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Abstract

The echo statistics of a randomly rough, randomly oriented prolate spheroid that
is randomly located in a beampattern are investigated from physics-based principles
both analytically and by Monte Carlo methods. This is a direct-path geometry in
which reflections from neighboring boundaries are not a factor. The center of the
prolate spheroid is assumed to be confined to the plane containing the MRA (max-
imum response axis). Additionally, the rotation of the prolate spheroid is assumed
to always be in this plane. The statistics and, in particular, the tails of the prob-
ability density function (PDF) and probability of false alarm (PFA) are shown to
be strongly non-Rayleigh and a strong function of shape of scatterer. The tails are
shown to increase above that associated with a Rayleigh distribution with increas-
ing degree of elongation (aspect ratio) of the scatterer and when roughness effects
are introduced. And, as also shown in previous studies, the effects associated with
the scatterer being randomly located in the beam contribute to the non-Rayleigh
nature of the echo. The analytically obtained results are compared to Monte Carlo
simulations for verification.
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Chapter 1

Introduction

Active sonar and radar systems are an important means of remote sensing in the

environment. Such systems use transducers to modulate and direct waves into their

surroundings. By detecting the scattered signal, remote sensing systems can infer in-

formation about the scatterer or its environment. In typical use, sonar and radar sys-

tems need to process data about objects of interest while filtering data from unwanted

sources. Clutter is defined as a signal that closely resembles the target signature but

is caused by objects that are not of interest.

If the number of targets within the resolution of a remote sensing system is large,

the distribution of the scattered signal tends towards a Gaussian distribution due to

the central limit theorem. As a result, the envelope of the echo follows a Rayleigh

distribution. In this case, the probability of false alarm (PFA) decays at an exponen-

tial rate with increasing echo amplitude. If there are comparatively fewer scatterers

relative to the system's resolution, the probability distribution function (PDF) of

the envelop may be non-Rayleigh. In such a case, the tail of the non-Rayleigh PDF

is typically not bounded by an exponential decay. Such distributions are known as

heavy tailed distributions and lead to an increase in the PFA of the system [1,2]. The

increase in false alarm signals implies that characterization and modeling of clutter
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is very important for accurate remote sensing.

In a purely stochastic approach to modeling the echo PDF of clutter, standard

heavy tailed probability distributions like the Weibull or the K-distribution are fitted

to empirically obtained amplitude data. The correlation between the parameters of

the theoretical distribution and the physical characteristics of clutter is then inferred

statistically, rather than being derived from first principles. The majority of previous

studies on modeling radar and sonar clutter utilize a similar approach [1-4]. A sta-

tistical model for the echo amplitude of clutter must account for several factors that

will affect the shape of the distribution and the degree to which it is non-Rayleigh [5].

Physical characteristics of the scatterers such as orientation with respect to the inci-

dent wave and surface roughness will affect the shape of the distribution.

Aperture

b(8)

Random
Orientation

Figure 1-1: Diagram illustrating the scattering geometry of the prolate spheroid

treated in this thesis.
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With the assumption that some physical characteristics of the sources of clutter

are known, the echo amplitude PDF can be derived using physics-based principles.

Since many features in nature are elongated, this thesis aims to derive the probability

distribution of the echo amplitude of a prolate spheroid with a random location,

orientation, and roughness. Because of the many complexities of this problem, the

predictions are limited to the following conditions: 1) the scattering is calculated in

the high frequency geometric optics limit in which the wavelength of the incident

field is much smaller than any dimension of the object, 2) all motion- changes in

location and orientation- is in the same plane that contains the maximum response

axis (MRA) of the beam as illustrated (Fig. 1-1), and 3) only direct path scattering

is considered in which scattering by neighboring boundaries is not a factor.

The physics-based approach to deriving the PDF of the echo amplitude begins

with the deterministic echo amplitude for a prolate spheroid at an orientation # with

respect to the horizontal axis (Fig. 1-1). The center of the prolate spheroid is located

in the plane of the MRA of the transducer and its azimuthal coordinate is given by

the angle 0. The angle 7 is formed between the perpendicular axis of the prolate

spheroid and the line connecting its center to the transducer. The polar axis of the

spheroid lies entirely within the MRA plane and the axis of rotation is perpendicular

to that plane. One real world scenario that corresponds to these conditions is the

case of a sidescan sonar that is insonifying fish at the same depth.

