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In this work, inspired by the study of semidefinite programming for block-diagonalizing matrix *-algebras,
we propose an algorithm that can find the algebraic structure of decoherence-free subspaces (DFS’s) for a given
noisy quantum channel. We prove that this algorithm will work for all cases with probability 1, and it is more
efficient than the algorithm proposed by J. A. Holbrook, D. W. Kribs, and R. Laflamme, [Quantum. Inf. Proc. 80,
381 (2003)]. In fact, our results reveal that this previous algorithm only works for special cases. As an application,
we discuss how this method can be applied to increase the efficiency of an optimization procedure for finding an
approximate DFS.
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I. INTRODUCTION

Decoherence and other noises cause errors in quantum-
information processing. Several methods have been proposed
to significantly reduce these errors [1], such as quantum
error correcting codes [2–8], decoherence-free (noiseless)
subsystems (DFS’s) [9–19], and dynamical decoupling (DD)
[20–26]. However, dynamical decoupling controls often do
not satisfy the strict experimental requirements, and quantum
error correcting codes, while possibly protecting against any
error, require a large resource overhead. Decoherence-free
subspaces, or noiseless subsystems, can reduce overhead since
they do not require detecting and correcting errors but are
difficult to identify and use.

In terms of the (Krauss) operator-sum representation, the
noisy quantum evolution can be fully characterized by a set
of operators that generate a noise algebra A. The structure of
a DFS can be recovered by studying the algebraic structure
of A, or its commutant algebra A′, both of which are special
examples of a so-called C∗-algebra, or matrix *-algebra [27].
Although DFS’s can be obtained analytically for certain noisy
systems, this is not possible in general. In [28] a numerical
algorithm is proposed in which the noise algebra A is used
to calculate the commutant algebra A′ and decompose it into
the algebraic form which gives the structure of all DFS’s if
any exist. However, we find that this algorithm is incomplete
although useful for the special solutions of the basis of A′ as
chosen in [28]. In practice, in most of the cases, computers
will pick up other solutions in which their algorithm does not
give the complete decomposition. Because of this we were
motivated to find a new algorithm that provides a general
algorithm which can be explicitly implemented to give the
required decomposition.

In fact, since A and A′ are special examples of a matrix
*-algebra, we can try to solve the more general problem of
how to decompose an arbitrary matrix *-algebra. We find that
this problem is equivalent to that of simultaneously block-
diagonalizing a matrix *-algebra, and this has been well studied
in research on semidefinite programming [29,30]. In particular,
in [29], a numerical method was proposed to find the finest
block diagonalization of the algebra generated by real sym-

metric matrices. Their method consists of two steps. First, de-
compose the algebra into simple components, and second, de-
compose each simple component into irreducible components
(the details of this procedure will be clarified in the following).
In this work, we will show that such a two-step algorithm can
also be applied to the algebra generated by Hermitian matrices,
such as A and A′. We will also give analysis and proofs to
show the validity of this algorithm. As applications, we apply
our new algorithm to the collective-noise model in [28], and
compare the numerical results with the algorithm proposed
there. We find that our improved algorithm is not only valid in
general, but is also more efficient: It requires fewer conditional
loops, and requires only A or A′ alone, rather than both [28].

The paper is organized as follows: In Sec. II, we introduce
the matrix *-algebra A generated by noise operators for a
given quantum channel, and the Wedderburn decomposition
for a DFS. In Sec. III, we present an algorithm to transform A
into the Wedderburn form using two steps. Finally in Sec. IV,
for the collective-noise model, we numerically implement and
compare our algorithm with the one proposed in [28]. We will
also briefly discuss how our algorithm can be used to find a
good initial point for the optimization process in searching for
an approximate DFS.

