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Abstract
The purpose of this thesis is to present the design and evaluation of a new type of socially assistive
robot, one that can interact with people and collect various types of sensory input while being small
enough to hold in one's arms. This project is a completely new revision of the Huggable project
created by Dan Stiehl and Cynthia Breazeal, which features a new mechanical design, a revamped
electronics structure, and a polished control system based off of its sister project, DragonBot
(developed by Adam Setapen). This thesis describes the process of how this new design came to be,
and provides extensive content on how it was designed, along with all major components that were
included. An evaluation is also presented as a test run for the new Huggable, in the form of an online
survey. The results, along with much of the work done with the initial prototype, showed that there
is still much work to be done to be convincing as a robust research robot. Improvements are listed,
as well as its future work with Boston Children's Hospital. This new design hopes to finally bring
the Huggable project out into the field for actual use with people.
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1.1 Introduction & Motivation

Robotic applications for health care have skyrocketed over the past decade. Not only have

surgical robots seen great improvements, but robotic solutions are being applied to a great number of

other scenarios, such as human rehabilitation, patient care, assisted living, and social therapy

[1]. One such area of budding research is the idea of a socially assistive robot, or SAR. As defined

by Mataric and Feil-Seifer, socially assistive robotics is based around the idea that social interaction

can assist people young and old in a variety of areas. SARs have the potential to help various groups,

such as the elderly, those with cognitive disorders, and even students [2].

Figure 1-1: Charles the robot

One such example of a SAR was Charles, a robot developed by the University of Auckland

to take blood pressure (pictured above in Figure 1-1). Charles was designed off of the Peoplebot

platform from Mobile Robotics, and equipped with an Omron blood pressure monitor. It was also

programmed to have a digital face and voice that would instruct the user on how to take their blood

pressure [3]. Another big area of research for SARs is children with ASD, or autism spectrum

disorder. Many groups are already exploring the use of robots for treatment of ASD, including

Mataric et al and their work with the Behavior-Based Behavior Intervention Architecture (a project

used for the evaluation of HRI intervention studies). This architecture allows for certain robots to
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engage the child in social interaction with themselves and with other human beings [4]. As well,

Nikolopolous et al used the Lego NXT platform (shown below in Figure 1-2) to construct robots for

social interaction studies with those that had ASD. The fascination with a seemingly inanimate,

nonthreatening object allows for the children to learn from the object when it then starts to interact

with them, thereby encouraging the establishment of social behavior [5].

Figure 1-2: "Johnny" and "Julie", two NXT Lego robots

The value of SARs in treatment and therapy is certainly nontrivial, but it seems that there is

not a perfect platform for social and physical interaction in a mobile platform. The various projects in

the field right now are too big, too small, too complex, too simple, etc. There needs to be a balance

of features and form in a SAR that allows it to be placed in multiple scenarios for

research. Specifically, the design of a robot complex enough to receive multiple sources of sensor

data while being compact enough to be handled by even the smallest hands is necessary.

1.2 Contributions & Scope

Enter the Huggable Project. The purpose of this thesis is to present the design and evaluation

of a new type of SAR, one that can interact with people and collect various types of sensory input

while being small enough to hold in one's arms. Its name is the Huggable, a semi-autonomous

robotic avatar in the form of a teddy bear. This new version of the project started by Dan Stiehl and

Cynthia Breazeal back in 2005 completely updates the old system with a robust and stable
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mechanical structure, an updated electronic system, and a wireless computation system incorporating

the Android software and RIDI codebase.

The hopeful contribution of this project is to provide a mobile platform for HRI that easy to

use, in a small and cuddly form. While the future uses of the Huggable are seemingly unlimited, the

scope of this thesis is to merely prepare the Huggable for future use with young children at the

hospital. With a smaller evaluation, the Huggable can be tweaked and edited for deployment. The

hope is that the nursing staff, while assuming the form of the Huggable, can successfully calm a child

in a situation of anxiety or anticipation of pain, and become a consistent character for children in the
hospital setting.

1.3 Related Work

Several different robot projects have been created over the years to find some of the same

results that this project is looking to achieve. Arguably one of the most famous examples is PARO,
the robotic seal.

Figure 1-3: PARO, the robotic seal

PARO is a therapeutic robot developed by the National Institute of Advanced Industrial

Science and Technology (Japan) to simulate companion animal therapy. It is a robot in the form of a
baby seal that can respond to different types of touch in the way that a pet would respond. In a study

done by Yamamoto and Kimura, PARO, and two other brands of famous entertainment robots

(AIBO and ifbot) were introduced into a playtime environment with children ages 4-6. After

observing their play, they noticed that the children accepted that they had a form of consciousness,
but were not actual living things. They did observe that common interactions involved petting and

18



holding the robots tenderly, while some even imitated the motions of the robots. However, the flaw

is that these robots have no way in recording some of this tactile feedback. Also, these robots are not

designed for social assistance, but rather, social interaction [6].

Figure 1-4: The iCat robot from Philips

The iCat robot from Philips (shown above in Figure 1-4) was used in a study by Looije et al

to determine if a physical agent, rather than a virtual one or simply a text-based guide, was better at

being a motivator/educator/buddy. The results showed that children preferred the character as

opposed to the text interface for the support roles that they enjoyed most: being a buddy. They also

noted that the physical robot was the most fun as far as interaction. This can highly support the

socially assistive attributes of the iCat platform, but it is not mobile (to clarify, it only sits in one

spot) and the only expressiveness comes from noisy head/eye movements, and eyebrow/mouth

movements. Also, there seems to be no tactile feedback with this platform, something desirable

when working with young children [7].

A most similar and interesting project developed recently is that of Probo, a "huggable"

robotic platform designed for robot-assisted therapy, or RAT. Probo is a semi-autonomous robot in

the form of a half-zoomorphic, half-cartoonish form based on woolly mammoths and elephants.
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Figure 1-5: Probo, the "huggable" robot

As show above in Figure 1-5, it has an expressive face and actuated trunk, with a soft green

exterior and digital screen in its belly. It's described to use a human operator, and is capable of

utilizing actual speech and nonsense speech that can transmit emotion. Many of the features and

abilities that Probo is described to have are features that are desirable of the new Huggable prototype,

but Probo is 66cm tall and 32cm wide. Quite frankly, it's huge. Children may be able to "hug" this

robot, but it misses the mobility that some of the smaller robots have. That is, it cannot be held and

cuddled [8].

Figure 1-6: Keepon (left) developed by BeatBots, and KASPAR (right) developed by University of
Hetfordshire

There are many more research robots in use that are trying to address interaction with

children and, specifically, autism treatment. Robots such as Keepon [9], and KASPAR[10], along

with more commercially built robots like Nao [11] and Zeno [12], utilize their ability to create
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expressive movement in non-threatening form factors. Keepon's simplistic design allows for a

relaxed interaction with children, resulting in more natural play and communication. More humanoid

robots like KASPAR, Nao, and Zeno are equipped with more degrees of freedom, allowing for a

more articulated range of motion and expression in a compact package. KASPAR and Zeno also

leverage the use of an expressive face to add to the interaction. What this new version of the

Huggable wishes to achieve is the expressivity of these robots in a more "huggable", furry form that

will allow children to truly achieve physical interaction with a robot like this.

Figure 1-7: Nao (left) developed by Aldebaran, and Zeno (right), developed by Hanson

Lastly, this new Huggable project is based on the work of Dan Stiehl et al on the original

Huggable project (pictured below in Figure 1-6). This robot was designed, like PARO, to be a

therapeutic robotic pet surrogate for companion animal therapy.

Figure 1-8: The Huggable Project by Dan Stiehl
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Most of its initial work was based on developing a new system of touch feedback that could

distinguish between different types of physical interactions [13]. Its potential applications have since

expanded to include uses in education and long distance family interaction [14]. However, the most

current prototype has not been able to be applied in a research situation for a number of

reasons. Since its creation, its technology is outdated, its structure is rigid and heavy, and its system

is way too complex for use.
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Chapter 2

Design Process
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2.1 From the Inside Out: Redesigning the Huggable

In order to create this SAR that would satisfy the requirements that the Personal Robots

Group had in such a robot, the design of the Huggable needed to be completely changed. As Salter et

al described, robots used in child-robot interaction should be sturdy enough to survive in the studies

[11]. The old prototype was obsolete, rigid, and, above all, non-portable. With this in mind, one of

the first design decisions that were made was to use a more portable computation system.

2.1.1 The Switch to Android

The Personal Robots Group, at the time of this particular redesign, was already perfecting a system

that would operate the low level processes that a robot needed to function. One of the first of these

platforms to utilize this system was Project LilGuy, which was collaboration between Samsung SAIT
and the Personal Robots Group.

Figure 2-1: The LilGuy project, in solid model form

This project's purpose (shown above in Figure 2-1) was to provide a device that could

control virtual characters wirelessly. The objective was achieved by successfully creating an

Android application that could run our RIDI codebase. Using this, the controller could translate the

movements of the figurine and send them to a computer running one the virtual models of the robots

owned by the Personal Robots Group [12]. The other platform in development is the Dragonbot

(shown on the next page in Figure 2-2).
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Figure 2-2: The Dragonbot Platform

The Dragonbot is a robotic platform whose operation relies on the computational power of an

Android smartphone [13]. The phone generates its digital eyes and face, its microphone and speaker

provide a pipeline for communication, its front-facing camera allows teleoperators of the robot to see

what it sees, and it transmits/receives information wirelessly to an Android tablet or computer. The

beauty of this system lies in its portability, and it was something that the Personal Robots Group

wanted in the new version of the Huggable. The plan was to modify the Dragonbot architecture to

suit the Huggable's needs. The phone would be placed in the head of the robot, and the screen would

provide a pair of digital eyes that would shine through a removable mask. The phone would also

process not only motor controller data, but sensor input as well. The resulting challenge was to

design a head and body that could support it plus the weight of the phone.

2.1.2 New Motor Boards

Previously, the Huggable used a complex motor board that was difficult to sync with the

RIDI codebase. Also, the motor board itself was huge. This simply would not work in this new

version of the Huggable. The next design consideration was to find a motor controller solution that

would interface better. Luckily, Sigurdor Orn developed such a motor controller board for the

Dragonbot, and they proved to be a robust solution. Sigurdor had been developing the MCB (pictured

on the next page in Figure 2-3) for his own projects, and later improved upon it just in time for the

new Dragonbot platform.
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Figure 2-3: The MCBMini motor board

The Dragonbot platform uses a stack of three motor boards with a COMM board, and this

stack works very well with the encoder-based Dragonbot motors. These boards are also equipped to

handle potentiometer data, which is exactly what the Huggable would need. The desire was to use

both encoder and potentiometer feedback, like the original Huggable system, in order to provide a

smooth animation.

2.1.3 Additional Degrees of Freedom

In this new iteration of the Huggable, the Personal Robots Group wanted to increase the expressivity

of the robot. It already had eight degrees of freedom: one for the ears, three for the head/neck and

two for each arm. But with the recent development of "squash-and-stretch" robotic platforms, the

group had discovered the richness of expression in the simple movement of leaning in with interest.

This small motion gives a more lifelike attribute to the robot, and allows for a more engaging

interaction. Thus, the group included this type of motion as an additional degree of freedom. What

was also noticed was that the original prototype could not indicate physically when it was speaking.

This lack of movement in the mouth emits a feeling of entrapment within the robot. Hence, the

desire was to add a degree of freedom that would alleviate this, which would be a muzzle movement.

The idea would be to synchronize the muzzle's "wiggle" with speech, so as to give the appearance of

speaking. The last addition to the degrees of freedom was to give the Huggable the true quality of

being "huggable". The older prototype had no way of being able to hug back. The lack of an elbow

joint made it difficult for the Huggable to perform many different motions: pointing to itself,
covering its face, etc. The group made sure that this degree of freedom was a priority to include,

since this would give more depth to the arm movements.
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2.2 A New Form: The Jetta Collaboration

In order to create this new iteration of the Huggable, the Personal Robots Group collaborated

with Jetta Company LLC to do a complete redesign of its mechanical structure. With this instance,

the group wanted to have the ability to "mass produce" the robot, so that many research groups could

use the platform for their own studies. Thus, this iteration was to be designed for manufacturing, and

Jetta had both the facilities and the experience to assist with the DFM process. The group was able

to work very closely with the R&D sector of Jetta, and saw firsthand how a robot such as this goes

from concept to product.

2.2.1 Initial Specifications

When a product such as this starts out as a concept, the first requirement is what is referred to

as a "wish list". Jetta required initial specifications for what the robot will contain and how it will

operate. The very first detail needed was the dimension. The Personal Robots Group wanted to

reduce the size of the current prototype to something that a child could hold and manage. According

to Jetta's experience, a robot of this nature would work best at a height between 250mm and 300mm.

Jetta, a manufacturer for many children's toys, explained that a moving robot designed for children

ages 5-8 cannot be too big so that they cannot hold it, but not too small that parts of it could

potentially be a choking hazard or easy to break. Therefore, their height suggestion for a teddy bear

robot was 280mm. The other dimensions (width and length) were roughly determined using a

previous model of the Huggable in full bear form. The width was estimated to be in the range of

150-200mm, and the length was to be between 200-250mm. After specifying the overall dimensions

for the robot, Jetta then inquired about the individual components of the bear, or features. Each part

of the bear was to be described and listed with what it was supposed to do and contain. This process

was part of their formula for creating an initial design. Specifying its dimensions and placing its

features in the right areas, plus knowing what the final product was going to look like, would allow

the designer to correctly proportion the body of the robot to properly house the components, and

ensure feasibility.
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Figure 2-4: Example diagram from "wishlist"

The original feature list included in Appendix A uses the old version of the Huggable model

to showcase what belongs where (an example is shown in Figure 2-4). Each section also lists the

desired degrees of freedom, and their desired range of motion. Along with a list, there was to be a
"diagram" that illustrated how all of the components were to be fitted inside the section. It also

demonstrated the path of motion for the DOFs to show how exactly they would move.

Also, the diagrams showed the possible location of sensors for use in the Huggable. In the

previous prototype, arrays of QTC (quantum tunneling composite) sensors were responsible for touch

and pressure sensing. However, QTC is very expensive, and the goal of this new iteration was to

lower the cost. Jetta recommended the use of capacitive sensors and pressure bladders. Capacitive

ICs are very inexpensive, and the electrodes are easily customizable, being that they are as simple as
pieces of copper tape. Pressure bladders attached to sensors are also inexpensive, but they would

have to remain in specific areas. With that in mind, the locations of capacitive electrodes and

possible areas of including pressure bladders were indicated. Once each section was outlined, the list
goes on to describe the behavior of the motor and feedback system that was desired. Attributes such
as voltage rating, maximum torque, and maximum RPM were essential in browsing for new

components to use. Also, the type of feedback was important to list, in order to find a proper

variable resistor (potentiometer) and/or encoder for the job. In the case of the Huggable, the group

wanted to have the flexibility in using both for feedback purposes.

Lastly, the "wish list" needed a schedule. The schedule was important in assessing how
much time was needed for each part. Jetta had a specific pipeline for doing a project like this, but
this was a special case. Things needed to be done a bit faster, and so the schedule needed to reflect a

faster, but feasible, timeline. Once this was completed, Jetta approved the requirements, and with the
author, moved forward in the design process.
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2.2.2 Brand New Outlook

Designing a prototype like this also needed the final physical appearance, or product outlook.

The group had a model plush already made for the Huggable, but advisor Cynthia Breazeal and

resident artist Fardad Faridi had a new plan in mind for how this new bear would appear. The

original outlook of the Huggable resembled more of a "real" teddy bear, but this time, the design

went for a more cartoonish look. Fardad wanted to stress in this iteration of the Huggable that the

shape needed to look more, well, "huggable". The rigid shapes that dominated the old prototype did

not give off any appeal for comfort, nor was it easier to wrap arms around it. According to Fardad

(personal communication, July 28. 2012), humans are more comfortable wrapping their arms around

a bean-shaped object similar to the body of a young child than anything else. The contours of the

shape are more inviting for a hug than hard edges and lines. This idea of a neonate form factor was

also expressed by Gould [18] in describing the change in form of Mickey Mouse over the years. The

juvenile appearance of the form is naturally appealing to humans, and they feel more affection

towards them than other forms.

t

/1

I-

(c

Figure 2-5: Sketches of new outlook by Fardad Faridi
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Once this new outlook was created, the author worked closely with Fardad to ensure the

physical possibility of this new concept (as shown in Figure 2-6). Certain aesthetic qualities, such as

the size of the head in comparison to the body, the shape of the arms, and the thickness of body, had

to be compromised to adhere to physical capacity and ability.

