SAVINGS

Ford Explorer
Toyota Prius
3950 Ibs 2832 bs

A
—_—

Figure 3-35: Space savings from CityCar compared to commercial automobiles

/A

The CityCar’s folding chassis reduces its foot print by 40% in order to occupy less than 25 square
feet when parked (precisely 24’ 2”). When folded the vehicle’s length matches its width, which is
typically equal or even slightly narrower than most full sedans. This small dimension allows the CityCar
to fit in parallel parking spaces in two orientations, normally parallel and perpendicularly nose-in. The
front access of the vehicle encourages drivers to park the vehicle perpendicular to the curb, allowing
both passengers to exit gracefully onto the sidewalk as shown in Figure 3-36. Also, since the vehicle
utilizes a single front entry and exit face, less buffer space is required on each of it sides.

The combination of the folding chassis and front entry/exit lets at least three CityCars to fit
within one parking space designated for an automobile. The three vehicles fit within the parking space
even while maintaining two feet of space between each of them. This buffer allows the CityCar to
perform an O-turn and exit from the space, letting the driver always operated the vehicle safely in a
forward direction. The CityCar’s micro footprint, which enables a 3:1 vehicle concentration for parallel
street parking, can also be well utilized within exterior lots and multi-level parking structures.

o

1500 mm)

411

8'-2° {2500 mm) 4'-11° (1500 mm)
CityCar (unfolded) CityCar (folded)
24°-6° (7567 mm)
—
E
2
(... -

Folded CityCar vs. conventional 4-door sedan
Parking ratio= 3.3 :1

Figure 3-36: CityCar 3:1 street parking ratio, by Ryan Chin & Derek Allan Ham
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Figure 3-38: Comparative surface area savings in parking lot, by Ryan Chin

Another strategy to condense the parking layout of CityCars takes advantage of the benefits of
autonomous navigation systems.. Unmanned CityCars that are equipped with appropriate proximity and
position sensing coupled with vehicle-

- [1 £1| to-vehicle communications may be
, B888B88E y
- - ‘ permitted to park themselves in tight
1l \gogg = d h
S : : — | spaces typically inaccessible by
8888
a8 a8

drivers. Such a solution would only
require a single access point at
minimum (Multiple entry and exit
locations may be added to increase

Gaa - g g =y g vehicle flow). This reduction of
F Y : ‘ > = pathways would enable over three
il e =) Be8a88 times as many CityCars to fit within

270 square feet per automobile 77 square feet per CityCar  the same space (3.2:1 ratio).
14 automobiles 45 CityCars

Figure 3-37: Compressed lot from autonomous parking, by Ryan Chin
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Figure 3-39: MIT Stata Center parking lot.

v

Figure 3-40: Parking lot structure and barriers - 122 load bearing pillars
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Preliminary studies
reveal that the three to one
parking ratio benefits
illustrated for street parallel
parking can be preserved
within an outdoor lot setting.
And in an outdoor parking lot
scenario the redesign of the
paint boundaries would enable
an easy transition of vehicle
types. This ratio may be
increased around 4:1 if the two
foot spacing is reduced.

However the
conversion of a parking lot to
contain dozens or even
hundreds of CityCars becomes
substantially more challenging
in an underground or multi-
level above ground structure.
All larger covered parking lots,
whether they are above or
below ground, contain many
load-bearing pillars. The
location of each of these
structural pillars can be seen in
red in the MIT’s Stata Center
parking lot for example in
Figure 3-39.

Unlike the paint that
outlines all the spots and lanes,
the pillars are obviously
permanent. Figure 3-40
illustrates each of the
immovable structural elements
in the Stata Center lot. This
layout is typical of many multi-
level underground parking lots,
around which over a hundred
columns must be navigated.
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Figure 3-41: Majority conversion of lot for individual parking of CityCars

Taking advantage of its footprint and narrowing the access lanes allows 597 CityCars fit in the
space of 234 traditional automobiles (2.5:1 ratio). In this scenario 76 parking spots remain to
accommodate traditional automobile options.

Figure 3-42: Rendering of CityCar stacks in underground parking garage

Since CityCars do not require left or right access, each can be parked closer side by side. This allows four
CityCars to fit in the space previously occupied by three automobiles. Drive pathways to access the
parking spots can be significantly narrowed down even more so than simple one-way paths since the
CityCar’s O-turn permits an extremely small seven foot turning circle (whereas most automobiles have a
30-35 foot turning circle). The significantly larger turning circle (also referred to by “turning radius”)
requires either a wider pathway or parking space to accommodate the automobile’s vehicle sweep.
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Figure 3-43: Comparison of CityCar vehicle sweep to automobile
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The combination of the CityCar’s
micro footprint and high maneuverability
create an extremely lean “vehicle sweep.”
This sweep encompasses any surface area
required for the vehicles to travel to and
from their desired spots. Figure 3-43
illustrates the resultant vehicle sweeps from
the turning circle of a traditional automobile
and the CityCar.

While some of the most
maneuverable automobiles have turning
circles (curb-to-curb) around 30 feet, the
combination of the CityCar’s micro footprint
and O-turn capabilities enable a mere seven
feet, only two feet greater than the vehicle’s
body width. These differences have
implications not only in the eased navigation
through crowded cities, but also their
supporting infrastructures, like parking lots.

The middle section of Figure 3-43
demonstrates that the space to
accommodate an automobile’s relatively
larger turning radius must be granted by
either a wider lane with a narrow spot width
(a.), a narrow lane coupled with a wide spot
width (b.), or a combination of both. Inany
case, significant square footage is being
dedicated and unoccupied for the means
accessing a parking space.

In the case of the CityCar however,
the last section of Figure 3-43 demonstrates
how lean the vehicle’s sweep can be -
consuming 33% to 57% less area in order to
navigate its way into its parking space. Such
tight maneuverability results in significant
benefits for increasing the density of vehicles
in a parking structure — especially one whose
structural layout is already established.



In the converted parking structure two rows of parking for automobiles can accommodate up to four
rows of parking for CityCars. The distribution of structural columns, in the Stata Center for example,

allows for new
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-44: Total conversion of Stata Center lot for individual parking of CityCars

Figure 3

Figure 3.43 shows the complete conversion of a single level of the Stata Center parking
structure. 843 CityCars fit within the space of 340 traditional automobiles to enable a 2.5:1 ratio.

Alternating one-way paths are surrounded by two-way driveways.
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As in the preliminary study (Figure 3-39), many more vehicles CityCars can be condensed into the
surface area of a parking lot when vehicles are autonomously shuffled and relocated. The same Stata
Center parking lot that would typically fit 340 automobiles or 843 individually parked CityCars could
accommodate up to 1,545 CityCars if operated through an auto valet system, as shown in Figure 3-45.
This ultra-dense parking configuration yields a 4.5:1 parking ratio. The rows four to six vehicle deep of
CityCars self could self-organize about through six pathways to enter and exit their spots. While the
number of pathways could be reduced to cram in an extra vehicle or two within each row, flow patterns
would be significantly hindered.
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Figure 3-45: Total conversion of Stata Center lot for autonomous parking of CityCars
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1,546 CityCars occupy the space of 340 traditional automobiles (4.5:1 ratio). Most rows are stacked five
vehicles deep.
The ability to convert older parking structures to house a plethora of CityCars in a highly-dense
manner presents an intriguing business opportunity for operators of shared vehicle fleets. Whether
they employ technologies that enable autonomous navigation within the controlled enclosed
environment, or simply offer the structure for individual parking, fleet operators can now concentrate
2.5 to 4.5 times more vehicles within the level to offer their service to more customers. On the other
hand, if shared mobility operators were not looking to offer such a large fleet service (such as over 1,500
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CityCars), their smaller quantity fleets could occupy significantly less space instead. Given a
conservative city parking rental rate of $2,000 a year per space, this two-thirds to three-quarter space
saving may result in over a hundred-thousands of dollars in annual parking rental costs for a fleet of 100
vehicles in a major metropolitan area (given the fleet operator can negotiate rental rates based on the

square footage occupied by roughly 30 automobiles).
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Figure 3-46: Partial conversion of Stata Center parking lot for shared mobility fleet

Even in the most moderate conversions, figure 3.45 illustrates how 114 CityCars in a shared
mobility fleet may fit within the space of 68 automobile parking spaces in an underground lot. Such
utilization of this section would reduce annual operational parking cost by 40%.
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Overall, with the increased density ratio gained from the CityCar there are two general paths
from which operators can benefit — one, increasing the quantity of vehicles within the area or two,
reducing the area needed by the vehicles.

Opportunities from Increased Parking Density Ratios

model

Pn_rllld Parking

Under/above-ground multi-level

Outdoor parking lot

parking density Increased revenue or Reduced capital investment Reduced Lot size
Fenway park block, 25 automobile spaces
$18/day 4,000 sqg-ft
160 sq-ft per 2,750 sq-ft
$328,500 extra/year aut;?nob?li 0 st e ClyCor o sa\nngsq-
3to1l (full utilization) $100/sqg-ft, $100/sqg-ft, 1'22:(:;3;:ar:r 12 vending
$16,000/automobile $5,000/CityCar trucks
$1,31,400 * $275,000 savings
MIT Stata Center (one floor), 340 spaces
$20-30/day 122,000 sqg-ft (per floor)
360 sq-ft per . 73,000 sq-ft
54,653,750 extra/year aut::‘nob?:? RS e EyEey 49,000 sq-ft per s:vings:-
25t01 (full utilization) $200/sqg-ft, $200/sq-ft, floor for 430 200+ NYC micro|
$72,000/automobile $29,000/CityCar CityCars apartments
$1,861,500 * $14,620,000 savings
] 95,000 sq-ft
p— $10,858,750 extra/year Sl T i 26,918 sq-ft per savings
(full utilization) $200/sq-ft, floor for430 300+ NYC micro
automated valet
$15,800/CityCar CityCars apartments
$4,343,500 * $19,108,000 savings
MIT Westgate lot, 320 spaces
$15-$25 / day 90,000 sqg-ft
270 sq-ft per ] 61,200 sq-ft
— $4,672,000 extra/year automobile e A e 28,800 sq-ft for savings
(full utilization) $100/sq-ft, $100/sq-ft, 2
automated valet . ) 320 CityCars softball field
$27,000/automobile $9,000 per CityCar
$1,868,800 * $5,760,000 savings
54 sqg-ft per CityCar 72'72? i
Stol $9,344,000 extra/year 17,280 sq-ft for s
automated valet, (full utilization) $100/sq-ft, 320 CityCars 10 tennis
12" spacing $5,400 per CityCar courts
$3,737,600 * $6,912,000 savings
76,880 sq-ft
65to1 $12,848,000 extra/year AL it peetiytn savm::
automated valet, (full utilization) $100/sq-ft, ﬁ;’;jz:::;::r 14 basketball
6" spacing $4,100 per CityCar courts
$5,139,200 * $7,328,000 savings

* moderate revenue calculations made from 80% utilization with 50% subsidies

Table 3-9: Revenue and space opportunities created from dense parking ratio

103



3.4.2 MODULAR IMPACT ON VEHICLE MIAINTENANCE

Maintenance and servicing is another operational cost that can be reduced from the uMEV’s
modular architecture. For an individual owner, keeping up on the manufacturer’s recommended
maintenance schedule is only a slight inconvenience since most automobile manuals recommend
regular service merely on a six to twelve month basis. Nevertheless, the compartmentalized drivetrain
(the Robot Wheel) can expedite regular services for individuals leasing the vehicles or even the Robot
Wheels themselves. Instead of requiring the owner to deliver their complete vehicle to service shops
and wait several hours or even a day for repairs, performing maintenance on the drivetrain can now be
as simple and quick as changing a tire. The snap-on connection of the Robot Wheel can allow individuals
to waste little time waiting for repairs. Still more, active service models would not even require
individuals who lease their CityCar, or the modules that make it up, to visit the repair shops. Instead
maintenance trucks that carry Robot Wheels on board could service the complete drivetrain in a similar
manner to AAA roadside service. While this may be a desirable convenience for individuals who own or
lease a CityCar, the benefits become profoundly more influential for shared mobility fleets.

For Mobility on Demand service operators it is important to minimize downtime during vehicle
maintenance and the associated labor cost, while maximizing the accessibility of each of their vehicles.
Ideally each vehicle would be rented and used six times more frequently than individual cars according
to shared mobility experts. While regular maintenance is only a slight inconvenience for individuals, the
increased utilization of each of the vehicles would cause each one to be sent to service shops several
times a year. This frequency of repair per vehicle can result in a significant burden for fleet operators of
many hundred or even thousands of vehicles. In order to analyze the cost and labor implications for a
shared vehicle under high-utilization, maintenance schedules of both a full electric (2011 Nissan Leaf)
and a small urban (2001 Smart ForTwo) vehicles were studied.

Although multiple subsystems could have been analyzed, this study only focused the
maintenance of drivetrain elements which can be functionally substituted by the CityCar’s Robot Wheel.
Therefore all recommended services (B1 and B16 in Table 3-11) and inspections (B6 and B25 in Table
3-11) relative to the drivetrains of two vehicles were listed over the recommended schedule span of six
years (60,000 miles). The study anticipates utilization rates six times that of personal automobiles;
therefore each vehicles used within the shared mobility system would be subjected to 60,000 driven
miles a year. This annual projection of mileage is derived is reinforced from multiple factors. First, using
the manufacturer suggested pairing of mileage per year (10,000 miles/year) multiplied by the increased
utilization rates recommended by the shared mobility feedback. Vehicles in existing shared mobility
programs such as “car2go” experience at least 4 rentals each day.”” Secondly, another method takes the
net average speed within cities (20 mph) over a continual annual usage within a shared mobility service.
With peak transport hours between 6am to 9am and 3pm to 6pm, and infrequent usage in-between
throughout the day, 8 hours of daily usage is anticipated — resulting in roughly 58,000 a year.

Lastly by observing annual mileage rates of rental car companies, quantities around the same
order of magnitude can be found. Hertz rent-2-buy program, for example, provides vehicles one to two
years old starting at 23,000 miles reaching up to 48,000 miles. Expecting at least twice as much
frequency of use may be reasonable for a Mobility on Demand system located in prime locations of busy
city centers.

37 (car2go, 2009)
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The following table Table 3-11 highlights the maintenance schedules for a Nissan Leaf and Smart
ForTwo and illustrates the compressed labor costs and time relevant to a more frequently used MoD
service:

A B C D E F G H J K L M N (o}
Individual Owners Manual Mobility on Demand
(utilized 6 times more frequently)
ceheduled Mot number of times servficed over the Automoabile CityCar
juled Maintenance course of:
Drivetrain Wheel
9-12mo. 24-36mo. 48-72mo. 1year 2years 3years et Robot
service laborcost 10,000 30000 60,000 0000 120000 180,000 :‘:‘:e' gnnuel
time(hr]  (USD) miles miles miles miles miles miles annual labar  SeMCe  annual labor

time(hr)  costs(usp)  time(hr)  costs (USD)

Inspection

Axle & Suspension

Brake pads and rotors
Front suspension ball joints
Steering gear and linkage
11 Steering linkage ball joints
Brake lines & cables
Reduction gear oil

2011 Nissan Leaf

£

i 1
0 RSN
1

2011 Smart fortwo

Parking brake %
0 Front axle ball joints 3 3320
32 Steering linkage ball joints 04 33.20 X
13 Drum brake pads 13 107.90

Table 3-11: Drivetrain maintenance evaluation

Following the compilation of every drivetrain service and repair over the course of 180,000
miles (increments of 60,000 miles), or three years within a shared mobility fleet, services irrelevant to
the Robot Wheel were removed. Since the Robot Wheel drastically reduces many of the mechanical
parts and does so within a dry manner (no hydraulic subsystems), many repairs like brake fluid (C3),
wheel alignment (C4), and spark plug replacement can be eliminated.

Significant savings in both labor costs and time are reduced by exploiting the plug-and-play
capabilities of the Robot Wheel drivetrain module. Compared to a commercial all-electric vehicle, the
CityCar could require only one-fourth of the annual service time (N15) as the 2011 Nissan Leaf. This
would reduce the annual labor costs of each vehicle from $2,336 (M15) to $695 (015). Comparedto a
small relatively simple automobile like the Smart ForTwo, the CityCar would save a similar order of time
while cutting annual labor cost from $2,528 (M35) to $490 (0O35) per vehicle. Overall the CityCar’s
Robot Wheel has the potential to cut the labor cost at a rate of 4.25:1.

While the reductions in service time hold a similar 4:1 ratio, these savings can be increased even
more by using a roadside repair model. Table __ lumps the complete amount of drivetrain services into
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a total service time (L15 and L35); however, clusters of these repairs would spread out over the course
of three days or so throughout the year. Each of these service appointments would require that the
vehicle be removed from operation for at least half a day. When comparing that to the 10 minutes it
would require to switch the Robot Wheel, essentially swapping the corner drivetrain, it’s reasonable to
assume reductions in downtime by over 90%. This huge reduction in vehicle service time is not
completely eliminated, it is instead shifted to unit repairs on the Robot Wheel modules in a separate
refurbishing shops. While some time may be saved focusing the repairs of Robot Wheels in a
streamlined shop; the most important benefit comes from keeping each vehicle in the MoD fleet in
operation as much as possible.