The problem of finding the deterministic scattering amplitude of a scatterer of

known shape at a fixed location in the. beampattern is well studied in literature.

Bowman et al. [6] have written a text that analytically derives the scattering ampli-

tudes of infinite, semi-infinite and finite 2- and 3-dimensional bodies with a variety of

different shapes, including the prolate spheroid case considered here. In this paper, 4

is a random variable with a known PDF. The echo amplitude of the prolate spheroid

is then a function of the random variable #. Fundamental probability theory can be
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used to derive the PDF for the scattering amplitude of a randomly oriented object,

when the probability distribution of # is already known [3]. A similar approach has

been used in the past to derive the echo PDF of a patch of scatterers with arbitrary

echo distributions in the beam [7,8]. The effect of the randomly rough surface of the

spheroid is then included heuristically by multiplying the scattering amplitude with

a Rayleigh distributed random variable [9,10].

As the location of the scatterer in the beam is a random variable, the effect

of the transducer's beampattern on the echo amplitude is correspondingly random.

Therefore, another change of variables operation is required to find the PDF of the

beampattern of the transducer. The echo amplitude as "seen" through the receiver for

a prolate spheroid with random location, orientation and roughness is the product of

three random variables, where each variable is derived from one of the three physical

parameters of the spheroid. The distribution of the product of random variables can

be derived from elementary probability theory [11]. This formulation is used to find

the final echo amplitude PDF for the rough prolate spheroid in the beam. In contrast

to the statistical approach as cited above (i.e., using Weibull distributions, etc.), the

derived PDF is explicitly dependent on the physical characteristics of the scatterer

and the beampattern.

In this thesis, Chapter 2 provides an overview of the theory and statistical formulas

that are important to deriving the echo amplitude PDF of a rough prolate spheroid in

the beam. The derivations of well known equations that are critical to this research

are also presented here, such as the distribution of a function of a random variable.

In the following chapter, these formulations are used to derive the PDF of the echo

amplitude of a two-way beampattern for the specific case of a circular aperture.

The PDF of the scattering amplitude of a randomly oriented prolate spheroid is

then determined in Chapter 4. Initially, the deterministic scattering amplitude for

a smooth prolate spheroid at a fixed orientation is presented. The orientation of
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the spheroid is then assumed to be random, and a PDF of the scattering amplitude

is derived. Finally, the effect of surface roughness is accounted for in a heuristic

manner, wherein the scattering amplitude is multiplied by a Rayleigh distributed

random variable.

The formulas presented in Chapters 3 and 4 are then combined in Chapter 5

to find the echo amplitude PDF for a randomly rough, randomly oriented prolate

spheroid that is randomly located in the beam. Chapter 6 provides an overview of

the methods used to validate the analytical results presented in earlier chapters. In

addition, the computational issues that were encountered while calculating the PDFs

are described, and the solutions implemented are discussed.
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Chapter 2

Overview of general scattering and

statistical formulations

The echo statistics will be formulated explicitly in terms of the physics of the scat-

tering by the individual scatterer (prolate spheroid) and system parameters. This

physics-based approach involves a sequence of steps, including describing the de-

terministic scattering by an arbitrarily oriented prolate spheroid that is arbitrarily

located in the beam, and then randomizing the parameters, which results in a ran-

domized echo. For a general scattering problem, the scattered pressure wave P, in

phasor notation is dependent on the incident pressure P and the scattering amplitude

fs of the scatterer:

PS = P0e fS (2.1)

where k is the wavenumber of the incident wave in the surrounding medium, and r

represents the range of the scatterer in spherical coordinates. This expression does not

include system parameters, such as the beampattern. When modeling the complete

system, beampattern effects must also be taken into account and the final received

echo amplitude is:

e = Ablf 8 | (2.2)
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where A represents all system constants, b is the two-way beampattern amplitude

and f, is the scattering amplitude.