Figure 2-6: Example of graphic exchange between the author and Fardad

With a design this elegant, many components would have not normally fit correctly. Certain

curves had to be widened to give room for motors and gears, especially near the back of the body.

Also, areas near the neck and shoulders needed to be widened to avoid bunching of components. The

right proportions had to be established with the head to ensure that the robot would not become too

top heavy. With the phone already comprising most of the weight of the head, it was important that

the Huggable was designed to support its own head, and have the ability to move it freely without

tipping. With the addition of the elbow joint, the arms also needed to be lengthened and widened to

ensure proper casing for components such as sensor PCBs and motors. Through frequent exchanges,

a final outlook was determined, and the DFM process began.

2.2.3 Developing a Mechanical Layout

Once the features, dimensions, and appearance of the product were established, the next

process was to begin defining the internals. Component placement, basic mechanism design, and to-

scale depiction were all comprised in the process of what was referred to as the mechanical layout.

The mechanical layout was a simplistic scale drawing of how everything "fit" in an outline of the
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final outlook of the bear. The author and the director of R&D at Jetta, S.K. Wong, exchanged

multiple versions of this layout before approving it for detailed design. At first, there was some

confusion as to how this mechanical layout was to be structured. As shown below in Figure 2-7, the

first layout done by the author is very different than the one provided by S.K.

Figure 2-7: Side-by-side comparison of mechanical layouts. Left is done by the author, right is done
by S.K. Wong

However, with example layouts provided by S.K., the idea became clearer, and the layout

became more and more detailed over time. Instead of sketching by hand, the author used the 3D to

2D sketch ability of Solidworks to gain a 3D perspective on how parts were fitting within the outline,

and communicate a 2D front and side view that is easier to read for Jetta's design team. With such a

complex series of curves that comprise the outline, it was difficult to see from just the 2D views if

parts actually fit within all of the boundaries. Using Solidworks to generate these mechanical layouts

guaranteed that the placement of these to-scale components would fit in all of the boundaries.

Figure 2-8: Combined editing of the author and S.K. Wong on mechanical layout
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2.2.4 Workflow: From Solidworks to ProE

Once the layout was finalized and approved by both Jetta and the Personal Robots Group, it was

passed down to Jetta's R&D Team to begin designing detailed CAD models of the prototype. The

author had a firsthand look at how these mechanical layouts become complex 3D models. A team of

three people divided the robot into modules, and began generating the models using ProE Wildfire.

The author worked alongside them using Solidworks, guiding the shell designs with the contours

specified by Fardad's final outlook. Once the shell was shaped in Solidworks, it was saved as a .STP

file and given to the team to modify.

Figure 2-9: Example CAD model from ProE

After sending a rough shell of both the head and the body, the author oversaw and observed

the design process that the R&D team used, such as regulating wall thicknesses, using fins to support

cylindrical structures, and check screw patterns. JPEGs of the work in progress were forwarded to

the Personal Robots Group for approval and editing. Once the final edits were made, Jetta began

production on a prototype to be shipped to the Personal Robots Group, which would be populated

with the necessary components by them.
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2.3 Post-Machining and Prototype Modification

Figure 2-10: The Huggable prototype, before post-machining

After receiving the prototype, many modifications had to be made in order to get the

Huggable prototype operational. The prototype's shells were milled out of ABS plastic, using a CNC

machine, and bonded together. This material made it easy to make physical edits that were greatly

needed. One major modification was the removal of the ear/muzzle mechanism and adding housing

for a small motor, making the ears move independently of the muzzle. As this DOF was being

tested, there seemed to be a lot of friction through the timing pulley stages going up to the gear that

spun the ears forward/backward. Strangely enough, the whole structure inside of the head would

warp when the head would close, preventing smooth movement; this was even after reaming all of

the nylon bushings and smoothening the half-socket in which the ear shaft was rotating. Shell

warping due to fastening seemed to affect the operation of many of the joints, so applying the right

amount of torque to the machine screws became a sensitive matter. Also, friction in the shoulders

and elbows, as well as other places, had to be smoothened out with a rotary tool due to incorrect

tolerances with the ABS parts. Additions needed to be made to certain joints to make them operate

smoother, such as the neck. The inclusion of a ball bearing in the neck rotation was highly necessary
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for operation, and greatly improved the smoothness of the DOF. But above all, an extensive amount

of drilling, cutting, and widening needed to take place to account for wiring. There were many wires

extending from all parts of the robot, and most had to branch into the head (where, for example, the

motor controller boards were placed). There was either not enough room for wires to pass through

the robot, or no room at all. Unfortunately, these designs errors were not caught earlier; examining

screenshots of the models were not conducive to scrutinous observation. Hence, these (and other)

modifications had to be done by hand, and were noted along the way to include in a follow-up report

for future iterations.
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Chapter 3

The Hardware and Software of the Huggable
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3.1 The Huggable: Current Prototype

This thesis will now present the current design of the Huggable Project. It first describes the

mechanical design of the robot. This will involve all design decisions pre- and post-modifications.

Then, it will list and explain all of the electrical components contained in the Huggable. This

includes components purchased and MCBs designed by the Personal Robots Group. Finally, it will

walk through the software implemented in the robot. This will showcase the pipeline that goes from

RIDI to Android to controlling interface, and vice-versa.

3.2 Mechanical Design

Table 3-1: Degree of Freedom List with Specifications

DOF Range Motor Gear Ratio Max Speed Continuous
(Degrees) (RPM) Torque (mNm)

Ear Wiggle +20, -20 Faulhaber 1016 48:1 343.75 45
Muzzle Wiggle 0, -15 Faulhaber 1516 28:1 460.71 100

Head Tilt +15,-15 Faulhaber 1516 152:1 84.87 150
Head Nod +15,-30 Faulhaber 1516 152:1 84.87 150

Head Rotate +60,-60 Faulhaber 1516 112:1 115.18 300
Shoulder Rotate +30,-90 Faulhaber 1516 415:1 31.08 300

Shoulder Lift +65, -15 Faulhaber 1516 280:1 46.07 200
Elbow Joint 0, -80 Faulhaber 1516 52:1 248.08 100
Waist Bend +15, -10 Faulhaber 1724 989:1 7.99 300

3.2.1 Motor Selection

The Personal Robots Group sought the expertise of Jetta in finding a cost-efficient motor

solution for the robot. For the designated DOFs, the group needed motors that would provide an

angular velocity of about 15-20 RPM. This speed was fast enough to make a significant movement,

but slow enough to not surprise or scare children. Certain DOFs (ears, waist) were designated to

have different RPM requirements due to the weight (or lack thereof) of the part moving. The group

also stipulated that the motors were rated for 12V. The MCBMini that was being implemented

required the motors that were being controlled to have a minimum voltage of 9V, but for optimal

operation, the motors should be rated at 12V. This was a surprise to Jetta, since a voltage this high is

uncommon for a product such as this. In the toy industry, manufacturers tend to design in the range

of 3.3-5V, with a maximum rating of 7-9V. The size of these desired motors, along with the rated

voltage, was rare to find, being that smaller motors (especially for this purpose) are more common in
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the 6V range. However, Jetta was able to find a motor company that could provide 12V motors at

the scale that we desired. Two motors sizes were selected: one for the waist (being the heaviest

DOF), and one for use throughout the body.

PG16MO50

Figure 3-1: Original Gear Motor for use in Huggable, from Twirl Co.

These were planetary gear motors, and the provided data sheets gave potential speed/torque

outputs with the configured gear ratio. Unfortunately, the Huggable could not utilize the selected

motors because they did not support encoder feedback. The only other motors that could perform at

the size and voltage desired were from Faulhaber, a company very familiar to the Huggable project.

The group was able to obtain motors of the same voltage with a slightly smaller package size and a

bit more torque than the previous selections [19] [20] [21] [22]. Thus, the robot was equipped with

both potentiometers and encoders for feedback, but an unforeseen problem came about when using

the encoders. Since many of the motors had very high gear ratios, the MCBMini could not actually

keep track of the sheer number of ticks being produced, which rendered the encoders useless. As of

now, the current feedback system of the Huggable is purely position-based using potentiometers. In

the sections that follow, all DOFs will have each motor and gearhead listed, along with the

mechanism they power.

3.2.2 The Head

Probably the most nontrivial part of the robot, the head was extremely tricky to design. Due

to the nature of the outlook, this robot was already going to be a bit top heavy; the head was pictured

to be nearly the same proportion as its body. Also, this vessel was tasked with containing the

Android phone that gives function to the robot, and the phone is easily the heaviest object (6.0
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ounces or about 170 grams) in the robot by comparison [23]. With that in mind, there were a couple

of goals to achieve with this part of the design:

e Keep as many motors out of the head as possible

e Center all motors to avoid them being tangential loads

" Allow for plenty of room for wiring

The head had four distinct DOFs which required the motors to be within the head: ears,

muzzle, head-nod, and head-tilt. The ears and the muzzle were very lightweight DOFs that

demanded the least mechanical strength, so a plan was formed to combine these DOFs. A very

common practice in the toy industry is to make a motor operate two different DOFs in the same

range of motion. For example, a certain range may move a pair of eyelids, but past that, the motor

will move an ear or a mouthpiece. This combination seemed like a very practical idea for reducing

the number of motors and increasing the efficiency of the robot. The motor used in this mechanism

was a Faulhaber 1516 DC-Micromotor paired with a 15A plastic gearhead with a ratio of 28:1. The

mechanism developed to do this was a cut-gear operated by a motor placed under the chin of the

robot (which kept its center of mass low). The motor pushed a cam that pressed on a spring-loaded

lever that made the muzzle wiggle. The shaft on which this system rotated contained a pulley that

transferred motion (through an intermediate stage of pulleys) up to a pulley that spun a cut gear.

When the cam operated the muzzle, the cut gear did not engage the shaft that controlled the ears.

Past that limit, the ears would engage forward or backward, depending on which way the cam moved

last. Fortunately, the range of motion combined fit in the range of the potentiometer, so the motion

never hit a "dead zone" in the device.
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Figure 3-2: Clipped image from mechanical layout showcasing the cut gear system
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Unfortunately, there were two downsides to this mechanism. One, the ears were susceptible

to dislodging if the mechanism was operating the muzzle, since the ear shaft would be spinning

somewhat freely in the cut-gear zone. Two, there would be a delay in moving the ears past their zero

point since the muzzle had to engage first before going to either extreme on the ears. As previously

mentioned, the mechanism itself was having trouble running smoothly due to warping, so all of it

was scrapped. Instead, the muzzle was left operating independently of the ears, and the ear

mechanism was changed to a direct spur gear drive, using a 3:1 gear reduction leading to a Faulhaber

1016 DC-Micromotor equipped with a 10/1 metal gearhead with a ratio of 16:1 [24][25]. This setup

is depicted below in Figure 3-3. The motor was contained in a custom-machined housing built into

the core of the head motor casings. This way, the ears could be back-driven without becoming

dislodged.

Figure 3-3: New independent ear mechanism with custom housing

Another note about the ears: the head shells were designed to come together and form a series

of shaft holes for the ears about which to rotate. Again, the warping of the plastic caused irregularity

to the movement, so custom-machined bearing blocks were made for the ears that screw into the

front head shell, shown in Figure 3-4 (next page). This way, taking apart the head does not allow the

ears to fall out, but stay in one place. This also allowed anyone operating the DOF to ensure its

smoothness without having to constantly take apart and put back together the whole head; only the

front head shell needed to be in place.
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Figure 3-4: Ear bearing block attached to front head shell

To design the two essential DOFs of the head (head-tilt and head-nod), Jetta recommended

another common practice in toy design. Previously, the Huggable's head was built within these two

mechanisms. This made the head very rugged and sturdy, but very stocky and bulky.

Figure 3-5: The old Huggable's head-nod mechanism

Instead, the recommended (and later approved) design was to use a cam system using ball-

jointed rods and plastic arms, as shown in Figure 3-6. At the end of each motor was a plastic arm

whose length controls the range of motion of the DOF. This arm is connected to a ball-jointed rod

whose other, ball-jointed end was pinned to a base (which would effectively be the base of the neck).

As the motor rotated, the plastic arm pushes or pulls the rod, which pivots the whole head about an

axis. To achieve two axes of motion in the neck, a metal universal joint was implemented, allowing

the perpendicular axes to be close to one another and save space. The movements were

approximated to have similar loads to move, so each DOF was fitted with a Faulhaber 1516 DC-

Micromotor and 15A plastic gearhead at a 69:1 gear ratio. (As further testing proceeded, these

motors were switched with ones containing 15A gearheads using a 152:1 reduction.) The motors
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were, like the muzzle motor, placed as close to the rotation axes as possible, and centered to reduce

the effects on the head's center of mass. One flaw in this mechanism is the tendency to overextend

the rotation, thereby inducing a singularity at the top/bottom of rotation. The robot often cannot free

itself in these positions, so both hard and soft stops were included as part of the system.

Figure 3-6: The ball-jointed cam system

Once these mechanisms were placed in the head, it was noted that there was still considerable

space. As space was quickly running out of the rest of the body, it became logical to include the

1010 board and the MCBMini boards (discussed later) in the head. The phone was already in the

head, so it made sense to place the 1010 near it (see Figure 3-7).

Figure 3-7: The 1010 as positioned onto the back of the front shell

The MCBMini controls two motors at a time, which meant that the Huggable demanded six

MCBMinis to cover all the DOFs. A stack of six boards would not fit anywhere else in the robot, but
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they did fan out nicely in the empty space inside the head. Organized in the back of the head, the

MCBMinis provided a bit of counter weight for the phone, which helped in the head-nod DOF.

Figure 3-8: Four of the six MCBMini board oriented in the head

Originally, there was a plan for an external camera, which would have been placed

somewhere in the nose. However, it was impossible to wirelessly stream the quality of video that the

Personal Robots Group desired, and the necessary hardware for external video processing would

have not fit anywhere in the robot. Thus, the forward-facing camera on the phone is used for video

streaming, similar to the Dragonbot platform. And, similar to the Dragonbot, a mask was designed to

cover the phone face and allow the digital eyes and camera to shine through. The mask used

precious metal magnets to snap to the face, guided by two slanted pegs on the bottom that fit into two

respective slots. The camera looks through a specially designed "lens" that presses into the mask.

It's an insert that pushes away the fur covering on the mask, and opens wide so that the camera's

field of vision is unobstructed. Both the mask and the insert were 3D printed at the Media Lab after

the Huggable's delivery due to edits in the design and outlook. Using the generated surface provided

by Fardad, a new mask was printed using the specifications from the original mask (magnet holes,

camera and eye holes, etc.) which showcased a more contoured face. This gave the Huggable a final

cosmetic look of childlike innocence, as shown on the next page in Figure 3-9.
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Figure 3-9: Final 3D Printed Mask

3.2.3 The Body

The last DOF that was to control the head was actually placed down in the body. The head-

rotate (neck rotation) DOF was a rather simple task to complete. The plan was to simply use a

geared motor to directly drive the whole head on an axis that went straight through the U-joint. A

plastic axle was created that pinned through the base of the U-joint and the neck base, passed through

a plastic bushing, and fitted to the motor shaft. The fitting used a D-shaped hole, and the motor shaft

was flattened to match this D-shape. This is a common practice to ensure a nonslip rotation and

torque transfer; it is used throughout the robot with all plastic fittings. The plastic bushing is secured

at the top of the body when the two body shells come together, and the motor is encased onto the

back body shell. The motor is a Faulhaber 1516 DC-Micromotor equipped with a 16/7 gearhead at

112:1.