3.4.3 REDUCED OPERATIONAL COSTS

Although consumers are fairly sensitive to the cost of automobiles and current gas prices,
seldom do they have a full grasp of all the expenses that actually go into car ownership. Automobiles
require many accompanying expenses that in some cases can almost double the actual cost over the
course of five years. Vehicle depreciation, interest from financing, taxes and fees, insurance, fuel,
maintenance, repairs, and any available federal tax credits all contribute to what is known as the “true
cost of ownership,” or TCO.*®

3.4.2.1 General Observations from Operational Costs

- Parking consumes a significant proportion of total cost for individuals within a city.

- Energy/fuel play the biggest factor for highly utilized fleet vehicles

- Itis difficult to justify the purchase of an electric vehicle as an individual given its higher
depreciation and insurance. The recuperated cost savings only serve as a benefit when the
vehicle is utilized much more frequently, asin MoD. However if the CityCar is able to lower its
maintenance and depreciation cost, it can be a cost effective option for individuals as it is for
shared fleet services.

- Even if the reduced annual parking cost only marginally improve profit margins for shared fleet
operators, the ease to compress more vehicles in highly desirable and difficult to obtain areas
may still be the most substantial benefit. Shared systems can support 3 to 5 times more rentals
in compact areas. This is especially important in shared services that typically need to maintain
over twice as many parking spaces as vehicles within the fleet (excess parking spaces ensure
capacity during fluctuations throughout the day).

According to the American Automobile Association (AAA), the average person spends about $9,000 each
year to own a vehicle. Still, this calculation does not consider even more factors that are present in
crowded cities such as parking. In 2011, the average monthly cost of parking was $155.22 in North
America,*® which results in $1862.64 a year and over $9,313.20 over five years for parking alone. Still,
this is a fraction of the cost for most major cities worldwide (top 25 cities globally average at about
$600/month). This number is expected to keep rising, considering the price of parking has continued to
escalate over the past five years. Additionally, given other urban issues, such as poorly maintained pot-
hole ridden streets, higher taxes on gasoline, higher insurance premiums, and the general abuse
automobiles are subjected to during daily exchanges in highly populated areas, the actual cost of vehicle
ownership within a city is greater than suburban, rural, and other less populated parts of the country.
Factoring in these differences, the urban true cost of ownership (uTCO) takes into account the higher
costs of parking and other variances that make vehicle ownership within a city unique.

3% (AAA, 2009)
3 (Moore, 2011)
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3.4.2.2 uTCO parameters:

Parking — The largest unique variant compared
to traditional TCO calculations. As property
value is at a premium in US cities, parking
increases the annual true cost of ownership by
22% on average. In major cities such as Boston
and New York, parking easily doubles the
annual cost of ownership and even triples in
other global cities like London. Although notall
residents within these cities own vehicles and
not all employees reside within the city, this
overwhelming cost of parking is not an option
for shared mobility services. Services similar to
Mobility-on-Demand must rent or own spaces N
to accommodate their fleets of vehicles. Tax

Maintenance & Repair

Insurance

Baseline estimates would cost a fleet of only
1,000 vehicles over five-million dollars a year. Figure 3-47: Urban true cost of ownership (uTCO)

Fuel/Electricity — Gasoline is a significant annual cost for automobiles, averaging at $1,950 a year
considering 2011’s price average of $3.83 per gallon. In the case of shared mobility, the refilling of
frequently used fleet vehicles combined with slightly higher gasoline costs makes this expenditure even
more significant. A fleet of 1000 vehicles utilized 6 times more often throughout the day than individual
cars (recommended minimum for profitability) would cost 12-million dollars to the MoD operators
annually. (5% increase on gasoline price from city taxes) Fleets providing electric vehicles on the other
hand would save the operators, and therefore the end-users, by a factor of 2.67. Electric recharging for
a Nissan LEAF, for example, requires only $731 for an individual annually and therefore would cost a
similar fleet about 4-million dollars.

Maintenance & Repair — In most TCO calculations, the maintenance of the automobile accounts for 4-
10% of the total annual expenses within the first five years of ownership. These yearly upkeep and
repair cost continue to creep up as the vehicle adds mileage and components are worn down. Most
conservative calculations estimate the vehicle being driven for 15,000 miles a year, resulting in an
average of roughly $500 a year. However in shared mobility services, in which the vehicles are ideally
utilized six times as often, maintenance and repairs can run a couple thousand a year (a couple million
dollars a year per 1000 vehicles). One of the design goals for the CityCar was to minimize maintenance
by reducing its part count, decreasing its number of subsystems, utilizing a practically all-dry drivetrain
platform, and cleverly replacing hardware with software wherever possible. This strategy would
drastically reduce or even eliminate the following automobile procedures: oil & oil filter change, wheel
alignment, fuel filter, radiator flushing, and transmission maintenance. Besides the cost savings,
perhaps more important for MoD operators is the reduced downtime of their fleet vehicles. Less
maintenance over the lifespan of the vehicle results in longer periods of time with the vehicles in
operation, lower repair costs, and lower labor costs.

Depreciation —This often unrecognized factor costs the average car owner in the US $3,728 a year and
can be more expensive on models that are subject to oversupply, hold limited appeal, or compete with
similar rebated models. Although millage has an impact on overall depreciation, timing plays a larger
role; therefore, vehicles used frequently within a shared mobility service depreciate less per mile driven.
For a MoD service operator, resale value of each of their fleet vehicles may be one of the less important
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concerns within their business. However, vehicle appeal does influence the service. Regardless of a well
maintained condition, customers prefer not to drive in cars that are considered outdated, obsolete, or
don’t contain the latest technology features. CityCar’s modularity may be able to play a role here.
Through clever management of module lifecycles, vehicles can appear new, or at least up to date, by
swapping in the particular modules when necessary. Substituting the cabin or body panels every couple
of years while conserving the same Robot Wheels and electronic backbone can keep the MaoD fleet
looking up to date while saving money, adding a higher perceived customer value.

Insurance — Automobile insurance varies around 10-20% of annual costs and is influenced by a number
of factors. Insurance on rental vehicles can be generally higher because of the frequency of use by
many multiples of drivers. It may be too early to speculate now the insurance will vary on a CityCar-type
vehicle. While its conservative top speeds and increased visibility can lower its average rate, it’s
relatively small size and new supply chain can drive rates back upwards. Therefore, no net assumptions
will be made on the changes in insurance rates for the CityCar or other uMEVs.

Interest from Financing — Financing interest accounts for about 10% of the total cost, during the first
five years of individual ownership. This aspect remains independent of the vehicle type; therefore,
there is no expected change for financing a CityCar or any other uMEV vehicles. Annual financing cost
can be reduced and in some cases eliminated with large fleet purchases from service operators who
receive bulk discounts and are better equipped to pay cash.

Taxes & Fees — Automobile taxes and fees are mostly state mandated and vary little from vehicle type.
For the sake of this study, we will assume this 4% factor is equal across the board.

25000 T Given the CityCar’s micro parking
footprint, reduced maintenance cost
20000 L and electric powertrain, the annual cost

of ownership is expected to be lower .

® parking
than most small sedans and current
i@ fuel
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B maintenance

10000 H insurance

H intrest

5000 - m tax
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Figure 3-48: uTCO for various vehicles in different ownership models
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USD ($) - annual cost per vehicle (lease model)
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Figure 3-49: uTCO based on lease financing for various vehicles in different ownership models
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4 CONCLUSION

The CityCar has served as a platform to explore numerous opportunities within urban mobility. The
vehicle concept itself has engaged well over a million (Appendix 7.C) observers to rethink their means
personal mobility. As the particular details of the design are focused on urban mobility and support
goals of Mobility on Demand, the vision has also provided a springboard to explore supporting
technologies such as recharging schemes & energy distribution, methods to manage vehicle fleets
through intelligent dynamic incentives, and clever means of electronic customization.

The modular architecture of the CityCar uMEV stimulated new industrial ventures overseas. Basque
automotive suppliers have joined efforts to expand their technological competencies in electric vehicles.
Each of these core module manufacturers have been empowered to form their own consortium for
vehicle development. Additionally, the electric platform of Hiriko can support many of the growing
renewable energy sources flourishing in northern Spain and surrounding European cities.

As for operators of shared mobility services, the CityCar/Hiriko may relieve some of the major
capital burdens that these startups face. Reduced maintenance demands may allow fleet vehicles to
remain in operation for the maximum amount of time. Its condensed parking ratio, ranging from 3:1to
6.5:1, can ease market penetration by greatly increasing the number of CityCars that can be located in
prime areas throughout the city.

The cities themselves also benefit from the presence of CityCar fleets. Since they are lean on space
consumption, significant surface area can be rededicated towards green spaces or other community
based surroundings. The lightweight, zero-emitting electric platform provides local environmental
benefits in crowded cities that suffer from overwhelming CO, automobile emissions. Furthermore,
traffic flow can be improved by supporting increased ridership of public transit. The CityCarin a Mobility
on Demand service supports seamless multi-modal options for end users, addressing first-mile, last-mile
challenges.

Overall, the CityCar has served as a conduit between many of the major stakeholders that are
essential to best address mobility challenges in a coordinated manner. Opportunities can be discovered
for multiple groups indirectly involved in the development of the uMEV platform and CityCar vehicles.
Suppliers and new automobile manufacturers can be reenergized through a unique business model.
Shared mobility services are given a vehicle option that is tailored to urban environments. End users are
provided a distinctive convenient driving experience that improves their interaction to the city. Urban
developers are eased in the design of commercial and residential buildings as parking requirements
have the potential to be relaxed. Finally, municipalities can be afforded new transit models to offer its
residents while reinforcing support to their existing public transportation systems and growing
opportunities for revenue.
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4.1 IMPACT ON OTHER STAKEHOLDERS

Figure 4-1 illustrates the opportunities for interaction between many of the core stakeholders that may
be involved in the CityCar development, management, and use.
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Figure 4-1: Interaction opportunities between stakeholders

4.1.1 AUTO SUPPLIERS

Challenges/Problems: _
+  Suppliers are subject to a one-way and hostile relationship with OEM. Automakers specify
exactly which parts they need and how much they will pay for these parts.
«  Suppliers are restrained to marginal profits and are greatly restricted to fit OEM pricing and
scheduling.
«  Many relatively smaller automotive suppliers are edging towards bankruptcy.
+  Suppliers have little margins of resources for R&D, nor outlets for innovation

Advantages/Opportunities

« By expanding their engineering role to include design and innovation, suppliers assume more
responsibility and become module designers instead of just part suppliers {(modules — RWs,
driver interface, power, rear utility) and expand their capabilities from just suppliers to also
module sales, customization, and reuse.

+ Develop amiable relationships and improved interactions with OEMs/Integrators (GM Gravatai,
Brazil plant example, suppliers work within GM to design subsystems).

«  Opportunity to establish a supplier network, in which they collaborate to meet industry
standards while introducing their own ideas and innovations.
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4.1.2 FLEET OPERATORS

Challenges/Problems:

High operating costs - Redistribution of the vehicles during the day is the highest cost to the
service and prohibits the systems to becoming profitable (many hours of high cost manual
labor).

High utilization causes vehicles to wear down at a faster rate. Additionally, in some cases, users
abuse vehicles in public/shared services.

Services lack sense of ownership amongst end users

Cost and demand of land is at a premium in major metropolitan cities.

Acquiring land to develop vehicle stations presents initial challenge and difficulty for station
flexibility.

Commercial vehicles are difficult to monitor in real time (location, charge level, maintenance
needs)

Security monitoring - high utilization and 24-hr exposure presents vulnerability to vandalizing.
Rental pricing models seldom reflect varying real-time circumstances

Advantages/Opportunities:

Utilizing CityCar vehicles in a Mobility-on-Demand service can help fleet operators better service
their customers while requiring less space to park each car at their stations (3:1 up to 5:1 ratio).
The CityCar’s drive-by-wire platform can better utilize embedded sensing and networking
technologies within, allowing for real-time vehicle monitoring (location and security), and
provide the potential for autonomous assistance in redistribution and automated valet services.
The CityCar's modular platform allow fleet managers to rapidly substitute, service, and update
modules separately from the vehicle as a whole, keeping operable CityCars in circulation for
longer sustainable periods of time.

Performance and design customization allow operators to provide unique local mobility
solutions, optimized given each city's characteristics (the Boston CityCar w robust RWs vs. the LA
w extended range).
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4.1.3 ORIGINAL EQUIPMENT MANUFACTURERS (OEM)

Challenges/Problems:

Tight timelines with large proportions of responsibility. Business model built on annual
commodity.

Most OEMs are too big to be flexible and rapidly implement new technologies.

Assume the majority of responsibility and risk — design, manufacturing, research, certification,
marketing

U.S. OEMs find it difficult to attract new innovative talent. Young graduates instead opt for
silicone-valley type careers. Detroit is viewed as an industry that doesn’t seem interested in
doing new things.

Lacks “open innovation” little outsourcing of its R&D to outside, small, nimble entities.
Disruptive innovations threaten OEM’s business model.

Nasty labor and supplier relationships

Lost brand loyalty from end users

Advantages/Opportunities:

Through changing their role from a vertical manufacturer to an integrator (coordinator,
assembler, and certifier), an OEM or new vehicle system architect can enhance product
flexibility while improving their supplier relationships by empowering the suppliers to design
and create new modules.

By establishing and managing interfaces and their standards, the system architect can build an
ecosystem of module suppliers which allows innovation to develop.

Reduces risk of innovation and cost of failure by distributing responsibility
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4.1.4 END USERS

Challenges/Problems:

Lack of new innovative products in mobility (automobile architecture has changed little over the
past century).

Long term increases of gas prices.

True cost of ownership for automobile in major cities is often prohibitive

Vehicles with new technologies tend to be too expensive to be embraced by the masses.

End users tend to need multiple types of vehicles or multi-purpose vehicles (SUV), which results
in inefficient use of resources and high costs.

Parking in cities is expensive and often difficult to find.

Vehicle customization is prohibitively expensive because it usually involves many hours of high
labor costs

Growing percentage of elderly population face difficulties maintaining the ability to drive

Advantages/Opportunities:

*

CityCar in Mobility-on-Demand system offers the end user a high-tech transportation option
without high capital costs (low risk to try new technology).

in individual CityCar ownership, users can exploit customizable options.

Eased parking in street (fitting into smaller narrow spaces like the Smart ForTwo), or designated
MoD spots

Reduced cost to refill from relatively less expensive electricity for lightweight short-range small
CityCar

With the combination of eased ingress/egress, custom driver interfaces, increased visibility, and
the capacity for electronic driver assist, the CityCar not only improves the experience for the
common motorists but also expands the potential for elderly and physically-limited drivers
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4.1.5 MUNICIPALITIES/UTILITIES

Challenges/Problems:

Parking is significantly subsidized by local governments.

Cities want to provide parking options from which they can generate revenue.

Accordingly, relationship between drivers and municipal staff is hostile at minimum (only
interaction is during payments and disputes).

Public transit systems are underutilized in many cities and are rarely profitable. Additionally,
infrastructure costs to expand or alter routes are extremely expensive and inflexible to
adaptation.

About a third to a half of the space is dedicated solely to automobile use and a large portion is
used for parking; instead, much of these spaces could be used for parks or other socially inviting
areas.

Electric utility companies must manage changing energy demands throughout the day (mid-day
peaks, renewable imbalances)

Renewable and regenerative technologies with fluctuating outputs need energy storage
solutions (wind turbine, solar, subway breaking).

Advantages/Opportunities:

Cities have the opportunity to offer mobility services tied directly to their revenue resources.
Municipalities can offer community mobility services and incentivize operation instead of solely
relying on punitive revenue.

Mobility-on-Demand services can supplement public transit by supporting established lines,
expanding commuter range, and offer relatively more dynamic coverage.

CityCar's 3:1 parking ratio allows for greater vehicle saturation, therefore more vehicles can be
charged for parking per square foot and/or parking spaces can be repurposed for other uses
(preferably green spaces).

CityCar park-and-charge stations that incorporate a battery-bank buffer offer electric utility
companies attractive options of sourcing power to the batteries during high output of
renewables or sinking power from batteries during peak hours of demand.

MoD stations located adjacent to electric public transportation not only complement each other
by offering convenient multi-modal transport, but there are potential additional incentives of
sharing electric infrastructures to efficiently manage high power exchanges.
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4.1.6 URBAN DEVELOPERS

Challenges/Problems:

Developers of new residential buildings are required to incorporate parking spaces for each of
its residents (1:1 parking space to living unit)

Parking structures are often an afterthought in design and are seldom desirable areas of
dwelling (concrete surrounded, poorly lit, dirty, poor air quality).