Since the scatterer is randomly located in the beam at angle 0 and the beampattern

is a function of the random variable 0, then the beampattern can be treated as

a random variable. With the echo from the scatterer (before beampattern effects)

also being a random variable, then the echo j received by the system (including

beampattern effects) is the product of the two random variables, the beampattern b

and echo |f,| before beampattern effects. We use Ehrenberg's approach of describing

this product, which involves directly applying classic formulas of statistical theory

[8,121.

In this high frequency limit, the scattering by a smooth prolate spheroid is cal-

culated through use of the Kirchhoff approximation. The scattering amplitude is

dependent on the angle y of the spheroid with respect to the incident wave. -y can

be derived from the randomly distributed angles 0 and #. Since -y is random, the

scattering amplitude f, is also a random variable. Roughness is later introduced

heuristically by modulating the deterministic scattering at a fixed orientation angle

with a Rayleigh PDF. This is based on the fact that rough bounded objects have re-

sulted in Rayleigh-distributed echoes at high frequencies [9, 10]. Beampattern effects

are incorporated through direct use of the formulation first derived by Ehrenberg

in which the beam is considered to be a random variable due to the fact that the

scatterer is randomly located in the beam [12].

In the below analysis, relevant elementary formulas from probability theory are

first derived. The beampattern PDF from a circular aperture is then reviewed, and the

stochastic properties (ps) of the scatterer (specifically, of a randomly rough, randomly

oriented prolate spheroid) before beampattern effects are investigated. Finally, those

two PDFs are combined through use of (2.12) to formulate the echo PDF of the

prolate spheroid with beampattern effects. Because of the similarity in formulations,
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the general form of the integral in (2.12) is also used to describe the echo statistics

from a randomly rough prolate spheroid before beampattern effects.

2.1 Elementary formulas concerning random vari-

ables

This section reviews the derivations of several well known formulas that are important

to this thesis. The distribution of a function of a random variable is required to derive

the PDFs of the beampattern and scattering amplitude from the PDFs of the angles

0 and -y.

Calculating the PDF of the product of random variables is necessary in two cases.

Firstly, the statistical effects of roughness on echo amplitude are included heuristically,

by multiplying the scattering amplitude with a Rayleigh distributed random variable.

Secondly, the beampattern must be multiplied with the scattering amplitude in order

to determine the echo amplitude of the system, as described in (2.2).

The analytical expression for the Rayleigh PDF is also derived from the magni-

tude of the vector sum of two zero-mean Gaussian random variables. The common

natural occurrence of vectors that have components modeled by uncorrelated Gaus-

sian distributions emphasizes the importance of the Rayleigh PDF. This equation is

effective in providing a statistical description of phenomena as diverse as wave heights

in the ocean and the peak power of received radio signals [13].

2.1.1 Distribution of a function of a random variable

In this thesis, the angles 0 and # are assumed to be random variables with PDFs

that are known a priori. The functions describing the beampattern and scattering

amplitude are dependent on 0 and 7, respectively. A change of variables operation

is required to derive the PDF of these functions from the known distributions of the
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angles. This is a well studied statistical problem, with broad applications to applied

probability [14].

Let X and Y be two random variables such that Y = g (X). Without loss of

generality, let there be an event E that is said to occur if X and Y lie within small

intervals dx and dy, respectively. Then, the probability of X lying in an interval dx

must be equal to the probability of Y lying in an interval dy. This property allows

the derivation of the relationship between the PDFs of X and Y using the differential

dY/dX = g'(X). By the definition of a PDF:

PY (y) dy = px (x) dx (2.3)

where px and py are the PDFs of random variables X and Y, respectively.

If g (X) is not monotonic, then py (y) dy must equal the sum of all probabilities

in X-space that correspond to the n solutions of Y = g (X):

n

Py (y) dy = px (xi) dxi (2.4)

Now, dxi is rewritten as dy/g' (xi):

py (y) dy = px (xi) dy (2.5)
g' (xi)

Upon canceling dy from both sides, we obtain the desired formulation for the PDF

of the function of a random variable:

n

Py()- Px (xi) (2.6)
9' g (xi)
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2.1.2 Distribution of the product of two random variables

As shown in (2.2), the echo amplitude of a scatterer can be described as the product

of two random variables, the beampattern b and the scattering amplitude fi. In this

case, the beampattern and scattering amplitude are assumed to be random variables

with known PDFs PA and p, respectively. In order to find the PDF of E in terms of PA

and ps, the relation between the joint distributions pj,, and Pb,, is first derived [15].