II. ALGEBRAIC STRUCTURE OF A NOISE ALGEBRA

A. Noise algebra for a noisy quantum channel

Let ρ be the density operator of an n-dimensional quantum
system with Hilbert space H. In real physical systems, the
evolution of ρ suffers from noise due to its interaction with
the environment. Such noisy evolution can be represented as a
quantum channel E : ρ → E(ρ), where E is characterized by a
set of operators {Ak}, j = 1, . . . ,p:

E(ρ) =
p∑

k=1

AkρA
†
k = p0ρ +

p∑
k=2

AkρA
†
k,

∑
k

A
†
kAk = I.

This is often referred to as the Krauss operator-sum represen-
tation [31], where {Ak} can include a Hamiltonian as well as
irreversible coupling to a Markovian bath. In the following,
we will assume the Hamiltonian H = 0 and only focus on the
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noise effect on ρ. In this case the {Ak} contain information
purely about the noise, and are known as noise operators. For
many channels, we have A1 = √

p0I, where p0 represents the
probability that no error occurs. The noisy channel is referred
to as unital if E(I) = ∑

k AkA
†
k = I. Define the noise algebra

A to be the C∗-algebra, or the matrix *-algebra generated
by {Ak}. The definition of a matrix *-algebra simply implies
that A is closed under matrix summation, multiplication, and
†-operation. The reason why we introduce the concept of a
matrix *-algebra is that it can be decomposed into a nice
algebraic structure, with details in the following.

B. Wedderburn decomposition for a DFS

For a general ρ, E(ρ) �= ρ, and thus the quantum infor-
mation stored in ρ will not be preserved by the noise. It
may be possible, however, to find a subspace or subsystem
in some space H1 ∈ H such that for ρ ∈ H1, E(ρ) = ρ. If so
H1 is called a decoherence-free subspace or subsystem (DFS).
Notice that for a unital channel E , if [ρ,Ak] = 0, for all k,
then E(ρ) = ρ. Hence to locate a DFS it is enough to study
the commutant of A, which is defined to be

A′ = {B|[B,A] = 0, A ∈ A},
and is also a matrix *-algebra. Applying the Wedderburn-Artin
theorem [27,32] to a special case, it can be shown that
every matrix *-algebra with an identity has the following
fundamental structure decomposition [32,33]:

Theorem 1 (Wedderburn decomposition). LetA ⊆ Cn×n be
a matrix *-algebra with an identity. Then there exists a unitary
transformation U such that U †AU has a block-diagonal
structure:

U †AU = diag(N1,N2, . . . ,N�),

where eachNi corresponds to a simple subalgebra component.
Moreover, Ni has the following block-diagonal structure:

Ni = {
diag(Mi, . . . ,Mi),Mi ∈ Mni

} = Mni
⊗ Imi

, (1)

where Mni
denotes the ni × ni matrix *-algebra over the

complex field C.
Here Ni = Mni

⊗ Imi
is an algebra different from Mni

⊕
· · · ⊕ Mni

. Applying Theorem 1 to the conjugates A and A′,
we can find some unitary U such that

U †AU =
�⊕
i

Ni =
�⊕
i

Mni
⊗ Imi

, (2a)

U †A′U =
�⊕
i

N ′
i =

�⊕
i

Ini
⊗ Mmi

. (2b)

Mathematically, each Ni , i = 1, . . . , �, corresponds to a
simple component of A, while the subblock Mi at each
diagonal position corresponds to an irreducible component.

Assume that there exists some mi > 1, and call this mk .
We can encode an arbitrary mk-dimensional state ρ̄ into ρ =
Ink

⊗ ρ̄ ⊕ 0res ∈ A′ such that E(ρ) = ρ, where 0res represents
the zero density operator on the rest of the Hilbert space
with respect to Ini

⊗ ρ̄. Hence, if we find the Wedderburn
decomposition for A or A′, then each Ni with mi > 1
corresponds to a decoherence-free subsystem (which reduces
to a decoherence-free subspace if ni = 1). Moreover, since A

andA′ obey the commutant relation given in Eq. (2), we do not
need both the decompositions for A and A′; one will suffice.