Parking structure surface area is poorly utilized as result of the average vehicle capabilities
(turning radius, door clearance, parking capabilities of driver); therefore, much of the space in a
given parking lot is dedicated to moving the vehicles and spaces in-between for ingress/egress
access.

Building zoning is prohibitive to mixed use complexes.

integration of EV charging posts are retro fitted to parking structures and buildings currently do
not support infrastructure for high-power rapid charging.

Live/work spaces are poorly integrated to parking.

Opportunities:

Developers can offer mobility service as a unique option to their occupants.

Residential and commercial complexes can offer CityCar MoD services as a portion of their
overall parking and significantly reduce the amount of square footage dedicated to parking or
permit more vehicles within their lots.

Utilizing CityCars in an automated valet system can enable an 5:1 parking ratio compared to
traditional car parking and provide a clean seamless drop-off for their occupants.

The CityCar’s clean electric platform can allow for unpolluted parking areas that may be better
integrated to the living and work spaces.
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5 FUTURE WORKS

The CityCar uMEV provides a clean, lightweight, micro-sized personal mobility option for today’s
growing cities. Moreover, the vehicle’s features have been tailored to ease transit for end-users and to
provide operational efficiencies for shared mobility systems, such as Mobility on Demand (MoD). As it
has shown potential for new mobility ventures, it could benefit even more from the advancement and
incorporation of particular technologies.

Including spatial sensing, vehicle-to-vehicle communications and some level of autonomous
technologies can provide advantages to drivers and shared fleet operators. Occupants of the CityCar
can be as ease with reduced or relieved vehicle operation while benefiting from potential safety
improvements. Additionally, MoD operators can better manage their fleet by permitting vehicles to
self-park in extremely tight spaces, and utilize the autonomous capabilities to redistribute the fleet
across the city, meeting fluctuating demands. Given enough sensing, communications, and
computational capabilities, each of the CityCars could coordinate throughout the city like a node in a
network.

Figure 5-1: Networked CityCar
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As the system grows, hundreds to thousands of electrically powered CityCars would benefit
from the advancement of recharging infrastructures. Whereas supplying, redistributing, parking,
monitoring, and maintaining the vehicles offers its own challenges, recharging a potentially large fleet of
these vehicles can present an overwhelming complication. Even though it is feasible to have hundreds
of these cars dock into parking spots and use conductive plug-in chargers (as done by some European
municipal electric utility vehicle
fleets seen in Figure 5-2), the
potential entanglement of so many
cables may soon become an
unattractive resolution. Instead,
utilizing inductive charging plates
within the floor of the parking area
can present a clean organized
interface for the many CityCars to

park over, recharge, and exit when

needed. Figure 5-2: Electric charging of Barcelona municipal service fleet

Figure 5-3: Inductive charging pads in CityCar parking lot
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7.A CiTYCAR: SKETCH TO PRODUCT
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7.B  MODULAR ENERGY SYSTEM — POWER PODS

Power Pods
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7.C MEDIA EXPOSURE OF CITYCAR & HIRIKO
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by autonews24 | 2 years ago | 31,634 views

Hiriko City Car de
by AutoMotaTwgerman | 7 monthe ago | 3,199 views

Elektroauto Hiriko: Zum Parken zusammenfaiten TRANSLATE

mmmummmnnmaummmmm
Zum Parken 3uf 1.5 m Lange getaftst werden_ in _

by prie100 | 2 years ago | 46,1385 views

hiriko1’s channel
Mirages Desert Nudes wmv
CHANNEL 1y neiot | 57 videcs | 6 subscribens

Lego EV HIRIKO Concept
This & Lego £V HIRIKO Concept. EV HIRIKO real project s proceeding. Please check If out!
waw. hiriko.com | hope this project will De succesaful .

Dy MasaoHicaka | 6 months 3g0 | 3,068 views

HIRIKO TRANSLATE

Este coche 8s Un NOVedosa bipaza eidctrico, de reducidas dimensiones, destinado
principaiments 3 i3s grandes cludades. £ MIT Beva trabajando en _.

by mirenbengochea | 2 years ago | 104,274 views

Hiriko - The fold-up electric two-seater car for 2013

Hiriko & fuil-sized prototype of the 10BN slectric car st to roll out N 2013, HiNke is two-seater
car that reduces the parking space of .

0 by indiandrves | & months ago | 5,317 views

Hiriko el coche eléctrico vasco seduce en Brus... TRANSLATE

Hasta o momento, Hirko ha fimado contratos con Barcena, Boston, Berfin, con varas wbes
@2 inglaterra, Suecia, Corea y Ecuador. En estos .

by efeverdevioeos | 7 mONMh ago | 55.623 views

Hiriko folding electric two seater car - Tv9
HIriko foiding slectic tWo seater car
by wotelugu | & mONthE g0 | 2.569 views
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MIT Media Lab's folding CityCar

This Tolaing car from MIT Media Lab coukd change the way we bave! In offies. We caught up with
one of the f2am behind & 31 Medla Evoluson's .

MO by menextwed | 1 year ago | 174,451 views

MIT Media lab shows off urban, electric vehicles

MIT's electric vehicies for Urban environments are showcases, inciuding Me foiding CityCar and
ihe slectric bike atachment Known as the _.

M0 CC by nesworworki | 2 years ago | 161,851 views

Why Design Now?: MIT CityCar
Wmmﬁﬂmmnmnmﬂwm,mm
15 a concept vehicle thal combines the two. This two ..

by cooperhawitt | 2 years 300 | 9,126 viess

CityCar Changing Places Group
HD oy MITChangingPtaces | 1 year 3go | 157829 views

mit citycar
by cooperhewit | 1 y2ar ago | 331 views

MIT's CityCar Concept

by Putnvent | 1 year ago | 1,082 views

MIT shows off urban, electric vehicles.mp4

Here's an vehicie which | think will hit the market 5000 | think i MIko 16 c00d uncle-
Bugs. biogspot.com The CityCar or MIT CityCar is an
by bugstan | & monihs 3g0 | 2,843 viaws

Green Revolution - CityCar
mmmuummwmmm.mwmmm
working on the CityCar project. The two discuss the

by gresnivgreenty | 5 monthe ago | B85 views

City Car Apilable - MIT - Franco Vairani - Bill M... TRANSLATE

wara auloalias.com - E1 CRy Car, especie 8e microcar, Iamado tambien smart car, desamodado
POT UN GrUPD G2 Ingeniercs y arquitecios del MIT™y .
by wawautoaliascom | 4 years ago | 12,137 views

KAI Amokk Deep mit Citycar Darmstadt TRANSLATE

Szenefickar on tour KA! § Amoik Deep
HD 4y CitycarDammstadt | 11 months ago | 1.252 views

Hiriko Citycar: Fahrzeug zum Faiten TRANSLATE

www auto-news de Fahmader zum Faflen sing iangst &in Begrif, doch nun gidt 26 ain
zusammenkiappbares Auto. n Bedin wurde das Hirko Cltycsr ...

by autonews24 | 2 years ago | 31,634 views

CityCar prototype explained
A dema af the CityCar prototype a1 MIT Media Lab/Smart Ciiles, featuring an interview with one
of Ihe regearchars working on the project

MO by wamant | 1 year ago | 124 views

CityCar Driving
Haif-Scale prototype showing aff some of the coos SuT 8 can do
by ChrighiiBsa0 | 2 yaars ago | 2,941 views
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7.D HIRIKO CORE FEATURES:

1, Wheel Robots - In-Wheel electric motor module with embedded suspension,
electronic braking, and independent electronic steering system.

2. Front Egress - Frontal entry system that integrates front windshield, driver controls,
and accommodates easy ingress/egress for passengers.

3. Folding Chassis - An actuated folding mechanism connects the front passenger cabin
with rear storage module.

4, Drive-by-Wire - Vehicle control system built upon FlexRay and CANbus technologies.

Characteristics of the Car to include:
5: Communications with GPS integration in the city — Smart Interface inside vehicle
(not interlinked with points 1 thru 4). Plus sensing necessary for autonomy.

General Specifications:

Length (unfolded) = 2700 mm

Length (folded) = 1750 mm

Width = 1750 mm

Height (unfolded) = 1650 mm

Height (folded) = 2134 mm

Wheelbase = 1880 mm

Track = 1534 mm

Ground Clearance = 127 mm

“Dry” Curb Weight = 450 kg

Weight with batteries = 524 kg

Gross vehicle weight= 800 kg

Seating Capacity = 2 passengers

Luggage Capacity = 0.3 cu m (current)

Battery Technology = Lithium nanophosphate
Battery Capacity = 10 kWh (scalable to 20 kWh)
Operating Power = 320 volts @ 30amps

Max. Drive Motor Power = 3.75 kW per wheel (15 kW total)
Drive Motor Torque (cont.) = 136 Nm (per wheel)

Drive Motor Torque (peak) = 185 Nm (per wheel)
Maximum Speed = 70 Km/h

Steering Torque required = 190 Nm (torgue at steering axis)
Steering Motor torque (cont.) = 15 Nm

Max Steering Power required = 1.2 kW

Wheel size = 175/65/R15

Requirements for first prototype (optional features in grey):
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Exterior
- Finished aluminum safety cell
- Folding Chassis - An actuated folding mechanism connects the front
passenger cabin with rear storage module.
- Camera rear view system
- Photovoltaic powering auxiliary functions / comfort electronics
- Keyless front entry
- LED headlamps, brake lights, tail lights and turn signals
- Polycarbonate lower side-panel w/ operable glass windows
o w/ silk printing to provide for privacy for lower panel
- Front ingress/egress system
o w/ safety glass windscreen
o w/ integrate display
w/ detrosting
o w/ integrated wiper
- Proximity Sensing for autonomous parking and drive assist
- Emergency side exit (release latches)

Interior
- Dual drive-by-wire joystick control
o w/ force feedback
- Interior lighting
> automatic
- Adjustable power seats
o w/ extended articulation for front ingress/egress
o w/ seatbelts
- Side panel storage (briefcase, purse, or laptop bag size)
- Speakers
- Open mini-storage (shared use)
- Central/Main infotainment display
o Rear view video display
OLED
- Electronic latches and door locks
- Ignition button
- Drive mode buttons (Standard, Park, O-Turn, Fold)

Rear Compartment
- Storage to two passengers (minimum two carry-on bags)
- A/C unit to provide heating and cooling to the back of passenger cabin
()
- Tail and brake lights

Safety
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180-degree passenger and driver airbag protection
Emergency side panel release

Demonstrable dynamic cabin safety

3-point seatbelts

Reinforced side impact (polycarbonate and steel beams)

Drivetrain
- In-Wheel electric motor module with embedded suspension, electronic
braking, and independent electronic steering system
- Four-wheel omnidirectional steering capability
o O-turn
o Mirrored
o Translation
o Parallel Parking
Anti-lock brakes
Electronic stability control
Electronic brake-force distribution
- Modular, fail-silent wheel robots
- Drive, braking, steering and suspension integrated in wheel robots
- 10 kW-hr Battery Pack in two physically separated, redundant battery
modules
- 15 minute rapid-charge times (Level Il equivalent) at Level 11 220VAC
three-phase line power
- Onboard Level I charger compatible with standard wall outlet
- Zero power use electronic parking brake
- Redundant, fail-operational control system, using FlexRay
Information

Infotainment (Nokia Meego)
o Smartphone integration (Terminal)
o GPS navigation system
o Vehicle Instrumentation (Charge level, Speedometer, Odometer,
Average energy use per kilometer)
o Wi-Fi
o Cellular network internet connection (Edge/3G)
Autonomy sensors (laser field, radar)
Parking assist
Autonomous ability to operate in a constrained environment
o Autonomous parking
Remote driving
o Virtual towing (platooning)

132



T+.E DERIVATION OF HIRIKO ROBOT WHEEL SPECIFICATIONS

Calculating Required Specifications for RobotWheel Drive Motor 6/29/10

Raul-David Poblano
Eduardo Perez
Nicholas Pennycooke

Force Balance Diagram

Fe =mg -
William Lark

F. = Fesin 0 . 2

Fa. = Fecos 6 "

Fr. = F\_- Cn

Fn.=p\"”\.’.CmA(|/2)

Fp=Fgcos @

X F.=Fw+Fga+Fr+ Fu=0
Fvi=-(Fe: + Fuo + Fn)
Fa=Fgsin®
z F,=F!\\+ Fg~'—0
Fuw= - (Fg)

Moment Balance

Sum of the Moments in the Y direction
Mn,=Fw =0

Mn:. == F;.'_m L = 0

EM, = Mwn, + Mg, =0

Angular Veloeity

Sum of the Moments in the X direction
Mv. = Fv. (1)

Mg = Fg. (L)
M. = Fa. (1)
Mo. = Fo.({.) Vm, =r-mo

EMo= M+ Mg+ Mis + Moo= 0 (o n rad/sec)

My, == ( Mg, + Ma. + M)

Torque vs. Speed D.C. Motor Torque/Speed Curve
Motor Torque
T=Ti— W Ts/ 4-8”%‘.
=10
=051

Max Power, P,

1. = stall torque (max torquc)

Torque

Angular Velocity
O=(T.=T) /T

o = no load speed (max rpm)
Omp = 0.5 ©Ow

=0

No load speed, o,

Rotational Speed
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Torque and Power vs. Speed

Motor Power Torquo and Power vs. Spoed
Poe=t1*w
Pw=—(t/o)o"2+10 06 6
P(t)=—-(o/t)t"2+m1 -~ 05 5
'E b
Motor Power: as function angular velocity £ 04 [l g
Pu (@) = —~(1./ @) @ *2 + T2 =0 903 ig
Poee(®) = —(T. / Ou) Oy 2 + T, Wy gn‘z 2§
P@@=—(t./ o) o2+ 1.0=0 (= .
Motor Power: as function motor torque 0 Y T T v T 0
P(t)=—(ou/1)t"2 +mt=0 0 100 200 00 400 500 600
Poee(T) = —(@u / T.) Tar™2 + Ot Tow Angular Speed (RPM)

Pu (t)= (o2 / T) Tu "2 + 0w Tu=0

Torque and Speed vs. Degree of Incline for 800kg Vehicle @ 3.75kW/Wheel

200.00

180.00
160.00

140.00 : o
—+—Speed vs. Degree Incline

120.00 —=—Torque vs. Degree Incline

100.00
80.00

60.00

40.00

Torque (N.m) and Speed (km/h)

20.00 |

0.00

B e e E S S

0.00 2.00 4.00 6.00 8.00

Incline (Degrees)
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Calculating Required Specifications for RobotWheel Steering Motor

Calculating Minimum Steering Torque for a variable scrub radius
Fn= PA
T, = TUsFn

T: = Steering torque

x = steering of fset (scrub radius)
Fn = Normal Force

P = pressure at contact patcl
ws = coefficient of friction

A = area of contact patch

R. = radiius of contact patch

.= (x+ r)uPA
dt,= (x+ r)usP-dA
dA=r-dr-df

dr. = (x+ r)u.P-r-dr-d@

1/2 til idth,
i .= P ﬂ(x+r)r-dr-d9
2 R+xa
n:p.PI (x+7r)r-dr-df
0 =R+x:
newp (G L @
r3  rix\ R+x
r=2mep|(5+ ) LT
Steering & Brake Torque vs. Scrub Radius
1200.00
1000.00 | i - — — — —
—&— Steering Torque
800.00 | T B Braking Torque o
=== tolal torque required
$ 60000 { . .
=,
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Steering Power vs. Scrub Radius per Wheel for 800kg Vehicle

3.50
3.00
250 +
< 200
; ]
o f :
m [} '
> 150 | - VS —
£ ' :
8 i P
® 100 b —
050 | SR e ]
0.00 E?i‘.f;‘l:‘ e e
0 , 0.05 : 01 0.15 02 0.25 0.3
! ; ' ! Scrub Radius (m)
1L19kW  1.37kw 175kW 189 kw
Cyl-motor  Cyl-motor Hub-motor Hub-motor
5%inclin.  0®inclin. 5%inclin. 0% inclin.

Resultant mechanical behavior of “fail-silent” non-functioning steering motor

Required steering axis
Tan @ = Scrub / Caster
O (fail-silent wheel angle) < 5°

Max Scrub radius = (Tan ©) / Caster

Caster =40 mm

Max scrub radius = 3.5 mm

Top view of Tire Top view of Tire

NOT “Fail-Silent” Compatible “Fail-Silent” Compatible
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Steering Torque and Power Estimations (01/26/11)

The following steering torque and power estimates are based on 1:1 gear reduction for Smm incremental
differences in scrub offsets, SRPM changes in rotational steering speed and a given 50/50 weight

distribution front and rear for a 700kg gross vehicle weight (GVW). These estimates will differ with

further changes in gear reduction, scrub offset, steering speed, weight distribution and GVW.