For clarity, the presence of system constants in the term A in (2.2) is ignored. Due

to normalization, the value of A will have no bearing on the results presented in this

thesis.

Let X and Y be vector random variables that are defined as follows:

bE
X= ;Y= (2.7)

Then, py and px correspond to the two joint distributions defined above. The

Jacobian of the transformation X = H (Y) is:

[1/|fS| -E/Ifs|2 (2.8)
0 1

Using fundamental probability theory, the PDF of Y is [14]:

py= |IJIpx(H(Y)) (2.9)

Therefore:

pe'S - 1ps,b (2.10)
1 fro t j do

The PDF of can now be derived from the joint distribution by integrating out
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the variable Ifs|:
00

pg (e) = Ps,b |fI|, d~f.| (2.11)

The PDFs of the beampattern and scattering amplitude are independent. In

addition, the value of the scattering amplitude jfsJ can never be smaller than that of

the echo amplitude E, as the maximum possible value of the beampattern is unity.

Taking this into account, the final equation for the PDF of the echo amplitude is:

00

pe (e) J ps (Ifs| )Pb dIfsI (2.12)

Due to the complex analytical description of p, and the presence of 1/x as a

function argument within the integral, finding an analytical solution for (2.12) is very

difficult and it is normally evaluated numerically except for some limiting cases.

From the above derivation, it is evident that the joint distributions pA,b and Ps,b

could have been considered instead. The result would then be the commuted form of

(2.12):
00

p1 J Pb (b) ps( db (2.13)

Both of the equations described above will yield an identical result for the PDF p3

of the echo amplitude. This property is used for the purposes of numerical evaluation

in Matlab, as described in Section 6.2.

This same derivation can be applied when the echo amplitude of a rough prolate

spheroid is calculated heuristically. In this case, the scattering amplitude of the

smooth spheroid without beampattern effects is multiplied with a Rayleigh distributed

random variable.
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2.1.3 Derivation of the Rayleigh PDF

Let Z = X 2 +Y 2 , where X and Y are zero-mean independent, identically dis-

tributed (IID) Gaussian random variables. In this section, the variable Z is shown to

be Rayleigh distributed using a change of variables operation that is similar to the

method used in Section 2.1.1. Let E be the event corresponding to the small area

dxdy in Cartesian coordinates. Then, the probability of obtaining the area dxdy must

equal the probability of area zdzdO in polar coordinates. An analytical expression for

the distribution of Z can be derived from this property [13].

The PDF of X (as well as Y) is the well-known Gaussian distribution for the case

of a zero mean, and can be written as [14]:

px ()= 1 e~,2/2,2 (2.14)

Since X and Y are independent by definition, their joint PDF is simply the product

of their individual PDFs:

pxy (x,y) = 1 _(x2+y2)/22 (2.15)

Using the definition of a PDF, we obtain:

P (x < X < x + dx, y < Y < y + dy) = e( 2+Y2)/2, 2dxdy (2.16)

The equation Z = v/X 2 + Y 2 can represent a conversion from Cartesian coordi-

nates X and Y to the radius Z in polar coordinates. In such a case, the area dxdy

in Cartesian coordinates equals the area zdzdO in polar coordinates. Therefore, by

transformation of probability spaces, we obtain:

P(z Z z+dz,9<E0<6+dO)=P(x X x+dx,y Y y+dy) (2.17)
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=> P (z < Z < z + dz, < E ) < +dO) = 1 eo(x.2 +y2)/2, 2 zdzd6 (2.18)

=> Pz,e (z, 0) = e(2)/2a2 (2.19)

Since the joint PDF of Z and 8 can be separated into two functions that are

dependent only on the corresponding random variables; Z and 8 are independent.

Therefore, the PDF of Z is:

Pz (z) = $ e-(z2)/202 z > 0 (2.20)

which is the well known formulation of the Rayleigh PDF.
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Chapter 3

Beampattern Effects

For an ideal radiation source that is omnidirectional, the location of the scatterer

will have no effect on the system's echo amplitude. However, the systems used in

many real world applications may have highly directional beams, requiring the need

to account for directionality, as summarized below.

