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Abstract

Accurately predicting transport processes, including sediment transport, in the coastal
environment is impossible without correct current velocity and shear stress information. A
combined wave-current boundary layer theory is necessary to predict these quantities, and while
the previous Grant-Madsen type boundary layer models are effective, they inconsistently apply a
discontinuous two layer eddy viscosity structure to the wave and current problems. We have
therefore developed a new continuous three layer model which consistently applies all three
layers and leads to a strong coupling between the wave and current solutions.

Boundary layer models require an estimate of the movable bed roughness, and while this
roughness is scaled by the sand grain diameter for flat beds, in the coastal environment it is
often the case that either wave-generated ripples cover the bed or the near-bed sediment is
transported as sheet flow, in which case the roughness is much larger and less straightforward to
characterize. The common method of predicting roughness in the ripple regime, while effective,
unnecessarily predicts ripple geometry and requires a model-dependent factor, which varies
widely, relating ripple geometry and bottom roughness. We have therefore developed an
alternative, more direct method of predicting bed roughness: the wave energy dissipation factor
is predicted from flow and sediment information and then any desired theoretical friction factor
model is used to back-calculate the roughness. This proposed method can also be used in the
sheet flow regime, allowing a continuous transition between the two regimes, not possible with
the common method.

This thesis derives the new three layer combined wave-current boundary layer theory,
develops the common and proposed methods of predicting roughness in the ripple and sheet
flow regimes, and presents results of evaluating the theory and methods with field data. The new
theory combined with either roughness method successfully predicts current shear velocities in
wave-current field flows over beds in the lower flat-bed, ripple, and sheet flow regimes, with the
proposed method yielding the smaller bias. Remaining questions concerning the appropriate
near-bottom orbital velocity required to describe field conditions must be resolved when
additional field data becomes available.
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Title: Donald and Martha Harleman Professor of Civil and Environmental Engineering



4



Contents

1 Introduction .................................................................................. .... .... 13

2 Turbulent combined wave-current boundary layer theory...............................19

2.1 Three layer model for combined wave-current flows .................................................. 19

2.1.1 Current solution............................................................................................... 24

2.1.2 Wave solution ................................................................................................... 28

2.1.3 Friction factor closure ..................................................................................... 34

2.1.4 Model results and explicit approximations ..................................................... 38

2.1.5 Comparison with a simpler, two layer wave model..........................................52

2.2 Wave-current solution procedure ................................................................................ 58

2.3 Validation of the conceptual model.............................................................................. 62

2.4 Energy dissipation and friction factors ....................................................................... 66

2.5 Comparison of wave friction factor theories................................................................ 67

3 Movable bed regimes ........................................................... ..................... 75

3.1 Coupling between flows and movable beds .................................................................. 75

3.1.1 Relevant non-dimensional parameters ........................................................... 76

3.1.2 Characterizing random waves..............................................................................78

3.2 Initiation of motion...................................................................................................... 8o

3.3 Ripple regime: ripple geometry................................................................................... 80

3.3.1 A vailable data ....................................................................................................... 81

3.3.2 Published relationships................................................................................... 84

3.3.3 New ripple height relationship for laboratory data..........................................87

3.4 Ripple regime: energy friction factor ............................................................................ 95

3.4.1 Available data ................................................................................................... 96

3.4.2 Energy friction factor relationship for the ripple regime................................ 98

3.5 Sheet flow regim e.............................................................................................................10 1

3.5.1 A vailable data ..................................................................................................... 102

3.5.2 Energy friction factor relationship for the sheet flow regime...........................104

4 M ovable bed roughness ............................................................................. 109

4.1 Lower flat-bed regime.....................................................................................................109

5



4 .2 R ipple regim e ................................................................................................................... 110

4.2.1 Roughness from predicted ripple dimensions ................................................... 110

4.2.2 Roughness from predicted energy friction factor...............................................113

4.3 Sheet flow regim e.............................................................................................................115

4.3.1 Directly predicting the roughness in the sheet flow regime .............................. 116

4.3.2 Roughness from predicted energy friction factor....................120

4.4 Roughness prediction procedure.................................................................................... 123

5 Predictions of combined wave-current field flows ......................................... 125

5.1 Wave-current prediction procedure...............................................................................126

5.2 A vailable data .................................................................................................................. 128

5.3 Lower flat-bed regime......................................................................................................131

5.4 R ipple regim e .................................................................................................................. 133

5.5 Sheet flow regim e............................................................................................................ 139

6 Conclusion..................................................................................................... 145

References .......................................................................................................... 149

Appendix: Mean suspended sediment concentration profile approximation ...... 155

6



List of Figures

Figure 2-1: Illustration of three layer eddy viscosity structure, as defined by (2.7), assuming 8
t =

8w/ .6 > zo. ...................................................................................................................... 2 2

Figure 2-2: Illustration of the limits of the three layer eddy viscosity structure, for a = 0 and
a = 1, assum ing 8t > zo ............................................................................................ 23

Figure 2-3: Comparison of eddy viscosity structure (left) and current velocity profile (right) for
the three layer model (gray) and the two layer simplification (black) for a = 0.25 and
zo/St = 0 .0 1...................................................................................................................2 8

Figure 2-4: Wave boundary layer thickness variation with the relative roughness and a for the
new model (colors), and for Madsen and Salles (1998) (gray)..............................40

Figure 2-5: Combined wave friction factor variation with the relative roughness and a for the
new model (colors), and for Madsen (1994) (gray). .............................................. 41

Figure 2-6: Phase angle variation with the relative roughness and a for the new model (colors),
and for M adsen (1994) (gray). ................................................................................. 42

Figure 2-7: Comparison of the computed (gray) and piecewise explicit fit (2.85) (black) for the
wave boundary layer thickness for the pure wave case, a = 0. The circles indicate
boundaries between segments of the piecewise fit. ............................................... 44

Figure 2-8: Comparison of the computed (gray) and piecewise explicit fit (2.86) (black) for the
combined wave friction factor for the pure wave case, a = 0. The circles indicate
boundaries between segments of the piecewise fit. ............................................... 45

Figure 2-9: Comparison of the computed (gray) and piecewise explicit fit (2.87) (black) for the
phase shift for the pure wave case, a = 0. The circles indicate boundaries between
segm ents of the piecewise fit. ................................................................................. 46

Figure 2-10: Comparison of the computed (gray) and piecewise explicit fits (2.89) and (2.90)
(colors) for the wave boundary layer thickness for six values of a. The circles
indicate boundaries between segments of the piecewise fits. ................................ 50

Figure 2-11: Comparison of the computed (gray) and piecewise explicit fits (2.91) and (2.92)
(colors) for the combined friction factor for six values of a. The circles indicate
boundaries between segments of the piecewise fits................................................ 51

Figure 2-12: Comparison of the computed (gray) and piecewise explicit fits (2.93) and (2.94)
(colors) for the phase angle for six values of a. The circles indicate boundaries
between segments of the piecewise fits .................................................................. 52

Figure 2-13: Ratio of the scaled wave boundary layer thickness for the three and three/two layer
m odels for seven values of a........................................................................................55

Figure 2-14: Ratio of the combined scaled friction factor for the three layer model and wave
friction factor of the three/two layer models for seven values of a............................56

Figure 2-15: Ratio of the phase shift for the three and three/two layer models for seven values of
a . ............................................................................................. . - -.... --------------............. 57

7



Figure 2-16: Comparison between the velocity profile predicted by the numerical model of
Davies et al. (1988) (dashed) and with the new model (solid) for collinear waves and
currents of varying wave orbital velocity amplitude...............................................63

Figure 2-17: Comparison between the velocity profile predicted by the numerical model of
Davies et al. (1988) (dashed) and with the new model (solid) for waves and currents
at different angles..................................................................................................... 64

Figure 2-18: Measurements (circles) and predictions (lines) for near-bottom current velocities in
Series G reported by Dohmen-Janssen (1999). The red crosses indicate the reference
velocity and elevation used to predict the profiles..................................................65

Figure 2-19: Comparison of the wave friction factor for the pure wave case of the new model
(a = 0, black) and several published models (colors). ............................................ 72

Figure 2-20: Comparison of the energy friction factor for the pure wave case of the new model
(a = 0, black) and several published models (colors). ............................................ 73

Figure 3-1: Comparison of the seven ripple height relationships in Table 3-4 and Table 3-5 using
the M parameter (lines), along with laboratory data under periodic (black dots) and
random waves (red circles), and field data (green diamonds), from Table 3-1 and
T ab le 3 -2 ....................................................................................................................... 8 7

Figure 3-2: Ripple height variation with the skin-friction Shields parameter, $', for periodic
(black dots) and random (red circles) waves in the laboratory and random waves in
the field (green diam onds)....................................................................................... 88

Figure 3-3: Ripple height variation with the skin-friction Shields parameter, V', for periodic
(black dots) and random (red circles) waves using the rms near-bottom orbital
velocity for the random w aves.....................................................................................90

Figure 3-4: Ripple height variation with the skin-friction Shields parameter, V)', for periodic
(black dots) and random (red circles) waves using the significant near-bottom
orbital velocity for the random waves. ................................................................... 91

Figure 3-5: Ripple height variation with the skin-friction Shields parameter, 0', for periodic
(dots) and random (open circles) waves colored by the fluid-sediment parameter,
S *, to show sedim ent size stratification.................................................................. 93

Figure 3-6: Ripple height variation with the skin-friction Shields parameter, V', for periodic
(dots) and random (open circles) waves colored by the fluid-sediment parameter,
S *, with an S * factor to lessen the sediment size stratification.............................94

Figure 3-7: The new best-fit relationship for the ripple height (green line) well represents ripples
under both periodic (black dots) and random (red circles) laboratory waves, with
80% of the data found within ±50% of the best-fit curve (gray area)....................95

Figure 3-8: Energy friction factor variation with the skin-friction Shields parameter, V', for
periodic (dots) and random (open circles) waves colored by the fluid-sediment
parameter, S *, to show sediment size stratification..............................................99

Figure 3-9: Energy friction factor variation with the skin-friction Shields parameter, V', for
periodic (dots) and random (open circles) waves, colored by the fluid-sediment
parameter, S *, with an S * factor to lessen the sediment size stratification. ..... 1oo

Figure 3-10: The best-fit relationship for the energy friction factor (green line) well represents
ripples under both periodic (black dots) and random (red circles) laboratory waves,
with 72% of the data found within ±25% of the best-fit curve (gray area). .......... lo

8



Figure 3-11: Energy friction factor variation with the skin-friction Shields parameter, ', for the
sheet flow laboratory data (black dots: acrylic sediment, d = 0.7 mm, red circles:
nylon sedim ent, d = 4 m m ). ...................................................................................... 105

Figure 3-12: The best-fit relationship for the energy friction factor (green line) well represents
sheet flow for both acrylic (black dots) and nylon (red circles) sediment under
periodic laboratory waves, with 39% of the data found within ±25% of the best-fit
lin e (gray area). .......................................................................................................... 107

Figure 3-13: The best-fit relationship for the energy friction factor (green line) gives a
continuous transition from the ripple to the sheet flow regime and well represents
both ripples under periodic and random waves (black dots) and sheet flow under
periodic waves (red circles), with 69% of the data found within ±25% of the best-fit
curve (gray area). ................................................................................................... 1o8

Figure 4-1: The energy friction factor data for periodic (black dots) and random (red circles)
waves are used with the predicted ripple height to find the best-fit yrb-values for each
friction factor model. For the new model (solid green line), Yrb = 16, while for the
Jonsson 1966 model (dashed blue line), Yrb = 2, and both are plotted with S *= 8.
Neither of these models represents the data as well as the best-fit curve (black line).
..................................................................................................................................... 113

Figure 4-2: Using the new friction factor relationship for the ripple regime and the new friction
factor model, the relative roughness can be back-calculated. The relative roughness
thus depends on the skin-friction Shields parameter, 0', and the fluid-sediment
p aram eter, S *..............................................................................................................115

Figure 4-3: Using the new energy friction factor relationship and the new friction factor model,
the relative roughness can be back-calculated for the sheet flow regime. The relative
roughness thus depends on the skin-friction Shields parameter, V', and the fluid-
sedim ent param eter, S *. ........................................................................................... 120

Figure 4-4: Using the new energy friction factor relationships for the ripple and sheet flow
regimes and the new friction factor model, the relative roughness can be back-
calculated. The relative roughness thus depends on the skin-friction Shields
parameter, 0', and the fluid-sediment parameter, S *, and has a continuous smooth
transition between the ripple and sheet flow regimes...............................................121

Figure 4-5: Comparison of predicted (lines) and measured (circles) current velocity profiles for
two tests by Dohmen-Janssen (1999) of wave-current flows in the sheet flow regime.
The red crosses indicate the reference velocity and elevation used to predict the
p rofiles........................................................................................................................ 123

Figure 5-1: Comparison between predicted and observed current shear velocities in the flat-bed
regime. The solid line denotes perfect agreement while the dashed line shows the
average slope of the data points and the gray band covers ±1 standard deviation of
the average slope, corresponding to an underprediction of 1±14%. ........................ 132

Figure 5-2: Comparison between predicted and observed current shear velocities in the ripple
regime using the common method to predict the roughness. The solid line denotes
perfect agreement while the dashed line shows the average slope of the data points
and the gray band covers ±1 standard deviation of the average slope, corresponding
to an overprediction of 20±22% ................................................................................ 134

Figure 5-3: Comparison between predicted and observed current shear velocities in the ripple
regime using the proposed method to predict the roughness. The solid line denotes

9



Figure 5-4:

Figure 5-5:

Figure 5-6:

Figure 5-7:

Figure 5-8:

Figure 5-9:

10

perfect agreement while the dashed line shows the average slope of the data points
and the gray band covers ±1 standard deviation of the average slope, corresponding
to an overprediction of 12±19% . ................................................................................ 135

Comparison between predicted and observed current shear velocities in the ripple
regime using the common method to predict the roughness with the 1/10 near-
bottom velocity. The solid line denotes perfect agreement while the dashed line
shows the average slope of the data points and the gray band covers ±1 standard
deviation of the average slope, corresponding to an overprediction of 17±20%..... 137
Comparison between predicted and observed current shear velocities in the ripple
regime using the proposed method to predict the roughness with the 1/10 near-
bottom velocity. The solid line denotes perfect agreement while the dashed line
shows the average slope of the data points and the gray band covers ±1 standard
deviation of the average slope, corresponding to an overprediction of 8±17%.......138
Comparison between predicted and observed current shear velocities in the sheet
flow regime using the proposed method to predict the roughness. The solid line
denotes perfect agreement while the dashed line shows the average slope of the data
points and the gray band covers ±1 standard deviation of the average slope,
corresponding to an overprediction of 5±17%. ......................................................... 140

Comparison between predicted and observed current shear velocities in the sheet
flow regime using the common method with yf = 4 to predict the roughness. The
solid line denotes perfect agreement while the dashed line shows the average slope
of the data points and the gray band covers ±1 standard deviation of the average
slope, corresponding to an underprediction of 11±14%. ........................................... 141
Comparison between predicted and observed current shear velocities in the sheet
flow regime using the common method with yf = 14 to predict the roughness. The
solid line denotes perfect agreement while the dashed line shows the average slope
of the data points and the gray band covers ±1 standard deviation of the average
slope, corresponding to an overprediction of o±16%............................................... 143
Comparison between predicted and observed current shear velocities in the sheet
flow regime using the proposed method to predict the roughness with the 1/10 near-
bottom velocity. The solid line denotes perfect agreement while the dashed line
shows the average slope of the data points and the gray band covers ±1 standard
deviation of the average slope, corresponding to an overprediction of 1±17%........144



List of Tables

Table 2-1: Conditions for wave-current numerical experiments by Davies et al. (1988)......62

Table 2-2: Conditions for wave-current experiments by Dohmen-Janssen (1999).....................65

Table 3-1: Periodic and random wave laboratory datasets used in ripple height analysis ..... 83

Table 3-2: Wave alone field datasets used in ripple height analysis.........................................83

Table 3-3: Overview of laboratory and field datasets used in ripple height analysis...............84

Table 3-4: A sample of ripple height relationships for waves in the laboratory ...................... 85

Table 3-5: A sample of ripple height relationships for waves alone in the field............................85

Table 3-6: Laboratory datasets used in friction factor analysis ................................................ 97

Table 3-7: Overview of laboratory datasets used in energy friction factor analysis.................. 97

Table 3-8: Laboratory datasets used in sheet flow friction factor analysis ................................. 103

Table 4-1: Conditions for wave-current sheet flow experiments by Dohmen-Janssen (1999)... 122

Table 5-1: Wave-current field datasets used to evaluate the model and roughness methods ... 129

Table 5-2: Overview of combined wave-current field datasets used to evaluate methods ......... 129

11



12



Chapter 1

Introduction

Transport processes in the coastal environment, such as oil spills, ocean outfalls, and sediment

transport, have huge environmental and economic impacts, and accurately predicting them is of

crucial importance. Oil spill cleanup efforts rely on predictions of the spatial and temporal

distribution of the oil, which is advected by the surface currents. Evaluating the environmental

impacts of ocean outfalls, such as identifying the region surrounding an outfall where

concentrations of contaminants are high enough to pose a health risk, is determined by the

ambient current. How much sediment is brought into suspension depends on the near-bottom

shear stress; once entrained at the bottom, the sediment diffuses up into the overlying water

column and is transported by the current. Clearly, accurately predicting transport processes in

the coastal environment is impossible without correct current velocity and shear stress

information.

In the nearshore coastal environment, where one expects both waves and currents to be

present to some degree, it is important to understand the ways in which waves increase the flow

resistance and act to retard to current. For moderately strong wave conditions the waves create

ripples on the bed, and for very strong waves the near-bed sediment is transported as sheet flow;

both of these conditions increase the physical bottom roughness over that of a flat bottom. The

second way that waves retard the current is through interaction within the turbulent wave

boundary layer, producing an apparent roughness that is much larger than the physical

roughness. It is this apparent roughness that is experienced by currents in the presence of
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waves. The end result is that when waves are present a current will experience a dramatic

increase in apparent bottom roughness, often several orders of magnitude larger than the sand

grain diameter, and a correspondingly large reduction in velocity, often by a factor of two,

relative to the current velocity in the absence of waves.

The interaction between waves and currents in the near-bottom region, including the

relationship between the apparent and physical roughness, is predicted by a hydrodynamic

model for combined wave-current boundary layer flows. The physical bottom roughness is

estimated with empirical methods independent of the wave-current model, typically by

assuming the physical roughness is determined solely by the wave motion.

The Grant-Madsen type wave-current interaction models are widely used due to their

physical basis and ease of use; they began with one of the first published wave-current models,

that of Grant and Madsen (1979), and continue with the modified forms of Madsen (1994) and

Madsen and Salles (1998). These models solve the linearized boundary layer equations, which

assume uniform flow and thus neglect convective accelerations. They utilize a two layer, bi-

linear, time-invariant eddy viscosity model. Because the eddy viscosity is time-invariant, the

time-varying and time-invariant components of the linearized governing equation are separated

into two independent equations, one for the waves and another for the current, which are

considered individually. The wave problem is then solved assuming that the waves are so much

stronger than the current that the current can be neglected in the wave solution. The Grant-

Madsen type models have been shown to give excellent results when compared to measurements

when the waves and currents are collinear, with less accurate but still adequate results when the

waves and currents act at larger angles.

More complicated analytical models include those that employ a time-varying eddy

viscosity, such as Trowbridge and Madsen (1984) and Gonzalez-Rodriguez and Madsen (2011).

Numerical wave-current models typically utilize a k - e turbulence closure model for the eddy

viscosity, such as Davies et al. (1988), and Holmedal et al. (2003). While these numerical
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models provide insights into the non-linear processes, they are typically too computationally

expensive to use in practical coastal engineering applications.

The Grant-Madsen type boundary layer models are simple yet accurate, and are fairly

widely used. However, the models use a discontinuous two layer eddy viscosity in the current

problem, but in the wave problem the lower linearly varying eddy viscosity layer is assumed to

extend throughout the wave boundary layer, which in effect inconsistently applies a linear model

for the wave solution. Therefore, we will develop a new wave-current theory, which is based on

the existing Grant-Madsen theory, but employs a three layer continuous eddy viscosity model

and consistently uses all three layers in the solution of both the current and wave problems.

All of the wave-current hydrodynamic models require an estimate of the movable bed

roughness, whose prediction method depends on the regime of the sediment bed. For flat sand

beds, which are found with limited wave action, this roughness is simply scaled by the sand

grain diameter. For stronger wave conditions, however, where wave-generated ripples cover the

bed, the roughness is scaled by the ripple dimensions. In the ripple regime, therefore, the

roughness is often naturally taken as a function of the ripple geometry, which is predicted from

fluid, flow, and sediment parameters. Finding the roughness with this method, however,

requires a constant that depends on the choice of theoretical friction factor model. Sheet flow

conditions are found for even stronger wave conditions. Finding the roughness using the

common method in the sheet flow regime also requires a model-dependent constant.

To find the roughness in the ripple regime, instead of first predicting the ripple

dimensions, which are not otherwise needed, we propose to directly predict the wave energy

dissipation factor, which can be obtained experimentally and is not model-dependent. Any

model can then be used to back-calculate the bed roughness. This proposed energy friction

factor method is also applicable to the sheet flow regime, which allows a continuous variation in

the roughness prediction between the two regimes. Since the model-dependent constants used

15



in the common method are determined using the energy friction factor data, the proposed

method can be expected to give equal or improved accuracy, and is much simpler.

The goals of this thesis are to develop a consistent theoretical wave-current boundary

layer model, to derive expressions for empirical relationships for the bed roughness, and to

validate the theoretical model and empirical roughness relationships with wave-current field

data.

In Chapter 2 we present the derivation of the three layer turbulent wave-current

boundary layer model. As opposed to the previous Grant-Madsen type models, this model

consistently uses the same three layer eddy viscosity model in both the current and wave

solution. Since it is cumbersome to solve the exact three layer current profile, we also provide an

equivalent two layer simplification. Because the wave problem always uses the full three layer

model, the simplification gives the same shear stresses and apparent roughness as the full

model, the formulations only differ in the current velocity profile very near the transition level,

which is of little importance. Using the simplified two layer current velocity profile allows a

simple solution procedure which is very similar to that of the original Grant-Madsen models,

which employed a two layer eddy viscosity model for the current problem. The results of the

model are presented graphically for ranges of the pertinent parameters, and explicit

approximations are provided to simplify calculations. The wave-current solution procedure is

described and the model is evaluated by comparing predicted current profiles with numerical

and laboratory experimental results. Finally, the friction factor relationship for the new model is

compared to previously published and tested theories.

The movable bed roughness is an important input into the boundary layer theory

developed in Chapter 2, and it depends strongly on the movable bed regime. Chapter 3 describes

the three relevant movable bed regimes: the lower flat-bed, ripple, and sheet flow regime, and

characterizes the flow conditions that lead to each regime. For the ripple regime, we give a

sample of published relationships for the ripple height, and then present our new relationship
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developed with laboratory data. We then present relationships for the energy friction factor for

the ripple and sheet flow regimes, which provide an alternative method of finding the

roughness.

