Designing for Remixing:
Supporting an Online Community of Amateur Creators
by
Andrés Monroy-Hernandez

S.M., Media Arts and Sciences, Massachusetts Institute of Technology (2007)
B.S., Electronic Systems Engineering, Tecnolégico de Monterrey (2001)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in partial fulfillment of the requirements for the degree of ‘43

AC

o
be

2

Doctor of Philosophy in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2012

@ This work is licensed under a Creative Commons Attribution 3.0 Unported
License.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author

Program i¥Medis Arts and Sciences
August 20, 2012

Certified by

Mitchel Resnick
LEGO Papert Professor of Learning Research

Program in Media Arts and Sciences
Thesis Supervisor

Accepted by

Patricia Maes
Associate Academic Head
Program in Media Arts and Sciences

Designing for Remixing:
Supporting an Online Community of Amateur Creators
by
Andrés Monroy-Hernandez

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
on August 20, 2012, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Media Arts and Sciences

Abstract

This work describes a framework for the design and study of an online community of amateur
creators. I focus on remixing as the lens to understand the contexts and processes of creative
expression as it is fostered within social media environments. I am motivated by three broad
questions:

1) Process: how do people remix and what is the role of remixing in cultural production
and social learning?

2) Conditions: what kind of attributes influence people’s remixing practices?
3) Attitudes: what are people’s attitudes toward remixing?

As part of this work, I conceived, developed and studied the Scratch Online Community: a
website where young people share and remix their own video games and animations, as well
as those of their peers. In five years, the community has grown to more than one million
registered members and two million community-contributed projects.

In the spirit of the theme of this work, this dissertation remixes several articles and blog
posts written by myself or in collaboration with others. Wherever possible, the sources of
the material are noted.

Thesis Supervisor: Mitchel Resnick
Title: LEGO Papert Professor of Learning Research, Program in Media Arts and Sci-
ences

Designing for Remixing:
Supporting an Online Community of Amateur Creators
by
Andrés Monroy-Hernandez

The following people will serve as readers for this thesis:

P
Thesis Reader Q / o \

Yochai Bakler
erkman Professor of Entrepreneurial Legal Studies
Harvard University

Thesis Reader , -
Robert C. Miller
Associate Professor of Electrical Engineering and Computer Science

MIT Computer Science and Artificial Intelligence Laboratory

Acknowledgments

First I want to thank my advisor, Mitchel Resnick, for the opportunity to be part of this ad-
venture, and for welcoming me into the Lifelong Kindergarten family. His wisdom, patience,
and constant support made my time at the Media Lab one of the greatest experiences of
my life.

I also want to thank my dissertation and my qualifying exams committee for helping me
expand my disciplinary horizons. Yochai Benkler’s cooperation group at the Berkman
Center opened my eyes to a wide range of disciplines. Rob Miller’s group at CSAIL and
his students helped me venture into the field of Social Computing. Tim Berners-Lee helped
me understand the spirit behind the Semantic Web.

Much of the work on this document was only possible because of the ideas, contribu-
tions, and support from several collaborators including Benjamin Mako Hill, Cecilia Aragon,
danah boyd, Diana Aragon, Jazmin Gonzalez-Rivero, Jeff Nickerson, Kristina Olson, and
Oshani Seneviratne.

The Scratch project is a group effort from the staff, the graduate, and undergraduate
students at the Lifelong Kindergarten group, including Amos Blanton, Amon Millner, Brian
Silverman, Chinua Shaw, Chris Garrity, Claudia Urrea, Eric Rosenbaum, Evelyn Eastmond,
Han Xu, Gaia Carini, Jay Silver, John Maloney, Karen Brennan, Lance Vikaros, Leo Burd,
Lis Sylvan, Michelle Chung, Mitchel Resnick, Natalie Rusk, Nick Bushak, Oren Zuckerman,
Paula Bont4, Paul Medlock-Walton, Rachel Garber, Ricarose Roque, Rita Chen, Sayamindu
Dasgupta, Stephanie Gayle, Tamara Stern, and Ubong Ukoh.

I also want to acknowledge the technical support I received from Anupom Syam, Anant
Seethalakshmi, Ashok Kumar, Kemie Guaida, and Vladimir Vuksan; and the community-
management help from Mark Goff and Franchette Viloria.

Last but not least, I want to thank the four most important people in my life: Kristina,
Andrea, mam3 y papa.

Contents

Abstract
Acknowledgments

Front Matter

Contents v v e e e e e e e e
List of Figures i e
List of Tables e
1 Introduction .
1.1 Structure and Contributions of this Work
1.2 Economic and Cultural Production
1.3 Software Engineering oo
1.4 Learning and New Media Literacy
1.5 Ethical and Legal Challenges
1.6 Social Computing System Design
2 Remixing Systems
2.1 Video e e e e
2.2 Tmages oot e e e e
2.3 Audio e e
2.4 Status Updates
2.5 Source Code. e e e e e e
2.6 Programmable Media
2.7 SUMMATY . .« v v v e v et e e e e e e e e e e e e e e e e e

3 The Scratch Online Community

3.1 Infrastructure Development
3.1.1 Ideation
3.1.2 User Experienceot
3.1.3 Architecture
3.1.4 Sharing from the Desktop,
3.1.5 Scale. e e e
3.2 Participation Patterns Lo
321 Projectmaking e

3.2.2 Interactions e
3.3 Discussion L L e e e e
3.3.1 Learning through Online Community
3.3.2 Sharing and collaboration

Process of remixing

4.1 CaseStudies e e
4.1.1 Mesh Inc’s collaboration
4.1.2 Jumping Monkey’s ripple effecto
4.1.3 Galaxyman’s “media franchise” o000

4.2 Taxonomyt v it e e e e e e e e e
4.2.1 Originality o L e
4.2.2 Generativity Lo e e e
423 Measureso e

Conditions for Remixing

5.1 System Attributes L
5.1.1 Modularity
5.1.2 Attributability Lo
5.1.3 0penness e e e e e e e e e e e
5.2 Content Attributes
5.2.1 Generativity e e e e
5.2.2 Originality
523 Results s
5.2.4 Limitations e
5.3 DiScussiono e e e e e

Attitudes toward Remixing

6.1 Study 1: How do people respond to remixing?
6.1.1 Procedure e
6.1.2 Results e
6.1.3 Discussion o .t e e e e e
6.1.4 Implications fordesign oo
6.2 Study 2: When do creators accuse remixers of plagiarism?
6.2.1 Procedure L e
6.2.2 Results
6.2.3 Discussiont e e e e e e e e e e
6.2.4 Implications fordesign L.
6.3 Study 3: Are plagiarism complaints more common when remixes are more
similar? e e e e e e e e
6.3.1 Procedure
6.3.2 Results e
6.3.3 Discussiono e
6.3.4 Implication fordesign
6.4 Study 4: Human and Machine Attribution

80
81
81
83
84
88
38
91
94

100
100
101
104
104
105
106
107
113
116
117

6.4.1 Study 4a: Automatic Attribution00 130

6.4.2 Study 4b: Manual Crediting L 131

6.5 Study 5: Interviews with participantso 134
6.5.1 Methodology e 134

6.6 Discussion i i e e e e e e e e e e 139

7 Conclusions 142
7.1 Summary and Contributions. oL 143
7.2 Design Implications 144
7.3 Future Research e 147
7.4 Epilogue: MusicalMoon L oo 148
Appendix A Entity Relationship Diagrams 150
Appendix B Project Attribute Tables 154
Bibliography 169

List of Figures

1-1
1-2

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10

Popularity of the term “remix” 14
The home page of the Scratch Online Community website 16
Scratch programming environmento 17
Image macro mocking the recursive nature of remixing 19
Download button and license statement of a YouTube video 25
Remix button on YouTube 25
Credit-giving on Vimeo 26
Jumpcut’s web-based editoro o 27
License selectionon Flickr 28
Distribution of Creative Commons licenses usage on Flickr 28
Selecting a Creative Commons license in DeviantArt. 29
Sharing options in DeviantArt. 29
Front page and online editor of OPENSTUDIO. 30
ccMixter showing the Creative Commons license 30
IndabaMusic displaying the number of remixes of a music file. 31
The “retweet” button, automating attribution on Twitter. 31
Sharing a friend’s post on Facebook, automatically attributed. 32
Sourceforge project page.o 33
Forking graph on Github. 33
YTMND’s front page. . . . - -« v v v i it 34
Newgrounds’ front page. Lo 35
MyGame front page and page showing game edition (template). 35
Moose Crossing: play and scripting environments. 35
Scratch website (April 2006) 39
Mockup of Scratch website page based on Flickr (May 2006). 41
Mockup of interface for uploading a Scratch project (May 2006). 42
Site map outlining all the sections of the website (May 2006). 43
Whiteboard outlining the elements of the website (June 2006). 44
First prototype of Scratch website (June 2006) 45
Front page. L e e 47
Project page. oL e e 48
Profile page (My Stuff). L. 49
Gallery page. o e e e e e 50

3-11 Project-browsing page. e
3-12 Three remixing visualizations. oo 0oL
3-13 Initial architecture of ScratchR. 0oL
3-14 Initial Entity Relationship Diagram of the ScratchR database (ca. 2007).

3-15 Five years of monthly pageview counts.
3-16 Scaled-up Architecture of ScratchR.
3-17T Flagword cloud e
3-18 Community members can flag projects as “inappropriate”.
3-19 Administrators can censor, demote, protect, or feature a project.
3-20 Administrators’ control panel to deal with community-generated flags. . . .
3-21 World map showing cities with most number of Scratch visitors.
3-22 Distribution of ages of project sharers.
3-23 Distribution of projects by account age.o
3-24 Project creator’s age and account age monthly mean.
3-25 User age and account age monthly median (project creators only).
3-26 Projects and creators permonth.o o000
3-27 Example of a Scratch script in visual and textual form.
3-28 Script cloud
3-29 Histogram of block usage
3-30 Image cloud
3-31 Project complexity and user’s and account’s age.
3-32 Monthly mean number of interactions per project
3-33 Scratch users contribute to and learn from the online community.

4-1 BeepBop’s sprites project. oo
4-2 Remixing events started by “Jumping Monkey”
4-3 Chocolate Bar episodic series. oo
4-4 Remixing taxonomy based on originality and generativity.
4-5 Inspirational remix.. e e e e e e e e e
4-6 Example of incremental remix.
4-7 Example of component-based remixing.o
4-8 Sequence of iterations of a crowd-based remix.
4-9 Distribution of derivativeness. o 0oL
4-10 The most remixed project created by a community member.
4-11 Maximum remix levels in remix chains
4-12 In-degree distribution Lo
4-13 Map showing remixing connections.

5-1 Sociotechnical system attributes that facilitate remixing system
5-2 Anatomy of a Scratch project. oL
5-3 Use of the “textbox” sprite from Scratch Resources.
5-4 Visual representation of the hypotheses promoted in this section
5-5 Diagram of the relationship between originality and generativity

6-1 Distribution of reactions to remixing when automatic credit
6-2 Reactions to remixing when manual credit

10

A-3

Word cloud of comments to remixes 134
Pac-Man remix removed after to DMCA take down notice. 143
Instance of ScratchR for Portugal. 145
Scratch Online Community as seen by a 14-year-old community member. . 146
User tables i e e e 151
Project tables Lo 152
Project tables 153

11

List of Tables

3.1 Table of project attributes o oo 73
5.1 Summary stats for variables used in analysis. 111
5.2 Regression models for generativity and originality 114
6.1 Plagiarism accusations 122
6.2 Taxonomy of logistic regression models on accuse.plag 124
6.3 Table listing details of interviewees used in Study 2. (n=12) 135
B.1 All Projects: Male e 155
B.2 All Projects: Female 156
B.3 Remixes: Male and Female, 157
B.4 Remixes: Male e 158
B.5 Remixes: Female o e 159
B.6 De Novo projects: Male and Female 160
B.7 De Novo projects: Male 161
B.8 De Novo projects: Female 162
B.9 Only Collaborative Remixes: Male and Female 163
B.10 Only Collaborative Remixes: Male 164
B.11 Only Collaborative Remixes: Female 165
B.12 Only Versioning Remixes: Male and Female 166
B.13 Only Versioning Remixes: Male 167
B.14 Only Versioning Remixes: Female 168

12

Chapter 1

Introduction

We are like dwarfs standing upon the shoulders of giants, and so able to see
more and see farther than the ancients.

—Bernard of Chartres, circa 1130

A dwarf on a giant’s shoulders sees farther of the two.
—George Herbert, 1651

If I have seen further it is by standing on the shoulders of giants.
—Isaac Newton, 1676

Digital networked technologies are challenging the romantic notions of what it means to
be a creator. Today’s creators sample, remake, fork, mash-up, collage, and appropriate.
They remiz. For example, Wikipedia editors frequently tweak existing articles, computer
programmers on GitHub often fork existing source code repositories, social media users
on Twitter or Facebook regularly retweet or share other people’s status updates, and even
designers of physical objects on Instructables reuse existing blueprints or build on others’
work. The digital artifacts of the social web are often the result of remixing.

Today the term remixing refers to the act of creating something new based on existing ma-
terials. Even before digital technology started to be used for creative expression, “remixing”
described the mechanical process of combining physical source materials, something often
used in fields like agriculture, chemistry, and manufacturing. For example, one of the first
uses of the word remixing that I found! was in an 1839 gardening magazine describing the
recombination of soils (Loudon, 1839). As digital music machines started to become more
common, the term started to appear in this context. For example, the 1966 edition of a
popular magazine for high fidelity audio devices described how remixing was originally used
to create backups of tapes: “remixing began, historically, as a protective measure,” then it
became “the final step in making a record” (Davis, 1966). By the late 1970s, remixing was
a prominent part of the music scene, and by the end of the century exploded in popularity

!From corpus of printed materials in English scanned (Michel et al., 2011).

13

(see Figure 1-1). Presumably, this resulted from the adoption of digital technologies that
opened new forms of creative expression.

0. DODOOBCO0Y

0 000005500%|
0.000005000%]
0 DD0004S00 %
0.000004000% 1
0.000003500%
0 Mcomcc'r'.i
0 600002500%
000002000
0.600001500%
0.000001000%
0.000000500%

0 0000000007 36— 1Az~ TR40 —78Ed 1880 7960 792

T840 1960 TG80 2000

3

Figure 1-1: Popularity of the term “remix” based on word frequency (from Google NGram).

Although content reuse predates digital technologies, the advent of these tools has made
remixing ubiquitous, more visible, and more derivational. The ubiquitousness of remixing
comes from the extensive range of media and communities that have embraced this practice,
from video, to text, to music, to code, to photographs, to CAD blueprints, among others.
Today, “anybody can remix anything [...] and distribute it globally pretty much instantly”
(Ferguson, 2010). In addition, remixing is more visible than before because, as with other
activities that leave a digital trace, it can be captured and measured through computational
means. For example, YouTube can detect when a video reuses an existing song, and displays
this on the video’s web page. Last, remixes are more derivational because computers are,
in essence, copying machines that allow creators to reuse verbatim and almost infinitely the
bytes of the source materials, something impossible in the analog world. The term remixing
is possibly a fad, but what it represents —the concept of digital reuse— has far-reaching
and long-lasting implications. The rise of remixing embodies a significant shift in the way
cultural and economic production work.

Remixing is not without controversy. As early as 1979, an article in Billboard magazine
described the tensions around remixing between DJs and music producers: “The sparks
started flying at the Disco VI international producers panel when Arista’s Audrey Joseph
challenged those producers who won'’t let DJs remix their records” (Media, 1979). By the
year 2001, the controversy was no longer whether music producers would allow remixing, but
how to handle the increased popularity of remixes. The magazine best known for its music
popularity charts made the decision to stop counting the popularity of a remix toward the
popularity of the song on which it is based on. Billboard made this decision because of the
case of a particular remix gaining more popularity than the original song. The controversy
forced the magazine to issue the following statement:

[T]he enormous growth of ‘Real’ [the “original” song] largely comes from a re-
worked version of the song featuring Ja Rule [the remizer]. The Ja Rule version
soon became the track of choice at all formats, so we have now added Ja Rule’s
name to the [...] charts. For the current chart week, 85% of the song’s audience
comes from the remiz version (Pietrolungo, 2001).

14

This incident arguably marked the coming of age for remixing. Today, such debates continue
and are even more visible.

This work focuses on these challenges and others brought up by remixing, with an emphasis
on implications for the design of social, technical, and learning systems. Remixing defies the
traditional models and assumptions of authorship and creativity. Its prominence also has
deep implications for the design of sociotechnical and learning systems. In this dissertation
I focus on the design of a particular system, a website, built to foster creative collaboration
through remixing. As the person leading the construction of this website and the community
that grew from it, I narrate the “behind the scenes” story from its start until its five-year
anniversary. Then, I focus on examining what people did on this system; in particular, I
examine how people engage in remixing, what makes remixing thrive, and the attitudes
people have toward it.

The empirical setting for this work is the Scratch Online Community, a website (see Figure 1-
2) T conceived and developed over the past five years in collaboration with others at the
Lifelong Kindergarten research group. The website allows anyone, especially young people
between eight and sixteen, to share their animated stories, interactive art, and video games.
Participants use the Scratch development environment, a desktop application (see Figure 1-
3), to create or remix projects by putting together images, music and sounds with visual
programming blocks that control their behavior (Resnick et al., 2009). Scratch and its
website enable young people to express themselves creatively, gain new media literacy skills,
and learn core computational thinking concepts, all in a community of peers.

1.1 Structure and Contributions of this Work

In this introductory chapter, I provide an overview of the remixing phenomenon, its history,
and the reasons why it is an area worthy of study. I do this by presenting the theoretical
background that frames the discussions and analyses of the rest of this work.

The second chapter presents an overview of the state of the remiz culture on the social
Web. I examine the remixing-related features of popular social computing systems that
have influenced directly or indirectly the design of the Scratch Online Community.

The third chapter is a design brief of the Scratch Online Community. In that chapter, I
answer the question of what an online remizing community looks like from the inside. The
chapter describes the design of the sociotechnical infrastructure of the Scratch website, and
how people used it over the course of five years.

The fourth chapter centers on the question of how people remiz. This chapter examines the
process of remizing by introducing a remixing taxonomy across two dimensions: originality
and generativity. Then I focus on a few case studies that use the taxonomy to examine
remixing in different forms of collaborative work.

The fifth chapter concentrates on the question of what influences remizing. In this chapter,
I investigate what conditions are conducive to remizing. First, I reason through what I
think were the system attributes that supported remixing in Scratch. Then I present an

15

Qr R’_AT r h projects galleries support forums about Language
B m), ;m 3 |
o~ — o s)

o ' Login or Signup for an account]

imagine « program e« share

Create and share your own interactive

stories, games, music, and art o 1 rechive b
Jr— — — e effect to

| Check out the 2,664,562 projects

" from around the world! |

Do you help people
® learn Scratch? Join
ScratchEd, our new
" online community

for educators.
Find out more >
by angelicchariz.. Video Tutorials ;

Figure 1-2: The home page of the Scratch Online Community website http://
scratch.mit.edu (July 2012).

16

Motion Control
student

Looks Sensing
Sound Opseators | | - P i | I'm Nicholas, the |

¥ oracle.
Variables .

when :pace key pressed i set size to)

to costume detznidod

when student clicked

weait £ secs Toraian

if key down arr pressed?
i Forever i if direction = [

- switch to costume agachado

!
| repeat 1) » else

switch to jachadad
== | L

broadcast

pressed?
broadcast d=ad and wait , « 1 30]

direction =
when T raceive Jead switch to costume
else

foraver if I | switch to costume

wait espera secs

change y by ()

pressed?

Figure 1-3: Scratch programming environment (version 1.4). The leftmost column repre-
sents an inventory of possible “programming blocks” which are assembled into program
code in the center column. The area in the top right represents the project as it will be
displayed to a user interacting with the finished product. The bottom right column shows
the available sprites which are controlled by the code.

17

in-depth study of how the conditions under which Scratch projects are created influences
remixes’ originality and generativity.

In the sixth chapter, I examine people’s attitudes toward remizing. This chapter investigates
how people react to remizing. In particular, I focus on the perspective of young people as
creators of artifacts that are remixed in the Scratch Online Community, rather than only
focusing on youth as remixers as much of the literature does.

The concluding chapter summarizes the four main contributions of this work: the creation
of a working social computing system, the development of a one-million-member online
community, the collection of a rich research data set of user interactions, and a framework
to understand remixing based on a set of mixed-methods studies. This chapter also provides
directions for future research.

This work relies primarily on quantitative and qualitative analyses of the Scratch Online
Community. I base my findings and rhetorical arguments on interviews, case studies, exper-
iments, statistical and network analyses. The quantitative analyses examine a large corpus
of five years of log data from that includes more than one of million registered accounts,
close to ten million comments, and two million interactive media objects. In addition, many
findings are based and motivated by my personal experience as designer and participant of
the Scratch Online Community from its start until its five-year anniversary.

In the spirit of remixing, this introductory chapter and the dissertation as a whole reuse
several coauthored articles, blog posts, and unpublished write-ups created during the past
few years by myself and many collaborators. I will indicate whenever possible the exact
source of the text. Often, I have modified the original text to fit the structure of this
document better. All errors are my own, and do not reflect my collaborators’ efforts.

1.2 Economic and Cultural Production

Network information technologies have facilitated the emergence of social production as
an alternative to markets and firms in what is known as commons-based peer production
(Benkler, 2002). Many of today’s products, services, and cultural icons are the result of
peer-produced innovations (von Hippel, 2005). From the software that we find in our devices
to the content we consume on sites like YouTube. The cultural practices have changed, and
the boundaries between production and consumption have blurred (Bruns, 2007). These
commons-based peer “prod-users” need access to the work of others for them to remix and
share back the derivatives.

These creative activities, based on the idea of building new things by combining existing
ones, are not new. For a long time artists have engaged in similar practices through “appro-
priation art”, “pastiche”, “collage”, “sampling” and “bricolage”. Furthermore, folk culture
and oral traditions rely on the idea of remixing what others have made. As Manovich (2005)
argues, ancient Rome was a remix of ancient Greece, exemplifying how remixing is part of
cultural evolution. Similarly, Jenkins (2006) describes how remixing has been part of art
practice for a long time:

18

[T]he story of American arts in the 19th century might be told in terms of the
mizing, matching, and merging of folk traditions taken from various indigenous
and immigrant populations.

Despite this common feeling that everything old is new again, the influence digital tech-
nologies have had in remixing practices is self-evident. Manovich (2005) has called remixing
“a built-in feature of the digital networked media universe,” while Sinnreich et al. (2009)
argues that these technologies have enabled people to create perfect copies and remix the
source materials themselves rather than just being inspired by them. Jenkins (2007) argues
that

it was the emergence of participatory cultures of all kinds over the past several
decades that has paved the way for the early embrace, quick adoption, and diverse
use of platforms like YouTube.

Not surprisingly, Internet culture is particularly amenable to remixing. The popular “image
macros” for example are images that get remixed ad nauseam (see Figure 1-4). Users of
influential websites like 4chan often refer to having a special folder on their computers where
“they preserve images for future enjoyment or remixing” (Bernstein et al., 2011). As early
as 2005, a survey of online US teenagers (Lenhart and Madden, 2005) found that more
than half (57%) of them had created content “for the Internet,” of those, one-fifth (19%)
reported being “content remixers” —slightly more than adults (18%). The survey found
remixing to be “equally prevalent across genders, ages, and socioeconomic groups.”

YO DAWG, | HEARD YOU LIKE REMIKES

SO 1PUT A REMIX IN YOUR REMIX SO
YOU CAN REMIX WHILE YOU REMIX

Figure 1-4: Image macro mocking the recursive nature of remixing. The image itself is a
remix of an image taken from a video of the rap artist “Xzbit.” (Quickmeme, 2011)

1.3 Software Engineering

Software is born digital so remixing is inherent in the way it develops. Engineers constantly
try to devise ways of avoiding the duplication of efforts, “Good programmers know what to

19

write. Great ones know what to rewrite (and reuse)” Raymond (1999). Furthermore, two
of the tenets of Free and Open Source Software are precisely the ability to remix and the
opposition to any restrictions of this freedom:

Creativity can be a social contribution, but only insofar as society is free to
use the results. If programmers deserve to be rewarded for creating innovative
programs, by the same token they deserve to be punished if they restrict the use
of these programs (Stallman, 1985).

Even proprietary software firms, those who put restrictions on the use of computer programs,
encourage in-house remixing. Software engineers have a long history of studying code
remixing or reuse, primarily with the goals of improving productivity and quality (Frakes
and Terry, 1996). For example, they have developed quantitative measures for remixing,
such as the model of software reuse based on Gaffney Jr and Durek (1989), that calculates
the “amount of reuse” using the lines of code as the unit of analysis (Frakes and Terry,

1996).

lines of reused code in system or module

amount of reuse = -
total lines of code in system or module

This more formal approach to remixing is component-based software engineering, a discipline
concerned with

designing components and libraries to be reusable as-is, identifying and isolat-
ing reusable components from an ezisting code base, and making a searchable
repository of components (Philip et al., 2012).

This discipline is based on the use of well-documented libraries, modules, and API’s?, leading

to what it is known as “service-oriented computing” (Papazoglou and Georgakopoulos,
2003).

The second approach, called “opportunistic programming”, means the type of software
development “with little to no upfront planning about implementation details,” where “ease
and speed of development are prioritized over code robustness and maintainability” (Brandt
et al., 2008). This type of programming relies on “existing source code that was not specially
packaged for reuse” (Philip et al., 2012), such as copying-and-pasting (Kim et al., 2004) from
tutorials, discussion forums, emails, and Q& A websites.

1.4 Learning and New Media Literacy

The remix literacy observed among software developers is also widely popular in informal
learning environments (Perkel, 2008). Cultural anthropologists and media scholars have
documented how young people engage in creative practices through remixing. For example,
Ito (2007) has described how children relate to media franchises such as Pokémon by “col-
lecting their own set of cards and virtual monsters and combining them into a deck or battle

2 Application Programming Interfaces

20

team that reflects a unique style of play,” showing how they can “master highly esoteric
content, customization, connoisseurship, remixing.” Similarly, Jenkins (2006) has narrated
how children have become active participants in media creation by remixing their favorite
literary characters, such as the Harry Potter fan fiction communities he has studied.

These observations have motivated scholars to argue that remixing is a necessary skill to
succeed in today’s society. For example, Jenkins et al. (2009) argues that “appropriation”
is one of the core literacy skills for the 21st century, which he defines as the “ability to
meaningfully sample and remix media content.” Jenkins proposes to support remixing by
asking students to, for example,

work in teams to think through what would be involved in transforming an exist-
ing media property (a book, film, television series, or comic book) into a video
or computer game.

Livingstone (2008) has described similar practices when studying Internet use but also
presents the challenges that these creative practices, such as legal and ethical issues, have
to handle.

Even before remixing was popular, experts had argued the importance of providing learners
access to social environments with common resources on which to build. For example,
Wenger (1998) stressed the importance of having access to a “shared repertoire of communal
resources” to help shape a “community of practice.” Similarly, Bruckman (1998) argued
that building on previous works “encourages people that they can and would like to make
something of their own,” advocating for systems where “every object in the system functions
as a possible model to learn from and be inspired by.”

Building on the idea of Constructionism — a learning philosophy based on the idea that
some of the most valuable learning experiences occur when people engage in building per-
sonally meaningful objects in apprenticeships (Papert, 1980) — Turkle and Papert (1990)
advocated learning through remixing or “bricolage,” where learners construct by “arrang-
ing and rearranging [...]| a set of well-known materials,” rather than planning before time
what they want to create. Similarly, Situated Learning advocates for legitimizing peripheral
forms of participation, in particular through socialization, visualization, and imitation in
apprenticeship-like learning environments (Lave and Wenger, 1991) that support the spirit
of remixing.

1.5 Ethical and Legal Challenges

Although remixing opens new possibilities for learning, economic, and cultural production,
it is also morally and legally contested. Judge Posner (2007) has articulated that plagiarism
is highly context-dependent and that one can assess the ethics of appropriation by thinking
through the lens of deception, perception, and social expectation. For a more grounded
analysis, take the following three examples and the questions they pose.

e The creator of one of the most popular Harry Potter fan fiction community websites,
a young girl, was sued for copyright infringement by the company who owns the

21

rights to the book and the movie. Eventually the company dropped the legal action
and reached an agreement (Jenkins, 2006). What should young people’s rights and
responsibilities be when remixing?

e A federal court judge determined that photographer Richard Price violated copyright
law for creating a type of appropriation art that consisted of taking pictures of the
famous Marlboro cowboy advertisements and printing them in a large format (Batts,
2011). What role does originality play in remixing?

e Partly because of the Digital Millennium Copyright Act, YouTube had to implement
a system for automatic detection of remixing of copyrighted content. This led to 5%
of YouTube videos being removed for copyright infringement (Cha et al., 2007). How
should automated systems handle remixing?

Examples like these prompted Lessig (2008) to argue that “copyright extremism” “chills”
innovation and creativity, especially among young people who often engage in these prac-
tices. Similarly, Benkler (2006) argues that if we want peer-production to flourish, we must
figure out how to enable remixing:

If we are to make this culture our own, render it legible, and make it into a
new platform for our needs and conversations today, we must find a way to cut,
paste, and remiz present culture. It is precisely this freedom that most directly
challenges the laws written for the twentieth-century technology, economy, and
cultural practice.

Such arguments led to the development of the Creative Commons, which, among other
things, provide a set of human and machine-readable licenses that empower creators to
have more control of their copyright and encourage them to release their work legally under
more permissive licenses that foster amateur creativity.

At the core of examining the ethics of remixing lies the understanding of cooperation —
how much people are willing to sacrifice their selfish and rational desires to obtain monetary
and reputational gains, or to behave in altruistic and cooperative ways, which are the
foundations of my work.

1.6 Social Computing System Design

YouTube’s automation example highlights one of Lessig’s important contributions to system
design: “code is law” (Lessig, 2000). As I developed the Scratch website, one of the biggest
challenges was to decide what features to implement. Examining other systems that support
collaborative online creativity helped in the design of the website. This came from both
my own experiences interacting with many websites as well as human-computer interaction
research, more specifically the field of computer-supported collaborative work.

Wikipedia has been perhaps the most widely researched collaborative system. For example,
Viegas et al. (2004) developed a visualization of Wikipedia edits that led to insights into the
nature of the system and its editors’ ability to collaborate. Later Kittur and Kraut (2008)

22

studied the quality of Wikipedia’s articles in relationship to various types of coordination
mechanisms.

Similarly, analyses of open-source software development have led to insights into the mech-
anisms that lead to successful cooperative projects. Raymond (1999), for example, argued
that one of the lessons to be learned from open-source software programmers is the impor-
tance of knowing what to rewrite and reuse. He describes how Linus Torvalds (the creator
of Linux) did not “try to write Linux from scratch” instead “he started by reusing code and
ideas from Minix, a tiny Unix-like OS for PC clones.”

Researchers have also developed web mash-up tools that allow people to remix web content
(Bolin et al., 2005; Wong and Hong, 2007). A study on one of those tools found that despite
many of its users lacking programming skills, the tools were an effective way of searching
and aggregating information (Zang and Rosson, 2008).

More specifically on online communities for remixing, Shaw and Schmitz (2006) developed
a video remixing platform and studied the nature of the generative video segments intend-
ing to understand how to integrate automatic recommendation systems with user-driven
suggestions. Similarly, Diakopoulos et al. (2007) analyzed users’ participation in a video
remixing website and documented how participants developed specific norms for appropri-
ating other’s work that were not encoded in the architecture of the website.

Additionally, a study of the music remixing online community ccMixter looked at the impact
of a remixing contest in the community dynamics. The study found that the-contests
increased participation among newcomers but that they did not continue using the website
after the contest (Cheliotis and Yew, 2009).

23

Chapter 2

Remixing Systems

The idea was that anybody who used the web would have a space where they could
write and so the first browser was an editor, it was a writer as well as a reader.
Every person who used the web had the ability to write something.

—Tim Berners-Lee, 2005

When I started developing the website for the Scratch Online Community, I looked around
for similar systems to get inspiration. “Web 2.0” was in full swing. YouTube was less than
two years old, and Flickr was close to three; both were gaining popularity but were not
nearly as big as now. Those systems I examined influenced the design decisions that went
into creating the Scratch website. In this chapter!, I list some of these systems and briefly
examine how they approached remixing. This survey includes websites for sharing and
remixing videos, images, audio, status updates, and programmable media. This list is not
intended to be comprehensive, or to go into detail. My goal here is to give an overview of
the state of remixing on the Web while the Scratch website was in development. In addition,
my goal is to help frame subsequent analyses in the ecosystem of remixing systems.

2.1 Video

YouTube? is the largest video sharing website (Cha et al., 2007), acting as a host for a
combination of amateur and professional content since 2005. It has become the quintessen-
tial media-sharing website, and, therefore, it has become a common target of copyright and
licensing disagreements related to remixing. For example, the deletion from YouTube of
a popular video of a baby dancing to one of Prince’s songs caused great controversy, and
highlighted how copyright laws might stifle amateur creativity (Lessig, 2008). Since early

!Based on a co-authored poster paper with Oshani Seneviratne titled “Remix Culture on the Web: A
Survey of Content Reuse on Different User-Generated Content Websites” available in Proceedings of Web
Science 2010

2http://www.youtube.com/

24

Favorite Share Playlists Flag + Download

Download this video for offfine viewing.
LICENSE: Creative C (Attri N lal-No D tive Works).

[Do_umblt; | High Quality MP4 Leam more

Figure 2-1: Download button and license statement of a YouTube video (2010).

2009, YouTube started to allow special “partners” to display a download button® and se-
lect the license for their videos (Tran, 2009), (see Figure 2-1). The licensing options were
“personal,” “public domain,” and the various Creative Commons licenses. Partners had to
be approved, however. Users could apply to become partners and YouTube would make
a decision based on the size of the applicant’s audience (based on the popularity of their
existing videos), among other metrics (YouTube, 2010). Originally, partners were primarily
government entities (like the White House), universities, and other nonprofit organizations.
Music labels and other companies joined later.

Today, anyone can publish his or her YouTube videos under a Creative Commons license,
which enables a “remix” button under the video (see Figure 2-2). Clicking this button
opens the video in a web-based editor allowing people to create derivatives right on their
browser.

YouTube, under much pressure from copyright holders, implemented the first version of
their content identification system on June 2007. This system allowed copyright holders to
automatically identify remixes of their materials and decide to block the remix (sending a
copyright infringement notice to the remixer), gather metrics of its popularity, or monetize
from it by sharing some advertising revenue (Chen, 2007). Shortly after this system was put
in place, 5% of all videos were deleted because of copyright infringement (Cha et al., 2007),
including videos that had purchased the rights to use the materials. People whose remixes
were taken down could file a complaint through YouTube’s legal department.

Figure 2-2: Remix button on YouTube (2012).

YouTube users who want to explicitly give credit or link to the source materials have
repurposed the description and the “video reply” feature. The first consists of using the
description of the video to reference manually the materials being remixed. The second is to

3Today there are several third-party tools to download YouTube videos.

25

use the YouTube video response to create a link between the remix and its source. “Video
responses” need to be enabled by the person who uploaded the first video, though.

Similarly, embedding can be enabled or disabled on videos. This gives video creators the
ability to allow external websites (such as blogs or social network sites) to remix their videos
as part of other types of web documents.

Although YouTube is the largest video sharing website, Vimeo? has also gained much popu-
larity, especially because at first it was the only website that allowed High Definition videos.
Vimeo did not initially let users to set the license of their videos, and went as far as to pro-
hibit people from uploading videos that are in the public domain, arguing that the “I have
permission” part of their user agreement had to mean that the user had created the video.
That seems to have changed now.

Vimeo, in its early days, implemented a feature that, YouTube still does not have. Vimeo
allows video creators to give credit easily to other members of the Vimeo community (see
Figure 2-3), which makes sense given the type of users Vimeo had attracted were more
artistically inclined.

Figure 2-3: Credit-giving on Vimeo (2012).