3.1 General Theory

If the scatterer is assumed to be randomly located in the beam, the directionality of

the beampattern can have a significant effect on the echo amplitude distribution [7].

As seen in (2.2), the net echo amplitude for the system is the product of system

constants, the amplitude of the beampattern, and the scattering amplitude. In this

thesis, the effects of the beampattern are taken into account by assuming a random

distribution for the location of the scatterer. Assuming an axisymmetric aperture for

b (one variable), the change of variables formula for functions of random variables

can be used to find the probability distribution of the beampattern b. For a function
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that is not monotonic, [3] this formula is:

n(b) ((

pA (b) = (3.1)
1=1 d O

where the summand is summed over each lth piecewise monotonic section b, of the

beampattern and n(b) is the number of sections, all of which are contiguous. For the

case of ka = 27r, the beampattern has a single sidelobe in addition to the mainlobe.

This corresponds to three piecewise monotonic sections (Fig. 3-1).

This expression was used by Ehrenberg and in the below analysis for a rotationally

symmetrical beampattern. However, it also applies for the case of an asymmetrical

beampattern (such as for a rectangular aperture) when the location of the scatterer

is limited to a single plane (and, hence, requires only a single variable, 9, to describe

the location).

The symmetric nature of the beampattern allows an analysis of the probability

distribution of 9 between 0 < 9 < ir/2. The prolate spheroid is assumed to be found

at any location in the MRA plane with equal probability. Therefore, the probability

distribution is constant over the range and can be described as:

2
Po (9) = -,0 < 0 < r/2, MRA plane (3.2)

7r

If the location of the center of the prolate spheroid is not assumed to be restricted

to the MRA plane, then the prolate spheroid may be found anywhere in 27r half-space

with equal probability. Assuming that the prolate spheroid will always be found at a

fixed distance from the aperture, we obtain:

P (0 < E) < + d,@ T < 0 + d@) = sin (0) dcd (3.3)

where the angles 9 and 4 can be visualized as the polar and azimuthal components
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of a spherical coordinate system, respectively.

To find the probability distribution of 9, we can now integrate over all possible

values of V) to obtain:

PO (9) = sin (0) , 0 < 9 < 7r/2, half - space (3.4)

In the following sections, this thesis will focus on the case where the center of the

prolate spheroid is restricted to the MRA plane and the probability distribution of 9

is constant (3.2).

When measuring the echo amplitude of an object, the amplitude of the beampat-

tern is a composite of beampattern effects on the incident and scattered waves. That

is,

b = bibr (3.5)

The case of far field radiation in a time-invariant medium is considered, therefore,

the property of reciprocity is assumed to hold. A related assumption is the linearity

of the medium, where the parameters of the medium are invariant under changes in

the values of fields or waves. It should be noted that reciprocity theorems generally

do not hold for the case of nonlinear media, where the frequency w of the wave is not

conserved. Reciprocity implies equality of power transfer from the transmitter to the

receiver, if the roles of the receive and transmit elements are reversed [16]. In this

thesis, the assumption of a monostatic system implies that:

b = b2 = b (3.6)
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3.2 Applications to Circular Aperture

For a circular aperture, the shape of the beampattern varies according to the param-

eter ka where k is the acoustic wavenumber and a is the radius of the transducer.

Thus, the net amplitude of the two-way beampattern at an azimuthal coordinate 0

is [17]:

b(O) 2J1 (kasin (0)) 2
21rsin (0)'

where J1 is the Bessel function of the first kind of order 1.

Equations (3.2) and (3.7) are subsituted into (3.1) to derive the beampattern

PDF. This formula is evaluated numerically in Matlab to obtain a plot for the PDF

on a log-log scale (Fig. 3-2). This curve may be interpreted as the PDF of the

magnitude of the scattering amplitude from a smooth sphere or point scatterer in

the beam. Note the singularity at the maximum echo amplitude. This calculation

involved the scatterer lying in the MRA plane and po(O) being a constant. For a

scatterer randomly located throughout the beampattern, po (0) = sin(9) and that

section of the echo amplitude PDF is a line with constant slope and no singularity.