Figure 3-10: The head rotate mechanism, in the back
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When the robot was received, the neck encountered a lot of friction trying to move around.

The solution to this was to insert a ball bearing within the plastic bushing, and machine a new plastic

axle the would fit through the new bearing. Needless to say, smoothness of movement was

drastically increased (Figure 3-10).

Three other DOFs were to be placed within the body as well (hence the reason why some of

the original component locations had to be moved elsewhere). The waist bend DOF was originally

designed to be two distinct motions. The Personal Robot Group first desired that there would be a

small waist-turn as well as a waist-bend. Unfortunately, there could only be room for one DOF, and

the decision was to go with the waist-bend. Since this robot was going to be top-heavy, the waist had

to have a very restricted range of motion. Finding a motor that could support a bigger range of

motion would not be able to fit inside the robot, and would add much more weight. Thus, the DOF

was restricted to about 15 degrees on both sides (front/back), and a high gear ratio / slow RPM

geared motor was sought. These requirements would ensure that the motor's size would fit inside the

robot. The motor was fixed to the top half of the body, and rode along a cut spur gear that was fixed

to the base of the body, as shown in Figure 3-11 (next page).

Figure 3-11: Waist bend mechanism and shaft clips for waist

The motor that was selected for this task was a Faulhaber 1724 DC-Micromotor with a 16/7

gearhead using a 989:1 ratio. The body shells are guided along circular edges of the base shell, and

secure in the middle to a metal shaft. Each shell "clips" onto the shaft with a press fit, which allows

each shell to be easily removed from the base.

With these two DOFs positioned in the top half of the body, space was running low.

However, there was just enough space on the sides and in the very front for the arm-rotation DOFs

and the speaker. In the old prototype, the arm-rotation DOF was placed parallel to the axis of
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rotation, which ensured motor efficiency. However, this took up a lot of room in the chest cavity,
and another solution was necessary. Due to the delicate, tapered shape of the Huggable, the parallel

configuration was no longer an option, especially with the elongated shape that the geared motors

had. The solution: use bevel gears at the last stage of motion.

Figure 3-12: The arm rotation mechanism

The motors could be oriented along the side this way, perfectly fitting under the curves. At

the end of the geared motor, a bevel gear was placed to interact with its respective gear belonging to

the arm, as shown above in Figure 3-12. The shaft on the arm that contained this bevel gear would

be supported on either side: one side rotated within a nylon sleeve that was press fit into the core of

the robot, and the other rotates in a special bushing block secured by the two body shells. This DOF

is powered with a Faulhaber 1516 DC-Micromotor equipped with a 16/7 gearhead at a ratio of 415:1.

The high gear ratio ensures a strong and slow movement that will avoid the appearance of "wild arm

swinging" that could scare off a child. This movement is also ratcheted to prevent damage to the

gears and motor when the arms are over-torqued.
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Figure 3-13: Ratchet mechanism to prevent gear damage from over-torque

This ratchet mechanism (shown above in Figure 3-13) is also used in the shoulder lift and

elbow joint DOFs (discussed later). The last component to be placed in the top of the body was the

speaker. Previously, the speaker was located in the face, so that the voice appeared to originate from

the bear's mouth. However, the phone now resides in the front of the face, and a new location was

needed. The only other location that made sense was in the front of the chest, and so a separate

cavity was formed in the front body shell to house it, as shown in Figure 3-14 (next page). The

cavity conforms to the shape of the speaker, and resounds through a perforated plate that attaches to

the shell, providing continuity to the body shape. A small, rectangular hole in the back of the cavity

allows for the speaker wires to reach the speaker amp circuit (discussed later).

Figure 3-14: Speaker cavity in chest plate with speaker

46



3.2.4 The Arms

The arms were also tricky modules to design, because of the demands for a double jointed

movement and slim profile. The plan was to encase two motors in each arm, with a dependent joint

that bent inward. That would make three movements in the arm: shoulder, elbow, and wrist.

However, due to the size of the motors in consideration, the arms would have had to be almost as

long as the body is tall, and that would destroy the outlook of the robot. The final design plan was to

just have two DOFS in each arm, along with pressure bladders in the "paws". These pressure

bladders were originally supposed to be in the legs, but (as discussed in a later section) a better plan

was to have these house the batteries. Thus, the "paws" were designated to be pressure bladders,

which made practical sense. The Personal Robots Group imagined a scenario in which the Huggable

reached out to a child and asked for them to squeeze its paws in order to communicate pain. This

would be an alternative way of having a quantitative measure of the child's "pain level" if the child

could not verbally express it.

Figure 3-15: Pressure bladder "paw" in forearm piece

The pressure bladder is secured to the arm via press fit (as shown above in Figure 3-15), and

a hose extends from it that feeds into a pressure sensor (discussed later). The two DOFs (shoulder

and elbow) were designed using two separate mechanisms, but both utilized the ratchet mechanism

described previously. This was especially important for the shoulder, because the proposed

mechanism would normally not support back-driving. To keep a slim profile, Jetta recommended a

worm gear configuration. Although the downside of this was a noisy mechanism, the worm gear

allowed for a very high gear ratio in a very small space, which is exactly what the Huggable needed

for its shoulders.
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Figure 3-16: Bevel gear mechanism to operate shoulder lifting in old Huggable

Previously, the shoulder mechanism was a very complex gearbox that ended in a bevel gear.

This is shown above in Figure 3-16. This, similar to the arm rotation mechanism, gave the Huggable

very broad shoulders, and cut into the horizontal space in the chest. The most logical plan was to

move this DOF into the arm itself. The orientation of the motor that made the most sense was

parallel to the arm, which lent to the idea of using a worm gear. The worm gear would travel along a

thick spur gear attached perpendicular to the arm rotation shaft (mentioned earlier); whose interior

contains the ratchet mechanism. A worm gear cannot normally back-drive, and when made of plastic

and put in a children's toy, it would be susceptible to breaking. The ratchet lets the spur gear click

into place if pushed past its limit, allowing the worm gear to "back-drive" in a way. The worm gear

is at a 10:1 gear ratio, which is powered by a Faulhaber 1516 DC-Micromotor using a 15A gearhead

at 28:1, making the entire gear reduction 280:1. This high gear ratio provides a strong movement for

lifting the entire arm without lifting too fast or too slow. The placement of this DOF left just enough

room for the elbow DOF, which would use a similar motor orientation, but a different mechanism.

This DOF was fairly simple to design; all that was needed was a bevel gear attached to a motor. The

other bevel gear would be fixed to the "forearm" shell, with a ratchet tucked underneath to prevent

damage. This movement was not torque-heavy, so a Faulhaber 1516 DC-Micromotor that had a 15A

gearhead at 28:1 (later switched to 52:1) was used to power the DOF. The increased gear ratio

helped slow the movement a bit and give it a bit more torque to push through the joint.

Unfortunately, this joint was particularly susceptible to sensitivity in over-tightening of the screws.

Too much, and the gears would be pressed together so tightly, the elbow would not budge. Too little,
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and the gears would slip, causing the elbow to get off track. Also, this joint needed a lot of post-

machining to make smooth and clear a way for wires to pass through to the head. For example, the

potentiometer in this joint, when received, had no foreseeable access to its terminals before post-

machining. Also, the arm pieces that served as bearing blocks to the forearms had too tight of a

tolerance, preventing smooth rotation. With a little bit of post-machining, the arms became

functional enough for operation.

Figure 3-17: The upper arm, showcasing each motor for their respective DOFs

3.2.5 The Base/Legs

After the body had been divided by the waist DOF, the bottom of the body was designated to

be the base, in which the batteries and the SEED power management board would be held. The legs

originally were going to have passive ankles for simple play, and pressure bladders for sensing. But

with space in short supply, the legs would be better designed to carry the batteries. This proved to be

ideal counterweight for the combined lean of the head and the waist. The legs also provided ample

space for long-lasting batteries, which are discussed in a later section. Originally, the legs were

designed to be rigid, so that the bear was always in a seated position, and provided a sturdy base for

movement. However, picking up the bear was a problem, as the legs would get in the way. There

was no comfortable way to hug the bear, so the legs were modified to swing down when pushed.

Luckily, the battery wires pass through the center of rotation, and do not interfere with this motion.
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Figure 3-18: Newly printed legs with enclosed battery

The wires pass through a hole in each leg and connect to the SEED power management

board. The board (also discussed in a later section) was used in the Dragonbot architecture to

provide power to both the logic and the motors. This also served well for the Huggable, but the

current board did not fit well in the base. Fortunately, the board was able to be clipped on one end

due to inactive connectors, and secured to the underside of the top plate. The charge connector for

this board was rather big, and needed access from the back, which was unavailable in the present

design. The "tail" of the shell was therefore cut off, and the connector was left exposed for easy

plugging as shown on the next page in Figure 3-19.

Figure 3-19: Back view of Huggable to show power port

The fur suit (discussed later) has a flap that covers this hole when not in use. And the most

important component, the on/off switch, was added post-machining. A simple dual-pole, single-

throw switch was added to the bottom of the bear, to make it very similar to most toys with this kind

of switch. Adding it flush to the bottom made sure the switch was unobtrusive yet accessible.
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3.2.6 The Fur

Figure 3-20: Black fur suit for the Huggable, in separate pieces

The Huggable robot would not be complete without a cute, cuddly exterior. Jetta generated a

pattern for the Huggable to cover three main parts: the head, the body, and the mask. These patterns

were also equipped with stretch fabric under the arms to allow for unhindered movement. However,

further testing showed that stretch fabric would be needed in other locations, such as the ears and the

elbows. There was a significant amount of bunching that would prevent motion of the joint; the

stretch fabric would aim to prevent this. The body was later divided into two halves that joined

together with Velcro to simplify the robing process. The fur needed to be easily removable for quick

changes at Children's Hospital and other research sites. Velcro was added to the back of the head as

well, along with the covering for the face mask. The hole in the face mask was widened more to

leave room for the "lens" insert to fit. Different types of material (such as easily cleanable /

machine-wash surfaces) are also being researched for later use.
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3.3 Electrical Hardware

Table 3-2: Component List for the Huggable

Type Component Count

Computation Device HTC Evo 3D from Sprint I

Motor Controller MCBMini Motor Controller 6

Android Interpreter Sparkfun Android 1010 1

Position Feedback Panasonic EVW-AE4001B14 Variable Resistor 1

Potentiometer Variant #1 (Brand Unknown) 7

Potentiometer Variant #2 (Brand Unknown) 4

Touch Sensing Atmel AT42QT1O1 1 Capacitive IC 12

Custom PCB 12

Pressure Sensing Honeywell SXSMT100 Ceramic Pressure Sensor 2

Analog Devices AD8223 Instrumentation Amp 2

Custom PCB 2

Power Source 14.8V Custom LiPo Pack w/ Protection PCB 2

Power Management SEEDPower Management Board 1

Audio Output Anpec SA4871 Audio Amplifier 1

Custom PCB 1

2W 4Ohm Speaker 1

usec c.

J,, TTL RS-232
Comneclon (X-RX)

Figure 3-21: Electrical diagram showcasing component connections
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3.3.1 SEED Power Management Board

Figure 3-22: The SEED Power Management Board, as fixed in the Huggable's base cap

The Personal Robots Group decided to use a customized power management solution for use
in the Huggable (Figure 3-22). Adam Setapen, the creator of the Dragonbot platform, developed a

power board that catered to the needs of the Huggable's electrical system, which was designed to be

very similar to the Dragonbot system. The board can provide power at 12V, 5V, and 3.3V, support

battery charging alongside external power operation, and separate motor and logic power supply for

protection to either source. The board can take up to 3 batteries for power input, and can provide 4

different power outputs (the 3 voltage ratings listed above, and a raw voltage supply for motor

power). The board supports a DPST (dual pole, single throw) switch for powering the robot on/off,

and uses an on-board relay to switch between battery operation and external power operation. Since

the board at its current dimensions would not have fit in the base of the bear (and since the Huggable

did not have use for 3.3V power) the connectors at the end of the board were trimmed, which

provided an even more compact power solution for the Huggable. The robot uses the raw power line

to operate the motors, the 5V line to power the speaker board, and the 12V line to support the 1010

board [26].

3.3.2 Batteries

Battery development was very crucial in the design of the Huggable. In order to create a

more portable Huggable, the Personal Robots group needed to have a robust battery solution that

would last a decent amount of time (1-2 hours of continuous operation max). Since a similar

situation faced the Dragonbot, the author sought Adam's advice on what the best battery pack would

be. The idea was to find a battery pack that could charge through its discharge wires, and was rated
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at 14.8V. Adam's battery charging station was already equipped with chargers that would handle

batteries at this voltage, so the smart plan was to find batteries that could work with this charging

station. After scouring many different companies for a pack that could fit within the shape of the

legs without any great result, the plan changed to create a custom battery pack.

Figure 3-23: LiPo battery cells and Protection Circuit Module from Powerizer

A series of four 3.7V, 1100 mAh LiPo battery cells connected to a protection PCB (for safe

charge/discharge) was dimensioned to be the perfect fit inside each leg of the Huggable. The PCB is

a Protection Circuit Module for use with 14.8V Li-Ion batteries at 10A, equipped with an equilibrium

charge function (which is very critical for multiple-cell LiPo packs). The batteries are encased into

the legs; the only way to remove them is by removing the legs themselves. Originally, plates at the

base of the feet removed to reveal accessible batteries, but that was when the original batteries were

much smaller. These plates can still be removed, but the batteries cannot.

3.3.3 MCBMini

As was previously mentioned, the Personal Robots Group was able to use a new piece of

hardware for motor control. Sigurdur Orn developed a robust motor controller solution called the

MCBMini. The MCBMini motor board measures 68mm by 43mm (which is a fairly small size) and

is ideal for use inside the Huggable robot. The board uses an ATMega328 microprocessor with a pair

of Cirrus Logic SA57AHU-FH H-bridge chips to control up to 2 DC motors at a current limit of 8A

These motors can range from 9V to 24V, and the channels support both potentiometer and encoder

feedback. With these types of feedback, both position and velocity can be used to control the motors.

The software that operates the MCBMini uses a PID control system that refreshes at 200Hz. This

system has a number of ways that it ensures the accuracy and safety of the motor in use. It first
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averages all analog data over five measurements before it is sent to the feedback system. Next, it

prevents motor oscillations about the target position by utilizing a target dead-band with hysteresis.

A maximum step can also be set to prevent the motor from moving too far to reach its target position.

Also, if for whatever reason, there is a timeout error longer than 1 second (for example, if the

smartphone crashes unexpectedly), the channels shut down to prevent unwanted operation of the

motor. However, once communication is reestablished, the motor boards rebroadcast and resume

operation without the need to reset. The MCBMini system also comes with a COMM board that uses

RS-485 to talk to the MCBMini stack, but was not used in the Huggable due to lack of space.

However, the MCBMini boards have special solder jumpers that (once the RS-485 chips are

removed) allow the stack to communicate with the 1010 board (mentioned below) directly using

TTL RS-232, which simplifies the connection to a simple TX-RX line. This makes the MCBMini

stack more susceptible to electrical noise, but so far, the Huggable has run normally with this

configuration [27].

3.3.4 The Android 10I0 and the HTC Evo 3D

The two Android powered components in the Huggable are the smartphone itself, and the

board that allows it to communicate with the MCBMini stack. The smartphone is a HTC Evo 3D,

pictured below in Figure 3-24.

Figure 3-24: The HTC Evo 3D for Sprint

It packs a Qualcomm MSM8660 Chipset with a Dual-Core 1.2GHz CPU [23]. At the time of

purchasing, this was the best phone on the market for handling this amount of processing required for

the robot. The phone is responsible for many tasks, such as motor rendering and data handling
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between the MCBMini and the tablet/computer interface. The phone also provides a set of digital

eyes, which are animated to showcase a wider variety of emotion that simple mechanical eyes. In

order to utilize the power of the Evo 3D, the Personal Robots Group found a board that could serve

as a USB host to the phone and other peripherals - the 1010.