Scrub Offset (mm) @ 5 RPM, 50/50 FRWD Omm Smm 10mm | 15mm | 20mm | 25mm | 30mm
Max Steer Torque: w/ Front Braking (Nm) 170 187 211 243 282 329 383
Masx Steer Torque: w/ Rear Braking (Nm) 170 176 189 210 239 275 319
Max Steer Torque: No Braking (Nm) 170 174 185 204 230 263 305
Max Steer Power: w/ Front Braking (W) 89 98 111 127 148 172 201
Max Steer Power: w/ Rear Braking (W) 89 92 99 111 125 144 167
Max Steer Power: No Braking (W) 89 9] 97 107 120 138 160
Scrub Offset (mm) @ 10 RPM, 50/50 FRWD Omm Smm 10mm | 15mm | 20mm | 25mm 3J0mm
Max Steer Torque: w/ Front Braking (Nm) 170 187 211 243 282 329 383
Max Steer Torque: w/ Rear Braking (Nm) 170 176 189 210 239 275 319
Max Steer Torque: No Braking (Nm) 170 174 185 204 230 263 305
Max Steer Power: w/ Front Braking (W) 179 196 221 254 295 344 401
Max Steer Power: w/ Rear Braking (W) 179 184 198 220 250 288 329
Max Steer Power: No Braking (W) 179 182 194 213 241 276 319
Scrub Offset (mm) @ 15 RPM, 50/50 FRWD Omm Smm 10mm | 15mm | 20mm | 25mm | 30mm
Max Steer Torque: w/ Front Braking (Nm) 170 187 211 243 282 329 383
Max Steer Torque: w/ Rear Braking (Nm) 170 176 189 210 239 275 319
Max Steer Torque: No Braking (Nm) 170 174 185 204 230 263 305
Max Steer Power: w/ Front Braking (W) 267 293 331 381 443 517 602
Max Steer Power: w/ Rear Braking (W) 267 276 298 331 375 432 500
Max Steer Power: No Braking (W) 267 273 290 320 361 414 478
Scrub Offset (mm) @ 20 RPM, 50/50 FRWD Omm Smm 10mm | 15mm | 20mm | 25mm_| 30mm
Max Steer Torque: w/ Front Braking (Nm) 170 187 211 243 282 329 383
Max Steer Torque: w/ Rear Braking (Nm) 170 176 189 210 239 275 319
Max Steer Torque: No Braking (Nm) 170 174 185 204 230 263 305
Max Steer Power: w/ Front Braking (W) 356 391 442 509 591 689 803
Max Steer Power: w/ Rear Braking (w) 356 368 397 441 501 576 667
Max Steer Power: No Braking (W) 356 364 387 426 481 552 638
Scrub Offset (mm) @ 25 RPM, 50/50 FRWD Omm Smm 10mm | 15mm | 20mm | 25mm 30mm
Max Steer Torque: w/ Front Braking (Nm) 170 187 211 243 282 329 383
Max Steer Torque: w/ Rear Braking (Nm) 170 176 189 210 239 275 319
Max Steer Torque: No Braking (Nm) 170 174 185 204 230 263 305
Max Steer Power: w/ Front Braking (W) 445 489 552 636 739 861 1003
Max Steer Power: w/ Rear Braking (W) 445 460 496 550 626 720 834
Max Steer Power: No Braking (W) 445 454 484 533 601 690 797
Scrub Offset (mm) @ 30 RPM, 50/50 FRWD | Omm Smm_| 10mm | 15mm | 20mm | 25mm | 30mm
Max Steer Torque: w/ Front Braking (Nm) 170 187 211 243 282 329 383
Mazx Steer Torque: w/ Rear Braking (Nm) 170 176 189 210 239 275 319
Max Steer Torque: No Braking (Nm) 170 174 185 204 230 263 305
Max Steer Power: w/ Front Braking (W) 534 586 663 763 886 1033 1204
Max Steer Power: w/ Rear Braking (W) 534 553 595 661 751 864 1001
Max Steer Power: No Braking (W) 534 545 581 639 722 827 957
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“pancake” hub-motor (100mm width, 175mm rim) — large scrub radius, 80-100 mm (10+degree inclination too high for omnlirectional vehicle)
None compatible with “faitsilent” robot wheel control system

8

“pancake” hub-motor with planetary gearbox (85mm) — unreasonable scrub radius and inclination
None compatible with “failsilent” robot wheel control system

i3

-

“sausage” cylindrical-motor - small (25 mmy to zero scrub radius (5.6-degree kingpin inclination)
compatiblewith “fail-silent” robot wheel control syste

Zero scrub radius, but Maximum inclination requires a
inclination too large ~60 mm (58.369mm) motor width

Zero scrub radius with §
inclination
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7.F

10

11

ROBOT WHEEL ANALYSIS

Hiriko Core Features:
1. Wheel Robots - In-Wheel electric motor module with embedded suspension, electronic braking. and independent electronic steering system.
2. Front £gress - Frontal entry system that integrates front windshield, driver controls, and accommodates easy ingress/egress for passengers.
1. Folding Chassis - An actuated folding mechanism connects the front passenger cabin with rear storage module.
4. Drive-by-Wire - Vehicle control system built upon FlexRay and CANbus technologies.

D
Robot Whee! Review

E
September 23, 2010

fadinn)

H
2011 Review

ispring 2011)

[ First we must ensure that the companents of an

b be
housed in a different region than laterally in-between the
| wheels (not in powertrain module region). Brake pumps
and actuators may have to be situated on main chassis.
(left or right cavity). Howewer, in the case of the steering

Battery space s compromised from & a solution must be found incorporating
potential rack-&-pinion, and even more ﬁmnl‘wm "_'"_L 2 Leither a geared servo motor or a pivating linear actuator MMMr:“ummx:mwr
battery space from hydraulic brake sub- Y Esch i giocaiy s votime | [Ibehaving a5 2 spi rack-8-pinioa) on each robot wheel Baary conwariaem sy
o [t lines, electro g A single rack-&-pinion bisects the battery compartment 2
H lactuators) | space of S00mm x 600mm x 165mm. and compromises the modularity of the vehicie. The only less into battery module volume
£ available place for a rack-&-pinion would be behind the
£ po module (400mm behind the wheel canter
g dhe) with d to the module to
g transiate the motion 1o the wheels; this will increase the
length of the car, an an undesireble cansequence, which
the Hiriko car concept.
ned ,':A“_ ‘__H.' possible, the battery core is built on 3
E e drawer system that enable easier access
battery slide lost (12 “HUB" proposed rack-&-pinlon ey ing front and the rear of the [ &3) no conflict with battery siide (see above, H3)
steering component is added. This creates  cabicha; Thin bscoimes cicial for ropid
ifficult for servicing and battery [€3SINE | o i0g 1hoagh the Hiriko battery
i |ieasing model
opportunity to reduce because of the T s
P i S o focust the  [Retatiety tewer moving pats previous
part count robot wheel in order to However sach is ety
feore febicta. o e oy recuce the components in the vehicle's body. |custom and complex
3 fassmbley)
Must of which systems
T &
a (Overall more integrated — compromises v jes for product fledbility and Designs. of module
5 modularity for businesses of assembly and |decoupled and modular since it must be tightly designed tuning of the steering components. Complete
integration s M S e Ll vl sl BTN however, th -
beiow) GOy WBCIS it e may remain centrally such swing arm pivot and (2) colover suspension
3 may be i for a fully attachment.
electromechanical system
= The use of slectromechanical beakes may
be more efficient since no hydraulic fluid
wm“ gy |needs to be pressurized by a pump to
; saist and .
ik rakes, rack & pinion. e st e st om e iy s robot [ vt Wectons dre el coniames i ot
S L [promaotes potential future in axial fux et |whee! - the suspansion and steering integration b oot S e s o ey
E] " used MOTE | e the potential for patents and
[in the
braking, and steering systems.
The .
Continue to push for tighter packaging in/near the wheel oot "'"mn_'__
Kooy kil bty S nudMuvndlldmm-‘:mlh:' ’ it b i G aa o
; ot bcs lomeher e wheel. Does ot that must be local will provide :!-m:mmnwu“ﬂ;:htm
from "HUB" " |depend on Ithe vehicle with greater design flexibility (for example - 2 e & b it g
#)  assemblies located In the vehicle body.  |rack-&-pinion is fairly constrained as far as its location, et s
however a brake system's components may be placed uillalalllr.mnnndll S
practically anywhere in the vehicle}
Leading/trailing arm occupies relatively less
Double wishbone suspension system uses  [straight Must leave free space for connectivity, sensors, and for
wishbone volume |more space space for other components or wiring  |ECUs numﬂ:uﬂmm.({:l)mm
;. (Cables will flex at two points across Cable must flex ance at and designing sion and steering unit
eonnectivity wishbones and pivot/flexfor steering  [steering block simukaneously with connections ingss e pofe ot 3 coniction
E [wishbones are only 165mm and 175mm i |\ o st o stomn inside the rim
L gth 300mm}.
< ® Xid
Eﬂ |creates a tight arc mavement - when w::"l “m:_
| moving vertically the & ;
lup to BOmm; this would create a great W"'"‘ ey
suspension travel [under braking instability. Longer Solution TBD

this effect and
behave closer to a typical car will result in
more space lost from the passenger cabin,
batteries and powertrain module
packaging.

dictated by the rim diameter. 150mm
b 200mm

by either (1) using a 17" rim or (2) using a
16" rim and repositioning the drive
motor perpendicularly to rim face
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13

unique

New “Basque Robot Wheel, BRW" ventureis
underway

14

15

development/manufacturing

16|

17

18

19

Vehicle level part count can only be drastically reduced if most (aimoast all] function is handled locally in a comer wheel module. Hydraulic
many

g
[=]
c
5 |ifficuty to levels of d g [Suspenson, stesing and brakn s [, 5o elopment of unique and compact w"‘*’ ‘"‘“’w"““':‘mw'““m“" s
= |duplicate pei g P v % Sanox collaboration and by prior supplier research
solution too easy to duplicate, easy to beat o | J
hmuummm
suspension g o Mmﬂﬂum i " Single degree of freedom
development costs
[Off-the-shy
5 |development costs. Necessary compact
8 mmm’:-mh traditional b Uses back-drive capabikties of hub motor for
® and " primary braking. Drum brake is also
g |brake “blending issue.” There isa R el Schaig scommietions 15 avarmin integrated into hub motor assembly for
resultant lag in transitioning between the redundant fail-safe mechanical solution.
[hydraufic brake and drive motor brake
|when engaging regenerative braking.
|Highly inefficient energy recovery.
Fﬁ sterm will require of |Pursue drive by wire steeiing system Lhat provides most i
steering dependent or rack-&-pinion rack-B-pinion is not e for omni- and fits steering units permit boh O-turn & 4-wheel
ire additional to
The objective of the robot wheel isto concentrate the | st s
; [complexity in order 1o drastically reduce the complexity b4
:umple:w |less complex, requires more subsystems | more local complexity for simpler chassis [and part count of the rest of the vehicie. This will require Hac no S k I;NN
g trade-o |mare upfront investment, but will result in pay-offs in the U O
g ran. jcomplex to manufacture as it is responsible
E for integrating all drive sub-systems.
2 [Vehicle level part ek poor o
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count ly result in highly h uire
[ “wet” and/or complex sub-subsysterns core drive mechanisms are housed inimize “wet* sub Sininatl
i i &; el o silicaaa
Jluids.
. aff-the-shelf | wertical - custom core companents
Integration M o ition) (mai of the module) {TBD by Hiriko Cars group)
0-turm is necessary for tight perpendicular parking, a
|O-turn achieved by all four nique fe that h L dina
|wheels ~50 degrees (final degree is production vehicle. This new feature provides not only.
ks ol I P
Q:tum i [ Total sweep of whee with a 20-degree |{EV or inthe market. This also alows fleet | ">
|angled arm) to a + 40-degree sweep, 50 fowners and operators to increase fleet capacity or better
|degrees total utilize valuable urban parking space. The O-Tum allows
joff-street parking benefit of almost 8:1 for EV fleets.
|O-turn achieved by turning ail four O-turn may result in a much safer driving experience since
O-turn safety not enabled |wheels 60 degrees (final degree is almost never -canalways  |enabled
better vision of the direction he or she is moving
€
2
H [Maximum omni-directionality enables new parking lot
o {model for Mability-on-Demand. This will make it not only
£ easy to park at a Mobility-on-Demand station by solving
2 o the vehicular circulation problems, it helps to achieve 3:1
2 Parking | i achieved by turning all four
= m IB ing lot Lié 50 {final 5 nh-,nh:rmu‘&plm_:; (s00 3.4.1.C Spce Savigm)
N dependent on wheelbase-track ratio) P iz
by the of the feature
because the vehicles cannot be strung together or packed
?‘_:::‘:ml‘”’:“m Since skid steering cannot be executed with precision,
) ) (skid steer the requires a drastically different wheelbase-track
skid steering A 'll mhhnllnl‘hmd: " Ino skid steering proposed | proportion, requires lower coefficient of friction, and no skid steering enabled (not necessary)
Bk i ricti el causes significant wear on the tires - skid steering is not
not be g an option for executing O-tums with Hiriko. (indy donuts})
[ Two degrees of reedom keeps wheels Two degrees-of-freedom (DOF) is not necessary for such a
degrees-of- more perpendicular to ground when Single degree of freedom - simplerto  [slow speed city vehicle {second degree typicallyonly |75 deree of ""‘I""M""'d_“;wm
freedom (DOF)  [bankingaround a tum; however, each  [integrate local steering actuator |provide 1-3 degrees, which the tire flex can and will m"'mlm:':"'d:dmm i
8 wheel travels lateralty up to B0mm [compensate for anyway} (Ctroen 2CV and VW Beatle) Ml e
:
a |150mm (100 bump and 50 rebound) |The ft is 100mm
5 .- travel may be increased to 200mm by  |free bump travel {with 20mm bounce bumper
2 suspension travel [200mm (100 bump and 100 rebound) leither (1) using a 17" imor (2jusinga  |engagement beginning at 80mm) and 100mm rebound or |Sufficient supension travel {180mm)
g | 16" rim and repositioning the drive |"droop.” Final suspension mechanism will need to
3 |motor to rim 200mm of L
z face.
Dynamics / (0 be analvzed - second degree of freedom [ 2 ﬂnn;"-imhll o To be analyzed - utilizes similar suspension
Handling with short wishbone arms causes excessive i radationaliie whait Bkl |(TBO) see above on DOF section, F25. systemns found in older Voltswagon (Beatia)

[1ateral displacement)

and Citroen {20V} vehicles,
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33

35

Modularity

37

39

Although this will be a relatively slower speed vehicle, we
must ensure the Hiriko have enough “low-end” torque to

a the driver that it Is
maMM[Wlpﬂvﬂwh

Meets drive specifications established for

costs and lower

costs for fleet
operators.