The results of these calculations for a circular aperture are presented in Figs. 3-1

- 3-4 below. Fig. 3-1 plots the result of the two-way beampattern amplitude from

(3.7) for the case of ka = 27r with 9 ranging between 0 and 7r/2. There are three

piecewise monotonic sections that are summed in (3.1), indicated by 1 = 1, 2 and

3. In addition, there are three points where the differential of the beampattern b

goes to zero, indicated by A, B and C. According to (3.1), these points will lead to

singularities in the plot of the beampattern PDF, which is shown in Fig. 3-2. The

beampattern PDF is shown here under the assumption that the scatterer is confined

to the MRA plane, i.e. the PDF of the angle 9 is a constant.

In Fig. 3-3, the scatterer is assumed to lie at any point within the 27r half-space.

In this case, the random variable 9 is distributed as the sine function. The highest
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amplitude of the beampattern is found at the center of the mainlobe, i.e. 0 = 0.

The differential of the beampattern amplitude at this peak is zero, leading to the

singularity labeled 'C' in Fig. 3-2. However, in Fig. 3-3, the PDF of 0 goes to zero

in the limit as the value of 9 goes to zero. Since the PDF and the differential of

the beampattern amplitude decay at the same rate, PA as calculated from (3.1) tends

towards a constant instead of infinity. Therefore, the singularity 'C' is absent in Fig.

3-3, whereas the sidelobe singularities corresponding to 'A' and 'B' are still present.

In all of the figures discussed above, it is assumed that ka = 27r.

In Fig. 3-4, the beampattern PDFs for different values of ka are shown. These

PDFs are qualitatively similar to the ka = 27r case, with an increased number of

singularities that correspond to the higher number of sidelobes present in these beam-

patterns. However, the singularity corresponding to point 'A' in Fig. 3-1 does not

appear in the graphs. Although such a singularity is present in theory, it does not

appear in the curve calculated in Matlab. This is because of the limited resolution of

a discrete data set in Matlab, as well as the narrow range of amplitudes over which

the singularity appears. The main lobe for ka > 67r is significantly narrower when

compared to the ka = 27r case. As a result, the differential of the beampattern with

respect to angle approaches zero very rapidly, and this is not reflected in the PDF

calculation.
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Figure 3-1: The amplitude of a two-way composite beampattern (3.7) for a circular
aperture with ka = 27r. This corresponds to a beamwidth of approximately 300.

The points of interest marked A, B and C indicate regions where the slope of the

curve is zero. These points correspond to the singularities labeled in Fig. 3-2.
The sections of the plot labeled 1, 2 and 3 correspond to piecewise monotonic

sections b, of the beampattern amplitude.

MRA plane
10 r

10

10 10 10 10' 10' 101

Normalized Echo Amplitude
10'

Figure 3-2: The PDF of the two-way composite beampattern amplitude for a
circular aperture with ka = 27r. The scatterer is assumed to be limited to the MRA
plane, i.e. po = constant. The PDF for narrower beams is qualitatively similar, as
shown in Fig. 3-3. The singularities marked A, B and C correspond to points of

zero slope in the beampattern amplitude curve (Fig. 3-1).
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Figure 3-3: The two-way composite beampattern for a circular aperture with ka =
27r. In contrast to Fig. 3-2, the scatterer is assumed to lie in the half-space, i.e.
po = sin (0). Note the absence of a singularity corresponding to 'A' in Fig. 3-2.
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Figure 3-4: The two-way composite beampatterns for circular apertures with

various values of ka, demonstrating the increase in the number of singularities due

to additional sidelobes. The center of the prolate spheroid is assumed to be confined
to the MRA plane.
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Chapter 4

Scattering by Prolate Spheroids

(No Beampattern Effects)

The problem of finding the scattering amplitude of a scatterer is well studied in the

literature [6]. The specific case of a prolate spheroid scatterer has been analyzed for

the cases of electromagnetic [18] and acoustic [19] incident waves.

The prolate spheroid shape has broad applicability in practical applications of

remote sensing, both acoustic and electromagnetic. As one example, scattering from

swimbladders of fish has been shown to be an important component of the acous-

tic broadband backscattering amplitude from fish. This organ can be reasonably

simulated using a prolate spheroid scatterer as a model [20].

