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Bearings are mechanical dissipative systems that, when perturbed, relax toward a synchronized

(bearing) state. Here we find that bearings can be perceived as physical realizations of complex networks

of oscillators with asymmetrically weighted couplings. Accordingly, these networks can exhibit optimal

synchronization properties through fine-tuning of the local interaction strength as a function of node

degree [Motter, Zhou, and Kurths, Phys. Rev. E 71, 016116 (2005)]. We show that, in analogy, the

synchronizability of bearings can be maximized by counterbalancing the number of contacts and the

inertia of their constituting rotor disks through the mass-radius relation,m� r�, with an optimal exponent

� ¼ �� which converges to unity for a large number of rotors. Under this condition, and regardless of the

presence of a long-tailed distribution of disk radii composing the mechanical system, the average

participation per disk is maximized and the energy dissipation rate is homogeneously distributed among

elementary rotors.

DOI: 10.1103/PhysRevLett.110.064106 PACS numbers: 05.45.Xt, 45.70.�n, 46.55.+d, 89.75.�k

A coherent synchronized motion can naturally
emerge in a network of oscillators when the coupling
intensity exceeds the synchronization threshold [1–4].
Synchronization is the mechanism responsible for numer-
ous phenomena, such as, e.g., the vital contraction of cells
producing the heartbeats, the harmony in an orchestra, and
the coherence of an audience clapping after a performance
[5–7]. However, undesired synchronization might also be
responsible for neural diseases and collapse of technical
infrastructures and networks [8]. Therefore, understanding
how synchronization can be enhanced or mitigated is a
question of paramount importance. The properties of the
transition to a synchronized state are known to be a result
of the interplay between the dynamics of the oscillators and
the complex topology of the system [9,10]. Previous stud-
ies have shown that synchronization can be enhanced on
scale-free topologies by asymmetric weighted couplings,
in contrast to random graphs, where the most efficient
configuration corresponds to a uniform coupling strength
[11]. More precisely, by expressing the interaction strength

si of site i in terms of its degree ki as si � k��
i , where � is

a tunable parameter, Motter et al. [11] observed that the
properties of the coupling Laplacian matrix [12] lead to
optimal synchronization at � ¼ 1. Under this condition of
maximum synchronizability, the coupling strength just
counterbalances the number of connections, thus minimiz-
ing the total cost associated with the network of couplings.

Space-filling bearings have been previously considered
to explain the existence of seismic gaps [13], which are
those regions between tectonic plates where no earthquake
activity has been detected for a large period of time [14].
The idea is that the system self-organizes into a ‘‘bearing

state’’ in which the fragments rotate without gliding fric-
tion. Systematic procedures have then been proposed to
generate model bearing structures of rotors with circular
and spherical shapes, in two and three dimensions, respec-
tively, either highly symmetric [15,16] or random [17]. As
depicted in Fig. 1, hierarchical space-filling packings
emerge from these models in two dimensions, where the
interstices among large disks are sequentially filled by
smaller ones. Gliding friction is suppressed by ensuring
that loops of touching disks have an even number of con-
stituents. In this way, clockwise turning disks only touch
counterclockwise rotating ones and vice versa. At steady
state, the tangential velocity is the same for all contacts.
Under a different framework, hierarchically filled struc-

tures, where smaller elements (e.g, disks and spheres) are
snugged into the interstices of larger ones, have been
directly associated to scale-free networks [18–21]. The
Apollonian packing of circles, for example, inspired the
introduction of the so-called Apollonian network [18],
where the sites correspond to the centers of the circles,
and the edges are drawn to connect the centers (sites) of
pairs of touching circles. Bearings can also be directly
associated to complex networks, whose sites are given by

the positions ~Ri of the centers of the disks. These spatial
networks fulfill, for each loop of n disks, the conditionP

n�1
i¼1 ð ~Riþ1 � ~RiÞ ¼ ~Rn � ~R1 and are scale free, if the

original bearing is space filling.
One can readily identify the bearing state as a typical

synchronized state. It is thus legitimate to convey that
space-filling bearings rotating in steady state (i.e., when
all rotors possess equal tangential velocities) are in fact
physical realizations of synchronized complex networks.
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Once this conceptual parallelism is ascertained, one can go
even further and ask, in the spirit of the asymmetric cou-
pling approach introduced in Ref. [11], whether or not such
a synchronized state can be optimized through some con-
stitutive physical property of the bearings. In what follows
we show that the synchronized state of two-dimensional
space-filling bearings can indeed be substantially enhanced
by adequately adjusting the inertial contribution of indi-
vidual rotors to the global motion of the system.