Figure 3-25: The 1010 for Android

Developed by Ytai Ben-Tsvi and Sparkfun Technologies, this board works with a Java API to

be fully controllable with Android applications, which makes this very useful for utilizing our Java-

based RIDI library. It not only interprets from Android, but interacts with analog inputs and other

peripheral devices. These features also make it the ideal piece of equipment to have, since it can

transmit to / receive from the MCBMini stack, and it can take in all of the sensor input coming from

the capacitive sensors and the pressure sensors (mentioned below) [28].

3.3.5 Capacitive Sensing

As previously mentioned, the Personal Robots Group consulted with Jetta in using similar

methods that they use in many of their products to do touch sensing. The way that they did it was

using a capacitive IC attached to a copper tape electrode. Unfortunately, the IC that they sent over

was not in stock anymore. Thus, the plan changed to finding a more up-to-date IC, and it was found

in Atmel's QTouch sensors.
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Figure 3-26: Graphic representation of the QTouch Integrated Circuit

The QTouch IC was perfect for the Huggable's touch-sensing needs. The AT42QT 1011

sensor was selected for use as a simple close proximity sensor. What was important to detect is if the

bear has had one of its regions touched. Therefore, all that was needed was a simple IC that would

pull high (registering a max voltage signal) if the electrode was touched. It was important for the

sensor to have a bit of range for detection, since it would need to detect beyond a furry surface. This

particular IC only needed a few components in order to create a proximity field strong enough to

penetrate the fuzzy exterior of the Huggable fur, making it an excellent candidate. The best part: its

extremely small size made it ideal for individual PCB creation.

Rather than design a board populated with these little ICs (which would never fit anywhere in

the robot), the better plan was to design an individual board that was small enough to fit in the tiniest

of spaces close to the electrode it was governing. This also would prevent the capacitance of one IC

to interfere with another. The board designed was very simple, and was organized like a

potentiometer. It measures just over 0.5" long and 0.4" wide. Three wires extend from the board,

with either side being power and ground for the IC, and the middle being the analog signal being

read. One wire extends off of the other side of the board, and is soldered to an external piece of

copper tape (the electrode). As shown in the documentation, the IC can be adjusted for sensitivity by

changing the values of Cs, Cx, and Rs (two capacitors and a resistor, respectively). After some initial

tests involving the covering of a sample electrode with a fur sample, the values that created just the

right sensing field were 1 OnF, 1 OpF, and 10KOhms, respectively [29].

3.3.6 Pressure Sensing

It seems the same story was the case when trying to request a pressure sensing IC. The

original IC sent to the Personal Robots Group was unattainable in the US, and Jetta could not send
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any samples of it. Once again, the plan was changed to finding a more accessible pressure sensor,

and it was found in the Honeywell collection of pressure sensing ICs.

Figure 3-27: The Honeywell SX SMT series pressure sensor

This particular sensor is a Honeywell SX SMT series ceramic pressure sensor, with SMD

pads for PCB attachment [30]. The particular model purchased is rated for 0 to 100 PSI sensing,

which is a great range for the purposes of squeeze bladders in the Huggable. The IC is a Wheatstone

bridge, which is a variable resistor circuit designed to detect small changes in resistance caused by

things like strain, stress, or in this case, pressure due to air influx. However, the output signal is

generally very small (on the order of mV), so an amplification circuit was necessary to get significant

data. This called for an instrumentation amplifier, and one with an easily adjustable resistance. An

instrumentation amplifier is a type of differential amplifiers that amplifies the difference of two

voltage signals while buffering each individual signal to prevent noise and DC offset. Amplifiers

like these often come in an IC package that may or may not have terminals to adjust the output gain.

The desired IC was one that had the adjustable option, just in case that two pressure sensors needed

different amplifications. The IC that was used was an Analog Devices AD8223 Single-Supply

Instrumentation Amplifier with 5 to 1000 as adjustable gain [31]. The gain that this pressure sensor

would need (about 300) could be achieved by using a 274 Ohm resistor, according to the list

provided in the datasheet. This simple pressure sensor combined with the AD8223 fit in a very small

area (-0.4225in2), which made it perfectly fit in a nook in the forearm casing. The hose from the

pressure bladder looped around the elbow joint and tucked into the nook, where it connected to the

pressure sensor. The wires from the whole PCB (also set up like a potentiometer), ran up the arm

and into the head.
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3.3.7 Speaker Amp

In the previous iteration of the Huggable, there was no way to generate external sound from

any of the components already in the robot unless an external speaker was used. Now, with the

Android smartphone in use, the external speaker was seemingly obsolete. However, the external

speaker used generated an unparalleled level of volume and quality of sound for its size, even

compared to the phone's external speaker. The speaker was an iHome IH77 portable speaker, rated

at 2W and 4Ohms. This particular model is no longer in production, but the Personal Robots Group

was fortunate enough to have a spare model for breakdown and analysis. The speaker itself was

nothing special, but the audio amplifier seemed to work exceptionally well for the size and operating

voltage. Thanks to the expertise of fellow grad student Brian Mayton, the audio amplifier was

isolated an identified as an Anpec SA4871 [32].

Figure 3-28: The speaker amplification board

The datasheet provided a simple circuit to easily connect a speaker, and a LED was added to

indicate that the circuit was receiving current. This became useful as an indicator light for the

Huggable when it was activated. The LED is strong enough to shine through the ABS shell, and

gives off a warm, red glow when active. The output is routed through the core of the Huggable,

going up the back, and exiting through the side of the face, where it plugs into the headphone jack of

the smartphone.
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3.4 Software System
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Figure 3-29: Software diagram for the Huggable platform

The software used in the Huggable stems from the architecture currently used in the

Dragonbot platform. Save for a few modifications, the two systems are identical in function. The

next two sections will be brief summaries on how the software works. For a more in-depth

explanation, please refer to Adam Setapen's work on the Dragonbot platform [26].

3.4.1 Summary of the System Pipeline

The software architecture of the Huggable, like many of the robots in the Personal Robots

Group, began with a virtual avatar crafted in Maya by Fardad. In this particular instance, the solid

model from Solidworks was imported into Maya, along with joint indicators (flat cylindrical solids

that indicated axes of rotation) for Fardad to manipulate. Once this model was fitted with moveable

joints, it was sent to Jesse Gray, cofounder of ifRobots and an alumnus of the Personal Robots group

who has programmed many of the features utilized in the RIDI codebase. Jesse took the model and

added attributes to the degrees of freedom that allowed them to interface with RIDl. This basically

involves adding a motor channel within the code of the Maya model (the .mb file) that is accessible

to the codebase.

Once this was complete, the .mb file was sent through xExporter (another creation of Jesse's

that links the newly rigged model to RiD1) to produce the Huggable's .x file and .iy file. The .x file

contains information about joint positions, rotations, and relationships with other joints, along with
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mesh information (the model's "skins") and how they link with joints. The .iy file contains

information about the DOFs' axes of rotation, limits, and the nature of each linked joint. The .x file

needed to be tested in the RIDI environment to make sure it was not broken; once that was verified,
Fardad was able to go ahead and create new animations with the Huggable model in Maya. This

process was repeated with the new animations to make sure they could operate within RiD1. The

new piece to this pipeline was then exporting these files to the HuggableAndroidController

so that both RIDI and the model could run on the smartphone.

The last piece to this pipeline helps the MCBMini system to talk to the Huggable model.

Sigurdor included a .xml file to store on the phone that lists a collection of parameters unique to each

channel of each motor board in the system. (The code can be found in the Appendix section.) The

first set of parameters relates to the PID control of the motors (gains, deadband, etc.). The next set

sets up modes for the channel, such as feedback modes and motor polarities. After this, the motor

channel is given name and description parameters that point to the joints in the .x file with the same

name, thus connecting the MCBMini channels with the appropriate joints. There are also parameters

that specify limits on the joints, and a conversion factor for these limits that translates them into the

limits set in the .iy file. The last two parameters are safeguards for the channels so as to not damage

the hardware on the physical board.

The .xml file (shown in Appendix D) was designed to govern the MCBMini boards

independently from the HuggableAndroidController, so that the PID gains and joint limits

could be initially set. This was actually the first task that was completed in operating the Huggable.

Using a GUI that allows for direct access to the motor channels' parameters, the Huggable was tested

in each degree of freedom to ensure that the gains stabilized the movements, and the limits prevented

unwanted movement. Once these parameters were set, they were written into the .xml file, which

then governed the motors' movements as the HuggableAndroidController was

implemented. These values were later adjusted to complement the animations that were created.

3.4.2 The Teleoperator Interface

Controlling the Huggable is very similar to controlling the Dragonbot platform. A special

teleoperator interface was developed by Sooyeon Jeong to control the Huggable's movements and

receive data from it, such as the video stream, sensor data, and joint information. Figure 3-28 depicts

this interface with all of its features.
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Figure 3-30: The Huggable Teleoperator Interface

1. Video/Audio Stream

The audio stream is a direct stream from the smartphone's microphone that is sent over IRCP

and played through the tablet's speakers. The video is streamed from the smartphone's front-facing

camera over IRCP as well, and filtered to a gray scale image to conserve the data being transferred.

This window also supports a look-at behavior that, when touched, will allow the Huggable to center

its view to where the touched area is specified. This gives the user control over where the Huggable

can focus its gaze.

2. Virtual Character Visualization

To give the user an idea of how the Huggable is oriented in the physical space, the interface

presents a virtual visualization of the bear. This model, created from Maya and exported into RiD1,

receives joint information from the smartphone via IRCP. The Android controller on the smartphone

calls on the 1010 board, which then calls on each MCBMini board and asks for each joint's position

data. This data is then sent to the tablet for a bit of mathematical conversion based on data contained
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in the motor controller's .xml file. The converted data is then utilized by the model to represent the

current state of the bear.

3. Animation Playback

Figure 3-31: Animations stills of intrigue (top) and sadness (bottom)

A list of animation buttons governs the movement of the Huggable robot. Each button is

associated with a certain animation created in Maya by Fardad. When the button is pressed, a string

of data is sent to the Android controller to trigger the desired animation. This animation will also be

represented on the virtual model visualization through joint feedback.

4. Pressure Sensor Meters

Two visual meters are displayed on the tablet to indicate the amount of pressure applied to

each "paw" of the Huggable. Instead of using a raw number, the meter allows the operator to gain a

sense of intensity, which visually registers better than a raw number. The hope is that this intensity

reading can be related to a question asked of the child interacting with the Huggable, and will

provide a visual response for the operator. The data sent to the tablet is actually a high value at its

normal state, which is then brought down when pressure is applied. This data stream is reversed to

visually show the meter increasing with increased pressure.

5. Touch Sensor Map

Another visual to give insight to the operator is the touch sensor map. This map includes all

of the capacitive touch areas on the body. Rather than complicate the Maya model with changing
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color meshes, this map became separate from the visualization as a simple image of the bear with

designated zones. Once a touch zone has been touched, that area will light up on the map, and

remain lit as long as that area is being touched. This information allows the operator to infer as to

how the child is interacting with the bear. For example, if the two side zones are alit, it can be

inferred that the child is picking up the bear. Or, if the ears light up, the child could be tickling the

bear's ears. With this information, the operator can trigger a correct emotional response, and provide

a more natural interaction.

3.4.3 Analog Input Handler

The main difference between Dragonbot and Huggable is that the current prototype of

Dragonbot does not leverage the analog input channels of the 1010. Since the Huggable has 14

different analog signals that need to be read, it was necessary to include handlers in the code to

receive this data and interpret it. The 1010 library features specific interfaces to deal with analog

input. Once the pins being used were labeled, it was a matter of including the interfaces within the

instance of the 1010 class in AndroidIOIOPSerial. Each instance of the AnalogInput

interface corresponds to one of the analog pins on the 1010, so each sensor had its own instance of

Analog Input associated with it, labeled like so:

AnalogInput pressLeft = ioio.openAnalogInput (38);

To read the value, a simple AnalogInput .read () command is used that returns a value

between 0 and 1 [33]. The exact voltage signal is not necessary, because these signals are being

represented graphically. Once the values are collected, they are sent over IRCP, and the teleoperator

interface receives them. Since the motor controller and the analog input handler are naturally in

concurrency (that is, they both struggle against each other to utilize the 1010 class in

AndroidIOIOPSerial), a "lock" was created to alleviate a potential concurrent error. This

"lock" (called ioio lock in the code) allows for only one of the controllers to have access to the

1010 class at a time, thus acting as a software relay. As of now, this system is still being developed,

but is showing promising signs of operation.
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Chapter 4

Evaluation
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4.1 Technical Evaluation

Figure 4-1: The Huggable, fully furred and with eyes operational

In the performance of animations, the Huggable was not exactly perfect in emulating its

virtual self. Fardad's intended animations had to be slowed down to 8 times the normal speed so that

the motors could actually perform the intended movements. Also, the backlash in many of the joints

(e.g. the shoulders' up and down movement, the head tilt) caused some of the movements looked

limp, as if the motor was struggling to keep the joints in place. This prevented the Huggable to

replicate the smoothness and flow of Fardad's animations. Another interesting case is that the fur

considerably limited the range of motion of certain DOFs, such as the arms and the elbows. It

seemed that the fur was a bit too thick, and got in the way of the arms whilst they moved around in

its own space. However, most of the other joints were able to move with enough speed to match the

intended animation, and the digital eyes were able to portray the suggested emotion that went along

with the animation.
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Latency in the user interface was not able to be tested properly, because it was discovered

that the phone had issues with hosting all of the animations. In order to run animations for testing,

each one had to be loaded manually on the phone to ensure that the phone would not crash. Due to

this memory issue, video streaming and audio streaming were also not tested properly.

4.2 User Survey

Before sending the Huggable to Boston Children's Hospital for initial research and

evaluation, a "pre-study" was conducted to first evaluate some simple behavior animations. Twenty

MIT students and alumni, ranging in the ages of 19 to 24, participated in this user evaluation. The

academic backgrounds were mixed and the results were collected anonymously to eliminate the

proctor's knowledge of gender, age, race, or background of those participating. The evaluation was

done through an online survey, using small video clips of the Huggable for rating. Only the gratitude

of the researcher was offered as compensation for the participants.

4.2.1 Survey Design

The online survey was very simply structured using a Google form. Each participant would

"turn the page" to find an unlisted Youtube link that showcased the Huggable conveying an emotion.

The video clip was only labeled by a number, and the user had to guess the emotion being conveyed.

The user wrote down their guess and rated how confident he or she was in the response on a 7-point

Likert scale. Then, after "turning the page", the emotion was revealed, and the user rated how

correct their answer was. Both this question and the questions that followed were rated on 7-point

Likert scales as well. The endpoints on the following Likert scales were levels of agreement, with 1

being strong disagreement and 7 being strong agreement. The user was first asked if he or she

thought the Huggable conveyed this emotion with ease (i.e. did the robot look like it was struggling

to move or did It look unhindered), and then was asked if the animation looked natural and not

mechanical. Then, the user was asked, in three separate questions for clarity, if the animation was

too slow, too fast, or the correct speed, respectively. The survey contained five videos of five

emotions: surprised, intrigued, happy, sad, and confused, in that order. At the end, the user was

asked three general opinion questions about the robot, asking if the robot was ready for research and

ready to interact with children (once again rated on a 7-point Likert scale of agreement). From the

observations in the technical evaluation, it was hypothesized that the users would not be able to guess
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the emotions very well (or not be confident in their answer), and rate the ease/nature/speed to be

poor. It was also hypothesized that the user would think that this robot is not research-ready at all,
even with the consideration that this is still a prototype.

4.3 Results

Table 4-1: Average ratings for online user survey

Video #1 - Surprised Average Rating Standard Dev.

How confident is your answer? 4.4 1.1

How close was your answer? 4.8 2.7

The robot conveyed this emotion with ease. 4.1 1.7

The emotion conveyed seemed natural and not mechanical. 4.0 1.7

The animation was too slow. 4.6 1.8

The animation was too fast. 2.2 1.1

The animation was the correct speed. 3.9 1.9

Video #2 - Intrigued Average Rating Standard Dev.