III. NUMERICAL ALGORITHM TO OBTAIN THE
WEDDERBURN DECOMPOSITION

To find the Wedderburn decomposition for a quantum
channel given by a group of noise operators {Ak}, it is sufficient
to find the unitary transform U such that A and A′ are
simultaneously block diagonalized into the decomposition in
Eq. (2). An algorithm to do this for real symmetric Ak is
given in [29]. Here we construct an equivalent algorithm that
we prove works for Hermitian Ak . This is sufficient for our
purposes, because while the noise operators Ak need not be
Hermitian, we can always replace a non-Hermitian operator
Aj with the two Hermitian operators A

(1)
j = Aj + A

†
j and

A
(2)
j = i(Aj − A

†
j ) and still have a generating set for the

algebra A. For simplicity we simply assume that all the Ak are
Hermitian and form a basis for A. The advantage of choosing
an Hermitian basis will be clear in the following analysis.

The algorithm breaks into two steps:
Algorithm 1 (Wedderburn decomposition). Let A ⊆ Cn×n

be a matrix *-algebra with an identity, and A a “generic”
element of A (“generic” is defined below).

Step 1. Find the unitary transform V such that

V †AV = diag(C1,C2, . . . ,C�), (3)

where eachCi corresponds to some representation of the simple
component Ni in (2).

Step 2. Find the local unitary transform P such that
within each Ci , P †V †AV P is equal to Ni = Mni

⊗ Imi
. Then

U ≡ V P is the required unitary transform for the Wedderburn
decomposition.

To implement the two steps above one picks a single op-
erator A ∈ A, and diagonalizes A to find the required decom-
positions. Due to the decomposition in Eq. (2), we know that
there exists a unitary transformation V̄ such that for A ∈ A,

V̄ †AV̄ =
�⊕
i

(
Imi

⊗ Di

)
, (4)

where the Di are diagonal matrices whose elements are the
eigenvalues of A. To obtain the spaces spanned by the simple
algebras from this eigenvalue decomposition, we need to pick
an A such that the D1, . . . ,D� do not share any eigenvalues, and
the eigenvalues in each Di are distinct. Note that A will have
this property if it has the maximum possible number of distinct
eigenvalues. It can be shown [29] that the set of operators
that have this maximum number of distinct eigenvalues is
topologically dense in A, and so we will refer to such A

as being generic. If we randomly choose A from A using
a suitable measure, it will be generic with probability 1. A
simple way to generate a generic A is to choose a random
vector α = (α1, . . . ,αk) and generate A = ∑k

j=1 αjAj .
After picking a generic A, we diagonalize A and obtain

the distinct eigenvalues, λj , and their multiplicities, kj , j =
1, . . . ,q. We then group these eigenvalues and write down the
eigenspace decomposition according to their multiplicities in
a nondecreasing order:

V †AV = diag
(
λ1Ik1 ,λ2Ik2 , . . . ,λqIkq

)
(5)
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with V = (V1,V2, . . . ,Vq), where each Vj is composed of the
eigenvectors corresponding to the eigenspace of λj . We can
further define a new division of V : V = (K (1),K (2), . . . ,K (s)),
where each K (r) is the union of all eigenspaces Vj with the
same multiplicity pr :

K (r) =
⊕
kj =pr

Vj ,

where p1 < p2 < · · · < ps are the distinct multiplicities of the
eigenvalue αj ’s.

By Theorem 1, each Vj will lie in some simple component
Ni , i = 1, . . . ,�. Due to the form of Ni = Mni

⊗ Imi
, we

immediately know that only Vj ’s within the same K (r) can
belong to the sameNi , and Vj ’s in different K (r)’s must belong
to different Ni’s. Hence, each K (r) must either be some Ni , or
a direct sum of a few Ni’s, in which case K (r) can be further
decomposed. In either case A is block diagonalized over the
division V = (K (1),K (2), . . . ,K (s)).