In Chapter 4, the relationships developed in Chapter 3 are used to develop methods of

determining the roughness in the different regimes. In the ripple and sheet flow regimes, two

methods are considered: the common method is more direct but includes a model-dependent

constant; the proposed method is based on measurements of the energy friction factor and is

independent of friction factor model. The common method requires a friction factor model-

dependent factor, and the best-fit factors for the ripple and sheet flow regimes are found for

laboratory data using the new boundary layer theory. The results of back-calculating the

roughness from the energy friction factor relationships are provided to illustrate the proposed

roughness method. The roughness procedure for all three regimes is then summarized.

In Chapter 5, the wave-current theory derived in Chapter 2 and the roughness methods

developed in Chapters 3 and 4 are evaluated using data on combined wave-current flows in the

field. The results using the different roughness methods in the different regimes are presented,

and different ways of characterizing random waves under field conditions are considered.
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Chapter 2

Turbulent combined wave-current
boundary layer theory

In this chapter we present a relatively simple hydrodynamic model for turbulent combined

wave-current boundary layer flows. Most analytical boundary layer models employ a time-

invariant eddy viscosity model, and for simplicity we will continue that trend with this current

model. However, while many models divide the flow into two layers for the eddy viscosity

structure, we use a continuous three layer model, and we consistently use all three layers in the

solutions for both the wave and current. The current and wave problems are described and the

model results are presented for a range of the applicable parameters. We then outline the

suggested solution procedure to solve combined wave-current problems using the new three

layer wave-current model. The new model is tested against results from both a more complex

numerical model and from fixed-bed experiments, where the bed roughness is well quantified.

The friction factor variation predicted from the new three layer model is then compared to other

accepted published friction factor models whose applicability has been more widely examined.

2.1 Three layer model for combined wave-current flows

The Grant-Madsen type boundary layer models, the most recent of which are Madsen (1994)

and Madsen and Salles (1998), assume a time-invariant discontinuous two layer vertical

structure for the eddy viscosity. The eddy viscosity profile consists of two linear segments, one

inside the wave boundary layer and the other outside it, within the current boundary layer. The
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wave friction factor, phase shift, and wave boundary layer thickness, however, were developed

ignoring the effect of currents, therefore the effective eddy viscosity for the wave solution

extends the bottom layer to the whole depth, giving a simple linear profile (Madsen, 1994;

Madsen and Salles, 1998). As this two layer model uses a different eddy viscosity formulation for

the wave and current problems, we decided to develop a three layer model which consistently

applies the same eddy viscosity structure for the entire problem. Also, the continuous eddy

viscosity variation resulting from including a third, middle layer yields a smooth velocity profile,

providing a more realistic transition from the wave to the current boundary layer.

The linearized governing equation for a wave-current boundary layer, assuming uniform

flow and thus neglecting convective accelerations, can be written as

Py- = -VP + (2.1)
at az

where U' is the horizontal velocity vector, p is the pressure, f is the shear stress vector, z is the

elevation above the bottom, and p is the fluid density. For turbulent flows, the shear stress is

related to the velocity through the turbulent eddy viscosity, vt, by

-= vt - (2.2)
p az

Inserting (2.2) into (2.1) yields

dii 1 d/ dii
- Vp + vt (2.3)at p az az)

where Vh denotes the gradient operator in the horizontal (x, y) directions.

To make this problem tractable analytically, a model for the eddy viscosity structure

must be chosen. Within the wave boundary layer, z < 6, the eddy viscosity is scaled by the

maximum combined wave-current shear velocity, u-m, given by

pu*m = Tm = |Vwm + ic| (2.4)
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where the magnitude of the maximum combined shear stress, is the vector sum of the

maximum wave shear stress, Twm = PU*wm, and the current shear stress, TC = pu*C. Outside the

wave boundary layer the eddy viscosity is scaled by the current shear velocity, u.

The vertical scale of the wave boundary layer, 1, is given by

=u- M 
(2-5)

where w = 2wr/T is the wave orbital frequency and K is von Kairmain's constant (K ~ 0.4). The

non-dimensional vertical coordinate is then

Z
(2.6)

and the other vertical distances can be similarly non-dimensionalized, e.g., ( = Sw/1.

Based on law-of-the-wall arguments, the eddy viscosity near the boundary should vary

linearly. For steady turbulent flow, the most common eddy viscosity models are, in increasing

order of complexity, linear, linear-constant, and parabolic. The linear-constant variation is often

used due to its balance between simplicity and accuracy. It can be shown that by taking the

transition level between linear and constant variations at 1/6 of the water depth, the resulting

velocity profile well represents the accepted logarithmic profile for steady flow (Clauser, 1956).

Generalizing from the steady case, we choose to take a time-invariant linear-constant eddy

viscosity profile within the wave boundary layer with the transition from linear to constant

portions occurring at 1/6 of the thickness of the wave boundary layer. At distances well above

the wave boundary layer the eddy viscosity variation has little effect on the solution, so we

choose to use a simple linear variation. The full three layer eddy viscosity model for combined

wave-current flows is therefore

KUmZ, Z0  Z < St

Vt = Ku*m4t, (t < Z < t (2.7)

KU.cZ, Z > #mst
usc
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where 5t is the lower transition level between linear and constant portions and zo is the

elevation of the theoretical bottom, where the velocity vanishes. This reasonably simple eddy

viscosity is illustrated in Figure 2-1.

z t

/

Vt

Figure 2-1: Illustration of three layer eddy viscosity structure, as defined by (2.7), assuming 8t= Sw/6 > z.

As mentioned above, the transition between the bottom two layers is taken to be at 1/6 of

the thickness of the wave boundary layer, or 85 = 8,/ 6 . However, it is possible with a very rough

bottom for the elevation of the theoretical bottom, zo, to be located above the level S,/ 6 , in

which case the constant portion of the eddy viscosity model extends all the way to zo, effectively

reducing the model to two layers. To account for this effect, the transition level between the

bottom two regions is explicitly defined as

6t = max[Sw/6, zo} (2.8)

where the roughness length zo, the elevation of the theoretical bottom, is given by

v kN)
zo = max 9u-m k (2.9)

where v is the kinematic viscosity of water and kN is the equivalent Nikuradse sand grain

roughness, and the two expressions are valid for smooth and rough turbulent flow, respectively.
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The transition level between the top two layers is located at z = (um/u.c) St. To simplify

the expressions, we define a parameter a as the current-maximum shear velocity ratio, which

varies between a = 0 for the pure wave case to a = 1 for the pure current case,

u"c
a = (2.10)

Note that using this parameter, the transition level between the upper two layers is simply

z = St/a. For the pure wave case, with a = 0, the upper transition level goes to infinity, and the

eddy viscosity becomes a two layer linear-constant model, while for the pure current case, with

a = 1, the upper transition level is the same as the lower transition level, and the eddy viscosity

becomes a simple linear model (Figure 2-2). Note that, as mentioned above, for very rough

conditions it is possible to have St = zo > 6,/6, in which case the eddy viscosity structure for the

pure wave case would reduce to a simple constant model.

a =0 a=1
z z

zo Vt zo >Vt

Figure 2-2: Illustration of the limits of the three layer eddy viscosity structure, for a = 0 and a = 1,
assuming 6 t > zo.

As the shear velocities and the eddy viscosity are time-invariant, the velocity and

pressure can be resolved into their mean and time-varying components, where the mean

component is related to the current and the time-varying component is related to the oscillatory

wave motion,
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hi = iii + ii
(2.11)

P = Pw + Pc

where the subscripts w and c refer to the wave and current components, respectively.

Introducing these expressions into the governing equation, (2.3), yields two separate equations

for the wave and current motion. In order to describe the wave and current motions in terms of

magnitudes and not vector quantities, we define the x-direction as the direction of wave

propagation, and the current velocity is directed at an angle PC, from the x-axis, where #c, is

the acute angle between the wave and current directions. The wave motion is described by

a =tw - -a- + aVt a f (2.12)at pdax az d z)

where the tilde denotes time-varying quantities. Using the relationship predicted by potential

theory between the wave-induced pressure and the near-bottom velocity, 5b, the wave equation

reduces to

a(Ow - Gb) = a (f, -- uib))(.3
at v az (2.13

Based on a law-of-the-wall argument, the pressure gradient term in the current equation

can be neglected, and the magnitude of the current motion is therefore described by

c 2 duc
- = c = Vdz (2.14)

where the definition of the current shear stress at the bottom has been used. The direction of the

current as well as its bottom shear stress, Te, is at an angle #C, to the x-axis, that is, the wave

direction.

2.1.1 Current solution

With the eddy viscosity model given by (2.7), and the governing equation for the current motion

by (2.14), the general equation for the current at all three levels is given by
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duc
KUmmZ dZ

2 =U*C

duc
KU*cZ dZ

Zo < z < St

St < z < St/a

z > St/a

For the bottom layer, where the eddy viscosity is linear, the solution to (2.15) is

uc = cr In = a ln(

where the no-slip bottom boundary condition has been applied at zo. Then for the intermediate

layer, with a constant eddy viscosity, the general solution to (2.15) is

uc =a + C = a + C) (2.17)

The constant C1 is found by requiring the velocity to be continuous at z = St, which gives

+ 1n -1) = a + In -1 (2.18)

For the upper layer, the eddy viscosity is again linear, and the general solution to (2.15) is

UC = u*c ln z + C2 = u*C In ( + C2'
K K

(2.19)

The constant C2 or C2 is found by requiring the velocity to be continuous between the middle

and upper layers at z = 8t/a, which gives

uc = * In a ZI Z 6 + 1 + aIn ( - 1)] = c [1n (a + 1

The velocity in the upper layer follows a simple logarithmic profile, so by combining the

constants it can also be written as

K (Za

(2.20)

(2.21)
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UC - a

(8t
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where zoa is the apparent roughness, the elevation of zero velocity if the top layer profile were

extended towards the bottom. Thus, the apparent roughness is found from setting the current

velocity in (2.20) equal to zero at z = zoa, which gives

Zoa _ 1 ( S - (2.22)
ZO a \ezo

where e = exp{1}.

Combined, the full current velocity profile is

au* In -, ZO < z < St
K \ZoJ

uc= a-( -+ In ( 1), St < z < 8t/a (2.23)

ZU C S\ \ 1

In a- +1+a(in -- 1u, z>St/a

This three layer velocity profile is nice because it is smooth, but it is clumsy to work with

and having an accurate representation of the velocity in the middle layer is not critical.

Therefore, we can sacrifice smoothness and consistency and find an equivalent two layer profile

for the current, by extending the bottom and top layers until they meet. This way, the only

difference between the two profiles is in the middle layer. Therefore, the three layer continuous

eddy viscosity model given by (2.7) becomes the simpler, but discontinuous eddy viscosity

model in (2.24), consisting of the two linear segments of the top and bottom layers,

Vt { KU*mZ, Z < cw (2.24)
KucZ, Z > S524

where S, the wave-current boundary layer thickness, is the transition level between the

bottom layer, scaled by the maximum combined shear velocity, and the top layer, scaled by the

current shear velocity. The bottom and top layers approximately correspond to the wave and

current boundary layers, respectively, although the wave boundary layer thickness, S, is almost

always greater than Sc (6, < S, only occurs for very small values of a, a 5 0.076). The

transition level is found by equating the top and bottom velocity profiles at z = Sc., which gives
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Scw = 8aa-) (2.25)
e

The two layer velocity profile resulting from this simplified eddy viscosity model is given by

a In , z < Se,
Uc K zO) (2.26)

In( - z > Se,
K Zoa

The apparent roughness, zoa, can be written in terms of Scw using (2.25) in (2.22),

Zoa =(cw) 1(2.27)
Zo zo

For the pure-current case, when a = 1, Zoa = zo, and the current profile (2.26) reduces to the

simple logarithmic steady current profile, as expected.

An example comparison of the eddy viscosity structure and the current velocity profile

for the three layer model and the simplified two layer model is shown in Figure 2-3. The non-

dimensional eddy viscosity, Vt/(KutmSt), and current velocity, uc/(u.eK), are plotted against the

non-dimensional elevation, z/8t. Using these scalings, the only parameters which must be

chosen are a and zo/St, which are arbitrarily chosen to be a = 0.25 and zo/St = 0.01.
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Figure 2-3: Comparison of eddy viscosity structure (left) and current velocity profile (right) for the three
layer model (gray) and the two layer simplification (black) for a = 0.25 and zo/8t = 0.01.

The transition level between the two layers of the simplified two layer profile was derived

in this section by matching the velocity profiles from the top and bottom layers. As derived in

the Appendix, the same transition level is found for simplifying a three layer suspended

sediment concentration profile to two layers.

The current velocity profile is thus given by either (2.23) or (2.26) for the three and two

layer profiles, respectively. In either case, to evaluate the expressions requires knowledge of a

and St, which in turn are dependent on the maximum combined shear velocity, u.m, and the

wave boundary layer thickness, 6, respectively. These parameters are found from the wave

solution and the friction factor closure.

2.1.2 Wave solution

According to linear theory, the wave orbital velocity at the bottom is

fb = UbmRei'te } = Um cos wOt (2.28)
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where Ubm is the magnitude of the bottom orbital velocity, the operator Re indicates the real

part of the argument, and i is the imaginary unit. We define the normalized deficit velocity as

= w - b (2.29)
Ubm

and

Rd = ZRe{Ude i} (2.30)

where Ud is the complex magnitude of the deficit velocity. Substituting (2.29) into the governing

equation for the wave motion, (2.13), gives

i vt z 
(2-31)

and applying (2.30) yields the governing equation for the time-varying component of the

velocity field within the wave boundary layer,

d dud i)ud= 0 (2.32)
dz k(tdzl

Using the three layer eddy viscosity model described by (2.7), general solutions for the

deficit velocity can be found for each of the three regions. In the lower region, z < St, where the

eddy viscosity is linear, (2.32) becomes

u dz iWUd = 0 (2.33)

or, invoking (2.5) and (2.6),

d ( d iu = 0 (2-34)
d{ d

Using Hildebrand (1976), the general solution to (2.34) is

ud = A(ker 2f + i kei 2j) + B(ber 2f + i bei 2j) (2.35)

where ker, kei, ber, and bei are Kelvin functions of zeroth order and A and B are complex

constants.
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In the intermediate region, St < z < St/a, where the eddy viscosity is constant, the

governing equation (2.32) becomes

u-m'St d 2  u- Ud = 0IUmtdZ
2 (2.36)

Or, using the non-dimensional boundary layer scale (2.6),

d2Ud
d 2 -Ud = 0 (2-37)

with the general solution

ud = Ce ( + De v T (2-38)

where C and D are complex constants and V = (1 + i)/AFZ.

In the upper region, z > dt/a, the eddy viscosity is again linear, and (2.32) becomes

(2.39)
d iWUd = 0dz uI'cz dz i g=0

Or, using (2.5), (2.6), and (2.10),

d dud)

d( di

i
-- Ud = 0a

(2.40)

Using Hildebrand (1976), the general solution to (2.40) is

Ud = E(ker 2,J7/ + i kei 2J57a) + F(ber 2VJ7a + i bei 2 ft7/) (2.41)

where E and F are complex constants. For the upper boundary condition the wave velocity must

equal the near-bottom velocity, or the deficit velocity must vanish far away from the bottom,

Ud -+ 0 as ( -+ +oo. Since ber and bei become exponentially large when their arguments go to

infinity, it can be seen that

F = 0 (2.42)

and (2.41) becomes

Ud = E(ker 25JI7 + i kei 25J7-)
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Combining (2.35), (2.38), and (2.43), the full deficit velocity profile can be written as

A(ker 2j+ i kei 2j) + B(ber 2j+ i bei 2f), (O< ( <(t

-= Ce & + De -,[ t < < (2.44)

E(ker 2 J/a + i kei 2,J7l), ( > (t/a

There are five complex constants remaining, which require five conditions: the

remaining bottom boundary condition and four matching conditions, for the velocities and

shear stresses at each of the two transition levels. Since vt is continuous, matching the shear

stress is equivalent to matching the velocity gradient. Because the derivatives of Kelvin functions

will be used multiple times, the generic form is given here (Abramowitz and Stegun, 1972).

d(ker(2j'/a)) = 1 [ker1(2jIG) + kei 1(2 7()]

d (kei(25 Ia)) = [- ker1(2VJ) + kei1(2VJ71)]
da7 

(2.45)
d (ber(2V7/)) = 1 [ber1(247() + bei(2jI7)]

d(bei(2V7)) = 1 [-ber1 (2Vt71) + bei1(2V?~Ia)]
d( 2a

At the bottom boundary, the no-slip condition in terms of the normalized deficit velocity is

Ud = -1 at (0 = (. Applying this condition to (2.35) gives

A (ker 2,J( + i kei 2,,) + B(ber 2V/O + i bei 2VT) = -1 (2.46)

At the first transition level, ( = (t, the velocities from above and below must match. Using

(2.44), this gives

A(ker 2 /( + i kei 2VJt) + B(ber 2J( + i bei 2j) = Ce-I/ + De'/l (2.47)

As vt is continuous at ( = t, matching the shear stress is equivalent to matching the velocity

gradient, which gives
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d
S[A(ker 2\/ + i kei 2j5) +i B(ber 25ft+ i bei 2)

(2.48)

d Ce I++De'

Using (2.45) with a = 1 and simplifying, (2.48) becomes

A(-i ker 2/ + kei1 2V) + B(-i ber 2Vt+ bei1 2j) = -Ce-N + DeIV (2.49)

The velocities must also match at the second transition level, = (t/a. Applying this condition

to (2.44) gives

E [ker a -J) + i kei = Ce-#/a + De /a (2-50)

Again, the eddy viscosity is continuous at ( = t/a, so matching the shear stress is equivalent to

matching the velocity gradient.

d [E(ker 2,J7l + i kei 2 a)],, =' Ce + De (2.51)

Again, we use (2.45) and simplify (2.51) to

E [-i keri ( /c) + kei1 (3-J = -Ce -/"/a + Def/" (2.52)

Equations (2.46), (2.47), (2.49), (2-50), and (2.52) are five equations from which the five

complex constants A, B, C, D and E may be determined. With the five constants known, the

deficit velocity is given by (2.44). The five constants, and therefore the deficit velocity, are

functions of a, (0, and (,,.

The deficit velocity profile depends on the wave boundary layer thickness, d, = (W1,

which is not known a priori. We define the wave boundary layer thickness, z = S" or < = (, as

the height at which the maximum boundary layer velocity deviates by e (%) from the near-

bottom wave velocity, or in terms of the normalized deficit velocity,

|udI = E (2.53)
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For a = u-c/u-m > 1/6, it follows that (, > (t/a, and therefore the top of the wave boundary

layer is located within the upper portion of the velocity profile. For this case, the normalized

deficit velocity at the top of the wave boundary layer is

ud = E (ker 2 </a + i kei 2j~/5), ( > (/a (2.54)

However, for the case when a < 1/6, when the waves are very strong compared to the current,

the wave boundary layer thickness is located within the middle, constant portion of the eddy

viscosity profile. For this case, the normalized deficit velocity at the top of the wave boundary

layer is

ud = Ce + D e 5, (t < ( < (t/a (.5

Combining these regions, the wave boundary layer thickness can be found for any a by solving

E(k er 2J(/a + i kei 2 (w/a)|, a > 1/6
T = _ (2.56)

iCe + De 1, a ; 1/6

In the original Grant-Madsen model (Grant and Madsen, 1979), the wave boundary layer

thickness was taken as a constant multiple of the boundary layer scale, 8, = Al, where A was

taken to be between 1 and 2 corresponding to experimental results by Jonsson (1966). Madsen

and Salles (1998) were the first to realize that A = (, is not a constant but is in fact a function of

the relative roughness. Like the new model, they defined the wave boundary layer thickness as

the height at which the amplitude of the boundary layer velocity deviates by a certain

percentage, E, from the maximum near-bottom wave velocity. E is the only parameter in the

model which must be chosen, and there are multiple reasonable values to choose from, such as

E = 1%, 2%, or 5%. Madsen and Salles defined the boundary layer with E = 5%, which gave

(w = 2 with the roughness corresponding to Jonsson's experiments, making this choice

consistent with the original Grant-Madsen model. As that model yields acceptable results when

compared to experiments, we likewise choose this value,
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(2.57)

to define the extent of the wave boundary layer for the new three layer model.

2.1-3 Friction factor closure

With the introduction of the wave boundary layer thickness, there are two unknowns remaining

in the model formulation, the normalized bottom roughness, (0 = zo/l, and the maximum

combined shear velocity, um = V Tm/p. The maximum combined shear stress is the vector sum

of the maximum wave shear stress and the current shear stress

Tm = Twm + C = (Twm + TcIcos (#wc , TcIsin #wc|) (2.58)

where #we is the acute angle between the wave and the current directions. The magnitude of the

maximum combined shear stress vector is therefore

Tm = jT2m + 2TwmTcIcos #wcI + T2' (2.59)

To simplify the expressions, we introduce two new variables relating the shear stresses,

and

C= = 2
TM_ U*m

Tw U*wm

Tw U2
Twm U*wm

(2.60)

(2.61)

Using (2.59), it can be seen that C, and y are related according to

C1 = V1 + 2pIcos #wc|+ P2 (2.62)

Note that the variable a can be written in terms of these variables as

U*c P
um C,

(2.63)

We define the generalized wave friction factor for combined wave and current motion by

34

E = 5%



Twm =Pfwcum (2.64)

Re-arranging (2.64) yields

fwc Twm _ U*wm _ U*wm (2.65)
2 bPm Ubm Abm()

where Abm is the near-bottom wave excursion amplitude, related to Ubm by

Abm = (2.66)
a)

The definition of (O in (2.6) can be written in terms of the friction factor using (2.65) and (2.62)

S-= =/ = / (2.67)1 Ku*m/&) KV u*wmIJ CAbm KJfcw12

For the pure wave case, the relative roughness parameter X is given by

X = m (2.68)
30zo

or X = Abm/kN for fully rough turbulent flow conditions. For the combined wave-current case,

we define a wave-current relative roughness parameter X,

X=C bi (2.69)

Using (2.69) we can re-write (2.67) as

1 Z/ C,1 =f 2(2.70)
30 X1, K fcw

To fully close the problem, we use the known wave velocity profile near the bed to find another

relationship for the friction factor. The maximum shear stress due to the waves is by definition

Twm = pV az IZ= (2.71)

or, in terms of the normalized deficit velocity,
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Twm = PUbm Vt azd (2.72)
a Z=Z0

Evaluating the eddy viscosity at the bottom using (2.7) and re-writing (2.72) in terms of the non-

dimensional vertical scale in (2.6) gives

uswm = = KUbmU*mfo (2.73)

Using (2.65) and (2.60), (2.73) becomes

= K(O rUd (2.74)

Using the deficit velocity profile given in (2.44) and the expressions for the derivatives of Kelvin

functions given in (2.45), the derivative of the deficit velocity at the bottom can be written in

terms of a complex function FAB

a( (o= FAB ({O,{w,a) (2-75)

where FAB is a function of the complex constants A and B, and the parameters (0, (w, and a.

FAB((o, (t, a) = A[-i keri 2j( + kei1 2J-] + B[-i beri 2 JO + bei1 2-JT] (2.76)

Then (2.74) becomes

= 2K 2<o [|FAB ((, (w, a)|]2 (2.77)

We can use (2.70) with (2.77) to get an expression for the friction factor in terms of the relative

roughness parameter

fWC= 2 |Fag AS (0 (w, a) 122s (2.78)

Equations (2.78) and (2.70) can be used to develop a modified combined wave friction factor

diagram which shows the dependency of the friction factor on the relative roughness.