Consider a bearing of N rotors. The equation of motion
for the angular velocity ~!i of rotor i can be written as

Ii
_~!i ¼

X

j

~Tj ¼
X

j

ri ~rij � ~Fji; (1)

where Ii and ri are the rotational inertia and radius of rotor

i, the sum is over all rotors in contact with i, ~Fji is the force

of rotor j on the surface of i, and ~rij is the unit vector

pointing to the contact with j in the reference frame of disk

i. Taking the force ~Fji as a dissipative force proportional to

the relative velocity at the contact point, we have

~Fji ¼ �ð ~vj � ~viÞ ¼ ��ð ~!j � rj ~rij þ ~!i � ri ~rijÞ; (2)

where � is the coupling between rotors and we used the
identity ~rji ¼ �~rij. In two-dimensional bearings, since

rotors are disks with fixed position (see Fig. 1), the net
translational force is zero and the angular velocity can be
described by a scalar. Equation (1) then simplifies to

Ii _!i ¼ ��
X

j

Aij½!ir
2
i þ!jrirj�; (3)

where Aij are the elements of the connectivity matrix,

defined in such a way that Aij ¼ 1 if two disks i and j

are different and mutually touching and Aij ¼ 0 otherwise.

At this point, we introduce the following constitutive
relation between the mass of disk i and its radius,

mi ¼ 2ar�i ; (4)

such that the rotational inertia becomes Ii ¼ ar�þ2
i ,

where a ¼ 1 in consistent units, for convenience. It then
follows that _!i ¼ ��

P
jTij!j, where Tij ¼ nir

��
i �ij þ

r�1��
i rjAij, ni is the number of disks touching i, and �ij is

the Kronecker delta. In matrix form this can be written as

_~! ¼ ��T ~!; (5)

where ~! is the N-dimensional vector of the angular veloc-
ities and T is the interaction matrix. A bearing is a dis-
sipative system which, as already mentioned, converges to
a steady state, namely the bearing state, where the tangen-
tial velocities of all rotors become equal, i.e., v1 ¼ v2 ¼
� � � ¼ vN � s, such that _sðtÞ ¼ 0. Through the relation
between tangential and angular velocities, ~! ¼ R�1 ~v,
where R is a diagonal matrix with Rii ¼ ciri, with ci ¼
�1 depending on the sense of rotation of the disk [16], the
equivalent to Eq. (5) for the N-dimensional vector of
absolute tangential velocities ~v can be readily obtained,

being _~v ¼ ��B ~v. The coupling matrix B can be written
as B ¼ RTR�1, i.e., Bij ¼ r��

i ðni�ij � AijÞ, where we

make use of ci=cj ¼ �1 for all pairs of touching disks.

In this work we focus on the relaxation after small pertur-

bations ~� to the bearing state, namely vi ¼ sþ �i, which
leads to the following vectorial variational equation:

_~� ¼ ��B ~�: (6)

This system of coupled linear differential equations can be
written in the space of eigenvectors of B, ~xk (with eigen-
value �k), such that ~x1 (�1 ¼ 0) refers to perturbations
along the stable manifold of the bearing state. All other
eigenvectors are transverse to ~x1 [12]. Due to the linear
nature of Eq. (6), the Lyapunov exponents correspond to
���k. Since all eigenvalues are non-negative in this prob-
lem (the matrix B can be symmetrized), the stability of the
bearing state is guaranteed [22]. In analogy to the work of
Motter et al. [11], the factors r��

i present in the elements of
B correspond to the weights of the pairwise interactions.
As we show next, in the complex network associated with
the topology of the bearings, the number of contacts is an
increasing function of the radius and so it becomes possible
to enhance synchronization by tuning the coupling weights
in such a way as to balance the number of contacts.