In many applications, the orientation of the prolate spheroid may not remain

constant with respect to the incident waves. In the example discussed above, the

fish being insonified may change the direction in which they are swimming between

successive pings from the sonar system. This change in orientation will significantly

affect the backscattering amplitude, and increase variability in amplitude between

successive pings. This variation can be modeled by assuming a random distribution

for the angle of orientation -/ of the prolate spheroid with respect to the incident
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waves (Fig. 1-1).

In this chapter, the scattering amplitude of a smooth prolate spheroid for the

deterministic case of fixed orientation is first given. In the subsequent section, the

stochastic effects of random orientation are analyzed by deriving the probability dis-

tribution of the scattering amplitude, given that the PDF of -Y is known prior to the

calculation. Finally, the case of a prolate spheroid with surface roughness is analyzed.

The stochastic effects of the roughness are calculated heuristically and the PDF of a

rough, randomly oriented prolate spheroid is presented.

4.1 Deterministic Scattering (Fixed Orientation,

Smooth Spheroid)

As discussed earlier in Chapter 2, the scattered pressure wave P, can be described in

terms of the incident pressure P, wavenumber k, and range r (2.1). The interaction

between the scatterer and the incident wave is assumed to be in the geometric regime.

That is, the wavelength of the incident wave is much smaller than the radius of

curvature of the prolate spheroid at the point of incidence. This allows the use of the

Kirchhoff approximation for the deterministic scattering amplitude [211:

f s f .ne dA (4.1)
A

where A is the wavelength of the incident wave, Iinc is the unit vector in the direction

of the incident wave, h is the outward normal to the surface at the point of incidence,

and rA is the distance between the source and the surface.

The use of the Kirchhoff approximation requires two important assumptions [21].

Firstly, the field and derivatives across the surface are exactly the same as they would

be in the absence of the object. Secondly, the field and its derivative are identically
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zero in the geometric shadow of the object under consideration. These assumptions

will be approximately true only if the size of the object being considered is much

larger than the wavelength of the incident wave. Therefore, the analysis presented

in this thesis is limited to the case of the geometric scattering regime, where both

assumptions hold true.

Using the above approximations leads to an analytical, frequency-independent

formulation for the scattering cross-section of a prolate spheroid. The magnitude of

the scattering amplitude of the prolate spheroid is the square root of the scattering

cross-section and is given by [20]:

c sin2 (tan' (bi/ctangy)) (4.2)
- 2 cos 2 

7

Where y is the angle between the incident beam and the plane that is normal

to the polar axis of the prolate spheroid (Fig. 1-1). When y = 00, the spheroid is

broadside-on with respect to the incident wave and y = 90' represents the end-on

case. c is the length of the semi-major axis of the prolate spheroid and it has semi-

minor axes of equal length, bi = b2 . The length and width of the scatterer are thus

2c and 2bi = 2b2 , respectively. The aspect ratio of the prolate spheroid is defined to

be c/bi (or, equivalently, length/width).

The target strength can be derived from the scattering amplitude using:

TS = 10logIf" |2  (4.3)

For the case of broadside incidence [20], (4.2) reduces to:

c
IfSSIo = - (4.4)

The results of (4.2) are shown in Fig. 4-1 below. The scattering amplitude for
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values of -y between 0 and 7r/2 is shown for prolate spheroids with aspect ratios

ranging from 1:1 (sphere) to 10:1 (elongated). The spheroids are assumed to enclose

a constant volume with varying aspect ratio, therefore, the peak broadside scattering

amplitude of the 10:1 prolate spheroid is greater than that of the sphere. The sphere

itself is symmetric over all axes, resulting in a constant scattering amplitude with

respect to -y. The scattering is shown to be more directional with increasing aspect

ratio.

10*
---- 10:1

--- 5:1
- - -2:1

1:1 (Sphere)

10:1

0 n/2
broadside Y end-on

Figure 4-1: Scattering amplitude with varying angle of incidence for prolate

spheroids of constant volume and different aspect ratios.