36



The phase angle between the shear stress and the near-bottom velocity, q,, will also be of

interest, although it is not needed to close the problem. It is given by the argument of the

complex near-bottom shear stress

VT = (O) = arg{Twm} (2.79)

With (2.73) and (2.75), the phase is found to be

p= -+ arg{FA( (0 , (w, a)) (2.80)

where FAB is again given by (2.76). For a constant eddy viscosity, such as is found in a laminar

boundary layer, the phase shift is constant and equal to piam = 7/4. For very rough beds

(corresponding to small X,), the bottom roughness (O becomes larger than (w/6 and the bottom

linear layer of the three layer eddy viscosity profile disappears. The eddy viscosity profile is then

constant up to the edge of the top layer, at ( = (t/a = pO/a, so the thickness of this constant

layer increases as (O increases. Thus, as the roughness increases (or X,, decreases), the eddy

viscosity structure becomes constant over more of the depth, the function FAR goes to one, and

the phase shift approaches the laminar value, pT -+ 7/4.

Extension to random waves

The waves in the model are specified by the amplitude of the near-bottom wave orbital velocity,

Ubm, the wave radian frequency, w, and the direction of propagation, #w. In the case of spectral

waves, these quantities are given by those of the representative periodic wave, Ubr, Wr, and #wr,

respectively, as described in Madsen (1994). The near-bottom velocity amplitude of the

representative periodic wave is the root-mean-square (rms) velocity, Ubrms, given by the

directional near-bottom orbital velocity spectrum, Sub (, 0),

Ubm = Ub,r = Ub,rms = 2 if SUb (W' 6)dwd6 (2.81)
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The radian frequency of the representative periodic wave is the mean frequency, given by

= = if (W, 6)dwd6 (2.82)
ff Sub(a),)dwd6

and the direction of propagation is given by

ff Sub (w, 6) sin 6 dwd6
tan #w = tan #wr =f Sb(W, 6) cos 6 dwdO (2.83)

2.1.4 Model results and explicit approximations

The five complex constants A, B, C, D, and E, given by equations (2.46), (2.47), (2.49), (2.50), and

(2.52), are functions of a, (0, and (,. The wave boundary layer thickness, (w, is a function of a

and (o by (2.56). The zero-velocity level, (0, and the friction factor, fe, given by (2.70) and

(2.77), are functions of C,,, X,,, and (w and a through FAB( o, (", a). Finally, a and C,' are both

functions of the wave shear velocity, which is a function of few in (2.65). If the wave

characteristics, Ubm and w, the current characteristics, uc and #P, and the bottom roughness,

kN, are known, we can solve these equations simultaneously to find all of the parameters and the

current velocity profile.

The parameter a = u-c/u-m ranges from a = 0, when there is no current and only waves,

to a = 1, when there is only a current. Solving the model with a = 0 is the same as solving for a

pure wave boundary layer with a linear-constant eddy viscosity model. Solving for the wave

parameters, such as the wave boundary layer thickness, seems illogical for the pure current case,

when a = 1. However, the wave parameters, few/Cm, (,, and $/, only depend on the relative

magnitudes of the current and wave through a, so as far as the wave solution is concerned, the

magnitude of a simply determines the eddy viscosity structure, and it is irrelevant that in this

three layer model taking a = 1 corresponds to the pure current case. When a = 1 the constant

eddy viscosity layer disappears and the eddy viscosity reduces to a simple linear profile scaled by

U*m. Therefore, the results from solving this new model with a = 1 are equivalent to solving for
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a pure wave boundary layer with a linear eddy viscosity model, such as was used in the modified

Grant-Madsen boundary layer model (Madsen, 1994).

By solving these equations for a range of values of X,, and a, we can create general

diagrams of the friction factor, wave boundary layer thickness, and phase angle. For X. values in

the range 0.05 < X, < 105 and six values of a = 0,0.2,0.4,0.6,0.8,1, the relationships for the wave

boundary layer thickness, friction factor, and phase angle are shown in Figure 2-4, Figure 2-5,

and Figure 2-6, respectively. Also shown for comparison on the figures is the corresponding

result for the most recent Madsen model, for which the friction factor and phase are given in

Madsen (1994) and the wave boundary layer thickness is given in Madsen and Salles (1998).

Both Madsen (1994) and Madsen and Salles (1998) used a linear eddy viscosity model for the

wave solution, which is equivalent to the new model with a = 1, and Madsen and Salles (1998)

defined the boundary layer thickness with e = 5%, as in the current model. The results for the

boundary layer thickness for the new model with a = 1 and Madsen and Salles (1998) are

slightly different because Madsen and Salles offset the elevation in the Madsen (1994) model by

taking z -- z + zo.
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Figure 2-4: Wave boundary layer thickness variation with the relative roughness and a for the new model
(colors), and for Madsen and Salles (1998) (gray).
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Figure 2-6: Phase angle variation with the relative roughness and a for the new model (colors), and for
Madsen (1994) (gray).

The kinks seen in the diagrams near X, = 0.2 occur where the model changes from

(t = (w/6 for larger values of X, to (t = fo for very large roughness, or very small values of X,,.

The value of X,, where this transition occurs is denoted Xpcrjt, and varies with a. An explicit

approximation to the relationship between Xcrit and a is given by

0.342, 0 a 0.15

Xp,crit =22.6a3 - 18.9a 2 + 4.83a - 0.035, 0.15 < a 5 0.3 (2.84)
0.222a 2 - 0.619a + 0.490, 0.3 < a 5 1

The critical roughness value given by the explicit fit (2.84) is within 0.5% of the true value of

Xp,crit for all values of a.

To make it easier to solve wave-current problems, explicit approximations have been

developed for the friction factor, wave boundary layer thickness, and phase angle, as functions of
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X,, and a, that is, (,, fe/C,, <p = f(X,, a). For a = 0, the pure wave case, the intermediate layer

extends to infinity, so in this limit the three layer model reduces to two layers, with a

corresponding linear-constant eddy viscosity variation. For the pure wave case, explicit

theoretical expressions exist for the condition of very large physical roughness, when X,' <

Xm,crit, or (t = fo > (w/6, for which the eddy viscosity is constant and takes the value vt =

Kumzo. For a = 0, the critical value of the relative roughness is a function of E only, and is

approximately X,,crit = 0.342 for E = 5%. Therefore, in the following explicit expressions for the

pure-wave case, (2.85), (2.86), and (2.87), the expression over the range 0.05 5 X1, < Xpcrit =

0.342 is exact, whereas the expressions for X, > X,,crit = 0.342 are fits to the theoretical curves.

The explicit expressions for the wave boundary layer thickness for the pure wave case are

(30K 2X4)2/3 - VZ In E (3OK2X,)/ 3 ,

=0) = exp.36X,- -0.135),

exp{2.03X,-0-08 4 9 - 0.845},

0.05 5 X 5 0.342

0.342 X, < 10

10 < Xt 10 5

The wave friction factor can be approximated for the pure wave case by

2 0)-2/3

fCW (a =0) 0.32 X, - ,, x

(a = 0) = exp{-1.69X,4344 - 0.473) + 0.0388,

L exp{5.70X,,-- 0 - 7.46),

0.05 X, ! 0.342

0.342 < Xt 10

10 < Xt 10s

and the phase shift can be approximated by

IT

4,

(p(a = 0) =-0.303X, 0.260 + 0.00967X + 1.02,

0.649XP-0.160 + 0.118,

0.05 X, 0.342

0.342 < X1 i10

10 < X, i 10s

Comparisons between the actual computed parameters and the piecewise fits given by (2.85),

(2.86), and (2.87) are shown in Figure 2-7, Figure 2-8, and Figure 2-9. The goodness of these fits

is determined by the mean relative error, MRE, defined as
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MRE = mean Ycomputed - Yf it (2.88)
Ycomputed

where Ycomputed are the computed values using the full model for a range of X,,, and Yfit are the

values given by the explicit piecewise fit. For the pure-wave case, the mean relative errors of the

fits over the range 0.05 s X, 105 are E = 0.11%, 0.20%, and 0.19%, respectively, for (w, fcw/

C,, and p. Although the fits were developed over this X,, range, ending at X, = 10s, the error of

applying them at X, = 106 is less than 3% for all the parameters.
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Figure 2-7: Comparison of the computed (gray) and piecewise explicit fit (2.85) (black) for the wave
boundary layer thickness for the pure wave case, at = 0. The circles indicate boundaries between segments
of the piecewise fit.

44



0.9

0.8

0.7 -

0.6 -

fcw

M 0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0 -1''' '0 ' ' ' '1 ' '' 2 3 4E 5 B I
10 100 10 10 10 10 10

X, =C1 Abm
430z0

Figure 2-8: Comparison of the computed (gray) and piecewise explicit fit (2.86) (black) for the combined
wave friction factor for the pure wave case, a = 0. The circles indicate boundaries between segments of
the piecewise fit.
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Figure 2-9: Comparison of the computed (gray) and piecewise explicit fit (2.87) (black) for the phase shift
for the pure wave case, a = 0. The circles indicate boundaries between segments of the piecewise fit.

In general, for any a, explicit approximations to the analytical curves can be given as

combinations of exponential and power functions and polynomials with general coefficients,

which are functions of a. For small values of a, there is very little difference between the

coefficients, and the expressions given in (2.85), (2.86), and (2.87) for a = 0 are approximately

valid for a 1/6. Using the expressions developed for a = 0 for values of a up to a = 1/6 over

the range 0.05 X,1  105 gives a maximum relative error of about 2% for few/C, and p,, and a

maximum relative error of about 8% for (w (at the smallest value of XM). The value of a = 1/6 is

a natural dividing line; for a < 1/6 the wave boundary layer thickness is found within the

intermediate, constant eddy viscosity layer, whereas for a > 1/6, the wave boundary layer

thickness is located within the top layer. Even though the values of the coefficients for a s 1/6
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are already given above for the a = 0 case, they are repeated in the equations below so that those

equations are valid for all cases. In the expressions that follow, the best-fit coefficients are given

for the general functional forms, which gives slightly different results for the a = 0 case for very

small values of the relative roughness, X. < Xg,crit, compared to the theoretical expressions

given in (2.85), (2.86), and (2.87).

For the wave boundary layer thickness, the general functional form for the dependence

on Xy is

expfalXbl + c1 },

-=exp{a2Xjtb2 + c2},

expta3 X~Ab + C3},

0.05 5 X, Xp,crit

Xl,crit < X4 10

10 < X, 10s

and the coefficients in (2.89) are given by (2.90)

{ 7.86, 0 a
ai = fXycrit[155a' - 393a 3 + 368a 2 - 133a + 25.0], 1/6 <

-0.0467, 0 a
1= X,crit [3.51a4 - 9.86 + 8.10a 2 - 3.14a - 0.103], 1/6 <

-6.80, 0 5a
C1 = fa 1 /[10.4a4 - 34.4a 3 + 33.0a2 - 13.6a + 0.256], 1/6 <

1.36, 0 s a 5 1/6
a2 = 10.455a3 - 0.233a2 + 0.564a + 1.29, 1/6 < a 5 1

{ -0.148, 0 ! a 5 1/6
= a 2 /[-8.80a3 + 4.6 1a 2 - 4.87a - 8.70], 1/6 < a 5 1

{ -0.135, 0:
C2 = fXt,crit[-7.98a4 + 1.96a 3 + 3.60a 2 - 2.92a - 0.108], 1/

2.03, 0 ! a ! 1/6
a3 = 1-0.381a3 + 0.795a 2 + 0.831a + 1.92, 1/6 < a 5 1

-0.0849, 0 a 1/6
b3 = a3 /[9.84a3 - 25.5a2 - 8.77a - 22.6], 1/6 < a 5 1

{ -0.845, 0 a 5 1/6
C3 = fX,crit[-17.4a3 + 6.96a2 - 5.40a - 1.77], 1/6 < a 1

1/6

1/6
ac !5 1

1/6
a 1

(2.90)

a 1/6
6 < a ! 1
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For the friction factor, the general form is

C=

aXPb + c1,

expta 2Xb2 
+ c2} + d2

exp{a 3 X,b3 + c3},

0.05 Xyt Xycrit

Xpcrit < X, 10

10 < X, ! 10<

and the coefficients for (2.91) are given by (2.92).

, 30.112, 0 a 5 1/6
ai = i.Xcrit[-0.858a4 + 4.96a 3 - 4.62a 2 + 1.92a + 0.0722], 1/6 < a 5 1

b,-2/3, 0 % a 1/6
= Xxcrit[-16.7a4 + 37.3a 3 - 34.4a 2 + 9.50a - 2.67], 1/6 < a 5 1

{1 320, 0 a 1/6
ci = XYcrit[3.60a 4 - 9.29a 3 + 8.98a 2 - 3.29a + 0.372], 1/6 < a 1

{' -1.69,a 2 = 1-8.85a3.s1 - 75.7' 5 9 - 1.66,
0 a 5 1/6
1/6 < a 1

{ =20.344,=21=1.68a4 - 2.99a 3 + 1.33a2 - 0.410a + 0.397,

{2 =-0.4 
73 ,

c2 = la 2 [3.58a4 - 5.35a 3 + 1.33 - 1.04a + 0.502],

0 ! a 5 1/6
1/6 < a 5 1

0 ! a 5 1/6
1/6 < a 1

2 0.0388,
= a2 -0.01[-4.60a 4 + 2.99a 3 + 4.50a 2 - 0.492a - 2.42],

{ 5.70, 0 a ! 1/6
as = 1-0.206a + 5.79, 1/6 < a 1

b = -0.101, 0 a:5 1/6
3 -0.00812a - 0.0983, 1/6 < a 1

{ -7.46, 0 a 5 1/6
c3 = 0.220a - 7.56, 1/6 < a 1

For the phase shift, the general functional form is

min {a1Xp2 + b1X, + c1 ,

q= T a2Xb2 + c2X, + d2 ,

a 3Xb3 + c3,

0 : a 5 1/6

1/6 < a 1

0.05 5 X P5 Xy,crit

Xp,crit < X- < 10

10 < X, ! 10s

and the coefficients for (2.93) are given by (2.94).
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0, 0 ! a 1/6
ai = 79.8a4 - 237a 3 + 255a2 - 113a + 17.5, 1/6 < a 1

{, 420, 0 a 5 1/6
= tX,crit[-159a4 + 453a 3 - 476 2 + 205a - 30.9], 1/6 < a 5 1

n =3/4, 05 a51/6
ci = X,crit[20.2a4 - 47.3a 3 + 45.4x2 _ 14.3a + 3.81], 1/6 < a 1

{ -0.303, 0 a 5 1/6
a2 = fXrit[0.535a4 - 1.75a3 + 1.81a 2 - 0.574a - 0.0466], 1/6 < a 5 1

0.260, 0 a 5 1/6
b2 = X;- it[-0.261a4 + 0.289a 3 + 0.103a 2 _ 0.257a + 0.142], 1/6 < a 5 1

(2.94)

0.00967, 0 a 5 1/6
C2 = f0.01Xilrit[-1.40a4 + 2.52a 3 - 1.10a 2 - 0.477a + 0.475], 1/6 <a 1

{2 =31.02, 0 < a 5 1/6
21= Xirit[-1.30a4 + 3.82a 3 - 3.61a 2 + 0.869a + 0.301], 1/6 < a 5 1

0.649, 0 ! a 5 1/6
a3 = Ic3 [16.5a4 - 43.3a 3 + 49.3a 2 - 15.4a + 6.67], 1/6 < a 5 1

b3 -0.160, 0 a 5 1/6
b3 = c3 [-3.48a4 + 8.87a 3 - 10.7a 2 + 3.70a - 1.67], 1/6 < a 1

0.118, 0 5 a 5 1/6
C3 = 10.201 exp(-1.52a) - 0.185 exp(-10.1a), 1/6 < a 5 1

Comparisons of these explicit approximations with the exact theoretical model are

shown in Figure 2-10, Figure 2-11, and Figure 2-12, for a range of a values,

a = 0, 0.2, 0.4, 0.6, 0.8, 1, over the range 0.05 X : 10-5. The mean relative error for all three

parameters for the six values of a over the full range of X, values is less than 1%. The maximum

relative error for each of the six values of a is less than 2% for (, and p,. For few/C,, the

maximum relative error is less than about 3% for values of a in the range a e [0,0.8], but the

maximum relative error is about 8% for cr = 1, and this maximum occurs at X, = 10, at the

transition between piecewise fits.
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Figure 2-10: Comparison of the computed (gray) and piecewise explicit fits (2.89) and (2.90) (colors) for
the wave boundary layer thickness for six values of a. The circles indicate boundaries between segments
of the piecewise fits.
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Figure 2-11: Comparison of the computed (gray) and piecewise explicit fits (2.91) and (2.92) (colors) for
the combined friction factor for six values of a. The circles indicate boundaries between segments of the
piecewise fits.
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Figure 2-12: Comparison of the computed (gray) and piecewise explicit fits (2.93) and (2.94) (colors) for
the phase angle for six values of a. The circles indicate boundaries between segments of the piecewise fits.

2.1.5 Comparison with a simpler, two layer wave model

The major contribution of this new three layer model over the previous Grant-Madsen models is

that it accounts for the current throughout the solution of the wave boundary layer problem by

consistently using all three layers in both the current and wave problems. The original and

modified Grant-Madsen models assumed a two layer bi-linear eddy viscosity profile for the

current problem, but only used the bottom linear layer in the wave problem, which allows the

current to influence the wave solution only through um in the eddy viscosity. Also, the

transition level between the two layers was assumed to be a constant multiple of the wave

boundary layer scale, 1. Madsen and Salles (1998) derived the wave boundary layer thickness as

a function of the relative roughness, but still solved the wave problem with a single layer linear
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eddy viscosity model, which effectively decouples the current from the waves. This model is

more complex than the earlier models in two main ways: it employs a three layer linear-

constant-linear eddy viscosity model, and it consistently uses all three layers in the wave

problem, which fully accounts for the current. While including the current in the solution of the

wave boundary layer is entirely consistent, it greatly increases the complexity of the model, as

seen in the expressions for the explicit fits to the model results, which depend on a in addition

to X,. The added complexity in the new model is not due to using three layers in the current

problem, but is a result of using all three layers in the wave problem. Thus, an easy way to

simplify this model would be to use only the bottom two layers in the wave problem. Therefore,

it is pertinent to know how much benefit is gained by using the more complex, consistent three

layer model as opposed to using a simpler model that ignores the current in the wave solution.

If the current is ignored in the wave problem, the top layer of the eddy viscosity structure

is removed, and the constant viscosity layer extends to infinity, effectively reducing the model to

two layers. This simplified model, which uses all three layers in the current solution but only the

bottom two linear-constant layers in the wave solution, will be termed the 'three/two-layered'

model, to avoid confusion with the two layer Grant-Madsen models. The three/two-layered

model is developed following the same process as the full three layer model, using a two layer

eddy viscosity structure with the same transition level, namely, St = max{S6/6, zo}, and taking

the wave boundary layer thickness as the elevation where the amplitude of the velocity in the

boundary layer deviates by 5% from the maximum near-bottom orbital velocity. The eddy

viscosity structure for the wave problem in the three/two layer model is therefore

Vt,waves = { ! t (2-95)
KUmt, 6 t 5 z

As there is no a in the three/two layer model, the effect of the current is completely

ignored. Note that when a = 0 is used in the three layer model the transition level between the

top two layers goes to infinity and the effective eddy viscosity structure is identical to (2.95).
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Therefore, the solution of the three layer model with a = 0 is exactly equivalent to the three/two

layer model solution, where there is no current in the three layer model and the current is

simply ignored in the three/two layer model.

Comparing the three and three/two layer models shows the error in neglecting the

current in the wave solution. When a < 1/6 in the three layer model, the top of the wave

boundary layer is found within the middle constant viscosity layer, whereas for a > 1/6, the top

of the wave boundary layer is found in the top, linear viscosity layer. Therefore, the three/two

and three layer models are expected to be very similar for a < 1/6, although they are not exactly

the same, because the velocity profile in the middle layer of the three layer model is still affected

by the presence of the current as it must match the velocity at the transition to the top layer. As

a increases, the current begins to dominate over the wave motion, and the difference between

the two models is expected to increase.

The ratio of the parameters for the full three layer model to the three/two layer model

are shown in Figure 2-13, Figure 2-14, and Figure 2-15 for the wave boundary layer thickness,

friction factor, and phase shift, respectively, for a range of a values, a = 0, 1/6,0.2, 0.4, 0.6, 0.8, 1,

over the range 0.05 Xi, 105. Because a = 1/6 is the cut-off for the wave boundary layer

extending into the top layer, this value of a is included in these figures even though it was not

included in the previous figures showing the model results.

54



1.5

1.4 -a =0.2
a = 0.4
a = 0.6

1.3 - a = 0.8
a = 1

1.2 -

1.1

(w,34-ayer

S,3/2-4ayer

0.9 -

0.8 -

0.7 -

0.6 -

-1012 3 4 5
10 10 10 10 10 10 10

S30zo

Figure 2-13: Ratio of the scaled wave boundary layer thickness for the three and three/two layer models
for seven values of a.
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Figure 2-14: Ratio of the combined scaled friction factor for the three
of the three/two layer models for seven values of a.
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Figure 2-15: Ratio of the phase shift for the three and three/two layer models for seven values of a.

For a = 0, as expected, the models give identical results, and the ratio is one for all

values of X,. For a 5 0.2, the ratios for all three parameters show somewhat different trends

than for a > 0.2, with ratios much closer to one for the small values of a, as expected. The (,

and few ratios overall converge towards unity as X, increases, while the ratio for #b diverges.

The peaks in the ratios for a > 0.4 occur at the critical values of the relative roughness for the

three/two layer model, Xii,crit,3/2 -layer = X,,crit(a = 0) = 0.342. The other kinks visible in the

fe, and #5, ratios occur at the critical roughness values of the three layer model, which vary with

a.

For a 5 0.4, the three/two and three layer models are within 1o% of each other for all

three parameters and for the entire range of X, values tested, which is very good agreement as
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far as boundary layer models are concerned. The greatest difference between the models is

found for a = 1, as would be expected, in which case the three layer model predicts an almost

50% larger boundary layer thickness and a 32% larger friction factor at the value of X, =

X,,crit(a = 0) = 0.342, and a 28% smaller phase shift at the highest value of X, considered,

Xm = 105. However, even for the extreme case of a = 1, the two models are within 30% of each

other for all the parameters for all but the smallest values of the inverse relative roughness,

X, > 8. Therefore, if a simpler model is desired, using the three/two layer model can be

expected to give acceptable results when the current is small compared to the wave, a < 0.4, or

the relative roughness, kN/Abm, is not too large (X, is not too small).

2.2 Wave-current solution procedure

The combined wave-current boundary layer model developed above can be used to solve for all

of the pertinent boundary layer parameters and the current velocity profile given information

about the environment, waves, current, and bed. The boundary layer model must be solved

iteratively, and a solution procedure for stepping through the equations describing the model is

provided here, although other procedures are certainly possible. This wave-current solution

procedure is nearly identical to that used in any of the Grant-Madsen type models (e.g., Madsen,

1994), with the difference that the combined wave-current friction factor and the wave

boundary layer thickness are computed using the new three layer model.