Perturbations along the bearing states (
_~� ¼ 0) lead the

system from one bearing state to another with a different

FIG. 1 (color online). Two-dimensional space-filling bearing
configuration with 31 rotor disks. In order to suppress gliding
friction, disks rotate either clockwise or anticlockwise, all with
the same tangential velocity, and loops of touching disks always
have an even number of disks. This static illusory-motion image
is an adaptation from the peripheral drift illusion ‘‘Rotating
Snakes’’ shown in Ref. [26]. Note that every two touching disks
always have opposite senses of rotation.

PRL 110, 064106 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

8 FEBRUARY 2013

064106-2



tangential velocity s; i.e., all tangential velocities change
by the same amount, regardless of the value of � (�i � �).
These perturbations are related to the eigenvalue �1 ¼ 0.
Hereafter, we focus on perturbations that are transverse to
the bearing states, i.e., perturbations after which the system
always relaxes back to the original bearing state.
Specifically, the objective is to investigate the dependence
on the inertial parameter � of the smallest (nonzero), �2,
and largest, �N , eigenvalues of the system described by the
matrix B. These eigenvalues correspond to the slowest and
fastest relaxation modes, respectively. Generally speaking,
for perturbations out of the bearing manifold (� � 0), the
larger the eigenvalues the faster the relaxation toward the
stable state. Here two features come into play: the mass
(inertia) distribution of the disks and the number of con-
tacts. While the former depends explicitly on�, the latter is
an increasing function of the rotor radius. Numerical
results for a bearing (of type n ¼ m ¼ 0 of the first family
for loops of size 4 [15]) with 4511821 disks reveal that the
average number of contacts scales with the disk radius as
r�, with � ¼ 0:94� 0:04, which should approach unity in
the limit of space filling systems.

As depicted in Figs. 2(a) and 2(b) �2 and �N generally
increase with �, although changes in the behavior of both
eigenvalues can be observed at a crossover value �� � 1.
While �N increases faster for �> ��, the increase of �2

becomes attenuated in the same range of � values. The
insets of Figs. 2(a) and 2(b) show that, for �> ��, �2 and
�N are increasing functions of the number of disks, since
the ones with higher inertia also possess more contacts to
shed any perturbation. The same description applies for all
eigenvalues. For �< ��, the inertia assigned to each disk
does not always compensate its number of contacts. For
example, the fact that �2 decreases with N for � ¼ �1
reflects this imbalance. More general conclusions can be
drawn from the eigenratio between the largest and smallest
(nonzero) eigenvalues of the coupling matrix, �N=�2

[12,23]. This ratio solely depends on geometrical features
(radii, network topology, and disk mass) and not on the

initial conditions for the velocities. The lower the ratio, the
higher the synchronizability [12,23]. As shown in Fig. 2(c),
bearings consisting of rotors with masses that follow the
relation, m� r�� , have a minimum eigenratio value, in
analogy to the optimal synchronization coupling found for
scale-free networks [11]. Interestingly, the larger the value
of N, the more sensitive is the system to variations of �.
Moreover, the results in the inset indicate that regardless of
the value of �, the eigenratio increases monotonically with
the number of disks. Nevertheless, since this increase is
less pronounced for � ¼ 1 than for any other value of �,
the relative depth of the minimum augments with system
size. As a consequence, large systems display an enhanced
relative synchronizability at � ¼ ��. In the Supplemental
Material [24] we show the convergence of �� towards
unity in the thermodynamic limit.
To shed light on the dependence on � of the contribution

of disks to the eigenmodes, we define the average partici-
pation [25] as

P ¼ 1

N

X

~xk

½Pj¼1 ~xkðjÞ2�2P
j¼1 ~xkðjÞ4

; (7)