(need to review axial flux motor (need to review cylindrical motor important and the ability of a vehicle to quickly accelerate
acceleration g s sy i b hivingl O abiliet ke gkw'm:vn::;whkm{s- 3.3.2 Evolution
o [that due to power restrictions, vehicle will only have good 4
g acceleration up 1o 20 km/h. After this the vehicle feels.
s siuggish (slow to accelerate]. Need to discuss options for
g power boosts (>15kW far <1minute 7).
S
Must ensure Hiriko does not only satisfy minimum
necessary torque, since calculations are only for the 450kg|
Drive torque can be Increased with either
capabilities for mwdmmmﬂ-nmp:m potential to change gear ratio to adjust r-:m;t:;mmdumd-u-. Robot Wheel hwmhm‘:‘ "‘mb oy
larger / heavier i i o - should be wmu-wwid-m size would need to be increased to do so.
for
[that only use 2 robot wheels.
4 wheel independent by-wire system
independent | g Sinion couple whesisin pakrs whreremtly i bk in ocndnscy i Yo be examined (see F30)
2 |compensation
e |case of missed signal or malfunction
3 Mu on fail safety measures and
S d (! wheel a safety group.
34 " may be able 2to3 actustor enables simpler and less-
o |cemporare rack-&-pinion to enable override or expensive “fai-slent” control system (a3 To be examined (see F31)
ce functh p |opposed to “fail tolerant” system that
requires double ECUs).
—ful 2 =
A neus rive-by-wire actuation ol clopandanticical diw:by-wivs Mmm‘mwm g ; wocilbyaies =t
compatibility  [proposed? o oo jusble future feature that will help distingulsh this car
from the competition.
[ The modular suspension comer approach will enable a
shorter assembly line thereby reducing cost. Plug 8 play
\Wishbone suspension requires assembly enables small simple assembly shops/lines. This
lindependent component assembly and not anly th d assembly of
for coll-over, rack-8-pinion and data [the vehicle, but also expedite servicing for fleet owners | Two connection points - as simple as MIT
plug & play requires tuning/adiustment, hydraulic |8 power lines and operstors that value high vehicle utiization and ease [iniial proposal
f brake requires bleeding ...in addition to Lof service (a core market for Hirlko). Final specification
5 power & data lines ishould shot simple
ﬁ L connection, data & power lines, and quick release
hydraulic brake line
Current *HUB" comer-unit proposal
it B B wimilly actions (3 | T Proposal e s Ja e = 2 [Final module should require 3 actions (1 1+1  |Requires 3 actions (2 mechanical + 1 power &
attachment points actions (1 mechanical + 1 power & signal
mechanical + 1 brake fluid line + 1 steering inel. | power & data line + 1 hydrauic line) signal line).
arm + 1 power & signal line).
uwmmnnmmumw
x Proprietary module e ‘- unique to give Hirlko a long term
Z|proprietary? _ |keeping the module and interface as Iﬂ.ﬂ.mnwwﬂmm JEore Snabing oo s PRty
B unique and proprietary as possible will
g colbover, hydraulc brake A< 0., tne Robot Wheel module provider = =
a —vuy.ﬂuﬂlm]m-hwwhmm
E |technology lopen and wuinerable to imitaticn ensures business of Users [Hub motor is developed and controlied by
3 servicing, and upgrading of the unit o g
lor fleet with  |core module supplier
. {sonifar b0 apple's X0-pin comector). Lo e certified hardware:
Under less than ideal servicing conditions,
Plug & play abilty allows fleet ownerto |Keeping the robot wheel as modular as possible enables a
m“fmm 2 s . rapidly remove old unit, snap on the new new ‘model where cormer units can |Highly modular - plug & play enabled. ideal
il s el unit [and ship the old unit back to Hiriko [be rapidly switched when necessary keeping vehicleson  |for fleet sevicing and maintenance.
inading of the hydraulic brake chrouk. Thisl_ oy the road and in service for the maximum amount of time.
is a time and cost consuming operation.
Maintaining the avallability of vehicles is especially crucial
& for the fieet and Mobility-on-Demand services, in which )
3 Ideal for fleet service because of few
2 |minimal |vehicles are used much more frequently and require
‘; Sowntime (see above four points D37) (see above four points £37) i i Ngher ital | mechanical connections for complete drive

service shops

The patentially high part count only
current P servicin
models.

service full module

|An all-in-one unit encourages business to

INew business of module servicing shops, not parts shops.
A reduced part count and speclalized modular vehicle
|design approach can funnel the servicing of the

Hirlko-Cars.

Illllm viable vertically integrated Mdﬂh

An all-in-one unit encourages business to
service full module
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7.G COMPARISON OF STEERING MECHANISMS PROPOSALS
April 7, 2011

Module of the car:
Robot wheel — Steering system
Problem detected:

Due to the SAPA steering system is very complex and expensive, it has been determined
that is required to develop some different proposals to use as a backup solution for the steering
mechanism that will be implemented in the M1.

Background:

Reference “Derivation of Hiriko Robot Wheel Specifications” document (Appendix
section 7.C) in order to understand the torque requirements, concerning the dynamic study of
the steering system in static conditions (parking — worst case scenario) from -20 deg to 52 deg.

Requirements:

Gross Vehicle Weight: 680kg / 1000kg

Steering Geometry: 6deg Kingpin incl / 20mm Scrub Radius / 18mm Caster Trail

Steering Compliance: From -20 deg to 52deg with 12MPa of brake
applied.

From -20 deg to 52deg without brake.
Comparison Chart:

At the end of the document it is described a chart that compares the hard points in
terms of power requirements, packaging volume, weight, cost, commercial availability,
advantages and disadvantages of the different steering options.
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C cial comp assembly of motor and reduction

Designed by SAPA

NAC harmonic drive & MagMotor assembly
Designed by Raul-David Poblano
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Half rack & pinion with vertical motor
Designed by SAPA, MIT, & Epsilon

(representation of half-rack-&pinion
device final geometry to be
developed)

Linear actuator assembly
Designed by William Lark
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7.H  HIRIKO DRIVER INTERFACE OPTIONS
1/26/2011

In order to narrow down the scope of potential drive-by-wire interfaces for the Hiriko
demonstrator/show-car, the following document outlines two basic approaches - (1) joystick and (2)
yoke/wheel. While each have their benefits and drawbacks, the focus of these proposals highlight the
core hardware and functions for each scenario.

(1) Joystick potential benefits

- Off-the-shelf "ready" robust and reliable hardware: Feadily available in the market, used in
construction vehicles and disabled assistance cars

- Simple and self-contained: Does not require additicnal hardware or actuation

- Existing markets: Already homologated in handicapped/disabled vehicles and common to
young generations.

- Complements front entry/exit: Having the joystick solely positioned in the middle console
reinforces the spacious minimal cabin, and keeps front open
Joystick potential drawbacks

- Significant interface adjustment: Not commonly used by most drivers and must be easy to
adjust to within seconds

- Market acceptance: Drivers must feel comfortable and be willing to accept new interface

IO foactinog 1inAars v o valic 3
{ CA ent testing under wdy (O valldate

*note - Single central joystick proposed as solution from previous "Joystick & Screen Location” study
below (page 4).

(2) Yoke/Wheel potential benefits

- Resembles common interface: Whether airplane yoke or wheel-like interface, all drivers are

accustomed to similar controller

- Dual hand control: Can be drive 1 hands at any time

- Integrated body controls: The cei can al se a touch screen and/or
buttons for vehicle body controls
Yoke/Wheel potential drawbacks

- Requires development: No off-the-shelf hardware. Developing such a "mission-critical”

reliable component requires resources, experience and time

- Requires articulating (moving) extended arm: Noving arm necessary to switch position of
nterface and park in middle console for entry/exit.

- Frontal barrier: Contradictory to frontal ingress/egress, and must be accommodating to driver

displacement in front impact/crash scenar
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Driver interface Option I, Single yoke/wheel control mounted on rotating para

Ambient lights on left
and right pillar for \-\
warning/info
Central
Infotainment
touch screen

/
/
f
l i -
'\Jngress,’!gress handie
Rotatable Driver Interface

3 positions: left, middle
(parked), right

Drive-mode knob

Body control & Adjustable middle
indicator (touch) screen console on rails

=
Note, no front display on door:

Intelligent ambient lighting placed in the interior A-pillars may _/"/
supplement/replace the need for the front display on the door ._/"'
-
This keeps the front door simple, and the driver view open
Other technologies can still remain optional if desired, such as
OLED or projection
(Option (I continued)
Rotatable Driver Interface.
3 positions. left, middle (parked), right /
/
/
Body control &
w indicator (touch) screen

Rotating parallel bars keep driver
interface in oriented correctly no
matter what position

Drive-mode knob

= 5
~ —
Ingress/Egress —
handle

consale on rails

e

\/

Adjustable middle

llel bars

Central
Infotainment
touch screen

e

-

3

S

Driver interface rests
s upwards in “Park”
'

Rotation axis

&

I e e

Rails for middle console




7.1 CITYCAR FOLDING CHASSIS TECHNOLOGY

Dual Four-bar linkage system for folding vehicle chassis

William Lark, Jr.
Nicholas Pennycooke

October 17, 2011
Summary

This document serves to describe the invention of a vehicle chassis that is capable of reducing
its footprint by use of novel linkage and actuator geometries. The dual four-bar linkage
mechanism is used on the MIT CityCar concept and provides one of the essential features of
the vehicle - the ability to fold to reduce its wheelbase for overall footprint reduction. This core
function is achieved by integrating two 4-bar linkages, activated by one or more linear actuators
positioned in parallel. The dual 4-bar linkage and linear actuator(s) work in unison to fold the
vehicle when parked while first providing the ability to maintain full maneuverability in its folded
and unfolded state, secondly a fail-safe static system, and lastly a rigid but transformable
chassis. This functionality is enabled by utilizing drive by wire in-wheel electric propulsion and
steering systems, thus negating the need to conform to traditional vehicle architectures.

Specific to this invention:

1. Flexible Geometric relationship that allows for the smooth folding of the vehicle and
dynamic adaption to various vehicle types and sizes. (Elements of the system
developed have been transposed to allow a European “micro-vehicle” or “heavy
quadricycle” class vehicle to fold).

2. Variable linkage proportions which can be fine-tuned to the specific vehicle’s
packaging constraints and design goals.

3. Binary state actuator integration allowing for fold/unfold initiation that occurs in a
largely transparent way to the operator of the system.

4. Implications for how future electric vehicle chassis and powertrain architectures may
be designed.

3D CAD Models showing design evolution
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Background

The primary purpose of this invention is to enable significant reduction in the footprint of
vehicles used in an urban environment. Although dramatic reduction of the vehicle’s size may
prove insignificant in low-density suburban and rural areas, it is of great benefit in densely
populated urban areas where space for parking is scarce and land values are high. The
significance is further magnified when considered in a shared use system, where the
maximization of both land and vehicle utilization is critical. The cost to owners for utilizing
parking and to cities for providing street parking is much higher than generally realized.
However, the CityCar's footprint is significantly smaller than a typical car when it is folded,

providing the potential for new business and user models.

CityCar utilizing dual 4-bar linkage to fold for primary function of wheelbase reduction

€
£
Features: 8
1. Reductions up to 40% of the total unfolded wheelbase .': : _ v i
(depending on linkage geometry). ~ T
N 8'-2" (2500 mm) 4'-11" (1500 mm)
2. Full drive maneuverability during any state of the fold ) .
(folded, unfolded, or any state in-between). CityCar (unfolded) CityCar (folded)

3. Goods in rear compartment, as well as batteries in front and rear modules, stay level to the
ground because of relatively consistent angle position of rear compartment (maximum variation in
tilt ~ 5 degrees).

4. Reduced energy consumption relative to other folding mechanisms since the majority of mass is
not lifted

5. Eased front passenger entry and exit when folded

6. Maintains relatively low center of gravity (preserves stability when folded)

7. Mechanism is compatible for potential front and rear impact energy absorption.

8. Complete control of fold (speed and position) throughout intermediate states.

9. Chassis rigidity / structural integrity from 5" linkage (Linear actuators) in 4-bar-linkage system

10. Utilizing a non-back-drivable actuator mechanically stabilizes complete system which eliminates
energy usage and prevents chassis collapse failure modes to keep vehicle locked in various

positions (auto-lock 5" linkage)

11. Chassis behaves as rigid body in zero-power/power-failure situation
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Technical Summary

The invention integrates two 4-bar linkage systems that tilt the front passenger cabin forward while
simultaneously contracting its rear storage cabin inward to significantly reduce the vehicle's
wheelbase (up to 40%, depending on linkages and vehicle packaging constraints). The dual 4-bar
linkage also functions to reduce the amount of mass that is lifted when folding the vehicle. The
majority of heavy components (batteries, motor controllers, and other powertrain components)
remain on the powertrain linkage cross members and are not elevated during the folding
process. This significantly reduces the amount of energy consumed during each fold. The
geometric relation and shared linkage between the front and rear 4-bar mechanisms not only work
together to fold the vehicle, but also (1) tilt the passenger cabin about the front wheel axis which
enables eased front ingress/egress.

The invention has been designed specifically to allow the vehicle to drive and steer normally in both
the folded and unfolded position. The invention can be broken down into two sub-systems - the
primary four-bar linkage in the rear and the secondary four-bar linkage in the front of the vehicle. The
purpose of the rear four-bar linkage is to enable the above described reduction in wheelbase. This
subsystem also acts as the main structural component, tying the front and rear chassis assembly
together. The purpose of the front four-bar linkage is to first enable the vehicle to be driven in both
folded and unfolded positions (as well as any point in between these two states) and second to keep
the component mass low. Connected to the rear four-bar linkage, the front linkage system maintains
the required angle relative to the ground needed to allow the steering mechanism to function
properly. Geometries are chosen that require no further actuation to the front linkage mechanism in
order to operate, as its motion is tied to that of the rear linkage.

The overall assembly is electro-mechanically driven by an integrated push/pull linear actuator, which
brings the front and rear wheels towards each other, entering the ‘folded’ state. Reversing the
actuator pushes them back to their original wheelbase, returning to the ‘unfolded’ position. In
addition to folding the vehicle, the actuator acts as a 5th linkage in the rear mechanism - providing
added structural integrity and static rigidity. The non-back-drivable type of linear actuator
incorporated firmly locks the assembly when power is not supplied to it, allowing the folding
sequence to be halted at any point while maintaining the current angle of cabin tilt. A non-back-
drivable actuator is not required for the system to achieve work, but does offer the above stated
significant benefits. The system is also compatible with other non-electro-mechanical linear
actuators, such as pneumatic pistons; however, the preferred assembly utilizes electric linear
actuators because of the pure electric platform of the vehicle (in this case, the CityCar).

.

A : B s C

3D CAD Model exhibiting initial designs of chassis in (A) unfolded, (B) mid-fold, and (C) fully folded positions
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Asymmetric front and rear
powertrain linkages —
earlier design

Dual Four-Bar Linkage
Folding System shown in
relation to CityCar EV.

Simplified kinematic
outline to illustrate
geometric relationship
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Symmetric front and rear
powertrain linkages —
recent design

Dual Four-Bar Linkage
Folding System shown in
relation to CityCar EV

Simplified kinematic
outline to illustrate

geometric relationship
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Description of subassemblies and parts

The invention consists of three main bodies assembled with linear actuators to create a
synchronized folding system that tilts the vehicle about the front axis, pulls in the rear axis to
reduce the wheelbase, and keeps both the front and rear powertrain level in orientation.

Asymmetric front
and rear powertrain
linkages — earlier
design

Symmetric front and
rear powertrain
linkages — recent
design

- 1. The primary 4-bar linkage is located at the
rear of the vehicle. It connects fully to the ladder
chassis and its main purpose is to lift and tilt the
vehicle forward to reduce its footprint. This rear
assembly is actually comprised of three linkages
with its fourth being the ladder chassis. See
Figure X for corresponding part labels The
following linkages serve unique purposes:

o (1A) The lifting linkage is a major
structural member that supports the
majority of the vehicle's rear load when
folded and distributes this load directly
to the rear powertrain linkage (1B),
which subsequently provides mounting
points for the vehicle's robot wheels.

o (1B) The rear powertrain linkage supports (at least half of) the components
responsible for powering and driving the vehicle: the battery module, motor
controllers, and robot wheels (suspension, drive motors, steering system, and
brakes). Therefore the base must be contrasted robust enough to handle both
lateral and torsional forces and vertical loads directly from the weight of the
components. The axis of the connection point between 1A and 1B is centered on
the rear wheel axis, so as to minimize excessive torque requirements when
folding, and subsequently rolling the wheels forward.
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o (1C) The adjusting linkage provides significantly less axial load support as most
of it is provided by the lifting linkage that connects the vehicle chassis directly to
the rear axle. However the adjusting linkage does significantly assist with
torsional loads, orientation of the powertrain linkage assembly relative to its
vertical axis (keeping it straight, preventing twisting about the z-axis), and
leveling the powertrain assembly in both its folded and unfolded state. The
adjusting linkage serves dual purposes as a section of it also serves a one of the
linkages for the secondary 4-bar assembly (1D), so that as the rear primary 4-bar
linkage begins to fold the front secondary 4-bar linkage assembly is
simultaneously activated. The length of 1C therefore controls rear module ‘dip’ or
change of angle mid-fold, as well as front module motion based on connection
point to 2B.

- 2. The secondary 4-bar linkage is located at
the front of the vehicle and its main purpose is
to rotate the front powertrain relative to the
ladder chassis, keeping it level to the ground.
Although this section of the overall assembly
does not serve to reduce the vehicle's
wheelbase, by keeping its powertrain level to
the ground it permits the vehicle to maintain all
driving capabilities while folded (even O-turn,
translation, and 4-wheel steer, in the case of
the CityCar). Two of the four front linkages are
embodied by (1) the ladder chassis and (2) a
section of the adjusting linkage from the rear
assembly. The remaining two linkages
coordinate to orient and support the font
powertrain linkage:

o (2A) The front powertrain linkage behaves practically identical to the rear
powertrain linkage supporting crucial drive components. However this linkage is
connected directly to the ladder chassis along the front axle, keeping it more
stable and accurately oriented relative to the chassis. In particular models of the
dual 4-bar linkage folding chassis the front powertrain can be identical as the rear
powertrain to increase modularity, improve economies of scale and reduced cost.
This is however not a requirement for the system to work.

o (2B) The synchronizing linkage behaves similar to and is connected to the
adjusting linkage. Because the front powertrain linkage is connected directly to
the chassis, the synchronizing linkage does not require as much lateral and
torsional support. This linkage can in some cases (as done in the previously
shown prototype) incorporate a length adjustment feature to allow tuning
between the front and rear powertrain once the total invention is assembled.
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3. The ladder chassis is comprised of two parallel
long-running members with lateral cross-members
that provide the main structure for the vehicle body,
seat harnesses, and in reference to the folding
system, the pivot connections for each of the 4-bar
linkages. From front to back, there are three main
axes about which the primary and secondary 4-bar
linkages pivot:

o (3A) The front axle pivot is aligned within the
center of the front wheels and provides the
connection to the front powertrain linkage. This
is done to achieve similar torque reducing
effects as done between 1B and 1C. Along the
axis, the left and right pivot connections remain
separated allowing space in-between to accommodate the battery module.
These front axle pivot connections must be relatively strong to transmit and
distribute the loads from the wheels to the chassis.

o (3B) The adjusting linkage pivot may remain relatively smaller than the other
two since it is transmits lower axial loads.

o (3C) The lifting linkage pivot provides the connection to the lifting linkage and
must be relatively strong to handle the transmitted forces from the rear
powertrain assembly. This pivot should be designed at least as strong (if not
stronger) than the front axle pivot since it must handle significant lateral, torsional
and axial loads over a longer moment of the lifting linkage.