There is a simple method to check whether K (r) can be
further decomposed: We choose another randomly generated
Ā = ∑k

j=1 βjAj ∈ A. Since α and β are independent, with
probability 1, A and Ā will generate the whole algebra A. As
we have pointed out, both A and Ā are block diagonalized
over the division (K (1),K (2), . . . ,K (s)). If there exist Vj and
Vj ′ within some K (r) such that V

†
j ĀVj ′ = 0, then Ā can be

further block diagonalized on K (r) over the division between
Vj and Vj ′ . In this way, by checking the value of V

†
j ĀVj ′

between all different j and j ′ on each K (r), we can identify the
structure of each Ni in each K (r), and finally make both A and
Ā simultaneously block diagonalized over ⊕iNi . Since A and
Ā will generate A with probability 1, we can claim that the
whole algebra A has been simultaneously block diagonalized
over ⊕iNi . However, we should notice that within each
subblock Ni , A may not be the same as Mni

⊗ Imi
, but some

representation of it, so we will instead denote the subblock
by Ci . Thus we have obtained a V that transforms A into the
form of Eq. (3). In particular this V has already transformed
the generic A into the Wedderburn form:

V †AV =
�⊕
i

(
Di ⊗ Imi

)
, (6)

where Di is a diagonal matrix with all distinct eigenvalues of
A on each Ci .

Now we note that V †ĀV is usually not in the form of Ni

on Ci . In the next step, we are looking for a further unitary
transform that leaves V †AV invariant but transforms V †ĀV

into the form of Ni on each Ci . Without loss of generality, let
us focus on a simple component Ci which is composed of a
few eigenspaces Vj of A:

Ci = V
(i)

1 ⊕ V
(i)

2 ⊕ · · · ⊕ V (i)
mi

.

If according to the division ⊕iCi we define a local unitary
transform P to be

P ≡ diag(P (1),P (1), . . . ,P (�)), (7)

P (i) ≡ diag
(
P

(i)
1 ,P

(i)
2 , . . . ,P (i)

mi

)
, (8)

where P
(i)
j is a unitary matrix on the subspace V

(i)
j , then such

P will leave V †ĀV invariant. Moreover, the following result
is proved in Proposition 3.7 in [29]:

Theorem 2. For A and V satisfying (6), there exists a
local unitary transform P as in (7) such that P †V †AV P =
⊕i(Mni

⊗ Imi
).

Hence, it is possible to construct a local unitary Q (which
may not be equal to P ) in the form of Eq. (7) such that
Q̄†V †AV Q̄ is in the Wedderburn form. Before we design
the required Q, we would like to find out what the matrix
of V †ĀV looks like on Ci after the transform V . Notice that
since Theorem 2 only claims the existence of such P , the local
transform Q we finally construct may look either the same as
or different from P .

A matrix is called a scalar matrix if it is equal to a
scalar times an identity matrix. On each Ci , as a corollary of
Theorem 2, we have

Āj,j ′ ≡ (V †ĀV )(i)
j,j ′ = V

(i)†
j ĀV

(i)
j ′ = kj,j ′P

(i)
j P

(i)†
j ′ . (9)

For j = j ′, Āj,j ′ is equal to kj,jImi
[that is, the diagonal

subblocks of (V †ĀV )(i) are already in scalar-matrix form].
For j �= j ′ the off-diagonal subblocks Āj,j ′ may or may not
be in this form. Our next goal is to find a local transform
Q in the form of (7) such that (Q(i)†(V †ĀV )(i)Q(i))j,j ′ are in
scalar-matrix form for all j and j ′.