where the outer sum is over all eigenvectors ~xk and the
inner sums are over the components of the eigenvector. As
shown in Fig. 3, there is an intermediate range of � values,
for a given system size N, where an enhanced average
participation per disk can be clearly observed. However,
our results suggest that the value of � for which the
participation becomes maximum increases in a discontinu-
ous fashion from � � 0:5 to 1.0, as the system size
increases from N ¼ 613 to 31531. The inset of Fig. 3
shows that, notwithstanding the value of �, the average
participation per disk decreases with the number of disks
N, but with a slope that is milder for � ¼ 1:0 than for any
other case. This behavior expresses the more homogeneous
contribution of rotors to the system dynamics. In this range
of � values, the number of contacts of each disk is
approximately compensated by its inertia. Accordingly,

-1.0 0.0 1.0 2.0 3.0
α

10
-6

10
-3

10
0

10
3

10
6

λ 2

N = 4315
N = 11677
N = 31531
N = 85159

-1.0 0.0 1.0 2.0 3.0
α

10
0

10
4

10
8

10
12

λ N

-1.0 0.0 1.0 2.0 3.0
α

10
2

10
4

10
6

10
8

10
10

λ N
/λ

2

10
2

10
4

10
6

N

10
-9

10
-2

10
5

10
2

10
4

10
6

N

10
0

10
7

10
14

10
2

10
4

10
6

N

10
0

10
7

α = -1.0

α = 0.0

α = 1.0

α = 2.0

α = 3.0

)c()b()a(αx αx

αx
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we expect �� to converge toward � � 1:0 as the number
of disks increases. Under these conditions, the impact of
changes in the tangential velocity of a disk becomes rela-
tively less dependent on its radius.

It is also interesting to calculate the rate at which energy
is dissipated. For rotor i, we have Wi ¼ Iivi _vi=r

2
i . Now,

given an eigenmode k with eigenvalue �k, the velocity of
disk i can be expressed by the ith component of ~xkðiÞ scaled
by a constant c, i.e., vi ¼ c ~xkðiÞ. Thus, one obtains the
relation _vi ¼ �c�k�~xkðiÞ. Based on this result, we can
decompose the dissipation rate of disk i in its different
modes, Wki ¼ �r�i c

2�k�~xkðiÞ2. It is then possible to

quantify how dissipation is distributed among disks, by
defining the relative dissipation of disk i in the eigenmode
k as Qk

i ¼ Wki=
P

jWkj, which leads to

Qk
i ¼

r�i ~xkðiÞ2P
j r

�
j ~xkðjÞ2

: (8)

Figure 4 shows, for different values of �, the dependence
on the radius r of the relative dissipation rate of a rotor i
averaged over all eigenmodes, Qi ¼ 1=M

P
kQ

k
i , where M

is the total number of eigenmodes. For �< 1:0, the dis-
sipation is an increasing function of r, while for �> 1:0,
larger disks dissipate less energy than smaller ones. By
tuning � ¼ 1:0, the dissipation rate becomes more uni-
formly distributed among all disks, being approximately
invariant on the rotor size. Figure 5 consists of snapshots
for three different values of �, showing how the average
dissipation rate is typically distributed among disks in a
bearing with 613 disks.
In summary, we have shown that bearings are physical

realizations of complex networks of oscillators. When the
bearings consist of rotors of different sizes, the coupling
between oscillators is asymmetric, as the effect of a pair-
wise interaction on the rotors motion depends on their
inertia (typically different for each one). Once this paral-
lelism is established, it is possible to evaluate the stability
of these mechanical systems applying concepts from dy-
namic systems theory. In particular, our results for two-
dimensional space-filling bearings, characterized by a
scale-free distribution of rotor (disk) contacts, indicate
that their synchronizability can be duly maximized. This
is achieved by counterbalancing the number of contacts of
the disks with their inertia through the mass-radius rela-
tion,m� r�� , where �� is the optimal exponent which we
expect to asymptotically converge to unity as the number
of rotors increases. Under this condition, in spite of the
power-law distribution of radii, the average participation
per disk has a maximum and the energy dissipation rate is
homogeneously distributed among disks.
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(same color).
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