Unlike YouTube, Jumpcut®, now defunct, actively encouraged remixing. Jumpcut was
a commercial website later acquired by Yahoo that defined itself as “the easiest way to
upload, edit, and share your video and photos.” Jumpcut (see Figure 2-4) was probably the
first commercial website to actively encourage remixing through their technical and social
features. The website had a web-based video editor that let users create sophisticated video
mashups and an easy-to-understand definition of remixing with a preemptive response to
authorship conflicts:

Remizing is creating your own version of someone else’s movie, usually incorpo-
rating elements from the original and adding content or maybe just some of your

Yhttp://www.vimeo.com/
Shttp://www.jumpcut.com/

26

own style and spicy goodness. It’s an easy way to get started, and you can do
it with the click of a button on any published movie. When you click “Remiz,”
we’ll pull back the curtain and show you what’s behind the scenes. Then you can
get busy being creative. Don't worry, you're not destroying someone else’s work,
you're just making your own copy. And if yours is better than the original, so
be it. The community will tell you.

Jumpcut had an automated system for giving attribution when remixing; however, inter-
views with some of their users found that people still felt the “moral obligation” to give
explicit credit when remixing (Diakopoulos et al., 2007). The interviewees did not seem
compelled to do the same when remixing content created by large companies.

by | Rogeier | Sgnih

(@) jumpcut”

Home MyPage Explore Groups Create Upiead

MOV01810 (193 568 sec)

Figure 2-4: Jumpcut’s web-based editor (2007).

2.2 Images

Flickr® is a popular photograph-sharing” website and one of the first commercial websites
to adopt Creative Commons licenses. When choosing from one of the six available Creative
Commons licenses (see Figure 2-5), people’s photographs show the “some rights reserved”
statement and a link to a web page explaining what those rights are. Five years since
Flickr enabled Creative Commons licenses in 2004 more than 100 million photographs have
been published under one of those licenses. Of those, 64% explicitly give the freedom to
create derivative works or remixes (Thorne, 2009) (see Figure 2-6). Unless an alternative is
chosen, Flickr’s default license for photographs is a traditional “all rights reserved” license.

Besides photographs, image sharing also includes the sharing of drawings, paintings,
and other types of graphic artwork. deviantArt® is arguably the most popular website
for sharing this type of media °, with its more than 14 million members, and 100 million
submissions (EvanitaEWM, 2010). deviantArt supports remixing in two ways. First, the

Shttp://flickr.com/

"Flickr also allows people to share short videos but it is predominantly a photograph-sharing website
Shttp://deviantart.com/

9deviantArt is primarily for sharing image but it allows other type of media.

27

Select a default license

Don't forget to make sure that you have all the necessary rights and you won't be infringing on any third
parties with any content that you license on Flickr. As per our Community Guidelines, accounts are intended
for members io share content that they themselves have created.

This will apply to everything you upload from now on. You can also change the license on all your
existing public content in a batch If you wish.

None (All rights reserved)

Attribution-NonC ShareAlike Creative Ci

) Aftribution-NonCommercial Creative Commons
Attribution-NonCommercial-NoDerivs Creative Commons
(s Aftribution Creative Commons

Alfribution-ShareAlike Creative Commons

®

Attribution-NoDerivs Creative Commons

You've previously chosen lo restrict who can dewnload your stuff. Selecting a Creative Commans license
here will override that setting on fulure upioads

SET DEFAULT LICENSE

Figure 2-5: License selection on Flickr (2010).

BY
12%

BY-SA
8%

BY-NC-ND
33%

BY-ND
4%

BY-NC
14%

BY-NC-SA
29%

Figure 2-6: Distribution of Creative Commons licenses usage on Flickr (Source: Creative

Commons blog).

28

Creative Commons licensing is built into their user interface (see Figure 2-7). Second, the
website provides a mechanism to encourage remixing while giving automatic attribution to
the source (see Figure 2-8). Over the years, several members of the Scratch community
have been active participants of deviantArt, and vice versa. Even within deviantArt there
are groups for Scratchers to hang out and share work to be used in their Scratch projects.

Choose License o
With a Creative Commons license, you can allow people to use,
copy, and share your work while giving you credit.

Use a Creative () Yes
Commons License? ® No

Allow commercial uses () Yes
of your work? ® No

Allow modifications of () Yes
your work?) yaq ag jong as others share alike
® No

ok) Caance)

Figure 2-7: Selecting a Creative Commons license in DeviantArt.

S

Figure 2-8: Sharing options in DeviantArt.

Finally, OPENSTUDIO, also from the MIT Media Lab, was a website that allowed people
to create, remix, and sell images for virtual currency (Arikan, 2006). The website described
itself as an experiment in creativity, collaboration, and capitalism. OPENSTUDIO let
people draw using a simple online painting application (based on Java), then share their
artworks with everyone. The drawings could be opened in their original format through
the editor that allowed easy remixing. OPENSTUDIO (see Figure 2-9) hosted a lively
community where creative collaboration and remixing took place.

2.3 Audio

ccMixter'? is an audio-sharing website that lets people sample and remix bits of music.

Onttp: //www.ccmixter.org/

29

o
_ :
.

Il

T
il
|
]
i
®

Figure 2-9: Front page and online editor of OPENSTUDIO.

ccMixter was explicitly designed to foster the use of Creative Commons licenses in an envi-
ronment unconstrained by the legal limitations of other more commercial systems. ccMix-
ter lets users choose from a list of Creative Commons licenses when uploading their work.
Remixers are also prompted to identify the samples, or any other remixes, that were used
in the composition. The remix inherits the most restrictive license from the sources used.
The website links to all the individual components used in the remix (see Figure 2-10), es-
sentially creating an attribution tree (Stone, 2009). The website also makes it explicit that
the use of ccMixter content outside the website requires honoring the Creative Commons
licenses associated with it. The managers of ccMixter experimented with the creation of

"After The Warll" |
by mykleanthony |

2010 - Licensed under
Creative Commons
Attribution Noncommercial (3.0)

Click here for how to give credit and other conditions.

Uses samples from:

After The War —... by HEI31
After the War (V... by Sacklo22

Remix History Chart

Figure 2-10: ccMixter showing the Creative Commons license and the source materials of
a remix.

contests to promote engagement. This is one of the decisions that system designers are

often confronted with: the use of incentives. The contests consisted in having users remix
sounds donated by famous remixing artists. These contests attracted many participants

30

but most of them did not engage with the existing community members and promptly left
once the contest was over (Cheliotis and Yew, 2009).

Unlike ccMixter, IndabaMusic!! gives people web-based tools to create song remixes right
on the browser. The website lets people upload audio files for which they, in theory, have
use permission and select from one of three licensing options for those uploads: “Creative
Commons Attribution,” “Creative Commons Attribution, Noncommercial,” and “All rights
reserved.” This last one tells the community the user owns the file and is not granting
anyone any special permission. Users can easily specify that a particular music file be used
in a remix. The remixes of any music file are displayed prominently among other metrics
of engagement such as number of posts (see Figure 2-11).

My Studio Community Featured Programs Peopis Cips Groups Events Forums Chat
!
SUARD sun-omar 2 N EE 2B
- Description: “Olivia™ is a track off our new album

100.000 Ways To Harvest Hope. Take . i H.. .‘-
the stems la the song an

ceme ANE-ERER

Needs: ramixer. Anything .

Created on: February 25, 2010 by Stand -

Updated on: March 28. 2010

Figure 2-11: IndabaMusic displaying the number of remixes of a music file.

2.4 Status Updates

Myriad systems let people broadcast short messages online; Twitter'? and Facebook!? are
the most popular ones. Millions of people flock to Twitter every day to share their latest

Reply 13 Retweet

&k

| Retweet to your followers? Yes

Figure 2-12: The “retweet” button, automating attribution on Twitter.

personal news, witty commentary, or links to interesting websites, among many other things.
From the start, users had the need to rebroadcast other people’s messages. The user

community organically developed various methods for this remixing, known as “retweeting”
(boyd et al., 2010).

"http://www.indabamusic.com/
http://www.twitter.com/
Yhttp://www.facebook.com/

31

Some people used prefix RT, short for retweet, followed by the name of the user being
retweeted, others used the suffix “via,” also followed by the name of the retweeted user,
and when modifying the original tweet people started using the prefix MT, short for mod-
ified tweet. After years of this emergent practice, in November 2009 Twitter formalized
retweeting by adding a retweet button (see Figure 2-12). Users could still manually copy
and retweet a message, but now they had the option of just pushing a button. Retweeting
using the button meant to push the message, verbatim, to the timeline of those who follow
the person doing the retweeting, with some text indicating who retweeted it. This feature
was met with mixed reactions. Some Twitter users did not like the fact that they could
not add their own commentary, and others complained that it was awkward to see someone
who they do not follow appear in their timeline (Williams, 2009). Until this day, Twitter
users continue using a mixture of automatic and manual retweeting.

Twitter terms of service gives Twitter an unrestricted and undefined license for all the con-
tent posted on their website, though the person who posted remains the official copyright
holder (Inc., 2012). As a response to this, Identica' emerged as an alternative microblog-
ging service that allowed users to post Twitter-like messages under a Creative Commons
Attribution license. Like Twitter, identi.ca also gave users the ability to rebroadcast status
updates with a button labeled “Repeat this notice?”

Like Twitter, Facebook owns the content posted on the website and does not allow users
to specify any particular license for their posts. Facebook added a feature allowing users
to re-share content in their activity streams, and specify whom it came from automatically
(see Figure 2-13).

Post to Profile

g Great Article!

via Andrés Monroy Herndndez (Remove)

‘2t e Cooperative behavior cascades in human social
i 2% networks — PNAS
3‘5: http:/ /is.qd /b3WE]

_/ Fdited* hv NDanisl Kahneman. Princetan lIniversitv. Princetan

Figure 2-13: Sharing a friend’s post on Facebook, automatically attributed.

2.5 Source Code

Several systems allow people to share code. Github!® and Sourceforge!® are among the
most popular. Both of these websites target professional and hobbyist developers, often
involved in large software applications. SourceForge used to be described as “the world’s
largest Open-Source software development website.” The website hosted more than 100,000

Yhttp://www.identi.ca/
YShttp://www.github.com/
http://sourceforge.net/

32

projects and more than 1,000,000 registered people that used the website to manage projects,
bugs, communications, and code (see Figure 2-14). Slowly, GitHub has taken over as the
place for sharing source code. Part of the appeal of GitHub is the ability to remix a project,
known as “forking,” and subsequently submit the changes in the fork back to its parent (see
Figure 2-15).

SOUrceforge r Srowse Blog Support Hwwsletiers Libraty Go Parsilel Register Log in
Voma Braasa Gy el A ol Newanen: - Phoin

Summary Filed Reviews Support Dveiop Tracksr MalingListi Forums

Pidgin _
s Gorhrom, consi, obrin: sdope, rikavcne, deape, ssdnl Iskegmd —gm

4 100 787 Do ey 5 PoonEncypien

£ Last Update 20120708 M

Wheso g0 miew MWD oo BV

Fegost mappeoprate coiest

Description

See bt aes s aboutl for mare wloemation

Tog ¥ 13 accoumts on mullile <hat networks
(% 00BN ByMIMTE FHIGE) 18 £CMOINO WITh
Messanges.

Figure 2-14: Sourceforge project page.

github © Explors Giet Bleg Help Ruwtwn § T X B
mozlla/ pdl js @ Unwatch 3s1 P Fok 3m
Code aork ol Reguaen 16 0 v Graphe
Orapn toamnen

The pdf.js network graph
Al v r £1e pefeor s mozmabes o 4154 sfimioe Pt (882 e Vo CH bt ho ek

S ———

moniils

- '
wigmbers 3

Figure 2-15: Forking graph on Github.

2.6 Programmable Media

By combining traditional media, such as images and sounds, with programming instructions,
people can create what I refer to as “programmable media.” Examples of these media are
animations, video games, and the many widgets that populate the Web. The code does not
need to be sophisticated to produce engaging widgets. People often say that a little bit of
code goes a long way.

One example of minimalistic widgets appears on the website YTMND! (see Figure 2-16),

"http://ytmnd.com/

33

which stands for the expression “You are The Man Now, Dog.” This website lets people
create simple animations by combining audio and images with an implicit program that
puts both in an infinite loop. YTMND, which describes the website as a community for
creative expression:

YTMND is a site created for furthering the creativity of its users. It stems
from an idea that, using sound, and image, and some text, the users can convey
a point, funny, political, or otherwise, to the general media. By becoming a
member, you can vote, comment, and make your own YTMNDs. YTMND is
like a big family, full of entertainment, drama, and joy.

YU REHENNOND0G ==

WOME CRATIATIMMD BTES USRS WS COMTISTS MAROI iom W)

Figure 2-16: YTMND'’s front page.

Among more sophisticated, although still focused on amateurs, Newgrounds'® and MyGame!?
are two online communities for the sharing, and remixing interactive media as Adobe Flash.
MyGame (Figure 2-18) has an option for novices to create games based on templates. These
do not allow the creation of new behavior but let users put their own images on a game.
To contribute to MyGame, Flash developers must use an API provided by MyGame. New-
grounds (Figure 2-17) gives more freedom than MyGame by allowing the upload of almost
any kind of Flash game. Newgrounds has a section where people can contribute music or
images for others to use. Newgrounds has an active community that often participates in
collaborative project-making (Luther and Bruckman, 2008).

Also developed at the MIT Media Lab (and later moved to Georgia Tech), MOOSE (MUD
Object-Oriented Scripting Environment) Crossing was a text-based MUD (Multi-User Dun-
geon). The system allowed children to interact and collaboratively build a virtual world (see
Figure 2-19): “[u]sing a scripting language, participants can add behavior to objects (things,
places, and creatures) in the simulated world” (Bruckman, 1998). MOOSE Crossing was
probably one of the first online communities for children to engage in sharing programmable
media. The spirit of MOOSE Crossing heavily inspired the Scratch website.

¥http://newgrounds.com/
http://mygame.com/

34

(template).

Object IBngem (#7690) i

Scripts Properties
aliases BorivojB's House
basic_class Bagic Subway
description

Bagent entiy

entry this

emote "greets you: Hello! Welcome to Bobr's
lhouse ! *
lend

Figure 2-19: Moose Crossing: play and scripting environments.

35

2.7 Summary

I have presented a small set of websites to give some insights into what system designers have
done to support the development of remix culture across various types of media. Content
sharing and the associated challenges are not just limited to the sites outlined in this section.
Much work is needed to solve the legal and social complexities of remixing. Based on these
observations, I decided on several things for the design of the Scratch website:

1. Default to the most open license possible that enables community building through
remixing. The Creative Common Attribution Share Alike license fit this criterion.

2. Display provenance to support navigation and discoverability.

3. Enable source code download for every project. Give people the tools to easily embed
and remix content.

36

Chapter 3

The Scratch Online Community

Literacy means both reading and writing, but most books and courses about com-
puters only tell you about writing programs. Worse, they only tell about com-
mands and instructions and programming-language grammar rules. They sel-
dom give examples. But real languages are more than words and grammar rules.
There’s also literature — what people use the language for. No one ever learns a
language from being told its grammar rules. We always start with stories about
things that interest us. (Minsky, 1984).

... we have considered how mathematics might be learned in settings that re-
semble the Brazilian samba school, in settings that are real, socially cohesive,
and where experts and novices are all learning. The Samba school, although not
“exportable” to an alien culture, represents a set of attributes a learning environ-
ment should and could have. Learning is not separate from reality. The samba
school has a purpose, and learning is integrated in the school for this purpose.
Novice is not separated from expert, and the experts are also learning. (Papert,
1980).

I've found a great site called Scratch. It’s about programming. You snap together
blocks to create stories, games and animations. Then you can share your projects
on the web!!! You can download it for free! But you have to become a member
to share your projects. But membership is free as well!

—10-year-old boy

In this chapter! I describe the development of the Scratch Online Community from my
perspective as system designer, administrator, and active participant. I have divided this
chapter in two parts. First I present the development of the sociotechnical infrastructure
of the Scratch Online Community. I describe its conception, guiding principles, and de-
velopment process. In the second part I examine how the community interacted with the

! partly based on previously published work (Monroy-Hernandez, 2007; Monroy-Hernandez and Resnick,
2008; Monroy-Hernandez, 2011).

37

system and with one another, from its beta release until its fifth anniversary when it had
accumulated more than 380,000,000 pageviews, 56,000,000 visits, 34,000,000 unique visitors,
2,000,000 submissions, and 1,000,000 registered accounts.

In the spring of 2006, as part of a project for the class “Creative Learning Technologies”
at the MIT Media Lab, I proposed what I originally described as a “Flickr for Scratch”
(Monroy-Hernéndez, 2006). In the first slide of a presentation I prepared, I summarized the
project as “Scratch + Web 2.0 = ScratchR.” Clearly inspired the by the “social imaginary”
of Web 2.0 (O’Reilly, 2005), my idea was that ScratchR would be the underlying infrastruc-
ture to develop an online community of people sharing programmable media created with
Scratch. More important, ScratchR would support the Constructionist learning philosophy
on which Scratch was based.

Scratch had perfected its visual grammar by this time, but, using Minsky’s metaphor, it
had yet to develop a rich literature. It already existed as a fully fledged development
environment that allowed people to control the behavior of images, text, and sounds using
visual programming blocks. However, Scratch did not have much of an online presence: its
website consisted of a blog used primarily to share guides with educators who had access to
an early version of the software (see Figure 3-1). Nor was the development environment, a
key tool for creating images and animations, publicly available. Thus, it had not reached its
potential for what an early design document called “deep shareability,” part of the original
vision of Scratch:

Youth are constantly looking at one another’s projects, trading ideas, sharing
techniques. To fit into this context, the object architecture of Scratch supports
what we call ‘deep shareability’ (Maloney et al., 2004).

3.1 Infrastructure Development

Inspired by Minsky and Papert, with whose words I opened this chapter, my goal was that
the Scratch Online Community would become a sort of “Samba school” where novices and
experts would gather to read, write, and remix Scratch literature. I wanted to take Scratch
from being “just” a good tool to a space where peers gather to create, share, remix, and even
just “hang out”: a commons-based peer production community. This meant giving people
access to an audience, potential collaborators, and a repository of inspirational creations
that creators could learn and remix from.

3.1.1 Ideation

I drew ideas from previous research and commercial systems when outlining the features to
implement and the design guidelines to follow. MOOSE Crossing was particularly influen-
tial because it also tried to realize Papert’s samba school metaphor by creating an online
community of young people engaged in programming a virtual world (Bruckman, 1998). I
also got ideas from social network sites like MySpace —the dominant social network site

38

Welcome to the SCRATCH site!

Scratch is a new programming language
that lets you create your own animations,
games, and interactive art.

Scratch will be available for public release
in Summer 2006.

Learn more about Scratch.

* Quick Start Guide + Frequently Asked Questions

* Scratch Intro Dance Video ¢ Help Screens

* Project Ideas * Questions and Tips Discussion

* Ways to introduce Scratch . t Scr.

¢ Group activities * Publications

» Scratch Cards
Scratch is being developed by the Lifelong Kindergarten research aroup
at the MIT Media Lab, in collaboration with KIDS research group at the

UCLA Graduate School of Education & Information Studies.

Figure 3-1: Scratch website (April 2006)2

+ Questions and Tips (16)

+ Sensor Board (3)
« Share Your Projects (9)

Recent Entries:

Using Scratch CD
Problem: asks for image
file

Project won't open?
Problem opening zip file
Presentation mode
Where can I download
Scratch?

a simple game controller
Valentine from Denis

Coffey
Erasing image backaround

a script to another
sprite

Subscrive

2The blog announced the release of Scratch for the summer of 2006 but the actual release date was moved
to May 2007. Image from: http://web.archive.org/web/20060424065311/http://weblogs.media.mit.edu/

1lk/scratch/

39

at the time— Friendster, Xanga, and Facebook. I especially focused on websites that let
people share artistic or creative works, such as Flickr and YouTube. From these existing
systems, I created this short list of activities and principles that I thought would be essential
for ScratchR to support:

Creative socialization:
Creative online communities should use the basic features of a social networking site,
such as “friending,” to support creative endeavors, rather than socialization as the
core activity. As I described in the introduction, years of learning science research
show that working with others provides richer learning and social experiences, so it is
essential for the system to allow light-touch and more involved forms of collaboration.

Remizing:
The platform should make it easy for people to reuse other’s work and let users know
when and how this happens. Remixing is both practical and social.

Participatory diversity:

The system should give people freedom to move from “lurking” to contributing con-
tent, and back. The platform should acknowledge listening as a valid state of par-
ticipation; for example, a simple view count allows creators achieve a sense of their
otherwise silent audience. Similarly, supporting users to engage in “active produc-
tion” means removing any barriers for them to do so. For example, although it is
possible to upload content to a website by filling out a web form, sharing within the
authoring environment lowers the barriers for contribution to the point that it could
even replace storing in one’s hard drive.

Serendipity and findability:
Having a rich literature requires an easy browsing method that allows users to stumble
upon content, as well as finding exactly what one wants when searching for it. The
systems should provide highlight content, both from experts and novices, and provide
hyperlinks connecting people, their creations, their feedback commentary, and across
systems.

Light-touch steering:
The system should allow administrators to set the direction of the online community
through shared activities, and by promoting interactions. Some ways to build this is
to highlight specific activities on the website’s front page, and to organize challenges
and themed-based creations, while still giving the freedom to ignore those recommen-
dations.

3.1.2 User Experience

The design process of the Scratch website involved creating mockups and prototypes. I
created the first mockups based on Flickr. I took screenshots of some sections of Flickr,
and simply edited them to show how the pages would look like in Scratch (see Figure 3-2).
Similarly, I created a mockup of the user interface for uploading projects within the Scratch
development environment (see Figure 3-3). Using those mockups, I had a brainstorming

40

session with some of my colleagues to outline the key elements of the website (see Figure 3-
5). Once I had a clearer idea of what I was building, I created a site map to lay out the
basic set of pages (see Figure 3-4). Then, I created a working prototype focusing only on the
client-side user experience (i.e., HIML pages), without a backend infrastructure to store real
data. I did this by remixing the design of the now defunct video-sharing website vSocial®
(see Figure 3-6). I hosted this prototype on http://scratchr.org/, using a commercial
web hosting solution.

Homa | Tags | Groups | Peopie ! inwle om0 whdrbemiy () ¢ Your Accourd | Hee | Senu Projects Yours Upload Yow Contacs’ Explera SGRATGHH
Fhetes Yours Upload - Your Contacts’ Explore SGRATGH ﬂ
Fish Chomp st
V¢ Chantee v

» Upload - Scratch blocks

» Your sets
» Your favorites

» Your profile

Edi these as a baich?

This is the gama of a mouss frapped in his Saarch bytag .
b 5
{0 commerts) e :
[s photo s privets (changs) O, browse by ¥ 4 i '_4’
cle et * Yourtags This garme ook & tew davs 1 geveiop The MOS!ChaRENQING BA was he <ollition P roc g I
detecon a

* Calendar

Comments

iy Ean
i ——

Add your comment

Figure 3-2: Mockup of Scratch website page based on Flickr (May 2006).

Based on these mockups and prototypes, I compiled the following list of graphics design
guidelines that would inform the implementation of the first version of ScratchR. This list
was heavily influenced by web usability studies with teenagers (Nielsen, 2005) and my own
preferences of the moment regarding the make-up of a “modern” website.

e Aesthetics should be playful, but not “childish.” The website should feel young but
still “cool” enough for teens. Similarly, the website should be intelligible to adults,
such as parents and educators, so they can discover where they can get information
that is more formal.

e Use “modern design,” including subtle use of gradients, shadows, reflections, light or
white background color, slight “roundedness,” and “webify” the Scratch logo (at the
time, the logo looked more plain).

e Visual elements should be defined only in the CSS* to reduce load time, complexity,
and cost of maintenance.

e Layout and aesthetics should be minimal to avoid taking attention away from commu-
nity contributions. This means relying on careful use of space, avoiding user interface

*http://vsocial.com/, no longer available
1Cascading Style Sheet

41

L | RA | we

Share Project on Scratchr

Apariencia Sensores
Sonidos

Lapiz

maver (0 pa
girar (w [B) grados
girar 4) grad.

apuntar en direccion Eiks

apuntar hacia

apuntar en direccion «

[5 RN 27]

ax: Dy

cambiar x por ()
fijar x
cambiar y por)

fijar y a

Figure 3-3: Mockup of interface for uploading a Scratch project (May 2006).

42

Front Page

i

Project clusters \(Browse . How To Login
[Galleries] [Tag Cloudj [Usars Page) [Page J [Sign Up

Most recent

i [] HowTo Article
Top viewed Gallery
Top rated
(oo }—

Featured

Tagged as __

Search results

X Py

Figure 3-4: Site map outlining all the sections of the website (May 2006).

elements with gratuitous animations, and minimal use of text.
Use big fonts to attract attention to important elements.

Design should degrade nicely. No functionality should be lost across browsers, includ-
ing older or less powerful Web clients.

Ability to handle many languages.

Visible tagline and description. Present a short (3 or 4 words) tagline. Before settling
on “imagine, program, share,” we considered the following: “Programming for every-
one,” “Now everyone can program,” “playful and powerful programming for people
like you,” “ScratchR: the premiere place for posting playful projects and powerful
programs,” “Creative tool for self-expression.”

Visually describe the steps involved in using Scratch and the website. Use simple
icons and some words. Each element of the graphic should link to the corresponding
documentation section.

Highlight novice and expert content to be inviting to both. Instructables® had a good
model for this, as many of the projects on the front page were amateur-looking rather
than professional, which might turn off some shy contributors.

Show header and footer on all pages, linking to the core elements of the website such
as the user portfolio page, home page, login, etc.

Shttp://instructables.com/

43

Figure 3-5: Whiteboard outlining the elements of the website (June 2006).

4

SGRA‘I‘GH&"‘" Home | Upload | Login | Signup | Help
In a click, see : Search:
New | Featured | Top Viewed | Top Rated | Themes. Gol

About| Contact Us | The Team | Privacy Policy | Tenms of Use | Copyright Poicy

F cundabon ((rant No 03284781 Ary cpmears, fncmgs, and can=wsont, of recommendatont

Figure 3-6: First prototype of

3.1.3 Architecture

Once I had those prototypes and guidelines, I
the website.® To do this, I outlined the followi

SCRATCHA o B L S A
‘Amon Boxing

Sund 10 coll phone EW
Ermai by e
e o MySpace

Send o et

Tags

nintendo baxing coflsicn Sercan By oy

detecon keyhoord control
xeep up the good work Add Tags of
On 1272808 @ &44pm sampie lag - Ibl‘pioj.r.ﬂ same
Add Comments
Sampie comment .

Cheber L fle
Save

s Mk & wppartad n Commens

ABOUL | Contact Us | The Team | Pivacy Poliy | Taimé of Lisa | Copright oty

T S ot w1t o o ikl S Pt Oty 0325036) Ay s b, wd oncumoms o ecmurendets
erpresed on s mle ‘thors aed o , Fourduton. Scratch has afen seceed hradng hom the
T Foundanr . T sk by Den e 2 Thags Tl T vovscrn

Scratch website (June 2006)

worked on implementing the first version of
ng core components of the website:

1. A repository of projects and metadata. It is possible for anyone to download projects

for modification and later re-upload to t

he website as a remix. Each project has its

web page with its own display where people can interact with it and others.

2. A friendship network consisting of profile pages and unidirectional friendship connec-
tions. Profile pages list the friends, projects, and “favorited” projects for each user
with his or her avatar image and the country of origin.

3. Diverse interaction activities such as commenting, downloading, tagging, “loving,”

and “favoriting.”

4. Project clustering. Using tagging, galleries, and interaction counters (for example,
number of “loveits”), group projects based on users’ or administrators’ input.

5. An API" to support external and internal services, including connectivity with the
Scratch desktop application, and later community-driven websites.

®Special thanks to Ubong Ukoh and Han Xu, undergraduate research assistants, and Kemie Guadia,

graphic designer.
T Application Program Interface

45

6. Discussion forums where community members help one another with technical prob-
lems, find collaborators, and talk about non-project topics to foster a sense of com-
munity on the website.

The current website includes four primary categories of pages: the front page (see Figure 3-
7), the project page (see Figure 3-8), the user profile or MyStuff page (see Figure 3-9), the
gallery page (see Figure 3-10), and the project-browsing pages (see Figure 3-11). The first
version of the front page displayed: three projects chosen by the Scratch team; nine projects
chosen by the community based on the number of views, downloads, and love-it’s; three
randomly picked “surprise projects”; and the latest three projects added to the website.
In addition, the front page showed links to featured galleries, a biweekly themed gallery
called Scratch Club, and a tag cloud of the website’s folksonomy. Finally, the front page
also displayed the user names of the newest members and those who have recently logged
in to the site.

The project page displayed the title and description of a given Scratch project with a full-
featured and interactive version of the project using a Java applet® that reads the Scratch
source file. The project page also allows registered users to download the source code of the
project, tag the project to create folksonomies, “love it,” bookmark it by clicking favorite,
and post comments. A few months after the release of the website, we added provenance
information underneath each remix, showing links to its source project, and a link to a
visualization of remixing connections (see Figure 3-12) in the case of “original” or “de
novo” projects that had engendered remixes.

Other pages let users browse by various categories such as tags, number of views, number
of love-it’s, or by galleries. Finally, the site has text-based forums where users engage in
conversations, question how to do something in Scratch, or advertise their projects.

ScratchR is composed of these basic elements: a repository of Scratch projects, a database of
metadata about those projects, a socially networked community, and an external application
to handle a set of forums. Users can share (upload) or appropriate (download) Scratch
projects to and from the repository. They can also participate in the community by tagging,
commenting, bookmarking (called favorite in the interface), marking as inappropriate, and
loving projects, as well as grouping projects in galleries. In addition, members can engage
in discussion on the forums. These activities occur in a social network where users can
connect by adding people to their list of friends. Nonregistered users of the site can browse
the site on a read-only fashion. The initial navigation map included most features in the
final version and was a useful guide through the implementation process.

I decided to build ScratchR using a web application framework that followed the Model View
Controller pattern. This pattern was selected to make it easier to independently change the
“look and feel” (view), the data manipulation (model), and the algorithms in between those
two (controller). MVC also allows better organization of the code and eases collaboration
with other developers. We evaluated a dozen frameworks, including Ruby on Rails, Django,
Symphony, and others. I wanted a mature framework that provided basic functionality
without the clutter of too many features, and took advantage of a widely used language.

8Special thanks to John Maloney and Brian Silverman for creating this.

46

QﬂR!‘AT : rﬂﬂf projects gpalleries support forums about Language
-l p = 2= RIQIDN-]!
— _',",_f' -) b

1 Login or Signup for an account [|[search]

imagine » program » share

Create and share your own interactive
stories, games, music, and art ot 1 vecon on

Elats e SR " ot ol | effect to (1)
| Check out the 2,677,171 projects| change x by B8 p

¢ from around the world! _ ; hanes Wl | afiact by C
veart (%) secs

set Wt offect

See more > ‘ ScratchEd

Do you help people
M learn Scratch? Join
ScratchEd, our new
online community
for educators.

Find out more |»

' Video Tutorials
Check out our new
collection of intro
video tutorials.

Learn more [»

Scratch Tours

New to Scratch?
Take a tour to see
what Scratchers are
creating and

Hawkshadow Comp...
by lundfamiy3

Figure 3-7: Front page.

47

qr"R ‘AT{.‘ﬂ- galleries support forums about Language
- |

imagine » program o TR Login or Signup for an account

Download this
project!
Download the 15 sprites and 37

scripts of "6 Birthday" and open it
in Scratch

6 Birthday

| Project Notes

This is a birthday greeting card
I made for my dad.
INSTRUCTIONS: Click on objects
on the top of the screen to
decorate the cake. You can
press them in any order you
like. When you've decorated the
cake, you'll get a surprise. In
the end you can watch my end
credits if you wait five seconds
after the sound stops. 8-) MORE
IDEAS: -You can delete the end
credits if you want to send this
greeting card to someone. -You
can recolour objects. -You can
add more decorations to the

SampleProject... shared it 4 ,). _Some rights reserved
shared years, 8 months ago cake. Feel free to upload your
Based on MyRedNeptune's” project version of this greeting card. :-
D
142 views, t_arggg , 3 people love it, 1 remix by 1 person, 11 R -
downloads, in 1 galleg Tags
¢ Loveit? Add to my favorites? Flag as inappropriate? h birthda

my red neptune

_/ Comments Add Tags
You need to be logged in to post comments ’

Add a Comment E

Link to this Project
| Embed
BOOKMARK off 20 &7

N

0/500

Figure 3-8: Project page.

48

qﬁthTﬁﬂ/ home projects galleries support forums about Language
a-M(s _ .‘.\".7:.'.’“

i S P Login or Signup for an account | |[search |
SampleProjectsTeam SampleProjectsTeam's Projects

EJ subscribe
Location:
cambridge
MA

United States

No friends yet.

4 ForWodunne a CanYouDance - e...
Comments: 4 Comments: 3] Comments: 6

Sorry

Bt o A

Comments: 3

See more | Iok

3 Mick 5 WO 5 Soun
Comments: 5 Comments: 2

Bouncing Balls wi...

7 WeatherSimulati... | 1Tetris
Comments: 4 Comments: 3 Comments: 8
2
6 Doodle
Comments: 85 Comments: 7 Comments: 31

Figure 3-9: Profile page (My Stuff).

49

Q{*R-A‘T‘rlﬂ home projects galleries support forums about o
B-Ml 2 | = B 181

Login or Signup for an account |[search

imagine « program = share

Newest Projects in Scratch 1.2 Potential Sample Projects
Sort by: creator | title | creation date | addition date |

Esubscribe

Gallery owner: SampleProject...
Created: 4 years, 8 months ago
7 Wodunne'sWo... 6 PolarbearSc... Gauery descﬁpﬁo"
by sampleProject... By AANHERID et by sampieProject... / We are trying to figure out which
ry i new projects should go in the
= sample projects library. This is a
= set of projects not made by us that
L we are considering for inclusion.
|
-
2 3
=]
5BugOnaPl. Pastor 1.0 | 6 Doodle
by SampleProject... by SampieProject... by SampleProject...

by SampieProtect..

Tek

3 Mick 9 could simpl...
by SampleProject... by SampleProject... by SampleProject...

Figure 3-10: Gallery page.

50

‘ r home projects galleries support forums about Language
SRATHH
L S e N = e S

imagine « program - share

Login or Signup for an account [|[search]

Esubscribe

What the community has been remixing

Do you want to know how to upload your project?

m most viewed recently [l most loved recently

hete § you agoer

| am against bullying. Please re-post if you care.
By: Ludburghmdm

Views: 168 | Lovelt's: 8 | Remixes: 73

Description: Please repost if your are also against bullying.

A message to everyone...

By: bballluke

Views: 355 | Lovelt's: 11 | Remixes: 63

Description: | know not everybody does this, but if you do, please stop. When you remix, be
sure to give credit to me (BballLuke). Remember, FRONT PAGE!!! | want to thank everybody
who remixed. This is now on the front page, and it only has 234 views (on the original) Log:
July 13 Front Paged! July 15: ... show more

COLORING CONTEST 4

By: -Nightfire-

Views: 246 | Lovelt's: 9 | Remixes: 42

Description: YOU MUST MUST MUST MUST MUST SUBMIT YOUR ENTRY HERE:

http:/ /scratch.mit.edu/galleries/view/171532 Rules: -All programs are allowed -Don't do any
major changes to the line art -Adding accesories is ok (better chance of winning!) -BE
CREATIVE -Don't add too many random colors. Try to come up with a ... show more

HEROZ contest

By: yakman

Views: 163 | Lovelt's: 8 | Remixes: 29
Description: rules explained in project

Minecraft CONTEST [READ NOTES]

By: BIG-red-BUTTON

Views: 358 | Lovelt's: 8 | Remixes: 28

Description: EPIC: http: //scratch.mit.edu/projects/BIG-red-BUTTON/ 2667545 Music * Mortal
Kombat LOL CONTEST ENDS after 15 days -------smmmrmmmmm e HOw TO
ENTER? -remix this project -delete "sprite 1" -edit the stage(color,draw) -upload your entery -

Figure 3-11: Project-browsing page.

ol

Remix Visualization Remix Visualization
The Face in The sir. Astra®47 has beft 1.

Figure 3-12: Three remixing visualizations.