How confident is your answer? 4.0 1.6

How close was your answer? 4.4 2.1

The robot conveyed this emotion with ease. 2.5 1.4

The emotion conveyed seemed natural and not mechanical. 3.5 1.7

The animation was too slow. 3.4 1.9

The animation was too fast. 2.0 1.1

The animation was the correct speed. 4.3 2.1

Video #3 - Happy Average Rating Standard Dev.

How confident is your answer? 4.2 1.6

How close was your answer? 4.1 1.7

The robot conveyed this emotion with ease. 2.0 1.9

The emotion conveyed seemed natural and not mechanical. 3.2 1.6

The animation was too slow. 4.8 1.8

The animation was too fast. 2.0 1.1

The animation was the correct speed. 3.2 1.5

Video #4 - Sad Average Rating Standard Dev.

How confident is your answer? 5.0 1.9
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Table 4-1(Cont.): Average ratings for online user survey

How close was your answer? 6.1 1.4

The robot conveyed this emotion with ease. 5.1 1.7
The emotion conveyed seemed natural and not mechanical. 4.6 1.8

The animation was too slow. 3.0 Standard Dev.

The animation was too fast. 1.8 1.1

The animation was the correct speed. 5.0 2.7

Video #5 - Confused Average Rating 1.7

How confident is your answer? 4.4 1.7

How close was your answer? 4.5 1.8

The robot conveyed this emotion with ease. 4.5 1.1

The emotion conveyed seemed natural and not mechanical. 5.0 1.9

The animation was too slow. 3.1 Standard Dev.

The animation was too fast. 2.3 1.6

The animation was the correct speed. 4.7 2.1

General Statements Average Rating 1.4

The robot looks "huggable" and nonthreatening. 5.2 1.7

The robot looks robust enough for research in the field. 5.5 1.9

I would be comfortable allowing a child to interact with this
roo.5.7 1.1

robot.

The Likert data were analyzed by averaging across the participants and plotting the relevant

averages against each other, with standard deviations shown as calculated in Excel. The differences

were analyzed using a t-test, and alpha was set to 0.05 as the significance tolerance. The t-test uses
the value determined by ratio of the difference of averages to the standard error of deviation (1), as

shown below [34].

XI -X 2

2 2

ni n2
- -- -- (1)
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Here, X represents the mean of the group, a represents the standard deviation of the group,

and n represents the number of participants for the group of data. This value is compared to an alpha

value based on the degrees of freedom (here, calculated as n-1) found in a student t-chart, and was

labeled as a significant difference if the corresponding alpha value was less than 0.05 [35].

The first comparison chart, shown in Figure 4-2 pitted confidence against accuracy in

guessing the emotion that the robot tried to convey. In this case, confidence refers to the question,

"How confident is your answer?" and accuracy refers to, "How close was your answer?" People

were more confident and more accurate in determining sadness than any of the other emotions

(p<0.05). The only insignificant difference in this case was the confidence between "sad" and

"surprised" (p>0.05). The differences between confidence and accuracy were insignificant except in

the case of sadness (p<0.05). It is interesting to note that, although insignificant (p>0.05), it

appeared that people were more confident than accurate in determining "happy".

Confidence vs. Accuracy in Emotion Analysis
8
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U Confidence

3 i Accuracy
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Emotion

Figure 4-2: Comparison of confidence versus accuracy by rating

The second comparison chart, shown below in Figure 4-3, compared ease versus naturalness

of movement for the animations. Ease refers to the statement "The robot conveyed this emotion with

ease." and naturalness refers to "The emotion conveyed seemed natural and not mechanical." There
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was not a very strong agreement in either category for the Huggable's movements. Both "intrigued"

and "happy" were rated as the most struggled of animations (p<0.05), while "sad" has the least

amount of struggle compared to all the others (p<0.05), except "confused" (p>0.05). However, the

naturalness of "intrigued" and "happy" were rated higher than their ease (p<0.05). No other

differences between ease and naturalness were significant (p>0.05).

Ease vs. Naturalness of Movement
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Figure 4-3: Comparison of ease versus naturalness of movement by rating

The third comparison chart, shown below in Figure 4-4, looked a side-by-side comparison of

the three speed statements. Rather than make this one rating of speed, the researcher was curious as

to how the users would respond with these being separate statements on which to agree or disagree.

One thing is certain; across the board, none of these animations were too fast (p<0.05), except in the

case of "confused" in which there was an insignificant difference between too fast and too slow. The

"surprised" and "intrigued" animation had insignificant differences between too slow and correct

speed (p>0.05), "happy" was rated as too slow versus correct (p<0.05), and both "sad" and

"confused" were rated as the correct speed above the other choices (p<0.05).
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Comparison of Animation Speed

U'-a

7

6

5

4

3

2

1

0

* Too Slow

*Too Fast

* Correct Speed

Surprised Intrigued Happy Sad Confused

Emotion

Figure 4-4: Comparison of animation speed by rating

The last chart, shown below in Figure 4-5, compared the general statements against each

other. As shown, the statements are not significantly ranked higher or lower than one another

(p>0.05). However, all three statements are significantly weak in their agreement, but in agreement

nonetheless (p<0.05). The results of the preliminary study were surprising, but a bigger sample size

with a better constructed prototype should give a better idea of its abilities, along with the capacity

for richer research to be done.
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Comparison of General
Statments

8- -

7

6

5

N Non-Threatening?
4

M Robust?

3 -mN Interact w/ Child?

2

1

0
General Statements

Figure 4-5: Comparison of general statements by rating
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Chapter 5

Future Work and Conclusion
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5.1 Future Work

5.1.1 Children's Hospital Boston

The Huggable Project was designed for future deployment into the hospital setting. The

Personal Robots Group is working closely with the Boston Children's Hospital to put forth a research

initiative, using the Huggable Project as the testing apparatus. The research is aimed to evaluate the

Huggable's abilities to quantify and socially mitigate stress and anxiety in child patients, around the

ages of 3 to 10. The Huggable would be placed in the Pediatric Intensive Care Unit (PICU) and the

Oncology units to interact with children and help them throughout the healing process. The robot

will hopefully improve the quality of experience in the hospital for children and their families by

being a consistent and nonthreatening character that can provide social assistance.

The Child Life Group will use this robot in a series of sessions that can either be play

therapy, simple social interaction, or preparedness sessions. This group is comprised of child

specialists that use techniques like developmental interventions and play to help patients and families

get through their time at the hospital, and to educate them about their situation [36]. The Child Life

staff may use this robot to help instruct children in medical procedures. Meanwhile, the staff can

provide feedback to further improve the Huggable. Children's Hospital and the Personal Robots

group will continuously work on the Huggable to reduce the cost and provide a more autonomous

system that can ultimately travel home with the child for post-care.

5.1.2 Redesign and Second Iterations

As hinted in some of the sections of this thesis, this iteration of the Huggable could use many

improvements for better functionality. Future work for the Huggable will include a second iteration

of the design, to fix many of the interior problems that were found. Below lists all of the necessary

details that need to be fixed in the next iteration:

* General

o Improved spacing for wires to be placed

o Better wire/mechanical connectors for easy module removal

o Better access to fasteners

o Better structure design to prevent warping/misalignment

o Hex screws instead of Philips head screws used to fasten all shells
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o Press fit slots for capacitive sensor PCBs

o Reduce cost by using less expensive motor configurations without encoders

o Use motors rated for lower voltage and slightly higher torque/RPM

o New MCBMini for lower-voltage motors

o Dial down analog voltage signals to prevent overloading 1010 pins

The Base/Legs

o Change electrical hardware / batteries for operation at a lower voltage

o New design for battery pack and charging port - meet toy standards

o Allow legs to swing down but create hard stops to prevent legs from swinging too far

back or too far forward

o Better on/off indication and power switch

o Latched base for easy access to electrical hardware for troubleshooting

e The Arms

o Stronger casing for pressure tube

o Include heartbeat sensor system

o Press fit slot for pressure sensor PCB

o Improved bearing block for elbow joint

o Designated path for elbow potentiometer wire to travel

o Improved shoulder gear train to prevent spur gear backlash

o Better potentiometer casing to include room for terminals and wires

o Position wires to travel through body and closer to arm rotation axis for less tangle

and more concealment (if possible)

o More modularity for easy removal and troubleshooting

dy

Better clearance for motor casing fasteners

Press fit slot for speaker amp board

Actual slot to press fit onto waist potentiometer shaft

Remake neck bushing to include actual ball bearing

Wider channel for wires to pass

Better bearing for arm rotation

Better track for waist bend

ad
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o Better stabilization of the head

o Redesign head tilt / head nod mechanisms for stability

o Redesign head structure to include new ear mechanism

o Redesign muzzle mechanism with new spring

o Perforate the head shell for air ventilation

o Better accessibility to electronic hardware of troubleshooting

o Redesign shells for easy removal

o Redesign ear mechanism for modularity

o Extend out the muzzle bar to avoid mask and fur collision

With these listed changes, the Huggable should operate much better.

5.2 Conclusion

The purpose of this thesis was to present the Huggable, a new socially assistive robot

designed to interact with children in hospitals and collect sensory information that can help doctors

and nurses tend to their patients better. The DFM process used to reconstruct this project was one

containing many valuable lessons of time management, design considerations, product requirements,

and communication. The prototype that resulted was both a dramatic step in a new direction and a

huge learning experience in both mechanical and electrical hardware. The software developed was a

chance to further improve and generalize the RIDl -Android pipeline for future robots of the

Personal Robots Group. With this new robot taking an active role in new research with Children's

Hospital Boston, the future of the Huggable Project looks promising.
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Appendix A: Huggable Project Logbooks
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Week I and 2 Log Book

Contents of this Book:

Pages from Notebook from Past Two Weeks
Huggable Desired Specifications vI
Huggable Desired Specifications v2
Huggable Desired Specifications v3
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Huggable Project - Desired Specifications:

Project Dimensions:

Major Dimensions -
Total Heiaht: 300 - 350 mm

Total Width: 150 - 200 mm
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Head Dimensions -
Heiaht: 120 - 160 mm

Length: 150 - 170 mm
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Width- 1 nn - 180 mm

Body Dimensions -
Height: 170 - 190 mm
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Width: 130 - 150 mm
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Arm & Leg Dimensions -
Length: 170 - 190 mm
Circumference: 160 - 170 mm
*Note: arm shape will change, hence, no picture.
YES. I think the arm should change shape. don't need that bend in it. Might be worth having
fardad provide as shape with more of a paw.

Degrees of Freedom:

Total Independent Degrees of Freedom: 11
- 1 for the ears: Ears curl (inward)
- 3 for the head: Head up/down, Head/waist rotate (left/right), Head tilt (left/right).
- 3 for left shoulder: LS rotate (forward/back), LS hinge (up/down), Elbow/wrist inward
- 3 for right shoulder: RS rotate (forward/back), RS hinge (up/down), Elbow/wrist inward
- 1 for waist: Waist bend (up/down)
Total Coupled Degrees of Freedom: 3
- 2 for wrists: Left wrist inward (coupled with left elbow), Right elbow (coupled with right
elbow)
- 1 for waist: Waist rotate (left/right) (coupled with neck rotation)
Range of DOFs
*Note: Each ear is not independent; ears would move together
*Note: We would like for these motions to be quiet and back-drivable
WHERE ARE THE MIDPOINTS ON THESE?
DOF maximum speed: 10 rpm (needs to be faster for high energy expressions... we want
smooth movement, most the time movement will be warm and friendly.)
DOF maximum acceleration: 3 rpmA2
- Ears curl: 20 degrees (deflection) -- probably want more... fold over more.. .get fardad's
opinion
- Head up/down: 50 degrees (more important to look further up than down... will be looking
up at kids a lot). Waist bend will help it to look down.
- Head rotate (left/right): 70 degrees (can you do more... closer to 120?)
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- Head tilt (left/right): 30 degrees
- Shoulder rotate (up/down): 150 degrees
- Shoulder hinge (up/down): 60 degrees (can we do more to go above horizontal? Say
120?)
- Elbow: 60 degrees (can we go 90?)
- Wrist: 20 degrees (get fardad to weigh in on this)
- Waist rotate (left/right): 40 degrees

Features and Components:

Vision
- Wide-angle view camera in nose
- Range: 100 degrees -- can you find this?
- Resolution: 640x480
- Need wireless transmission package. Phillip will tell you how to do this.
Pressure / Capacitive Sensing
- Detect levels of contact on surface under the fur
- Pleo's capacitive sensing tech would be acceptable
- FSR or air bladder to detect pressure. Adam makes good point .Good for children in
hospital to indicate how much pain they feel by squeezing its arm. Air bladder is probably
way to go like in squeeze doll. Dan may be able to answer some questions.
- Capacitive sensing all around body (major zones): Top of head, Back of head,
Nose/Snout, Front of Body, Back of Body, Arms, Forearms, Hands, Legs, Feet,
- Pressure sensing focused to just limbs (whole body optional).
Motor Feedback
- Analog potentiometers for joint data
- Currently using P12426CT-ND (POT 10K OHM 10MM 347 DEGREE SMD)
- We like this component, easy to use and slim profile
- Would like to place passive feedback in ankles
- Motor encoders: 78-100 counts per 1 degree resolution at motor shaft
Audio Input/Output
- Microphone to be placed in head, speaker to be placed in body
- We would like to use similar mic/speaker that Pleo and Autom uses.
Processing
- Using Android-based smartphone to handle higher-level component processing
- Will need to make mount in the head to place general smartphone (adjustable)
- Utilize screen for virtual eyelids/eyes/pupil/iris [NOT eyebrows] for expressive eyes (with
clear domes for eyeballs). May want these to be clear but solid so touch screen-- may add
depth to eyes.
- Magnetic muzzle faceplate to cover phone and complete head
Vitals Recording System
- Implement simplified EKG system through contact in Huggable's hands
- Conductive contacts in hands (copper thin plate)
- Output from circuit is voltage for processing/analyzing
Other Things
- We want Huggable to survive at least 1m drop
- Desired battery life: 3 hours [More if possible----- how fast can we recharge. Ask Adam S.]

99



- Desired duty cycle: 60% (I think)
- Desired number of models: 10
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Huggable Project - Desired Specifications:

Project Dimensions:

Major Dimensions -

.

.

.

Total
Total
Total

Height: H = 300 - 350 mm
Length: L = 200 - 250 mm
Width: W = 150 - 200 mm

Final Appearance

Features by Module
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Head

* Degrees of freedom
o Ear curl: EC = 55 degrees (both ears move simultaneously)
o Neck rotation: NR = 120 degrees
o Neck tilt: NT = 30 degrees
o Neck up/down: NUD = 50 degrees (more up then down)

* Wide FoV camera
o Range: 100 degrees (desired), 80 degrees (will settle for)
o Resolution: 640 x 480
o Need wireless transmission package

* Android phone in head
o Will need to make cradle mount in the head to place inserts for different smartphones

(we would 3D print molds for phones, just need space to put mold)
o Utilize screen for virtual eyelids/eyes/pupil/iris for expressive eyes (with clear domes

for eyeballs)
o Magnetic muzzle faceplate to cover phone and camera, and complete head

* Microphone in head
o Would like mic specs similar to Pleo and Autom
o Need omnidirectional microphone, detect left/right channel (at least),

front/back/left/right (best)
e Capacitive sensing

o Would like Pleo technology implementation (2mm detection)
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Arms

* Degrees of freedom
o Shoulder rotate: SR = 150 degrees
o Shoulder Hinge: SH = 110 degrees
o Elbow: E = 90 degrees
o Wrist: W = 40 degrees (coupled with elbow)
o Arms operate independently from each other
o Shoulder hinge operates independently from elbow

* EKG Electrode
o Exposed through fur
o Conductive contacts in hands (copper thin plate)
o Routed to custom circuit board to output heartbeat signal as analog voltage

* Capacitive sensing
o Would like Pleo technology implementation

* (Possible) Pressure sensing
o Done with big FSR pads (perhaps)
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Body

* Degrees of freedom
o Waist bend: WB = 40 degrees
o Waist rotate: WR = 40 degrees

. Battery pack
o Desired battery life: 3-6 hours

" Capacitive sensing
o Would like Pleo technology implementation

" Speaker
o iHome iH77 speaker (CMSO401KL-lX)
o CMS series, 20-270Hz, 8 Ohms, 4 Watts, Magnetic, 40mm L x 40mm W x 14.5mm

H, 86dB pressure level
o Better speaker if possible

* Custom motor boards and power management boards
o My group will design these; will be great if they can be made here
o Need to include space to house them
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Legs

* Passive degree of freedom in ankle
o Just for sensing if someone plays with foot

" Capacitive sensing
o Would like Pleo technology implementation

. Pressure sensing
o Maybe implement air bladder or FSR here for sensing

Motor I Feedback

* Maximum velocity: 15-20 RPM (we want smooth movement)
* Analog potentiometers for joint data
* Currently using P12426CT-ND (POT 10K OHM 10MM 347 DEGREE SMD)
* We like this component, easy to use and slim profile
. Would like to place passive feedback in ankles using these pots
* Motor encoders: 78-100 counts per 1 degree resolution at motor shaft

Processing

* Using Android-based smartphone to handle higher-level component processing.
. We would like a cradle in head to push open/push close to insert smartphone
. Different phones, but at least view screen of 4.3"
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Other Things

* Age range: 5+
* Duty cycle: 20%
* Replicate fur length from sample bear
e Most important feature is to fit Android phone in head with face cover, then degrees of

freedom, then capacitive sensing, then EKG, then pressure sensing.