On each Ci , we can sequentially construct each Q
(i)
j

in Q(i) ≡ diag(Q(i)
1 ,Q

(i)
2 , . . . ,Q(i)

mi
). First, choose Q

(i)
1 = Imi

.
Then for j � 2 define

Q̂
(i)
j = (

V
(i)†

1 ĀV
(i)
j

)−1
Q

(i)
1 , (10a)

Q
(i)
j = 1

||qj ||Q̂
(i)
j , (10b)

where qj is the first row of Q̂
(i)
j . We now prove that this Q(i)

is the required unitary transform.
Theorem 3. Q(i)

j as defined in (10) are unitary matrices, and

Q(i) ≡ diag(Q(i)
1 ,Q

(i)
2 , . . . ,Q(i)

mi
) is the unitary transform such

that Q
(i)†

j (V †ĀV )(i)
j,j ′Q

(i)
j ′ are scalar matrices.

Proof. To show that Q
(i)
j is a unitary matrix, it is sufficient

to show Q̂
(i)
j Q̂

(i)†
j is in scalar-matrix form. For j � 2, from (9),

we have

Q̂
(i)
j Q̂

(i)†
j = (

k1,jP
(i)
1 P

(i)†
j

)−1(
k∗

1,jP
(i)
j P

(i)†
1

)−1

= |k1,j |−2(P (i)
j P

(i)†
1 P

(i)
1 P

(i)†
j

)−1 = |k1,j |−2Imi
.

Hence, after normalization, Q
(i)
j becomes a unitary matrix. In

addition,

Q
(i)†

j (V †ĀV )(i)
j,j ′Q

(i)
j ′

= Q
(i)†

j kj,j ′P
(i)
j P

(i)†
j ′ Q

(i)
j ′

= kj,j ′/(k∗
1,j k1,j ′ )P (i)

1 P
(i)†
j P

(i)
j P

(i)†
j ′ P

(i)
j ′ P

(i)†
1

= kj,j ′/(k∗
1,j k1,j ′ )Imi

,

and so all subblocks are in the scalar-matrix form. �
Numerically, following Eq. (10), we can construct the local

unitary transform Q in the form of Eq. (7) that leaves A

invariant but transforms Ā into the form ⊕i(Mni
⊗ Imi

). Since
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TABLE I. Algorithm to find U in the decomposition Eq. (2).

Step 1: (a) from A, pick two generic matrices A and Ā

(b) diagonalize A and Ā to get V as in Eq. (5)
(c) find the structure of Ni in K (r), getting Eq. (6)

Step 2: (d) build the local transform Q using Eq. (10)
(e) U = V Q is the required unitary in Eq. (2)

A is generated by A and Ā, we can claim that the whole
algebraA is in the Wedderburn form after the unitary transform
U ≡ V Q. We summarize the full algorithm in Table I.

When implementing the algorithm for a given noisy
channel, we can calculate the Wedderburn form for either A or
A′, depending on which one is easier to derive. Notice that for
special cases when Ni = Mk ⊗ I1, or Ni = Ik , after Step 1
in Algorithm 1, Ci will already be the same as Ni . For such
cases, there is no need to implement Step 2, and we can simply
choose Q(i) = I on Ni .

IV. APPLICATIONS

A. Finding the DFS structure of a channel

The primary application for the above algorithm is deriving
the DFS structure for a given noisy quantum channel, and
finding the corresponding unitary transform U in Eq. (2). First
of all, let us reinvestigate the collective noise model calculated
in [28]. For a system with nq qubits, we say a quantum channel
E is under collective noise if

E(ρ) = AxρA†
x + AyρA†

y + AzρA†
z,

Ak = 1√
3
eiSk , k = x,y,z,

where

Sx =
nq∑
i=1

Xi, Sy =
nq∑
i=1

Yi, Sz =
nq∑
i=1

Zi

are sums of local Pauli operators on each qubit. For such a
noisy channel, we can define the algebra generated by the
noise operators by

A ≡ span{Ax,Ay,Az} = span{Sx,Sy,Sz}
= span{Sx,Sy} = span{Sy,Sz} = span{Sx,Sz}.