The environment is specified by the water density and kinematic viscosity, p and v,

respectively, the bed is specified by its physical roughness height, kN, the waves are specified by

their near-bottom orbital velocity, Ubm, and radian frequency, to, the current is specified by its

direction relative to the wave motion, #0,, and either the current shear velocity, u,, or a

reference current velocity at a reference elevation zr, uc,r = uc(z = zr). Note that because the

two layer reduction is used, it appears, from a mathematical standpoint, that the reference
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elevation for the current reference velocity must only be higher than the wave-current boundary

layer thickness, i.e., zr > Scw- However, to accurately reproduce the three layer model results,

the reference elevation for the current reference velocity must be within the top layer of the

three layer profile, zr > St/a, which is above (ew. The equations given below for the wave-

current solution procedure are found in some form in section 2.1, but they are repeated here

with consecutive equation numbers for clarity.

To begin the iterative calculation procedure, the flow is initially assumed to be fully

rough turbulent, in which case the elevation where the velocity disappears is given by

zo kN (2.96)
30

and the current is assumed to be negligible compared to the waves, giving

uc =0 (2.97)
U*wm

Then, the following parameters are calculated with (2.98) through (2.110) until the updated

value of p, pnew, is within an acceptable percentage of the previous value of p, as given by (2.111).

The wave-current parameters C,, and a are computed from p as

C, = V1+ 2plcos cewl + p 2  (2.98)

and

a = - (2.99)
C1,

and the inverse wave-current relative roughness is found from

,= CX = C (2.100)

The combined wave-current friction factor is found from X, and a by solving the full wave-

current model in section 2.1, or with the explicit approximations: (2.91) and (2.92) for the

general case, or (2.86) for the pure-wave approximation if a = 0.
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few/C, = F(X,, a) (2.101)

The wave and combined maximum shear stresses are found from fe, ubm, and C,,

U*wm = Ubm (2.102)

U*m = U*wm = fewCpUbm (2.103)

If u*m is very small and the roughness is not very large, the flow may be smooth

turbulent, in which case zo would need to be adjusted from the initial rough turbulent

assumption of zo = kN/ 3 0. The value of zo can be found for either case as

f(kN V
zo = max ,09um (2.104)

Procedure variation according to current specification

If the current shear velocity is known a priori, then at this point the new value of p, pnew, can be

calculated with (2.110) below and the calculations above up to (2.104) are repeated until the

value of I converges according to (2.111). In this case, the wave boundary layer thickness and

related parameters, given below by (2.105) through (2.108), can be calculated after convergence.

If, however, the current is specified by a reference current velocity, uc,r, then the wave-current

boundary layer thickness is needed to calculate the current shear velocity. In this case, equations

(2.105) through (2.108) must be calculated for each iteration; then (2.109) gives the current

shear velocity, and pnew is then calculated with (2.110) as before.

The scaled wave boundary layer thickness, (w = S/1, is found from X, and a by solving

the full wave-current model in section 2.1, or with the explicit approximations: (2.89) and (2.90)

for the general case, or the pure-wave approximation, (2.85), if a = 0.

Tw = F(X,, a) (2.105)

The wave boundary layer thickness is then found using the wave boundary layer scale, 1.
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IU = ml = (W (2.106)

The middle, constant viscosity layer begins at the transition level, St, which is equal to 1/6 of the

wave boundary layer thickness unless the bed is so rough that the bottom, linearly-varying

viscosity layer disappears, and the middle layer extends all the way to zo.

St = max 6, zo (2.107)

The wave-current boundary layer thickness, 6,w, is the elevation at which the top and bottom

current velocity profiles intersect, allowing the three layer current velocity profile to be

simplified into a two layer profile composed of the original top and bottom layers.

Se = i - (2.108)
e

If the current is specified by a reference velocity at an elevation in the top layer, zr > St/a, the

current shear stress can be calculated from (Madsen, 2002)

In (A ) 1 1 KUc,r in __

U*c= U*m / - (2.109)
In2 4 u*m In2 zr)

(zo ) \Scw

The new value of p, pt new, is calculated with uc, which is either given by (2.109) or known a

priori and used to specify the current, and u*wm, given by (2.102),

y1new = (U*c) (2.110)

The procedure, (2.98) through (2.110) (skipping (2.105) through (2.109) if the current shear

velocity is known, as explained above), is repeated until the value of p converges. Convergence

can be defined, for example, as when the relative error is below a certain tolerance,

I Pnew - Y1I1
error = " < tolerance (2.111)

pnew

61



In the model computations in the rest of this thesis, the tolerance was chosen to be 10-1, and the

functions in (2.101) and (2.105) were computed by solving the full model, and not the explicit

approximations. However, recognizing the magnitude of the error expected in boundary layer

problems, using a tolerance of 10-2 is sufficient.

The procedure given here solves the conceptual model for the turbulent combined wave-

current boundary layer assuming the bed roughness is known. Therefore, to validate the model

independent of any formulation for the bed roughness, the roughness of the experiments must

be known. Methods for predicting the bed roughness are developed in Chapters 3 and 4.

2-3 Validation of the conceptual model

The three layer model developed in section 2.1 was validated by comparing the results with

numerical and experimental results of current velocity profiles in combined wave-current flow

in which the bed roughness is known a priori. The model was first tested against combined

wave-current numerical results by Davies et al. (1988). Their numerical model uses a k -. E

turbulence closure model and thus does not assume a certain structure for the eddy viscosity.

Every test used the same bottom roughness, current shear velocity, and wave period. For the

first series, the waves and currents were collinear and three wave velocity amplitudes were used.

For the second series, the wave velocity was kept constant and the angle between waves and

currents was varied. They also tested a pure current case for comparison. Details of the

experimental conditions are given in Table 2-1.

Table 2-1: Conditions for wave-current numerical experiments by Davies et al. (1988)
Series zo (cm) T (s) u,. (cm/s) uh.m (cm/s) <pc (rad)
Current alone 0.5 - 5.8 0 -
1 0.5 8 5.8 [50, 100, 150] 0
2 0.5 8 5.8 100 [0, n/4, 7/2]

The current profile was calculated for the three tests in each series using the new three

layer model with the current specified by the known current shear velocity, u,, using the
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procedure described in section 2.2. Comparisons between the current velocity profiles predicted

by their numerical model and with the new three layer model are shown in Figure 2-16 for the

series 1 data and Figure 2-17 for the series 2 data.
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Figure 2-16: Comparison between the velocity profile predicted by the numerical model of Davies et al.
(1988) (dashed) and with the new model (solid) for collinear waves and currents of varying wave orbital
velocity amplitude.
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Figure 2-17: Comparison between the velocity profile predicted by the numerical model of Davies et al.
(1988) (dashed) and with the new model (solid) for waves and currents at different angles.

The new model reproduces the numerical results well when the waves and currents are

collinear (series 1, Figure 2-16), but the results are very different for the non-collinear cases, and

the difference increases as the angle between waves and currents increases (series 2, Figure

2-17). Like the Grant-Madsen type wave-current models, the new model is very insensitive to the

angle between waves and currents. It is expected that the angle between the waves and current

would have a larger effect on the current velocity than is predicted with this model, and its

failure to reproduce that effect is a definite weakness of the model. The wave-current angle is

only accounted for in the parameter C, = Tm/Tw = V1 + 2pIcos 0,# 1 + p 2, which is most

sensitive to the angle when the current and wave are of similar magnitudes, or when y =

Tc/Twm ~ 1. When the current and wave shear stresses are of very different magnitudes, for

i 1 or y D 1, C, is very insensitive to the wave-current angle. For the series 2 tests, the new

model gives y ~ 0.1 and the predicted maximum combined shear velocity for #c, = ir/2 is only
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8% smaller than it is for q5, = 0, whereas the numerical model predicts a much larger

difference between the two cases.

The model was also tested against combined wave-current experiments conducted by

Dohmen-Janssen (1999) in the Delft oscillating water tunnel. There were two cases with

collinear sinusoidal waves with a current over fixed beds. The wave and sediment conditions are

provided in Table 2-2.

Table 2-2: Conditions for wave-current experiments by Dohmen-Janssen (1999)
Case dso (mm) T (s) ubm (cm/s) Ur (cm/s) Zr (cm)
G5 0.21 7.2 95 45 10
G6 0.21 7.2 150 45 10

The bed roughness, kN = 30z0 , was taken to be equal to the roughness derived from the

velocity profile for a pure current test, 0.029 cm, which is a factor of about 1.4 larger than the

median sediment diameter, d50 . The current profile was predicted using the new three layer

model with the current specified by the reference velocity, Ur, at an elevation zr. Comparisons of

the measured and predicted current velocity profiles are shown in Figure 2-18.

G5 G6

1 1
10 10

0 0
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o measured 0 measured
- predicted - predicted

10 ' ' ' '10
0 10 20 30 40 50 0 10 20 30 40 50
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Figure 2-18: Measurements (circles) and predictions (lines) for near-bottom current velocities in Series G
reported by Dohmen-Janssen (1999). The red crosses indicate the reference velocity and elevation used to
predict the profiles.
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The new model shows excellent agreement with the experimental results. The current

shear velocity and apparent roughness are accurately predicted by the model, as seen by the

close agreement between the predicted and observed velocities in the top portion of the velocity

profile. In the bottom portion of the velocity profile the model slightly overpredicts the velocity,

which implies that the bottom roughness, found from a pure current test, is slightly too small.

Also, in test G6 with the larger wave velocity, the maximum combined shear velocity, U*m, is

slightly overpredicted by the model, but the error is well within the acceptable error for

boundary layer processes.

2.4 Energy dissipation and friction factors

Although the wave friction factor is the parameter that is directly related to the shear stress, it is

difficult to directly measure shear stress in experiments, so a different friction factor is often

necessary. When wave attenuation is measured in laboratory experiments, the wave energy

dissipation factor, fe, can be directly calculated from energy conservation considerations. The

time-averaged rate of energy dissipation per unit area, Ediss, can be calculated based on linear

wave theory from the measured wave height decay over the length of the flume by

$diss = pgcga dx (2.112)

where cg is the group velocity of the waves and a is the wave amplitude. The rate of energy

dissipation is equal to the time-averaged product of the time-varying bottom shear stress, [b (0,

and near-bottom wave orbital velocity, Ub (0.

Ediss = 1b(t)Ub(t) (2.113)

For sinusoidal waves, Ub (t) = Ubmf(t) = Ubm cos wot. The temporal variation of the shear

stress is typically taken as related to the square of or linearly related to the temporal variation of

the instantaneous near-bottom velocity. Thus, for linear waves,
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I If (tT)If(t) 1 2  lcos(ot + p)I cos(wt + qp)
Tb () - Tbm ~f~ ipfwbm I cos(Wt + 'T) (2.114)

where p, is the phase lead of the shear stress with respect to the near-bottom velocity.

Substituting these expressions into (2.113) and simplifying gives

3UEdiss cos <p Ubm = P m (2-115)

which shows that the energy dissipation factor (also referred to as the energy friction factor) is

related to the wave friction factor through a cosine of the phase angle,

fe = fw COS 'Pr (2.116)

By simply equating (2.112) and (2.115) the wave energy dissipation factor can be calculated

directly from the measured wave height decay.

The new model uses a time-invariant eddy viscosity, thus, to be consistent we must use

the simple harmonic time variation of the shear stress, corresponding to the second lines of

(2.114) and (2.115) with the final factor of 1/4. Boundary layer models which use more complex,

time-varying eddy viscosity models (e.g., Trowbridge and Madsen, 1984 and Gonzalez-

Rodriguez, 2009) are able to account for more than just the first harmonic of the shear stress,

and therefore these models can justify the use of a more complex temporal variation. However,

the difference in the final factors for the two time variations, 2/(37) and 1/4, is only about 15%,

which is not very significant, so we are not concerned about the need to use the simpler model.

2-5 Comparison of wave friction factor theories

Many wave friction factor theories have been developed under different assumptions for the

vertical structure of the eddy viscosity. All of the theories mentioned here were developed for

pure waves, as opposed to the new model, which includes the effects of the current from the

beginning. To approximately account for the effect of currents on the wave friction factor, the
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approximate combined wave-current friction factor, fe, can be related to the pure wave friction

factor, f, through

fWC = Ctfw (2.117)

Note that the combined friction factor for the new model is also proportional to C,,, but as it was

developed accounting for the effect of currents, the expression given in (2.117) does not apply in

the reverse, that is, for the new model f + fceC,, because f& would depend on a, which

includes the effect of the current. Instead, the pure wave friction factor for the new model is

found by taking C, = 1 and a = 0, which gives a linear-constant eddy viscosity variation. Note

that for pure waves, the inverse relative roughness is simply X = Abm/( 3 0 zo), whereas with a

current it is X,, = CAb m/( 3 0 zo). The earliest friction factor models are only applicable for fully

rough turbulent flow, in which case X = Abm/(30zo) = Abm/kN-

The earliest wave friction factor relationship that is still in wide use today is from

Jonsson (1966) and Jonsson and Carlsen (1976). They used a semi-empirical approach to find

an implicit relationship between the friction factor and the relative roughness, with the constant

determined from velocity profile measurements,

1 1i
4 o+ 4 = -0.08 + log1 o X (2.118)

(2.118) was derived by assuming rough turbulent conditions, which is satisfied when X is not too

large. Jonsson proposed that f, be considered constant when X is less than unity. Swart (1976)

proposed an explicit approximation for Jonsson's wave friction factor model, including a

constant region for small values of X,

1
0.3, X < - 1.6

fw 0.63 (2.119)

exp{5.213X-0-194 - 5.977}, X > - 1.6
1 0.63
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The next notable friction factor relationship was given by Kamphuis (1975), who took the

same form as Jonsson (1966), but found different coefficients using his oscillating tray data. No

common explicit relationship has been developed for the Kamphuis model.

1 1i4
+10ogi( ) = -0.35 + logio X (2.120)

Another popular friction factor relationship was given by Grant and Madsen (1986),

based on a linear time-invariant eddy viscosity model, with the shear stress evaluated in the

limit z -- 0.

f=O0.23, X < 1

+1+g1 =j -0.17 + 0.24(4V7w) + logio X, X 1 (2.121)

4 1f \4J1W

McLean (cited in Madsen, 1994, p. 392) suggested an explicit approximation to the Grant-

Madsen model in a similar explicit form following Swart (1976),

fW = -0.12 0.23, X < 1 (2.122)

exp{5.5X.12 -7.02), X 1

The most recent Grant-Madsen type friction factor model is Madsen (1994), which is

very similar to the earlier Grant-Madsen models but with the shear stress evaluated at z = zo

rather than as z -> 0. Explicit expressions for the friction factor are given by

-exp{7.02X-0-
0 7 8 - 8.82}, 0.2 X 5 102

exp{5.61X-0- 109 - 7.30), 102 < X i14  (2.123)

In order to calculate the energy friction factor, Madsen (1994) also gave an explicit

approximation for the phase angle, which is

= [11 - 2.0 log1 o X], 0.2 5 X 103 (2.124)

A relatively new friction factor model uses a time-varying eddy viscosity model with a

linear-constant structure for both the wave and current boundary layers, for a total of four layers

(Gonzalez-Rodriguez, 2009). This model also includes an expression for the phase angle. The
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friction factor is given in terms of the first and third harmonics, and the maximum friction

factor, which is comparable to the friction factors for the time-invariant models, is the

maximum of the harmonics. Explicit expressions for the first and third harmonics of the friction

factor are given by

exp[17.59X- 0.0 5 - 20.42], 0.02 X 0.1
= exp[10.17X-s 05 - 12.10], 0.1 < X 102

exp [5.84X-0-11 - 7.54], 102 < X 10s
(2.125)

(exp[-25.78X0. 04 + 20.92], 0.02 X 0.1

f3= exp[10.23X- 0 s05 - 14.07], 0.1 < X 5 102
exp[5.60X-0- 1 - 9.32], 102 < X 10s

Explicit expressions for first and third harmonics of the phase angle are given by

(0.660 0.02 X 0.045

p= -0.168 log20 X - 0.105 log1 o X + 0.825, 0.045 < X 5 2
0.0202 logio X - 0.228 log1 o X + 0.846, 2 < X 10s (2.126)

P= -7.19e-3 loglo X + 0.0967 log1o X - 0.474 log1 o X + 1.03

The maximum friction factor, which is the most comparable to the steady friction factor models,

is found from

fw,max = max[fi cos(owt + 'p1) + f3 cos 3(wt + P3 )] (2.127)

and the energy friction factor is found from the first harmonics

fe = f1 cos(pi) (2.128)

The new three layer model developed in section 2.1 is the only one of these models that

depends on the current conditions, which it does through the parameter a. Therefore, to

compare this new model to these other, pure wave models, the pure wave case of the new model

is used, as explained above, with C,= 1 and a = 0. In that case, the explicit expression for the

friction factor is given by (2.86), with C, = 1,
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2 (LX /,

texp{-1.69X0.344 -0.473} + 0.0388,
exp{5.70X-0-101 - 7.46},

0.05 < X < 0.342

0.342 < X 10
10 < X 5 10s

and the phase shift is given by (2.87),

,
4'

PT -0.303Xo.260 + 0.00967X + 1.02,
0.649X-0.160 + 0.118,

0.05 X 0.342

0.342 < X 5 10
10 < X !5 10

The wave friction factor

To compare the models, the six expressions for the wave friction factor, (2.119), (2.120), (2.122),

(2.123), (2.127), and (2.129), are plotted together for a range of X values in Figure 2-19. For

those expressions that explicitly give bounds for the relative roughness, the specified bounds are

honored.
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Figure 2-19: Comparison of the wave friction factor for the pure wave case of the new model (a = 0, black)
and several published models (colors).

It is gratifying that the new model, based on a time-invariant eddy viscosity, shows

excellent agreement with the more complex model of Gonzalez-Rodriguez (Figure 2-19), which

should be considered the most accurate model presented, as it uses a more elaborate time-

varying eddy viscosity formulation. The two models show the largest difference around X, = 0.3,

but even for very large roughness (small values of X,), where the other models diverge, the two

models are still quite similar.

The energy friction factor

As derived in section 2.4, the energy friction factor is related to the wave friction factor by a

cosine of the phase angle (2.116), which, while sometimes large, is nevertheless often neglected

(Wikramanayake and Madsen, 1994). Following this convention, a comparison of the energy
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friction factors is given in Figure 2-20, where the energy friction factor is given by f, = f, cos p,

for the three models that include the phase angle (Madsen, 1994; Gonzalez-Rodriguez, 2009;

and the new model), and for the models that do not, we take fe f.

0.5

0.4

fe 0. 3

0.2

0.1

0'''
-10 12 3

10 10 10 10 10

X Abm
30z0

Figure 2-20: Comparison of the energy friction factor for the pure wave case of the new model (a = 0,
black) and several published models (colors).

As with the wave friction factor, the energy friction factor for the new model is very

similar to that of Gonzalez-Rodriguez, which is a more complicated model based on a time-

varying eddy viscosity (Figure 2-20). The two models do diverge for very small values of X,; this

is because while the phase angle in the new model is equal to the laminar value, 7/4, for all

X < Xcrit = 0.342, in Gonzalez-Rodriguez's model the phase angle rises to a value greater than

7T/4 around X = 0.5 but then decreases as X continues to decrease.
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In general, the friction factor models give quite different results for large roughnesses

(small values of X = Abm/ 3 0zo, e.g., in the ripple regime), while for very small roughnesses

(large values of X) they give nearly identical values (Figure 2-19 and Figure 2-20). At the small X

end, for example, for a typical friction factor value of 0.2, the Madsen (1994) and Jonsson (1966)

models give X = 0.5 and 2.5, respectively, a factor of 5 difference.
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Chapter 3

Movable bed regimes

The theoretical combined wave-current model developed in Chapter 2 can be used to predict the

near-bed hydrodynamics given an estimate of the bed roughness. In this chapter we discuss the

coupling between flows and movable beds and how the hydrodynamic roughness, the quantity

of interest, depends on what regime the movable bed is in. We then characterize the possible

flow regimes for a movable bed: the lower flat-bed regime, the ripple regime, and the sheet flow

or upper flat-bed regime. We give a sample of published relationships for the non-dimensional

ripple height, and present new relationships, developed with laboratory data with periodic and

random waves, for the ripple height and the energy friction factor for both the ripple and sheet

flow regimes.

3.1 Coupling between flows and movable beds

Predicting hydrodynamic quantities in boundary layer flows requires estimates of the bed

roughness, kN= 30z0 for fully rough turbulent flow, which depends on both the bottom

sediment properties and the flow. The strength of the flow near the bed determines whether the

sediment below it is stationary, saltating, or being transported in a thin layer near the bed. The

bed configuration, in turn, whether it is flat, rippled, or in motion, affects the flow above it by

determining the physical roughness of the bottom. In this way, the flow and the bed are

intrinsically coupled, and one cannot apply the boundary layer model developed in Chapter 2

without quantifying the bed regime.
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3.1.1 Relevant non-dimensional parameters

The two physically important non-dimensional parameters in this boundary layer problem are

the Shields parameter, ip, and the shear Reynolds number, Re,. The Shields parameter is the

ratio of the driving to the stabilizing forces acting on the sediment,

4) = Tbm (3.1)
(s - 1)pgd (s - 1)gd

where s is the ratio of sediment to water density (s = 2.65 for quartz in freshwater), and d = d5e

is the median sediment grain diameter. The shear Reynolds number quantifies the turbulence in

the flow, and is given by

Re* = u,.d (3.2)
V

where v is the kinematic viscosity of the fluid. The shear Reynolds number determines whether

the flow over a flat-bed is smooth or rough turbulent.

The Shields parameter and the shear Reynolds number are the two physically important

parameters in the problem, and both of them are required, as the Shields parameter is an

average quantity, and the shear Reynolds number gives information on the instantaneous

turbulence statistics. However, to avoid having two parameters that both include the shear

velocity, they can be combined into a new parameter, which then replaces Re, as one of the two

parameters. By equating the shear velocity, 4) and Re, can be combined into the fluid-sediment

parameter, S., which accounts for the influence of sediment and fluid characteristics

1 Re, _ d .(s - 1)gd
4 I% 4v

With S, thus defined, instead of specifying 4 and Re*, the problem is specified with V) and S*.

The Shields parameter can also be written in terms of the wave friction factor, f", as

= fwUbm (3-4)
(s - 1)gd
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where f, is a function of Abm/kN for fully rough turbulent flow. Because the Shields parameter

includes the total shear stress, which is commonly not known a priori, finding it typically

requires iteration. An alternative form of the Shields parameter is the skin-friction Shields

parameter, V/', which is only dependent on the skin-friction shear stress, r'm = pu2, and thus

does not require iteration to calculate. It can also be written in terms of the skin-friction friction

factor, f = k' = d), which is the wave friction factor for a flat sand bed,

_' "'ubm (3-5)
(s - 1)gd

Note that if the bed is flat, the total Shields parameter is equivalent to the skin-friction Shields

parameter.