4. Linear actuators are incorporated into the
primary 4-bar linkage at the rear of the vehicle to
lift and lower the rear of the vehicle. There are
various orientations in which the actuators can be
placed. The placement is usually dependent on
two factors — the stroke length of the available
commercial actuators, and packaging constraints
within the design of the particular vehicle.
Depending on the power system(s) available on
the particular vehicle, various commercial linear
actuator types are compatible for use (electro-
mechanical, pneumatic, or hydraulic). In the case
of the CityCar and subsequent prototypes,
electro-mechanical Acme screw type linear
actuators proved best for a number of reasons. First, requiring only electrical power to
extend and withdraw the actuator rod is opportunely compatible to the core powertrain of
an electric vehicle. Other pneumatic and hydraulic type actuators require peripheral
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subsystems such as pumps and/or compressors. Second, there are packaging benefits
of the electro-mechanical linear actuators, as all required components are built in to the
cylindrical unit. Thirdly, the actuator does not need discreet position reporting
(potentiometer, encoders, etc.) other than end-condition limit switches, as the current
design calls for a binary fold/unfold system. This aids in simplifying the control of the
invention. Lastly, the non-back-drivability of the acme screw type linear actuator adds an
important level of stability and safety to the folding system. The actuator behaves as a
5 link in the 4-bar linkage system and locks the assembly rigid, limited only by the
holding force before failure, rated by the specific actuator used. Therefore the system
only moves when the linear actuator receives power to expand or retract, consequently
folding or unfolding the chassis. Linear actuators to fold and unfold the chassis can be
placed in multiple orientations as shown.

“push/extend to fold” type linear actuator, attached “pull/withdraw to fold” type linear actuator, attached
between lifting linkage and powertrain/adiusting ioint between lifting linkage and chassis

“pysh/extend to fold” type linear actuator, attached “pull/withdraw to fold” type linear actuator, attached
between rear powertrain linkage and chassis joint 3C between chassis and powertrain/lifting linkage joint
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Developing the Dual 4-Bar Linkage Vehicle Folding System

The linkages are attached to each other in the following manner:

Primary 4-bar linkage

The lifting linkage, 1A, is attached to the ladder chassis at pivot 3C.

The adjusting linkage, 1C, is attached to the ladder chassis at pivot 3B.

The opposite ends of both the lifting linkage and adjusting linkage are joined together by the
rear powertrain linkage 1B.

Secondary 4-bar linkage
The front powertrain linkage, 2A, is attached to the ladder chassis at pivot 3A.

The synchronizing linkage, 2B, joins the front powertrain linkage to the adjusting linkage at pivot
1D.

If non-back-drivable actuators are not used, it is recommended to incorporate locking
mechanisms at the end states of folding and unfolding. Registering rest areas, such as bumpers
between the mechanical elements, can be used to help distribute the various loads, assisting
the assembly to behave as one body when in its driving position.

When developing the invention, multiple manufacturing processes are compatible. Initial
prototypes have been developed by the following methods: (1) CNC laser-cut wood assemblies
(2) machined and welded aluminum framing, (3) member and joint aluminum space frame, and
(4) blended construction of aluminum and composites (carbon fiber). When feasible, other
automotive manufacturing practices such as metal stamping, casting, or forging may also be
used to develop the folding system.
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Although the invention can be fabricated in multiple manners, one of the key aspects of the dual
four-bar linkage folding system is the relationship between the lengths of the linkages. For
small vehicles with wheelbase lengths similar to the CityCar (1600-2100mm, such as the Smart
ForTwo coupe and Toyota/Scion IQ), the following link proportions work well to reposition the
chassis to a suitable inclination when folded.

@‘@

X = wheelbase unfolded

Chassis at mid-fold (symmetric front & rear powertrain

Proportion of wheelbase

length, x Ersc:;)n;?ttigﬂ
Symmetric | Asymmetric
: . range
powertrains | powertrains
1A. 0.36 0.43 0.35-0.45
1B. 0.32 0.36 0.30-0.38
1G. 0.25 0.30 0.23-0.32
1D. 0.07 0.04 0.03-0.08
2A. 0.32 0.12 0.10-0.38
< > 2B. 0.18 0.28 0.16-0.30
_ 3B. 0.43 0.35 0.33-0.45
X = wheelbase unfolded 3C. 0.64 0.58 0.54-0.68

Linkage proportion ranges are researched
recommendations, not limits.

Chassis at mid-fold (asymmetric front & rear powertrain linkages)
159



Advantages over Existing Methods

Previous folding chassis concepts for the CityCar have
been developed at MIT, and other commercial concept
concepts have addressed the issue of vehicle folding for
reduced space while parking (reference: Renault Zoom
1992). However, most of these concepts exploit a single
pivot arm to lift and tilt the body of the vehicle. This method,
while perceived simple, is by nature very limited and poses
greater technical difficulties in execution. In order to achieve
the wheelbase reductions garnered by the proposed
invention, a long single pivoting arm is needed, which will lift
the majority of the vehicle’s mass up significantly, and
restrict chassis packaging and steering maneuverability.
Currently no other patents have been found providing a
similar solution to reducing the vehicle's wheelbase. The
dual 4-bar linkage system instead decouples the rear cabin
onto the rear 4-bar mechanism which conserves energy
since it translates many of the heavy load components, all
while maintaining the relative kingpin (wheel steering axis)
position - giving the vehicle total maneuvering capabilities
during any state of its fold. Also early empirical experiments Previous single-pivot folding solutions on
of scaled models show that the distribution of weight between CityCar and Renault Zoom concepts
the front and rear cabin allows the folding mechanism to behave as an energy absorbing
component for front and rear impacts/crashes. Although more thorough and extensive testing is
required to prove commercial viability, preliminary testing shows that exploiting this type of
folding chassis in a front or rear impact scenario may be able to reduce the rate of the
deceleration in the passenger cabin. Particular linkages may also be strategically designed to
compress or fail, acting as dynamic crumple zones, thus reducing crash force transmission to the

passenger cabin.

Maintaining low center of gravity with balanced
batteries and storage compartment

Comparison of relative crumple zones on a

regular small vehicle chassis versus that of the
proposed invention
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Commercial Applications

The invention is targeted towards urban mobility. Although there are applications in the automotive
market for individual ownership, there are greater benefits in fleets for mobility services. Giving
convoys of vehicles the ability to fold has larger ramifications when it comes to vehicle sharing,
parking structure design and layout, as well as sidewalk design. The folding chassis can be
designed in such as a way that three foldable vehicles are able to fit in the parking space usually
allocated for one non-foldable vehicle. Parking density and thus possible fleet penetration in a
mobility-on-demand service can be dramatically increased for those operating these vehicles in such
a shared use scenario.

As for the automotive industry, the folding chassis may be a complementary option for emerging
alternative energy vehicles, especially full electric. The main purposes of a vehicle chassis, whether
it is body-on-frame or unibody construction, are to (1) behave as the main structural member for
component mounting, (2) handle driving dynamics, and (3) manage crash safety. When scaled up to
a full size automobile, the linkage design can be designed to perform all three of these functions.

CityCar using dual 4-bar linkage to fold for Mobility-on-Demand scenario in New York City

24'-6" (7567 mm) 15'-7" {4445 mm)

8'-0" (2438 mm)

Folded CityCar vs. conventional 4-door sedan
Parking ratio= 3.3:1
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7.) DESIGN EVOLUTION THROUGH INDUSTRIALIZATION PROCESS

length
{mm}

height
(mm)

June 2010

First CityCar
Design

Used in
renderings and
half-scale

prototype

2537

1583

October 2010

MIT adjusted
design
considering
feedback from
CIE

2600

1684

January 2011
Epsilon
developed
design with
assistance
from MIT
incorporating
supplier
technologies

2625

1615

February 2011
Recommended
profile
adjustments
from MIT to
ETUD
considering
new design
was underway

2480

1521

March 2011
Initial ETUD
design
proposal.

Introduction of
rear kink
because of

2.1 meter limit

2593

1562

Hiriko Design Evolution 3/9/11
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length | height | inclined
{(mm) | (mm) | angle
1851 | 2278 | 41°
1839 | 1750 | 30°
1975 | 2315 32°
1766 | 2197 | 40°
1942 | 2044 32°




Preliminary architecture proposed by ETUD
First introduction of rear roof kink/crease
because of 2.1 meter folded limit

Overlap of previous designs and profile
recommendation from MIT in February

22m normal full fold
partial fold w/ sensor

...change also results
in larger inflection
when folded

However with proposed adjustments in profile and
kinematics, vehicle can simply fold partially to
remain under 2.1 meter limit (proximity sensor on
roof stops fold when too close to ceiling).

When proposed design folds partially it can
remain under 2.1 meters and is 2044mm in
length, about the same as current folded length

Significant profile change from 2.1 meter height limit. Characteristic profile can be preserved utilizing intelligent
technological solution instead of altering static geometry (roof proximity sensor already included in specifications).
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7.K  AUTOMOTIVE EXPERT DISCUSSIONS

Interviewee #1

Mobility in the future:

27:00 Finding creative solutions to handle personal requirements within the city | think -you know- the vehicle that was
developed by MIT does a great job at that [with] the stacking, the charging, and contributing back to the grid... At some point
there were more electric cars than gasoline cars in the beginning, but for various reasons the gasoline engine won out.

28:50 But in terms of working inside of a city center like the MIT car — the folding, the grid, being able to get into the car, being
able to move to your individual spots — | think those things will happen as you know in Europe there already areas that you
can’t bring your car into the city center ..but it’s still going to take a lot of time

Supplier-OEM relationship
33:10 Both have gone through extremely difficult times ... downsizing... reformulating... bankruptcy
Prior to that there was a trend which | think is still for the Foreseeable future | the way forward where that is where the

suppliers work very closely with the OEMs in terms of developing total systems and subsystems which are delivered just in time
to install into the vehicles ...so that the suppliers take on a much bigger responsibility in terms of the engineering and designing
and working with the OEMs and supplying a totally assembled system or subsystem which goes into the vehicle as required.

...a lot of companies have done work on that in the last 10-15 years. Suppliers have on-site areas where they build their
components or subsystems and they go straight onto the assembly line. And again it’s the partnership, it's the commitment
that going to be so important (Think about Ford which was totally vertically integrated to the point where the iron ore would go
into the plant and a car would come out the other end) ...the vertical integration has continued to become more and more
flattened out and horizontal and certainly the future | think is more horizontal integration where a number of players have a
responsibility, commitment, and investment into the final product.

38:10 Cars have become so complex — the electronics and computing capacity ...When it comes to the product — I’'m a strong
believer in brands ...as long as it performs to a prescribed specification I’'m not sure people care where it comes from ..most
critical part of a car is integration ...he buying the brand the brand is responsible for the integration and reliability who cares
where all that stuff comes from as long as it works to whatever specification the brand has determined.

42:50 [The important Factors are] 1. What is looks like, 2. how to integrate all the componentry 3. How to establish, nurture
and promote the brand

1:10:00 Traditionally there’s been certain parts or components that the OEM has almost always bought — you know like tires.
And so you're probably going to see from those suppliers the new stuff — the new innovations case that’s their thing — that’s all
they do, that’s them. So their investing thinking about it working on what’s next so you’re probably going to see that kind of
evolution you know certain kinds of products that they’ve always done — that’s their thing.

1:22:30 | think suppliers have been over the years very involved in developing modular interiors that can be installed
robotically and that they take certain architectures of the interior —in fact depending on the financial climate that OEMs and
supplier will be working on in the future and how much more responsibility that the supplier takes | think that we’ll see more
innovation coming from the suppliers.

1:24:50 From and OEM's perspective you’'d rather have fewer suppliers involved in larger contributions

1:25:27 when you look at a car today the manufacturer is mostly involved in putting the car together .. a lot of them stamp
their sheet metal, forge a few parts ...almost everything on the inside of a car (listing parts) ..companies probably make engines
and sheet metal and | think almost everything else comes in from a supplier Sheet metal engines, transmissions, powertrain
stuff ...probably 80% of the rest of the car comes from outside

END

Interviewee #2
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Future Mobility

10:10 Halfway to the 2050 mark (inflection point) Energy will be a major issue — hard to tell where those things are heading.
Now from a transportation standpoint, if you're talking about urban areas, there going to be more constraints on cars and
parking and road pricing. ...so twenty years out there are range of scenarios, one of those being people are going to be doing
more car sharing, pay-per-use type thing; but one has to figure out what are the inflection points to do that.”

Zip Car is one example, another is that | own a portion of a vehicle and share it with other Cost of Ownership = hardware +
cost of mileage which will go up with cost of energy

..what’s going to be the motivation to get people to change?

Modularity

If you modularize things you can speed up production ...for example the whole supplier responsible modules showing up at the
plant — the whole instrument panel cockpit or the whole propulsion system for example ...the biggest issue is the legacy issues
around them — supplier agreements labor unions ... and then how do you design the interfaces ...also how do you balance the
profit sharing if the supplier is taking on more responsibility ...however the electrification aspect; some of the designs that you
guys have done are actually compelling because it’s like a whole clip - the propulsion, steering, the suspension are all one
module that you just hang on the vehicle and those are interchangeable corners so that’s good .. which is dramatically different
than an internal combustion engine so there could be some savings from that standpoint.

27:20 ... It’s my opinion and experience that the electrification of al lot of these traditional mechanical elements is actually in
the longer run lower cost — initially it might be a bigger investment but if you get the volumes up — like the cell phone or
consumer electronics industry ...the analogy is similar, not exact, but similar. ...They might be some players that say “I will own
the space around wheel robots, or whatever it is,” and they get the cost down and the industry to adapt it perhaps and then it
becomes less of an impediment.

We’ve done things like integrated suppliers at the design phase, at the engineering phase, and at the build & assembly phase
we’ve run those trials. And Volkswagen has also done similar tests. ...it's feasible. On a lower volume it might be a safer lower
risk way to go. And that’s why this initiative in the Basque region is pretty interesting to see how it plays out. ...because if it
does work out at that level where the stakeholders are getting their value capture it a robust reliable system that they can
deploy, then that removes some of the excuses that have been thrown out to why you shouldn’t do it that way.

30:10 t would call it a test well of a business model. Can a federation of non-major automotive suppliers build a low volume
vehicle and make money out of it? And you could argue that’s something that happened in the Basque region. ...Now you
could also say now look at this test well that’s happening in the silicon valley with Tesla and Fisker. ...they’re not a big major
OEM, how could they engineer something for profit with all the risk they have in terms of technology? Those models are
becoming more feasible and possible. You might see that kind of business model easily happen if a country like China wants to
buy the option ...if they want to control this kind of solution down the road.

You may see them become even more feasible if you see a country like China who just wants to own it.

It follows the consumer electronics model ODM (original design manufacturer - like HTC)

Modularity in alternative vehicle platforms

47:02 You kind of have to start with flexibility and options — It’s kind of like natural selection

(tn reference to modularity providing variation in a budding alternative energy vehicle market) Q: Is there value in keeping
some level of flexibility and modularity in a new market? A: | think you have to, it’s like evolution right — there’s variation, and
then natural selection follows. If you don't, it’s like the Model-T issue. Ford ran [the Model-T] wild because everyone was
buying it, but after a while people were like that’s not what | want because these alternatives are better. ...there was like an 18
month period to retool beyond the Model-T just to get back relevant in the market.

Narrowing the mission profile — Configure-to-order vehicles for fleets

Modularity and customization is all about how you manage those interfaces
There are always architectural constraints that reduce your ability to go wildly different
END
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Interviewee #3

Future mobility

7:30 Much more customization. The days of just picking a car from these nine options — | think someone is going to decouple
that and say here’s 800 apps that you can have for your car, each one cost you $2/year. Which ones do you want? | think
you're going to see much more off built systems for navigation and entertainment

Average person is still getting bigger ...people are generally getting bigger, so there’s no reason to think you can get the cabin of
the car smaller. Cabin same volume. A lot more aerodynamics of the car than we have now — drag coefficients well under 0.2.
You have to do that to get the fuel economy down. 54 MPG before 2030.