We would like to find the Wedderburn decomposition of A
or A′ in the form of Eq. (2). Notice that since the collective
noise channel is a special type of noisy channel, we can actually
derive the the fundamental decomposition by using Young

diagrams for the addition of angular momentum for any value
of nq [34]. For example, for nq = 3, A = (M2 ⊗ I2) ⊕ M4;
for nq = 4, A = I2 ⊕ (M3 ⊗ I3) ⊕ M5. However, theory
does not give a specific basis for the operators A, and must
identify one numerically. In the following, we shall apply both
the algorithm suggested in [28] and the above Algorithm 1 to
the collective noise channel and compare the numerical results.

In the algorithm suggested by [28], we need to first calculate
each Bj inA′ = span{B1, . . . ,Br}, where {Bj } form a basis for
A′. Next, based on the operators {Bj }, j = 1, . . . ,r , we find a
group of so-called minimal-reducing projectors Pj , and then
block-diagonalize A′ into the form diag(C1,C2, . . . ,C�), where
Ci is a representation of Ni ≡ Mni

⊗ Imi
. Then after reshuf-

fling the order of basis vectors, all the diagonal subblocks are
transformed into the scalar-matrix form. It is then claimed
in [28] that the whole algebra A′ is in the form of Eq. (2).

If we compare the algorithm in [28] with the algorithm in
Table I, we find that the former achieves Step 1, but Step 2 is
missing. Step 2 turns out to be necessary for most cases, since
the solution {Bj } as the set of basis A′ is not unique. It is true
that for the {Bj } chosen in [28], Step 1 and reshuffling of basis
vectors are enough to transform A′ into the form of (2), but
such choice of {Bj } is very special. A different solution for the
{Bj } will be obtained if it is derived numerically by solving
the system of linear equations [Bj ,Ak] = 0, k = 1, . . . ,p.

As an example of the necessity of step 2, consider
for nq = 4, and A′ = M2 ⊕ (M3 ⊗ I3) ⊕ I5. Following the
algorithm in [28] and using MATLAB, we derive a group of
14 orthonormal basis matrices in A′ ({Bj }, j = 1, . . . ,14)
which are different from those in [28]. Then we find the
corresponding minimal-reducing projectors Pm, m = 1, . . . ,6,
in which rank(P1) = rank(P2) = 1 corresponding to the N1 =
M2 subspace, rank(P6) = 5 corresponding to the N3 = I5

subspace, and rank(Pi) = 3, i = 3, 4, 5, corresponding to the
N2 = M3 ⊗ I3 subspace. Hence, {Pm} induces a unitary
transform V such that V †A′V is in the form diag(C1,C2,C3),
where C1 = N1, C3 = N3, and C2 is some representation of
N2. After reshuffling the basis vectors we can make the three
diagonal subblocks of V †BjV on C2 in the scalar-matrix form.

Specifically, if we still denote V †B1V as B1, then after
reshuffling, on C2 we have

B1 =

⎛
⎜⎝

−0.167I3 B1,2 B1,3

B
†
1,2 0.233I3 B2,3

B
†
1,3 B

†
2,3 0.308I3

⎞
⎟⎠,

where

B1,2 =

⎛
⎜⎝

−0.180 + 0.089i −0.120 − 0.242i −0.042 + 0.063i

0.097 + 0.169i 0.103 − 0.001i −0.259 + 0.059i

0.193 − 0.060i −0.100 − 0.159i −0.051 − 0.200i

⎞
⎟⎠,

B1,3 =

⎛
⎜⎝

−0.074 + 0.136i 0.055 + 0.047i 0.072 + 0.055i

−0.003 + 0.087i −0.094 + 0.080i −0.074 − 0.095i

−0.066 + 0.039i 0.087 − 0.0960i −0.114 − 0.041i

⎞
⎟⎠,

B2,3 =

⎛
⎜⎝

−0.030 − 0.078i −0.020 − 0.068i −0.067 + 0.180i

−0.118 + 0.099i 0.139 + 0.050i −0.037 + 0.045i

−0.133 − 0.023i −0.016 − 0.147i −0.009 − 0.093i

⎞
⎟⎠.
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Therefore, we see that for a general solution {Bj } for A′,
such as the solution derived from the MATLAB routine, the
algorithm suggested by [28] fails to give the Wedderburn
decomposition, although it does give the the correct form for
the particularly chosen {Bj } in [28]. Hence, in practice, the
algorithm in [28] is sometimes insufficient, which motivated
us to develop the modified algorithm presented here. Next,
we would like to continue with this example for nq = 4, and
following our algorithm to find the local unitary transform