Other researchers have used a variety of non-dimensional parameters to describe the

flow. One of the most popular, M, termed the mobility number, is closely related to the skin-

friction Shields parameter

2

M Ubm (3.6)(s - 1)gd jf'

Ratios of these parameters have also been used; the most common are termed Y and Z:

M
Y = -(3.7)

and

Z = -(3.8)
S.

It seems that many researchers prefer to use the mobility number, M, rather than the

skin-friction Shields parameter, 0', because the latter requires a friction factor, which makes

this parameter dependent on which friction factor theory is used to calculate the friction factor.

While this may be a legitimate concern for the total Shields parameter, V), the skin-friction

Shields parameter is very insensitive to the chosen friction factor theory. This is because the
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skin-friction Shields parameter uses the skin-friction wave friction factor, f,',, based on the

relative roughness defined by the sediment diameter, X' = Abmid, which is very large in most

cases. From the comparison of the different friction factor theories, Figure 2-19, it can be seen

that the different models give nearly identical results for very large relative roughness values. In

fact, over the typical range of Abmid values the models differ on average by less than 1o%

(excluding the anomalous Kamphuis 1975 model). It follows that the skin-friction Shields

parameter is fairly insensitive to the choice of friction factor theory, and as it is more physically

based than M, since it includes the shear stress and not just the velocity, it should be the

preferred parameter choice.

The relationships developed here will all be given in terms of the skin-friction Shields

parameter, V)', and the fluid-sediment parameter, S.. The other parameters are necessary to

compare previously published relationships.

3.1.2 Characterizing random waves

For random waves, the corresponding wave parameters are found by defining a representative

periodic wave that is equivalent to the random wave spectrum. As mentioned in section 2.1,

Madsen (1994) showed that the near-bottom orbital velocity amplitude of the representative

periodic wave is the root-mean-square (rms) velocity amplitude, Ubrms (2.81), and the

representative radian frequency, o0 r, is the mean frequency of the spectrum. Another option for

the representative near-bottom velocity for random waves is the significant velocity. Assuming

the random waves are Rayleigh distributed, the significant velocity is a factor of V-Z larger than

the rms velocity,

Ubksig = 1kUb,rms (3.9)

The skin-friction Shields parameter for random waves can be defined using either the rms or

significant near-bottom velocity, which are a factor of 2 different,
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/random,rms = Of'(Ub,rms) = Orms (3-10)

or

Orandomsig = V) (Ub,sig = WUb,rms) = 21rms (3-11)

In addition to the significant near-bottom velocity, some researchers use an even larger

representative velocity, the 1/10 velocity, given by the mean of the highest 1/10 near-bottom

velocities from a random-wave time series. It follows that the 1/10 skin-friction Shields

parameter, 01110 is defined using the 1/10 velocity. Assuming the waves are Rayleigh

distributed, the 1/10 velocity is related to the rms velocity by Ub,1/10 = 1. 8Ub,rms-

Note that we choose to always define the wave excursion amplitude using the rms value,

Abm,random = Ab,rms, so that the skin-friction wave friction factor f' = f'(X' = Abm/d =

Ab,rms/d), does not change for the various Shields parameter definitions, even when a larger

near-bottom velocity is used. Therefore, the only difference between the rms, significant, and

1/1o Shields parameter is in the formulation of the near-bottom orbital velocity. As the skin-

friction relative roughness uses the sediment diameter as the roughness, the value of X' = Abm/d

is very large, and is well in the region where the friction factor varies very little with the relative

roughness, and as a result the skin-friction friction factor is very insensitive to the definition of

Abm. Therefore, while our definition of VEg or 0'/10 is inconsistent, since it uses the significant

or 1/10 near-bottom velocity but the rms excursion amplitude to find f', because f' is very

insensitive to the definition of Abm this inconsistency is justified as it greatly simplifies

conversions between the different Shields parameters.

The other non-dimensional parameters, such as M, can be defined in the same way for

random waves, that is, Mrms, Msig, and M1 1 10 can be calculated from the rms, significant, and

1/10 near-bottom velocities.
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3.2 Initiation of motion

When there is little or no wave motion above a sediment bed, the sediment is unaffected by the

flow, and as a result the bed will remain in its initial state, typically a fairly flat bed. Once the

flow reaches a certain magnitude, the sediment particles will begin to be transported by the flow

in short jumps. The relationship between the flow and sediment characteristics when movement

is initiated was originally given by Shields (1936) in what is now known as the Shields curve. The

original Shields curve plotted the Shields parameter, V), against the shear Reynolds number, Re,,

which requires iteration to solve as u. appears on both axes. To circumvent this difficulty, a

modified Shields diagram has been developed which relates the skin-friction Shields parameter,

'1, to the fluid-sediment parameter, S, (Madsen and Grant, 1976). When the skin-friction

Shields parameter is above the critical value, )' ,it, predicted by initiation of motion using the

modified Shields diagram, then it can be expected that the sediment is in motion.

The Shields diagram was developed for steady flow, but it has been shown that it is also

successful when used for oscillatory flows (Madsen and Grant, 1976). To apply the modified

Shields diagram to random waves, the significant near-bottom velocity should be used, as shown

in Madsen (2002).

3-3 Ripple regime: ripple geometry

For certain flow conditions, once the sediment is in motion, as predicted by the modified Shields

diagram, a regular pattern of bedforms develops on the bed. Under oscillatory flow, these

relatively small bedforms are symmetric ripples. When the bed is flat, the hydrodynamic

roughness, given by the equivalent Nikuradse sand grain roughness, kN, scales with the

sediment size. Extending this principle to the ripple regime, it follows that when ripples cover

the bottom, the bed roughness can be expected to scale with the ripple dimensions. Therefore,

the common method of predicting bed roughness begins by predicting the ripple height, r, and
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possibly the length, A, and then takes the roughness as a function of these dimensions. It has

been shown (e.g., Wikramanayake and Madsen, 1994; Styles and Glenn, 2002) that the

roughness may be well represented as a constant multiple of the ripple height, i.e., kN = y77,

where y denotes the proportionality constant. Therefore, for simplicity we will concentrate on

predicting the ripple height, and not attempt to predict the ripple length, as the small potential

improvement in the roughness prediction does not warrant the large increase in complexity.

With the correlation between ripple dimensions and roughness in mind, much research

has been conducted on predicting ripple dimensions in oscillatory flow. There is an abundance

of published empirical relationships from laboratory and field measurements relating ripple

dimensions to flow and sediment characteristics (e.g., Miller and Komar, 1980; Nielsen, 1981;

Grant and Madsen, 1982; Kos'yan, 1988; Wikramanayake and Madsen, 1994; Wiberg and

Harris, 1994; Mogridge et al., 1994; Faraci and Foti, 2002; Williams et al., 2004; O'Donoghue et

al., 2006). Each formula performs well against the data used in its formulation, as expected, but

generally much less successfully under reasonably different conditions. Thus, instead of

choosing a published relationship, we developed our own from all of the laboratory data we

could acquire, including most of the data used to develop those expressions.

3.3.1 Available data

In order to develop a relationship for ripple geometry, data must be simultaneously collected on

both the ripple dimensions and the flow conditions, and the sediment properties must be

known. Many studies have been conducted in which ripple geometry is measured in the

laboratory, most often under periodic waves, but with a fraction under random waves. In the

past, most of these tests were conducted in small-scale laboratory facilities, but recently data

from a number of full-scale experiments have been made available (e.g., van der Werf et al.,

2009). A sizable number of researchers have also conducted studies on ripple geometry in the

field, but unfortunately much of the data are not tabulated but presented solely in figures, which
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makes it much harder to use. Therefore, the field data sets presented here are limited to those

which included tables of data points. As we restricted ourselves to wave alone data from the

laboratory, we also excluded field data for which a substantial current was present. The

following tables summarize the datasets used to compare the published relationships and to

develop our own relationship for the ripple height. The periodic and random laboratory wave

data sets are listed in Table 3-1, the wave alone field data sets are in Table 3-2, and finally a

summary of all three types of data is found in Table 3-3.
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Table 3-1: Periodic and random wave laboratory datasets used in ripple height analysis
No. data points
Periodic Random

Set Source d (mm) waves waves
1 Inman & Bowen (1963) 0.20 2
2 Kennedy & Falcon (1965) 0.095 4

0.32 6
3 Carstens et al. (1969) 0.19 6

0.297 17
0.585 19

4 Mogridge & Kamphuis (1972) 0.36 21
0.36 50

5 Lofquist (1978) 0.18 6
0.55 23

6 Nielsen (1979) 0.082 24
0.17 10
0.36 10

7 Miller & Komar (1980) 0.178 4
8 Lambie (1984) 0.09 19

0.15 27
9 Lofquist (1986) 0.18 20

0.55 62
10 Rosengaus (1987) 0.20 9 8
11 Sato (1987) 0.18 16 7
12 Sato (1988) 0.18 12 21

0.56 10 13
13 Mathisen (1989) 0.12 6 9

0.20 - 3
14 Ribberink & Al-Salem (1994), Series B 0.21 10 10
15 Rankin & Hires (2000) 0.23 10
16 O'Donoghue & Clubb (2001) 0.18 2

0.26 3
0.34 28
0.44 2

17 Faraci & Foti (2002) 0.25 27 11
18 Thorne et al. (2002 & 2003) 0.33 11 4
19 O'Donoghue et al. (2006) 0.22 5 8

0.35 10 2
0.44 5 5

20 Van der Werf et al. (2007) 0.44 14

Table 3-2: Wave alone field datasets used in ripple height analysis
Set Source d (mm) No. data points
1 Inman (1957) 0.081-0.635 54
2 Nielsen (1984) 0.11 -0.62 38
3 Dingler (1974) 0.128-0.616 24
4 Hanes et al. (2001) 0.121-1.662 201
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Table 3-3: Overview of laboratory and field datasets used in ripple height analysis
Flow type No. datasets No. data points No. diameters d (mm) 1', Olms r//Abm
Periodic waves 20 510 25 0.082-0.585 0.02 -1.47 0-0.50
Random waves 8 101 10 0.12 -0.56 0.05 -1.02 0-0.36
Field 4 317 92 0.081-1.662 0.0022-1.30 0-0.616

3-3.2 Published relationships

The current consensus among researchers is that the ripple height is scaled by the maximum

near-bottom semi-excursion amplitude, Abm. For sinusoidal wave motion, as stated above,

Abm = Ubmi . For random waves, the near-bottom semi-excursion amplitude is defined with

the rms near-bottom velocity, Abm,random - Ubrms/Or. Some authors use the significant near-

bottom velocity to represent random waves in every parameter, and therefore they define the

excursion amplitude as Ab,sig -- Ub,sig/W, and their relationships for the ripple height reflect this

choice. However, we choose to use the rms velocity to define the excursion amplitude, even

when the other parameters use the significant velocity. The difference in the definitions of Abm

should have a negligible effect on the calculated skin-friction Shields parameter, as explained

above, but it would have a much larger effect on the non-dimensional ripple height, r1/Abm-

A number of the most widely used ripple height relationships are given in Table 3-4 for

those developed with laboratory data, and Table 3-5 for relationships developed with field data.

A few other relationships of historical note are those by Kos'yan (1988), Mogridge et al. (1994),

and Wiberg and Harris (1994). These relationships are not included in the table as they scale the

ripple height by the sediment diameter, neglect the effect of the near-bottom orbital velocity

(Kos'yan, 1988 and Mogridge et al., 1994), and/or are implicit (Wiberg and Harris, 1994). Also,

some researchers have developed expressions for just the ripple length (Traykovski et al., 1999);

as we will assume the roughness scales with the ripple height we are not interested in predicting

the length and have therefore not included those expressions.
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Table 3-4: A sample of ripple height relationships for waves in the laboratory

Authors Wave type Relationship

Nielsen (1981) Periodic -- = 0.275 - 0.022
Abm

Grant & Madsen (1982) Periodic 7 _ -0.22(//cr)-16, 0'/Pcr < 1.8S"-6

Abm 0.485 6 ( /'/cr)~ 1 ', P'/Pcr > 1.85 6

van Rijn (1989) Random: sig 7 _ 0.22, M 10
Abm f2.8 x 10-13(250 - M) 5 , M > 10

Wikramanayake & Periodic 7 = 0.27 - 0.331'.s
Madsen (1990) Abm

Faraci & Foti (2002) Periodic .02 exp 00076 (ubmAbm) -0.5
Random: sig Am 0.275] -0.1681

Williams et al. (2004) Periodic 7 = exp{-0.315 In2 M + 2.12 In M - 6.091
Random: sig Abm

O'Donoghue et al. (2006) Periodic _= [0.275 - 0.022MOx2 . 0 .5 5, d 0.22 mm
Random: 1/10 Abm f1, d > 0.30 mm

Table 3-5: A sample of ripple height relationships for waves alone in the field

Authors Wave type Relationship

Nielsen (1981) Field: sig 71_ _ 0.275 - 0.022VM, M < 10
Abm 21M-1.8 5 , M> 10

Wikramanayake & Madsen (1994) Field: rms 7_ _ .27Y- 0o5 , Y < 3
Abm (0.47Y-1-0, Y > 3

Wikramanayake & Madsen (1990) Field: rms _7 _ 0.018Z-0 1, Z < 0.012
Abm 0.0007Z- 1 -3 , Z > 0.012

Grasmeijer & Kleinhans (2004) Field: sig 7 _ 0.275 - 0.022V-M, M < 10
A-m( 2M- 1, M > 10

In Table 3-4 and Table 3-5, the second column specifies the wave type (either periodic,

random, or both) used in the development of the relationship; for those with random waves, the

random wave specification, either the root mean square (rms), significant (sig), or 1/10 near-

bottom velocity (1/1o), is also listed. Some of the researchers have found relationships that are

applicable to both periodic and random waves if the random waves are represented by a larger

near-bottom velocity; in this case, both waves types are listed in the table, along with the

specification for random waves. Since most of the random wave relationships are also valid for

periodic waves, in the relationship expressions the parameters are given in general form, e.g., M,
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and it is understood that when applied to random waves the appropriate near-bottom velocity

definition would be used, e.g., M = Msig.

Of the eleven relationships given in Table 3-4 and Table 3-5, seven of the previously

published relationships use the mobility parameter, M, to predict the non-dimensional ripple

height, and the other four use four different parameters or combinations of parameters. To

compare the methods which use the M parameter, all of the data given in section 3.3.1 (Table

3-3) is plotted with all seven relationships in Figure 3-1. Out of the five relationships which use

the M parameter for random waves in the laboratory or the field, four use the significant near-

bottom velocity to define M and Abm, and the last, O'Donoghue et al. (2006), uses the 1/10 near-

bottom velocity for M and the rms velocity for A bm. Because most of the relationships were

developed with the significant velocity, the random wave data is plotted with Msig and 7/Ab,sig

to compare the relationships. The relationships by O'Donoghue et al. were developed using

larger definitions of M and 1/Abm for random waves than are used to plot the random wave

data. When these effects are combined, the O'Donoghue et al. relationships give erroneously

large estimates for the ripple height for the random wave data. It is not possible to change the

expressions to account for the different random wave definitions because the expressions would

no longer be correct for the periodic wave data, since the same expressions are used for both

periodic and random waves. We have therefore plotted the O'Donoghue et al. relationships as

they are given, with the caveat that we realize they will appear to overpredict the random wave

data.
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Figure 3-1: Comparison of the seven ripple height relationships in Table 3-4 and Table 3-5 using the M
parameter (lines), along with laboratory data under periodic (black dots) and random waves (red circles),
and field data (green diamonds), from Table 3-1 and Table 3-2.

Although these relationships were developed using some of the same datasets, they give

vastly different predictions for the ripple height over the whole M range. Also, no one

relationship performs much better than all of the others. Because these relationships are so

different, none is clearly superior, and all of them were developed using less data than we

currently have access to, we decided to continue in the tradition of ripple dimension research

and develop our own expression.

3.3.3 New ripple height relationship for laboratory data

Several movable bed data sets from laboratory experiments with periodic and random waves

(Table 3-1) were analyzed to obtain a relationship for the ripple height. While many other

authors choose to use the mobility parameter M to predict the non-dimensional ripple height,
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r/Abm, we choose to use the skin-friction Shields parameter, 0', which correlates the ripple

height data at least as well as M and is physically based.

Some researchers (e.g., Nielsen, 1981, Wikramanayake and Madsen, 1994, Kos'yan,

1988) have concluded that ripple geometry relationships developed from laboratory data are not

applicable to field conditions. However, these conclusions were formed after comparing field

data to relatively small scale laboratory data under periodic waves and did not consider

laboratory data on random waves. Now that we have access to large scale laboratory tests under

periodic and random waves, we can test whether the field data are truly different and unable to

be consolidated with the laboratory data. The data on ripple heights from the laboratory and

field are compared in Figure 3-2. The rms near-bottom velocity was used for the random wave

data from the laboratory and field for both the skin-friction Shields parameter and the non-

dimensional ripple height.

0.6 - Lab: Periodic waves
o Lab: Random waves
o Field: Random waves

0.5 -

0.4

Abm *6
0.3

0.2

0~ 0e 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Vrms

Figure 3-2: Ripple height variation with the skin-friction Shields parameter, p', for periodic (black dots)
and random (red circles) waves in the laboratory and random waves in the field (green diamonds).
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The field data have much wider scatter than the laboratory data, as would be expected,

since ripple dimensions are much harder to accurately measure in the field, and researchers use

different techniques to determine the representative ripple height in an area. Also, in some of

the field data there may have been currents present which impacted the results. However, even

accounting for the scatter, the field data show a different trend than the laboratory data: the

ripple heights in the field drop off much faster than in the lab, making the curvature of the field

data much sharper. The ripples in the field wash out as the bed transitions to sheet flow for

much smaller values of ip'. Note that these trends are still evident even if the significant near-

bottom velocity is used for the random wave data, which is not shown. Based on these results,

we have decided not to include field data in our relationship for the ripple height. Also, we are

ultimately interested in comparing the results of predicting the roughness using the predicted

ripple height and using the predicted energy friction factor. Since all of the energy dissipation

data are from the lab, by restricting ourselves to laboratory data for the ripple height we ensure

that we are consistent in the development of both methods.

While the ripples under periodic and random waves follow the same general trend, the

ripples under random waves decay much faster as the Shields parameter increases. The upper

flat-bed (sheet flow) state is reached under random waves at about V' = 0.4, while the ripples

under periodic waves do not disappear until V' = 0.8, suggesting a difference in the skin-friction

Shields parameter of order 2. This difference is seen when the rms near-bottom orbital velocity

is used in the Shields parameter for the random waves, i.e., krandom = 4rms = IP'(Ubm = Ub,rms)-

However, if the significant near-bottom velocity is used for the random waves, i.e., $r=andom

IP'(Ubm = Ubsig = Ubrms) = 21rms, the Shields parameter is essentially doubled and the

transition to flat-bed occurs around V)' = 0.8 for both wave conditions. Figure 3-3 and Figure

3-4 show the non-dimensional ripple height against the skin-friction Shields parameter, using

the rms and the significant near-bottom orbital velocity, respectively, for the random waves.

Note that even though the significant near-bottom velocity is used in the skin-friction Shields
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parameter for the random waves, the rms excursion amplitude is used for both periodic and

random waves.
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Figure 3-3: Ripple height variation with the skin-friction Shields parameter, ip', for periodic (black dots)
and random (red circles) waves using the rms near-bottom orbital velocity for the random waves.
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Figure 3-4: Ripple height variation with the skin-friction Shields parameter, ip', for periodic (black dots)
and random (red circles) waves using the significant near-bottom orbital velocity for the random waves.

It is physically reasonable to expect the larger waves in a random wave train to have a

greater effect on the ripple dimensions than the smaller waves, which suggests that a near-

bottom velocity greater than the rms velocity is necessary to represent random waves. Faraci

and Foti (2002) and Williams et al. (2004) similarly found that a single relationship could be

used to represent ripple geometry under both types of waves if the significant wave height was

used for the random waves. Furthermore, representing random waves with the significant near-

bottom velocity has been used to successfully consolidate data in other boundary layer

processes, such as initiation of motion and ripple wash-out (Madsen, 2002). O'Donoghue et al.

(2006) found that using the mean of the highest 1/10 near-bottom velocities for the random

waves more effectively merged their periodic and random wave data than using the significant

velocity; however, using the 1/10 velocity gave a worse fit for our data. It should be noted that

the difference between the fits found using the significant and 1/10 near-bottom velocity is

minimal since the random-wave data make up only about 20% of the full data set. We have
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therefore decided to use the significant near-bottom velocity in the skin-friction Shields

parameter for the random waves as this consolidates the transition to upper flat-bed and gives a

better overall fit to our data. By defining the skin-friction Shields parameter as

U2m, for periodic waves
1p' = - 2 (3.12)

(s - 1)gd (2Ub,rms) , for random waves

the ripple heights under both types of waves are effectively merged. The near-bottom wave

orbital amplitude, however, is defined with the rms near-bottom velocity for random waves,

ut , for periodic waves
Abm.=. (3-13)

Ub,rms for random waves

when calculating the skin-friction friction factor, f',, for the skin-friction Shields parameter, and

in the non-dimensional ripple height, r/Abm-

While using the significant velocity in the Shields parameter consolidated the periodic

and random wave data, the data were still stratified according to sediment size, with the larger

diameters creating larger ripples for the same value of the Shields parameter (Figure 3-5).

O'Donoghue et al. (2006) noticed a similar trend in their field-scale experiments. They classified

the ripples as either 2D or 3D; the 2D ripples nearly always corresponded to diameters of 0.30

mm or larger while the 3D ripples were only found with diameters of 0.22 mm or smaller. The

dimensions of the 3D ripples, from the smaller sands, were reasonably well represented as a

constant fraction of the 2D ripple dimensions, given by multiplying the empirical 2D-ripple fit

by a factor smaller than one (e.g., 0.55 for the ripple height prediction). While our data showed a

distinct stratification according to sediment size, we did not have information on the bedform

type for all of the experiments, so we cannot comment on whether the stratification is related to

different ripple patterns. Van Rijn (2007) claims that bed roughness is proportional to sediment

diameter fro sand; since he took the roughness as proportional to ripple height, it follows that

ripple height is also proportional to sediment size. Similar to van Rijn, we did not see a clear
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division between the ripple heights for sediments above or below a certain size as O'Donoghue et

al. did, rather we saw a gradual decrease in ripple height with decreasing sediment diameter. In

light of this continuous variation, we included a factor of S-0 2 s, with the power found by a least

squares fitting to the data, with the non-dimensional ripple height to lessen the sediment size

stratification (Figure 3-6).
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Figure 3-5: Ripple height variation with the skin-friction Shields parameter, 4', for periodic (dots) and
random (open circles) waves colored by the fluid-sediment parameter, S., to show sediment size
stratification.
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Figure 3-6: Ripple height variation with the skin-friction Shields parameter, ip', for periodic (dots) and
random (open circles) waves colored by the fluid-sediment parameter, S., with an S. factor to lessen the
sediment size stratification.

While including an S, factor worked well with these data, whether it is the optimal

method to destratify the data is unknown; however, there does appear to be an emerging

consensus that, overall, ripple height, and thus bed roughness, increases with sediment size.