This eliminated Ruby on Rails, as it was too new and the language was not as popular as
others were. I seriously considered Django (which is based on Python), but I decided to
go for a framework based on PHP because of its popularity, which would make it easier
to find software developers, especially undergraduates. Picking a PHP-based framework
made it easy to choose the LAMP stack: Linux for the underlying OS, Apache for the web
server, and MySQL for storing the data. Five years later, I do not regret choosing this
infrastructure.

The overall architecture of the web application is described in Figure 3-13, and the initial

Entity Relationship Diagram (ERD) of the database is in Figure 3-14. For an updated
version of the ERD please refer to Appendix A.

Scratch Development
Web browser] { Environment]

l Controller API

v

Model

' v

Projects, images
in File System

DB DB
(forums) (metadata)

Figure 3-13: Initial architecture of ScratchR.

52

N Giatonship_types ‘teomments

e talationships is of certain type T
name usa_id (FK)
duseription theme_td (F10 b <
fimastamp ::’:‘_M \“‘Jf" have comments
timestamp =~
b 4 ey
g themes
A [it un-/wd-m on thames ~ Juen
q ZHname
nams deseri,
bl users ralate to wachoth H . e ‘Hm.‘f":""
uiname - e
private I theme_mambemnin || thames pave membare 1
Himastamp [| e id (P P |
1 0roups have uren 7 -N:::;‘.df::?m e
‘ .~ ¥ o thamas habe projaces
g timestamp parmissions
i HHt | weR
roup_membamhips wan # project_id (FIO
@ (PH)) ot th -
uu‘r_ld @ Fussdeng mambes of Goupl) | nme i anpa il Tavarties thames_projects ::..,.,
group_id (FK) —— lestname P I ITC) commant
type =~ fremanname I usesfwodis pojact i projact_id (FK) thame_id (FI) rate
-
timestamp o TH{uiname - usar_id (FK) pioject_id (FK) favorite
- amail R timestamp timestamp hotfink
- P asme0 1 timestamp
- craated N poommant T T
Cr = timestamp f user ommnwm] I / F
AE0
b projact_id (FK) projects are favorited ~
we g [0 g] User 14 (T) projact can brin s thame 5
tastin /A ps ~ 7 [Swanes
Ipaddress / g [ETEs)
\ timestamp e —~ piojact_id (Fi)
/ ~ - . 1 ! s projectssam be Qieuiss
A ~ mh(- have mnwmni/ 3 - - i :‘“":"""
usam vota i ,,..[. £ ~ f 7 - > timastamp
e wan mnthQ gt b
/ m(PV:’ g §)’// projegif have binaries thumbnalls
user_| 11 L)
{ proectia i [~ ~ 1+ i . ;"::; AT
timestamp projects . —wqBolect.
projects abviewed 6 P T
ofs h. Mt il type
voles usar_id (FK) < Pm’; Lo EmEna timestamp
aen S |name A
:::::‘m?m ,‘__777ﬁ______-'_:a‘-'s‘nwm- = — project_tags
& projeds have vtes s _H.'.‘..: H ~ 14 (PR
. S~
o antarny M project_id (FK) tags
— festund proi. cana faatured [Soqet [14990 tag_id (FI) S _[Wom
] [F‘: — Senoirantt timestamp T name
proje :F 205 are amignad t imestamp
"2 =2

Figure 3-14: Initial Entity Relationship Diagram of the ScratchR database (ca. 2007).

3.1.4 Sharing from the Desktop

A key design principle was that sharing was possible with the push of a button. Accom-
plishing this required the implementation of an easy way to upload projects from within the
Scratch desktop application. More specifically, the “Share” button was added to Scratch.
This button would prompt users for basic authentication information —user name and
password— with the name of the projects. Users could also add a description of the project
and tags to categorize it.

YouTube and other user-generated content websites required users to go to a specific web
form to submit their videos or images. Given that we have control over the application to
create content, I decided to implement an API that would let the Scratch desktop application
push projects into ScratchR by sending an HT'TP POST request. ScratchR responds to
Scratch with a simple XML confirmation of upload success or failure, and, if necessary,
the reasons that it failed. The API allows users to submit a project description with tags
to describe it. The API also accepts some information that Scratch generates without
user supervision such as the number of sprites and scripts used to generate statistics for
researchers.

Once ScratchR receives a Scratch project, it processes and analyzes the file header to cal-
culate the connections with other projects. For example, if a project is a remix, it displays
the appropriate link under the creator’s name, producing an automatic way of giving credit

53

to creators in accordance with the license used for Scratch projects. This is the focus of
later analyses.

3.1.5 Scale

Five years after its official release, the Scratch Online Community website handles more
than 10,000,000 page views and 600,000 unique visitors every month (see Figure 3-15).
This web traffic is more than half the page views of websites such as newsweek.com®. Every
second, the website receives up to 180 requests and it transfers 4MB. Five years since its
inception, 2,426,894 project have been uploaded, representing about 2TB of files stored in
the file system and 1GB of metadata stored in a MySQL database. To handle this level
of activity, ScratchR, the website’s underlying platform, had to implement the following
infrastructure changes'?:

Pageviews

12,000,000

6,000,000

January 2008 January 2009 January 2010 January 2011 January 2012

Figure 3-15: Five years of monthly pageview counts.

Query optimization:
The first bottleneck we encountered was complex database queries. First, we tried to
simplify them but for many, adding new indices was helpful. The first thing we did
was to identify the slowest queries, which and helped us decide which database indices
to add, or, occasionally, which queries to improve.

Static content caching:
We used the Varnish (see Figure 3-16) caching engine to avoid having to read each
image from the server’s hard drive and file many times, especially those heavily used
such as popular projects and the images part of the Ul elements of the website.

Dynamic content caching:

We used the Memcached engine (see Figure 3-16) to store the result of complex
database queries in memory. Each query result would reside in memory for a spe-
cific period, specified in the configuration files, and based on its complexity. For
example, the query to generate the tag cloud that appears on the front requires up
to a minute to generate, as the front page is requested many times per second, and
consequently puts severe stress on the server. Memcached will hold the results of this
tag cloud, which does not change often, for several hours.

904/2011 data from http://www.quantcast.com/newsweek.com
'%Special thanks to Vladimir Vuksan for his help on this.

54

Hardware:
The website originally ran on a single machine that hosted both the Apache and
MySQL, the HTTP and database servers. As demand grew, we had to split those two
services across two machines. We also had to add a server for caching and another
for backups. Furthermore, the server for each service was fine-tuned depending on its
use. The database server was configured with a large amount of memory and speedy
disks, while the Web server got more processors.

Internationalization:
More than half of the website’s visitors came from outside the United States, this mo-
tivated us to enable translations for the user interface using the system Pootle, which
allowed anyone to help with the translation. In addition to this, the projects displayed
on the front page of the website were customized to match the country of the person
visiting the website. This functionality was enabled only for Mexico because we had
a local partner there.

Figure 3-16: Scaled-up Architecture of ScratchR.

Scaling Community Management

Scaling up was not only a technical challenge, it was also a challenge for moderation and
community building. As people signed up and uploaded their first projects, I would welcome
them to the community by commenting on their work, asking them questions about their
projects, or making suggestions on how to improve it. Although I have not analyzed this
quantitatively, I am convinced these early efforts helped create a sense of community. I was
especially made aware of this when I started seeing others who I had never met mimicking
this community-building behavior. Some members became so active that they were invited
to become moderators of the discussion forums, and others became curators helping select
a few projects on the front page (72 accounts were marked as curators as of March 2012).
Because of popular demand, some in these roles have been selected through community
vote.

55

Not every member of the community behaves in a civil way; in fact, the few who did
not often caused plenty of disruption. This led me to implement hybrid mechanisms for
moderation, which evolved as I encountered new types of transgressions. Today, the website
runs on a model that combines user-driven moderation, through flagging (see Figure 3-
17, Figure 3-18,Figure 3-19,Figure 3-20), and appointed moderators working in parallel with
one full- and several part-time staff members who review the flags and ensure that the social
dynamics remain as civil as possible. A total of 43,029 people have flagged 30,229 projects
as inappropriate.

Insuling
changed SPAY m gm“rih makes o thing user“’ed
dsoGBbmglveum kids o wigna mex | Sbuff il viol ""ﬁ"'
change Credl 9°'°made 9"‘:';““9*'9"- 'Iﬂofﬂ*%e

please ,Song violen
maébleg*mmscrabch
bloodyCopyjgame Ilkemperson Ghink word

blood-====

Figure 3-17: Flag word cloud. Most frequently used words in the 42,214 reasons people
gave for flagging 29,755 projects as inappropriate.

When an account-holder violates the terms of use, he or she gets a warning, except when
the transgression is too severe that would lead to the blocking of the account or even the
IP. Often, the removal of a block may occur after discussion with the offender or their
adult guardian. Administrators can censor projects, or mark them as “for everyone” which
prevents the project from being automatically censored even if more people flag it. Fur-
thermore, a project can be marked as “not for everyone,” as it is the case with some mildly
violent video games, which prevents the project from appearing on the front page. In March
2012 the website had accumulated 229 blocked IP addresses, and 2,851 blocked accounts.
Users can hide other users, making an account invisible when they wish to ignore the user.
This is particularly useful when the “offending” user is not doing something that would
merit the blocking of the account. As of March 2012 we had 5,975 users being ignored by
someone.

This model has allowed scaling the community management at a relatively low cost; however,
much of the architecture and software development during the three years has been put into
mechanisms for preventing antisocial behavior, in true “code is law” Lessig fashion.

56

Flag as inappropriate?

Te flag this project, you must explain why you feel it
is disrespectful appropriate. Please don't flag
projects because th are broken, or because you don'c
like them. The Scratch Team will read your message and
decide what to do. Thanks!

commenting and tagging

Figure 3-18: Community members can flag projects as “inappropriate”.

57

Cast Reviewed By: Lightnin on Wed, 21 Apr 2010

o |

Unreviewed | For Everyone | Not For Everyone

View Detailz | Flagger info

Figure 3-19: Administrators can censor, demote, protect, or feature a project.

58

q R,h‘ lllﬁ ¢ home projects galleries support forums about my stuff Language
o] =S b N Q1D N-
U ATEL AY,

° Welcome, andresmh | Logout |[search |

imagine = program = share
You have 403 messages

Manage Users

Integraflag - open flags (open | review | closed) - Search - Stats
Flags Flagged User Action

IC: it (on Pie 1s1s) d - flagged by multiple users.
Flaggers: jsuainr [0/2] - Comments | Guisiss [0/0] - Comments (7/20/12, 6:05 am) < i [0/0]
IComments | IP | Ban

accept credit card and so mang payment = = WS wme Alr Jordan v
(1-24) shoes $35 UGG BOOT 550 Nike shox (R4, NZ, OZ, TL1, TL2, TL3) $35 Notes: 0
Handbags (Coach Lv fendi D&G) 535 T-shirts (polo, ed hardy, lacoste)
$16 Jean (True Religion, ed hardy, coogi)534 Sunglasses (Oakey, coach,
Gucci, Armaini)515 New era cap 516 Bikini (Ed hardy, polo) 518 FREE
SHIPPING = = = sariiisamiins .o

Posted: 2012-07-19 23:18:18
account was created on a network used by the following banned accounts in
ast 30 days: —10/0] Notes:0
Joi e [3/4) - Comments (7/20/12, 5:10 am} IComments | P | Ban

IP actions: 78.120.117.240

Registered: 2012-07-20 05:10:07
IComment (on uw... . i . _..u) removed - flagged by the project creator.

Flagpers: Al cnt [0/2] - Commants (7/20/42, 4:46 am)) 0/0
omments | IP | Ban
farts
Posted: 2012-05-11 13:51:18
Comment (on £& & . 1)) removed - flagged by multiple users.
[laggers: NSRRI 1 10/0] - Comments | iy [1/6] - Comments (7/20/12, 4:31 am) 4 it [0/0]

IComments | 1P | Ban

accept credit card and so mang payment = = ssisfaies < Air Jordan
(1-24) shoes 535 UGG BOOT 550 Nike shox (R4, NZ, OZ, TL1, TL2, TL3) 535 tes:0
Handbags | Coach Lv fendi D&G) 535 T-shirts [polo, ed hardy, lacoste)
5§16 Jean (True Religion, ed hardy, coogi)$34 Sunglasses (Oakey, coach,
Gucci, Armaini)$15 New era cap 516 Bikini (Ed hardy, polo) 518 FREE
SHIPPING = = = sisiinmse ~u

Posted: 2012-07-19 23:19:20

Figure 3-20: Administrators’ control panel to deal with community-generated flags.

59

3.2 Participation Patterns

Once I was ready to release the initial version of the website, I decided to first test it with
users that I could meet face to face. The opportunity presented itself as I was invited to
run an eleven-week Scratch workshop!! for middle school students through an organization
called Citizen Schools'?. The workshop would help them learn how to create projects with
Scratch, and share their projects on the newly created website. The workshop participants
helped me identify bugs and usability problems in general. The experience also gave me
insights into the social dynamics of what I hoped would be an active online community. For
example, it helped me realize how the projects and people on the website were going to be
even more important than the technical infrastructure behind them.

On May 15, 2007, a few weeks after this workshop ended, the website and the Scratch
application were publicly announced. Several news outlets and social news websites featured
the Scratch website on their front pages (Fildes, 2007; Zonk, 2007; Johnson, 2007). In a
matter of hours, the server and the website could not handle the traffic and the website
went down several times. This is when problems of scale became apparent, something I
tackled with the techniques described in the previous section.

Visitors to Scratch website come from all over the world. Based on Google Analytics!3 data
from March 2007 to March 2012, the typical visitor to the website spends 5 minutes 31
seconds, and visits 6.79 pages. Also, of the 56 million of visits, almost half came from the
United States, 48.55%. Other visitors came primarily from the United Kingdom 11.38%,
Canada 4.41%, Australia 2.87%, Germany 2.07%, Brazil 2.03%, South Korea 1.68%, Taiwan
1.39%, Mexico 1.18%, and Spain 1.15%. In terms of cities, London accounted for most
visitors at 2.41%, New York at 1.12%, Sydney at 0.86%, Melbourne at 0.77%, Hong Kong
at 0.63%, Seoul at 0.55%, Los Angeles at 0.54%, Chicago at 0.49%, and Minneapolis at
0.48% (see Figure 3-21). In terms of demographics from Quantcast!®, 49% of visitors are
female, 28% are less than 18 years old, and 21% between 18 and 24. In terms of ethnicity,
77% are Caucasian, 8% African American, 5% Asian, 8% Hispanic, and 2% other.

More specifically with regards to the 1,068,502 accounts people signed up for, 36% (392,814)
self-report as female and 29.41% (314,287) shared a project on the website. 37.50% (117,857)
of those project sharers self-report as female, and shared a mean of 7.24 projects—compared
to 8.01 project for males.

Another interesting fact is that 77.99% of projects (1,892,778) were shared by accounts
within the first 30 days of creation, 26.96% (654,331) within the first week, and 16.90%
(410,264) within the first day (see Figure 3-23).

In addition, we find that the median and mean age of project sharers has remained stable
through the 5 years at 12 years old, and 15 years old respectively (see Figure 3-24, Figure 3-

11gpecial thanks to Rachel Gerber for her help running this workshop.

12 «Citizen Schools partners with middle schools to expand the learning day for children in low-income com-
munities countrywide. By drawing thousands more citizens into schools each year, we’re promoting student
achievement, transforming schools, and reimagining education in America.” http://citizenschools.org/

3http://google.com/analytics

“Generated on Jul 13, 2012 http://quantcast.com/scratch.mit.edu

60

i,

32,996 S 724,062

Figure 3-21: World map showing cities with most number of Scratch visitors.

25). We also find that the majority of project sharers are in elementary and middle school
Figure 3-22). Although a small percentage of projects are shared by adults (16.18% or
392,705 projects were shared by people between self-reported 22 and 60 years old), I have
identified, and even met in person, several adult computer hobbyists and educators who
create projects in Scratch. Though many of them know other professional programming
languages, they find Scratch a fun activity or do it as part of their teaching practice. Some
older members of the community have emerged as mentors who help the beginners and
provide advice. One of them joined the team of people doing community moderation.

300 —

Elementary school (K-5)

M Middle-school (6-8)
I B High-school (9-12)
5 8 11 14 18

age (years)

project count
(thousands)

Figure 3-22: Distribution of ages of project sharers.

61

project count
S ©o o o o
ks N w £ (&)
| | | | |

e

o
o
|

| | I
10° 10" 10°
account_age(days)

Figure 3-23: Distribution of projects by account age.

62

Monthly Average Age of Creators

20

FTTT T T T T T T T T T T I T P T ITTT T TTI T TTT T T T T T TTIT

Mar-07 Mar-08 Mar-09 Mar=10 Mar-11 Mar-12
month

Monthly Average Account Age

[4)] (=]
1 1

f -
1

account age (months)
N w

-
1

o
1

LN O

Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12
month

Figure 3-24: Project creator’s age and account age monthly mean.

63

age (years)

account age (months)

Monthly Median Age of Creators

10
5_
04
rTTTTT T T T T T T T T T T T T T T T T T I T T T T T I T T T I T i T T T T T T T T T T T T T T T T T i T rTrTod
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12
month
Monthly Median Account Age
2.5+
2.0+
1.5
1.04
0.5+
0.0 -
L . I L L L T R v .) e O . L O O O O O O O b L O
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12

month

Figure 3-25: User age and account age monthly median (project creators only).

64

3.2.1 Project making

During the five years after the release of the beta version of the Scratch website, we have
seen a steady increase in the number of projects shared every month and the unique creators
who upload them (see Figure 3-26). Between March 5, 2007, to April 1, 2012, community
members have contributed 2,426,894 projects.

Monthly Projects

80

D
o
1

projects (t!lousands)
o

0-
TrTTTTT T T T T T T T T T T T TR T T T T T T T T T T T T T T T P I T T T TP T T T T T T T T T T T TT T TT T UT
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12
month
Monthly Unique Project Creators
20+
)
o
&
® 15
S
o
=
‘{;_,'10—
ie]
[0}
0_
TTTTTTTITTTTITTTTTT T T T T I T I T IT T T T T T T T T T I IT I TOT
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12

month

Figure 3-26: Projects and creators per month.

Projects vary from interactive greeting cards to physics simulations, animations of popular
songs, and homemade video games, just to name a few. Scratch projects are organized in
sprites (for example, a character in a game). Each sprite has a set of “costumes,” images
that represent its various visual states; for example, a sprite of a bird flying could have many

65

costumes, each representing the various positions of the wings. Sprites can also have sounds
associated with them; these sounds can be either recorded with the microphone or imported
from the hard creator’s hard drive. Finally, “scripts,” stacks of visual programming blocks,
control the sprites’ behavior.

I was interested in knowing what was inside the projects people made, so I compiled a
large database with information about the most common components of each version of
every project uploaded to the Scratch website. Among other things, this database has the
tex-based human-readable representation of the scripts for each sprite (see Figure 3-27). A
sprite can have zero or more scripts, so the database was created by extracting each script
associated with every sprite and created a new database table for it. This new table has a
record for every script that comes with its human-readable version, the ID of the project,
its version number, and the ID of the sprite, among other fields. I added a column to
store a version of the script without arguments. This arrangement treats scripts possessing
different arguments but the same block sequence as equals. This new database table of
scripts has more than 16 million sprites, 47 million scripts (90% of projects have scripts),
and 273 million lines of code-as a comparison, the Linux Kernel had 15 million lines of
code in 2011 (Paul, 2012). For the sprites, most had cryptic names and there is not an easy
way of representing them, so I decided to look at their costumes or images as a proxy to
determine most common sprites. These misses the behavior and blocks of the sprites, but
because I was already grabbing the most common scripts I decided that getting the most
common images would help unveil the content of Scratch projects.

Visual representation Textual representation

is touching

L move) steps

Figure 3-27: Example of a Scratch script in visual and textual form.

Code

Scripts are groups of blocks that are triggered by some event, for example, by pressing a
keyboard key or by simply starting the Scratch project. When composing scripts, users have
several type of block they can use, from “control” blocks like “if-then-else” statements, to
“looks” blocks like “switch to costume.” Figure 3-29 shows how often different categories
of blocks are used. Similarly, the “script cloud” in Figure 3-28 shows the most common
scripts.

This analysis shows that the most common scripts involve looks manipulation such as
hiding/showing a sprite and switching its costumes. This is probably because controlling
the display on the screen is useful and necessary for most types of projects, from games
to animations. In addition, these scripts often come in pairs: for every “hide,” one would
expect a “show.”

66

when clicked
shoy

[o

vihen Tam clicked
broadcast |
when 1 receive

hide

stop script

when I receive

switch to background

chicked
when Tam chicked
brosdeast |

hide

Figure 3-28: “Script cloud” showing the most frequently occurring scripts in a corpus of 47
million.

The most commonly used script (9.16% of the total) is a two-block script that hides a sprite
when an event occurs. The names of the events vary widely; to give a general idea, the most
common events that trigger this script are “Game Over” (2.54%) and “start” (2.44%). As
the small percentages show, the frequency distribution of scripts appears to be a long tail
distribution. This is expected given the many possible combinations. One might expect a
similar distribution when searching for the most popular phrases in English (probably an
even longer and flatter tail).

Interactivity ranked highly as well. After all, interactivity is one of the features that distin-
guish Scratch projects from media such as videos or pictures. Some scripts above involve
interactivity. For example, the 11*® most common script is probably used in interactive
stories that function like slideshows. The investigators for this project observed this often;
the most commonly used keys that trigger this script are “space” (36.55%) and “1” (6.66%).
The use of the “space” key to interact with projects has developed into a cultural norm
that participants learn in the Scratch Online Community (possibly influenced by Microsoft
PowerPoint as well).

Although slideshows are interactive, we can see interactivity that is even more complex in
the 16" most popular script. Games often use this script to let a player control a character
using the keyboard. The most common arguments used are “right arrow and direction 90°
and a move 10 steps” (16.21%) followed by the equivalent “left arrow and direction —90°”
(16.81%).

67

Project Count (Millions)

0 0.5 1.0 1.5 1.8
when "green flag" clicked

wait _ seconds

forever

next costume
switch to background _
show

Looks
say for _ secs

set effect to _
hide

point in direction _

e

Motion ik

]
(=1
>
-
E Numbers 3
m .
ic random _to _
own
Pen
b— key _ pressed?
Sensing touching?

== touching color _?
play sound
Sound

——— 0|2y sound until done

read variable

Variables ange b
sef fo _y -

Figure 3-29: Histogram of block usage. Each color represents a block category. Each bar
represents a block.

68

Despite not being obviously interactive, the 27*" most common script (When “Green Flag”
clicked; forever set = to [| + [] + []) represents a form of interactivity because one of its
arguments is a variable changed by pressing the arrow keys. As we can see in this project
(the first to use this script), these blocks are typically used to control the horizontal position
of background elements on a scrolling background game.

I was somewhat surprised to find a script related to sound ranking so highly; it is likely
that animations and games often have some sound playing continuously in the background.
Closer examination produced a more surprising revelation: the sounds looped more fre-
quently are not music files imported into Scratch (namely, commercial songs) but recordings
created within Scratch using a microphone. The most common sound name played with
this script is “recordingl” (3.82%) followed by “onel” (1.08%).

The scripts in gray in the script cloud are stand-alone “single hat” blocks. They represent
a script with a trigger to start but without anything underneath to execute. The decision
to include them was difficult; technically, they are scripts but because they have no blocks
underneath, they do not have any effect on the project. Ultimately, their inclusion seems
merited as an indication of how often people drag a hat block and leave it unused. Compared
with other languages, Scratch is forgiving and lets people do this without big repercussions.
These unused hat blocks possibly represent moments of tinkering and experimentation,
something valued by Scratch creators and administrators.

Conversely, I decided to leave out the comment block by itself from the script cloud. Partly
because scripts are groups of blocks with a “hat block” on top while the comment block is a
single block that does not get executed. However, if one were to count that block as a script,
it would be in the 10" position in the list (0.68%). The use of the comment block was both
surprising and encouraging, in part because it was a recent addition. Many projects from
2007 and 2008 lacked the comment block as an option. But when comparing its use against
other blocks, not against scripts, it is one of the least used blocks.

Media

An “image cloud” with the most common costumes can be seen in Figure 3-30. All the
images in this list are images that come with Scratch itself. However, they represent less
than one percent (1%) of the total images. The reality is that the distribution of images
follows a long tail distribution where many images are used only once or twice.

Complexity

Using the five years of longitudinal user log data, we can see how users progress as they
continue using Scratch for a while. For example, one can get a rough measure of the
complexity of a Scratch project by looking at its number of sprites, scripts, blocks, diversity
of blocks (distinct unique blocks), costumes, and sounds. Each of these measures different
types of skills, from media-centric projects (i.e., those with more costumes and sounds) to
more code-centric projects (i.e., those with more scripts or blocks). A simple time series of

69

Figure 3-30: “Image cloud” showing the most frequently occurring costumes in a corpus of
47 million

70

each of these metrics shows that the metric for general complexity of a project, i.e., sprites,
increases as the age of the account (Figure 3-31). We see the same for code complexity
but different for media complexity. Because mean values might be skewed due to extreme
outliers, we plotted the median values and we observed the same patterns, especially for
code-centric complexity. These results do not control, however, that as users grow up, they
might become more adept with Scratch or any other tool merely by virtue of being older.

Account Age Vs. Average Sprites Account Age Vs. Average Scripts

g A 30
25 -
2°7 et v[\'“vh\/ Y 220-
T4 215+
& 310 -
2 5]
0 0-

T I I T T T T T T T T T T

0 10 20 30 40 50 60 0 10 20 30 40 50 60
account age (months) account age (months)
0Account Age Vs. Average Blocks Account Age Vs. Average Block Type:
200 - 8 20
% 150 - 217
o _ £ 10
2100 § 10
50 5 57
0+ 0 -
T T I T 1 T T I T T I T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
account age (months) account age (months)

2Jg\ccount Age Vs. Average Costumes Account Age Vs. Average Sounds

T I T T I T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
account age (months) account age (months)

Figure 3-31: Project complexity and user’s and account’s age.

71

3.2.2 Interactions

Besides project making, community members come to the Scratch website to interact with
others. Using the framework of youth engagement by Ito (2010), I have seen community
members see the Scratch community as a place to “geek out” through creating projects,
“mess around” by playing others’ projects, and “hang out” by participating in the discussion
forums, often on non-programming subjects. They feel part of a community that is more
than just programming (see Figure 3-33 for this model of participation).

These activities translate to 10,018,442 comments posted on projects, 57,690,455 views on
projects, 1,716,538 loveits (equivalent of likes on Facebook), 1,169,248 favorites (equivalent
of bookmarking), 96,525 people who have tagged a project, 4,886,289 project downloads,
134,565 galleries created, and 3,741,009 comments posted on galleries. The table below
(Table 3.1) shows that these attributes are spread across projects.

As the Scratch Online Community has grown, one of the main challenges has been main-
taining the initial level interaction with submitted projects. For example, the community
has noted how the number of views per project has decreased. For example, the community-
driven wiki notes the following:

One could argue that more views were given [to projects/ back then, as there were
fewer Scratchers to choose from. Conversely, you could argue that fewer views
were given back because it was a smaller community.

A time series plot of the number of interactions per project confirms this observation (see
Figure 3-32). This remains one of the challenges for future research.

3.3 Discussion

People often ask how the Scratch Online Community became “successful.” Of course,
“success” can mean many things to various people. Assessing the success of an online
community is a rich area of research explored by others (Preece, 2000; Kittur and Kraut,
2008; Kollock, 1998; Burke and Kraut, 2008a,b; Beenen et al., 2004) and slightly tangential
to the goal of this document. The goal here is merely to describe how the Scratch Online
Community has achieved some of the desired outcomes, and has struggled to achieve others.
Broadly speaking, two measures of success, size and engagement, are considered here.

Size:
The simplest and perhaps most naive measure of success is based on the number of
registered users, contributed content, page views, and visits to a website. With more
than one million users, two million contributed projects, ten-million page views and
one-million visits, the Scratch Online Community is big for an academic research
project but relatively small compared with similar online spaces—consider YouTube’s
14 billion videos (comScore, 2010).

Engagement:
A more nuanced and difficult means to assess the success of an online community is

72

Table 3.1: Table of project attributes

Attribute N mean median sd mode
views 16.35 6 89.771 1
favoriters 0.485 0 5.331 0
loveits 0.707 0 7.218 0
versions 1.238 1 1.123 1
flags 0.016 0 0.207 0
sprites 6.016 3 14.345 1
scripts 17.46 4 291.424 1
visibility 0.795 1 0.404 1
remixes 0.355 0 9.852 0
remixers 0.266 0 6.638 0
downloads 1.8350 20.857 0
downloaders 1.816 0 20.376 0
comments 292 0 16.641 0
commenters 1.686 0 8.921 0
galleries 0.4150 2.093 0
blocks 117.1928 548.691 0
block types 12.848 9 11.52 0
costumes 19.334 7 71.282 3
sounds 3.907 2 12.5 1
strings 25.427 2 548.013 0
saves 6.702 1 21.111 0
days to share 39.661 0.001 352.125 0
days to remix 479 0 47.375 0
user age (years) 16.79312 15.201 11
account age (days) 139.66814 219.625 0

73

comments per project

5 -
B
g 4
3...
E
8 27
14
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12
downloads per project
15 |
v
® 10 -
o
=
g 5] o "
o - _
T T T T T T
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12
5 favoriters per project
04
£ 3
=
S O -
2] \Wv T e
il B
T T T T T T
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12
loveits per project
5 -
4 ¥
£
[
S 34
2 Ve
2. w ——-—_.._/-—-ﬁ.__,_—_\
1 -4 -\-
T 1 T I T 1
Mar-07 Mar-08 Mar-09 Mar-10 Mar-11 Mar-12
views per project
100
w
=
2 50 e
0 e ——

T
Mar-07

T 1 T T !
Mar-08 Mar-09 Mar-10 Mar-11 Mar-12

Figure 3-32: Monthly mean number of interactions per project

74

the diversity and richness of its members’ interactions. Some rich interactions, docu-
mented in stories of members of the online community, show that many participants
consider the Scratch Online Community not only a website where they upload projects
but also a space where they like to hang out to meet and interact with peers.

It is difficult to know exactly what contributed to the success of an online community but
below follows a description of the set of broad sociotechnical steps that possibly contributed
to the success of the Scratch Online Community. Although they might be the result of
post hoc rationalization, they might provide insights into others trying to work on this
space.

High-quality creation tool:
The online community success is undeniably linked to the quality of the Scratch au-
thoring tool. Members of the Lifelong Kindergarten Group'® have spent countless
hours over the years perfecting the Scratch development environment. Every pixel in
the screen has probably had more hours of work than any other aspect of the Scratch
experience. This attention to detail in the Scratch application has greatly contributed
to the solid user experience of Scratch, even at the expense of agility.

Bootstrapping:
Many online social spaces face the problem of adoption. Others have already described
the challenges of benefiting from the network effect(Porter and Donthu, 2008). How
does one get people to participate in an online community before there are any users?
This was approached by seeding the community with participants recruited as part
of Scratch workshops, starting with an 11-week workshop for underserved middle-
schoolers as part of an initiative called Citizen Schools.

Authentic participation:

From the beginning, I set myself the task of becoming an authentic and active member
of the community. My daily activities would include browsing the website, playing
with people’s projects, and leaving comments with suggestions or merely describing
the reasons for enjoying various aspects of people’s work. For many children on the
site, knowing that their work is visible and eliciting responses from others is a big
motivation to come back. I have always tried to represent myself as an adult, but
I used the language of everyday online conversations. By avoiding both complicated
language and trying to be “one of the kids,” I could maintain a real profile.

Empowering active members:
Clearly, from an early stage some were not only spending more time on the site but
also contributing to it in meaningful and positive ways. Some were adults and others
were children. An attempt was made to acknowledge their presence and recognize
them when possible by featuring their work on the front page or even inviting some
to become “moderators” of the discussion forums. This is an aspect of an online
community where technological interventions can be effective.

15In particular John Maloney, Evelyn Eastmond, Brian Silverman, Paula Bonta and Natalie Rusk with
the guidance and leadership of Mitchel Resnick, have more than a century of combined experience developing
creative tools for children

75

Quick iterations:

As mentioned before, development of the Scratch desktop application occurred in a
careful, slow, and almost artisanal model that led to a high-quality product. The desk-
top application embodied the long-held intuitions of its creators — often a blessing,
but on occasions it hindered speedy innovation. The desktop nature of the application
made it hard to deploy changes quickly. In addition, getting feedback from users was
not as simple as checking server logs. In contrast, the Online Community development
took a radically different approach. Inspired by some aspects of Agile software devel-
opment (Schwaber and Beedle, 2001) the website has evolved with its users through
quick iterations. The first version of the website made a few assumptions, so it was
released with enough functionality for people to share their work but without complex
mechanisms for moderation, to mention just one of the features that we later spent
significant efforts in trying to improve. The website had clear goals but I was not too
tied up in the details. I wanted to get people to use the system and to learn from
them.

At first, we released changes as often as every other day, some of which were drastic
changes such as the removal of the most recent projects from the front page. In the
last part of the five-year period I worked on the website the changes were less frequent,
about every other month.

Emphasize user contributions:
The layout was simple, perhaps too straightforward compared with other sites for chil-
dren, but there is something to be said for simplicity in web design. Sites such as
Craigslist or 4chan have proved successful despite having extremely straightforward
and archaic designs.

Software-embodied culture and policies:

The architecture of the Scratch Online Community evolved with its users, so, as social
transgressions occurred, changes to the infrastructure minimized their effect. This in-
volved not only the implementation of more features but also the tweaking, over time,
of the parameters of those policies. For example, the maximum number of times one
can post the same message over a specific period, the list of approved words, or the
whitelisting of URLs all changed as the community grew. Similarly, as I saw people
using the website in new and desirable ways, I devoted efforts in trying to support
those users. For example, the implementation of an API that would let people build
companion websites was the result of one user’s efforts to create a repository for clipart
and code useful for Scratch projects.

Generalizable specificity:
On the surface, the Scratch Online Community is about sharing animations and video
games; however, people come together to do more than that. People discuss their
family and school lives, the games they like. Scratch is a place to hang out with
like-minded people; it is a clubhouse, not just a repository. Online communities need
to balance between focusing on something specific (for example, programming) and
letting the conversations diverge into the general (for example, family issues). Some
of the most successful (in volume and engagement) online communities have exhibited

76

similar patterns of helpful divergence. For example, reddit.com originally focused on
technology topics, but now it has diverged into comics, politics, science, and arts.
Similarly, one of the most controversial and influential communities, 4chan, was origi-
nally focused on Anime subculture, but has now diverged into a range of topics similar
to reddit. Likewise, Facebook originally focused on college life and Flickr on sharing
screenshots of videogames. The “seeding culture” influences the discourse and the
people that it attracts, but once it happens, community designers must give some
room for divergence. How much divergence depends on how much the designers want
the community to grow. As it diverges, it also alienates longtime participants.

3.3.1 Learning through Online Community

The Scratch website offers an alternate model for how children might use the web as a
platform for learning, enabling them to create and share personally meaningful projects,
not merely access information. Children create and share Scratch projects to express them-
selves creatively, much as they would paint a picture or build a castle with LEGO bricks.
In the process, they not only learn important mathematical and computer-science concepts,
they also develop important learning skills: creative thinking, effective communication,
critical analysis, systematic experimentation, iterative design, and continual learning. The
ability to produce (not merely interact with) interactive content is believed a key ingredi-
ent to achieving digital literacy and becoming a full participant in the interactive online
world.

The Scratch Online Community makes programming more engaging by turning it into a
social activity. Hobbit, a 14-year old member of the community explains:

When I think about it, recognition for my work is what really drew me into
Scratch. Other things played a part, but the feeling that my work would be seen
is what really motivated me.

The website provides extensive entry points for community interactions. Children com-
ment on projects, upload their own projects, and can become involved in existing projects.
The site is also a repository of user-generated content that is a source of inspiration and
appropriable objects for new ideas. Users can connect, forming a social network of cre-
ators and collaborators through “friendship” galleries (groups of projects based on a topic)
and forums where users can post their questions or interests to be discussed with others.
Inspired by Jenkins’ description of the states of participation in fan-fiction communities
(Jenkins, 2006), it can be useful to frame the participation of members of user-generated
content communities in four roles or states of participation: passive consumption, active
consumption, passive production, and active production. To build a successful community
it is essential for those sites to support and welcome users despite the state of participation
they fall in. For example, Lave and Wenger (1991) argue that “peripheral participation”
is a legitimate form of engagement. These roles/states are the core of most user-generated
content sites and the Scratch Community addresses them in a relevant way for the specific
audience and type of content.