22:45 | think you’re going to see it customizable on the initial purchase, | don’t think you’re going to see it reconfigurable.
Layer up-fits — increase battery capacity ...like a truck that can add a battery.
NEVs only in retirement communities in Florida, Arizona, and Palm Beach, California.

29:20 Aerodynamics losses from smaller cars will start to be outweighed by fuel costs - aerodynamics will outweigh fuel
economy
No motivation to gamble when on top

31:50 They (OEMs) don’t handle it (disruptive technologies) well. ...The guy that’s going to do the best is the guy that’s
desperate. The guy on top isn’t going to risk it. And it’s good form. It’s true, if you're the leading manufacturer ..what is the
motivation to gamble when you're on top.”

By-Wire systems

37:30 Steer by-wire w/o mechanical interface [you’re not just going to see it just because] ...Now with by-wire systems, unless
you're going to get into autonomous vehicle systems where the car can drive itself, now the motivation for by-wire becomes
much greater. Why, why would you do it? Unless it's better or more reliable, why would you do it? (the motivation for
hydraulics was the lack of corrosion on the system that came before it, cable braking). If you don’t have a true motivation to
change it, it’s a fashion statement and no one in mainstream will do it.

40:21 | see rear-by-wire braking. Less fluid lines to run to the rear. More modular. And the primary front brakes still have
hydraulic. | don’t think you’re going to see steer by-wire [ever]. | cannot see it by 2030. Incremental change with no benefit to
the customer, so you're not going to do it.

| think you'll still see a steering wheel — repetitive positioning, support for airbag (smaller), ability to drive in various ways (even
knees)

Supplier — OEM relations

50:14 Suppliers hate the OEMs — all of them. the OEMs are arrogant and overbearing. They assume that they know how to
make everything and that you’re and idiot — the supplier.

Profit margins are razor thin - Maybe $0.02 of profit in a $0.50 part “There’s no water left to squeeze out of that rock”

“It’s hostile at least and downright war at best”

People in the engineering within the OEM organization are very reluctant to commit to anything new.

The only way that you can have a fully integrated supplier is if the amount of money that the supplier get is a combination
personal earning of his products and the vehicle profit. If he doesn’t have a stick on both of those games, he’s only going to
play in the game he’s got money in.

Constructive Criticism on the CityCar

1:02:00 | thought the Hiriko was pretty well done. | though the group didn’t have a clue how impossible the task was. The
main theme was maintained throughout the project. Big glass, 4-wheel steering, spins, folding.

The concept was faithfully done in the Basque region. | thought they really did a great job.

END

166



Tl MODULE MANUFACTURER SURVEY

Module Manufacturer Survey

Hello / Hola / Kaixo,

Thank you for taking the time to complete this survey

The following questions will be used solely for research purposes on the CityCar concept. (nicamente
para mi investigacion de CityCar)

Thank you / Gracias / Eskerrik asko,
-Will

William Lark, Jr
MIT Media Lab

Please select the language in which you would like to complete survey (idioma):
() English
_) Castellano (disculpen los errores de traduccidn)

Next (Préxima)
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Hiriko - Module Manufacturer Survey

Which module of Hiriko do you primarily develop? (select all that apply)
[ Robot Wheel
[T Chassis
[ Control System
[T Surfaces (exterior & interior components)
[ Driver Interface
[ Power Source & Energy Management
[ Other (please specify)

—

| Prev(Anterion) | | Next(Préxima) |

Hiriko - Module Manufacturer Survey

:Qué modulo de Hiriko principalmente desarrollas?
[T Robot Wheel

[T Chasis

[ sistema de control

[ Las superficies (componentes exteriores y interiores)
[ Controlador de Interfaz

[7 Energia

1_ Otros (especificar)

Prev (Anterior) | Next (Préxima)
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The modularization of the drive train in the RobotWheel provides the opportunity to
customize its performance characteristics more easily than a traditional vehicle platform.
.. Strongly agree
() Somewhat agree
. Neither agree nor disagree
_ Somewhat disagree

_) Strongly disagree

The RobotWheel can be utilized to rapidly develop vehicles other than Hiriko.
._) Strongly agree
, Somewhat agree
_ Neither agree nor disagree
) Somewhat disagree
_ Strongly disagree

Prev (Arl!ﬂ'lﬂ) Next (Proxima)

La modularizacién del “RobotWheel” ofrece la oportunidad de personalizar sus
caracteristicas de rendimi mas facil que una platafk de vehicul
tradicional.

) Totalmente de acuerdo

_ Algo de acuerdo

) Ni de acuerdo ni en desacuerdo
En desacuerdo

 Totalmente en desacuerdo

La RobotWheel puede ser utilizada para desarrollar rapidamente vehiculos aparte de Hiriko.
Totalmente de acuerdo

) Algo de acuerdo
 Ni de acuerdo ni en desacuerdo
En desacuerdo

Totalmente en desacuerdo

Prev (Anterior) Next (Préxima)
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Hiriko - Module Manuf rer Survey

Does the ds pled (modular) vehicle platform liberate design and manufacturing
decisions?

(_) Completely liberated, my module can be redesigned fully indep of other sy

(_) Greatly liberated, most of my module can be reconfigured independently. yet requires
occasional check-in with other system teams

() Fairly liberated, some of my module can be altered, but need to consut to other system
teams first.

() Barely liberated, any alteration to my module requires redesign or adjustment from other
team and surrounding components

() No liberation, any module ion requires ign of all i P and
integration strategy must be rewsited
Are you likely to prop h P or variation to your module, or wait until it is requested?

() | will definitely initiate variations within my module when | befieve it offers business opportunities

(_) | might initiate variations within my module if an opportunity amives. | will recommend it to the Hirko consortium:
() |am unlikely to initiate module variation; | may suggest it to the Hmko consortium

() 1will only use variation within my module if requested by the Hiriko consortium.

Compared to your p upplier roles developing other il does your role now within Hiriko permit you to be more
) Yes. | have total control of my module

) Much more than before, | have a strong influence on how and what gets developed
_) Somewhat empowered, | play a larger part in the decisions of my module
. Little the infl | have has imp ginally to before

) No change  my role in Hiriko is ical 1o traditional supplier- ionshi

Hiriko - Module Manufacturer Sur

El desacoplado ) disefio de la pl del liberar las decisiones de
fabricaciéon? ‘
(_) Completamente liberado, mi médulo puede ser redisefiad de

otros sistemas.
() Muy liberada. la mayor parte de mi médulo puede ser reconfigurado de forma
independiente, sin embargo, requiere de vez en cuando el check-in con los equipos del sistema

() Bastante hberados, algunos de mi modulo puede ser alterado, pero es necesano consultar
a los equipos de ofros sistemas en pnmer lugar

() Apenas liberado. cualquier alteracién a mi médulo requiere rediseio o ajuste de otro
equipo y los componentes circundantes

() Mo liberada, cualquier alteracién al médulo requiere el redisefio de todos los componentes

de los yla gia de i6n debe

&Es probable que g ] i o0 variacion en el médulo, o esperar hasta que se solicitada?
() Definitivamente voy a iniciar |as variaciones dentro de mi médulo cuando que ofrece

{_) Yo podria imiciar las variaciones dentro de mi médulo, si la op idad llega, lo daria al io Hinko

_) Es poco probable que iniciaria la vanacion del médulo, podria sugesir al consorcio Hinko
) Sélo se utilizaré la variacién dentro de mi modulo si es solicitado por el consorcio Hiriko

¢En p con sus resp bilidades de p ds enel de otros P del su papel ahora dentro de Hiriko le permiten tener
mas poder en el desarrollo del médula?

) Si. tengo el control total de mi mddulo

) Mucho més que antes, tengo una fuerte influencia en como y qué se desarolla

, Poco poder. un papel mds imps en las de mi médulo
) Poco poder, la ha mejorade g en P 6n con antes
_ No hay cambio. mi papel en Hiriko es idéntica a las trady ! de pi dor-f:
Prev (Anteriar) Next (Proxima)
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Hiriko - Module Manufacturer Survey

1

A. B.

High cust, low utility High cost, high utifity

Module Cost

€ B

Low cost. low utiiity low cost, high utllity

Module Utility

The “Cost-Utility Measurement” associates the relative functionality of a
module at its comparative production cost. Relative to each other, where do
you believe each module falls within this graph?

A B c D
Robot Wheels Q Q O )
Folding Chassis J @) ] P

Hiriko - Module Manufacturer Surv

A. B.

=]
=
8 Alto costo, baja utifidad Alto costo, alta utilidad
o
S
=
5=}
s
C. D.
Bajo costo, baja utilidad Bajo costo, alta utilidad
>

Mddulo Utilidad

El "Coste-Utilidad de Medicién™ asocia la funcionalidad relativa de un médulo
a su costo de produccion. ;En relacién con los demas, donde cree que cada
bdulo se inscribe en este grafico?

A B [ D
Robot-Wheels O (@ @) Q
Chasis
Plegable - 2o -~/ ~
médulo de - .
bateria () () O/ W/
Cabina (Body) W) @, J @
Sistema de y N
control (by-wire) - - o et
Compartimiento
trasero - acd il >
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The modules of the Hiriko platform allow us to create a variety of vehicles from most of the same components.
__) Strongly agree. modules can easily be reconfigured for vehicle variety.
() Somewhat agree, the modules of Hiriko can be utilized for a feature variations.
;/ Neither agree, nor disagree — there is no change in product variety provided by the Hiriko modules
() Somewhat disagree, the Hiriko modules complicate product variety
(_) Strongly disagree; the Hiriko modules completely inhibit product variety

Hiriko's modularity will expedite future versions of this vehicle.
() Yes, because the systems are separate, | will be able to design the next modules or vehicles faster
(_) Perhaps, with the separate systems the next designs may happen quicker
() Unlikely, the development time may only be marginally faster
) No, other versions will take just as long as before

Prev (Anterior) Next (Préxima)

Los médulos de la plataforma Hiriko nos permiten crear una variedad de vehiculos de la mayor parte de los mismos componentes.
) Totalmente de acuerdo, los modulos pueden ser facilmente reconfigurado por la variedad de vehiculos.

) Algo de acuerdo, los médulos de Hiriko pueden ser utilizado para algunas variaciones de caracteristicas

) Ni de acuerdo ni en desacuerdo - no hay ningiin cambio en la variedad de productos proporci da por los madulos de Hiriko

() Migo en desacuerdo, los médulos de Hiriko complican Ia variedad de productos
(_) Totalmente en desacuerdo, los médulos de Hiriko inhiben completamente la variedad de productos

La empresa Hiriko ofrece nueva oportunidad para ampliar su negocio.
) Totalmente de acuerdo
./ Algo de acuerdo
(_J) Nide acuerdo ni en desacuerdo

. Endesacuerdo

_ Totalmente en desacuerdo

Prev (Anterior) Next (Praxima)
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-C ization (developing unique modules or features for customers)
- Senvicing (repairs and upgrades to particular module)
- After-market prod (vanious p that the can purchase)

- Lifecycle g (reacquisition of modules for reuse, repurposing or

Hiriko's modular p p PP ities to expand into the following services.
Neither agree nor .
Str Somewhat & d
ongly agree agree disagree

customization Q @) Q @

sencing @ ) - @

after-market products & @) Q QO

life-cycle management i 4 ) @)

From the perspective of Hiriko, it is better to:

) Coordi with fewer suppliers, each ibuting a large prop

) Coordi with many suppliers. each ibuting a small prop

) The number of suppliers and their proportion of contril does not matter.

Pusonﬁnclén(oldnmﬂadnnmlmommnmlummmm MaD o usuarios finales)

- Pr [{ o i a un médulo en especifico)

-Los enel di d: diversos que los clientes pueden comprar en el comercio)
Cu:lodeV'ld:dclaGomdnnamm:mablnmmsummxﬁnomwlmi

La pl lar de Hiriko p P des para expandirse en los sig vicios.
Totalmente de Ni de acuerdo ni en
En desacuerdo
acuerdo Algo de acuerdo desacuerdo
i

(customization) - A b b
Prestacién de senicios B J ®) )

Los productos en el P ¢
mercado secundario N b e =
Ciclo de Vida de la ¢ 3
Gestin . -, s -

Desde la perspectiva de Hiriko, que es mejor:
Coordinar con menos p cada uno ap do una gran prop

Coordinar con muchos proveedores. cada uno contribuyendo con una pequefia proporcion

_ El nimero de p d y su proporcion de la b no importa.
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For the CityCar [Hiriko) vehicle, please rate the importance of the following maneuvers:
Extremely mmportant  Moderately impornant Shghtty importam ot smportant

4wheel stesrng o} Q @) O

4-wheel steering O-tum

Incorporating folding into the CityCar to reduce its footprint by 40% and
enable » X1 street parking ratic can be worth the added enginesring
complexity.

) Strongly agree

_) Neither agres nor isagres

Incorporating folding into the CityCar to reduce its lootprint while also easing entry snd
axit of passengers can be worth the added engineering complexity.

J Stongly agres

. Somewhat sgres
Nather agswe ror dsagres

| Somewhat dssgree

. Stngly dasgres

Para ol CityCar {Hiriko) vehiculo, por favor, evalie la importancis de las capacidades:
Moderadamente
Un o
Muy impedants poco importants. 3 impartante
O-veta (spin) C 8 O
Traduccidn & J
drueda weta

La incorporacién de plagada en ef CityCar par reducis su husila sn un 40%
¥ habilitar unsproporcion X1 aparcamiento en la calle vale la complejidad
e ingenieria afadido.
Totalmente de acuerda
) Aigo de acuerdo
) Ni de acusrdo ni en desacusrda
) En desacuesdo
Totaimante en desacuerdo

La incorporacitn de plegado sn el CityCar para reducic su huelia a la vez que facilitar I
antrada y saiida de pasajeros vale la complejidad de ingenieria afladido.

_ Totaiments de acuerdo
Alga de acusrdo
Ha de acuerdo i en desacusido
En desacverdo
Totaimenta an desacusrdo
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Hiriko - Module Manufacturer Survey

Does the Hiriko by-wire vehicle platf

provide unique develop ies d to traditional Lo ics platforms?
Q Yes, we are able to research and develop unique electronic features that could provide future business advantages
O o, hat, we 8 Y

gr

, op ties for devel
‘_) No change, the Hirko platform does not provide unique prospects from traditional automobiles
() Detrimental results: the Hiriko platform inhibits h and

Module Manufacturer 5

£El Hiriko by-wire p

de fre P des unicas de d lio en P ion con las p de de el ica?
(_) Si. somos de investigar y d llar las i unicas de electrd que podrian prop tajas emp wales futuras.
(_) Un poco, somos de las op I p les para el d i

) No hay cambios, la plataforma Hiriko no ofrece perspectivas dmicas de los aulomévles tradicionales
) Resultados neg . la plataforma Hiriko inhibe las op d

de

g ¥

P:ev_v_n_hm_l_rj Next (Préwma)
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Given the construction of the Hiriko body (plastic paneling attached to a space-frame
chassis) alterations to the surfaces can be made fairly independent of other components.

(O Strongly agree

() Somewhat agree

() Neither agree nor disagree
(_) Somewhat disagree

() Strongly disagree

How likely are you to make design variations, independent of chang in the chassis?
() Definitely, we plan to develop vehicle variations

(_) Potentially, we could create some changes to the design. indep dent of the ch

(_) Uniikely, marginal changes are possible but improbable
) Never, no changes will be made to the panels unless completely new vehicle platforms are made.

Eoviomion| | NegExmua),

Dada la construccién del cuerpo Hiriko (paneles de plastico unido a un marco de
espacio-chasis) alteraci de las superficies puede h bastante independi de
los otros componentes.

‘ Totalmente de acuerdo
) Algo de acuerdo
) Ni de acuerdo ni en desacuerdo

En desacuerdo

L

_) Totalmente en desacuerdo

£Qué probabilidad hay de hacer variaciones en el disefio, independientemente de los cambios en el chasis?
) En definitiva, tenemos la intencién de desarrollar variaciones de los vehiculos
__) Potencialmente, podriamos crear algunos cambios en el disefio, independiente del chasis

_ Improbable, cambios marginales son posibles pero improbables

) Nunca. no se haran cambios a los paneles a menos plataformas de vehiculos completamente nuevos estan hechos

Prev (Anterior) Mext (Préxima)
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Hiriko's modular by-wire system allows for unique customization of the driver interface.
Strongly agree

; Somewhat agree
Neither agree nor disagree

) Somewhat disagree

) Strongly disagree

How likely are you to develop a variety of driver interfaces that are compatible to Hiriko's
electronic infrastructure?

Very likely, settled on an electronic standard, we can make multiple driver interfaces that
are all compatible

Somewhat likely, we may make a variation or two of unique driver interfaces
Unlikely. we expect to stay with the one driver interface developed
Never, we will not design another driver interface

El sistema modular de Hiriko de by-wire permite la personalizacion unica de la interfaz
del controlador.