Including this S. factor and using the significant near-bottom velocity for the random waves,

such that 4' is defined by (3.12), a single relationship can be found that fairly well represents

ripple heights under both types of waves and for a wide range of sediment sizes:

A = 0.16 exp{-2.550'} S02s (3.14)Abm

This equation, found by a least squares fitting, does a reasonable job representing both the

periodic and random wave data, despite the inherent scatter: 59% of the data lie within ±25% of

the best-fit line, and 80% of the data lie within ±50% of the best-fit line (Figure 3-7).
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Figure 3-7: The new best-fit relationship for the ripple height (green line) well represents ripples under
both periodic (black dots) and random (red circles) laboratory waves, with 80% of the data found within

±50% of the best-fit curve (gray area).

After the ripple height is predicted with (3.14), the roughness may be assumed to be a

constant multiple of the ripple height. How to determine the proportionality constant, which

depends on the chosen friction factor model, is detailed in Chapter 4.

3-4 Ripple regime: energy friction factor

As the ripple dimensions are not otherwise needed, predicting them is an unnecessary step in

estimating the bed roughness and may introduce unnecessary error. If the energy friction factor

is predicted instead, the roughness can be back-calculated using any desired theoretical friction

factor model without the need for a model-dependent constant. Using an empirical relationship

for the energy friction factor allows the roughness to be determined entirely from wave,

sediment, and fluid information.
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3.4.1 Available data

As explained in section 2.3, by measuring the wave height decay along a wave flume the energy

dissipation factor can be directly calculated from measurements without using any theoretical

model. To isolate the dissipation due to the bed roughness, the wave height decay is measured

over a smooth bed, and this quantity is subtracted out of the total measured energy dissipation.

Four of the five data sets used in the energy friction factor analysis use this method, including

the two data sets which measured dissipation under random waves.

Another experimental technique directly measures the shear stress on the bed via a shear

plate installed in the bottom of a wave tank. Shear plates have been used with fixed beds in the

past, but recently the technology has improved to the point that tests can be run with a movable

bed. While a few researchers are using shear plates to calculate the stress with fixed or flat beds,

only one study, conducted by Rankin and Hires (2000), could be found that used a shear plate

with a movable bed in the ripple regime.

Rankin and Hires ran each test twice: once with sand (and they waited until the ripples

were at equilibrium) and once without sand, to isolate the force on the plate due to the rippled

bed. They also estimated the force on the plate due to the free-stream pressure gradient. To find

the force on the plate due only to the rippled sand bed, the force on the smooth bed and the

estimated force due to the free-stream pressure gradient were subtracted from the total force

measured over the sand bed. After calculating the shear stress using the residual force on the

plate and the area, the wave friction factor was found with

2Tbm

PU 2 (3.15)

where Ubm was calculated from the wave height and period according to linear theory.

Due to the difference in experimental setup, for these data f, is directly calculated from

the measurements, whereas for the energy dissipation experiments, fe is indirectly calculated

from measurements. Although it is possible to convert values of f& into equivalent values of fe
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using a friction factor model, one of the main benefits of developing a relationship for the

friction factor instead of the ripple geometry is that this method is independent of the choice of

friction factor model. Therefore, to keep the relationship free of any friction factor theory,

because the two friction factors are expected to be quite similar, and since many models neglect

the phase shift anyway, for this shear plate data, we assume fe ~ and use the f, values

calculated directly from the measurements.

A list of the five data sets used in the energy friction factor analysis under periodic and

random waves in the laboratory is provided in Table 3-6, and an overview of the datasets is

found in Table 3-7.

Table 3-6: Laboratory datasets used in friction factor analysis
No. data points
Periodic Random

Set Source d (mm) waves waves
1 Carstens et al. (1969) 0.19 5

0.297 15
0.585 20

2 Lofquist (1986) 0.18 20
0.55 62

3 Rosengaus (1987) 0.20 17 10
4 Mathisen (1989) 0.12 6 11

0.20 - 5
5 Rankin & Hires (2000) 0.23 10

Table 3-7: Overview of laboratory datasets used in energy friction factor analysis
Flow type No. datasets No. data points No. diameters d (mm) 0', p'Ims fe
Periodic waves 5 155 8 0.12-0.585 0.02-0.64 0.06-0.47
Random waves 2 26 2 0.12-0.20 0.03-0.10 0.05-0.40

Attempts have been made to quantify energy dissipation in the field by measuring wave

height decay (e.g., Treloar and Abernethy, 1978). However, there are multiple reasons to distrust

this data: there are many sources of energy dissipation in the field and it is impossible to

account for all of them accurately, wave refraction makes it difficult to accurately measure the

decay, and near the coast, where these studies are typically conducted, some level of current
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activity is to be expected, and it is not accounted for. Therefore, the data used in the energy

dissipation analysis will be restricted to laboratory data, where the experiments can be better

controlled and the results are more trustworthy.

3.4.2 Energy friction factor relationship for the ripple regime

Using the energy dissipation data in Table 3-7 we found a relationship to directly predict the

energy dissipation factor from fluid, flow, and sediment characteristics. As in the case of ripple

height, we found that the energy friction factor correlates well with the skin-friction Shields

parameter, using, as before, the significant near-bottom velocity in the Shields parameter for the

random wave data. The energy friction factor data were also stratified according to their

sediment sizes, so we again included the factor of S-02 5 to consolidate the different sediment

sizes, where the best-fit power of S. happened to be the same as for the ripple height analysis.

Comparing Figure 3-8 and Figure 3-9 shows the effect of including the S. factor: in Figure 3-8,

without S., the data are clearly stratified by size, with the larger sediments dissipating much

more energy for the same n', while in Figure 3-9, with the exception of a few outliers, the

different sediment sizes follow the same curve.

98



0.5
16

O.5 Random waves .0.45 - .

14

0.4 - 0

0.35 - * 12

0.3 
10

fe 0.25 -

.C . .. *

0.2 * 0 - -

. *00*.
0.15 - -q

* 0 0

0.1 -00
00 0 o 00 2
00

0.05 -0

0 
2

0 0.1 0.2 0.3 0.4 0.5 0.6

V sig

Figure 3-8: Energy friction factor variation with the skin-friction Shields parameter, ip', for periodic (dots)
and random (open circles) waves colored by the fluid-sediment parameter, S, to show sediment size
stratification.
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Using the definition of the skin-friction Shields parameter given by (3.12), the energy

friction factor can be predicted with (3.16), which was found by a least squares fit to the data.

f, = 0.14exp{-2.37p'}S0.25  (3.16)

This expression for the energy dissipation factor was developed solely from measurements over

rippled beds and therefore is only applicable to the ripple regime, i.e., for ip' S 0.8. The best-fit

equation (3.16) fits the data well: 72% of the data are contained within ±25% of the best-fit line,

and 95% of the data are contained within ±50% of the best-fit line (Figure 3-10).
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Figure 3-10: The best-fit relationship for the energy friction factor (green line) well represents ripples
under both periodic (black dots) and random (red circles) laboratory waves, with 72% of the data found
within ±25% of the best-fit curve (gray area).

3-5 Sheet flow regime

When the flow becomes strong enough, the ripples covering the bed are washed out and the bed

transitions into the sheet flow regime, where the sediment is transported along the bed in a

relatively thin layer. From Figure 3-7 of the ripple height relationship, it appears that the ripples

wash out around tp' = 0.8 and the sheet flow regime can be expected to start around 0' = 1, and

these values are applicable to random waves as well if the significant near-bottom velocity is

used. While in the ripple regime the roughness is expected to scale with the ripple height, in the

sheet flow regime there is no single fundamental vertical scaling for the roughness. Some

researchers have proposed that the roughness scales with the sheet flow layer thickness or the

erosion depth, but these quantities are not consistently defined and are difficult to measure

accurately, especially in the field. If one of these length scales is measured or predicted by an
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empirical expression, a friction factor model is generally then used to relate the roughness to the

length scale, possibly including a model-dependent proportionality factor.

Having an energy friction factor relationship for the sheet flow regime would provide an

appealing alternative to relating the roughness to a quantity which is difficult to measure and

has not been proven to provide the correct scaling. As in the ripple regime, once an energy

friction factor relationship is developed for the sheet flow regime, any friction factor model can

be used to back-calculate the roughness, making the relationship independent of the choice of

theoretical model. Therefore, we will find an empirical relationship for the energy friction factor

using sheet flow data, which will extend the relationship for the ripple regime into the sheet flow

regime.

3.5.1 Available data

In order to relate the flow conditions to the energy friction factor, measurements must be taken

which allow the friction factor to be calculated. In the ripple regime, wave height decay was

measured and used to calculate energy dissipation. This method works well in the ripple regime,

when energy dissipation is so large that the wave height decay is easily measured, but in the

sheet flow regime the energy dissipated by the bed is smaller, and this method becomes less

reliable. It may be possible to measure the shear stress under sheet flow using a shear plate like

Ranking and Hires (2000) used under ripples, but measurements of this type could not be

found. Although many experiments are conducted in the sheet flow regime, the vast majority

measure only transport rates and occasionally the sheet flow layer thickness, but not quantities

which allow the friction factor to be calculated.

Dick and Sleath (1991) and Wijetunge and Sleath (1998) measured instantaneous

velocity profiles under periodic waves in the sheet flow regime. They then analyzed the profiles

to obtain estimates of the shear stress at the bed using the momentum integral method. Dick

and Sleath conducted tests on two types of sediments: acrylic beads of median diameter 0.7 mm
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and density 1.141 kg/m 3 and nylon granules of median diameter 4.0 mm and density

1.137 kg/m 3 ; Wijetunge and Sleath used only the larger nylon sediment. All of the experiments

were conducted under periodic waves. An overview of the laboratory data is given in Table 3-8.

Table 3-8: Laboratory datasets used in sheet flow friction factor analysis
Set Source Material d (mm) s = ps/p No. data points
1 Dick & Sleath (1991) Acrylic 0.7 1.141 17

Nylon 4.0 1.137 8
2 Wijetunge & Sleath (1998) Nylon 4.0 1.137 7

In the momentum integral method, the time derivative of the deficit velocity at each

vertical level is vertically integrated to find the shear stress,

r(z) = f (pu - PmU(z))dz (3-17)

where r(z) is the shear stress at a vertical elevation z, uoo is the free stream velocity, and Pm is

the density of the fluid-sediment mixture. Due to the presence of the sheet flow layer, the

elevation of the bed, where Thim is located, is not clear, and must be defined. The authors decided

to use the initial bed level to define Tb, which is the elevation of the bed in still fluid, before

transport begins. For these tests, the initial bed level was located 3-12 cm above the still bed

level, which is the highest elevation for which there was no observable sediment motion

throughout the wave cycle. Dick and Sleath also measured the thickness of the moving layer, the

minimum elevation of the top of the moving layer over the wave cycle, relative to the still bed

level. The elevation of the top of the moving layer was overall found to be very close to the initial

bed level, which gives further credence to using the initial bed level to define the bed shear

stress. With Thbm known, the wave friction factor is found directly from its definition,

fw =2m (3.18)
bm

As in the Rankin and Hires (2000) data, this method directly gives the wave friction

factor, fW, but not the energy friction factor, fe, which are related by a cosine of the phase angle.
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A friction factor model could be used to convert the values of f& found directly from the data to

values of fe, which would be slightly smaller. However, because the relative roughness is so large

in the sheet flow regime, X ~ 20 - 500 for these data points, the phase angle is small, and the

cosine of the phase angle is close to unity. Compared to the uncertainty in the momentum

integral method, the difference between the wave friction factor and the energy friction factor is

negligible, and fe ~f: is assumed here. Because no friction factor model was used to alter the

measured values, this method is independent of the choice of friction factor model.

3.5.2 Energy friction factor relationship for the sheet flow regime

In the ripple regime, we found that both the ripple height and the energy friction factor

relationships were improved when the data was scaled by S-0.2s. Because there are so few data

for the sheet flow regime, and they are composed of only two relatively large diameters, it is

difficult to examine whether this trend continues for the sheet flow regime, but we will blindly

assume that it still holds. Therefore, as an extension of the energy friction factor relationship for

the ripple regime, we examined the variation of the scaled energy friction factor, fe -So 2 s, with

the skin-friction Shields parameter, ib', for the sheet flow data (Figure 3-11).
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Figure 3-11: Energy friction factor variation with the skin-friction Shields parameter, i', for the sheet flow
laboratory data (black dots: acrylic sediment, d = 0.7 mm, red circles: nylon sediment, d = 4 mm).

Dick and Sleath found that most of the runs with the nylon sediment (d = 4 mm, red

circles in Figure 3-11) were in the ripple regime and some were in the transition regime between

ripples and sheet flow, while all of the runs with the acrylic sediment (d = 0.7 mm, black dots in

Figure 3-11) were in the sheet flow or transition regime. Of the Wijetunge and Sleath data, all of

which used the nylon sediment, 5 runs had large enough ripples that the steepness was reported.

Because we want to find a relationship which is valid for the sheet flow regime, we want to

exclude those points which are in the ripple regime, as they do not fit in with the friction factor

relationship for ripples. Dick and Sleath did not specify which data points were in the ripple

regime, so we decided to exclude the three points with ' < 0.6 (Figure 3-11), since points with

such low Shields parameter values are definitely expected to be in the ripple regime, as we found

that ripples wash out around 0' = 0.8. We also excluded the five points which Wijetunge and

Sleath identified as having a rippled bed, for a total of 8 data points excluded due to being in the

ripple regime, all of which used the nylon sediment.

105

- Acrylic, d = 0.7 mm
o Nylon, d = 4 mm



Some of the data have such small values of the energy friction factor that they do not

appear to fit in with the rest of the data points (Figure 3-11). Using the new friction factor model,

the movable bed roughness, kN, of the data points were computed from the reported values of

the wave friction factor, f,. For eight data points, the ratio of the computed roughness to the

sediment diameter, kNid, was found to be less than or about equal to 0.5. The minimum

roughness in any movable bed regime should be the sediment diameter, so the fact that these

points gave roughness values smaller than the diameter by a factor of two shows that there is

some unexplained experimental error for these points, and they were therefore excluded from

the analysis. The cut-off was set at kNid 0.5 instead of kNid 1 to err on the side of including

poor data rather than excluding reasonable data. Note that the same eight points would still

have been excluded according to the criteria kNid 0.5 if the Jonsson (1966) or Madsen (1994)

friction factor models were used to calculate the roughness.

Of the 37 reported data points, a total of 14 points were excluded because they were in

the ripple regime or had kNid 5 0.5 (two data points met both exclusion criteria). The

remaining 23 data points were analyzed to find the best-fit line for the energy friction factor.

Due to the large scatter and the relatively small number of points, it seemed unreasonable to fit

the data using a model more complex than a line:

fe = [-0.00120' + 0.016]S2s (3-19)

The best-fit line (3.19) represents the data as well as can be expected, with 39% of the data

points found within ±25% of the fit (Figure 3-12). The slope of the best-fit line is -0.0012, with

95% confidence bounds of [-0.0036, 0.0012]. Thus, the best-fit line for this data decreases

slightly as 0' increases, but accounting for the scatter and the few number of points, it is

possible that the true relationship is horizontal, corresponding to a constant energy friction

factor, or the slope may even be slightly positive. The only way to determine whether this best-fit

relationship is valid is to analyze much more laboratory data.
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Figure 3-12: The best-fit relationship for the energy friction factor (green line) well represents sheet flow
for both acrylic (black dots) and nylon (red circles) sediment under periodic laboratory waves, with 39%
of the data found within ±25% of the best-fit line (gray area).

Because all of the sheet flow data is with periodic waves, it is not possible to test whether

the rms or significant near-bottom velocity should be used to calculate O' for random waves;

therefore, we will simply assume without proof that the significant near-bottom velocity should

be used for random waves as was found for the ripple regime.

This new friction factor relationship can be combined with the relationship for the ripple

regime (3.16) to provide a continuous expression over the entire range of 0' values. The two

expressions intersect at about 4' = 0.95, which compares very well with our observation that

ripples are washed out around 4' = 0.8, and with other research that found that the sheet flow

regime begins at 0' = 1 (Nielsen, 1981). The smooth transition of the friction factor

relationships between the ripple and sheet flow regimes (Figure 3-13) is another advantage of

using the friction factor method to find the roughness, as opposed to using a method which

requires predicting ripple dimensions or the sheet flow layer thickness first.
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Figure 3-13: The best-fit relationship for the energy friction factor (green line) gives a continuous
transition from the ripple to the sheet flow regime and well represents both ripples under periodic and
random waves (black dots) and sheet flow under periodic waves (red circles), with 69% of the data found
within ±25% of the best-fit curve (gray area).
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Chapter 4

Movable bed roughness

In this chapter we explore ways to estimate the bed roughness in the movable bed regimes

defined in Chapter 3. In the lower flat-bed regime, it is well understood that the roughness

scales with the sediment size, and there is no reason to consider any other method of finding the

roughness. In the ripple and sheet flow regimes, however, two methods are considered for

estimating the roughness. The first method relies on a ripple height relationship or a

relationship for the sheet flow layer thickness, and relates the roughness to these predicted

length scales. The second method uses the new relationships for the energy friction factor

developed in Chapter 3. Both methods rely on the energy friction factor data given in Chapter 3

and the new friction factor model derived in Chapter 2.

4.1 Lower flat-bed regime

In the lower flat-bed regime, the roughness scales with the grain size, as

kN = Yfbd (4-1)

where Yfb is a proportionality constant for the flat-bed regime, and d is a characteristic diameter

of the sediment. Common values of the constant Yfb range from 1 to 2.5 when the median

diameter is used. Some authors choose to use a larger diameter, often the 84 th percentile

diameter, d = d8 4 , in which case Yfb = 1 is generally used. Because in many cases only the
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median diameter is reported, we choose to use that diameter, d = d5 o, and for simplicity take

Yfb = 1-

4.2 Ripple regime

In the ripple regime we consider two methods of predicting the roughness, corresponding to the

two ripple regime expressions developed in Chapter 3. In the common method, the ripple

dimensions are predicted, and the roughness is then estimated from the dimensions using a

friction factor model-dependent constant. In the proposed method, the energy friction factor is

predicted, and the roughness is back-calculated using any friction factor method.

4-2.1 Roughness from predicted ripple dimensions

As explained in section 3.3, in analogy with the flat-bed case, the roughness in the ripple regime

can be expected to scale with the ripple size. Therefore, the common method of predicting bed

roughness begins by predicting the ripple height, 7, and possibly the length, A, and the

roughness is then taken as a function of these dimensions. The two most common relationships

take the roughness as a constant multiple of the ripple height,

kN = Y7 4.2)

or as a constant multiple of the product of the height and the ripple steepness,

kN 4-3)

where y and fl are the respective proportionality constants.

The difficulty with the common method thus comes in choosing the appropriate values

for y or fl, which are not physically determined parameters. In fact, the correct value depends on

the choice of theoretical friction factor model to be used in further computations and must be

determined empirically for each model, for example by fitting experimentally observed energy

dissipation rates. The chosen theoretical friction factor model is used to back-calculate the
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roughness from the energy friction factor information, and the best-fit y or #-value is

determined by relating the roughness to the measured ripple dimensions. Once y or fl is known

for a given model, the roughness is easily predicted from estimates of the ripple dimensions,

usually predicted with an empirical relationship, such as those given in section 3.3.2 or the new

relationship given in section 3.3.3.

Unfortunately, the published proportionality constants are often blindly applied without

consideration to which friction factor model was used to determine them. This is especially

disconcerting as the constants vary over a wide range. Some of the common values used for y

range from 1 (van Rijn, 2007) to 11 (Sleath, 2004), and fl ranges from 8 (Nielsen, 1983) to 37

(Kim, 2004). Some of the quoted values for #l are, in chronological order, pl = 25, 28, 8, 16, 20,

and 37, respectively, for Swart (1976), Grant and Madsen (1982), Nielsen (1983), Raudkivi

(1988), van Rijn (1993), and Kim (2004). Clearly, blindly choosing a constant from a range this

wide can lead to large errors in the roughness estimate.

The benefit of this method is that once the ripple dimensions are predicted, the

roughness can be easily estimated as a function of those dimensions. Following Wikramanayake

and Madsen (1994), Styles and Glenn (2002), and others, we choose to take the roughness as a

function of the ripple height only, kN = Yrbf7, where the subscript rb has been added to

emphasize that this constant is for the rippled bed regime. As mentioned above, Yrb varies with

the choice of theoretical friction factor model and is determined from observed energy

dissipation rates or shear stresses. The laboratory data of the energy friction factor under both

periodic and random waves over movable beds used in the energy friction factor analysis (Table

3-6) were used to determine Yrb for a few theoretical friction factor models. The best-fit Yrb-

value for a certain friction factor model is taken to be the whole-number value which yields the

smallest mean absolute error between the measured energy friction factor and that predicted

using fe = T(kN/Abm = Yrb 1J/Abm), with rl/Abm predicted by (3.14) from measured values of p'

and S.,
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= 0.16 exp{-2.550'}S. 2 s (3.14)
Abm

The best-fit Yrb -value was found to be i6 for the new friction factor model, 8 when the

Madsen (1994) model is used, and only 2 for the Jonsson (1966) model. Thus, using the same

expression for the ripple dimensions, (3.14), and the same energy friction factor data, the best-

fit constant Yrb varies by a factor of eight. A comparison of the predicted energy friction factor

variation using the new model and the Jonsson model with their respective best-fit Yrb -values is

shown in Figure 4-1 along with the periodic and random wave friction factor data that was used

to determine the best-fit Yrb-values. To allow a single curve to represent all of the data for each

model, the curves in Figure 4-1 use the approximate median sediment size, corresponding to

S, = 8; in reality each sediment size would generate a separate curve. Naturally, neither of the

curves given by these models fits the data as well as the best-fit curve directly fit to the data,

given by (3-16). The kink in the line for the new model, at 4' ~ 0.15 for S, = 8, corresponds to

the critical value of X, which is where the model transitions from St = S/6 to St = zo > 6,/6

for small values of V,'.

112



0 Periodic waves
0.3 - o Random waves

Best fit
New model, Yrb 16, with S,= 8

0.25- - - Jonsson 1966, yr-b 2, with S= 8

* 0

0.2 -

fs--0 2 5  0

0

0.15 - 0

0.050.

0 0

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 4-1: The energy friction factor data for periodic (black dots) and random (red circles) waves are
used with the predicted ripple height to find the best-fit yrb-values for each friction factor model. For the
new model (solid green line), yrb = 16, while for the Jonsson 1966 model (dashed blue line), yrb = 2, and
both are plotted with S, = 8. Neither of these models represents the data as well as the best-fit curve
(black line).

The variability in Yrb is a major shortcoming of the common method. Even if the ripple

dimensions are predicted perfectly, the accuracy of the roughness prediction is nevertheless tied

to the precision of this constant, which in turn relies wholly on the energy friction factor data.

Because this method is ultimately constrained by the energy friction factor data, it makes sense

to skip predicting the ripple height altogether and work with the energy friction factor data

directly.

4.2.2 Roughness from predicted energy friction factor

The proposed method for determining the roughness in the ripple regime uses the empirical

expression developed in section 3.4 to predict the energy friction factor, and skips predicting the

ripple dimensions, which are not otherwise needed. Once the energy friction factor is
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determined, any desired theoretical friction factor model can be used to calculate the roughness.