77

Passive consumer:
Online communities often call these people lurkers. In this state, people assess the
community to understand their values and ideas. With Scratch, this involves the act
of browsing the various categories and interacting with Scratch projects others have
created. Although this is the most passive state, the passive consumer alters the
system merely by viewing because the number of views is for public presentation.

Active consumer:
An active consumer participates in the community by providing metadata. Active
Scratch consumers contribute their ideas by commenting, tagging, and rating projects.

Passive producer:
In this state, users create projects, sometimes inspired by other projects they have
seen in the community, but do not necessarily feel compelled or ready to share them
to the community.

Active producer:

An active producer not only consumes but also contributes to the repository of
projects. This person gives feedback to others’ projects, becomes inspired by oth-
ers, and provides inspiration to others. An analysis of website usage showed that the
number of projects a user creates correlates to the level of activity by that user on
projects created by others (Monroy-Herndndez and Resnick, 2008). That is, there
is a correlation between the number of projects a user creates and the number of
comments posted on others’ projects, views on others’ projects, projects marked as
favorites, projects marked as “I love it!”, and projects downloaded. Smaller correla-
tions were found with tags. Others often recognize the level of involvement of these
active producers. Members in this state feel invested in the community and it is one
of the most important assets of the Scratch Online Community.

3.3.2 Sharing and collaboration

Professional programmers are familiar with the process of reuse or remixing, and base much
of their work on programs and algorithms created by others. With Scratch, there was a
wish to introduce children and teens to this approach, because learning in a community is
more convenient, as well as more rewarding and engaging.

One of primary goals of the Scratch online community is to foster the idea of learning
from one another by building on others’ ideas or projects. This is one of the reasons that
it is always possible for a member of the community to download the source code of any
project. Additionally, users of the community often create their projects when inspired
by other projects they see. In this type of creative appropriation, no code or media are
reused; instead, it is the idea that is appropriated to create a project (see Figure 3-33).
This type of appropriation often leads to the emergence of trends in the community. One
of these trends was started by an interactive “dress up” project created by an 11-year-old
girl from South Africa. The project was a digital version of a traditional paper doll where
the viewer could choose the skin color, hair, and clothing of the doll. Projects tagged as

78

“dress up” were so popular that they often are in the Top Viewed section of the front page
with hundreds if not thousands of views. To date, there more than 150 projects tagged as
“dress up” varying from a project about dressing up a hero to dressing up a famous TV
star and original characters; “dress up” projects are as diverse as their creators are.

PARTICIPATES, SELF-IDENTIFIES

SHARES 3?5?;3? REMIXES

SCRATCH PROJECT
_REPOSITORY

USER- TAGS, COMMENTS, GROUPS, RATES
GENERATED |

METADATA

lightbulb icon from thenounproject.com collection
Figure 3-33: Scratch users contribute to and learn from the online community.

The Scratch website is a repository of code and ideas that can be creatively appropriated
to spawn new ideas and new projects. The Scratch website and development environment
make it easy for this to happen. Exactly 670,932, or 27.64%, of all projects shared were
remixes of other projects. Of those, the changes made varied from simple changes to images
and sounds, to changes to the actual code. With each sharing of a project on the Scratch
website, the desktop application adds information about when and who shared the project.
This information automatically connects projects based on other projects. When a project is
a remix of another it displays a link to the original project, giving credit to the creator whose
work has been remixed. Several members of the community have posted messages on the
online forums expressing their concern about others “copying” their work. This controversy
has provided an opportunity to discuss important ideas and differences between plagiarism
and sharing. A more detailed analysis occurs in the chapter focused on attitudes toward
remixing (chapter 6).

79

Chapter 4

Process of remixing

When I first started Scratch, I didn’t know much about it or how it worked. So I
gave up on it. A few years later I bought my own computer and decided to give
Scratch another chance. Being a bit older I had more of an understanding of
how it worked, but I still didn’t really know how to use it very well. I knew from
the start I was going to make games. ..

I started off with a great game idea that I’d saved over the years. .. I was finished,
but not satisfied. The movement was choppy and in my opinion unacceptable.
So I searched the site for platforming engines. I found a nice one.... At that
point I had no clue what remizing was so I planned to just copy the scripts block
for block in another project (with credit given of course). That’s when I looked
at the top left corner of the scratch program and noticed the share button was
still there. I gave a quick look at the scripts and began making my game. ..

I have to say if it weren’t for remizing, I would have never understood velocity
or scrolling. it should be used for things other than “add yourself” and coloring
contests (not that I'm against those in any way) it’s a tool that makes the Scratch
community stand out as a friendlier and more learning based environment.

—14-year-old boy from the USA.

Remixing has a significant presence on Scratch and other similar communities. In the five
years of my analysis, more than a quarter (27.64% or 670,932) of all projects in Scratch
Online Community were remixes of previous projects. Similar percentages of remixes have
been reported on similar systems such as Kodu Game Lab and Studio Sketchpad (Bader-
Natal et al., 2012).

In this chapter!, I investigate how people engage in remizing on the Scratch Online Com-
munity. The focus of this chapter is to show how remixing represents a wide range of
practices.

!Based on published article: (Monroy-Hernandez and Resnick, 2008).

80

I have defined remixing before as creating something new based on something old. While
operationalizable, this definition encompasses a wide range of practices that need to be
teased out. For example, remixing to fix software bugs on someone’s project is qualitatively
different from the customization of a project to make it more personal, or from the kind
of remixing intending to spread a “meme,” or the kind that helps members of a group
collaborate.

I start by grounding this section with a set of remixing cases that exemplify some of the types
of remixing that I have observed over the past five years in the Scratch Online Community.
I then propose remixing taxonomy based on two dimensions: originality and generativity
(as a proxy for “collaborativeness.”) I end with a discussion on the implications of different
types of remixing for learning and design, and the broad motivations people might have to
remix.

4.1 Case Studies

4.1.1 Mesh Inc’s collaboration

Since the Scratch website went online in May 2007, the children themselves, with the pri-
mary goal of creating projects collaboratively, have spontaneously formed many “compa-
nies.” These companies were formed using the “galleries” feature of the website which were
originally designed to group projects around themes, not explicitly created for supporting
collaborative groups. The website later on added better functionality for the loading of
large number of comments in these galleries as a response to the usage part of the “com-
pany” phenomenon. One of the first collaborative efforts on the Scratch Online Community
started when a 15-year-old girl from the UK, username BeepBop?, created a project with a
series of sprites for people to remix (see Figure 4-1). The sprites included a boy and a girl
walking with winter gear, and some elf-looking characters. “You can take any of these to
use in your own project, or you can post a comment saying what you want and I can make
it for you,” she explained.

Right after BeepBop uploaded her project, another user from the UK, a 10-year-old girl
with the username SoundBubbles, wrote a comment complimenting BeepBop’s animations
and asking her to create a project with “a mountain background from a bird’s view” for
use in one of her own projects. SoundBubbles also asked BeepBop to submit the project to
Mesh Inc., a “miniature company” that she had created to produce “top quality games” in
Scratch. SoundBubbles explained “All you do is simply send in a project, I will review it
back in the Mesh gallery, and, then, if it’s good enough, I will grant you a member of Mesh
INC!” BeepBop accepted by saying

I will gladly make you some mountains. .. I'v actualy allready made some, but
it’s not from a birds-eye view, but i can have a go :) Mesh Inc. sounds goooood,
but I’'m only really good at the drawing characters and background stuff, I might
need some help with the programing.”

2 All user names are changed to protect the privacy of the participants.

81

qf R'AT’* { ‘ ts galleries support forums about Language
[ﬂ FaElc :
S et Rl TR

o Login or Signup for an account [|[search

imagine « program « share

sprites denbil‘:l this
Download the 6 sprites and 9
scripts of “sprites” and open it in
Scratch

_ Project Notes

Here are some simple walking
sprites, each one only has two
costumes.... They are peeerfect
for platform games.... if u
wanna sprite of your very own
leave a comment in my gallery
{link to gallery)

say what u want and i will make
it for u... be patient, coz it
might take a few weeks.... i am
very busy “o*

Tags

~ o ‘ Add Tags
BeepBop shared it 4 years, 11 months ago ()_(©)_Some rights reserved
1203 views, 1 tagger, 12 people love it, 122 downloads, in 8 galleries

Figure 4-1: BeepBop's sprites project.

32

SoundBubbles and BeepBop continued their exchanges and a created an initial collaborative
project by remixing one another’s contributions. The company’s headquarters was a gallery
on the website, using the comments section to coordinate.

A few days later, a 14-year-old American boy who went by Hobbit, discovered the Mesh
Inc. gallery and offered his services: “I'm a fairly good programmer, and I could help
with debugging and stuff.” SoundBubbles asked Hobbit if he could solve a problem with
a particular Mesh Inc. project: “I can’t make characters jump so you're up”. A day later
Hobbit fixed the game and posted, “this is the new updated version, so now he can jump
on the snow.” SoundBubbles replied, “gr8 job, Hobbit! I’ll take this and carry on from
here.” Meanwhile, Hobbit decided to put his blogging skills to use and created a blog for
Mesh Inc. where each member is listed with their corresponding role. SoundBubbles was
selected as the “chairlady.” Later, an 11-year-old boy from Ireland calling himself Marty
was added to the Mesh staff as the expert in “scrolling backgrounds.”

As others witnessed these interactions happening, Mesh Inc often received recognition in the
community, and many people started to “audition” for Mesh Inc. MusicalMoon, a 12-year-
old girl from Russia, started to lead the “character design” and “sound operations” with
GreenDinousar, a 10-year-old boy from the US, who holds the title of “story writer.” Soon
after, the group could no longer handle the large number of requests and asked applicants
to “audition” by submitting a project to their audition gallery. “If you want to join Mesh
Inc., please put a sample project in this gallery and we will see if you are right for us,”
explained their gallery, which received more than 30 applications.

Despite all the interest and the frequent remixes of each other prototypes, Mesh Inc. never
finished any of the projects they decided to work on. However, Mesh Inc. inspired the
creation of many other “companies.”

A year later, during the summer of 2008, MusicalMoon joined with three other children —
aged 8, 13, and 15, respectively— to “found” a new company called “Green Bear Group.”
Three months later the company had a membership ranging from 12 to 18 children (Aragon
et al., 2009).

Like the other collaborations described above, the participants in Green Bear Group have,
for the most part, never met, live in different time zones, and do not even know one another’s
real names. The 8-year-old “owns’ the gallery where the company is hosted, and the
founders collectively make decisions on company membership. The members then vote on
which games to develop. Each member has a specific skill, such as art, music, programming,
or storytelling, which he or she contributes to the game through a process of iterative
remixing process. The six finished GBG games from the company’s first three months
required an average of 17 remixes each.

4.1.2 Jumping Monkey’s ripple effect
A 9-year-old American girl using the name Jessyl5 joined the Scratch community soon

after it was unveiled in May 2007. A month and 18 projects later, she created a video game
titled “Jumping Monkey.” The game featured a monkey that the player can move across

83

multiple floors to capture bananas. “Up arrow to jump, down arrow to move down, left
and right arrows do move, too! DON’T FALL IN THE LAVA! Oh, and eat the bananas
because monkey is hungry!” read the project description.

A 34-year-old Scratcher from the UK, Chaoz, made two remixes of Jessyl5’s project. The
first made some “simple mods” by adding “pink slippers” to the monkey’s feet so that
it would be easier to detect when it touched the different floors. A month later, Chaoz
went on to release a fully-fledged scrolling game based on Jessyl5’s project. The game was
well received by the community, getting more than two thousands visits. Chaoz credited
Jessy15’s project as a necessary catalyst: “I'd never have started this if it wasn’t for her
jumping monkey.”

Chaoz’ “simple mods” created a ripple effect of their own (see Figure 4-2). About a week
after Chaoz’ first remix, MagicX, an 11-year-old American boy, found it and remixed it.
He added couple of new obstacles. Then MagicX reused his own remix to create a new
more sophisticated version of the game. In it, he gave special credit to the “pink slippers,”
although misattributing them to Jessyl5: “How i made this: I adapted this shoe tecnique
from Jessyl5’s Jumping Monkey.”

Two weeks later, GummyBear, a 20-year-old woman, discovered MagicX’s project and asked
him for permission to remix: “Hey MagicX, I love this game. I was wondering if you
wouldn’t mind me making some changes.” MagicX accepted and even invited GummyBear
to collaborate: “Hey GummyBear, I need someone to help make games for my production
company, Mega Software.”

GummyBear accepted the invitation, then MagicX started a project titled “Walk the Line,”
a game resembling the initial Jumping Monkey but with a cat as the main character and
more sophisticated gameplay. GummyBear completed it by adding a Johnny Cash’s “Walk
the Line” song, and very professional-looking graphics. “This is a remake of Super Software
Productions Walk On the Lines created by MagicalX,” GummyBear wrote in the description
of the project. MagicX posted a comment on the remix saying: “its amazing what you’ve
done with my game.” The game was posted to the Mega Software gallery and went on
to receive 15,844 views, 458 loveits, 2,088 downloads, and 23 remixes. The remix ripple
continued.

4.1.3 Galaxyman’s “media franchise”

In mid-2010, a 10-year-old child, who had joined the Scratch Online Community five months
earlier, created an animated story titled “Choco Bar.” It featured his namesake, “Galaxy-
man,” and he described it with the headline: “You know it’s not going to end well when
it involves chocolate.” By then Galaxyman had shared more than 180 projects, many of
them part of a series of animated stories, such as “Mr. Pineapple Head episode 17 and
others.

The “Choco Bar” received thousands of visits, more than hundred comments, and inspired
more than thirty remixes, one of which reused some of Choco Bar’s components to create

84

6/22/2007 7/11/2007 7/18/2007 7/22/2007 8/3/2007

TYPES OF REMIXES
@ INCREMENTAL
(w INSPIRATIONAL

RESTRUCTURE
@ COMPONENT

Walk On the Lines
by MagicX
1063 views

MagicX's game company

6/22/2007 7/11/2007 7/18/2007 7/22/2007 8/3/2007

s s T

Figure 4-2: Remixing events started by “Jumping Monkey”

85

an animation featuring Galaxyman grabbing a chocolate bar with the word “success” in the
background.

Inspired by how well-received “Choco Bar” was, the young creator produced a sequel,
“Choco Bar 2,” which was equally well-received. In fact, another community member,
BadumJack, created a whole series of Galaxyman-inspired remixes such as “If I were a
Galaxyman character” and “Galaxyman babys.”

The third episode of “Choco Bar” was a success too as it received more than two thousand
visits and hundreds of comments. Galaxyman described it thus: “Teh sequal to the candy
bar 1 and 2,” and asked people to give positive feedback: “Please luv-it cause this took
alot of time.” The records indicate that he worked on the project during three sessions,
one of which might have lasted six hours. The project was remixed dozens of times. Many
of those involved incremental changes, with of people creating projects such as“Choco vs
Moon” and the “The Kitty Candy,” involved tweaks of the source project (see Figure 4-3
for a diagram of Galaxyman’s remixes).

Four months later, by mid December 2010, the fourth episode came out featuring Galaxy-
man running away from a big snowball. This was Galaxyman’s most generative project
ever; it was remixed twice as much as the previous episode. Some of the remixes, such as
“Add yourself to the x-mas snowball run away,” reused many of the sprites from “Choco
Bar 4” but was created to explicitly invite others to remix by adding their character: “add
your anthro with a message and then teleport them to the snow ball channel where you can
add them running for theitr warmth and lives.”

The fifth and last episode of “Choco Bar” came out in mid-2011. Galaxyman wrote in the
description “OMG that was A LOT of work.” Indeed, Galaxyman worked on the project
for more than two weeks; the file saving records indicate that he labored each day for
several hours. He also asked people to “please give this project as many tags as possible,”
to increase its visibility. The project was tagged by 557 people, received 6,456 visits, 560
people loved-it, and it was remixed 289 times. Many of the remixes were parodies, or
“spoofs” as many users call them, with different endings.

The series also triggered the creation of “Galaxyman Fan Club” where people submitted
their remixes and imagined different endings. Galaxyman became the impetus for more
than 1,000 remixes, inspiring several of these fan clubs and galleries, and creating a new
art style with his stick figures. Many remixes are merely tweaks, customizations by other
users. However, others take it much further. Many other people animated the Galaxyman
characters into creations of their own design, creating projects on what it would be like to
meet him, or be one of his characters.

Galaxyman is one of several characters that are part of episodic stories that create a fol-
lowing of dozens or even hundreds of children on the Scratch Online Community. Much
like professional movie or TV producers, community members such as Galaxyman have cre-
ated popular media franchises, built new cultural materials, and inspired a host of creative
remixes.

86

GALAXYMAN
THE CHOCO BAR

TYPES OF REMIXES +8 more
O SELF remixes
@ INCREMENTAL
@ CROWD
& COMPONENT
= INSPIRATIONAL

+6 more
remixes

+14 more
remixes

+28 more
remixes

URSELS 1O THE X.
oy Gabbymi

+148 more
remixes

Figure 4-3: Chocolate Bar episodic series.

87

4.2 Taxonomy

The diversity of remixing cases presented above suggests the need of a taxonomy of remixing
to help tease apart the different types of remixes we might find. In this section® I propose
a taxonomy for categorizing remixing based on the cases discussed above and five years of
observations of the Scratch Online Community. This taxonomy is based on two dimensions:
“originality” and “generativity”. Using these two dimensions, one can identify a set of
remixing categories useful for the analysis of the functional roles of remixing in Scratch and
beyond (see Figure 4-4).

ORIGINALITY GENERATIVITY
Duplicate Component-based Versioning Group-based
® > & -
Incremental Inspirational Pairs Crowd-based
Measures: Measures:
Derivativeness: % of reuse Number of remixes, remixers

Edit Distance: Number of change

Figure 4-4: Remixing taxonomy based on originality and generativity.

4.2.1 Originality

The word originality is often used in a way that implies a value judgment: the more “orig-
inal” a remix is, the better. However, here I use originality merely as a way to indicate
how different a remix is from its source without drawing conclusions on the value of the
remix.

Originality matters because it gets at the core of some tensions around remixing. For
example, widespread remixing has spurred a debate around what Hemphill and Suk (2009)
describe as the “distinction between close copying and remixing.” which is the theme of
chapter 6.

Thinking of remixing along the originality axis helps us categorize derivative works by
how transformative they are. It helps us distinguish remixes that are merely inspired by
someone’s idea from those that did some tweaking of existing works and those that are
replicas of previous creations.

Inspirational

It is often the case that people are simply inspired by the ideas of someone else’s work.
In Scratch, this happens when people browse the website and find projects that motivate
them to create similar ones. For example, in the story of the Jumping Monkey, one of the

3Based on joint work with Benjamin Mako Hill to be published in a special issue of American Behavioral
Scientist.

88

remixes acknowledges using the “shoe technique” from a previous project without actually
reusing the exact code from that project.

This came up during an interview with a long-term member of the Scratch community. I
asked him what his most recent remix was. He replied directing me to one of his projects
and another project that he credited as the inspiration. In our conversation, after some
confusion, he sent me an image to explain more clearly what he meant (see Figure 4-5). It
was then that I realized that he had not actually reused parts of that project but rather a
particular technique.

Andrés: I'm looking at your code and Whimiscal’s, it looks very different.
Carpiz: let me open it up for a sec

Carpiz: yeah i didn't directly copy code if that’s what you’re wondeirng, but
its based on his code

Andrés: i see, do you remember how you did this? did you have his project
open on one window and yours on another?

Carpiz: yeah

Andrés: cool, so what sprite in your project has code inspired by Whimsical?
Andrés: pI?

LC: the P1 and P2 i think. ..the Al ..

* LC sent file codecomparison.png

of B sblace” < FTTY

is similar to

o by cpuspesd * @)

o by cpuspeed

Figure 4-5: Inspirational remix.

The nature of inspirational remixing makes it difficult to capture through computational
means. As such, it was not included in the statistics I had reported claiming that 27% of all
projects in Scratch are remixes. However, a simple query in the database for projects that
have not been identified as remixes but that contain the text “inspired by” yielded 2,736
projects. For example, one explained “This game was inspired by one of the mini-games in
Super Mario 64 for the Nintendo,” while another stated:

Hi everyone. This is my first project on Scratch. It’s really funny. I got the
idea from the “Don’t Press the Button” games.

89

Incremental

Incremental remixes consist of making tweaks or adding something extra to a project. This
type of remixing often involves downloading someone’s project to customize it or to fix a
bug. For example, it may involve replacing the costumes of a sprite in a game for a different
one. This form of remixing often occurs when people make small modifications to the
sample projects that come preinstalled with Scratch. Also anecdotal evidence suggests that
this form of remixing tends to be a useful way for newcomers to get started with Scratch,
modifying an existing project instead of creating something completely new.

For example, in the Galaxyman story, the project titled ‘Add yourself to the x-mas snowball
run away’ invites people to remix by adding their own character to the chain of remixes.
I did a search for projects that are identified as remixes and that have the words “I just
added” or “i made it better” in their description. For example, I found projects like “boulder
rash” where the remixer explained (see Figure 4-6):

Notice that this game is originally from rpm55. I just added the sounds, nothing
more (or less)!

Figure 4-6: Example of incremental remix.

Component-based

Remixing also occurs when people use pieces of others’ projects to produce something new,
rather than building on top of existing work. In these cases, often one cannot quickly tell
in what way the remix and the creative work are related. This type of remixing typically
involves some sample sprites that come preinstalled with Scratch, or templates, images or
sounds that members of the community created for others to reuse.

Other branches of this investigation have looked into which images and programming blocks
are more commonly used. For this project, it was important to learn which are the most
common programming constructs or scripts created by the young Scratch programmers (see
Figure 3-28).

90

This type of remixing occurs when people use pieces of others’ projects to produce something
new, rather than building on top of existing work, as is the case with incremental remixing.
In these cases, often one cannot quickly tell in what way the remix and the original are
related. In the Galaxyman case described above, the remix title “Add yourself to the x-
mas snowball run away” represent this type of remixing as it reuses two sprites from one
Galaxyman’s projects (see Figure 4-7).

SOURCE REMIX

'THE CANDY|

. - 2
¥ -
o -
! e ;
2\ 9 %
| =

Figure 4-7: Example of component-based remixing.

4.2.2 Generativity

Another way of categorizing remixes is based on their intended or accomplished generativity,
in other words, the number of derivative works that a particular source material engenders,
or tries to.

The classic example is of a highly generative piece of content called the “Amen Break,”
which some argue is “the most sampled track in the history of music” (Economist, 2011).
The Amen Break is a “drum sample taken from the b-side of a record released by the
Winstons in 1969” (Bown et al., 2009). This six-second drum beat has now been remixed
in thousands of songs and it “effectively came to define a musical style,” by “appearing
on hip-hop tracks in the mid-1980s, and later, at a massively sped-up tempo, in drum and
bass and jungle in the 1990s,” as well as countless number of TV commercials (Bown et al.,
2009; mobius32, 2006).

Generativity is also a proxy to understand the context in which remixing happens. For
example, a piece of de novo content might be remixed only within a pre-defined group of
people, as it is the case of the “companies” I described above. In other cases remixing
occurs as some form of agreed upon peer-to-peer interaction, as is the case in most of the
remixes in the “Jumping Monkey” story. In other cases remixing occurs at a large scale and

91

without much coordination, as is the case in the “Add yourself to the x-mas snowball run
away” project, which invites anyone to remix. These distinct types of remixes are described
below.

Crowd-based

Crowd remixes are often initiated when a creator explicitly invites others to remix. For
example, the community member DarkSun created “5 Random Facts About Me! Meme,”
a project where she asked other users to add their own facts. “Do it! Remix please!
Press space. I'll do one too,” she explained. Another member, Mozzarellagirl decided to
join DarkSun: “Yeah...I can’t believe I actually did this project. Yep, jumped on the ‘5
Random Facts’ bandwagon.” Later she explained,

I first saw DarkSun’s original project via the front page and in my RSS feeds of
people’s projects [...] I ended up wanting to join the remiz chain myself [...].
I thought that it would be so much more fun to look at if I tossed in some of my
art and animations in there. It took nearly a week to get the graphics done, and
much of DarkSun’s original programming had to be changed to accommodate for
the animations (my remiz still keep true to DarkSun’s original idea of pressing
the space button to see the next fact). [This| eventually became one of my most
commented projects, and I suspect it is also one of the more popular projects
I've done.

Other examples of this type of remixing are those that invite people to remix for a social
cause, such as the project titled “Remix if you care about animal rights.” There are also
those that invite people to participate in contests, such as the “Coloring contest” genre
popular among more artistically-inclined community members consisting of downloading
a still image (often with music playing in the background), coloring it and submitting it
to a contest for the best-colored image. Similarly, there are those titled “add yourself to
X,” where X can be any kind of collective activity such as a party or a boxing match.
For example, the seventh most remixed project with 1,978 remixes is a project created by
anniedoughnut, an 11-year-old girl, that shows an animation of a girl running away from
a big boulder (see Figure 4-8). The project title and its description invite others to “add
somebody running from the boulder!” The project was remixed early on by 11-year-old boy
who remixed the girl’s project by adding an animated version of his avatar, along with an
invitation for others to remix: “Come on, let’s everyone remix this and make it the biggest
boulder run ever! This was started by anniedoughnut.” The project created a popular
remix chain.

The home page of the Scratch website has a section called “What the Community is Remix-
ing” that features the three top remixed projects in the past two weeks. Although these
could represent any type of remixing, they are typically projects in this crowd remixing
category, often referred by the community as “remix chains.”

Although typically the intention of the creator of this type of project is to create a chain,
often the structure of the remix network looks more like a star, as participants may not

92

Join the boulder runl Remix Visualization

First project Remix Remix of remix of a remix of a remix of...

Figure 4-8: Sequence of iterations of a crowd-based remix.

follow the rules or check where the last element of the chain is.

Like the category above, these types of remixes are often incremental, but the relation-
ship between the creator and intended audience is significantly different. Crowd remixing
explicitly invites people to remix en masse following a specific template. The purpose of
the creation is not the thing itself but the collection of many remixes created by many
individuals.

Group-based

Group-based remixing tends to involve several back and forth interactions through remix-
ing, something that one of the Scratch members I interviewed referred to as “ping pong
remixing.” This is the kind of remixing that happens in groups like Mesh Inc or the Green
Bear Group. It does not involve as many people as crowd remixing and the type of remixing
is also qualitatively different.

These groups traditionally are formed using “galleries” as their common space. I searched
for all those galleries that had the terms used by these groups, terms like “company” and
“productions,” and I found 1,705 of these groups. As in many peer-production websites, the
majority of those groups did not engage in collaborative work. Only 27.97% (477) groups
had one or more remixes among its members after the creation of the group.

Versioning

About 10.25% (248,833) of all projects or 37.08% of all remixes are created by the same
person who created the source project. This is typically used as some form of version control.
For example, sometimes children create a Scratch project at school, upload it to the website,
download it at home, continue working on it, then reupload it to the website under a name
such as “My video game v2.” When this happens, the website identifies them as remixes
and links them back to the previous version. Some people, mainly popular Scratch creators
who care about the projects displayed on their profile page, have two accounts: one for
testing and one for sharing final version of their projects. For example, there is an adult
member of the community who has two user names: “Paddle2See” and “Paddle2SeeTest.”
As the name implies, one is often used for sharing drafts or work in progress.

93

This type of remixing represents the lowest type of generativity in terms of people, but it
is represented as a remix in Scratch and other online communities. For example, in the
source code community GitHub forks are displayed even if they are created by the same
user.

4.2.3 Measures

Although originality and generativity can be highly subjective, here I present a couple of
ways one could measure these in a quantitative and systematic way.

Derivativeness

Similar to the metrics for software reuse described in the Introduction, this technique for
measuring derivativeness in computational media involves calculating the amount of con-
tent present in a remiz that is derived from the antecedent work. In the case of software,
comparing lines of code is enough, but for programmable media, it is important to also
consider differences in other types of content.

Although this approach allows us to consider derivativeness in code and media in aggregate,
it also gives the ability to characterize the nature of remixing practice by allowing us to
compare the derivativeness of projects and their components along each of the following
dimensions.

For this analysis, we take apart each project’s internal elements (sprites, i.e., characters
in a game or animation) and examine each of its internal media objects, more specifically:
images or costumes, sounds, and text (the kind of text that appears in “speech balloons”).
Scratch code elements can be described in terms of the block counts, such as the number
of “move z steps” blocks, and arguments, such as the value of . Changes in these two
attributes will be the basis for calculating derivativeness for code.

To calculate derivativeness of works in Scratch, we first build a list of remix-antecedent pairs.
Scratch projects, like other remixing platforms, can have multiple versions of projects, it
is important to identify the version of the antecedent that was remixed by a particular
project. Second, we compare each remix against its antecedent checking for added, deleted,
and preserved images, sounds, texts, code blocks, and arguments. We check the size (in
bytes) of the images and sounds that are preserved (i.e., present in both the remix and its
antecedent) to determine if they were altered. If they changed, then we treat these media
as “edited” and convert them into preserved, added or removed items based on the size
difference. A common practice among Scratch users is to edit images. Since images are
stored as bitmaps, these byte differences are translated to added, deleted and preserved
items.

We calculate the aggregate derivativeness of a remix by adding all the preserved items across
media and code and dividing it by the total number of items, also across media and code, in
the remix. To generate additional insight into remixing practices, we separately calculate
number of preserved media items by adding the number of preserved images, sounds and

94

text and divide it by the total number of media items in the remix in what we call media
derivativeness. We also calculate code derivativeness by dividing the number of preserved
blocks and arguments by the total number in the remix.

Applying this analytical technique to the almost 500,000 pairs of projects, we found that
19% are 100% derivative, that is, exact replicas of their antecedent. The distribution of
aggregative derivativeness is shown in the top left corner of Figure 4-9. The median remix
is 86% derivative; and half of Scratch remixes changed more than 14% of the media and
code in their antecedent.

Although some users engage in replicating in the Scratch community, a large majority of
remixes are at least partially transformative. The disaggregated distributions for media and
code derivativeness are reported in the top right-most panels in Figure 4-9.

The distribution of media derivativeness shows a thicker “tail” than code derivativeness

suggesting that, in Scratch, remixers are more likely to change larger amounts of media
than code.

16405
80000 - 150000 -
Be+04
60000 - | |
Be+04 - 100000 -
% poooo g
g 1 Gaeros 3
50000 -
20000 - 2e+04 - |
o4 02400 - it i cntenl bt b4 sl
U e T T T T T | e S s | L I T T T T
0 20 40 60 80 100 0 20 40 80 80 100 0 20 40 60 80 100
Aggregative Derivativeness Media Derivativeness Code Derivativeness
[[
30000 |
| 1e+05 -
150000
60000 8e+04 -
€ ‘ £ 6e+04 - £ 100000 -
3 40000 | 3
& © 4e+04 ©
20000 50000 -
2e+04 I
. || - N T
L D I = ——iT T R I . - T 5 T e
10 100 1000 10 100 1000 10 100 1000
Total Added Elements Added Media Elements Added Code Elements

Figure 4-9: Distribution of derivativeness.

One important limitation of the metric by (Frakes and Terry, 1996) — not discussed in
their work but made particularly clear in these results — is the metric’s sensitivity to the
size of a project. For example, a project with one block and one image will be called 50%
derivative when a single element is changed. Similarly, a 1,000 block remix with 100 blocks
changed will be described as identically derivative to a 10 block remix that changes only a
single block. The small spikes seen at 50% and 33% in the derivativeness histograms are
caused by projects with a small number of media or code items where adding 1 block makes

95

a substantial difference.

Speaking to this limitation, the second row of Figure 4-9 reports the distribution of added
elements only — again reported as total elements, media, and code. Because this distri-
bution has an extremely long tail, these results are reported on a log scale. The median
remix added seven elements to its antecedent. Although a large portion of remixes added
only a small number of elements, the large majority of projects made at least some changes.
These results suggest that the distribution of derivativeness is not entirely a function of
small number of changes within small projects.

Edit Distance

Another way to operationalize the measure of originality is using a calculation of the degree
to which a project diverges from its antecedent. To calculate this divergence, we begin with
the list of remix-antecedent pairs. Next, we identify and compare each component of the
remix to the corresponding component in the antecedent. Our measure of originality is the
Levenshtein “edit distance” between each of the scripts of each of the sprites (Levenshtein,
1966). Levenshtein distance is a widely used metric popular in software engineering to
measure the divergence of code. The traditional Levenshtein analysis is a character-by-
character comparison.

In the case of Scratch, we can use blocks as tokens and our measure of distance is the sum
of distances across all scripts and represents the minimum number of changes to blocks
that would be needed to convert an antecedent project into its remix (ignoring arguments).
Applying this method to all remixes produced in 2010 we find that the mean distance for
the code of a project’s remixes is 85.57 blocks (sd = 397.66, min = 0, max = 21,970).

This measure of divergence will be used in the following chapter as a way to understand
what makes some content more generative than others.

It is important to note, that this edit distance metric is also applicable to images and
sounds, albeit at a much coarser level. For example, I developed an edit distance metric for
media based on the presence or absence of images and sounds using their file name and byte
size. If the name and byte size of the media file in the remix is the same as in the original
project, one can assume that the media element was not changed. If it is different, one can
assume that it was changed and, since the media is stored raw, the byte size helps identify
how different the two images might be. Of course, a much better approach would be to use
image processing techniques, but even with this coarse metric I found that the media and
code distances were somewhat useful. That said, in the subsequent uses of edit distance I
take a more conservative approach and focus only on code. Future research should focus on
improving these metrics for both images and sounds.

Generativity

Roughly speaking one can measure generativity based on the raw number of remixes a
particular project engenders. Although more than a quarter of all projects (27.65% or

96

670,932) are remixes, only 13.86% (313,950) are remixed; of those, the mean number of
remixes per project is 2.6 and the mean number of people who remix is 1.9.

Some projects are highly generative, for example, the most? remixed project created by
a community member in the 5 years of data, was an attempt to create a scrolling game
(see Figure 4-10). The game, created by a 14-year-old girl and now remixed 6,041 times,
had the code necessary to control the character of the game with the arrow keys, but the
background did not scroll. Frustrated, she asked for help on the discussion forums: “HELP!
I made my 1st scrolling project but i dont understand it very much. I also looked at what
others have said but i still dont understand. if someone could tell me how to scroll step by
step and very easy that would help me aaa llooooott.” A 17-year-old from Canada, creator
of a tutorial for scrolling games, found the thread, and decided to remix the girl’s game to
fix it. His remix explained: “Scrolling demonstration for Goldilocks” . The girl thank him
by saying, “oh thank you so much! you rock!” From then the “demonstration” was reused
by several people who wanted a template for a scrolling game. For example, a 13-year-old
boy reused the project and said: “this helped me create all my scrollers [...] i would have
never known how to create a scroller!” The game was later cleaned up and remixed to
be included in the sample projects that are part of the Scratch development environment.

First Scrolling Remix Visualization

. Goldilock shared it 4 years, 3 months ago) (3 Some rights reserved

Figure 4-10: The most remixed project created by a community member.

The generative nature of Scratch has changed over time. Mainly the emergence of crowd-
based remixes has become more salient. Even before the introduction of the “Top Remixed”
projects list on the front page (later renamed to “What the community is remixing”), this
was an increasingly common phenomenon. Figure 4-11 depicts the maximum number of
levels in a remix chain aggregated by month (y-axis) over the course of five years (z-axis).

#the most remixed project was actually a “Pong” game included in the Scratch development environment
which engendered 10,142 remixes

97

Max level by Month

Max Level
20 25 30
| |

15

10
]

2007 2008 2009 2010 2011 2012

Figure 4-11: Maximum remix levels in remix chains. Blue: moving average smoothing-
spline with a 20% window size. Green dashed: connects each value for max(max-level).
Red dashed: time when “Top Remixed” was introduced.