Schedule
Week 1: Review and finalize "wish list"
Week 2: Spec components like cameras, cap sensing, etc., start CAD modeling
Week 3: CAD modeling
Week 4: CAD modeling
Week 5: CAD modeling
Week 6: Make prototype
Week 7: Make prototype
Week 8: Make prototype
Week 9: Review/test prototype
Week 10: Modify prototype / more testing
Week 11: Modify prototype / more testing
Week 12: Finish engineering models
Week 13: Finish engineering models
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Huggable Project - Desired Specifications (unfinished yet)

Old Huggable v3.0 Current Components

Head

* 4 Microphones in head
o 2 Microphones in Ears (Supercircuits PA3)
o 1 Microphone in Back of Head (Supercircuits PA3)
o 1 Microphone in Front of Head between cameras (Supercircuits PA3)

. Sensitive Skin System
o Head

* Speaker in Mouth
o Modified iHome iHM7

* Cameras in the Eyes (Electronics)
http://www.supercircuits.com/search?keywords=snake+video

o Color Supercircuits PC229XP
o B/W Supercircuits PC224XP (note newer model PC229HRXP)

* 3 DOF
o Neck Nod

- Potentiometer: Digikey
- Motor: MicroMo 2232U012SRIE2-512
- Mechanisms: SDP-SI

o Neck Tilt
- Potentiometer: Digikey
- Motor: MicroMo 2232U012SRIE2-512
- Mechanisms: SDP-SI

o Ears
- Potentiometer: Digikey
- Motor: MicroMo 2232U012SRIE2-512
- Mechanisms: SDP-SI

Body

* Video Digitizers (2)
o Kworld DVD Maker 2 http://us.kworld-

global.com/main/prod-in.aspx?mnuid=1306&modid=10&pcid=73&ifid=17&prodid=
102

* 5 DOF
o Left Shoulder Rotate:

- Potentiometer: Digikey
- Motor: MicroMo 2232U012SRIE2-512
- Mechanisms: SDP-SI
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o Right Shoulder Rotate:
- Potentiometer: Digikey
- Motor: MicroMo 2232U012SRIE2-512
- Mechanisms: SDP-SI

o Left Shoulder Up/Down:
- Potentiometer: Digikey
- Motor: MicroMo 2232U012SRIE2-512
- Mechanisms: SDP-SI

o Right Shoulder Up/Down:
- Potentiometer: Digikey
- Motor: MicroMo 2232U012SRIE2-512
- Mechanisms: SDP-SI

o Neck Rotate:
- Potentiometer: Digikey
- Motor: MicroMo 2232U012SRIE2-512
- Mechanisms: SDP-SI

. Pot/Temp Board (Electronics)
o Left Ankle
o Left Hip In/Out
o Left Hip Up/Down
o Right Ankle
o Right Hip In/Out
o Right Hip Up/Down

. IMU
* Sensitive Skin System

o Left Leg
o Right Leg
o Left Arm
o Right Arm
o Body

. 8-Channel Motor Driver Board
* Hard Drive
* Embedded PC
* 802.1 In WiFi USB Adapter
* Voltage Regulator Board

Components of Interest in Old Version

Motor: Micromotors Faulhaber 2232U012SR
Nominal voltage: 12 V
Terminal resistance: 4,09 f
Output power: 8,7 W
Efficiency, max.: 86%
No-load speed: 7 100 rpm
No-load current (with shaft 0 2 mm): 0,0175 A
Stall torque: 0,477 kg-cm
Friction torque: 2.855 g-cm
Speed constant: 595 rpmN
Back-EMF constant: 1,68 mV/rpm
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Torque constant: 16 mNm/A
Current constant: 0,062 A/mNm
Slope of n-M curve: 152 rpm/mNm
Weight: 62 g
Recommended settings
Speed up to 8 000 rpm
Torque up to 10 mNm
Current up to (thermal limits) 0,94 A
Microphone: Supercircuits PA3
Frequency: 20 - 16 000 Hz
S/N ratio: > 58 db
Power: 12 V DC @ 20 mA (max)
Speaker: iH77 Mini Speaker
CMS series
Range: 20-270Hz
Impedance: 8 Ohms
Power: 4 Watts
Type: Magnetic
Dims: 40mm L x 40mm W x 14.5mm H
Pressure: 86dB
Camera: Supercircuits Snake Camera
B/W Camera
Horizontal Resolution: 768
Imager Manufacturer: Sony
Imager Type: Ex-View CCD
Lines: 570
Lux: 0.005
Vertical Resolution: 494
Max Focal Length (mm): 3.7
Ultra Pinhole: yes
Physical Characteristics
Depth (in): .45
Height (in): .75
Mounting Bracket Included: no
Width (in): .45
Amps DC (mA): 70
Volts DC: 12
Color Camera
Imager Manufacturer: Sony
Imager Type: Ex-View CCD 510 x 492 pixels
Lines: 540
Lux: 0.05
Max Focal Length (mm): 3.7
Ultra Pinhole: yes
Depth (in): 0.45
Height (in): 0.75
Width (in): 0.45
Amps DC (mA): 70
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Volts DC: 12

Components for New Version

Motor: TBD
Camera: TBD
Microphone: Billion Elite BE6027G
http:#lwww.billionelte.cn/eshop show.asD?Id=1 21
RESONANT IMPEDANCE(Kfl): s 2.2
STANDARD OPERATION VOLTAGE (V): 3
SENSITIVITY(dB): 60±2
FREQUENCY RANGE(Hz): 20-----20000
DIRECTIVITY: OMNIDIRECTIONAL
Speaker: TBD
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Weeks 3 and 4

Contents of this Book:

1. Motor / gearbox selection for the Huggable

2. Fur selection for new Huggable concept

3. v4 Mechanical Layout Pictures

a. v4.1 Layout (First attempt at layout)

b. v4.2 Layout (Second attempt with rudimentary mechanisms)

C. v4.3 Layout (New Concept Outline)

d. v4.4 Layout (Final Concept Outline)

e. v4.5 Layout (Proper Mechanical Outlines)

4. Waist test pictures

5. Neck test pictures
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Motor / Gearbox Selection for Motions

DC Carbon-brush motors PG16M050 Geared Motor Series Ii5
PGI6MO50 Typic applications:

Opticat equipment,Montitonng cameras, Kind of tger-
electrons tocks.Automatic energy savingbathWater IC
card,Toys and gifts,Office equipment,Household
appliancesAutomatic actuator.

* aImUe msU..4 ew meqe sedeingeasu

Neek U agem ase, me IekM 6tit won

NSow tU seem

shegwaer teis -18amass

Rdio ati
iiuiiniin

4+8 W I I I 4 I
27 32 97 115 137 350 1 493 1250 144 1760 200 2480 4000 4000 4000 40004000 4000

[2V
1625 1369 407 343 289 10 85 72 61 25 21 18 152 12863 5 4 4 5 3,8 3,2 2 7
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4. 4.75 4. 4314 2.Okgf - cm 6.Okgf - cm 90% 1 22.0 Different

16. 19, 22.5 16. 19. 22wis 3-0kgf - cm 9.kgf - am 81% 2 27.1 Same

04. 768 90 04. 70. 90v4 4.Okgf - am 12kgf. cm 73% 3 32.2 Different

107 10711m 4.kgf - cm 12kgf o cm 73% 3 32.2 Different

250. 304 250. 304 6.0kgf e cm 18kgf ' am 65% 4 37.3 Same

301. 428 361. 428me 6.Okgf - cm 18kgf - am 05% 4 37.3 Same

509 509772 6.0kgf - cm 18kgf- cm 65% 4 37.3 Same

1024, 1218 1024, 1218 1Okgf.cm 30kgf -m 59% 5 42.4 Different

1444. 1715 1444, 1714w4 10kgf + cm 30kgf - m 59% 5 42.4 Different

2036. 2418 2036ms4. 2418em724 10kgf * cm 30kgf c am 59% 5 42.4 Different

This gearbox will allow the Mabuchi 280 motor to handle the load of operating the waist.
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Fur Selection for Huggable

The fur selected here is nice and soft, ideal for Huggable application.
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v4.1 Layout Pictures
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v4.2 Layout Pictures
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v4.3 Layout Pictures
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v4.4 Layout Pictures
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Waist Test Pictures

The following pictures depict a motion test of the waist at +/- 20 degrees for clearance.
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The following pictures depict a range of motion test for the neck at +/-15 degrees for left to right motion,

and +35/-15 degrees for up to down motion. This was to make sure the head shell would not interfere

with the body shell.
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Appendix B: Final Mechanical Layout
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Appendix C: Electrical Component Schematics
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Appendix D - Selected Source Code
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D.1 .XML File

<?xml version="1.0" encoding="UTF-8"?>

<Root>

<MotorBoard
class="prg.interfaces.software.android.motor.AndroidIOIOSerialBus">

<MiniBoards>
<MiniBoard>

<id>1</id>
<faultmode>OFF</faultmode>
<Channels>

<Motor>
<channel>A</channel>
<pgain>150</pgain>
<dgain>30</dgain>
<igain>0</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>
<output divisorpwr2>3</outputdivisorpwr2>

<enable risingtimems>2000</enable risingtimems>
<direction>FLIPPED</direction>
<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>
<name>leftElbowBn</name>
<description>Left Elbow</description>
<centerticks>490</centerticks>
<maxticks>490</maxticks>
<min _ticks>280</minticks>
<ticksperunit>-150</ticksperunit>

<current limit>2000</current limit>
<slowenableconst>2000</slowenableconst>

</Motor>
<Motor>

<channel>B</channel>
<pgain>100</pgain>
<dgain>30</dgain>
<igain>4</igain>
<deadband>0</deadband>
<maxstep>O</maxstep>
<outputdivisorpwr2>3</outputdivisorpwr2>

<enable-risingtimems>2000</enable risingtime ms>
<direction>REGULAR</direction>
<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>
<name>leftShoulderUpDownBn</name>
<description>Left Shoulder</description>
<center ticks>740</center ticks>
<maxticks>740</maxticks>
<min _ticks>490</minticks>
<ticksper-unit>-500</ticksperunit>
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<currentlimit>2000</currentlimit>

<slow enable const>2000</slow enable const>

</Motor>

</Channels>
</MiniBoard>

<MiniBoard>

<id>2</id>

<faultmode>OFF</faultmode>

<Channels>

<Motor>

<channel>A</channel>
<pgain>80</pgain>
<dgain>15</dgain>

<igain>2</igain>

<deadband>0</deadband>
<maxstep>0</maxstep>

<outputdivisorpwr2>3</output divisorpwr2>

<enable risingtime ms>2000</enablerisingtimems>
<direction>FLIPPED</direction>

<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>

<name>leftShoulderRotateBn</name>
<description>Left Arm</description>

<center ticks>430</center ticks>

<maxticks>680</maxticks>

<min _ticks>430</min ticks>

<ticks perunit>150</ticksper unit>

<currentlimit>2000</currentlimit>

<slowenableconst>2000</slowenableconst>
</Motor>

<Motor>

<channel >B</channel>
<pgain>80</pgain>
<dgain>30</dgain>
<igain>0</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>

<outputdivisorpwr2>3</output-divisor_pwr2>

<enable rising_timems>2000</enablerisingtimems>
<direction>FLIPPED</direction>

<feedback mode>POT MODE</feedback mode>
<controlmode>POSITIONMODE</controlmode>
<name>headTilt</name>
<description>Head tilt</description>
<centerticks>580</center ticks>
<maxticks>830</maxticks>
<min ticks>480</min ticks>
<ticksperunit>-643</ticksper unit>

<currentlimit>2000</currentlimit>

<slowenableconst>2000</slowenableconst>
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</Motor>
</Channels>

</MiniBoard>
<MiniBoard>

<id>3</id>
<fault mode>OFF</fault mode>
<Channels>

<Motor>
<channel>A</channel>
<pgain>100</pgain>
<dgain>30</dgain>
<igain>2</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>
<output divisorpwr2>3</output_divisorpwr2>

<enable-risingtimems>2000</enable risingtime ms>
<direction>REGULAR</direction>
<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>
<name>neckRotateBn</name>
<description>Head Rotate</description>
<centerticks>770</centerticks>
<max ticks>900</max ticks>
<min _ticks>640</minticks>
<ticksperunit>1334</ticksperunit>

<current limit>2000</currentlimit>
<slowenableconst>2000</slowenable const>

</Motor>
<Motor>

<channel>B</channel>
<pgain>50</pgain>
<dgain>100</dgain>
<igain>0</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>
<outputdivisorpwr2>3</outputdivisorpwr2>

<enable risingtimems>2000</enable rising time ms>
<direction>REGULAR</direction>
<feedback mode>POT MODE</feedback mode>
<control mode>POSITIONMODE</control mode>
<name>snoutUpDownBn</name>
<description>Muzzle Wiggle</description>
<centerticks>1023</centerticks>
<maxticks>1023</maxticks>
<min _ticks>455</minticks>
<ticks_perunit>-2000</ticksper unit>

<current limit>2000</current limit>
<slowenableconst>2000</slowenable const>

</Motor>
</Channels>
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</MiniBoard>

<MiniBoard>
<id>4</id>

<faultmode>OFF</faultmode>

<Channels>

<Motor>

<channel>A</channel>
<pgain>120</pgain>

<dgain>30</dgain>
<igain>5</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>

<outputdivisor_pwr2>3</outputdivisorpwr2>

<enable rising_timems>2000</enablerisingtimems>

<direction>FLIPPED</direction>

<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>

<name>rightEarFlapBn</name>

<description>Ear Wiggle</description>
<centerticks>615</centerticks>
<maxticks>680</maxticks>

<min _ticks>500</min ticks>

<ticks_perunit>1000</ticksperunit>

<current limit>2000</current limit>

<slowenableconst>2000</slowenableconst>

</Motor>

<Motor>

<channel>B</channel>

<pgain>100</pgain>

<dgain>30</dgain>
<igain>0</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>

<outputdivisorpwr2>3</output_divisor_pwr2>

<enable risingtime ms>2000</enablerisingtime ms>
<direction>FLIPPED</direction>

<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>

<name>hipBn</name>
<description>Waist Bend</description>
<center ticks>890</center ticks>
<maxticks>915</maxticks>

<min _ticks>850</min ticks>
<ticksperunit>-153</ticksper unit>

<currentlimit>2000</currentlimit>

<slowenableconst>2000</slowenableconst>
</Motor>

</Channels>
</MiniBoard>
<MiniBoard>
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<id>5</id>
<faultmode>OFF</faultmode>
<Channels>

<Motor>

<channel>A</channel>
<pgain>80</pgain>
<dgain>15</dgain>
<igain>2</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>
<output divisorpwr2>3</output_divisorpwr2>

<enable-risingtime ms>2000</enable rising-time-ms>
<direction>FLIPPED</direction>
<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>