To illustrate how the roughness can be back-calculated, the energy friction factor relationship

for the ripple regime and the friction factor model developed in Chapter 2 were used to

construct typical curves relating the relative roughness to the skin-friction Shields parameter,

'I, for a few sediments, specified by S,,. The relative roughness was found for three values of S,,

S, = 1, 8, 16 (corresponding to d = 0.1, 0.4, 0.7 mm, respectively, for quartz in seawater), using

the friction factor relationship,

fe = 0.14 exp{-2.371p'}S. 2 s (3.16)

and the relationship between the wave friction factor and energy friction factor,

fe = fw COS #P (2.116)

where fw and #b were found from the explicit approximations for the pure-wave case, (2.86) and

(2.87), respectively (Figure 4-2). Unfortunately, due to the complex form of the expressions for

f& and #T, it is not possible to formulate a closed-form expression for the relative roughness as a

function of the skin-friction Shields parameter and the fluid-sediment parameter. Again, kinks

in the plot occur at the critical case, when the model transitions from St = Sw/6 to St = zo >

Sw16.
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Figure 4-2: Using the new friction factor relationship for the ripple regime and the new friction factor
model, the relative roughness can be back-calculated. The relative roughness thus depends on the skin-
friction Shields parameter, 0', and the fluid-sediment parameter, S.

The curves in Figure 4-2 were found using the new friction factor model, and using other

models would generate somewhat different curves. As the friction factor models are very similar

for small values of the relative roughness (large values of X = Abm/kN, Figure 2-20), the curves

would merge for large values of 0p'.

4-3 Sheet flow regime

In the sheet flow regime, unlike the ripple regime, there is no single common approach to

predicting the bed roughness. Some authors have found empirical relationships for the erosion

depth or the thickness of the sheet flow layer and assumed the roughness scales with these

lengths, sometimes using a theoretical model to determine proportionality constants as in the

ripple regime. Less commonly, the roughness is determined for a set of combined wave-current

data using a theoretical wave-current model, and then an empirical relationship is found for the
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roughness as a function of the observed flow. As an alternative to these direct approaches, which

require model-dependent constants, we can use the energy friction factor relationship developed

in section 3.5 and back-calculate the roughness using any friction factor model.

4.3.1 Directly predicting the roughness in the sheet flow regime

From an extension of the idea that the bed roughness scales with the sediment size in the lower

flat-bed regime and with the ripple dimensions in the ripple regime, some researchers have

related the roughness in the sheet flow regime to a vertical scale of the sediment motion. Wilson

(1989) proposed, as an extension of steady flow results, that the roughness in the sheet flow

regime is proportional to the sheet flow layer thickness, measured from the top of the moving

bed level to the still bed level. He found that the sheet flow layer thickness was proportional to

the product of the Shields parameter and the sediment diameter, yielding

kN =V$ 4'4)

and he determined the constant to be b = 5 for his data.

From experimental data of sheet flow under steady flow, Herrmann and Madsen (2007)

found the following empirical expression for the sheet flow roughness,

kN = [4.5(0 - #cr) + 1.7]dn (4.5)

where dn is the nominal diameter (dn ~ 1.1d 50 ). Note that as these models use the total Shields

parameter instead of the skin-friction Shields parameter, these expressions require iteration

with a friction factor model to solve.

Other researchers have instead taken the roughness to be exactly equal to the erosion

depth, which is the depth from the initial bed level (in still fluid) to the still bed level (during

sheet flow). They have found, similar to Wilson, that the erosion depth is proportional to the

product of the Shields parameter and the sediment diameter. These models generally use the

skin-friction Shields parameter, calculated with Swart's (1976) model using kk = 2.5d, and as
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the data analyzed for these models is mostly if not entirely comprised of periodic waves, it is not

clear whether the rms or significant near-bottom velocity would be used for random waves. With

a proportionality constant ysf (with the subscript sf referring to sheet flow conditions), this

roughness model takes the form

kN= ysf Vd (4.6)

and some reported values for the constant ysf are: 3 (Zala Flores and Sleath, 1998), 8.5 (Asano,

1992), and 7.8 and 3.5 for sediment of diameter smaller and larger than 0.2 mm, respectively

(Dohmen-Janssen, 1999). Sawamoto and Yamashita (1986) found a better fit when the skin-

friction Shields parameter was raised to the M power, in which case their best-fit value for ysf

was 3. The reported values for this constant show less variation than the Yrb value used in the

ripple regime, which may be due to the fact that the different theoretical friction factor models

converge for the sheet flow regime or simply due to the authors using the same theoretical

models when finding ysf.

From an analysis of wave-current field data in the sheet flow regime, Madsen et al.

(1993) found that the roughness was approximately 15 times larger than the sediment diameter,

where the Grant and Madsen (1986) boundary layer model was used. As all of these data were

with V)' ~ 1, Madsen (2002) proposed that the sheet flow roughness be represented in the same

form as (4.6) with ysf = 15.

The sheet flow layer thickness is a difficult quantity to work with as it is difficult to

measure, especially in the field, and is defined differently by different authors. Therefore, it did

not seem worthwhile to develop an empirical relationship for the sheet flow layer thickness, as

was done for the ripple height in the ripple regime. Instead, because it is the most widely used

relationship, we will simply assume the roughness in the sheet flow regime can be represented

by an expression of the form of (4.6), where the constant ysf can be determined from laboratory

data just as Yrb was found for the ripple regime. With this choice, it is inconsequential whether
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this expression accurately predicts the sheet flow layer thickness, which, like the ripple height, is

not otherwise needed. The best-fit constant y is found by comparing the measured energy

dissipation factor to the predicted values, fepre, for different values of y, where fe,pred =

T(kN/Abm)pred. In the ripple regime, the best-fit Yrb-value for each data point is found for a

certain model from knowledge of ' and S,. only, since (kN/Abm)pred = Yrb 7)/Abm) pred, and

(rj/Abm)pred is a function of V' and S.. As we expect fe to vary with V' and S., it is not a problem

that fe,pred is also a function of these parameters, and as a result it is reasonable to expect Yrb to

be a constant. However, in the sheet flow regime the process is more complicated due to the

form of the roughness expression (4.6). In the sheet flow regime,

(kN/Abm)pred = ysf (P'd/Abm)pred, and (V'd/Abm)pred is a function of $', S., w, s = ps/p, and v.

Thus, in the sheet flow regime, fe,pred depends not only on 4' and S., as expected, but also on o,

s, and v, and as a result ysf may not be a constant, but may depend on these parameters.

Assuming the roughness can be represented by (4.6), the energy friction factor sheet flow

data used in the friction factor analysis (Figure 3-12) were used to determine the best-fit Ysf-

value for a few theoretical models. Since there is very limited laboratory data, it was not possible

to determine if the factor ysf is in fact a constant for a given theoretical model, but it will be

treated as a constant here for lack of a better option. The best-fit ysf -value was found to be 4 for

the new friction factor model and the Madsen (1994) model, while it is 3 for the Jonsson (1966)

model. The best-fit ysf -values for the different models are much closer than the Yrb -values for

the ripple regime, where the constant varies by a factor of eight between the different models.

This is because in the sheet flow regime the relative roughness is smaller (X = Abm/kN is larger),

and the different friction factor models converge to similar values as the relative roughness

decreases, as shown in section 2.5. Also, for large values of Abm/kN the wave friction factor is

less sensitive to the roughness, so variations in kN give relatively small variations in the friction

factor.
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Since the best-fit values for ysf are very similar in the sheet flow regime for different

friction factor models, it would appear that there is not as strong of an argument against directly

predicting the roughness as there is for the ripple regime. However, while Ysf may not vary

widely with the different friction factor models, it is actually far less reliable than Yrb for the

ripple regime, as it may depend on the values of w, s, and v of the data used to determine it.

Unfortunately, there is very little laboratory data available in the sheet flow regime, and the

datasets used here had very small values of s (s ~ 1) and large values of W compared to what

would be expected for quartz sediment in the field. We are therefore suspicious of the best-fit

value of ysf found here with this limited data, ysf = 4 for the new model, and recognize that it

may not be a general constant. Laboratory data of quartz sediment in sheet flow would be

expected to give a more trustworthy estimate of ysf than was found for this data.

Directly predicting the roughness with a relationship of the form of (4.6) predicts that

the roughness and therefore the energy friction factor increases with V)', while the data shows

that the energy friction factor decreases slightly on average (Figure 3-12). However, many

researchers have found that the roughness increases as V)' increases, and even for this data set

the confidence interval on the predicted slope of the best-fit line for the friction factor shows

that the energy friction factor may increase slightly with lp'. Also, the momentum integral

method is very sensitive to the level chosen to evaluate the shear stress, which was taken to be

the initial still water bed-level for these experiments. As the skin-friction Shields parameter

increases, the thickness of the moving layer and thus the distance between the top of the no-

motion layer and the initial still water bed-level increases. If the no-motion depth was used to

evaluate the shear stress instead, the shear stress and therefore the friction factor may have

shown an increase with 0'. On the other hand, the momentum integral method includes stresses

between grains in calculating the shear stress, which could lead to overpredicting the shear
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stress. Overall, the measurements with high ' are less trustworthy using this method, and

therefore this data should not be used to disprove that the roughness increases with V$'.

4.3.2 Roughness from predicted energy friction factor

As was done for the energy friction factor in the ripple regime, once the energy friction factor is

predicted with the relationship developed for the sheet flow regime, any model can be used to

back-calculate the roughness, which thus depends on both ' and S.. This was done for three

values of S,, S,, = 1,8,16, using the sheet flow friction factor relationship (3.19),

fe = [-0.0012/' + 0.016]S,2s (3.19)

and the new friction factor model, to see the relationship between the relative roughness for a

range of p' values (Figure 4-3).
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Figure 4-3: Using the new energy friction factor relationship and the new friction factor model, the
relative roughness can be back-calculated for the sheet flow regime. The relative roughness thus depends
on the skin-friction Shields parameter, 4', and the fluid-sediment parameter, S,.
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Note that while the relative roughness decreases as 0' increases, this does not imply that

the roughness decreases with 4', which would be contrary to expectations and previous

observations. This is because as 4' increases for the same sediment, Abm would also increase

(unless the wave period shortened considerably, which is unlikely). Therefore, while the relative

roughness, kN/Abm, decreases as 4' increases, as long as Abm increases faster, the roughness, kN,

would increase with p' for a given sediment. For example, if 4' increases from 0' = 1 to 0' = 3

while the wave period remains constant, the roughness increases by about 15% for quartz

sediment with S, = 8.

Again, a major benefit of the friction factor method is that it provides a continuous

variation from the ripple to the sheet flow regime. Because the energy friction factor

relationships vary smoothly between the two regimes, the relative roughness also has a

continuous variation (Figure 4-4).
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Figure 4-4: Using the new energy friction factor relationships for the ripple and sheet flow regimes and
the new friction factor model, the relative roughness can be back-calculated. The relative roughness thus
depends on the skin-friction Shields parameter, ip', and the fluid-sediment parameter, S,, and has a
continuous smooth transition between the ripple and sheet flow regimes.

121



Validation of the sheet flow friction factor method with laboratory data

In the ripple regime, it is difficult to test the roughness methods with the new wave-current

model using measured current velocity profiles because when the bed is rippled the near-bottom

profiles over crests and troughs are different and it is unclear which should be used. However, as

the bed is homogenous in the sheet flow regime, it is possible to test the roughness method by

comparing the results with measured current profiles. The proposed sheet flow roughness

method, using the predicted energy friction factor, was tested against two combined wave-

current experiments under sheet flow conducted by Dohmen-Janssen (1999) in the Delft

oscillating water tunnel (Table 4-1).

Table 4-1: Conditions for wave-current sheet flow experiments by Dohmen-Janssen (1999)
Case d50 (mm) T (s) Uhm (cm/s) Ur (cm/s) Zr (cm) 0'

Ti 0.13 4 104 25 5 1.64
T2 0.13 12 107 21 5 1.34

The energy friction factor was calculated with the new sheet flow relationship (3.19) with

the measured 0' and S, values, and the bed roughness was back-calculated using the new

expressions for the wave friction factor and phase shift developed in Chapter 2. The current

profile was calculated using the new three layer model with the current specified by the

reference velocity, ur, at an elevation zr, as detailed in section 2.2, where the two layer

simplification of the current velocity profile was used. The current velocity profiles predicted by

the new model agree well with the experimental results (Figure 4-5). These results help to verify

both the theoretical wave-current boundary layer model and the proposed energy friction factor

method for the sheet flow regime.
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Figure 4-5: Comparison of predicted (lines) and measured (circles) current velocity profiles for two tests
by Dohmen-Janssen (1999) of wave-current flows in the sheet flow regime. The red crosses indicate the
reference velocity and elevation used to predict the profiles.

4-4 Roughness prediction procedure

The roughness is predicted from knowledge of the sediment size and the wave conditions using

the methods described in this chapter, with some of the relationships developed in Chapter 3,

which are repeated here for convenience. In the lower flat-bed regime, when V' < $cV, there is

only one method, and the roughness is taken to be equal to the median sediment diameter,

kN = d =5 (4-7)

For the ripple and sheet flow regimes, there are two methods considered, the common

method, which is direct but requires a model-dependent constant, and the proposed method,

with which any friction factor model can be used. For the common method, the roughness is

proportional to the ripple height in the ripple regime or to V)'d in the sheet flow regime,

16rl, 4' < 0.8
kN 4od ip 1 >_.0.

where the constants Yrb = 16 and ysf = 4 for the ripple and sheet flow regimes, respectively,

are the best-fit constants for the new friction factor model, found by fitting energy friction factor

laboratory data. The ripple height relationship was found by fitting laboratory data,
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A = 0.16 exp{-2.55ip'}So.2 s
Abm

Since there is not a smooth transition between the two regimes for this method, the expressions

are assumed to switch at zP' = 0.8, as this was when the ripples were seen to wash out.

For the proposed method, the energy friction factor relationships for the ripple and sheet

flow regimes, found by fitting laboratory data of the measured energy dissipation rates or the

shear stress, are given by

o 2s 0.14 exp{-2.374$'), 0' < 0.95
fe = S. - -0.00121' + 0.016, '1 > 0.95 (4.10)

and the roughness can be back-calculated from fe using the new model,

fe = f, cos , = F (X N (4.11)

where the wave friction factor and the phase shift are found from X by solving the full model in

section 2.1 with a = 0 and C, = 1, or with the explicit approximations, (2.86) and (2.87),

respectively.
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Chapter 5

Predictions of combined wave-
current field flows

It is ultimately of interest to predict boundary layer hydrodynamics in the field, not the lab, and

the theoretical model and empirical roughness methods are therefore rather useless if they do

not perform well for field conditions. The methods were developed entirely with laboratory data,

and there is no reason to believe that the relationships are applicable to field scale. For example,

we found that the ripple height variation was different for field and laboratory data (Figure 3-2),

and it seems reasonable that the y-values and energy dissipation friction factor, fe, could

likewise be different under field conditions. Nevertheless, since the expressions would be used

to make predictions in the field, it is prudent to evaluate the methods with field data.

Since both waves and currents, to varying degrees, are typically found together in the

field, a wave-current model must be applied to make predictions under these conditions. After

the roughness is predicted using either method from measured wave and sediment information,

a wave-current model can be applied with measured wave, sediment, and current information,

along with the predicted bed roughness, to predict the combined flow parameters.

In this chapter we review the procedure to predict the current shear stress from

measured wave, sediment, and current information, along with the predicted bed roughness

using the new three layer wave-current model developed in Chapter 2, where the bed roughness

is predicted with the methods developed in Chapters 3 and 4. The theoretical model and the
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empirical roughness methods are then evaluated using field data on combined wave-current

flow in the three bed regimes: lower flat-bed, ripple, and sheet flow.

This thesis is concerned only with the hydrodynamics of combined wave-current

boundary layer flows, and therefore the quantities of interest are the shear stress and/ or the

current velocity profile. The hydrodynamics can then be used to predict other processes. For

example, if the shear velocity is estimated from the wind stress, the current velocity profile

predicted by the model can be used in coastal circulation models. If the current velocity is

known instead, the shear stress at the bottom predicted by the model can then be used to predict

sediment transport. Note that the shear stress predicted by the model is the total shear stress,

which in the ripple regime is not the appropriate shear stress to use for sediment transport, as it

includes the effect of form drag over the ripples. To predict sediment transport in the ripple

regime, the total shear stress must be converted into an effective sediment transport shear

stress, which is the shear stress that acts directly on the sediment grains.

5-1 Wave-current prediction procedure

The theoretical combined wave-current boundary layer model developed in Chapter 2 and the

roughness methods developed for the different movable bed regimes in Chapters 3 and 4 can be

evaluated with combined wave-current field data. The roughness methods were developed solely

with laboratory data, and these data sets are dominated by periodic wave data. Nevertheless,

since the methods would be applied to field conditions, they must be verified with field

measurements.

As explained in the wave-current solution procedure in section 2.2, along with wave,

sediment, and roughness information, the current direction and either the current shear velocity

or a reference current velocity must be used to specify the current in the model, which then

predicts the other quantity. We will specify the current by a reference current velocity and

predict the current shear velocity, which is the process that would typically be used if current
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velocities were known, either from current meter measurements or from a circulation model,

and sediment transport predictions were desired.

While we choose to evaluate the predicted current shear velocity using a reference

velocity, the reverse process, evaluating the predicted reference velocity using the current shear

velocity, is equally valid and would give similar results for the accuracy of the model. If the shear

velocity is overpredicted by a certain percentage by the model, by employing the reverse

procedure the reference velocity would be underpredicted by a similar percentage.

To predict the shear velocity, the environment is specified by the water density and

kinematic viscosity, p and v, respectively, the sediment is described by the median sediment

diameter, d = d50, and relative density, s = psIp, the waves are specified by their near-bottom

orbital velocity, Ubm, and radian frequency, w, and the current is specified by a reference current

velocity at a reference elevation zr, uc,r = uC(z = zr), and its direction relative to the wave

motion, #.. To be consistent across all of the field data, the reference current velocity is

specified at an elevation of zr = 100 cm above the bottom (cmab); when the current velocity was

not directly measured at this elevation, the value was interpolated from the measured profile.

First, the wave and sediment information were used to predict the physical roughness

height of the bed, kN, by different empirical methods depending on the flow regime, as detailed

in section 4.4. Then, the bed roughness was used with the current and wave information to

predict the current shear velocity, u., using the procedure described in section 2.2. The

predicted current shear velocity, U~c,pred, was then compared to the observed current shear

velocity, U*c,obs, found by the study authors by fitting a logarithmic profile to measurements of

the current velocity profile.

Note that the wave-current model used to predict the current shear velocity should be

consistent with the friction factor model either used to determine the y-values for the common

method of predicting the roughness, or used to calculate the roughness from the energy friction
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factor for the proposed method. The new three layer wave-current model is employed

consistently throughout this chapter. As waves in the field are certainly random, the significant

near-bottom velocity is used to calculate the skin-friction Shields parameter for the roughness

relationships, while the wave-current model requires the rms near-bottom orbital velocity.

5.2 Available data

Many researchers have conducted field studies on boundary layer processes in which wave and

current information was recorded. However, testing the new model and roughness methods

requires the observed current shear velocity, found by fitting measured current velocity profiles,

which greatly limits the published data that can be used, as this analysis is not often conducted.

By fitting logarithmic profiles to measurements of current velocity profiles, the current shear

velocity, apparent roughness, and the elevation of the bed, if the researcher chooses to keep that

parameter free, can be determined. Therefore, at least three current meters are required to find

the two unknown parameters and to have a measure of the goodness of the logarithmic fit (at

least four current meters are required if the elevation of the bed is also found). As a result,

studies which only measured the current velocity at two elevations were not accepted, as it is not

possible to gauge how logarithmic the profiles are with only two data points. With these

constraints, nine data sets were found of current profiles in combined wave-current flows in the

lower flat-bed, ripple, and sheet flow regimes in the field, yielding a total of 185 current shear

velocities determined by the authors from the current profiles (Table 5-1 and Table 5-2).
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Table 5-1: Wave-current field datasets used to evaluate the model and roughness methods
No. data points

Set Source Depth (m) d (mm) Flat-bed Ripple Sheet flow
1 Grant, Williams, & Glenn (1984) 90 0.016 15
2 Lambrakos, Myrhaug, & Slaattelid (1988)1 18 50 21 -

3 Green, Rees, & Pearson (1990) 24 0.1 8 27
4 Drake, Cacchione, & Grant (1992) 35 0.25 23
5 Drake & Cacchione (1992) 145 0.04 28
6 Madsen et al. (1993) 13 0.1 - 5
7 Green et al. (1995) 25 0.1 1 6
8 Xu & Wright (1995)2 14 0.12 4
9 Styles & Glenn (2002) 12 0.4 47
1Data are provided in Myrhaug and Slaattelid (1989)
2Subset only: the 4 sheet flow data points were excluded, as they are part of the Madsen et al. (1993) dataset

Table 5-2: Overview of combined wave-current field datasets used to evaluate methods
Regime No. datasets No. data points No. diameters d (mm) iPs'i [I = (U-c/U-WM)

2

Flat-bed 2 29 2 0.1 - 50 0.008 - 0.035 0.049 - 5.85
Ripple 7 145 5 0.1-0.4 0.003-0.57 0.010-4.33
Sheet flow 2 11 1 0.1 0.990 - 2.83 0.075 - 0.53

The movable bed regimes of the data were in general determined by the significant skin-

friction Shields parameter, using the critical Shields parameter value for the separation between

lower flat-bed and the ripple regime, and ip' = 0.9 for the separation between the ripple regime

and the sheet flow regime. However, for a few datasets (Drake et al., 1992; Drake & Cacchione,

1992; Green et al., 1990; and Grant et al., 1984), some of the data points were in the ripple

regime and some appeared to be in the flat-bed regime judging by V)', and visual inspection of

the bottom showed that there were indeed bedforms on the bed. As it is not expected that when

the flow drops below the critical value the ripples will instantly wash away, all of the data points

in these sets were assumed to be in the ripple regime. The only exception to this was for the

Green et al. (1990) data set, where measurements were taken after a large storm. The wave

energy decreased continually while the tidal current remained strong, and by 20 hours after the

beginning of the measurements, all signs point to the bed being flat, so the last eight data points

in this set were assumed to be in the flat-bed regime, while the earlier data points were in the

ripple regime.
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The dataset of Green et al. (1995) was gathered just before and during a large storm; as a

result the first data point is in the ripple regime and the others are in the sheet flow regime. The

last reported data point was excluded from the analysis because it was recorded just before the

tripod fell over and the measured current velocity profile from this burst yields an apparent

roughness nearly 50 times larger than the next highest value.

For the Grant et al. (1984) dataset, the median diameter was 0.016 mm (1o% clay, 20%

sand, 70% silt), but the sediment size distribution was bimodal, with one peak for silt and the

other for fine sand, at d = 0.1 mm (Drake and Cacchione, 1989). Because the silt goes into

suspension easily, Cacchione et al. (1987) decided for a nearby site with very similar sediment to

use a sediment size representative of the sand, which is expected to stay near the bed and

control the bed roughness when the bed becomes armored. Following the same reasoning, the

sediment for the Grant et al. (1984) dataset was assumed to be better represented by a diameter

much larger than the median value, namely d = 0.1 mm, which is the same size used by

Cacchione et al. (1987).