Generative projects are often made by generative individuals. In order to find these in-
dividuals, I created a weighted directed graph where each node represents a member of
the Scratch community and the edges represent connections via remixing. For example,
if person A remixes person B, then there is an edge from node A to node B. The most
generative individuals would be those with the highest in-degree. A distribution of the in-
degree values shows that a few individuals are highly generative while the majority is never
remixed and those who are remixed very few times. As expected, the user account with the
highest in-degree is the account that “owns” the sample projects that are included in the
Scratch development environment. The second highest is the Canadian teenager involved
the scrolling game remix described before.

Another way of assessing generativity in Scratch is through the geographical diversity of
remixing connections. In the case studies I presented, cases of remixes occur across the
US, UK, and Russia; remixing connections over the course of five years have spanned many
more countries, as one can see in Figure 4-11. '

98

____Graph In-degree distribution

3]
1

log10(frequency)

2
log10(in-degree)

Figure 4-12: In-degree distribution. Nodes: people who have remixed. Edges: Remixing.

Figure 4-13: Map showing remixing connections.

99

Chapter 5

Conditions for Remixing

I can help you. I've been on the front page once, and that’s my gallery, A Better
Place. I got it featured because it was a good idea, I guess. So, make projects
and galleries that are unique, special, and one-of-a-kind. Getting top remized:
That’s never happened to me before, but from what I've noticed it’s stuff that
tells about people. For example, memes and yearbooks and that sort of thing get
top remized a lot. Also, projects about good causes like Sign the Petition!! would
get on the front page as would voting projects.

—10-year-old girl responding to the question “how to get on the front page”

In this chapter I examine the conditions that are conducive to remixing. More specifically,
I analyze what influences remizing in the Scratch Online Community. I propose a frame-
work based on two qualities: the system attributes on which remixing may occur, and the
attributes of the content itself.

Using as an example the “Jumping Monkey” project I described in the previous chapter, one
may see how this project might have created a remix ripple effect because of the system on
which it was shared-the Scratch Online Community—while the drumbeat “Amen Break”
might have been highly remixed because of its intrinsic musical attributes. In this chapter
I tease out these two types of attributes.

5.1 System Attributes

There are at least three core system attributes of the sociotechnical infrastructure of the
Scratch Online Community that facilitated, and sometimes hindered, remixing. In this
section, I propose a framework for what I think were the key determinants for supporting
remixing in Scratch. I base this analysis on the commons-based peer production framework
(Benkler, 2006) and my observations over the course of five years. The attributes are
summarized in Figure 5-1.

100

@

" attributability FTETETTEE
. granularity
SYSTEM ' g
” modularity _ component
9. o
i openness

decomposability
Figure 5-1: Sociotechnical system attributes that facilitate remixing system!

!icons taken from creativecommons.org, openclipart.org, and thenounproject.com.

5.1.1 Modularity

A sociotechnocal system is modular when it allows people to create, share, and reuse objects
and components. Benkler (2002) defines modularity as the “property of a project” that
describes “the extent to which it can be broken into smaller components, or modules,
that can be independently and asynchronously produced before they are assembled into a
whole.”

This modularity is determined by the granularity or size of a project’s components, or, as
Benkler (2006) described, “’Granularity’ refers to the size of the modules, in terms of the
time and effort that an individual must invest in producing them.”

Hence, there are at least three key aspects of modularity in a system: first, the ease of
integration of components into new creations or remixes; second, the decomposability or ease
of segmentation of an existing project into smaller components; and third, the granularity
or size of those components. The following is an examination of modularity in Scratch using
these traits.

Scratch projects are composed of multiple smaller components (see Figure 5-2) called
“sprites,” such as characters in a game or elements in the user interface of an interac-
tive project. Each sprite can have “scripts” or stacks of programming blocks that control
the sprite’s behavior. Each sprite also has one or more costumes or images that represent
the various visual states of a sprite, and sound that can be played programmatically.

The Scratch website’s granularity is coarse but users have found workarounds. For instance,
the website enables people to share full projects but nothing smaller. Despite this limitation,
people have worked around it by sharing components wrapped on full projects. For example,
the project that initiated the whole Mesh Inc. company described in the previous chapter
was one whose only purpose was to be a conduit for sharing its sprites.

101

library handmade

.

handmade
sources
copy & pasted
Project library
T paint editor
disk import
web camera

library
ME disk import
microphone

Figure 5-2: Anatomy of a Scratch project.

As a result of this limitation, a group of Scratch community members created a website
called “Scratch Resources?” to address the granularity limitations of the main Scratch
website. Scratch Resources encourages community members to upload more granular com-
ponents to be reused in projects. The “about page” of the website reads as follows:

The goal of Scratch Resources is to extend the Sharing possibilities Scratch al-
ready supports. You are now able to share and download sprites, sounds, music,
backgrounds, and scripts, nezt to just Scratch projects. All this sharing could
turn every Scratch project into a collaborative project using elements from others
all over the world. This was already possible on scratch.mit.edu by putting your
music in a Scratch project but we think it is important to provide a different
platform, fulfilling the needs of sharing Scratch ‘resources’.

Early on, the group behind Scratch Resources approached me to get “official” backing.
Intrigued by their efforts, I decided to support them by giving them access to an API they
could use to connect the authentication of their site to that of the main website. Also, I
provided them with hosting space, and a scratchr.org subdomain —to give more validity to
their efforts. Other than that, the whole system was completely built by them.

The website was reasonably successful. A a couple of months past its release, people had
uploaded 1,566 resources: 605 sounds, 454 backgrounds, 403 sprites, and 104 scripts. These
resources were downloaded by 11,139 different people. One of the most downloaded sprites
was “textbox,” an implementation of a typing widget. This sprite was used as the address
bar in “Web Wizard v5.0,” a project that tried to emulate a Web browser (see Figure 5-3).

*Available at http://resources.scratchr.org/

102

Sprite on Scratch Resources

qﬁR-ATﬂrﬂ home retources share about

¥ [/ ‘\ G
BHEOUTCEE " wekome, andreamb | Logost <+ | [Bowch]
Textbox Template Download
Oownload “Texthox
Template sprite” and import it
- shadow 7783 directly into Scratch!
@ shared this on 201« 7-17 16:07:00 3
Credit
This ks an easy-to-use ana >sy-to-customize text box! It Is all done When you share a project using
Mot for you, and contains ali the o1 >cters Scratch Is capable of this sprite, be sure to mention
- detecting] Use the up arrow key for 31, and the left arrow for shadow_7283 in the project notes
backspace. Enjoy! and add the tag
scratchiesources’.
Type: sprhte FRTETRE
Category: letter: More by
i s
shadow_/ z0>
Downloads: 124 Bilobs
i-icaleg:ry: indgors

Qi

SRATCH
PR e Login or Signup for an account | T
Web Wizard v5.0 ml’* D

Domioad the 19 sprites and 67
scripts of Web Wizard v5.0' 20
ogen In fi1atch

Project Notes
001 /40,040 T0 1 /0RK)

NOTE T0 ALL S¥/C TEAM
MENBERS: You MUST uncheck

"he Comprms sourh
=== imago” St o the poject
e

UFDATES:
(02-17) The-7hiz come e
part of 7 vrizard to
Cucarid new format. | added
the tag. which rmds t0 b right
abter the tag. The tert s the

A 1o v tarna i 2 ons. 5 months ago ome i reseyved

Figure 5-3: Use of the “textbox” sprite from Scratch Resources.

Despite this interest in sharing granular components, the ease of integration depends on
several factors. Even when the source code is provided, there are some cases where projects
are “impenetrable” because of their complexity or a mismatch between the expertise of the
person trying to decompose a project and the complexity of that project. For example, some-
times sprites within a project are interconnected through the use of “broadcasts” that make
it harder to take apart individual sprites other than those sprites that are self-contained.
To address this, some Scratch creators add instructions to their projects explaining how to
reuse their components. Some of them rely on the “comment” blocks, which are present in
2.1% of all projects.

However, some Scratch creators who do not want to see their projects remixed have figured
out ways to obfuscate their code. A 12-year-old community member from New Zealand
used the discussion forums to share a long tutorial on how to “hack” Scratch to obfuscate
a project. He started by saying:

103

There have been lots and lots of people who support the Locking Downloads but-
ton. There have also been lots and lots of people who disagree and support
remizing. There has been a decision that the button shall be avoided. Yes, you
may hate hackers ruining your projects. Well, here’s the guide to make your
projects confusing! But because this ruins remizing, we have decided to split this
into two parts. The first one tells you how to help your project. And the second
one tells you how to unravel the scripts.

Other people jumped in and shared their own tips such as creating a “hidden” sprite by fol-
lowing a unique sequence of steps, as a well as steps to hack the hack of hiding scripts.

5.1.2 Attributability

Three months after the public release of the website, I added a feature that would automat-
ically generate attribution information for all remixes. This feature was added as response
to several conflicts caused by what some considered “plagiarism.”

43

The feature relies on a “watermark” that gets added to projects when they are uploaded.
Then, subsequent downloads of a project have the provenance information embedded. When
a remix is uploaded, the website reads the watermark and is able to link the remix with
its antecedent project. At first, the remixes were identified as “mods,” but the name was
difficult to understand, so it was changed to “remixes.” In chapter 6, I present an in-depth
analysis of this intervention.

The issue of attribution is not unique to Scratch. For example, at first, attribution was
optional when picking Creative Commons licenses. However, after analyzing several years
of usage of the licenses, the Creative Commons managers found that very few people waived
the attribution clause. This led them to include attribution by default in all their licenses,
and create a separate license for completely public domain works (Brown, 2004).

5.1.3 Openness

The Scratch Online Community allows any of its members to download and remix any
project; in that sense Scratch is more open than similar websites, such as Newgrounds,
which do not provide the license, the environment, or the technical features to freely open
its content.

The ethos of openness is present in Scratch through its terms of use, the license used by all
projects shared, and the community moderation style enforced by administrators.

However, this openness is not always understood or embraced by its members. Also, this
openness is not always compatible with other systems. For example, there are some members
of the community, who even after discussions with the administrators of the site, do not see
enough value of openly sharing their work and decide to stop using the website. This was
the case of one of the most popular animated artists who became increasingly antagonistic
toward Scratch’s openness as she saw people “stealing” her art and ideas.

104

5.2 Content Attributes

In the previous section I described the structural attributes of the Scratch Online Commu-
nity that were intended to support remixing. However, even in a system that allows people
to share creative works that are granular, modular, attributable, and open, there will be
some works that are more generative (i.e. get remixed more) or more original ways than
others.

In this section, we? pose the idea that there is a trade-off between generativity and originality
in creative online communities. Evidence of this is provided by testing widely cited theories
that suggest that the generativity of creative works is associated with complexity, author’s
status, and provenance. Each of these qualities is shown to be associated with decreased
originality in the resulting remixes.

To advocates of remixing such as Lessig, and peer production more generally (for example,
Raymond, 1999; Benkler, 2006; von Krogh and von Hippel, 2006), the fecundity or “genera-
tivity” of remixable projects determines remixing’s very existence; a remixable project only
becomes “peer productive” when it is remixed. However, despite the enormous amount of
remixing that occurs in some of the poster children of remixing, most articles on Wikipedia
and other wikis never attract many editors (Ortega, 2009; Kittur and Kraut, 2010), most
Free and Open Source Software (FLOSS) projects founder (Healy and Schussman, 2003),
the majority of YouTube videos are never remixed, and most attempts at “meme spreading”
on 4chan fall flat (Bernstein et al., 2011).

In addition, even when peer-production projects are generative, remixing’s detractors have
suggested that most remixes are uncreative and of little cultural, innovative, or economic
value (for example, Keen, 2007). This section attempts to understand how designers of
peer-production systems might, or might not, be able to support remixing that is both
generative (namely, likely to engender remix projects) and original (namely, remix projects
differ substantially from their source projects).

Proponents of remixing have argued for generatively, claiming that it leads to increased
innovation and democratized production. Zittrain (2008) argues that some technologies,
such as the Internet, are generative and important not because they solve problems directly
but because they provide rich and unconstrained platforms on which remixing technologies
can be built. Previous research has tangentially looked at ways to promote remixing (for
example, Cheliotis and Yew, 2009; Luther et al., 2010). That said, little is still known about
what makes some works more generative than others.

Although remixes are defined by their generative nature, the promise of remixing is also
tied to the originality of these remixed works. The usefulness of increased generativity
may be limited if the resulting remixes are not transformative. Remixing as near-perfect
copying seems unlikely to achieve Benkler’s goal of “making this culture our own,” or
in building the transformative and empowering improvements at the heart of Zittrain’s

3based on joint work with Benjamin Mako Hill to be published in a special issue of American Behavioral
Scientist.

105

examples. Furthermore, issues of originality are often at the center of moral and legal
discussions around remixing (for example, Aufderheide and Jaszi, 2011).

Although scholars have examined some of the most successful examples of remixing and
peer production in depth, little is known about why some projects become fertile ground
for rich crops of creative remixes, while a large majority does not. One might assume that
generativity and originality go hand in hand. After all, the concepts are tightly coupled in
the most celebrated exemplars of remixing culture. But because so much attention has been
given to these unusually successful examples, little is yet known about most peer production
and remixing projects that, despite their efforts, are neither generative nor the source of
transformative remixes.

This section examines two related research questions. First, what makes some pieces of
content more generative than others? Second, what makes some content engender more
transformative remizes?

5.2.1 Generativity

Hypothesis 1A: Works of moderate complexity are more likely to be remixed than
works that are straightforward or complicated.

In his influential essay The Cathedral and the Bazaar, Raymond (1999) suggests that suc-
cessful FLOSS projects are those, such as the Linux kernel, that “release early and release
often.” Raymond equates larger, more complicated, and more polished software projects
with what he calls the “cathedral” style of software development and contrasts them with
the less structured—but, in his view, more promising—“bazaar” model that he equates with
FLOSS. Raymond suggests that FLOSS projects such as Linux attract participants because
they publish their code earlier allowing more feedback, bug fixes, and improvements. Simi-
larly, Zittrain’s (2008) “Principle of Procrastination” suggests that generative technologies
tend to be designed in a way that leaves most details for later. Zittrain posits that:

Generative systems are built on the notion that they are never complete, that
they have many uses yet to be conceived of, and that the public can be trusted to
invent and share good uses.

For example, he suggests that the Internet was a more effective platform for innovation
than corporate networks such as Prodigy and CompuServe because its relative simplicity
offered fewer constraints for potential innovators.

Although both Raymond and Zittrain suggest that increased simplicity is associated with
increased generativity, it can be assumed this will not hold for extremely simple works. The
earliest possible release of Linux would, by definition, do nothing. It seems unlikely that
a featureless or extremely broken operating system kernel would excite and elicit contri-
butions from other programmers as Linux did. Similarly, if the designers of the Internet
procrastinated completely and created nothing, it seems unlikely that their system would
have been an even more generative platform.

106

Hypothesis 1B: Works that are created by high status authors are more likely to be
remixed than works by lower status authors.

Exposure is a prerequisite for remixing in that a work has to be seen to be remixed. In
this sense, the popularity of a work is, by definition, related to its generativity. Theorists
have suggested that the relationship between popularity and remixing may run deeper. The
sources of remixing projects, unlike other forms of peer production, usually have identifiable
authors. Lessig’s (2008) key examples include music videos based on widely popular news
footage, and popular music and films. In Lessig’s account, the act of remixing is often
understood as a social statement — often of parody or critique. Jenkins (2006) documents
how youth use fan fiction to create remixes of popular and culturally salient products and
symbols. Within particular communities, research has shown that more popular individuals
attract more remixers (Cheliotis and Yew, 2009).

Using surveys and interviews with musicians, Sinnreich (2010) suggests that remixing is
about creating explicit connections with previous, culturally salient, works and that “mash-
ups are premised on the notion of recognizability and critique of pop culture.” As much
as remixing relies on cultural salience, the expectation is that works that are more salient
will be generative. However, because popularity of the work itself might merely measure
exposure, salience should be operationalized by looking to the status or “fame” of a work’s
creator while controlling for the exposure of the work in question. In other words, after
having been viewed the same number of times, it is expected that a work by a higher-status
creator to be more generative than a work by a lower-status author.

Hypothesis 1C: Works that are remixes themselves are more likely to be remixed
than de novo projects.

A third determinant of generativity suggested by theorists is provenance cumulativeness,
interpreted as the ability to create a remix out of something that is itself a remix. Using
the example of Wikipedia articles, Benkler’s (2002) theory of peer production suggests that
much value can derive from an organization’s ability to aggregate the contributions of many
individuals. Murray and O’Mahony (2007) suggest that peer production can be thought of
as a form of “cumulative innovation” and that value is created in products such as FLOSS
through organizational, institutional, and social models that can aggregate the work from
many individuals.

Empirical research has pointed to power law functions as characteristic of the distribution
of contributors to FLOSS projects (Healy and Schussman, 2003) and the distribution of the
number of remixes that individual works receive in music mixing communities (Cheliotis
and Yew, 2009). Cheliotis and Yew (2009) and Maillart et al. (2008) have each suggested
that these “long tail” distributions can be explained through a theory of “preferential at-
tachment” where new contributors chose to participate in collaborative projects when there
are more previous contributors. Although characterizing the distribution of remixes is out-
side the scope of this analysis, it is possible to test the theoretical implication that remixing
in a system of preferential attachment will tend to be cumulative and that remixed-remixes
will, on average, be more generative than non-cumulative creative works.

107

5.2.2 Originality

Although theory on the relationships between remixed media, their creators, and the nature
of their remixes is less developed, theoretical justifications can be found for three hypothe-
ses that parallel the hypotheses about generativity. In all three cases, these hypotheses
suggest that the qualities associated with higher generativity are also associated with lower
originality in the remixes that result.

Hypothesis 2A: Remixes of moderately complex works are less original than remixes
of works that are straightforward or complicated.

We can think of “release early, release often” and the Principle of Procrastination as referring
to costs associated with participation that more fully developed systems present to potential
collaborators. Zittrain suggests that the generativity of a work will be determined, in part,
by how easily new contributors can master it. In other words, if Zittrain’s Principle of
Procrastination is true and relatively simple works are more generative, this might be
because simpler content is accessible to a relatively larger group of potential remixers. If
this larger group is motivated by the relative ease of contribution, we might also expect
the group to be made up of relatively less skilled creators who, on average, produce less
transformative derivatives.

Although it is also possible that more complex works are closer to “completion” than rel-
atively simpler works and are therefore subject to less intensive improvements, we suggest
that originality in remixes will be driven primarily by wider participation in the act of
remixing by relatively unskilled contributors and that, as a result, remixes of works of
intermediate complexity will tend be less original than very simple or very complicated
works.

Hypothesis 2B: Remixes of works that are created by high status authors are less
original than remixes of works by low status authors.

Sinnreich suggests that the creation of highly remixed music is one way that mash-up
artists create cultural resonance. In other words, when an artist remixes a famous song,
the authors must maintain recognizability of the original. Sinnreich describes how mash-
up artists avoid rare vinyl samples and prefer using popular songs. For example, several
musicians interviewed by Sinnreich suggest that P. Diddy’s song “I'll be Missing You”
became a cultural and commercial success in part because it consisted largely of a minimally
modified version of the 1983 song “Every Breath You Take” by the band The Police.

Although remixing is a form of cultural conversation or citation, it could be expected that
the products of more popular or culturally salient remixes will be remixed lightly. Highly
derivative remixes of culturally salient works ensure a high degree of recognizability of the
base project in the remix. As a result, qualities that lead people to remix works from
more famous or well-known creators may also lead remixers to keep large pieces of the work
intact. When remixing the work of less well-known creators, the choice of a particular work
might be driven by use-value and recognizability may play a less important role. Finally,

108

a tendency toward less re-creative remixing of works by higher status creators may also be
driven by the fact that charges of plagiarism may carry more weight coming from well-known
community members.

Hypothesis 2C: Remixes of works that are remixes themselves are less original than
remixes of de novo projects.

As much as remixing is done to improve projects toward a stated or unstated goal, it
could be expected that cumulative remixes (namely, remixes of remixes) begin with a more
complete or less buggy project and, as a result, merely have less work to do. In formulating
“Linus’ law” that, “with enough eyeballs, all bugs are shallow,” Raymond (1999) might be
interpreted as suggesting that over time, software might get closer to a state of being “done.”
In other words, although more people might become involved in a particular collaboration,
contributions from these people will tend to be smaller as a work matures. Benkler’s
theory of peer production suggests that it is lightly motivated individuals contributing
small amounts who participate in some of the most collaborative, and cumulative, works of
peer production.

Suggesting an important limit to Hypothesis 1C, Cheliotis and Yew (2009) observe that
when a project is cumulative and the product of many subsequent reuses, it becomes less
likely to be reused in future generations. As much as the “chain” network structure becomes
decreasingly likely to continue as it grows in length, it could be expected that the existence
of a shared goal (stated or unstated) for such cumulative work within the collaborative
community may influence its continuation. Although Cheliotis and Yew (2009) do not
present data on the originality of remixes, one explanation of their observation about chain
remixes is that cumulative remixing will, on average, represent a process of refining and
elaborating that has limits.

These hypotheses represent a partial theory in that they attempt to highlight three of
the most widely cited theoretical determinants of generativity and originality. Available
knowledge suggests none of these hypotheses has been tested empirically.

Hypothesis 1A

TN

Complexity

Hypothesis 2A

_/

Complexity

Generativity

Originality

Figure 5-4: Visual representation of the hypotheses promoted in this section

Hypothesis 18 ___Hypothesis 2B
2
/ E \
2
o
Author Status Author Status
- Hypothesis 1C . Hypothesis 2C
2z
T
2
S

Cumulativeness

109

Cumulativeness

Methods

To test our hypotheses, we turn to the Scratch online community. Issues of originality and
generativity play a prominent role in the Scratch community. Approximately 2% of remixes
are flagged as inappropriate — often with accusations of unoriginality like, “This is MY
own artwork he has uploaded without an ounce of originality.” On the other hand, Scratch
creators often explicitly encourage others to remix their works, such as this user who shared
a project that came with a note in the description asking for help fixing some bugs: “I need
help with the following bugs in my game. 1. How to get the car to go up hills 2. How to
get the character to rotate properly 3. It does not scroll [...] Please remix and help :-)”
to which another responded by remixing and leaving the following note in the description
of the project “i solved most of the bugs. i didn’t do the rotation for the character when in
midair. [...] but i think i fixed all the other bugs.”

The originality of all the remixes* created during a one-year period from December 1, 2009

through December 1, 2010° was computed using the originality metric described in the
previous chapter. This dataset included 536,245 individual projects. The projects in our
dataset were shared by 105,317 unique users (u). Because our data is longitudinal, we track
each project for one year and, for time-varying measures, present measures at the end of
the one year period.

To answer our first three hypotheses, we operationalize generativity in two related ways.
First, we construct a count of the number of remixes of each project shared within the
first year of the project’s publication (remixesy,). Second, we construct a dummy variable
indicating if a project has been remixed by another user at least once in the one year period
subsequent to being shared (remixes, > 0 = remixed, = 1). Because individuals may
choose to remix a previous remixed project because others have remixed it, we suggest that
our dichotomous measure (remixed) offers a more reliable, if more conservative, measure of
generativity.

We operationalize complexity of projects as blocks (blocks,). Blocks are analogous to tokens
or symbols in source code for computer programs. Blocks are similar to, but more granular
than, source lines of code which have a long history of use as a measure of both com-
plexity and effort in software engineering (Walston and Felix, 1977; Albrecht and Gaffney,
1983).

Data on user interactions in Scratch provide a series of possible measures of a given user’s
status within in the community. Possible indicators of status include the number of past
expressions of admiration or “loveits” (analogous to “liking” something on other social media
platforms), total past views by other users, total previous selections of a user’s work as
another’s favorite, and total past downloads — each variable is measured at the level of the

4Due to technical errors 1,182 projects were not able to be analyzed. Also, 130,800 projects (20%) were
omitted because they were removed from the site by their creators, although we find, in robustness checks
not reported here, that our results are not substantially different when we include them.

5We selected data from 2010 because the website and its community were mature and stable during
this period and because the Scratch website did not undergo any significant design changes that might have
affected remixing behavior.

110

Table 5.1: Summary statistics for variables used in our analysis. Measures with the subscript
p are measured at the level of the project while measures with the subscribe u are measured
at the level of the user.

Variable N Mean SD Min Max
Dependent Variables

Remixes > 0 times in lyr. (remixed,) 536,245 0.07 0.26 0.00 1.00
Remixes within 1yr. (remixes,) 536,245 0.15 1.78 0.00 658.00
Edit Distance (Mean) (distancep) 37,512 85.57 397.66 0.00 21,970.00
Edit Distance (Highest) 37,512 114.2 507.34 0.00 30,813.00
Question Predictors

Number of blocks (blocksy) 536,245 99.60 476.19 0.00 196,509.00
User’s previous “loveits” (loveitsyp) 536,245 32.47 153.19 0.00 10,526.00
Remix status (isremixp) 536,245 0.18 0.38 0.00 1.00
Controls

User age in years (age,) 523,092 17.57 11.62 4.00 74.75
Account age in months (joined,,) 536,245 4.79 7.18 0.00 45.43
User is Female (female,) 536,222 0.37 0.48 0.00 1.00
Blocks per sprite (blocks/sprites,,) 536,245 11.82 22.75 0.00 3111.50
Views within lyr. (viewsy) 536,245 13.57 69.90 0.00 4977.00

111

project or work but is aggregated for each project’s creator at the point in time that a project
is shared. Because these measures are highly correlated (0.84 < p < 0.97) we operationalize
status as total previous “loveits” (loveitsy) at the moment that the project in question
was uploaded but our results are similar using the other indicators. We operationalize
cumulativeness using a dummy variable that indicates whether a project is, itself, a remix
of another project (isremixp).

Finally, we include a series of control variables that may also be associated with the gen-
erativity of projects and with the originality of subsequent remixes. For each user, we
include self-reported measures of gender which we have coded as a dichotomous variable
(female,), date of birth which we have coded as age in years at the moment that each
project was shared (age,,) which may indicate sophistication of the user, and age of each
account (joined,,) which may indicate the level of experience of a user with Scratch. For
each project, we are primarily concerned with the effect of exposure on the likelihood of
remixing so we attempt to control for views using the number of times that each project
was visited in its first year on the site (views,). “Sprites” are the objects in Scratch projects
to which code is attached. Because more modular projects may be easier to remix, we also
calculate a measure of the average numbers of blocks per sprite (blocks/sprites,) which may
act as a very coarse measure of modularity.

To answer our second set of hypotheses, we create a new dataset that includes only the
subset of 37,512 projects that were shared in the community during our one-year window
and were remixed at least once in the following year.® As described in the previous chapter,
we operationalize the originality of a remix using a calculation of the degree to which a
project diverges from its antecedent.

Of course, a given project can be remixed multiple times. In fact, 11,704 of the projects
remixed in the window of time analyzed (31%) were remixed more than once within a year
of being shared. The distribution of remixes was highly skewed, for example, the mean
number of remixes in our sample was 2.14 but the highest value of 658. As a result, our
measure of edit distance is the mean edit distance of all remixes shared in the year following
a project’s publication on the website (distancep).

Analysis

Our analytic strategy involves the estimation of a series of two sets of parallel models.
In both cases, we include variables operationalizing project complexity, creator status, and
project cumulativeness that correspond to our three sets of parallel hypotheses. Both blocks
and loveits are highly skewed but a started log transformation results in an approximately
normal distribution in each case. Hypothesis 1A and Hypothesis 2A predict a curvilinear
relationship between the dependent variables and our measure of complexity. As a result,
we include a quadratic specification for log blocks in each model and focus our interpretation

5Due to technical errors or corrupted project files, we do not include 1,217 projects that site-metadata
indicates were remixed but that we were unable to analyze. We believe that these errors were due to random
corruption and are unlikely due to bias our results.

112

on the coefficient associated with the quadratic term which will determine the direction of
the curve.

Providing tests of Hypothesis 1A, Hypothesis 1B. Hypothesis 1C; our first set of models
tests generativity in the full dataset of 523,069 projects shared in our window of data
collection for which we have complete information”. In our first and more conservative test,
Model 1, we use logistic regression to model the likelihood of a project being remixed at
least once on our sets of predictors and controls.

5.2.3 Results

Drawing from theory and presenting detailed empirical evidence, the data suggests that
the three factors associated with higher levels of generativity — moderate complexity, cre-
ator status, and cumulative provenance — are also associated with decreased originality in
resulting remixes.

We see support for the hypothesis that posits that works of moderate complexity are more
likely to be remixed than works that are very simple or very complicated. We see the
inverted “U” shape in the relationship between complexity and generativity in the negative
coefficient on the quadratic term in Models 1 and 2 (see Table 5.2). Holding other variables
at their sample mean, Model 1 predicts that slightly more than 1 percent of projects will
be remixed at both the minimum (0 blocks), and maximum (196,509 blocks) in the sample.
That said, this support comes with a crucial qualification. For most projects, increased
complexity is associated with increased generativity — in opposition to Zittrain’s Principle of
Procrastination and Raymond’s call to “release early, release often.” For most complicated
projects in Scratch, marginal increases in complexity are associated with an increase in
generativity.

The distribution of projects by blocks is highly skewed toward more straightforward projects
with the median project having only 26 blocks. In other words, although the most compli-
cated projects are indeed at lower risk of being remixed, the model predicts that projects
have an increasing likelihood of being remixed into the 95! percentile of projects by com-
plexity. Even among complicated projects, the relationship is effectively flat. For example,
holding all other predictors at their sample means, Model 1 estimates than 6.75% of projects
with 385 blocks (the 95" percentile) would be remixed. Nearly the same proportion (6.73%)
of otherwise similar projects with 1,204 blocks (the 99" percentile) would be.

As predicted, it is seen that projects that are more complex are associated with remixes that
are more original. That said, there is no evidence suggesting straightforward projects are
also associated with increased originality in remixes. Indeed, holding other variables at the
sample mean, Model 3 estimates that a project with 3 blocks (10" percentile) will have an
average edit distance of 20 blocks while an otherwise similar project with 211 blocks (90"
percentile) would, on average, be associated with a mean edit distance of 80 blocks.

Support is found for Hypothesis 1B, which posits that works that are created by high status

“We omit 13,176 projects for which we are missing age or gender information.

113

Generativity Originality

Model 1 Model 2 Model 3
(P[remixed]) (remixes) (distance)
(Intercept) -4.997* -5.035* 2.288*
(0.030) (0.028) (0.050)
log blocks 0.524* 0.373* -0.026
(0.016) (0.016) (0.027)
log blocks? -0.037* -0.035* 0.051*
(0.002) (0.002) (0.003)
log loveits 0.016* -0.022* -0.070*
(0.004) (0.004) (0.007)
loveits 0.791* 0.429* -1.023*
(0.045) (0.045) (0.071)
age -0.000 0.006* 0.006*
(0.001) (0.001) (0.001)
joined -0.005* -0.003* 0.008*
(0.001) (0.001) (0.001)
female -0.004 0.114* -0.334*
(0.012) (0.012) (0.021)
log blocks/sprites -0.519* -0.374* 0.294*
(0.012) (0.012) (0.018)
log views 0.850* 1.044* 0.169*
(0.006) (0.006) (0.009)
log blocks x isremix 0.321* 0.304* 0.148*
(0.025) (0.026) (0.040)
log blocks® x isremix -0.045* -0.032* -0.000
(0.003) (0.003) (0.005)
0 0.265* 0.302*
(0.003) (0.002)
N 523,069. 523,069. 36,722.
AIC 219,914.053 307,783.718 313,305.804
BIC 220,450.092 308,364.426 313,748.382
log L —109,909.027 —153,839.859 —156,600.902

Table 5.2: A series of fitted regression models testing our six hypotheses. Models 1 and 2
test H1 on on the full dataset of projects between Dec ‘09 and ‘10. Model 1 is a logistic
regression model which models the likelihood of a project being remixed at least once within
1 year after being shared. Model 2 is a negative binomial regression to model a count of
the times a project will be remixed within a year of being shared. Model 3 test H2 on a
count of the mean edit distance for all projects remixed within a year of being shared.

Standard errors in parentheses. 114
*indicates significance at p < 0.05

authors are more likely to be remixed than works by lower status authors. Holding other
variables at their sample mean, Model 1 predicts that the odds of being remixed are slighter
higher (1.02 times) for each log unit increase in the number of previous loveits the project’s
creator received, and that the result is statistically significant.

Support is also found for Hypothesis 2B, which predicts that remixes of works that are
created by high status authors are less original than remixes of works by low status au-
thors. We see a negative relationship between creator status and originality of remixes.
Holding other predictors at their sample mean, it is estimated that remixes of a project
whose creators had received no previous “loveits” (10'" percentile) would have an average
edit distance of 40 blocks. An otherwise identical project whose creator had received 64

previous “loveits” (90'" percentile) would be estimated to have an average edit distance of
30 blocks.

Model 2 adds important qualification to the support for the hypotheses about status and
generativity. Although the likelihood of a project being remixed at least once is positively
associated with author status as measured by “loveits,” generativity is negatively associated
with status when operationalized as the number of remixes in one year. In other words,
author status is a positive predictor of whether a project will be remixed but is associated
with fewer remixes for any project.

Generativity
Low High
Rarely remixed or Frequently reused but
3 changed (e.g., rarely changed (e.g.,
(o) Romantic conceptions retweeting).
— of authorship).
2
©
=
2
6 Rarely reused, but Frequently reused
- changed deeply when and deply modified
o used (e.g., obscure (e.g., Amen
I archival sources). Break).

Figure 5-5: Diagram of the relationship between originality and generativity

The results provide strong support for both the prediction that works that are remixes
themselves are more likely to be remixed and less original than de novo projects (Hypothe-
sis 1C and Hypothesis 2C). Tests of the association between cumulativeness and measures
of originality and generativity are captured by the parameter estimates associated with
isremix. Model 1 suggests that the odds that a remix will be remixed is 2.21 times higher

115

than the odds that an otherwise similar de novo project will be. Model 2 suggests that
remixes will also be remixed more often during the year after being shared. In strong
support of Hypothesis 2C, Model 3 suggests that these remixed remixes will tend to be
much less original. Holding other qualities at their sample means, Model 3 estimates that
a remixed remix will have an edit distance that 17 blocks smaller (an average of 23 blocks)
than a similar de novo project (40 blocks).

5.2.4 Limitations

There are several important limitations and threats to the validity of the results presented
above. First, although the data are longitudinal, the analytic strategy follows each project
for one year. Model 1 treats projects as remixed only if they are remixed in one year.
Projects can and are remixed after one year and there is a risk the results are biased by the
fact that “late bloomers” are systematically different from other projects in ways that are
correlated with the predictors.

Although the analysis does not include these late bloomers, the analysis can confidently
claim to consider most of the remixing activity. We found that 30 days after being shared,
8% of projects are remixed although after a full year, 10.8% are. Following projects for an
additional two years, it is estimated that only an additional 2.4% projects will have been
remixed.

A second concern is that the use of average edit distance in Model 3 may lead us to conclude
that projects that are generative will tend to have lower edit distances merely because all
projects are susceptible to uncreative remixing and that being remixed more often puts
projects at increased risk from these straightforward remixes. This threat is addressed by
reestimating Model 3 using the highest edit distance of any previous remix as an alternate
indicator of originality. The results of this model are largely unchanged from Model 3
reported in Table 5.2 and, indeed, are even stronger in estimates of the effect of status and
cumulativeness.

Third, there is an important concern with blocks as an indicator of complexity. Blocks will
not capture complexity in ways that do not involve programming, such as storytelling and
visual arts, and can be “cut and pasted” in a way that may not correspond to complex-
ity through increased effort. Possibly, complicated cut-and-paste projects are skewing the
results for complexity. This can be addressed with a unique measure available in Scratch.
Each Scratch project records the time and date of each time a user clicks the “save” button
as well as the time that the user shares the project. The time between the first “save” and
the point at which the user shared the project can be used as a proxy for complexity as
measured by effort.

This alternative measure is noisy in the sense that some users may not share a project for
hours, days, or weeks, but not spend that entire period engaged in work on the project.
Additionally, 44% of the projects in the time window were shared without ever being saved
once so values on this indicator are missing. With these limitations in mind, it is possible
to reestimate Models 1 and 2 on the subset of 298,926 projects for which there is data and

116

replace the measure of blocks with “minutes-to-share” (MTS). The results in modeling
generativity using this alternative specification are essentially unchanged. A similar reesti-
mation of Model 3 using the 22,048 remixed projects with MTS data did not find support
for either the quadratic specification of MTS or its interaction with isremix but offered
substantively similar predictions in its estimation of a positive linear association between
edit distance and complexity, which leave the findings fundamentally unchanged.