<name>rightShoulderRotateBn</name>
<description>Right Arm</description>
<center ticks>750</center ticks>
<maxticks>750</maxticks>
<min _ticks>630</minticks>
<ticks_per_unit>-150</ticksperunit>

<current limit>2000</current limit>
<slowenableconst>2000</slow enable const>

</Motor>

<Motor>

<channel>B</channel>
<pgain>70</pgain>
<dgain>30</dgain>
<igain>0</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>

<outputdivisorpwr2>3</output_divisorpwr2>

<enable-risingtimems>2000</enablerisingtimems>
<direction>FLIPPED</direction>
<feedback mode>POT MODE</feedback mode>
<controlmode>POSITIONMODE</controlmode>

<name>headUpDown</name>
<description>Head Nod</description>
<centerticks>593</centerticks>
<maxticks>816</maxticks>

<min ticks>370</min ticks>
<ticks_per_unit>-463</ticksperunit>

<current limit>2000</current limit>
<slowenableconst>2000</slowenableconst>

</Motor>

</Channels>
</MiniBoard>

<MiniBoard>
<id>6</id>

<faultmode>OFF</faultmode>
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<Channels>
<Motor>

<channel>A</channel>
<pgain>100</pgain>
<dgain>30</dgain>
<igain>0</igain>
<deadband>0</deadband>
<maxstep>0</maxstep>
<output_divisorpwr2>3</output_divisorpwr2>

<enable rising_timems>2000</enablerisingtimems>
<direction>FLIPPED</direction>
<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>
<name>rightElbowBn</name>
<description>Right Elbow</description>
<centerticks>500</center ticks>
<max ticks>500</max ticks>
<min ticks>240</minticks>
<ticksperunit>-150</ticksper unit>

<currentlimit>2000</currentlimit>
<slowenableconst>2000</slowenableconst>

</Motor>
<Motor>

<channel>B</channel>
<pgain>100</pgain>
<dgain>30</dgain>
<igain>2</igain>
<deadband>0</deadband>
<maxstep>O</maxstep>
<output_divisorpwr2>3</output_divisorpwr2>

<enable risingtimems>2000</enable risingtimems>
<direction>FLIPPED</direction>
<feedbackmode>POTMODE</feedbackmode>
<controlmode>POSITIONMODE</controlmode>
<name>rightShoulderUpDownBn</name>
<description>Right Shoulder</description>
<centerticks>300</centerticks>
<maxticks>550</maxticks>
<min _ticks>300</min ticks>
<ticksper-unit>500</ticksperunit>

<current limit>2000</current limit>
<slowenableconst>2000</slowenableconst>

</Motor>
</Channels>

</MiniBoard>
</MiniBoards>

</MotorBoard>
</Root>
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D.2 HuggableAndroidController

The following shows just a piece of the code used in the Huggable system. The highlighted area

showcases the Analog Input handler.

package prg.content.huggable.core;

import ifrobotsandroid.platform.android.hardware.AndroidSpeaker;
import ifrobotsandroid.platform.android.ui.AndroidTextLabel;
import ifrobotsandroid.platform.android.ui.AndroidWindow;
import ioio.lib.api.AnalogInput;
import ioio.lib.api.IOIO;
import ioio.lib.api.exception.ConnectionLostException;

import java.io.FileNotFoundException;
import java.io.UnsupportedEncodingException;
import java.net.NetworkInterface;
import java.net.SocketException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import mcbmini.AndroidIOIOPSerial;
import mcbmini.MCBMiniBoard;
import mcbmini.MCBMiniConstants;
import mcbmini.MCBMiniConstants.Channel;
import mcbmini.MCBMiniConstants.ChannelParameter;

import prg.content.huggable.bluebear.BlueBear;
import prg.content.huggable.brownbear.BrownBear;
import prg.content.huggable.core.HuggableCommon.HuggableCharacter;
import prg.content.huggable.core.HuggableCommon.MotorSystemType;
import prg.content.huggable.utils.AndroidFacePoker;
import prg.content.huggable.utils.FaceMountedCameraCalculator;
import prg.content.huggable.utils.HuggableUtils;
import prg.content.huggable.vision.AndroidVisionSystem;
import prg.content.huggable.vision.HuggableVisionSystem.VisionModule;
import prg.innards.iNamedObject;
import prg.innards.appcore.InnardsDefaults;
import prg.innards.appcore.Launcher;
import prg.innards.appcore.ResourceLocator;
import prg.innards.appcore.android.AndroidMainActivity;
import prg.innards.graphics.Base;
import prg.innards.graphics.animation.HierarchyUtils;
import prg.innards.graphics.basic.BasicGeometry;
import prg.innards.graphics.basic.BasicHierarchy;
import prg.innards.graphics.basic.BasicSceneList;
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import prg.innards.graphics.filereaders.DirectXReader;
import prg.innards.graphics.filereaders.indirecty.IndirectyLoader;
import prg.innards.math.linalg.Quaternion;
import prg.innards.math.linalg.Vec3;
import prg.innards.namespace.BaseTraversalAction;
import prg.innards.namespace.FindByName;
import prg.innards.network.ircp.IRCPConstants;
import prg.innards.network.ircp.IRCPSender;
import prg.innards.network.ircp.IRCPUDPManager;
import prg.innards.network.ircp.SafePacketHandler;
import prg.innards.util.log.Log;
import prg.innards.util.log.Log.ReportLevel;
import prg.innards.util.log.impl.FileLogger;
import prg.innards.util.log.impl.NetworkLogger;
import prg.innards.util.log.impl.TimedLogger;
//import prg.interfaces.hardware.mcbmini.MCBMiniBoard;
//import prg.interfaces.hardware.mcbmini.MCBMiniConstants;
//import prg.interfaces.hardware.mcbmini.MCBMiniConstants.Channel;
//import
prg.interfaces.hardware.mcbmini.MCBMiniConstants.ChannelParameter;
import prg.interfaces.software.android.graphics.AndroidBasicGeometry;
import prg.interfaces.software.android.graphics.AndroidGLController;
import prg.interfaces.software.android.graphics.AndroidGLLight;
import prg.interfaces.software.android.graphics.AndroidMaterials;
import
prg.interfaces.software.android.graphics.AndroidSkinningFactory;
import prg.interfaces.software.android.graphics.AndroidTextureUtils;
import
prg.interfaces.software.android.graphics.AndroidTouchSphereCamera;
import prg.interfaces.software.android.media.AndroidSoundManager;
import prg.interfaces.software.android.motor.AndroidMotorRenderer;
import prg.interfaces.software.android.network.AndroidMicStreamer;
import prg.research.motor.motorserver.MotorServer;
import prg.research.motor.motorserver.controller.MotorController;
import
prg.research.motor.motorserver.implementations.mcbmini.MCBMiniMotor;
import
prg.research.motor.motorserver.implementations.mcbmini.MCBMiniSerialBu

S;
import prg.research.motor.util.AutoDOFConfigurator;
import prg.research.motor.util.DOFManager;
import prg.research.rendering.MotorRenderingDOF;
import prg.research.speech.AndroidSpeechManager;
import android.content.pm.ActivityInfo;

import JSX.ObjIn;

public class HuggableAndroidController implements iHuggableCore {
// Instance Variables

protected boolean DEBUG;
protected boolean connectedToRobot;
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protected boolean enableASAP;
protected boolean ISANDROID;
protected boolean ASYNCGL;
protected boolean hasnetwork;
protected HuggableCharacter bearType;
protected long frameNumber;
protected EnumSet<MotorSystemType> motorSubSystems;

// Motor pipeline
protected BasicHierarchy hierarchy;
protected BasicGeometry geometry;
protected BasicHierarchy glRenderHierarchy;
protected BasicSceneList mainThreadSceneList;
protected MotorServer motorServer;
protected AutoDOFConfigurator dofConfig;
protected DOFManager dofManager;
protected AndroidMotorRenderer mr;
protected boolean motorsEnabled;

// GUI members
protected AndroidGLController glController;
protected AndroidWindow mainWin;
protected AndroidTextLabel versionLabel;
protected AndroidTextLabel updateLabel;
protected AndroidTextLabel debugLabel;
protected long lastPrintMS;
protected int updates;

// Sound stuff
protected AndroidSoundManager soundMan;
protected AndroidSpeaker speaker;
protected long audioPacketsReceived;
protected AndroidMicStreamer micStreamer;

// Network stuff
protected IRCPUDPManager netMan;
protected IRCPSender sender;

// GL camera stuff
protected FaceMountedCameraCalculator faceMount;

//log stuff
protected TimedLogger timedLog;

1010 ioio;
AnalogInput pressRight;
AnalogInput capRightSide;
AnalogInput capRightLeg;
AnalogInput capRightArmSmall;
AnalogInput capRightArmBig;
AnalogInput pressLeft;
AnalogInput capLeftSide;
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AnalogInput capLeftLeg;
AnalogInput capLeftArmBig;
AnalogInput capLeftArmSmall;
AnalogInput capLeftEar;
AnalogInput capRightEar;
AnalogInput capFrontHead;
AnalogInput capBackHead;

private AndroidIOIOPSerial ser;
private Object ioio lock;

boolean analogInputSetUp = false;

float pressRightValue = 0.0f;
float capRightSideValue = 0.0f;
float capRightLegValue = 0.0f;
float capRightArmSmallValue = 0.0f;
float capRightArmBigValue = 0.0f;
float pressLeftValue = 0.0f;
float capLeftSideValue = 0.0f;
float capLeftLegValue = 0.0f;
float capLeftArmBigValue = 0.0f;
float capLeftArmSmallValue = 0.0f;
float capLeftEarValue = 0.0f;
float capRightEarValue = 0.0f;
float capFrontHeadValue = 0.0f;
float capBackHeadValue = 0.0f;
// Data types

// Initialization methods

* Initializes member defaults

public void launch() {
ISANDROID = true;
connectedToRobot = false;
enableASAP = false;
DEBUG = false;
frameNumber = 0;
motorsEnabled = false;
ASYNCGL = true;

Log.println("----------- LAUNCH START ----------

}

* Initializes a Huggable based on a given type

public Huggable initHuggable(HuggableCharacter c) {
bearType = c;
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// Check if we are connected to a network
String activeinterface =

findActiveNetworkInterface(HuggableCommon.interfacecandidates);
if (activeinterface != null) {

hasnetwork = true;

}
hasnetwork = true;
// Initialize network
if (hasnetwork) {

initNetwork(c);

}

initRig(c);
initUI();
initFaceCam(;
//initTouchSphereCam();

Huggable res = null;
switch(c) {

case BROWNBEAR:
res = new BrownBear(hierarchy.getRoot(),

dofManager);
break;

case BLUEBEAR:
res = new BlueBear(hierarchy.getRoot(,

dofManager);
break;

default:
Log.println("ERROR: Invalid character");
System.exit(1);

}
res.setCharacter(c);
return res;

}

* Initializes the android rig
* glController, hierarchy, dofs

public void initRig(HuggableCharacter c) {
// Initialize GL
glController = new AndroidGLController(!ASYNCGL, 1, true);

// Initialize lighting
glController.getSceneList().addChild(new

AndroidGLLight ("dragonLight"));

// Build the hierarchy and geometry
hierarchy = new BasicHierarchy("huggable hierarchy");
if(ASYNC GL)glRenderHierarchy = new

BasicHierarchy("huggable gl hierarchy");
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geometry = new AndroidBasicGeometry("huggable geometry");
AndroidMaterials androidMaterials = new AndroidMaterials();
AndroidSkinningFactory basicSkinning = new

AndroidSkinningFactory(geometry, glController.getSceneList());

// Read in the .x file
DirectXReader reader = new

DirectXReader(ASYNCGL?glRenderHierarchy:hierarchy, geometry,
androidMaterials, basicSkinning);

reader.loadFile(HuggableCommon.getRigPath(c));

// Install hierarchy and geometry
AndroidTextureUtils.setRepeatMode(geometry);

glController.getSceneList().addChild(ASYNCGL?glRenderHierarchy:h
ierarchy);

glController.getSceneList().addChild(geometry);

if(ASYNC_GL){
mainThreadSceneList = new BasicSceneList(;

hierarchy.setRoot(HierarchyUtils.copyHierarchy(glRenderHierarchy.
getRoot());

mainThreadSceneList.addChild(hierarchy);

}

if (ASYNCGL)
nodesInMainHierarchy = new

ArrayList<Base.iTransform>();
nodesInRenderHierarchy = new

ArrayList<Base.iTransform>();
new BaseTraversalAction()

@Override
protected boolean

actionImplementation(iNamedObject node){
if(node instanceof Base.iTransform){

nodesInMainHierarchy.add((Base.iTransform)node);

nodesInRenderHierarchy.add((Base.iTransform)FindByName.findFirst(
node.getName(), glRenderHierarchy.getRoot(o));

}
return true;

}
}.applyAction(hierarchy);

}
// Set up the dof config / manager
dofConfig =

AutoDOFConfigurator.getInstance(HuggableCommon.getRigPath(c),
hierarchy);

IndirectyLoader.registerWithRegistry();
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//dofConfig.fixenateModel(hierarchy);
dofManager = dofConfig.createDOFManager(hierarchy);

}

ArrayList<Base.iTransform> nodesInMainHierarchy;

ArrayList<Base.iTransform> nodesInRenderHierarchy;

* This is where we do platform specific initializations to the
creature

* @param dragon creature to set platform specific settings
* srcmarks: prg, robots

public void initPlatformComponents(Huggable bear) {
// Start TTS and rec
initSpeechManager(bear);

// Initialize sound manager
initSoundManager(bear);

// Start up motors
initMotorSystem();

// Start up face poker
initFacePoker (bear);

}
private void initSpeechManager(Huggable bear) {

bear.setSpeechManager(new
AndroidSpeechManager(AndroidMainActivity.getActivity().getApplicationC
ontexto) );

bear.getSpeechManager().setBear(bear);

}

protected void initFacePoker(Huggable bear) {
glController.setOnTouchListener(new

AndroidFacePoker(bear));

}

private void initSoundManager(Huggable bear) {
AndroidSoundManager sMan =

AndroidSoundManager.getSoundManager();
sMan.init(bear.getCharacter));
bear.setSoundManager(sMan);

}

* Creates android window, adds the gl controller, sets up debug
UI

*
* srcmarks: prg, robots
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public void initUI() {
// Create android window to contain GL controller
mainWin = new AndroidWindow("Huggable Face");
if (DEBUG) {

versionLabel = new AndroidTextLabel("GL:-----"
updateLabel = new AndroidTextLabel ("Main:-----");
debugLabel = new AndroidTextLabel ("DEBUG");

mainWin.addView(versionLabel);
mainWin.addView(updateLabel);
mainWin.addView(debugLabel);

Log.setReportDetail(ReportLevel.EVERYTHING);
} else {

Log.setReportDetail(ReportLevel.SILENT);

}
mainWin.addView(glController);

}

* Initializes Huggable communication
*

* srcmarks: prg, robots

public void initNetwork(HuggableCharacter c) {
byte robotID = IRCPConstants.HUGGABLEID; // Default is

huggable
switch(c)

case BROWNBEAR:
robotID = IRCPConstants.HUGGABLEID;
break;

case BLUEBEAR:
robotID = IRCPConstants.HUGGABLEID;
break;

default:
Log.println("ERROR: Invalid character");

netMan = IRCPUDPManager.createWithSuggestedID(robotID,
IRCPConstants.BEHAVIORMODULEID);

Launcher.getLauncher().registerUpdateable(netMan);

if (DEBUG) {
Log.setReportDetail(ReportLevel.EVERYTHING);

try {
FileLogger nfl;
try {

nfl = new FileLogger("Log.txt");
//Log.setLogger(nfl);
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Log.setLogger(new
NetworkLogger(IRCPUDPManager.createWithSuggestedID(IRCPConstants.HUGGA
BLEID, IRCPConstants.PROJECTORCONTROMODULEID)));

System.setErr(nfl.getPrintstream());
System.setOut(nfl.getPrintstream());

} catch (UnsupportedEncodingException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