In most cases, the authors only reported values for the current shear velocity when the

profiles were highly logarithmic, as determined by having a high R2 value (Gross and Nowell,

1983). In these cases, all of the reported values were used. Green et al. (1990), however, reported

many profiles along with their R2 values, and to be consistent with the other authors, the

profiles with R2 less than o.985 were excluded from the analysis.

A few of the datasets (Green et al., 1990; Green et al., 1995; Drake and Cacchione, 1992)

do not provide the relative directions of the wave and current motion. For these datasets,

because the model is not very sensitive to the angle between the waves and currents (Figure

2-17), it was decided to assume they were collinear, with #6, = 0. Many of the datasets only gave

the significant or 1/10 near-bottom velocity, but the wave-current model requires the rms

velocity for random waves. The larger velocities were converted to rms values assuming the
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wave spectrums were Rayleigh distributed, in which case the rms velocity is related to the

significant velocity by Ub,rms = Ub,sig/V/, and to the 1/10 velocity by Ub,rms = Ub,1/10/L. 8 .

5-3 Lower flat-bed regime

In the lower flat-bed regime, there is a general consensus that the roughness is proportional to

the sediment size by a factor of between one and 2.5, and we choose to take the roughness as

equal to the median grain diameter. Because there is little debate about the roughness, applying

the model to the flat-bed regime tests the wave-current model alone, without the effect of the

roughness method. Note that while kN was taken as equal to the sediment diameter, if the

model showed the flow to be smooth turbulent, the smooth turbulent roughness was used for zo,

such that

zo = max N 9v (5-1)

All eight data points from Green et al. (1990) were found to be smooth turbulent, while all of the

data points from Lambrakos et al. (1988) were rough turbulent.

The new model does an excellent job predicting the flat-bed field data: the predictions

are biased by a factor of 0.99±0.14 (Figure 5-1). The bias is taken as the average slope of the data

points, that is, the average of the ratio of the predicted over the observed current shear

velocities, equal to o.99 in this case, and is given as plus or minus one standard deviation, 0.14

here, corresponding to an underprediction of 1±14% on average. With this definition, the line of

the average slope can be expressed as ucpred = 0.9 9 U*C,obs, where uc is the current shear

velocity and the subscripts pred and obs refer to the predicted and observed values, respectively.

For these data, with 29 points, 20 points (69%) are within one standard deviation of the average

slope, shown by the gray area in the figure.
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Figure 5-1: Comparison between predicted and observed current shear velocities in the flat-bed regime.
The solid line denotes perfect agreement while the dashed line shows the average slope of the data points
and the gray band covers ±1 standard deviation of the average slope, corresponding to an underprediction
Of 1±14%.

As noted in section 5.1, while we choose to compare the shear velocity using the

reference velocity at 100 cmo above the bottom as the current specification, if we instead went the

other way and predicted the current velocity using the shear velocity as the specification, the

error would be of similar relative magnitude, but opposite in direction. For this flat-bed data, if

the reverse procedure is used, the current velocity at 100 cm above the bottom is overpredicted

by 4% on average, with a bias of 1.04±0.18.
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5.4 Ripple regime

In the ripple regime, the roughness is no longer a simple function of the sediment size, and

therefore when comparing the results with field data, both the wave-current model and the

roughness method are being tested. To evaluate the model and methods in the ripple regime, the

roughness was predicted with the skin-friction Shields parameter for the waves alone using the

relationships developed from laboratory data, and then the new wave-current model was used

with the measured current and wave parameters to predict the current shear velocity.

For the common method of predicting the roughness, the ripple height was predicted

with 49) and the bottom roughness was taken as 16 times the height, where Yrb = 16 is the

best-fit factor for the new model. The common method does a reasonable job predicting the field

data: the predictions are biased by a factor of 1.20o.22, so on average the predictions are 20%

larger than the observations (Figure 5-2). For the proposed method of predicting the roughness,

the energy dissipation factor was predicted with (4.10) and the new energy friction factor model

was used to calculate the bed roughness. This approach predicts the current shear velocity

somewhat better than the common method, giving a smaller and more tightly bounded bias of

1.12±0.19 (Figure 5-3).
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Figure 5-2: Comparison between predicted and observed current shear velocities in the ripple regime
using the common method to predict the roughness. The solid line denotes perfect agreement while the
dashed line shows the average slope of the data points and the gray band covers ±1 standard deviation of
the average slope, corresponding to an overprediction of 20±22%.
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Figure 5-3: Comparison between predicted and observed current shear velocities in the ripple regime
using the proposed method to predict the roughness. The solid line denotes perfect agreement while the
dashed line shows the average slope of the data points and the gray band covers ±1 standard deviation of
the average slope, corresponding to an overprediction of 12±19%.

If the current velocity at 100 cm above the bottom is predicted using the current shear

velocity as the current specification, the current velocity is underpredicted by 15% and io% on

average with biases of 0.85±0.19 and 0.90±0.19 for the common (direct) and proposed

methods, respectively, while the results above show that the current shear velocity is

overpredicted by about 15% for both methods. The reverse procedure was employed with some

of the data in this dataset using very similar expressions for the friction factor and ripple height

and using the Madsen (1994) friction factor model in Humbyrd and Madsen (2011), who found

that the current velocity 100 cm above the bottom was underpredicted by 6% and 8% for the

common and proposed methods, respectively, in good agreement with these results.
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A small part of the overprediction of the current shear velocity may be due to neglecting

the angle between waves and currents when the value was not provided. If the maximum

possible angle between the waves and currents, <P, = r/2, was assumed for these cases, the

bias using the proposed roughness method is 1.11±0.19, a reduction of 1%. Clearly, the model is

so insensitive to the angle between waves and currents that assuming they are collinear when

the angle is not provided is well justified.

Both methods overpredict the current shear velocity by more than 10% on average,

resulting from an overprediction of the bed roughness. To predict a smaller, and presumably

more correct, roughness, a larger value of the Shields parameter is required, which corresponds

to a larger near-bottom velocity. This is true for both methods: for the common method, a larger

Shields parameter predicts a smaller ripple height and by kN = YrbJ a smaller roughness; for the

proposed method, a larger Shields parameter predicts a smaller energy friction factor, which in

turn gives a larger value of Ab/kN, or a smaller roughness.

As mentioned in section 3.3, O'Donoghue et al. (2006) had success consolidating data

from periodic and random waves by using the mean of the 1/10 highest near-bottom velocities

for the random waves. Li and Amos (1999) found that the onset of sheet flow under combined

wave-current flow in the field was well represented by the expression for waves alone (developed

from mostly laboratory data) if the significant near-bottom velocity was used for the wave alone

data and the 1/10 velocity was used for the combined wave-current data. Drake and Cacchione

(1992) compared the predictions of a wave-current model using both the significant and 1/10

near-bottom velocities to describe their field data and found that while the current velocity

profile was well predicted during non-storm conditions using either velocity, using the 1/1o

near-bottom velocity gave better predictions of the current velocity and sediment response

during storm periods.

In light of this evidence that the 1/10 near-bottom velocity may better characterize wave-

current field flows, we also tested the methods using this larger velocity in the Shields parameter
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to predict the roughness. Assuming the waves are Rayleigh distributed, the 1/10 velocity is

related to the rms velocity by Ub,1/10 = 1.8Ub,rms, whereas the significant velocity is related by

Ub,sig = V2Ub,rms. Using the 1/10 velocity somewhat improves the predictions of both methods:

the common method overpredicts the velocities by 17±20% and the proposed method

overpredicts the velocities by 8±17% (Figure 5-4 and Figure 5-5, respectively), an improvement

of about 3% in both cases. Note that while the 1/10 near-bottom velocity was used in the

roughness prediction, the wave-current model requires the rms velocity.
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Figure 5-4: Comparison between predicted and observed current shear velocities in the ripple regime
using the common method to predict the roughness with the 1/10 near-bottom velocity. The solid line
denotes perfect agreement while the dashed line shows the average slope of the data points and the gray
band covers ±1 standard deviation of the average slope, corresponding to an overprediction of 17±20%.
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using the proposed method to predict the roughness with the 1/10 near-bottom velocity. The solid line
denotes perfect agreement while the dashed line shows the average slope of the data points and the gray
band covers ±1 standard deviation of the average slope, corresponding to an overprediction of 8±17%.

Although the 1/10 near-bottom velocity was used for the field data with success in Figure

5-4 and Figure 5-5, the roughness was still calculated with the equations developed using the

significant near-bottom velocity for the random wave laboratory data. Clearly, to be consistent

the same near-bottom velocity should be used in both cases, but the laboratory relationships

were tested during development with the 1/10 velocity and gave worse fits. Also, as mentioned

previously, there are so few data under random waves relative to periodic waves that the fits

found using the significant and 1/1o velocity are quite similar. While the 1/10 velocity gives

better results for this limited set of field data, much more field data are required before any

conclusion can be made regarding the appropriate near-bottom velocity for these flows.
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5.5 Sheet flow regime

As in the ripple regime, the roughness in the sheet flow regime is not easily characterized, so the

accuracy of both the roughness method and the theoretical model are being tested

simultaneously when the results are compared with field data. To evaluate the model and

methods in the sheet flow regime, the roughness was predicted with the skin-friction Shields

parameter for the waves alone using the relationships developed from laboratory data, and then

the new wave-current model was used with the measured current and wave parameters to

predict the current shear velocity.

For the proposed method of predicting the roughness, the energy dissipation factor was

predicted with (4.10) and the new energy friction factor model was used to back-calculate the

bed roughness. This approach does an excellent job predicting the current shear velocity, giving

a bias of 1.05±0.17 (Figure 5-6). If the reverse procedure is used, such that current shear velocity

is used to specify the current, the current velocity at 100 cm above the bottom is underpredicted

by 3% on average, with a bias of 0.97±0.18.

Since there are only 11 data points in the sheet flow regime, it is difficult to conclude that

the proposed roughness method and the new boundary layer model work well in this regime.

However, considering that the friction factor relationship was developed with a very small

number of laboratory data points under periodic waves with very low density sediment, it is

impressive that applying the relationship to combined wave-current flows in the field gives a

bias of only 5% for the proposed method.
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Figure 5-6: Comparison between predicted and observed current shear velocities in the sheet flow regime
using the proposed method to predict the roughness. The solid line denotes perfect agreement while the
dashed line shows the average slope of the data points and the gray band covers ±1 standard deviation of
the average slope, corresponding to an overprediction Of 5±17%.

For the common method, the roughness was predicted with (4.8) where ysf = 4 is the

best-fit factor for the new model based on the limited laboratory data. The common method

with yf, = 4 does a reasonably good job predicting the field data: the predictions are biased by a

factor of o.89*0.14 (Figure 5-7).
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Figure 5-7: Comparison between predicted and observed current shear velocities in the sheet flow regime
using the common method with yf = 4 to predict the roughness. The solid line denotes perfect agreement
while the dashed line shows the average slope of the data points and the gray band covers i1 standard
deviation of the average slope, corresponding to an underprediction Of 11±14*/.

Although the two roughness methods were developed with the same set of laboratory

data, where the data was used to get the best-fit energy friction factor relationship for the

proposed method and to find the best-fit yf, value for the common method, the common

method performs much worse when applied to the field data. In the proposed method, starting

from the friction factor, the roughness is found from 0', S.,, and Abm, whereas in the direct

method, the roughness is simply equal to ysf V)'d. Because the direct method has such a

simplified form, the constant yst is likely not a constant at all, but a function of s, 0>, and v, all of

which are accounted for in the proposed method. Therefore, the increased error in the direct

method stems from assuming the ysf value found for laboratory data with very low density
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sediment (s-1), ysf = 4, was universally applicable. One solution to this dilemma would be to

find an expression for the roughness which depends on i/' and S., as does the roughness

relationship in the ripple regime.

If one insists on using the form kN = ysf ip'd, then it may be possible to find a value of Ysf

which is at least more applicable to quartz sediment. While other authors have found similarly

small values for ysf, these were also based on laboratory data with light sediment, while Madsen

et al. (1993) found ysf = 15 using some of the wave-current field data included in this data set.

By fitting the wave-current sheet flow field data in this data set, the least bias is found with

Ysj = 14 when $i is used, which is a factor of 3.5 larger than the laboratory value. Using this

data's best-fit factor of ysf = 14 naturally fits the data nearly perfectly, with no bias and a

standard deviation of o.16 (Figure 5-8). While the best-fit factor should be determined from

energy dissipation or shear stress measurements in the laboratory, this example at least shows

that a single value of ysf is able to represent all of the sheet flow field data.

The wide variation in ysf between the laboratory and field data suggests that the factor is

not a constant at all, but depends on s and possibly o> and v. While it may be possible to find a

better direct relationship for the roughness in the sheet flow regime, the difficulty with ysf gives

strong support for using the proposed method with the energy friction factor.
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Figure 5-8: Comparison between predicted and observed current shear velocities in the sheet flow regime
using the common method with yg = 14 to predict the roughness. The solid line denotes perfect
agreement while the dashed line shows the average slope of the data points and the gray band covers + 1
standard deviation of the average slope, corresponding to an overprediction of o±16%.

As explained in the ripple regime results, there is some evidence that the appropriate

near-bottom velocity for field flows may be the 1/10o velocity, and not the significant velocity, as

was used in the previous comparison. As with the ripple data, the sheet flow data was also tested

with the 1/10 velocity, even though the sheet flow results using the significant velocity were

already quite good. Using the 1/1o velocity improves the predictions: the proposed method

overpredicts the velocities by 1±17% (Figure 5-9), an improvement of about 4%. Of course, as

there are only 11 data points in the sheet flow regime, general conclusions concerning the

appropriate velocity are impossible to make.
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Figure 5-9: Comparison between predicted and observed current shear velocities in the sheet flow regime
using the proposed method to predict the roughness with the 1/10 near-bottom velocity. The solid line
denotes perfect agreement while the dashed line shows the average slope of the data points and the gray
band covers ±1 standard deviation of the average slope, corresponding to an overprediction of 1±17%.
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Chapter 6

Conclusion

We have developed a turbulent wave-current boundary layer model, in line with the Grant-

Madsen type models, which utilizes a three layer time-invariant eddy viscosity structure and

consistently applies all three layers to both the current and wave problems. We have also

proposed a new method of predicting movable bed roughness in the ripple and sheet flow

regimes which, unlike the common method, does not include any model dependent factors and

is based on the energy dissipation factor, which can be directly calculated from laboratory

measurements. This thesis outlined the derivation of the new wave-current boundary layer

theory and the development of the common and proposed empirical roughness methods with

laboratory data, and described the initial testing of the theory and methods with combined

wave-current field data.

The new three layer wave-current boundary layer theory employs a linear-constant-

linear continuous eddy viscosity model, and this same model is used in both the wave and

current solutions. The previous Grant-Madsen models used a two layer eddy viscosity structure

for the current problem, but inconsistently assumed a linear model for the wave problem. Since

solving wave-current problems with the three layer model is rather cumbersome, a simplified

two layer model was developed for the current velocity profile. Because the two layer current

profile is composed of the outer layers of the three layer profile and the wave model still uses the

full three layer model, the results for the simplified two layer profile are equivalent except very

near the transition level, which is of negligible importance (Figure 2-3). The simplified two layer
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profile is effectively based on a two layer discontinuous eddy viscosity model, like the original

Grant-Madsen formulation, and produces a similar current velocity profile with a kink at the

transition. The solution procedure is thus similar to the other Grant-Madsen models, but with

the wave parameters, such as the friction factor, wave boundary layer thickness, and phase shift,

given by the new model. For ease of computation, explicit expressions have been provided for

these parameters over a range of the relative roughness. The full coupling of the wave and

current problems in this model can be seen in the presence of the parameter a = U*c/U*m in all

of the wave parameters, whereas the old models only depended on the relative roughness.

The current velocity profiles predicted by the model compare well with numerical results

and with experiments over fixed flat beds. The comparison with the numerical results of Davies

et al. (1988) shows that a major weakness of this model, like the previous Grant-Madsen

models, is its insensitivity to the wave-current angle (Figure 2-17). The predicted current

velocity profiles and the experimental data of Dohmen-Janssen (1999) shows excellent

agreement (Figure 2-18). The wave and energy friction factors predicted by the new theory are

very similar to those predicted by the more complex time-varying model of Gonzalez-Rodriguez

(2009).

From analyzing an extensive set of laboratory data, we found that both the non-

dimensional ripple height and wave energy dissipation factor are well represented as functions

of the skin-friction Shields parameter, Vp', and the fluid-sediment parameter, S,. The data from

periodic and random waves correlate well when the significant near-bottom velocity is used in

the skin-friction Shields parameter for the random waves. The best-fit exponential equations

(3.14) and (3.16) represent the data well: 8o% of the non-dimensional ripple height data lie

within ±50% of the best-fit line and 72% of the energy dissipation factor data lie within ±25% of

the best-fit line. With the roughness taken as kN = Yrb7} for the common method, the best-fit Yrb

factor is found, using the energy dissipation data, to be equal to 16 and 2 for the new and
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Jonsson (1966) friction factor models, respectively; the wide variability in this factor is a major

drawback of this method.

For the sheet flow regime, laboratory friction factor data was used to develop an

expression for the energy friction factor as a function of V' and S, as in the ripple regime. Due to

the scatter in the data, a simple linear fit (3.19) was found for the data, with 39% of the data

within ±25% of the best-fit line. With the roughness taken as kN = YSf O'd for the common

method, the best-fit ysf factor is found, using the laboratory friction factor data, to be equal to 4

for the new model. Unlike in the ripple regime, due to the form of the roughness expression, the

Ysf factor may not be a constant but instead is expected to vary with s = ps/p and W, and as a

result the best-fit factor found for the nylon and acrylic laboratory data with s-1 is expected to

be too small to be applicable to quartz sediment. By directly fitting the energy dissipation data,

the proposed method avoids this issue entirely.

The proposed roughness method for the ripple and sheet flow regimes predicts the

energy friction factor using the empirical expressions, from which the roughness can be back-

calculated using any friction factor model. The proposed method does not require a model-

dependent factor, and comes directly from the same friction factor data which is used to find

those factors for the common method. Also, the energy friction factor method provides a

continuous transition between the ripple and sheet flow regimes.

We showed that the variation of ripple height in the field follows a different trend than in

the laboratory, even for random waves. However, we chose not to include field data on ripple

dimensions because energy dissipation, used to find the model-dependent Yrb-value in the

common method and at the core of the proposed method, can only be reliably measured in the

lab. However, while the appropriateness of applying our laboratory-developed equations to field

conditions is questionable, we have shown that they provide reasonable predictions of the

current shear velocity in combined wave-current flows in the field.
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The roughness methods yield acceptable accuracy when applied to combined wave-

current field data using the new three layer wave-current theory. In the lower flat-bed regime,

where the roughness is simply equal to the sediment diameter, the model underpredicted the

current shear velocity by only 1% on average, with a bias of 0.99±0.14. Because the roughness

method is well understood in this regime, these results help to verify the accuracy of the new

wave-current theory.

In the ripple regime, when the significant near-bottom orbital velocity is used in the

skin-friction Shields parameter to predict the roughness of the field flows, the common and

proposed methods overpredict the current shear velocity by 20% and 12% on average, with

biases of 1.20±0.22 and 1.12±0.19, respectively. Better predictions are obtained when the 1/10

near-bottom orbital velocity is used: the overprediction is reduced to 17% and 8%, and the

standard deviations are reduced such that the biases become 1.17±0.20 and 1.08±0.17,

respectively. More field data will need to be considered before the appropriate representative

near-bottom orbital velocity can be determined.

In the sheet flow regime, using the significant near-bottom orbital velocity in the skin-

friction Shields parameter, the proposed method overpredicts the current shear velocity by 5%,

with a bias of 1.05±0.17. The common method, however, underpredicts the shear velocity by

11%, with a bias of 0.89±0.14, when ysj = 4 is used, which is the best-fit value for the nylon and

acrylic laboratory data. For the field data with quartz sediment, a value of ysf = 14 is needed to

give the smallest bias. This supports the idea that the ysf value, due to the form of the roughness

expression, is not in fact a constant, but depends on the sediment density and possibly the wave

frequency. Laboratory data on the friction factor under sheet flow with quartz sediment is

necessary to prove this. Using the 1/10 near-bottom velocity with the proposed method

improves the predictions in the sheet flow regime; the bias is reduced to 1.01±0.17, for an

improvement of 4%. Again, these results imply that the larger near-bottom orbital velocity

should be used to predict roughness in the field, but more field data is needed for confirmation.
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Appendix

Mean suspended sediment
concentration profile approximation

In section 2.1.1, it was shown that the three layer current velocity profile, found using the three

layer eddy viscosity model, can be reduced to an approximate two layer profile that is equivalent

to the three layer profile except very near the transition level. The mean suspended sediment

concentration profile, which also depends on the eddy viscosity model, can be approximated by

a two layer profile with the same transition level as the velocity profile.

The governing equation for the mean suspended sediment concentration, e, is

vt + ws0 = 0 (A.1)

where w50 is the sediment fall velocity. The concentration profile is governed by a reference

concentration, CR, at a level ZR,

= CR at Z = ZR (A.2)

The eddy viscosity is the same three layer eddy viscosity model given in (2.7),

KU*mZ, ZO : Z < 4t

Vt = Ku*mst: 6t Z < t/a (A-3)
KUcZ, Z > St/c

Using this eddy viscosity model in the governing equation for the mean suspended sediment

concentration (A.1), the general equation for the concentration at all three levels is given by

155



Wso -

KU.,m

- c
z -,az

St-,
as

cczaz ,

zo < z < St

St < z < St/ac (A.4)

z > St/ca

For the bottom layer, where the eddy viscosity is linear, the solution to (A.4) is

WSO
U=Clz 1CU~m (A.5)

The constant C1 is found with the reference concentration defined by (A.2), which gives for the

profile in the bottom layer

WSO

Z \ KU*m
C = R 1) (A.6)

Then for the intermediate layer, with a constant eddy viscosity, the general solution to (A.4) is

e = C2 exp - - (A.7)

The constant C2 is found by requiring the concentration to be continuous at z = St, which gives

WSO

\ZR
exp-wso z

I-KUm Ut

(A.8)

For the upper layer, the eddy viscosity is again linear, and the general solution to (A.4) is

WSO

E = C3 a u (A.9)

The constant C3 is found by requiring the concentration to be continuous at z = St/a, which

gives

U = C

WSO WSO
KU*ma ( t Um

kZR)
exp FICU*m

Combined, the full concentration profile is
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,so Z < z
ZR

- WSO

() z ,exp s St z St/a (A.ii)
CR \ZR KU*M (St

( (Se)a KUM exp { .o(i} z St,/c

W SO 
W S 50S

6)K*ma kR KU*m

As was done for the current velocity profile, the three layer concentration profile can be

approximated by a two layer profile composed of the top and bottom layers of the three layer

profile. The transition level is found by equating the top and bottom velocity profiles at the

transition level, z = SeW, which gives

6cw = Sa (i (A.12)

This transition level is exactly the same as was found for the current velocity profile. Therefore,

the same simplified two layer discontinuous eddy viscosity model, (2.24), composed of the top

and bottom layers of the three layer model, can also be used for the concentration profile.
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