In other robustness checks, the addition of random effects to control for possible clustering
due a single user uploading several projects led to findings that the estimates and results are
unchanged. Robust estimation of standard errors is used to address concerns of potential
heteroscedasticity. Using robust estimates for Model 3, the interaction terms between blocks
and isremix, already substantively similar, are rendered statistically insignificant. The rest
of the results, and the findings for each of the hypotheses, are unchanged.

There also remain several less testable, but important, limitations. First, the originality of
creative works is often subjective and open to interpretation. Edit distance, the quantita-
tive measure of originality used, is likely correlated with this subjective sense, but will miss
nuanced and subjectively important signs of originality among Scratch creators. Addition-
ally, the lack of a measure that incorporates artistic originality means that the measure is
focused solely on code. These limitations in the data and methods are acknowledged, it is
hoped to explore other ways of measuring originality in future work.

5.3 Discussion

In this chapter, I introduced a framework to assess remixability by examining the attributes
of the system and the content potentially being remixed. Then I presented an analysis of
three theoretically motivated hypotheses on the determinants of generativity —moderate
complexity, creator status, and cumulativeness— and revealed at least some support for
each.

Surprisingly, the weakest and most tentative support was for the most frequently cited
theoretical relationship: Zittrain’s Principle of Procrastination or Raymond’s suggestion to
“release early, release often,” which both imply that easier works will tend to be generative.
Some support for this hypothesis was found, but only among the most complicated projects.
Instead, largely positive relationships were found between complexity and both generativity
and originality over most of the data. Perhaps Scratch’s young and amateur users are
unlikely to create projects that are complex enough to trigger the effect.

Taken together, the results suggest a paradox: qualities of projects associated with increased
remixing are also associated with lower originality in remixing’s outputs. These results
challenge assumptions in the cultural, technical, and political discourse on remixing and
content reuse, offer a nuanced model of remixing, and suggest that designers of socio-
technical systems may need to trade off the possibility of more collaboration with avenues
for deeper and more meaningful interaction.

For designers, the findings point to complex decisions around manipulating the visibility of

117

variables such as author status and project complexity. For example, designers of a new
peer-production system in need of more content might want to emphasize author status
and remix chains to get more content through generativity. They should be aware that
this might come with a cost in terms of the originality of the remixed works. The results
suggest that supporting increased complexity, at least for most projects, might have fewer
drawbacks.

That said, many of the most readily available incentives for designers are status or reputation
based levers, which might result in a trade-off in originality because of the incentive itself.
It may also be important to avoid rewarding correlates of generativity for their own sake
when it is generativity that a designer wants to encourage. Perhaps an alternative would
be to highlight those rare projects that lead to generative and creative remixes.

Nothing shown in this section devalues the promise of remixing in terms of peer production,
culture, and innovation. Indeed, it is believed that societies’ ability to harness the power
of remixing is deeply important, but requires many further analyses such as this. Though
the results suggest that highly generative works that lead to highly creative remixes may
be rare and difficult to support, it is not suggested that encouraging them is anything but
a worthwhile and crucial goal.

Using data from Scratch, evidence is presented that supports and extends several widely
held theories about the foundations of generativity and originality. The results suggest
that designers of online collaborative communities may face a dilemma obscured by those
celebrated exemplars of peer production communities: that system designs that encour-
age and support increased rates of remixing may also result in products that are more
superficial.

118

Chapter 6

Attitudes toward Remixing

Interviewer: How would you define remizing?

9-year-old boy: Taking somebody else’s project, and then changing a lot of
it, and then sharing it, and giving credit

In this chapter! I examine how young people react to remizing in the Scratch Online Com-
maunity. 1 explore this through five studies. The first three explore how people respond
to remixing, especially in light of conflict. The fourth and fifth explore the success of a
technical response to address those conflicts.

This analysis is driven by an interest in understanding how the system design may influence
these attitudes, and these issues are analyzed from the perspective of people whose projects
are remixed as well as from those creating the remixes.

6.1 Study 1: How do people respond to remixing?

In this study we assessed Scratch users’ reactions to having their projects remixed. We iden-
tified all antecedent-remix pairs in the first 13 months of the Scratch community. These pairs
were all made of projects based on another project and the corresponding created project,
and all comments left by the author of the source project on each remix project.

The algorithm identified projects based on embedded metadata. As a result, no projects
that were conceptually copied by a user who had seen another’s work but who did not
actually copy code, graphics, or sounds were counted. Additionally, as there were more than
100,000 projects, it was not feasible to watch and interact with each project and determine
whether the remix projects were actually “original” or whether ideas were taken from a
source outside Scratch (for example, a user might have created a Pac-Man clone).

Broadly speaking, people whose projects are remixed react either by being indifferent to it,
accepting it, conditionally accepting it (specific rules or norms have to be followed), or by

!Based on (Monroy-Hernéndez et al., 2011) and a coauthored article with Hill et al. (2010).

119

explicitly opposing it. Similarly, remixers go about remixing by either being oblivious of
the norms, exhibiting caution by asking for permission first, or even being confrontational
and using remixing as a form of “trolling” (Donath, 1998).

If a user created a Pac-Man clone and it was then modified or improved by another Scratch
user, the second user would be considered a “remixer” in the dataset although the first
would not.

6.1.1 Procedure

We analyzed all 136,929 projects created and posted on the Scratch website between the
community launch date in March 2007 and April 2008; 11,861 projects were deemed to
be remixes. The comments left by creators on the first 3,555 projects were coded by two
independent coders asked to put them into the following categories: no comment (projects in
which the remixee did not leave any comments on the remixer’s project), positive (projects
in which the remixee left positive comments, for example, “Love what you did with my
code! Great idea!”), hinting plagiarism (projects in which the creator implied that the
remixer had copied but did not state this explicitly, for example, “I mostly pretty much
made this whole entire game”), plagiarism (projects in which the creator directly accused
the remixer of copying, for example, “Hello Mr. plagiaries,” “Copycat!”), negative (projects
with negative comments that were not necessarily related to copying, for example, “All right
you crap eating thumb sucking baby”), and none of the above (projects with comments that
were not positive, negative, or relevant to plagiarism, for example, “is this jarred” or “b for
peanut butter jelly time!”).

The first and last categories were incompatible with all the others. The other categories
were potentially overlapping (an creator could say, “you copied me but I like your addition
of the flowers” and therefore count as positive comments and plagiarism), except hinting
plagiarism and plagiarism, which were incompatible with each other. The coders were
found reliable (absolute agreement by category: no comment = 100%; of those who did
include a comment, coders agreed on the presence or absence of the following categories
at the following rates (absolute agreement): positive = 87%, hinting plagiarism = 81%,
plagiarism = 89%, negative=93%, none of the above = 89%). Therefore the remaining
comments (n = 8,306) were split between the two coders, with each coding approximately
half the remaining projects. For the few projects that the coders disagreed on in the initial
third of the projects, they met and agreed on the coding.

6.1.2 Results

Out of the 11,861 projects that were categorized by the algorithm as remixes, it was de-
termined that 3,742 (31.5%) of the creators clicked and saw the remixed versions of their
projects. Of those creators who saw the projects, 2,156 (58%) did not leave a comment. Of
those who saw the projects and commented, 261 (7%) accused the remixer of plagiarism,
566 (15%) hinted at plagiarism concerns, 797 (21%) left positive comments, 260 (7%) left

120

negative comments, and 237 (6%) left comments that did not fit into these categories or
were uninterpretable.

6.1.3 Discussion

The results from Study 1 indicate that users on the Scratch online community have extensive
responses to remixing. People who responded were just as likely to leave positive comments
(21%) as they were to leave a direct or indirect complaint of plagiarism (22%). These
results, however, leave open the question of why extensive comments were left by creators.
Studies 2 and 3 explore several potential answers to these questions.

6.1.4 Implications for design

The Scratch online community was designed explicitly as a platform for sharing and remixing
media. Despite the fact the Scratch infrastructure provided the technical facilities to remix
content easily, a set of explicit norms and licenses communicated to users through links
to a child-friendly version of the pro-remixing license on every project, and continuous
proselytizing of remixing by the administrators of the site, many users reacted negatively
to remixes and expressed a sentiment that remixers had plagiarized their work.

Creative Commons has described its work, both through the creation of licenses permitting
remixing and through the creation of technological systems built around RDF (Resource
Description Framework) metadata, as means of reducing permission-asking (Lessig, 2008).
As with Scratch, many social media and remixing communities use CC’s legal and tech-
nological systems. To the degree that the results generalize, the findings suggest that the
technical and normative permission to create remixes may be insufficient to supporting
positive reactions to remixing in a social media remixing community.

6.2 Study 2: When do creators accuse remixers of plagia-
rism?

The many reactions to remixing shown in Study 1 can be explained in several ways. In Study
2, the results of Study 1 were used to construct a variable measuring whether creators
have accused a remixer of plagiarism. This construct was then used as the dependent
variable in a series of fitted logistic regression models to provide initial tests of support for
several explanations of why creators may accuse remixers of their work of plagiarism using
additional data on projects and their creators.

One difference between Scratch and other online peer-production communities is that many
Scratch projects are constructed at enormous individual effort. On Scratch, users share
full-fledged games or animations with code, artwork, and sound. This is in contrast to
many peer production communities, such as Wikipedia, where users usually contribute
smaller portions of articles or small fixes. One explanation for the many complaints on

121

Mean SD 1 2 2 3 5 6 7

ACCUSE.PLAG 0.13 0.34

SPRITES 9.06 12.24 0.08

ORIG.REMIX 0.05 0.21 —0.01 0.00

HAS.REMIXED 0.79 0.41 —0.01 —0.07 0.11

FEMALE 0.25 0.43 —0.06 —0.11 0.04 0.11

WEEKS 35.15 14.49 0.01 —0.03 0.08 0.15 0.15
AGE 17.08 10.15 —0.07 0.08 0.01 —0.08 —0.20 —0.16

REMIXER.AGE 15.01 9.58 —0.05 0.01 0.06 —0.09 —0.05 —0.05 0.11

Table 6.1: Means, standard deviations, and correlations among variables used in the logistic
regression analysis in Study 2. The sample includes all remixed projects that had been
clicked and viewed by the creators. (n = 3,742)

Scratch may be that Scratch users develop a stronger sense of ownership because of the
large amount of individual time and effort creators invest in their projects. This sense of
ownership may set users up to be more protective of their work and more likely to accuse
remixers of plagiarism. This explanation leads to the first hypothesis (H2-1): Creators
of larger or more complicated contributions will be more likely to accuse remizers of their
projects of plagiarism.

In many peer-production communities, such as Wikipedia, the vast majority of contributions
are to existing products and work is primarily cumulative in nature. In the sample of 11,861
remixes from the first year of Scratch’s activity, most remixes (11,493 or 97%) were based
on de novo projects while the remaining were second-generation remixes. If users feel more
protective of projects that are entirely the product of their own work, this may explain the
many complaints in Scratch. As many projects are created projects, Scratch users are more
likely to feel plagiarized when their work is remixed. This leads to the second hypothesis
(H2-2): Creators will be less likely to accuse remizers of their projects of plagiarism when
the remized project is itself a remiz.

A final explanation extends this reasoning from the project level to the individual. Perhaps
the process of creating remixes encourages creators to be empathetic toward remixers and
to integrate these users into a “remixing culture” where copied or slightly modified projects
are not seen as plagiarism but as positive contributions. In the sample, most authors
of remixed projects were active contributors who have, at some time, created their own
remixes. Indeed, only 26% of users in the sample (n = 3085) had never shared a remix.
Possibly, many charges of plagiarism come from users who have not been integrated into
Scratch’s “remix culture” and oppose remixing in general. This explanation leads to the
formation of the third hypothesis (H2-3): Creators will be less likely to accuse remizers of
their projects of plagiarism if they have shared at least one remiz themselves.

Of course, other factors are likely to have an important impact on responses to remixing
in Scratch that make it necessary for them to be controlled. For example, charges of

122

plagiarism may be due, in part, to the many projects created by males in the sample
(only 25% of creators were female) who may be more likely to accuse others of plagiarism.
Additionally, the proportion of projects that are remixes has increased over the life of the
study. This suggests that attitudes toward remixing might have changed over time with
the potential for a change in plagiarism accusation rates. Finally, younger creators may be
more likely to accuse remixers of plagiarism either because they do not understand that
they are permitting others to remix by sharing their work, because younger users are more
likely to react negatively in general, or for many other factors that correlate with age. As
a result, it became necessary to control for gender, the period when projects were shared,
and age, when testing the above hypotheses.

6.2.1 Procedure

To explore these issues, we gathered a sample consisting of the 3,742 remix projects that
had been clicked and viewed by the creators of the antecedent projects, as described in
Study 1. Viewing a project is both a low bar for involvement in the community and a
prerequisite for any type of response to remixing — the subject of the study — even if that
response is a decision not to act.

The Scratch online community is run using a custom-built web application with data stored
in a MySQL database; data collection was for each of the predictors from this source. The
dependent variable is a dichotomous variable (accuse.plag), constructed using the results in
Study 1, which measures whether creators accused remixers of plagiarism in a nonpositive
manner. It is a dummy variable that takes the value of 1 when a comment was coded either
plagiarism or hinted plagiarism unless the comment is also coded positive. The discussion
explains that several alternative specifications of this outcome were explored with similar
results.

Project complexity can be measured either through the amount of programming code or the
total number of graphical characters (sprites) controlled by these scripts. Because these
measures were highly correlated (r = 0.80), the choice was to use sprites alone as the
measure of complexity. To aid in interpretation in the models below, sprites are reported in
standard deviation units in the fitted models. To test hypothesis H2-2 regarding the effect
of cumulative contribution on responses, a dummy variable (orig.remiz) was constructed
indicating whether the created project was, itself, a remix. Similarly, a dummy variable
(has.remized) was constructed indicating whether the creator has ever uploaded a remix,
to test H2-3.

For the controls, gender is a dummy variable (female) indicating whether the creator is fe-
male and was measured through self-reported data from users’ registration with the Scratch
website. Time was measured based on upload data in the web application database. Be-
cause there was reason to believe that the effect of time on plagiarism accusations might
be nonlinear, the controls included the quadratic form of a variable measuring the number
of weeks since the first project was uploaded to the live Scratch website (weeks). This
enabled the measurement of the age of users (age) through a self-reported birth month and
birth year fields in the Scratch registration for both the remixer and creator. Age data

123

was marked as missing for users with ages under 4 and more than 90 (139 observations for
remixers and 124 for creators). Ages were calculated at the day the remixed project was
uploaded. Both ages are skewed toward younger users with median values of 13 and 12
respectively — several years below the mean. A correlation table with means and standard
deviations of all the variables included in the models is shown in Table 6.1.

6.2.2 Results

Model 0 Model 1 Model 2 Model 3 Model 4
(Intercept) -1.904™" -2.159"*" -2.301"" -2.302™" -2.287"
(0.049) (0.312) (0.315) (0.315) (0.325)
FEMALE -0.534™"" -0.496™"" -0.495™"" -0.494™
(0.127) (0.128) (0.128) (0.129)
WEEKS 0.064™"" 0.064™"" 0.064™" 0.064™ "
(0.019) (0.019) (0.019) (0.019)
WEEKS? -0.001™" -0.001™" -0.001™*" -0.001™""
(0.000) (0.000) (0.000) (0.000)
AGE -0.029%%* -0.031%** -0.031%** -0.031%**
(0.006) (0.006) (0.006) (0.006)
SPRITES (std) 0.210"* 0.210™" 0.209™"
(0.042) (0.042) (0.042)
ORIG.REMIX -0.059
(0.247)
HAS.REMIXED -0.022
(0.124)
REMIXER.AGE
N 3742. 3615. 3615. 3615. 3615.
AIC 2888.162 2758.412 2736.849 2738.790 2738.816
BIC 2913.072 2882.269 2885.477 2012.190 2912.216
log L -1440.081 -1359.206 -1344.424 -1341.395 -1341.408
Standard errors in parentheses
t significant at p <.10; *p <.05; **p <.01; **p <.001

Table 6.2: Taxonomy of logistic regression models on accuse.plag, a dichotomous construct
representing whether project creators accused the remixer of their project of plagiarism in
a nonpositive manner.

Results of the fitted regression models are shown in Table 6.2. Model 0 is the uncondi-
tional model and Model 1 is the control model, which adds variables controlling for the
creator’s gender, the quadratic term measuring weeks between the created project upload
and Scratch’s launch, and the age of the creator. The effect of creator gender on the like-
lihood of plagiarism accusations is highly statistically significant, large, and stable across

124

later specifications. Indeed, the model estimates that, robust to the addition of all the other
controls in the model, the odds of a female accusing a remixer of plagiarism is less than 0.6
times the odds of males doing so. Both parameters in the quadratic terms measuring the
number of weeks since the projects were uploaded are statistically significant and robust
across specifications. Finally, the measure of creator age also affects the outcome that is sta-
tistically significant and robust across later specifications. Controlling for gender, younger
students are indeed more likely to accuse a remixer of plagiarism. Testing for a quadratic
age term and an interaction between age and gender found no statistically significant effect
of either on the outcome. Although skeptical that the effect of age on plagiarism accusation
rates is linear, it is suspected that this result is a factor of the data, which is largely limited
to younger users where the relationship may indeed be estimated as such.

Model 2 adds a measure of complexity, a variable measuring the number of sprites in
a project in standard deviation units, an estimate of which is associated with a higher
likelihood of plagiarism accusations. With the controls in the model, it is estimated in
Model 2 that the odds that an creator of a project will accuse a remixer of their project
of plagiarism are 1.23 times higher than the odds that the creator of a project with one
standard deviation (12.2) fewer sprites will do so. Consequently, the study finds support
for hypothesis H2-1 in that, even with the addition of controls for age, gender, and when
the project was posted, creators are more likely to accuse remixers of plagiarism when the
project is more complex.

Model 3 adds the dummy variable indicating whether the created project in question is a
remix itself. This model does not find a statistically significant effect of this dummy variable
on the outcome; therefore, it is impossible to reject the null hypothesis that creators are as
likely to accuse remixers of their projects of plagiarism when the remixed project was itself
a remix as when it was a created production. As a result, the study does not find support
for hypothesis H2-2 that, controlling for gender, age, and project complexity, creators will
be less likely to accuse remixers of their projects of plagiarism when the remixed project is
itself a remix.

Model 4 instead adds to Model 2 the dummy variable reflecting whether creators have ever
uploaded a remix themselves. Again, the study does not find a statistically significant
effect of this predictor on the outcome and, as a result, also fails to find support for the
final hypothesis H2-3 that, controlling for gender, age, and project complexity, creators
who have uploaded remixes themselves are less likely to accuse remixers of their work of
plagiarism.

As a robustness check, the study re-estimated the models on a dataset that excluded projects
shared before May 15, 2007, the first day that widespread press reports of the Scratch
community were broadcast. In the period before, users were a smaller subset who might
have been more likely to know each other in person. The results were not substantively
affected. Further models, estimated on a dataset that did not exclude implausibly high and
low ages, found that the results were similar again.

The study also estimated models using slightly different specifications for the dependent
variable. Because many negative reactions by creators are due to plagiarism but do not

125

explicitly call it out, use was made of a specification of the dependent variable also true for
negative reactions, which did not specify plagiarism with similar results. The dependent
variable was also reformulated so it only included explicit charges of plagiarism that were
not paired with positive messages (namely, hinting plagiarism charges were not included).
The results were again substantively unchanged.

6.2.3 Discussion

The study found support for the theory that creators are more likely to accuse remixers
of plagiarism if the remixed project is more complex. To the degree that the results gen-
eralize to other online communities, charges of plagiarism may be of reduced concern in
communities where individual contributions tend to be small.

Surprisingly, the models suggest no effect of whether the project was itself a remix on the
rate of plagiarism accusations. This might indicate that Scratch users accusing remixers
of plagiarism have a strong conception of “good” (creative and transformative) remixes
and “bad” (plagiarizing) remixes, which are simple copies. In line with this explanation,
the study did not find support for hypothesis H2-3; creators who have uploaded remixes
were neither more nor less likely accuse remixers of plagiarism than users who had never
uploaded a remix.

Although included as a control, the effect of age suggests intriguing future research. Future
work could be designed to address why younger children may be more likely to complain
about plagiarism. For example, one possible explanation is that young remixers do not
understand licensing. On the other hand, previous qualitative work suggests that, although
significant, other factors may put important limits on the understanding by or desire of
users to pay attention to licenses. For example, Diakopoulos et al. (2007) showed that
adult users on an online video sharing site asked for permission before reusing media, de-
spite licensing considerations that made it clear that such use was legally permissible. Of
course, other factors associated with age may also play an important role in the relationship
observed.

Finally, although the framing and the variables in the model attempt to capture aspects of
creators and their projects, which may affect the likelihood of creators accusing remixers of
plagiarism, aspects of remixers and their remixes almost certainly play an important role
in setting up projects for negative feedback by the author of a created project.

The high correlation between qualities of created projects and their remixes makes exploring
this comparison difficult in the dataset. By controlling for creators’ gender, the date,
creators’ age, and the complexity of the remixed project, it is estimated that remixes by
younger users are more likely to result in accusations of plagiarism. Of course, as discussed
above, the effect of age on the outcome is difficult to interpret reliably alone. However,
even as a tentative result, this model provides support for the argument that accusations
of plagiarism are influenced by what each remix consists of, and by who the remixer is, as
well as by aspects of the person leaving the feedback. A further attempt to unpack these
results occurs in Study 3.

126

6.2.4 Implications for design

In Study 1, it was shown that a technical ability to remix and normative statements in
support of remixing do not guarantee either positive reactions or an elimination of charges
of plagiarism. Study 2 unpacked the initial results, and evaluated several explanations of the
difficulties that designers may encounter when attempting to address these problems.

The findings support the theory that the importance of systems to address charges of
plagiarism may be higher in communities where contributions are smaller. Even within
Scratch, where every contribution is a stand-alone project, differences in project complexity
are associated with large differences in the likelihood that an author will accuse a remixer
of plagiarism. Although it is impossible to speak of causal effects to the degree that the
results generalize to other communities, the findings imply that encouraging cumulative
contribution may not result in a lower rate of plagiarism accusations. Although designers
may be encouraged to involve more users in remixing to increase positive attitudes toward
remixing, the relationship might be more complex or less tightly associated than some
designers might assume. Scratch’s example suggests that increased participation in remixing
alone may not correspond to a decreased likelihood of plagiarism accusations.

6.3 Study 3: Are plagiarism complaints more common when
remixes are more similar?

Although the technical and legal ability to remix is constant across the Scratch online
community, the nature and content of remixes vary extensively. Some remixes are near or
even perfect copies of the project they are based on while others bear little similarity.

Study 2 explored several explanations for the many complaints by focusing on qualities of
creators and of the remixed project. Of course, as alluded to in the discussion of Study 2,
creators’ reactions to remixes are also likely to be influenced by the nature of the remix and
the remixer. Perhaps the most obvious remixer-side explanation for the extensive responses
to plagiarism in Study 1 is that the extent to which remixers rely on the created project
varies. That is, users may not mind remixing when the remix is merely inspired by or
loosely based on their work but object when the remixed project is nearly identical to their
own. Study 3 makes a first attempt to investigate this hypothesis (H3): Creators are more
likely to accuse remizers of plagiarism when the created project and its remized project are
more similar.

Because qualities of remixes are highly correlated with qualities of remixed projects, adding
remix-level variables to the logistic regression model in Study 2 was untenable with the
dataset and methods. Similarly, the available automatic methods of measuring differences
between created projects and their remixes were found unreliable. Hand coding is possible
but requires viewing and interacting with each pair of projects and is extremely time inten-
sive. As a result, Study 3 represents a first attempt to explore project similarity by offering
a bivariate comparison between creator reactions and project similarity using a reduced,
nonrepresentative, sample.

127

6.3.1 Procedure

A random selection of 40 creator-remixer project pairs from each of the 6 categories of
comments (plagiarism, hinting plagiarism, no comment, and so on; total n=240) were put
in a random order and given to a new pair of coders, unaware of how these projects were
selected, that these projects represented six categories of projects, or that their selection
had anything to do with the comments left on these projects. These coders were asked to
watch or play each of the projects in each pair and to make a judgment of similarity on a
5-point scale (from 1 = can'’t tell they are related to 5 = can’t tell they are different). Their
responses were highly correlated, (r = 0.79,p < 0.001; Cronbach’s o = 0.88), they rated
them within one point of each other in 95% of cases, and these ratings were averaged for a
final similarity score for each project pair.

6.3.2 Results

A one-way ANOVA was conducted on similarity ratings as a function of the type of comment
left. Similarity influenced the type of comment left (Fi5934) = 4.78,p < 0.001). Because
the specific interest was in assessing whether more similar projects were more likely to lead
to plagiarism concerns, planned contrasts were conducted, comparing the similarity scores
of the plagiarism (u = 4.40,0 = 0.65) group with scores in the other groups — doesn’t fit
(n = 3.53,0 = 0.85), negative (p = 3.93,0 = 1.02), positive (u = 3.75,0 = 0.85), hinting
plagiarism (p = 3.46,0 = 1.30) and no comment (u = 3.65,0 = 1.14) groups. This analysis
revealed that accusations of plagiarism were associated with more similar remixes than
the hinting plagiarism projects (tesz4 = 4.22,p < 0.001,d = 0.91), the doesn’t fit projects
(t2s4 = 3.94,p < 0.001,d = 1.15), no comment projects (t234 = 3.38,p = 0.001,d = 0.81),
positive projects (tazq = 2.93,p = 0.004,d = 0.85), and negative projects (ta34 = 2.14,p =
0.033,d = 0.55).

6.3.3 Discussion

This study indicated plagiarism accusations were influenced by the similarity between the
created project and the remix and these findings give tentative support for H3. When
remixes were highly similar to the created projects, they were much more likely to elicit an
accusation of plagiarism.

6.3.4 Implication for design

Designers of social media remixing systems may be able to decrease charges of plagiarism
against remixes by promoting differentiation between created projects and their remixes.
In particular, users might react more positively if a system either created technical affor-
dances to create dissimilar remixes or to highlight differences among apparently similar
projects.

128

For example, in Scratch, remixers begin with an unmodified version of the full source of
the project to be remixed. An example of technical affordances to facilitate differentiated
project might be a remixing interface that begins with a blank project and treats remixed
projects as sources of code and media. However, such design affordances may present
negative consequences in other areas of the site by increasing the cost to users of making
simple improvements or engaging in more direct forms of collaboration. Another suggestion
for Scratch may include a “changelog” facility that allows users to explain substantive
differences between a remix and an apparently similar created project. For example, a user
who fixes a bug or changes a set of sprites could explain initially unnoticeable changes.
By emphasizing differences, apparent similarity and charges of plagiarism might both be
decreased.

6.4 Study 4: Human and Machine Attribution

This study presents an analysis that evaluates the effectiveness of a feature designed to
address some of the tensions described in the previous section. More specifically, a feature
that consisted of detecting remixes and automatically adding attribution to them. Here I
present why feature did not have the intended consequences and what we can learn from
it.

This study builds on a dataset used in the previous section and it includes remix-pairs
determined by an algorithm using detailed project metadata tracked by the Scratch online
community. The dataset is limited in that it does not include projects whose concepts were
copied by a user who had seen another’s work but who did not actually copy code, graphics,
or sound. Similarly, the dataset contains no measure of the “originality” of projects or an
indicator based on ideas that were taken from a source outside Scratch (for example, a
user might have created a Pac-Man clone, which would not be considered a remix in the
analysis).

The data presented here includes each coded reaction of the author of created projects
(named “creators”) on remixes of their projects shared by other users in the site during a
twelve-week period after Scratch’s launch, from May 15 through October 28, 2007. Although
2,543 remixes were shared in this period, the analysis is limited to the 932 remixed projects
(37% of the total) that had been viewed by the original project’s creator at the time of data
collection — a prerequisite for any response. Of these 932 remixes that were viewed by a
project creator, 388 creators (42%) left comments on the remixes in question. The remaining
were coded as “silence.” Two coders blind to the hypotheses of the study evaluated the
comments left by creators of projects being remixed as positive, neutral, or negative. They
were also coded as containing accusations of plagiarism or as hinting plagiarism.

Unless it also contained an explicitly negative reaction, an accusation of plagiarism was
not coded as “negative.” However, because plagiarism tends to be viewed as negative
within Scratch (as suggested by the quotations in the previous section) and more broadly
in society (Posner, 2007), accusations of plagiarism (both direct and hinting) were recoded
as “negative” except, as was the case in several comments of “hinting plagiarism,” when

129

these accusations were included with comments that were also coded as positive. Previ-
ous published work using this dataset, and later robustness checks, show that the results
are substantively unchanged if these explicit charges of plagiarism are excluded from the
“negative” category or only the weaker “hinting plagiarism” accusations are excluded.

6.4.1 Study 4a: Automatic Attribution

Even before the Scratch website was officially announced, several early adopters became
upset at finding remixes of their projects. One of the first complaints occurred on the
discussion forums where a 13-year-old asked:

Is it allowed if someone takes your game, changes the theme, and then calls it
“their creation”? Because I created a game called “Pong 2.1”7 and a week later,
a user called “julie” redid the background, and called “her creation” and I am
really annoyed with her for taking credit for MY game [...]

Several people responded showing support for the creator and some, as this 16 year-old,
proposed a couple of solutions to the administrators of the site:

Make it so you can only download a view of how your game/story/animation
works. [...] - Or make it so downloadable Scratch files have [read] only protec-
tion. [...] - Maybe downloaded Scratch files, after being uploaded, are marked
with the creator’s name at the bottom, then any OTHER person who edits it
afterward are put on the list.

Four months after that incident, new functionality was implemented to automatically iden-
tify remixes and to point to their created project and its author. About the same time,
functionality was added to link to a comprehensive list of remixed works as part of the
information of each project from the pages of created projects.

To test the effectiveness of automatic attribution, the effect of the design intervention de-
scribed in the previous section is considered. The design change took place six weeks after
the public launch of the Scratch community and at the precise midpoint in the data collec-
tion window. The intervention affected all projects hosted on the Scratch online community
including projects shared before the automatic attribution functionality was activated. As
a result, the creators’ reactions are classified as occurring outside a technological regime of
automatic attribution when a project was both uploaded and viewed by a project’s creator
before automatic attribution functionality was activated.

A comparison of the distribution of coded comments among positive, neutral, negative,
and silent in the periods before and after the intervention suggests that the introduction of
automatic attribution had little effect on the distribution of reaction types (See Figure 6-1).
Although the period after the intervention saw more users remaining silent and fewer both
positive and negative comments, x? tests suggest that there is no statistically significant
difference in creator reactions between remixes viewed before and after the introduction of
automatic attribution (x? = 3.94;df = 3;p = 0.27). As a result, the investigators cannot

130

None Automatic Attribution

Reaction

o 20% 0% 6% 8% 100%
Presence of Automatic Attribution

Figure 6-1: Mosaic plot showing the distribution of reactions of creators who had viewed
remixes of their project during the six-week periods before and after the introduction of
automatic attribution. The proportion of response types is shown along the y-axis. The
proportion of projects viewed with, and without, automatic attribution is shown along the
z-axis. (n = 932)

conclude that there is any relationship between the presence, or ahsence, of an automatic
attribution system in Scratch and the distribution of various types of reactions.

These results suggest that automatic attribution systems might have limited effectiveness in
communities such as Scratch. Of course, the analysis is not without important limitations.
For example, the existence of an automatic attribution regime may also affect the behavior
of users preparing remixes. A remixer might avoid making perfect copies of projects if they
know that their copies will be attributed and are more likely to be discovered.

6.4.2 Study 4b: Manual Crediting

Although the introduction of an automatic attribution feature to Scratch seems to have had
a limited effect on creators’ responses to remixes of their projects, the presence or absence
of credit was a theme in discussions on Scratch online forums — as shown in the quotes
in the previous section — and in many coded reactions from the periods both before and
after the introduction of automatic attribution. Indeed, in project descriptions or notes
from the periods both before and after the change, remixers frequently “manually” gave
credit to the creators of their work. Even after remixes were automatically attributed to
creators, remixers who did not also give credit manually — essentially producing information
redundant to what was already being displayed by the system — were criticized.

For example, after the introduction of automatic attribution functionality, a user left the
following comment on a remix of their project:

Bryan, you need to give me Pumaboy credit for this wonderful game that I mostly
pretty much kinda totally made this whole entire game ... and that you need to
give me some credit for it

131

For this user, automatic attribution by the system did not represent a sufficient or valid
form of credit giving. In the following study, tests are performed for this effect of “manual”
credit giving by remixers on coded response types using a method that parallels the analysis
in Study la and that uses the same dataset.

Manual crediting can happen in several ways. Exploratory coding of 133 randomly selected
projects showed that 35 (36%) of each remix pair gave credit. Of these 35 projects, 34 gave
credit in the project description field, and 1 project gave credit in a “credits” screen inside
the game. As a result, the authors of this study split the sample of projects used in the
Study la and coded each of the user-created descriptions for the presence or absence of
explicit or manual credit giving.

First, to establish that distinct behaviors are examined, the chapter attempts to establish
that automatic and manual attributions are not substitutes for each other. As suggested by
the qualitative findings and the results in Study 1la, little difference was found in the rate
of explicit credit giving among projects created in the presence or absence of automatic
attribution. Overall, 276 (about 30%) of the 932 projects in the sample offered explicit
credit in the description field of the project. Manual crediting-giving was a widespread
practice both before automatic attribution, when 31% of projects in the sample offered
explicit credit, and after, when 27% did so. The difference between these two periods was
not statistically significant (x? = 1.41;df = 1;p = 0.24). Previous work studying Jumpcut,
a video remixing website, supports the idea that automatic and manual credit giving are not
interchangeable phenomena. One Jumpcut user with permission to create remixed works
commented that they, “still feel a moral obligation to people as creators who have a moral
right to be attributed (and notified) despite the physical design, which accomplishes this
automatically” (Diakopoulos et al., 2007).

Measurements of the effectiveness of manual credit giving used a parallel analysis to Study
la, with a comparison of the distribution of creator reactions in the presence, and absence,
of manual credit giving by remixers. The results show that negative reactions are less
common with manual credit but that this difference is minute (from 16% without manual
credit to 14% with it). However, the proportion of users who react positively almost doubles
with credit giving (from 16% with no crediting to 31% in its presence). A graph of these
results is shown in Figure 6-2. Tests show the null hypothesis that these differences in the
distribution of reactions are because of random variation (x% = 27.60;df = 3;p < 0.001),
and can be confidently rejected.

Also important to note is a difference in the number of users who are silent after viewing
a project (62% lacking manual credit compared with 49% in its presence). This larger
proportion of commenting in general might have an important substantive effect on the
discourse and behaviors on the site because silent creators might, obviously, have a more
limited effect on attitudes toward remixing and user experience than vocal users do. As
a robustness check, the study considers the reaction of only creators who left comments
(n = 388) and found that even with a smaller sample, the result was stronger. In the
restricted sample, 41% reacted negatively when they were not given credit. However, only
27% did so when they were credited. Similarly, 42% of users who left comments on projects
that did not give credit manually left positive messages. Nearly two-thirds of comments

132

No Credit Credit

Reaction

Y . —— - ———

" T
0% 20% 40% 60% 80% 100%
Manual Crediting

Figure 6-2: Mosaic plot showing the distribution of reactions of creators who had viewed
remixes of their project’s when manual credit was given.

(61%) were positive when credit was given. These differences within the reduced sample that
includes only explicit reactions were also statistically significantly different (x2 = 14.09;df =
2;p < 0.001). Many silent participants are included in the belief that nonresponse is an
important type of reaction with real effects on the community. Understanding the reasons
for nonresponse and the effect of silence in response to various types of credit giving remains
an opportunity for further research.

Both before and after the intervention, manual crediting resulted in more positive comments
from the creators of remixed projects. Of course, the results presented here are uncontrolled,
bivariate relationships and these results, although provocative, should still be viewed as
largely tentative and with caution. As shown in the later qualitative analysis, attribution
and credit giving are complex social processes, and there is no claim that the preceding
analyses capture it fully.