} catch (FileNotFoundException e) {
Log.println( "ERROR: Cannot initialize network

file logger");
e.printStackTrace();

}

}
}

* Initializes handling and sending of streaming audio

public void initStreamingAudio(boolean send, boolean receive) {
// Start streaming to the teleoperator
if (send) {

micStreamer = new
AndroidMicStreamer(IRCPConstants.HUGGABLETELEOPID, true);

Launcher.getLauncher().registerUpdateable(micStreamer);

}

// Set up handler for remote teleoperator data
if (receive) {

audioPacketsReceived = 0;
speaker = new AndroidSpeaker();
IRCPUDPManager.addPacketHandler(new

SafePacketHandler ("handle audio", null,
IRCPConstants.ANDROID.MAJORTYPE, IRCPConstants.ANDROID.AUDIODATA) {

public void safeHandle(ByteBuffer bb, int length)

{
bb.order(ByteOrder.LITTLEENDIAN);
speaker.write(bb, false);
audioPacketsReceived++;

}

}
}

160



* Sets up the motor server
*

* srcmarks: prg, robots

public void initMotorSystem() {
// Render to our own network id, since motor server is

running in our own process
mr = new AndroidMotorRenderer(dofManager,

IRCPConstants.BEHAVIORMODULEID, "Main Motors", DEBUG, hasnetwork);
mr.dontCheckForPresenceOfMotorSafetyMonitor();
mr.disableSafetyCheck();
mr. sendData (true);

if (ASYNCGL) {
mainThreadSceneList.addChild(mr);

} else {
glController.getSceneList().addChild(mr);

}
}

lastP

// Update methods

* Update GUI with Debug information if necessary
*

* srcmarks: debug, huggable, prg, robots

public void updateDebugGUI() {
if (DEBUG) {

long curTime = System.currentTimeMillis(;
if (lastPrintMS == 0) {

lastPrintMS = curTime;

}
if (curTime - lastPrintMS > 1000) {

float fps = (float)updates / ((float
rintMS)/1000f);

updateLabel.setText("Main: " + fps);
lastPrintMS = curTime;
updates = 0;

(curTime -

}
updates++;
if (glController.getGLVersion() != null) {

versionLabel.setText(glController.getGLVersion()+" fps: " +
glController.getFPS());

}
}

}

public void updateTouchIndicator() {

if (ser.isInitialized() {
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if

//

//

ioio . openAnalogInput

ioio . openAnalogInput

ioio . openAnalogInput

ioio0. openAnaloglnput

ioio.openAnalogInput (39);

ioio.

ioio.

ioio.

ioio.

ioio.

openAnalogInput (41)

openAnalogInput (42)

openAnalogInput

openAnalogInput

openAnalogInput

(44)

(45)

(46)

analog inputs");

analog inputs");

!analogInputSetUp) {
ioiolock = ser.getIOIOThreadLocko;

synchronized(ioio_lock) {
ioio = ser.getIOIO();

try
pressRight = ioio.openAnalogInput(33);
capRightSide =

capLeftSide =

capRightArmSmall

capRightArmBig =

pressLeft = ioio.openAnalogInput (38);
capRightLeg =

//
capLeftLeg = ioio.openAnalogInput (40);
capLeftArmBig =

//
capLeftArmSmall =

capLeftEar = ioio.openAnalogInput (43);
capRightEar =

capFrontHead =

//
capBackHead =

} catch (ConnectionLostException e) {
// TODO Auto-generated catch block
setDebugLabel ("connection lost for

Log.println("connection lost for

e.printStackTrace();

}
}
analogInputSetUp = true;

} else {
synchronized(ioiolock) {

try {
pressRightValue =

pressRight.getVoltage();
capRightSideValue =

capRightSide.getVoltage();
capRightLegValue = capRightLeg.read(;
capRightArmSmallValue =

capRightArmSmall.read();
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capRightArmBigValue =

capRightArmBig.read();

pressLeftValue = pressLeft.read(;
capLeftSideValue = capLeftSide.read(;
capLeftLegValue = capLeftLeg.read(;
capLeftArmBigValue =

capLeftArmBig.read();

capLeftArmSmallValue =

capLeftArmSmall.read();

capLeftEarValue = capLeftEar.read();
capRightEarValue = capRightEar.read(;
capFrontHeadValue =

capFrontHead.read();

capBackHeadValue = capBackHead.read(;

setDebugLabel ("pressRight:
"+pressRight.available() + " capRightSide: "+capRightSide.available()
+ " capRightLeg: "+capRightLeg.available());

setDebugLabel ("capRightArmSmall
:"+capRightArmSmall.available() + " capRightArmBig:
"+capRightArmBig.available() + " pressLeft: "+pressLeft.available());

setDebugLabel ("capLeftSide:
"+capLeftSide.available() + " capLeftLeg: "+capLeftLeg.available() + "
capLeftArmBig: "+capLeftArmBig.available());

setDebugLabel ("capLeftArmSmall:
"+capLeftArmSmall.available());

} catch (InterruptedException e) {
// TODO Auto-generated catch block

setDebugLabel ("interruptedException");

e.printStackTrace();

} catch (ConnectionLostException e) {
// TODO Auto-generated catch block
setDebugLabel("connection lost");

Log.println("connection lost");
e.printStackTrace();

}
}

}
}

}
private void initMotorServerConnected(){

String motorConfigPath =
InnardsDefaults.getProperty("configFilePath");

if (motorConfigPath == null || motorConfigPath.length() ==

0) {
motorConfigPath = HuggableCommon.motorConfigPath;

}
motorConfigPath =

ResourceLocator.getPathForResource(motorConfigPath);
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// Initialize motor server
motorServer = new MotorServer();
System.out.println("HuggableAndroidController /

initMotorSystem: motorConfigPath: " + motorConfigPath);
System.out.println("IOIO call: HuggableAndroidController");
motorServer.initialize(motorConfigPath);

}

* Updates the GL controller

int cnt = 0;
public void update() {

if( cnt++ % 30 == 0 ){
IRCPSender sender

IRCPUDPManager.getSenderForID(IRCPConstants.HUGGABLETELEOPID);
if( sender != null && motorServer != null){

sender.startSubPacket(IRCPConstants.VISION.MAJORTYPE,
IRCPConstants.VISION.FACEAPIPACKET);

for (MCBMiniBoard board
((MCBMiniSerialBus)motorServer.getMotorboards().get(0)).getMCBMiniServ
er().getBoards())

sender.write( board.getId() );
sender.write(

board.getChannelAParameter(ChannelParameter.ENABLED) );
sender.write(

board.getChannelBParameter(ChannelParameter.ENABLED) );
//sender.write(

board.getChannelAParameter(ChannelParameter.TARGETTICK) );
//sender.write(

board.getChannelBParameter(ChannelParameter.TARGETTICK) );
sender.write(

board.getChannelAParameter(ChannelParameter.CURRENTTICK) );
sender.write(

board.getChannelBParameter(ChannelParameter.CURRENTTICK) );

}

sender.finishSubPacket();
sender.finishPacketAndSend();

}
}
if (enableASAP && !connectedToRobot){

boolean connection =
AndroidMainActivity.getActivity().isConnectedToRobot();

if (connectedToRobot != connection && connection){
initMotorServerConnected();
connectedToRobot = connection;

}
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}

// if (connectedToRobot && mr.isReadyToEnable() &&

!motorsEnabled) {
// Set<String> jointSet = new HashSet<String>();

// List dofsToEnable = dofManager.getRenderingDOFso;
// for (int i = 0; i < dofsToEnable.size(; i++)

// jointSet.add( ((MotorRenderingDOF)

dofsToEnable.get(i)).getName() );

// }
//
// mr.enableJoints(jointSet);

// System.out .println("Enabling motors !");

// motorsEnabled = true;

// }

if (connectedToRobot && mr.isReadyToEnable() &&
!motorsEnabled) {

dofsToEnable.get

}

Set<String> jointSet = new HashSet<String>();
List dofsToEnable = dofManager.getRenderingDOFs();
for (int i = 0; i < dofsToEnable.sizeo; i++) {

jointSet.add( ((MotorRenderingDOF)
(i)).getName() );

}

mr.enableJoints(jointSet);
System.out.println("Enabling motors !");
motorsEnabled = true;

// Update frame count
frameNumber++;

// if(frameNumber % 30 == 0){
// System.out.println("Boards that
// for (MotorController mc :
((MCBMiniSerialBus)motorServer.getMotorboards().

().values() 

//
((MCBMiniMotor)mc)

//
((MCBMiniMotor)mc)
eter.ENABLED) +" "

//
((MCBMiniMotor) mc)
eter.ENABLED) +""

// }
// }

are enabled");

get(0)).getControllers

System.out.print(
.getMCBMiniBoard().toString());

System.out.print(
.getMCBMiniBoard().getChannelAParameter(ChannelParam

System.out.print(
.getMCBMiniBoard().getChannelBParameter(ChannelParam

if (ASYNCGL){

Quaternion q = new Quaternion();
Vec3 v = new Vec3();
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mainThreadSceneList.update();
if(glController.obtainHierarchyUpdateLock()

//HierarchyUtils.setHierarchyPositions(glRenderHierarchy.getRoot(
), hierarchy.getRooto, 1);

for(int i = 0; i < nodesInMainHierarchy.sizeo;
i++){

Base.iTransform renderNode =
nodesInRenderHierarchy.get(i);

Base.iTransform mainNode =

nodesInMainHierarchy.get(i);
mainNode.getCurrentRotation(q);
mainNode.getCurrentTranslation(v);
renderNode.setRotation(q);
renderNode.setTranslation(v);

}
glController.releaseHierarchyUpdateLock();

}
}
glController.update();

//updateTouchIndicator();

}

* Sets the debug label to a given string
* @param s the string the debug label will display
* srcmarks: debug, prg, robots

public void setDebugLabel(String s) {
if (DEBUG) {

if (debugLabel != null && s != null) {
debugLabel.setText(s);

}
}

}
// Connection/disconnection delegates

* Initializes a face-cam, which attaches to a character's face
for orthogonal projected display

*

* srcmarks: facecam, prg, robots

protected void initFaceCam() {
if (frameNumber == 0)

AndroidMainActivity.getActivity().setRequestedOrientation(Activit
yInfo.SCREENORIENTATIONLANDSCAPE);
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Base.iTransform faceMountBn =
((Base.iTransform)FindByName.findFirst(" faceRootBn",

hierarchy.getRoot()));

Base.iTransform forwardDirBn =

((Base.iTransform)FindByName.findFirst(" eyesRootBn",
hierarchy.getRoot()));

faceMount = new
FaceMountedCameraCalculator(faceMountBn, new Vec3(0, -1, 0), new

Vec3(0, 0, 1));

faceMount.setAndroidCamera(glController.getCamera());

glController.getRootSceneList().addChild(faceMount);

}

glController.getCamera().setNear(0);

glController.getCamera().setFar(1000);

faceMount.enable();

}

* Initializes a touch-sphere cam, which displays the entire
character

*

* srcmarks: touchcam, prg, robots

protected void initTouchSphereCam() {
// Unregister the face mounted camera
if (faceMount != null) {

faceMount.disable();

}
glController.getCamera().setFOV(30);

glController.getCamera().setIsOrtho(false);
glController.getCamera().setFar(3000);

glController.getCamera().setNear(1);

glController.setOnTouchListener(new

AndroidTouchSphereCamera(glController.getCamera(), new Vec3(0, 20, 6),

60));

}

public static String findActiveNetworkInterface(String[]
interfaces) {

String found-up = null;

for (String ifacename : interfaces) {
try {

NetworkInterface iface =

NetworkInterface.getByName(ifacename);

if (iface == null) {
continue;

}
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if (iface.isUp())

System.out.println("HuggableAndroidController /
findActiveNetworkInterface: ifacename (isUp): 11+ ifacename);

foundup = iface.getDisplayNameo;

}
} catch (SocketException e) {

e.printStackTrace();

}
}
return foundup;

}
public void initVision(Huggable bear) {

bear.setVisionSystem(new AndroidVisionSystemo);
bear.getVisionSystem().setDebug(DEBUG);

}

public void initVision(Huggable bear, VisionModule mod) {
bear.setVisionSystem(new AndroidVisionSystem(mod));

}

public void initVision(Huggable bear, List<VisionModule> mods) {
bear.setVisionSystem(new AndroidVisionSystem(mods));

}

public void vibrate() {
AndroidMainActivity.getActivity().vibrate();

}

public void checkForComm() {
sender =

IRCPUDPManager.getSenderForID(IRCPConstants.BEHAVIORMODULEID,
HuggableUtils.getIDFromCharacter(bearType));

}

public void setBodyPIDparams(int Pvalue, int Ivalue, int Dvalue,
int deadband, int maxstep){

for (MotorController mc
((MCBMiniSerialBus)motorServer.getMotorboards().get(0)).getControllers
().values() {

if (((MCBMiniMotor)mc) .getMCBMiniBoard() .getId() == 1
|| ((MCBMiniMotor)mc).getMCBMiniBoard().getId() == 2) {

for(Channel ch:
MCBMiniConstants.Channel.values(){

((MCBMiniMotor)mc).getMCBMiniBoard().setChannelParameter(ch,
ChannelParameter.PGAIN, Pvalue);
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((MCBMiniMotor)mc).getMCBMiniBoard().setChannelParameter(ch,

ChannelParameter.IGAIN, Ivalue);

((MCBMiniMotor)mc).getMCBMiniBoard().setChannelParameter(ch,

ChannelParameter.DGAIN, Dvalue);

((MCBMiniMotor)mc).getMCBMiniBoard().setChannelParameter(ch,

ChannelParameter.DEADBAND, deadband);

((MCBMiniMotor)mc).getMCBMiniBoard().setChannelParameter(ch,

ChannelParameter.MAXIMUMSTEP, maxstep);

//((MCBMiniMotor)mc).getMCBMiniBoard().setDirtyParameters(ch);

}

}
}

}

public void setHeadPIDparams(int Pvalue, int Ivalue, int Dvalue,
int deadband, int maxstep){

for (MotorController mc

((MCBMiniSerialBus)motorServer.getMotorboards().get(0)).getControllers

().values() {
if (((MCBMiniMotor)mc).getMCBMiniBoard().getId() == 3)

{

((MCBMiniMotor)mc).getMCBMiniBoard()

Parameter.PGAIN, Pvalue);

((MCBMiniMotor)mc).getMCBMiniBoard()

Parameter.IGAIN, Ivalue);

((MCBMiniMotor)mc).getMCBMiniBoard()

Parameter.DGAIN, Dvalue);

((MCBMiniMotor)mc).getMCBMiniBoard()

Parameter.DEADBAND, deadband);

((MCBMiniMotor)mc).getMCBMiniBoard()

Parameter.MAXIMUMSTEP, maxstep);

.setChannelAParameter(Channel

.setChannelAParameter(Channel

.setChannelAParameter(Channel

.setChannelAParameter(Channel

.setChannelAParameter(Channel

//((MCBMiniMotor)mc).getMCBMiniBoard().setDirtyParameters(Channel

}
}

}

169



public String getBodyPIDparamso{
String message = "";
for (MotorController mc

((MCBMiniSerialBus)motorServer.getMotorboards().get(0)).getControllers
().valueso) {

if (((MCBMiniMotor)mc).getMCBMiniBoard().getId() == 1)

{
message += "P: "+

((MCBMiniMotor)mc).getMCBMiniBoard().getChannelAParameter(ChannelParam
eter.PGAIN);

message += ", I: "+

((MCBMiniMotor)mc).getMCBMiniBoard().getChannelAParameter(ChannelParam
eter.IGAIN);

message += ", D: "+

((MCBMiniMotor)mc).getMCBMiniBoard().getChannelAParameter(ChannelParam
eter.DGAIN);

message += ", dead: "+

((MCBMiniMotor)mc).getMCBMiniBoard().getChannelAParameter(ChannelParam
eter.DEADBAND);

message += ", maxS: 11+

((MCBMiniMotor)mc).getMCBMiniBoard().getChannelAParameter(ChannelParam
eter.MAXIMUMSTEP);

return message;

}
}
return message;

}
}
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