Q = diag(Q1,Q2,Q3) such that all the subblocks of Q†BjQ

are in the scalar matrix form. Strictly speaking, we should use
the random combination method in the last section to pick up
a generic B̄ for Step 2. However, for this particular example,
the above B1 is already a generic matrix, so we will instead
base on B1 to construct Q.

Define Q1 = I3, and according to Step 2 in Table I, we
define Q̂k = B−1

1,k and Qk = 1/||qk||Q̂k , k = 2, 3, where qk is
the first row of Q̂k . Then we have

Q†B1Q =

⎛
⎜⎝

−0.167I3 0.345I3 0.1931I3

0.345I3 0.233I3 −0.033 − 0.219iI3

0.193I3 −0.033 + 0.219iI3 0.308I3

⎞
⎟⎠.

We can double-check the form of Q†BjQ for other Bj and
we will find that all Bj are transformed in the form of M3 ⊗
I3. Hence, for this particular set of {Bj }, we have explicitly
constructed the unitary matrix U = V Q that transforms A′
into the Wedderburn decomposition, which is not accessible
from the algorithm in [28]. Now we know how to encode an
arbitrary three-level quantum state ρ̄ into the DFS N2. In the
current computational basis, the encoded density operator ρ

should take the form

ρ = U (0 ⊕ (ρ̄ ⊗ I3) ⊕ 0)U †.

We note finally that (i) in the above implementation of our
algorithm, we have skipped Step 1 since the algorithm in [28]
has already transformed all Bj into (3); (ii) we have applied
Step 2 to B1 instead of to a random combination of the {Bj },
so as to make it easy for comparison. In practice, we do not
really have to use the two generic operators as we suggest.
They are introduced primarily to guarantee the validity of the
algorithm.

B. Searching for an approximate DFS

Although for every noisy channel there exists a decompo-
sition as in (2), not all channels have a DFS that is useful for
protecting quantum information. In fact, the noisy channels
with a useful DFS constitute only a very small set. For
many channels the algebraic decomposition (2) looks like the
following:

A′ =
⊕

i

kiImi
,

where ki �= kj , for i �= j , which means that all the Mni
’s are

1-dimensional and so cannot store quantum information. When
this happens, we would like to ask an alternative question: Does
there exist a subsystem on which the noise, even if not zero, is
significantly reduced? This is the concept of an approximate
DFS (ADFS).

It is not easy to characterize an ADFS by algebraic
conditions, as we have done for a perfect DFS. Rather, an
ADFS should be formulated as an optimal solution such that
the noise on the system is reduced as much as possible. Hence,
it is possible to obtain an ADFS numerically by solving the

corresponding optimization problem. Since there is more than
one way to quantify the effects of noise, there is more than one
way to define the function to be minimized in the optimization.
For the purposes of our analysis in what follows, we simply
assume that one such function has been chosen, and denote it
by J . Furthermore, one must specify when the noise is “small
enough” to be helpful as an ADFS.