Totalmente de acuerdo

Algo de acuerdo

Ni de acuerdo ni en desacuerdo
En desacuerdo

Totalmente en desacuerdo

¢Qué posibilidades hay de desarrollar una variedad de faces de controlad que
son compatibles con la infraestructura electronica de Hiriko?

Es muy probable, estableciendo en un electrénico estandar. podemos hacer vanias
interfaces de controladores que son todos compatibles

_ Algo probable. podemos hacer una variacién de uno o dos de las interfaces de
controladores unicos

Es poco probable, esperamos quedar con la interfaz del controlador que se desarrollé

Nunca. no vamos a disefiar otro interfaz del controlador

Prev (Anterior)
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How influential is Hiriko’s modular platform in the possibility of using other energy modules?
() Strategic benefit, the battery compartment allows us to switch in other energy technologies when needed
() Potential benefit, there is flexibility to adjust the power source technologies if required

() Little benefit, the energy source is pretty restricted and not subject to modifications

() No benefit, energy system is inflexible.

Seyfomrn,| | AeSeen

& Qué tan influy es la plataf dular de Hiriko en la posibilidad de utilizar otros médulos de energia?
() Beneficio égico, el compartimi de |a bateria nos permite cambiar en otras tecnologias energéticas cuando sea necesario.
) El beneficio p ial, hay flexibilidad para ajustar las tecnologias de energia si es necesano

) Poco beneficio, la fuente energia es bastante restringido y no esta sujeto a modificaciones.
) No existe un beneficio, el sistema de energia es poco flexible

Prev (Anterior) Mext (Préxima)
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Hiriko - Module Manufacturer Survey

Essential, ) Neutral,  Unfavorable. Impractical,

core feature progdes  haphd, adds feature has somewhat unfeasibly
of business | ‘Auable marginal e A to
impact value i ™ business

A Reduced footprint from folding ~ \ — p —~ p
i O @) ) O &, O O
B Maneuverability from Robot Wheels O (2, & ) @) 2 i)
C. Eased entry & exit from front door ) ) O @ O @) O
D. Customized utility from rear ‘ ‘ s '
compartment o -~/ -~ - _, ~/ -

Final comments can be added below (optional)

:

Thank you for participating
Please click "Next” to submit the questionnaire
You input is much appreciated

-Will
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Hiriko - Module Manufacturer Survey

Por favor, califique el valor de los siguientes CityCar (Hiriko) caracteristicas:

Esencial, o O ici:.;a Algo muy itil. Neutral no Desfavorable, Poco  obstaculos
nucleo de los po agrega valor tiene ningin algo practico,  destructivos
g inal  impacto neto problematico complejo para las

empresas
A plegado par reduc su hoela ol g e alio BT o SRSN o REL o HH 0
B. RobotWheels para maniobrabilidad o © ) o Q o Q
C. la enirada y salida aliviado de la p C ~ - = -~
parte delantern Q Q Q @) Q Q O
D. compartimiento trasero para gran ~ IS I ~ y O
variedad y personalizacion ~ -/ L v o Q @)

A.

Gracias por participar
Por favor, haga clic en "Next” para finahzar el cuestionario

Wil
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7.M SHARED MOBILITY SYSTEMS SURVEY

Hiriko in Shared Mobility Sy

Hello,
Mmhﬂh“hhmmhw.mmmﬂhmmlyh on the imp tion of the Hirfko vehicle (CityCar) in the
context of shared mobility services.

mremmmmﬂdmummummm
Comments may be added in the text boxes below if you choose to further elaborate.

Thomwy-ﬂllth-bmlﬂmmwm

Thank you
“Will

William Lark. Jr

MIT Media Lab. PhD Candwdate
www wlark com

By clicking NEXT. you understand and agree to the following terms and conditions
1) Your data will be kept prvate and confidential

2) You agree lo share your information with the researcher
'J)chmthmselnnﬁuﬂdﬂussmsanyummuedshnesdmym

Hiriko in Shared Mobility Systems

What role{s) have you had in the shared mobility sector? (select all that apply)
[ System development
[T System management

[~ Fleet operator
[ Municipal senvices / govemment
[ Utiity Services
h Research
[T Other (please specify)
[ , N _
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Hiriko is a foldable. electric, sharable, two-p ger vehicle for cities. The lized modules enable vehicle features uniquely for ded cities. especially in Europe and
Asia {over 3t0-1 parking ratios, vastly increased maneuverability, and eased entry & exit). The robot-wheels, cabin unit, power module, drive-by-wire module, and rear compartment combine to form a
small urban vehicle with the adaplability to ease customization, senicing, and module reuse. Hiriko (CityCar) challenges vehicle dards through novel gies in order to provide radical solutions
for urban mobility.

Mobility-on-Demand (MoD) is a shared senice in which various fleets of urban vehicles are utilized within cities for commuting and intermittent transit (similar to Car2Go, Velib, and Bixi). In this one-
way mode. users are allowed to pick up electric vehicles from any charging station and drive to any other designated station (point-to-point rental). As a supplement to public transit, MoD strives to
tackle the challenge of first-mile, last-mile tmsportation

Neither Agree nor
Disagree

Stongly Agree  Moderately Agree  Slightly Agree Siightly Disagree  Moderately Disagree  Strongly Disagree
In American Cities
In European Cities
In Asian Cities
Feel free to explain answer here (not required)

There are market opportunities for vehicles like the Hiriko in urban environments.

Strongly Agree  Moderately Agree Slightly Agree Neither Agree nor

Slightly Disagree  Moderately Disagree  Strongly Disagree

Disagree
In American Cities 2 Q 4 & @ O Q
In European Cities 8 B C =
In Asian Cities 2 i C O ) ®
Feel free to explain answer here (not required)
L e ] 2™
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Shared mobility p use | vehicle models within their fleets (although ZipCar does employ a variety of bil dels). How imp is it to have a

variety of vehicle types in a shared mobility servica?
_/ Extremely Important
_| Moderately Important
) Siightly Important
Barely Important
Completely Useless

Feel free to explain answer here (not required)

Would an operator of a shared mobility service value vehicle diversity within their fleet (given a standard compatibility to their system infrastructure)?
/ Definitely, it's extremely important
_ Yes, it's moderately important
/) Perhaps. it's shghtly important
Unlikely, it's of little importance
No. it's completely useless
Feel free to explain answer here (not required)
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lution for shared mobility fleets.

Exploiting Hiriko’s modularity to have vehicles of various g ity, range, size, and perfe can be an eff
) Strongly Agree
) Moderately Agree
() Siightly Agree
() Neither Agree nor Disagree
() Shightly Disagree
() Moderately Disagree
() Strongly Disagree
Feel free to explain answer here (not required)
B
When selecting vehicles for a shared mobility program, it would be to be able to the 9
= ly Imp Moderately Imp Shghtly Important Barely
Range Q @] Q
Storage capacity () &) ®)
Footprint (length & width) (] (1B, @)
Performance characteristics \
(horsepower or tuming radius) o - o

Feel free to explain answer here (not required)

L |

Fleet operators of shared mobility services seek out vehicles with particular specifications that best fit their city

_ Strongly Agree

. Modesately Agree

./ Shightly Agree

) Neither Agree nor Disagree

) Moderately Disagree

._J Strongly Disagree

Feel free to explain answer here (not required)

_ }

nmmm.madmmmu-wmcmlumm&h
features would be...

() extremely valuable
() moderately valuable
. shghtly valuable
) of lttle value

) ofnovalue
Feel free to explain answer here (not required)

_

p ly Useless
Q Q
Q Q
@) Q
] Q

Next
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Hiriko in Shared Mobility S

Vehicles in shared mobility services are utilized more frequently throughout the day.
) Strongly Agree
) Moderately Agree
() Siightly Agree
) Neither Agree nor Disagree
./ Shghtly Disagree
) Moderately Disagree
./ Strongly Disagree
Feel free to explain answer here (not required)

_

Hﬂmnvongepemlvehlclohmndmlyanhomovhwmhm,mmhawmmhmauuwuhlhwmmhnlhamdnwmymﬂunnmd?

_ Less amount of time daily

) About the same

) About twice as much daily

) More than twice as much daily

Feel free to explain answer here (not required)

Servicing and maintaining the vehicles in shared mobility s significantly prohibitive to the system’s profits.
_) Strongly Agree
.~ Moderately Agree
./ Shghtly Agree
) Neither Agree nor Disagree
) Slightly Disagree
) Moderately Disagree
_ Strongly Disagree
Feel free to explain answer here (not required)

Hiriko exploits a highly p that allows major systems (drivetrain, energy
dule) to be d pled, easily d, and substituted. R ing the mai
many subsystems by instead g and upgrading vehicle modules is a desirabl
approach for shared mobility fleets.

) Strongly Agree
Moderately Agree
_ Shghtly Agree

) Neither Agree nor Disagree
__ Shghtly Disagree

| Moderately Disagree

_ Strongly Disagree
Feel free to explain answer here (not required)
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Fleet op would i ploying more exp
() Strongly Agree

(;J Moderately Agree

) Slightly Agree

(L) Siightly Disagree

() Moderately Disagree

() Strongly Disagree

Feel free 1o explain answer here (not required)

if these

saved them time in servicing and maintenance.

The modular architecture of Hiriko is likely to reduce maintenance burdens to shared mobility fleet operators.

() Strongly Agree

() Moderately Agree

() Siightly Agree

() Neither Agree nor Disagree

() Shightly Disagree

(_) Moderately Disagree

(_) Strongly Disagree

Feel free to explain answer here (not required)
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How plex of a challenge is land isition when loping or

(_  Most difficult challenge. often prohibitive
() Very chall g. requires significant
(_) Fairly challenging. feasible

. Slightly challenging. often achievable
() Simple. relatively trval

Feel free to explain answer here (not required)

Utilizing a fleet of vehicles that have a small footprint or take little
space while parked can ease the development and expansion of
shared mobility systems.

. Stiongly Agree
./ Moderately Agree
L Siightly Agree
. Neither Agree nor Disagree
) Shghtly Disagree
. Moderately Disagree
. Strongly Disagree
Feel free to explain answer here {not required)

Hiriko's folding capability (3-to-1 parking ratio) is uniq
management.

./ Strongly Agree
. Moderately Agree
(. Slightly Agree
__ Neither Agree nor Disagree

. Slightly Disagree

_ Moderately Disagres

. Strongly Disagree
Feel free to explain answer here (not required)

to shared mobility

If you were to manage a new or expanding shared mobility fleet, you would seek to use vehicles very similar Hiriko.

./ Strongly Agree

. Moderately Agree

. Stightly Agree

__ Neither Agree nor Disagree

_ Slightly Disagree

_ Moderately Disagree

| Strongly Disagree

Feel free to explain answer here (not required)
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Hiﬂlm’.pluimmpmnb.mdmhimdmodumm-dknﬂnvehicla'spedumm.rang-.w.mmmﬂuﬁmhwmmmem,m
Wnlwnmmmm.mmbhhmwmmnnummmmw?

() Extremely Important

() Moderately Important

() Slightly Important

() Barely Important

() Completely Useless

Feel free to explain answer here (not required)

In a shared mobility fleet, how frequently are the followi dules likely to be changed?

““i""‘;e"':"“"'“ About once ayear  Every couple ofyears  Every several years “"":‘“’p;n‘""d’ Never
Battery modules Q Q Q Q @) Q
RobotWheels Q Q Q Q O QO
Rear storage / utiity compartment Q O O O O Q
Driver interface Q O O O Q O
information/Entertainment system O O Q O O O
Cabin/chassis Q Q ) O Q @)
Feel free to explain answer here (not required)
As the concept biueprint for Hiriko. the following questions concem features of the CityCar

T e T W s s e s s RS T e e | 55%
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The CityCar utilizes four
- O-tumn: allowing the vehicle to spin on a dime

- Translation: allows the vehicle to si perpandicularty

- 4-wheel steering’ provides tight tuming radius and enables slight translation while dmang

4-wheel steering O-tum

Some CityCar by s
controded whasl motors.

Given the of the CityCar, in
_) Strengly Agree

. Moderately Agree

Shightly Agree

._J Neither Agree nor Disagree

_) Slightly Disagree

_ Moderately Disagree

_ Strongly Disagree

Feel free to explain answer hefe (not required)

Robot Whesls that each tum up to 120-degrees. The large sweep in each wheel coordinate lo provide the following maneuvers
continuousty

a large degree of wheel sweep is worth the added engineering complexity alone.

mwmawwunlm-uphmnmmm;m.mmmmmwmuhmmmm:w
platform.

g and a d
. Strongly Agree
. Moderately Agree
-/ Shghtly Agree
_) Neither Agree nor Disagree
/) Slightly Disagree
) Moderately Disagree
_) Suongly Disagiee
Feel frae to explain answer here (not required)

For the CityCar vehicle, please rate the of the

moderately important
O-Tum O
Transiation
4-Whee! Steering Qo O
Fasl free to explain answer here (not required)

i

End users factor in the importance of maneuverability {turning radius in a i ile) when

) Strongly Agree
) Moderately Agree
_) Shghtly Agree
. Neither Agree nor Disagree
Shghily Disagree
_) Moderately Disagree
_+ Strongly Disagree
Feel free 10 expiain answer here (nol required)

slightty important not imporant
- O
o O
wvehicles in small crowded areas.

%
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Thoc'tyc-utiiznldowhhiﬂdhﬂthwomm“cﬂﬂhpuwmmolh- sidewalk once the vehicle is folded. In addition 1o the eased ingress/egress, the lack of side doors
allows the vehicles to park tightly next to one another, maximizing parking surface area.

Permitting entry and exit from the front of the vehicle is a worthy benefit to challenging the traditional vehicle archi (given support/d d from the end user).
() Strongly Agree

() Moderately Agree

[ Slightly Agree

() Neither Agree nor Disagree

() Siightly Disagree

() Moderately Disagree

\_) Strongly Disagree

Feel free to explain answer here (not required)

Permitting entry and exit from the front of the vehicle when coupled with the CityCar’s folding and maneuverability for sidewalk access is worth added complexities.
) Strongly Agree

() Moderately Agree

() Slightly Agree

) Neither Agree nor Disagree

(L Siightly Disagree

(_) Moderately Disagree

() Strongly Disagree

Feel free to explain answer here (not required)
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The CityCar utilizes a dui
states ( folded,

al 4-bar linkage folding system to reduce its footprint by up to 40% when parking and maneuvering in tight low-speed situations. Passengers can remain in the vehicle during all
and in-b )

When unfolded and driving normally, the CityCar is slightly larger than the Smart Fortwo car. However when folded, it reduces its foot print to about 5 x &' {five feet by five feet)

Incorporating folding into the CityCar to reduce its footprint by 40% and enable a 3:1 street
parking ratio can be worth the added expenses in a shared mobility service.

() Strongly Agree

./ Moderately Agree

. Slightly Agree

Neither Agree nor Disagree
. Slightly Disagree
) Moderately Disagree

. Strongly Disagree
Feel free to explain answer here (not required)

Despite its added mechanical complexity, utilizing a folding chassis can be
economically viable in a shared mobility system because of the potential
savings in parking costs.
_) Strongly Agree
Moderately Agree
Slightly Agree
. Neither Agree nor Disagree
) Slightly Disagree
Moderately Disagree
_/ Strongly Disagree
Feel free to explain answer here (not required)

Vehicles with micro-footprints (less than 30 sq-ft) are very in ded urban

Strongly Agree Moderately Agrae Slightly Agree

In American cities L 8| @
In European cities & (@)
In Asian cities ] - O

Feel free to explain answer here (not required)
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/

Slightly Disagree

o/

Moderately Disagree  Strongly Disagree

(-3 (
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mmmmh.mmwrmmum.

) Strangly Agree

() Moderately Agree

(O sightly Agree

() Neither Agree nor Disagree

() Slightly Disagree

() Moderately Disagree

) Strongly Disagree

Feel free to explain answer here (not required)

Fleet operators will likely utilize the oppx the rear comp:
(For delivery, tility, cooled or heated compartment)

) Neither Agree nor Disagree

) Moderatsly Disagree

) Strengly Disagree

Feel free to explain answer here (not required)

J

The rear compartment will likely be altered during the lifespan of the vehicle.

) Moderately Agres

_/ Slightly Agree

) Neither Agree nor Disagree

_ Stightly Disagree

_) Moderately Disagree

\_) Strongly Disagree

Feel frea to explain answer here (not required)

C 1

Some levels of vehicle and are
operators in a mobility-on-demand shared mobility) service.

. Strongly Agree

) Moderately Agree

) Slightly Agree

) Neither Agree nor Disagree

_ Slightly Disagree

/) Moderately Disagree

Fael free to explain answer here (not required)

for their own wtility or service.

Next
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Hiriko in Shared Mobility Systems

Thank you for participating
Please click “Done” to submit the questionnaire
You input is much appreciated

-Will

Final comments can be added below (optional)
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