Especially when credit is given explicitly in the project description, as it was in the project
described above, this type of remixing is likely to be welcomed by the creator. For example,
user bajooliechaa, posted a project based on Jacque’s project, noting the following in the
description of the project: “i kinda copied Jacque's ‘jetpackcat’ game. i used the cat, the
scripts (i changed and added some), and the fuel thingy” to which Jacque replied, “I like
what you changed about my project.”

Other times, however, remixing is poorly received with the consequence of conflicts and an-
imosity. Sometimes, initially negative reaction can change to positive through conversation
that facilitates the organic process of humanization and empathy (Benkler, 2009). For ex-
ample, user robymin29 remixed kooli39’s project, something that kooli39 did not appreciate
and expressed by creating a response project that consisted of the animation of frowning
cat saying:

Hi i’'m kooli89 THE ORIGAL CREATOR MARIO DISCO ROBYMIN29 COPIED
ME!! AND DIDN'T EVEN AKNOWLAGE ME HE DIDN'T CHANGE ANY-
THING!'I WROTE OR DREW!! AND RAYMAN ...IF YOUR READING

133

A few minutes later robymin29 sees the project and posts this apology as a comment to
kooli39’s project:

IM SORRY IM 61X MY BIG BROTHER HELPS ME BUT WHEN HE DOSENT
I COPY AND CHAGE STUFF LIKE TAKE STUFF OUT sorry! imade it more
easy.

Then kooli39, realizing robymin29 is much younger than he, posts a project, an animation,
of a cat crying and in the background a handwritten that reads, “RObymin I was hard on

”

you.

This mixture of postive and negative reactions is captured in a two-word tag cloud visu-
alization (See Figure 6-3) of more than 13,000 comments posted by creators on remixes
of their projects. It shows overall a positive attitude toward remixing in word-pairs such
as “nice remix” and “good job,” but also shows “give credit,” “copied mine,” and “didn’t
change” are common.

6.5 Study 5: Interviews with participants

To explore the reasons for young people’s remixing behavior and attitudes toward attribu-
tion as observed in Study 1, a second qualitative study was used to directly ask children
what role attribution and credit plays in their moral evaluations of remixing.

6.5.1 Methodology

Twelve one-hour semi-structured interviews were conducted with children aged 8 to 17
years. All interviewees had experience using computers and had access to the Internet at
home. All the interviewees live in the United States except one who lives in New Zealand.
The participants were recruited through the Scratch website and during meet-ups with
educators, teachers, and young Scratch users. Eight of the interviews were conducted in
person, in the Boston area, and the rest over the phone or voice over IP. The interviews
were audio-recorded and transcribed before fully analyzing them. Nine of the interviewees
were members of the Scratch community. The remaining three did not use Scratch but
were included to check if people who do not use Scratch have similar views about remixing,

4 remixing hack doody p—
cool nice cool remix e - credit give

- RS —— - enateie vew . giVE Credit
simqoodidea 00T JOD . qmnas . omtierne - - S
. e GUOL 53T a1 : v
wr- » ol Il 10] NiCE . 5 e =
Ape— nice job . e NICE TEMIX oicam
pretty good . —— .. project notes

. b lol cool

L stick stick - —thy 4 topremired
—itrn - xd lol wddxd

Figure 6-3: Word cloud of terms used in the comments on remix projects by the creators
of created projects.

134

Name (pseudonym) Age Gender Relationship to Scratch

Nicole 10 F She has created with hundreds of Scratch
projects, primarily animations and art ones.

Kyle 14 M Casual wuser of Scratch, interested in
math /science simulations and video games.

Amy 15 F Ardent photographer, has never used
Scratch.

Charles 9 M Active member of a subgroup of Scratch in-
terested in simulation of operating systems.

Ryan 12 F Longtime member of the Scratch community.
Creates complex video games.

Jon 9 M Casual user of Scratch, collaborates with
Scratch friends in person.

Jake 11 M Casual user, likes making video games.

Cody 16 M Creates hip-hop accessories, not active in
Scratch.

Paul 9 M Creates Scratch projects with a focus on en-
gineering and video games.

Jimena 17 F Highly technical teen with programming ex-
perience but no experience with Scratch.

Madeline 14 F Popular animator in the Scratch community.

Susie 10 F Has created hundreds of projects including

games, animations and art, but preferring
art.

Table 6.3: Table listing details of interviewees used in Study 2. (n = 12)

135

attribution, and credit. No substantive difference was found between the Scratch users and
non-users in their answers to questions related to the hypothetical automatic and manual
mechanism for attribution.

Before each interview, subjects completed a survey, which elicited demographic information
and posed questions about their familiarity with other technologies, and was primarily
designed to get a sense of the interviewees’ social and technical background. Interviews were
structured around a protocol that included a set of nine fictional remixing cases intended
to elicit conversations about remixing. The cases were inspired by Sinnreich et al. (2009)
theoretical work and from three years of experience moderating the Scratch community.
They were designed to present cases where remixing could be controversial but where there
is no clear “correct” answer. The goal of the cases was to offer a concrete, and common,
set of quandaries to stimulate broad conversations about attitudes toward remixing.

The cases were presented as printed screenshots of various project pages from the Scratch
website (anonymized to avoid referring to real cases that users might have seen). The
printouts were shown to the interviewees (or discussed over the phone) while explaining
each case. All the cases included a remix and its corresponding created project. The cases
varied with automatic attribution, manual credit, and the degree of similarity between
created project and its remix. For example, the first three cases were:

1. A created project and its remix are identical. The project notes only describe how
to play the video game. The remix shows the automatic attribution but no manual
credit on the notes.

2. A created project and its remix are different (as shown visually and in project meta-
data) but one can clearly see the influence of its created project. The project notes
of the remix show manual credit but no automatic attribution. The interviewee was
told to imagine the site had a glitch that prevented it from connecting it to its created
project.

3. The same set of remix and created projects as in (2) but this time automatic attribu-
tion is displayed but manual credit is not.

Each of the interview logs was coded using inductive codes and grounded theory (Charmaz,
2006). The coded responses were analyzed based on categories related to how interviewees
answered specific questions about the distinction between automatic attribution and manual
credit.

Results

Confirming the results of Study 4, for users of Scratch, automatic attribution was usually
seen as insincere and insufficient. Throughout the interviews, it was found that for most
children, getting explicit credit from another person was preferred to attribution given
automatically by the system. When asked why, children often responded that knowing that
another person had cared enough to give credit was valued more than the computer system
would do on its own. The fact that it takes some work, although minimal, to write an

136

acknowledgment statement, sends a signal of empathy, authenticity, and good intentions
(Donath, 2008). Amy articulated this when explaining why she preferred getting credit
from another person:

I would like it even more if the person did it [gave credit] on their own accord,
because it would mean that [...] they weren’t trying to copy it, pirate it.

Similarly, Jon explained, “No [the “Based on” is not enough], because he [the remixer| didn’t
put that, it always says that.” For Jon, automatic attribution is not authentic because it is
always there and, as a result, clearly is not coming from the person doing the remix.

Most interviewees seemed to have a clear notion of what they think a moral remix should
be. For some, it is about making something different. Jake for example, defines a “good”
remix as, “if it has a bunch of differences then it’s a good remix. If it has like two, then it’s
bad.” Besides the differences between the created project and its remix, for some, manual
credit is part of what makes it moral. Charles said, “[remixing] is taking somebody else’s
project and then changing a lot of it and sharing it and giving credit.” Continuing, Charles
explained:

If Green had actually said in the project notes, “This is a remiz of Red’s project,
full credit goes to him,” then I would consider it a remiz. However, this [pointing
at a remiz without manual credit] is definitely a copy.

Likewise, Ryan mentions that a fictional remix was, “perfectly fine because they gave credit
in the project notes.”

Interviewees suggested that manual credit also allows users to be more expressive. For
example, Susie explained that expressiveness is the reason that she prefers manual credit
through the project notes saying, “I think the manual one is better because you can say
‘thank you’ and things like that. The automatic one just says ‘it’s based on.”’ Susie also
notes that for her, the project notes are a space where a creator can express her wishes
about her intellectual property independent of, and even in contradiction to, the license of
the projects:

If I do a project that has music that I really like, I often download the project,
take the music. Unless it says in the project notes, “Do not take the music.”

For Susie and other users of Scratch, the project notes are a space for more than just
instructions on how to interact with one’s project; they are an expressive space where one
can communicate with an audience without having to encumber the creative piece of work
with it.

Others point to the fact that people do not pay as much attention to automatic attribution
statements as much they do to the manual credit left in project descriptions. Jake, for
example, explains that, although he agrees there is some usefulness to having both, project
notes still are more important, “because, you know, sometimes people just like skim through
a project and you don’t see it ‘til the end.” Jake continued to say that creators that do not
have both should get a “warning.”

137

Even though interviewees value manual credit, they still see the usefulness of the automatic
mechanism as some sort of community-building prosthetic device — an explanation for the
positive reactions to the feature’s introduction. For example, Nicole argues that although
manual credit on the notes has more value for her, the automatic attribution is useful as a
backup and because it provides a link:

Well, I think that they should probably write in the notes that — then it should
also say “Based on blank’s project,” just in case they forget, and because it gives
a link to the created project and it gives a link to the user so you don’t have to
search for it.

A similar explanation was articulated on a comment exchange on one the website’s gal-
leries. A teenage girl who actively participates in Scratch explained the pragmatic value of
automatic attribution saying, “the ‘based on’ thingy, it gives a link, and we all luv links,
less typing,” before reiterating that manual credit is more valuable:

At the beginning I thought that you don’t have to give credit when the “based on”
thingy is in there, but I realized a lot of people don’t look at that, and I noticed
people confused the remiz with the created project.

Creating a Scratch project is a complicated task. A project’s sources can be diverse and
the creator can easily forget to acknowledge some, as Paul explains, when asked to choose
between a system of manual credit and automatic attribution:

The thing is, it would be a lot better if they had both. Because, sometimes people
probably just forget to do that. And then people would not know.

Sometimes interviewees recognize what Posner calls the “awkwardness of acknowledgment,”
that is, situations where credit is not really needed and can be an unnecessary burden or
go against the aesthetics of the work (Posner, 2007). For example, Paul mentioned that
sometimes there are projects in Scratch that are remixed so much — as the sample projects
that come with Scratch or some “remix chains”? — where credit is not necessary:

There’s this one called “perfect platformer base,” which many people remiz. So
I don’t think that needs any credit. It’s not actually a real game. It’s all the
levels and stuff are just demonstrations.

Because manual crediting has a higher emotional value, some children mentioned that con-
flicts over remixing could be addressed by the administrators of the site by editing the
project of the remix in question, to enforce credit without transforming it into attribution.
Doing so would make it appear that a remixer had credited a created project when they had
not. Susie offers a suggestion along these lines when asked about how the administrators of
the website should deal with a case of a complaint over a remix that is a parody of someone
else’s project. Susie suggested that, “I might remove the project but I might not, you know,
maybe I would edit the notes to give credit.” Similarly, Charles described his approach for
solving conflicts if he were the administrator of the website suggesting that, “I probably

2Remix chains typically start with someone sharing a project inviting others to remix (namely, “add
your animated avatar to the park.”)

138

just would stay out of the argument. I probably wouldn’t remove it [the remix], Id just
add something in the project notes [like] ‘based on Gray’s project.”’

This phenomenon of giving less value to technologically simplified social signals is experi-
enced in other social platforms. For example, Amy expressed how on the social network
site Facebook, she loves to get comments on her photographs but dislikes those who do not
leave comments or opt instead to press the “I like it” button:

I love when people comment on my pictures. Everybody sees them, because they
tell me they have. I'm like, “Oh really? That’s great. Why didn’t you comment?”
I don’t like it when people just “like it”, because you know they have something
to say about it; they just don’t. It’s like, if they like it, then [they should] take
the time to say something.

Although not designed to be a random sample, these interviews support the proposition that
both Scratch participants and other young people share a set of norms about characteristics
that determine what a “good” or moral remix is. Among these norms, acknowledging one’s
sources seems to play a central role. However, participants also seem to share the opinion
that this norm is not satisfied through an automated process. They clearly understand
the pragmatic value of automated acknowledgment, but they do not see it as a substitute
for adherence to the social norm of credit giving. They also see it as void of emotion and
expressiveness. For Scratch users, normative constraints are separate from architectural
constraints and one cannot replace the other. These findings support and enrich the results
from the first study and help provide a better understanding of how Scratch participants,
and perhaps children in general, experience authorship norms and automation in online
spaces.

6.6 Discussion

These studies explore attitudes toward remixing that are believed important. Study 1 shows
that users react to remixing in diverse ways. Although every project on Scratch is shared
under a license that permits remixing, as many authors of created projects accuse remixers
of plagiarism as react positively. Study 2 tested three hypotheses about aspects of remix
projects and their creators that might be related to reactions to remixing. Although the
analysis cannot offer causal explanations, the findings support the theory that the authors
of more complex projects tend to accuse others of plagiarism at a higher rate. On the other
hand, no support is found for the hypotheses that authors of created projects that are them-
selves remixed, or authors who have never published remixes accuse remixers of plagiarism
at a higher rate. Study 3 presents tentative findings that support the explanation that users
are more likely to make accusations of plagiarism when projects are more similar.

In this analysis, several crucial assumptions are made. In general, the framing tends to
treat charges of plagiarism as negative and to be avoided. This interpretation is roughly
supported in the dataset: 32% of comments coded as negative were also coded as explicitly
calling out plagiarism while only 2% of positive comments did so. Of course, this does
not mean that charges of “copycat” are necessarily associated with either bad feelings by

139

users or, more important, behaviors that social media designers find problematic. Although
the understanding of the coded comments and the experience with the community gives
confidence in the framing, further work should unpack these assumptions.

The results from Study 1la called in to the question the effectiveness of automatic attribu-
tion functionality in encouraging more positive user reactions in Scratch. Later, building
on these results in Study 1b suggests that manual crediting may do the work that Scratch’s
designers had hoped automatic attribution would. Results from the analysis of user inter-
views presented in Study 2 help answer the question of “why?” and suggest that users find
manual credit authentic and more meaningful to users because it takes more time and effort.
Usually, Ul improvements are designed to help reduce the time and effort involved in using
a system. However, in trying to help users by attributing automatically, Scratch’s designers
misunderstood the way that attribution as a social mechanism worked for Scratch’s users.
The fundamental insight is that although both attribution and credit may be important,
they are distinct concepts and that credit is, socially, worth more. A system can attribute
the work of a user but credit, seen as much more important by users and as having a greater
effect on user behavior, cannot be done automatically. Computers can attribute. Crediting,
however, takes a human.

As suggested at the beginning of this chapter, this fundamental result leads to two distinct
contributions. First, and more specifically, the analysis offers an improved understanding
of the way that attribution and credit works in user-generated content communities over
what has been available in previous work. The two studies suggest that scholars are correct
to argue that credit plays an important role in social media communities and offer empir-
ical confirmation for the important role that authenticity plays in how users conceptualize
credit. The in-depth interviews explain some reasons for this being so. Second, through
the evaluation of an unsuccessful technological design, the work offers a broader, if more
preliminary, contribution in suggesting an important limit of designers’ ability to support
community norms in social media systems. As the literature on design and social media
grows, the importance of good support for communities with healthy norms promoting
positive interactions is likely to increase. In attempting to design for these norms, it is
suspected that researchers will increasingly encounter similar challenges.

It is argued that designers should approach interventions iteratively. This design approach
can be understood through the theoretical lens of the social construction of technology
(Pinch and Bijker, 1984): designers cannot control technological outcomes, which must be
built through a close relationship between designers and users. Designers must move away
from seeing their profession as providing solutions. They must channel users, work closely
with them, and iterate together, to negotiate and achieve a set of shared goals.

The prevalence of user-generated content sites stresses the importance of how online social
spaces should deal with issues of attribution and the results are likely to be immediately
relevant to designers. For example, the Semantic Clipboard is a tool built as a system of
automatic attribution for content reuse (Seneviratne et al., 2009). Developed by researchers
who found a high degree of Creative Commons license violations around the reuse of Flickr
images, the tool is a Firefox plugin that provides, “license awareness of web media,” and en-
ables people to automatically, “copy [media] along with the appropriate license metadata.”

140

The results suggest one way that this approach may fall short.

However, automatic attribution is not the only way that technologists can design to ac-
knowledge others’ contributions. Indeed, the results suggest that there may be gains from
design changes, which encourage credit giving without simply automating attribution. For
example, Scratch’s designers might present users with a metadata field that prompts users
to credit others and suggests creators whose work the system has determined might have
played a role. This affordance might remind users to credit others, and might increase the
amount of crediting, while maintaining a human role in the process. The research has sug-
gested that extra effort instills manual credit giving with its value, which suggests that in
other social media communities similar affordances, which help prompt or remind users to
do things that a system might do automatically, represent a class of increasingly important
design patterns and a template for successful design interventions in support of community
norms.

Indeed, promising future work might use attitudes toward and responses to remixing as
an independent variable. For example, designers of remixing communities may want to
look at the effect reactions to remixing have on the rate or nature of contributions. It
seems unlikely that a community hostile toward remixing or actively involved in calling one
another “copycats” would be a solid foundation on which to build such a culture. Future
work will be able to build on these findings to establish how these attitudes help frame
a social environment. Similarly, such work should look at the effect of positive reactions.
Although Study 2 focused on charges of plagiarism, positive responses seem as likely to
affect remixing rates as negative reactions and accusations of plagiarism. Future work
should build on the work carried out here to do so.

141

Chapter 7

Conclusions

I became interested in remixing because of the controversies surrounding intellectual prop-
erty. I was particularly motivated by the cause that Lessig, Benkler, Jenkins, and other
scholars had inspired: the stopping of what is seen as an attack on amateur creativity
by corporate interests. My resolve strengthened after receiving “cease and desist” notices
from lawyers representing companies who felt that some of the projects in the Scratch
website were in violation of their intellectual property rights. For example, we received
an official DMCA! “take down notice” from the owners of the popular video game Pac-
Man, demanding the removal of a Pac-Man project created by a young community member
(see Figure 7-1)—an inspirational remix using the terminology from chapter 4. The let-
ter included a commentary on how young programmers should also learn to respect the
intellectual property of others:

While we appreciate the educational nature of your enterprise and look forward
to the contributions of the future programmers you are training, part of their
education should include concern for the intellectual property of others.

Although I still strongly believe the current copyright system is broken, I found remixing to
be a much more nuanced phenomenon. I was surprised how often young creators—at least the
ones on the Scratch Online Community and a few other similar websites—did not universally
favor remixing when it came to their creations being reused by others. Many of them asked
us to give them the ability to “lock” their projects to prevent others from remixing them or
even downloading them. At the same time, these young members were perfectly content,
and rightly so, I believe, to remix video games like Nintendo’s Mario Bros. or Namco’s
Pac-Man, or to grab images from search engine results to produce creative programmable
media with them.

IDigital Millennial Copyright Act

142

qﬁnhmdﬂ. galleries support forums about my stuff Language

Welcome, andresmh | Logout [| [Csearch |

imagine « program « share

Pacman Arcade Download this
project!
Download the 10 sprites and 2
scripts of “Pacman Arcade” and
open it in Scratch

Play with the code
Try out this project in the
Experimental Viewer

Want to switch back?

Click here to switch back to the
default Java player, Please let us
know what you think of the new
Flash player.

| Project Notes

A basic Pacman game. | know it
is not finished--you cannot go
to other levels...

Figure 7-1: Pac-Man remix removed after to DMCA take down notice.

7.1 Summary and Contributions

In chapter 4, I argue that the reason why amateur creators in Scratch exhibit seemingly
conflicting attitudes is because remixing represents a several different types of processes.
To tease this apart, I developed a remizing tazonomy along two dimensions: originality
and generativity. Originality helps us understand the effort involved and how different a
remix is from its source project. For example, it allows us to distinguish perfect copies from
modular reuse or merely inspirational remixes. Generativity, on the other hand, helps us
assess how prolific a particular source project is, or intends to be. For example, it helps
us distinguish between those ad hoc remixes among two individuals, those happening in a
small collaborative group, and those part of a crowd.

While some people want to “lock” their projects, others are actively trying to encourage
people to remix their work or to engage in remixing as part of collaborative groups. In
chapter 5, I present the conditions for remixing, more specifically the system and content
attributes that are associated with different degrees of generativity and originality. The
core finding here is that there is a paradoxical inverse relationship between generativity and
originality: the attributes associated with an increase in one-author status, complexity, and
cumulativeness are also associated with a decrease in the other.

As I mentioned before, remixing emerged as one of the main tensions in the community. At
the same time, remixing was mechanism for interaction and collaboration. In chapter 6, I
examine the attitudes young people have toward remixing. Perfect copies tend to receive
more complaints than those that are highly generative. On the other hand, those people who

143

are very positive toward remixing often used it as part of small or large scale collaborative
practices. Furthermore, the presence or absence of manual credit also determines how
people react to remixing, regardless of the presence of automatic attribution.

In this work, I have presented the design and study of a remixing system. Also, I use this
system to investigate the process, conditions, and attitudes toward remixing. The main
contributions of this work are:

e The implementation of a scalable social computing system, ScratchR, that enables
people to share and remix programmable media. Released under a GPL? v2 license,
ScratchR has been reused a number of times. For example, the Portuguese telecom-
munications company Sapo created an instance of the website for their local market
(see Figure 7-2).

e The development of a large and international online community of more than one
million amateur creators. The website expanded Scratch from being “just” a cre-
ation tool to becoming a place where people collaborate, interact, and hang out (see
Figure 7-3 for an illustration of how a young member sees the community).

e The collection of a large corpus of research data that includes more than two million
interactive media projects, and activity logs of more than a million accounts.

e A new theoretical framework to understand remixing based on a set of mixed meth-
ods studies. This framework provides a remixing taxonomy based on two dimensions:
originality and generatively, and evidence to suggest that those two dimensions are at
odds with one another. Then I expand our understandings of how young people per-
ceive remixing, finding evidence for the need for manual credit regardless of automatic
attribution.

7.2 Design Implications

Throughout this work, I present different implications for system design. In chapter 3, I
explain that part of the success of the Scratch website is that it provides opportunities
for “creative socialization.” I argue for the value of using sociability to support creative
engagement through basic mechanisms like remixing, which often facilitate more complex
collaborative practices such as group work. Additionally, I argue for “participatory diver-
sity,” that is the support for both “making” and “listening” or lurking. This allows people
to engage and disengage as they see fit, decreasing the chances of turning people away be-
cause they might feel forced to participate in a specific way. That said, although multiple
forms of engagement are supported, the aesthetic design of the Scratch website emphasized
the content generated by the community rather than any kind of sophisticated interface
elements on the website itself.

In terms of scaling community moderation, I present a hybrid model that relies on input
from the community and administrators’ decisions. Part of the reason this works is because

2General Public License

144

£.2® Descarrega o

e
I o 8 T
™ gmeod S8

R] Deseannesar D

e E-dnu:y [X do Sorstch
¥ oswesdivides 257 em & escolar
Noticio

Aprende como se programa em

Scraftch! VE os videos e as novas
personagens que te vio ajudar a
brincar e criar como o Scratch. Vé

mais aqui.

Etiquetos populares aduilss”
1° ciclo, 45 Arte. Musica. abe_ines.
animation animacéo.
- | i —— ceejb, doctor who.
fixe. factal. JAIME. geometria, quia
cumicular scratch. NNISEOTIA. inua.
JOQO. matematica, maths. music.

meu BN wata,sapo. SiMulation
simulago, story. teste. van gogh

Visitantes recentes

= 4 BE —sss
ﬁ g _ g & & o : B nEvsmn @rm
“ o b » ‘ kikastombas.) Mrmasseno
HNivois Recompensa Colisdo

Figure 7-2: Instance of ScratchR for Portugal.

145

Figure 7-3: Scratch Online Community as seen by a 14-year-old community member.

all the communication channels are public, preventing conflicts emerging in hidden places.
That said, dealing with off-site communications continues to be a challenge.

At the end of chapter 3, I argue for the value of designer engagement in the community, first
in the form of bootstrapping and then as a continued practice. Bootstraping a community
works well through in-person gatherings, such as workshops, that help identify potential
issues with the system and, more importantly, seed the community with the kind of content
that is desired for the system. Continuous and authentic engagement in the community
helps designers maintain a mental model of the different types of user that ultimately help
inform the system design and policies for the community.

Using the findings from chapter 4, the take away is that supporting remixing actually means
supporting a diverse range of practices. System designers might need to emphasize the most
desirable forms of remixing, but acknowledge that others will emerge. For example, this
could be implemented by detecting and celebrating on the front page of the website any
type of remixing that is in particular need of recognition and encouragement. The emphasis
on specific types of remixes could be automated and manually curated. The former scales
but is likely to be gamed (as any other metric that increases attention), the later might give
more control over what is displayed but with a higher cost in terms of time.

The implications from chapter 5 are two-fold. First, remixing systems need to be modular,
open, and support mechanisms for attribution. These three system attributes, however,
come with a cost in terms of system complexity which can be addressed given the right
user interface. Second, remixing systems need to decide whether quantity (i.e., generativ-
ity) or quality (i.e., originality) of remixing is desired. This decision can change, but the
levers needed to incentivize one or the other are the same: author status, content com-

146

plexity, and cumulative provenance. For example, when starting a community one might
want to favor quantity over quality. Later on, system designers might want to promote
more original remixing by highlighting works of medium complexity and by less popular
contributors.

Finally, chapter 6 provides a warning about two reasons why conflict might emerge as a
result of remixing: lack of originality, and manual credit. System designers might address
this by reducing the visibility of exact copies, or like Twitter’s development of a retweet
button: highlighting content re-use while still letting people remix as a form of spreading
a particular piece of content. Also, system designers might want to create the mechanisms
for encouraging contributors to acknowledge their sources. Often people do not know ac-
knowledge because they forget where they got the source materials, so automation can still
be useful to identify these scenarios and remind people of the value of giving credit as a
form of prosociality.

7.3 Future Research

Through this work, I hope to have opened the path to future empirical studies on remixing
in Scratch and beyond. In chapter 3 I present an overview of five years in the history of
the Scratch Online Community. This overview, however, does not undertake a detailed
analysis of the different types of members that have participated in the community by
remixing. Nor does it investigate the people who are often at odds with one another in
their perspectives on remixing. For example, generally speaking, visual artists on Scratch
tend to be more protective of their work than programmers. A close study of these individual
differences might help understand how different forms of creative participation might impact
collaboration.

As mentioned before, amateur creators in Scratch have different attitudes toward remixing
due to issues of originality and attribution. However, this model of user behavior can be
extended. Future research should analyze two types of motivations for remixing: relational
and functional. Relational remixing serves as a way to connect with others, while functional
remixing plays a purely pragmatic role, is a mechanism to “get the job done.” For example,
by participating in remixing chains, such as coloring contests or “add your character to
the party,” people got to be part of a small movement. This type of remixing often led
to reciprocity networks where people remix one another as form of socialization. On the
other hand, remixing the code to create a “scrolling background” game like I mentioned in
chapter 3, permits reuse without necessarily trying to connect with others.

Generally speaking, I noticed that when people engage in remixing for relational reasons,
it tends to be in the context of aesthetic creations frequently—though not always—involving
people who self-identify as artists. On the other hand, people remixing for functional
reasons tend to involve both the reuse of code and media; however, remixing code—often
but not always by people who self-identify as programmers-tends to be less contentious
than remixing art. This poses an area for future research: to investigate the extent of the
validity of this stereotype that artists are less amenable to remixing than coders.

147

Similarly, in the chapter about the conditions for remixing (chapter 5), I presented a rhetor-
ical framework to understand the system attributes conducive to remixing. However, more
work is needed to operationalize and find quantitative metrics for assessing the impact of
each of those traits. For example, experimenting with different levels of openness, modu-
larity, and attribution would help clarify the degree to which each of those characteristics
impacts remixing behavior. Also, a comparative analysis of the role of remixing in each of
the collaborative groups or companies would illuminate how to better design future online
communities for creative collaboration.

Additionally, one of the richest areas for future work on remixing is an in-depth analysis of
the implications of remixing for learning. For example, a worthwhile study could investigate
how to best leverage remixing as scaffolding in people’s learning of programming, and how
to help young people understand when one needs to go beyond “copying and pasting.”

Last, one of the main concerns common to studies of peer production is generalizability.
Though I cannot speak for the generalizability of these results to other remixing communities
or peer production projects, I believe that studying remixing in Scratch gives good insight
into the behavior of young creators. How much these results will generalize to adults, to
other communities, or to activities beyond the creation of animations and games, remain
largely open questions for future research.

7.4 Epilogue: MusicalMoon

Four years after the creation of “Mesh Inc.” and “Green Bear Group” I had the opportunity
to chat with MusicalMoon —one of the most active members of those two groups.

MusicalMoon was able to articulate in detail the reasons why she thought both groups did
not accomplish as much as she would have expected:

There are several reasons. ... one of them is that I couldn’t organize the develop-
ment of projects well. We got into the details right away. Without first creating
a general idea of a sort. Because of that, everybody had their own idea about
the project inside their head, and we had a lot of random, completely different
suggestions. In the end I just took control and decided to do everything like I
saw it. :P Also, I couldn’t spread the work between people very well. While our
artists had something to do, our programmists [sic] had to sit and do nothing.
Or vice-versa. My goal with Mesh Inc was a bit too ambitious for my knowledge
at that time, if we went with more simple projects like most of the companies,
we could have done moderately well, I think.”

As we talked about her plans for the future — such as her goals for college, which she will
attend in a year or so — she also described how her experience with Scratch influenced her
interest in studying topics in “engineering and social studies”:

Andrés: what year of school are you now?

MusicalMoon: 10th grade or 11th grade in the US

148

MusicalMoon: Two more years to go :)

Andrés: wow! and then college?

MusicalMoon: Yeah

Andrés: do you have an idea of what you would like to study in college?

MusicalMoon: ['ve had a lot of stuff in mind...I personally think social
engineering would be good but I have a feeling that is a bit of an undeveloped
field of study right now.

Andrés: what do you mean by social engineering?

MusicalMoon: I got the idea from a russian guy whose lectures
I’ve seen. He studies the mechanics of progress and development of
projects and works to optimise it. It’s called systems engineeing, not
social engineering : P The guy’s name is Anatoly Levenchuk. What do you
think?

Andrés: it’s super interesting!

MusicalMoon: I thought so as well.... I had a pretty long search before
stopping on this one. I actually started from wanting to be an economist and a
sociologist later. This looks like it involves a knowledge of engineering and social
studies.

Andrés: do you think the Internet influenced your interests?
MusicalMoon: Yes, very much. Scratch, too.

Andrés: how?

MusicalMoon: Well, I gained an interest in organizations when I had to
manage Mesh Inc. Mesh Inc sort of fell apart. I tried to find out what was
wrong with it and how it could have been prevented. I think I've gained a lot of
knowledge about it since then.

149

Appendix A

Entity Relationship Diagrams

The ScratchR. database has grown in complexity, but at its core remains the same as when
the project started. In this section I present the full list of MySQL tables along with
their fields, indices, and relationships. The diagrams presented from the perspective of
three different entities: project (see Figure A-2), user (see Figure A-1), and gallery (see
Figure A-3).

150

*id INT(11)
& user_id INT(11)
> content TEXT

 timestamp
created TIMESTAMP

1 INT(11)
»user_id INT(11)

> content TEXT

+ timestamp TIMESTAMP
“# isOn INT(1)

3 visibilty TINYINT(1)

¥ users_id INT(10)

7 id INT(11)
user_id INT(10)
¥ ntype ENUM(...)
& timestamp TIMESTAMP
¥ users_Kl INT(10)

@ user_id INT(11)
& comment_id INT(11)

7 4 tmestamp TIMESTAMP

¥ users_id INT(10)
1 users_id1 INT(10)

Figure A-1: User tables

151

44!

-V omsSig

sorqes joelo1g

e e
I T(10)

project.d INT(10)

¥ umer_id INT(10)
 content TEXT

* visiblity SMALLINT1)
¥ bmestamp TIMESTA...
< reply_to_id INT(11)
* crested DATETIME

< reply_to INT(11)

+ root_based_on_pid INT(10)

< related_usemame VARCHAR{100)
» prod_visiblity ENUMY...)

' vischangediyid INT{10)

TR

2 project_d INT(11)
¥ viokent TINYINT(1)

€91

¢-y 2mSt

so[qey joelorg

¥ id INT(10)
@ gallery_id INT(10)
2 time TIMESTAMP

¥ type ENUM('featured)

I galleries_id INT(10)

7 id INT(10)

 user_id INT(10)

> gallery_id INT(10)

2 visibility SMALLINT(1)
> title CHAR(100)

S admin_id INT(11)

2 feature_admin_id INT(11)

2 timestamp TIMESTAMP

> feature_timestamp TIMESTAMP
7 galleries_id INT(10)

4« > content TEXT
“# timestamp TIMESTAMP

¥ reply_to INT(10)

» comment_visibility ENUM(...)
- created DATETIME
+ galleries_id INT(10)

¥ id INT(10)
& subscriber_id INT(10)
2 owner_id INT(10)
<] > gallery_id INT(10)

oy ¥ id INT(10)
3 gallery_id INT(10) ::::: :::,:’iu)
project_id INT(10) -
2 timestamp TIMESTAMP EhRRE
s a0 endiiata
 galleres_id INT(
%
¥ 1d INT(11)
 timestamp TIMESTAMP ' id INT(10)
 galler_id INT(11) neme CHAR(00)
¥ galleries_id INT(10) type INT(10)
RIAT : ; un R “# description TEXT
user_id INT(10)
.| “>icon VARCHAR(255) .
timestamp TIMESTAMP
¥ total_projects INT(10)
¥ total_subscriptions INT(10)
+H -3 changed DATETIME H
 created DATETIME
 modified DATETIME
w 4| ¥ statis ENUM(...) "
1 1d INT(11) sty ENUI...)
@ gallery_id INT(11) e EMUML.)
2 violent TINYINT(1) . ¥ id INT(11)
 obscene TINYINT(1) @ user_id INT(11)
3 disrespectful TINYINT(1) ¥ qallery_id INT(11)
2 m_obscene TINYINT(1) >tag_id INT(11)
& m_violent TINYINT(1)
e » # timestamp TIMESTAMP

I galleries_id INT(10)

 status ENUM(...)
> created_at TIMESTAMP
1 alleries_id INT(10)

'OTHER' Tables

*id INT(10)
-+ name CHAR(100)

& timestamp TIMESTAMP

¥ id INT(11)
@ user_id INT(11)

& #tag_id INT(11)
timestamp TIMESTAMP
tags_id INT(10)

Appendix B

Project Attribute Tables

The following tables present the aggregate values of the attributes of 2,426,894 projects
shared in the first five years of activity on the Scratch Online Community.

Table B.1 and Table B.2 show the attributes for all 2,426,894 projects. Table B.3, Table B.4,
Table B.5 show the attributes for those projects that are remixes. Table B.6, Table B.7, and
Table B.8 show the attributes only for those de novo projects (non-remixes). Table B.9,
Table B.10, and Table B.11 show the attributes for remixes whose source project is created
by someone other than the creator of the remix. Table B.12, Table B.13, Table B.14 show
the remixes that function as version control since the creator of the remix is the same as
the creator of the source project.