The problem of finding an ADFS involves searching for
the optimal unitary matrix U that transforms the original basis
into a new basis, such that a state ρ1, encoded in ρ = 1

n2
ρ1 ⊗

In2 ⊕ 0res, experiences the least noise under the noise operators
{Āk}, where Āk = UAkU

†. That is, we want to minimize J (U ),
where U varies over the unitary group. Numerically, we can
apply the BFGS quasi-Newton method for the optimization
[35]. Broadly speaking this involves (i) choosing an initial
point U = U (0) in the unitary matrix space; (ii) calculating the
value and the gradient of the objective function J (0) = J [U (0)];
(iii) using the value and the gradient to implicitly derive the
Hessian information and use them all to get a new U (1) such
that J [U (1)] < J [U (0)]. Repeating steps (ii) and (iii), we obtain
a sequence of {U (k)} with a limit corresponding to a local
minimum of J . The limiting unitary transform Ū is what we
are looking for.

Due to the existence of many local minima, different initial
choices of U (0) may result in different values of the optimized
J . In particular, as the dimension gets larger we may need to
run the optimization many times before we obtain a value
of J close to the global minimum. Hence a wise choice
of U (0) can be very important in performing the numerical
optimization. One important result in optimization theory is
that any gradient-based algorithm only guarantees that the
iteration sequence will converge to some local minimum;
however, if the initial point of optimization iteration is very
close to the global minimum, then the iteration sequence will
converge to the global minimum. On the other hand, if our
noisy quantum channel E can be considered as a perturbation
of another channel E ′ that has a perfect DFS, then the ADFS
of E should be pretty close to the DFS of E . Hence, we can
apply the DFS algorithm in Sec. III to first calculate the unitary
matrix U0 for the DFS of E ′, and then run the optimization for
ADFS, with U (0) = U0. In that way, we will be able to derive
the ADFS more efficiently.
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TABLE II. The final value of Jmin obtained from numerical
optimization, using 6 different random starting points enumerated
by N .

N 1 2 3 4 5 6

Jmin 0.2195 0.2078 0.2088 0.0123 0.4788 0.0125

Specifically, let us take the collective noise model as an
example, but this time add a perturbation to the original noise
operators:

Ãx = VεAx, Ãy = Ay, Ãz = Az,

where we have defined a perturbation unitary matrix Vε that
is sufficiently close to the identity: ||Vε − I|| < ε. Under the
new noise operators Ãx,y,z, we apply the algorithm in Sec. III
and find that there is no useful DFS. Next we try to run
optimization to this model in searching for ADFS. First we
do the optimization using random initial point. For example,
choosing ε = 1 and nq = 4, we run the optimization routine 6
times, starting from different initial U (0), and record the final
minimized Jmin in Table II. We see that among the six different
runs, only two of them have obtained Jmin < 0.0125. Hence
we cannot guarantee that we have the best minimized J from a
single run of the optimization process from an arbitrary random
initial {U (0)}. However, if we instead choose U (0) = U0, where
U0 is the unitary matrix in the Wedderburn decomposition for
the perfect DFS of {Ax,y,z}, then the optimization generates
the minimized Jmin = 0.0123. For other values of nq we
find similar results. Thus our DFS-finding algorithm helps
in finding good initial points for the optimization of ADFS
searching.

In addition, many local minima may also result in options
for our ADFS implementation. Whereas our algorithm gives
the dimensionally optimal DFS, there may be several ADFS’s
and the “best” one may not be the dimensionally optimal one.

The “best” might be the one which has robust, experimentally
available controls, or one that has the lowest error rate per unit
time.

V. CONCLUSION

In this work, for a given noisy quantum channel, we have
presented an algorithm to numerically calculate the unitary
matrix that transforms the original noise algebra into the
Wedderburn form, and this gives the structure of all DFS’s
if any exist. This algorithm is based on the theory of the
Wedderburn decomposition of matrix *-algebras. We also
compared our algorithm with the earlier algorithm proposed
in [28], which we found was incomplete. The new algorithm
is also more efficient, in that it requires fewer checks and
evaluations, and requires only information from either the
noise algebra A or its conjugate A′, rather than both. As an
application, we show that the DFS-finding method is helpful
in locating good initial points for finding approximate DFS’s,
and this is likely to be a more practical use for the algorithm.
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