154

Table B.1: All Projects: Male

Attribute N mean median sd mode
num_views 1,573,607 32.481 11 223.8 1
views 1,573,607 17.797 6 103.417 1
anonviews 1,573,607 1.127 0 8.6 0
favoriters 1,573,607 0.52 0 6.14 0
loveits 1,573,607 0.763 0 8.35 0
versions 1,573,607 1.267 1 1.238 1
flags 22,117 1.36 1 1.384 1
sprites 1,573,607 6.762 3 16.258 1
scripts 1,573,607 21.15 6 359.227 1
is_visible 1,573,607 0.8 1 04 1
remixes 1,573,607 0.376 0 10.748 0
remixers 1,573,607 0273 0 7.32 0
downloads 1,573,607 2197 O 24.737 0
downloaders 1,573,607 2.172 0 24.15 0
comments 1,573,607 2.659 0 17.51 0
commenters 1,573,607 1.633 0 9.823 0
galleries 1,573,607 0.463 0 2.438 0
blocks 1,573,607 146.475 37 645.532 0
block _types 1,573,607 14.722 11 12.435 0
costumes 1,573,607 22.687 8 83.05 3
sounds 1,573,607 4.359 2 14.622 1
ugstrings 1,673,607 29334 3 562.869 0
saves 1,573,607 7.766 1 23.766 0
seconds_to_share(DAY) 1,573,607 42.127 0.002 341.155 0
seconds_to_remix(DAY) 243,776 36.251 0.27 127.906 0
user age(years) 1,566,297 16.588 12 15.562 11
account age(days) 1,571,326 140.64 44 221.651 0

1585

Table B.2: All Projects: Female

Attribute N mean median sd mode
num_views 853,287 28.239 10 115.365 1
views 853,287 13.683 5 56.447 1
anonviews 853,287 0.881 0 5.156 0
favoriters 853,287 0.419 0 3.364 0
loveits 853,287 0.605 0 4.426 0
versions 853,287 1.185 1 0.872 1
flags 7402 1.299 1 1.115 1
sprites 853,287 4.641 2 9.742 1
scripts 853,287 10.655 3 59.154 1
is_visible 853,287 0.786- 1 0.41 1
remixes 853,287 0.317 0 7.936 0
remixers 853,287 0.252 0 5.148 0
downloads 853,287 1.169 0 10.393 0
downloaders 853,287 1.161 0 10.23 0
comments 853,287 3.4 0 14.895 0
commenters 853,287 1.782 0 6.957 0
galleries 853,287 0327 0O 1.217 0
blocks 853,287 63.188 17 288.595 0
block_types 853,287 9.393 7 8.596 0
costumes 853,287 13.15 6 40.901 3
sounds 853,287 3.072 2 7.004 1
ugstrings 853,287 18.22 0 519.424 0
saves 853,287 4.74 1 14.835 0
seconds_to_share(DAY) 853,287 35.114 0 371.464 0
seconds_to_remix(DAY) 116,901 23.852 0.086 98.216 0
user age(years) 860,165 17.171 12 14.503 11
account age(days) 853,136 137.877 43 215.834 0

156

Table B.3: Remixes: Male and Female

Attribute N mean median sd mode
num_views 670,932 32,949 13 195.477 1
views 670,932 17.891 7 93.258 1
anonviews 670,932 1.075 0 8.332 0
favoriters 670,932 0.518 0 5.479 0
loveits 670,932 0.731 0 7.128 0
versions 670,932 1.268 1 1.401 1
flags 9456 1.326 1 1.262 1
sprites 670,932 B.766 4 16.105 1
scripts 670,932 28.077 8 220.301 1
is_visible 670,932 0.756 1 0.43 1
remixes 670,932 0.312 0 6.008 0
remixers 670,932 0.254 0 3.921 0
downloads 670,932 2188 0 22.698 0
downloaders 670,932 2.168 0 22.129 0
comments 670,932 2.702 0 15.864 0
commenters 670,932 1.621 0 8.743 0
galleries 670,932 0.452 0 2.248 0
blocks 670,932 206.894 53 604.502 0
block _types 670,932 17.258 13 14.118 6
costumes 670,932 30.791 11 93.734 3
sounds 670,932 5353 2 12.363 1
ugstrings 670,932 50.006 4 785.406 0
saves 670,932 12.857 3 32.184 0
seconds_to_share(DAY) 670,932 94.077 0.031 391.484 0
seconds_to_remix(DAY) 115,802 32.386 0.192 116.813 0
user age(years) 668,401 15.996 12 14.871 11
account age(days) 670,494 147.587 57 215.896 0

157

Table B.4: Remixes: Male

Attribute N mean median sd mode
num_views 456,714 35.641 13 226.341 1
views 456,714 19.703 8 107.007 1
anonviews 456,714 1.16 0 9.627 0
favoriters 456,714 0.59 0 6.363 0
loveits 456,714 0.827 0 8.304 0
versions 456,714 1.302 1 1.512 1
flags 7179 1.321 1 1.297 1
sprites 456,714 9884 5 17.702 1
scripts 456,714 33.463 11 261.288 1
is_visible 456,714 0.762 1 0.426 1
remixes 456,714 0327 0 7.176 0
remixers 456,714 0.261 0 4.637 0
downloads 456,714 2.625 0 26.496 0
downloaders 456,714 2.6 0 25.81 0
comments 456,714 2.654 0 17.664 0
commenters 456,714 1.654 0 9.906 0
galleries 456,714 0504 O 2.587 0
blocks 456,714 254.876 72 692.117 0
block types 456,714 19.773 17 14.784 6
costumes 456,714 35.831 13 106.428 3
sounds 456,714 6.073 2 13.477 1
ugstrings 456,714 51.567 6 692.094 0
saves 456,714 15.006 4 35.85 0
seconds_to_share(DAY) 456,714 100.652 0.071 401.749 0
seconds_to_remix(DAY) 79,483 36.253 0.209 125.6 0
user age(years) 454,892 16.166 12 15.715 11
account age(days) 456,296 148.031 56 218.329 0

158

Table B.5: Remixes: Female

Attribute N mean median sd mode
num_views 214,218 27.208 13 102.015 1
views 214,218 14.027 7 52.956 1
anonviews 214,218 0.893 0 4.449 0
favoriters 214,218 0.365 0 2.768 0
loveits 214,218 0526 0 3.471 0
versions 214,218 1197 1 1.126 1
flags 2277 1.344 1 1.148 1
sprites 214,218 6.382 3 11.658 1
scripts 214,218 16.595 4 79.096 1
is_visible 214,218 0.742 1 0.438 1
remixes 214,218 0.278 0 1.81 0
remixers 214,218 0.239 0 1.525 0
downloads 214,218 1254 0 10.753 0
downloaders 214,218 1.247 0 10.591 0
comments 214,218 2.804 0 11.089 0
commenters 214,218 1.549 0 5.494 0
galleries 214,218 0343 0 1.242 0
blocks 214,218 104.596 25 328.404 0
block _types 214,218 11.896 8 10.77 6
costumes 214,218 20.045 8 56.564 2
sounds 214,218 3.819 2 9.38 1
ugstrings 214,218 46.679 O 954.353 0
saves 214,218 8.276 2 21.757 0
seconds_to_share(DAY) 214,218 80.058 0.004 368.256 0
seconds_to_remix(DAY) 36,319 23.923 0.168 94.234 0
user age(years) 213,509 15.635 12 12.88 10
account age(days) 214,198 146.641 59 210.617 0

159

Table B.6: De Novo projects: Male and Female

Attribute N mean median sd mode
num_views 1,755,962 30.241 10 191.718 1
views 1,755,962 15.762 5 88.395 1
anonviews 1,755,962 1.028 0 7.259 0
favoriters 1,755,962 0.472 0 5.274 0
loveits 1,755,962 0698 0 7.252 0
versions 1,755,962 1.227 1 0.997 1
flags 20,063 1.354 1 1.349 1
sprites 1,755,962 4.966 2 13.465 1
scripts 1,755,962 13.404 4 314.284 1
is_visible 1,755,962 0.81 1 0.392 1
remixes 1,755,962 0372 0 10.97 0
remixers 1,755,962 0.271 0 7.418 0
downloads 1,755,962 1.701 0 20.107 0
downloaders 1,755,962 1682 0 19.664 0
comments 1,755,962 3.003 0 16.928 0
commenters 1,755,962 1.71 0 8.988 0
galleries 1,755,962 0.401 0 2.03 0
blocks 1,755,962 82.918 23 521.749 0
block_types 1,755,962 11.163 8 9.848 0
costumes 1,755,962 14.957 6 59.968 3
sounds 1,755,962 3.354 2 12.508 1
ugstrings 1,755,962 16.035 1 423.144 0
saves 1,755,962 4.35 1 14.148 0
seconds_to_share(DAY) 1,755,962 18.87 0 333.535 0
seconds_to_remix(DAY) 244,875 32.159 0.173 120.367 0
user age(years) 1,748,061 17.098 12 15314 11
account age(days) 1,753,968 136.64 39 220.959 0

160

Table B.7: De Novo projects: Male

Attribute N mean median sd mode
num_views 1,116,893 31.189 10 222.739 1
views 1,116,893 17.017 6 101.902 1
anonviews 1,116,893 1.114 0 8.143 0
favoriters 1,116,893 0492 O 6.046 0
loveits 1,116,893 0.736 0 8.368 0
versions 1,116,893 1.253 1 1.106 1
flags 14,938 1.379 1 1.423 1
sprites 1,116,893 5.485 3 15.448 1
scripts 1,116,893 16.115 5 392.183 1
is_visible 1,116,893 0.816 1 0.388 1
remixes 1,116,893 0.396 0 11.904 0
remixers 1,116,893 0279 0 8.168 0
downloads 1,116,893 2.021 0 23.979 0
downloaders 1,116,893 1.997 0 23.435 0
comments 1,116,893 2.661 0 17.447 0
commenters 1,116,893 1.625 0 9.789 0
galleries 1,116,893 0447 O 2.374 0
blocks 1,116,893 102.149 29 620.049 0
block_types 1,116,893 12.656 10 10.666 0
costumes 1,116,893 17.313 7 70.614 3
sounds 1,116,893 3.658 2 15.009 1
ugstrings 1,116,893 20.243 2 500.223 0
saves 1,116,893 4.805 1 15.492 0
seconds_to_share(DAY) 1,116,893 18.195 0.001 309.849 0
seconds_to_remix(DAY) 164,293 36.249 0.311 129.007 0

user age(years) 1,111,405 16.76 12 15.496
account age(days) 1,115,030 137.615 39 222.925

—
O =

161

Table B.8: De Novo projects: Female

Attribute N mean median sd mode
num_views 639,069 28.584 9 119.505 0
views 639,069 13.567 5 57.569 1
anonviews 639,069 0.877 0 5.372 0
favoriters 639,069 0437 0 3.541 0
loveits 639,069 0.632 0 4.703 0
versions 639,069 1.181 1 0.769 1
flags 5125 1.278 1 1.1 1
sprites 639,069 4.057 2 8.934 1
scripts 639,069 8.664 3 50.589 1
is_visible 639,069 0.801 1 0.4 1
remixes 639,069 0.329 0 9.11 0
remixers 639,069 0.257 0 5.883 0
downloads 639,069 1.14 0 10.269 0
downloaders 639,069 1.132 0 10.106 0
comments 639,069 3.6 0 15.964 0
commenters 639,069 1.861 0 7.381 0
galleries 639,069 0.321 0 1.209 0
blocks 639,069 49.307 16 272.555 0
block_types 639,069 8.555 7 7.548 0
costumes 639,069 10.839 5 33.763 3
sounds 639,069 2.822 2 5.98 1
ugstrings 639,069 8.681 0 233.622 0
saves 639,069 3.555 1 11.383 0
seconds_to_share(DAY) 639,069 20.048 0 371.318 0
seconds_to_remix(DAY) 80,582 23.82 0.064 99.96 0
user age(years) 636,656 17.686 12 14973 11
account age(days) 638,938 134.939 38 217.475 0

162

Table B.9: Only Collaborative Remixes: Male and Female

Attribute N mean median sd mode
num_views 422,099 31.638 16 147.343 1
views 422,099 17.362 9 73.701 1
anonviews 422,099 1.017 0 7.88 0
favoriters 422,099 0.445 0 3.923 0
loveits 422,099 0.616 O 5.347 0
versions 422,099 1.184 1 0.928 1
flags 6896 1.286 1 1.262 1
sprites 422,099 8.856 4 14.768 1
scripts 422,099 26.117 8 193.196 2
is_visible 422,099 0.78 1 0.414 1
remixes 422,099 0.35 0 7.384 0
remixers 422,099 0.298 0 4.807 0
downloads 422,099 1.908 0 17.114 0
downloaders 422,099 1.896 0 16.787 0
comments 422,099 2614 1 12.629 0
commenters 422,099 1.56 1 6.738 0
galleries 422,099 0.427 0 1.716 0
blocks 422,099 204.133 50 582.972 0
block_types 422,099 17.262 13 14.365 6
costumes 422,099 33.846 12 95.219 3
sounds 422,099 5.605 2 12.423 1
ugstrings 422,099 51.925 3 817.661 0
saves 422,099 13.681 3 32.254 0
seconds_to_share(DAY) 422,099 139.929 0.689 444.081 0
seconds_to_remix(DAY) 81,486 33.821 0.703 114.377 0
user age(years) 420,367 15.14 11 14.179 10
account age(days) 421,759 149.813 64 210.763 0

163

Table B.10: Only Collaborative Remixes: Male

Attribute N mean median sd mode
num_views 276,633 32.997 15 167.532 1
views 276,633 18.553 9 83.416 1
anonviews 276,633 1.089 0 9.456 0
favoriters 276,633 0.49 0 4.477 0
loveits 276,633 0.668 0 6.186 0
versions 276,633 1.208 1 1.044 1
flags 5120 1.281 1 1.289 1
sprites 276,633 10.117 5 16.207 1
scripts 276,633 31.676 10 232.029 1
is_visible 276,633 0.792 1 0.406 1
remixes 276,633 0.37 0 9.031 0
remixers 276,633 0.309 0 5.831 0
downloads 276,633 2.233 1 19.637 0
downloaders 276,633 2.218 1 19.262 0
comments 276,633 2.419 0 13.812 0
commenters 276,633 1.518 0 7.523 0
galleries 276,633 0.465 0 1.932 0
blocks 276,633 257.578 69 677.035 0
block_types 276,633 20.046 16 15.137 6
costumes 276,633 40.042 15 108.412 3
sounds 276,633 6.522 2 13.362 1
ugstrings 276,633 51.161 6 644.92 0
saves 276,633 16.394 4 36.199 0
seconds_to_share(DAY) 276,633 155.437 1.085 462.554 0
seconds_to_remix(DAY) 53,868 37.853 0.787 123.409 0
user age(years) 275,377 15455 11 15.255 11
account age(days) 276,304 145.253 60 209.979 0

164

Table B.11: Only Collaborative Remixes: Female

num_views
views
anonviews
favoriters
loveits
versions
flags
sprites
scripts
is_visible
remixes
remixers
downloads
downloaders
comments
commenters
galleries
blocks
block_types
costumes
sounds
ugstrings

saves

seconds_to_share(DAY)
seconds_to_remix(DAY)
user age(years)

account age(days)

145,466
145,466
145,466
145,466
145,466
145,466
1776
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
145,466
27,618
144,990
145,455

29.051
15.098
0.879
0.358
0.517
1.137
1.3
6.456
15.546
0.756
0.311
0.278
1.29
1.285
2.985
1.641
0.355
102.496
11.966
22.064
3.862
53.377
8.523
110.439
25.956
14.541
158.476

—
(=]

O = = O O O O M= h W= = O o ©

2

g

S N O

2

98.033
50.214
3.182
2.557
3.187
0.651
1.179
11.161
75.841
0.429
1.753
1.545
10.77
10.565
9.991
4.909
1.202
314.175
10.968
61.204
10.181
1071.93
22.048

0.042 405.007

0.561

11
74

93.809
11.847
211.975

O O O O N OO OO0 0O 0 O O O RN R =P OO O o

—
o O

165

Table B.12: Only Versioning Remixes: Male and Female

Attribute N mean median sd mode
num_views 248,833 35.173 9 257.285 1
views 248 833 18.787 5 119.308 1
anonviews 248,833 1.173 0 9.047 0
favoriters 248,833 0.643 0 7.403 0
loveits 248,833 0926 0 9.404 0
versions 248,833 1.412 1 1.949 1
flags 2560 1.436 1 1.258 1
sprites 248,833 8.613 4 18.147 1
scripts 248,833 31.402 8 259.862 1
is_visible 248,833 0.714 1 0.452 1
remixes 248 833 0.247 O 2.203 0
remixers 248,833 0.179 0 1.503 0
downloads 248,833 2.662 0 29.866 0
downloaders 248,833 2.629 0 29.017 0
comments 248,833 2.851 0 20.198 0
commenters 248,833 1.724 0 11.361 0
galleries 248,833 0.496 0 2.937 0
blocks 248,833 211.577 58 639.343 0
block_types 248,833 17.252 14 13.687 0
costumes 248 833 25.607 10 90.926 3
sounds 248,833 4.926 2 12.248 1
ugstrings 248,833 46.752 5 727.419 0
saves 248,833 11.46 3 32.018 0
seconds_to_share(DAY) 248,833 16.296 0.001 262.859 0
seconds_to_remix(DAY) 34,316 28.979 0 122.338 0
user age(years) 248,034 17.447 13 15.869 11
account age(days) 248,735 143.811 46 224.283 0

166

Table B.13: Only Versioning Remixes: Male
Attribute N mean median sd mode
num_views 180,081 39.702 10 294.594 1
views 180,081 21.47 5 135.449 1
anonviews 180,081 1.269 0O 9.884 0
favoriters 180,081 0.743 0 8.477 0
loveits 180,081 1.072 O 10.77 0
versions 180,081 1.446 1 2.022 1
flags 2059 1.42 1 1.31 1
sprites 180,081 9.525 5 19.774 1
scripts 180,081 36.207 11 300.72 1
is_visible 180,081 0.715 1 0.451 1
remixes 180,081 0.262 0 2.301 0
remixers 180,081 0.187 0 1.512 0
downloads 180,081 3.229 0 34.46 0
downloaders 180,081 3.186 0 33.452 0
comments 180,081 3.015 0 22.316 0
commenters 180,081 1.864 0 12.722 0
galleries 180,081 0.564 O 3.352 0
blocks 180,081 250.724 76 714.647 0
block_types 180,081 19.354 17 14.215 0
costumes 180,081 29.362 11 102.971 3
sounds 180,081 5.383 2 13.624 1
ugstrings 180,081 52.191 7 758.871 0
saves 180,081 12.875 3 35.2 0
seconds_to_share(DAY) 180,081 16.495 0.003 262.636 0
seconds_to remix(DAY) 25,615 32.889 0 130.025 0
user age(years) 179,515 17.256 12 16.337 11
account age(days) 179,992 152.295 51 230.496 0

167

Table B.14: Only Versioning Remixes: Female

Attribute N mean median sd mode
num_views 68,752 23.309 7 109.864 1
views 68,752 11.76 4 58.27 1
anonviews 68,752 0.922 0 6.345 0
favoriters 68,752 0.38 0 3.169 0
loveits 68,752 0.544 0 4.005 0
versions 68,752 1.323 1 1.74 1
flags 501 1.503 1 1.015 1
sprites 68,752 6.227 3 12.644 i
scripts 68,752 18.815 4 85.532 1
is_visible 68,752 0.711 1 0.453 1
remixes 68,752 0.208 0 1.922 0
remixers 68,752 0.158 0 1.477 0
downloads 68,752 1.177 0 10.715 0
downloaders 68,752 1.168 0 10.646 0
comments 68,752 2.422 0 13.106 0
commenters 68,752 1.356 0 6.557 0
galleries 68,752 0.315 0 1.321 0
blocks 68,752 109.039 27 356.606 0
block_types 68,752 11.747 9 10.339 0
costumes 68,752 15.773 7 44.907 3
sounds 68,752 3.728 2 7.402 1
ugstrings 68,752 32.506 2 637.514 0
saves 68,752 7.754 1 21.119 0
seconds_to_share(DAY) 68,752 15.778 0 263.443 0
seconds_to.remix(DAY) 8701 17.471 0 95.291 0
user age(years) 68,519 17.949 13 14.562 11
account age(days) 68,743 121.598 35 205.481 0

168

Bibliography

Albrecht, A. J. and Gaflney, J. E. (1983). Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions on
Software Engineering, SE-9(6):639- 648.

Aragon, C., Poon, S., Monroy-Herndndez, A., and Aragon, D. (2009). A tale of two on-
line communities: Fostering collaboration and creativity in scientists and children. In
Everyday creativity: shared languages and collective action, Berkley, CA. ACM.

Arikan, H. B. (2006). Collective systems for creative expression. Thesis, Massachusetts
Institute of Technology. Thesis (S.M.)-Massachusetts Institute of Technology, School of
Architecture and Planning, Program in Media Arts and Sciences, 2006.

Aufderheide, P. and Jaszi, P. (2011). Reclaiming Fair Use: How to Put Balance Back in
Copyright. University Of Chicago Press.

Bader-Natal, A., Monroy-Herndndez, A., Zamfirescu-Pereira, J., and Farnham, S. (2012).
Meta-remix: Reflecting on four communities built for learning, tinkering, and remixing
with code.

Batts, D. A. (2011). Patrick cariou vs richard prince, gagosian gallery, inc., lawrence
gagosian, and rizzoli international publications, inc.

Beenen, G., Ling, K., Wang, X., Chang, K., Frankowski, D., Resnick, P., and Kraut, R. E.
(2004). Using social psychology to motivate contributions to online communities. In

Proceedings of the 2004 ACM conference on Computer supported cooperative work, pages
212-221, Chicago, Illinois, USA. ACM.

Benkler, Y. (2002). Coase’s penguin, or, linux and the nature of the firm. Yale Law Journal,
112(3):369.

Benkler, Y. (2006). The Wealth of Networks: How Social Production Transforms Markets
and Freedom. Yale University Press, New Haven, CT. Some chapters.

Benkler, Y. (2009). Law, policy, and cooperation. In Balleisen, E. and Moss, D., editors,
Government and Markets: Toward a New Theory of Regulation. Cambridge University
Press.

169

Bernstein, M. S., Monroy-Hernandez, A., Harry, D., Andre, P., Panovich, K., and Vargas,
G. (2011). 4chan and /b/: An analysis of anonymity and ephemerality in a large online
community. In Proceedings of the Fifth International AAAI Conference on Weblogs and
Social Media, Barcelona, Spain. AAAT Press.

Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C. (2005). Automation and
customization of rendered web pages. Proceedings of the 18th annual ACM symposium
on User interface software and technology, pages 163-172. ACM ID: 1095062.

Bown, O., Eldridge, A., and McCormack, J. (2009). Understanding interaction in con-
temporary digital music: from instruments to behavioural objects. Organised Sound,
14(02):188-196.

boyd, d., Golder, S., and Lotan, G. (2010). Tweet, tweet, retweet: Conversational aspects of
retweeting on twitter. In Proceedings of the 2010 48rd Hawaii International Conference
on System Sciences, HICSS ’10, pages 1-10, Washington, DC, USA. IEEE Computer

Society.

Brandt, J., Guo, P. J., Lewenstein, J., and Klemmer, S. R. (2008). Opportunistic program-
ming: how rapid ideation and prototyping occur in practice. In Proceedings of the 4th
international workshop on End-user software engineering, WEUSE 08, pages 1-5, New
York, NY, USA. ACM.

Brown, G. O. (2004). Announcing (and explaining) our new 2.0 licenses. http://
creativecommons.org/weblog/entry/4216.

Bruckman, A. (1998). Community support for constructionist learning. Computer Supported
Cooperative Work (CSCW), 7(1):47-86.

Bruns, A. (2007). Produsage. In Proceedings of the 6th ACM SIGCHI conference on
Creativity and cognition, pages 99-106, Washington, DC, USA. ACM.

Burke, M. and Kraut, R. (2008a). Mind your ps and gs: the impact of politeness and
rudeness in online communities. In Proceedings of the ACM 2008 conference on Computer
supported cooperative work, pages 281-284, San Diego, CA, USA. ACM.

Burke, M. and Kraut, R. (2008b). Mopping up: modeling wikipedia promotion decisions. In
Proceedings of the ACM 2008 conference on Computer supported cooperative work, pages
27-36, San Diego, CA, USA. ACM.

Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., and Moon, S. (2007). I tube, you tube,
everybody tubes: analyzing the world’s largest user generated content video system. In
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, IMC 07,
pages 1-14, New York, NY, USA. ACM.

Charmaz, K. (2006). Constructing Grounded Theory: A Practical Guide Through Qualita-
tive Analysis. Sage Publications, London.

170

Cheliotis, G. and Yew, J. (2009). An analysis of the social structure of remix culture.
In Proceedings of the fourth international conference on Communities and technologies,
pages 165-174, University Park, PA, USA. ACM.

Chen, S. (2007). The state of our video ID tools.

comScore (2010). comScore releases may 2010 U.S. online video rank-
ings. http://www.comscore.com/Press Events/Press_Releases/2010/6/
comScore_Releases May_2010_U.S._Online Video Rankings.

Davis, Z. (1966). The reviews. HiF'i/Stereo Review, 17:146-147.

Diakopoulos, N., Luther, K., Medynskiy, Y. E., and Essa, I. (2007). The evolution of
authorship in a remix society. In Proc. HT 2007, pages 133-136, Manchester, UK. ACM.

Donath, J. (2008). Signals in social supernets. Journal of Computer-Mediated Communi-
cation, 13(1):231-251.

Donath, J. S. (1998). Identity and deception in the virtual community. In Smith, M. A.
and Kollock, P., editors, Communities in Cyberspace, pages 27-57. Routledge.

Economist, T. (2011). Musical history: Seven seconds of fire. The Economist.

EvanitaEWM (2010). deviantART 10th birthday bash at house of blues - angelo sotira’s
closing speech PT 2.

Ferguson, K. (2010). Everything is a remix part 1.
Fildes, J. (2007). Free tool offers ’easy’ coding. BBC.

Frakes, W. and Terry, C. (1996). Software reuse: metrics and models. ACM Computing
Surveys, 28:415-435.

Gaffney Jr, J. and Durek, T. (1989). Software reuse-key to enhanced productivity: some
quantitative models. Information and Software Technology, 31(5):258-267.

Healy, K. and Schussman, A. (2003). The ecology of open-source software development.

Hemphill, S. C. and Suk, J. (2009). Remix and cultural production. Stanford Law Review,
61(1227).

Hill, B. M. H., Monroy-Hernéndez, A., and Olson, K. (2010). Responses to remixing on
a social media sharing website. In Proc. ICWSM 2010, pages 74-81, Washington, D.C.
AAAL

Inc., T. (2012). Twitter / twitter terms of service. https://twitter.com/tos/previous/
version_6.

Ito, M. (2007). Technologies of the childhood imagination: Yu-gi-oh!, media mixes, and
everyday cultural production. In Karaganis, J., editor, Structures of Participation in
Digital Culture, pages 86—111. The Social Science Research Council, New York.

171

Ito, M. (2010). Hanging out, messing around, and geeking out : kids living and learning
with new media. John D. and Catherine T. MacArthur Foundation series on digital media
and learning. MIT Press, Cambridge Mass.

Jenkins, H. (2006). Convergence Culture: Where Old and New Media Collide. NYU Press,
revised edition.

Jenkins, H. (2007). Nine propositions towards a cultural theory of YouTube.

Jenkins, H., Purushotma, R., Clinton, K., Weigel, M., and Robinson, A. (2009). Confronting
the Challenges of Participatory Culture: Media Education for the 21st Century. John D.
and Catherine T. MacArthur Foundation Reports on Digital Media and Learning. The
MIT Press, Cambridge, MA.

Johnson, C. Y. (2007). With simplified code, programming becomes child’s play.
Boston.com.

Keen, A. (2007). The Cult of the Amateur: How Today’s Internet is Killing Our Culture.
Crown Business, 3rd printing edition.

Kim, M., Bergman, L., Lau, T., and Notkin, D. (2004). An ethnographic study of copy
and paste programming practices in OOPL. In Proceedings of the 2004 International
Symposium on Empirical Software Engineering, ISESE 04, pages 83-92, Washington,
DC, USA. IEEE Computer Society.

Kittur, A. and Kraut, R. E. (2008). Harnessing the wisdom of crowds in wikipedia: quality
through coordination. In Proceedings of the ACM 2008 conference on Computer supported
cooperative work, pages 37-46, San Diego, CA, USA. ACM.

Kittur, A. and Kraut, R. E. (2010). Beyond wikipedia: coordination and conflict in online
production groups. In Proceedings of the 2010 ACM conference on Computer supported
cooperative work, pages 215-224, Savannah, Georgia, USA. ACM.

Kollock, P. (1998). Design principles for online communities. PC' Update, 15(5):60, 58.

Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation.
Cambridge University Press, 1 edition.

Lenhart, A. and Madden, M. (2005). Teen content creators and consumers. Technical
report, Pew Inernet and American Life Project.

Lessig, L. (2000). Code and Other Laws of Cyberspace. Basic Books.

Lessig, L. (2008). Remiz: Making Art and Commerce Thrive in the Hybrid Economy.
Penguin Press, New York, NY.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707-710.

172

Livingstone, S. (2008). Taking risky opportunities in youthful content creation: teenagers’
use of social networking sites for intimacy, privacy and self-expression. New Media &
Society, 10(3):393-411.

Loudon, J. C. (1839). The Gardener’s magazine and register of rural & domestic improve-
ment. Longman, Rees, Orome, Brown and Green.

Luther, K. and Bruckman, A. (2008). Leadership in online creative collaboration. In
Proceedings of the ACM 2008 conference on Computer supported cooperative work, pages
343-352, San Diego, CA, USA. ACM.

Luther, K., Caine, K., Zeigler, K., and Bruckman, A. (2010). Why it works (when it works):
Success factors in online creative collaboration. In Proceedings of the ACM Conference
on Supporting Group Work., Sanibel Island, Florida, USA. ACM.

Maillart, T., Sornette, D., Spaeth, S., and von Krogh, G. (2008). Empirical tests of zipf’s law
mechanism in open source linux distribution. Physical Review Letters, 101(21):218701.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., and Resnick, M. (2004). Scratch:
a sneak preview. In Second International Conference on Creating, Connecting and Col-
laborating through Computing, pages 104-109. IEEE.

Manovich, L. (2005). Remix and remixability.
Media, N. B. (1979). Billboard. Nielsen Business Media, Inc.

Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., Hoiberg, D.,
Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M. A., and Aiden, E. L. (2011).
Quantitative analysis of culture using millions of digitized books. Science, 331(6014):176—
182.

Minsky, M. (1984). LogoWorks: challenging programs in logo. In Solomon, C., Minsky, M.,
and Harvey, B., editors, Introduction to LogoWorks. McGraw-Hill.

mobius32 (2006). Video explains the world’s most important 6-sec drum loop.

Monroy-Hernéndez, A. (2006). TWiki - MAS712 web - ClassReflections -
GroupThree - AndresMonroyHernandez. http://wiki.media.mit.edu/view/MAS712/
AndresMonroyHernandez?rev=11.

Monroy-Hernéndez, A. (2007). ScratchR: sharing user-generated programmable media.
Proceedings of the 6th international conference on Interaction design and children, pages
167-168. ACM ID: 1297315.

Monroy-Hernéndez, A. (2011). Here’s what 44 million scratch scripts look like.

Monroy-Hernéndez, A., Hill, B. M., Gonzalez-Rivero, J., and boyd, d. (2011). Computers
can’t give credit: How automatic attribution falls short in an online remixing commu-
nity. In Proceedings of the 29th international conference on Human factors in computing
systems, Vancouver, British Columbia, Canada. ACM Press.

173

Monroy-Hernédndez, A. and Resnick, M. (2008). Empowering kids to create and share
programmable media. interactions, 15(2):50-53.

Murray, F. and O’Mahony, S. (2007). Exploring the foundations of cumulative innovation:
Implications for organization science. Organization Science, 18(6):1006-1021.

Nielsen, J. (2005). Usability of websites for teenagers (Jakob nielsen’s alertbox). http:
//www.useit.com/alertbox/teenagers.html.

O’Reilly, T. (2005). What is web 2.0 - design patterns and business models for the next
generation of software. http://oreilly.com/web2/archive/what-is-web-20.html.

Ortega, F. (2009). Wikipedia: A Quantitative Analysis. PhD dissertation, Universidad Rey
Juan Carlos.

Papazoglou, M. P. and Georgakopoulos, D. (2003). Introduction: Service-oriented comput-
ing. Commun. ACM, 46(10):24-28.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. Basic Books, New
York.

Paul, R. (2012). Linux kernel in 2011: 15 million total lines of code and microsoft
is a top contributor. http://arstechnica.com/business/news/2012/04/1linux-
kernel-in-2011-15-million-total-lines-of-code-and-microsoft-is-a-top-
contributor.ars.

Perkel, D. (2008). Copy and paste literacy: Literacy practices in the production of a
MySpace profile. In Drotner, K., Jensen, H. S.; and Schroder, K. C., editors, Informal
Learning and Digital Media, pages 203-224. Cambridge Scholars Press, Newcastle, UK.

Philip, K., Umarji, M., Agarwala, M., Sim, S. E., Gallardo-Valencia, R., Lopes, C. V.,
and Ratanotayanon, S. (2012). Software reuse through methodical component reuse and

amethodical snippet remixing. In Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work, CSCW ’12, pages 1361-1370, New York, NY, USA. ACM.

Pietrolungo, S. (2001). Singles minded. Billboard.

Pinch, T. J. and Bijker, W. E. (1984). The social construction of facts and artefacts: Or
how the sociology of science and the sociology of technology might benefit each other.
Social Studies of Science, 14(3):399-441.

Porter, C. E. and Donthu, N. (2008). Cultivating trust and harvesting value in virtual
communities. Management Science, 54(1):113-128.

Posner, R. A. (2007). The little book of plagiarism. Pantheon Books.

Preece, J. (2000). Online Communities: Designing Usability and Supporting Sociability.
Wiley, 1 edition.

Quickmeme (2011). Yo dawg i heard you like remixes so i put a remix in your remix.
http://www.quickmeme.com/meme/35eehi/.

174

Raymond, E. (1999). The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23-49.

Resnick, M., Maloney, J., Monroy-Herndndez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., and Kafai, Y. (2009). Scratch:
Programming for all. Communications of the ACM, 52(11):60-67.

Schwaber, K. and Beedle, M. (2001). Agile Software Development with Scrum. Prentice
Hall, 1 edition.

Seneviratne, O., Kagal, L., and Berners-Lee, T. (2009). Policy-aware content reuse on the
web. In Bernstein, A., Karger, D., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
and Thirunarayan, K., editors, The Semantic Web - ISWC 2009, volume 5823 of Lecture
Notes in Computer Science, pages 553-568. Springer Berlin / Heidelberg.

Shaw, R. and Schmitz, P. (2006). Community annotation and remix: a research platform
and pilot deployment. Proceedings of the 1st ACM international workshop on Human-
centered multimedia, pages 89-98. ACM ID: 1178761.

Sinnreich, A. (2010). Mashed Up: Music, Technology, and the Rise of Configurable Culture.
University of Massachusetts Press.

Sinnreich, A., Latonero, M., and Gluck, M. (2009). Ethics reconfigured: How today’s media
consumers evaluate the role of creative reappropriation. Information, Communication &
Society, 12(8):1242.

Stallman, R. (1985). The GNU manifesto. Dr. Dobb’s Journal of Software Tools, 10(3):30.
Stone, V. (2009). ccMixter: a memoir.

Thorne, M. (2009). Analysis of 100M CC-Licensed images on flickr.

Tran, T. (2009). YouTube goes offline.

Turkle, S. and Papert, S. (1990). Epistemological pluralism: Styles and voices within the
computer culture. Signs, 16(1):128-157.

Viegas, F. B., Wattenberg, M., and Dave, K. (2004). Studying cooperation and conflict
between authors with history flow visualizations. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 575-582, Vienna, Austria. ACM.

von Hippel, E. (2005). Democratizing innovation. The MIT Press, Cambridge, Mas-
sachusetts.

von Krogh, G. and von Hippel, E. (2006). The promise of research on open source software.
Management Science, 52(7):975-983.

Walston, C. E. and Felix, C. P. (1977). A method of programming measurement and
estimation. IBM Systems Journal, 16(1):54-73.

Wenger, E. (1998). Communities of practice learning as a social system. 1998, 9(5).

175

Williams, E. (2009). Why retweet works the way it does.

Wong, J. and Hong, J.I. (2007). Making mashups with marmite: towards end-user program-
ming for the web. Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 1435-1444. ACM ID: 1240842.

YouTube, L. (2010). What are the criteria for partnership? http://support.google.com/
youtube/bin/answer.py?hl=en&answer=82839#US.

Zang, N. and Rosson, M. B. (2008). What’s in a mashup? and why? studying the per-
ceptions of web-active end users. Proceedings of the 2008 IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 31-38. ACM ID: 1550043.

Zittrain, J. (2008). The Future of the Internet—-And How to Stop It. Yale University Press.

Zonk (2007). MIT media lab making programming fun for kids. http://
tech.slashdot.org/story/07/05/15/1420238/mit-media-lab-making-programming-
fun-for-kids.

176