4.2 Stochastic Effects (Random Orientation, Smooth

Spheroid)

The prolate spheroid may be at any orientation # with equal probability. The axis

of rotation of the prolate spheroid is fixed and perpendicular to the MRA plane of

the transducer. Therefore, 4 is a uniform random variable between 0 and 7r/2, which

is independent of 0, the location of the prolate spheroid in the beam. Including
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the range of values between 7r/2 and 21r is unnecessary due to the symmetry of the

scatterer's shape. Thus, the PDF of # is:

2
p4() = - for 0 < 7r/2 (4.5)

Ir

However, the scattering amplitude of the prolate spheroid is dependent on the angle

relative to the transducer, -y. This angle is dependent on both the location and

orientation of the prolate spheroid. Using elementary geometry:

7 = 0 + # (4.6)

The symmetry of the prolate spheroid allows a direct substitution of the distri-

bution of 7 for that of # in (4.5), since the PDF is being calculated between 0 and

27r in both cases. The scattering amplitude functions as dependent on y and # will

be identical except for a shift along the X-axis that is modulo 27r. Since there is no

change in the shape of the amplitude function, the PDF of the scattering amplitude

derived from 7 will be identical to one derived from #. Therefore, the probability

distribution of f.s can be derived in a manner similar to the beampattern PDF in

(3.1):

P_ (fYs =(4.7)
d-y

The above formula has a simpler form than (3.1) since the function f,, is monotonic.

The results of substituting (4.2) in (4.7) are illustrated in Fig. 4-2 below. The PDF

of the scattering amplitude of a sphere is not shown. Since the scattering amplitude

of a sphere is constant with respect to 7 (Fig. 4-1), the PDF of the scattering

amplitude would be a delta function at that constant value. As the aspect ratios of the

prolate spheroids increase and their volume is kept constant, the difference between
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the maximum (broadside) and minimum (end-on) amplitudes increases. This results

in a PDF that spans a progressively larger range of amplitudes with increasing aspect

ratio.

The differential of the scattering amplitude goes to zero near - = 0 (broadside)

and 7r/2 (end-on). Since this differential is present in the denominator of the PDF

expression (4.7), and the numerator is a constant value, singularities are present at

the maximum and minimum amplitudes of each scattering amplitude PDF.

C
0

C
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C

0

CL

101

10C-

-2

10
10

-10:1
- --5:1

---- --- -- ----- -- ----

10:1 2:1
--------------- --------- - - - - - - -

---- ---- -- -------

- - -- - - -- -- -- - - - - -

10 10

Normalized Echo Amplitude
10

Figure 4-2: PDFs of scattering amplitude for smooth prolate spheroids that are

randomly and uniformly oriented in a plane that also contains the incident field.

Beampattern effects are not included.

4.3 Stochastic Effects (Random Orientation, Rough

Spheroid)

It has been shown that scattering at short wavelengths by randomly rough bounded

objects at fixed orientations can be Rayleigh distributed [9, 10]. One of the earliest
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studies on this subject was written by Eckart in 1953, involving scattering of sound

by the sea surface [22]. Due to the time-varying, random changes in the sea surface,

developing mathematical models with analytical formulas for surface scattering was

difficult. Using a statistical approach, Eckart obtained approximate analytical formu-

las for the sea surface scattering coefficients of short- and long-wavelength acoustic

waves. Using the Kirchhoff approximation for the short wavelength case and assum-

ing that the height of the sea surface is a Gaussian random variable, Eckart obtained

the following result for the mean scattered field due to an incident plane wave:

(R) = e~2k2h 2
coS

2O (4.8)

where R is the reflection coefficient of the sea surface, h is the standard deviation of

variations in sea height and 0 is the angle of incidence of the acoustic signal.

After further manipulation and approximations, Eckart was able to derive an

expression for the scattering per unit area of the sea surface, assuming that surface

waves followed a bivariate Gaussian distribution:

a 1 e-1/2[(a/ac) 2 +(b/fc) 2] (4.9)
87ra#

where o- is the scattering coefficient, -a 2 and -#2 represent the zero-lag autocorrela-

tions of the Gaussian distributions representing variations in sea height along the X-

and Y-axes, respectively. The coefficients a and b represent the sums of the compo-

nents of the incident and scattered vectors in the X- and Y-directions, and they are

related to kh.

For the case of uniform roughness around the object, the echo from the smooth

spheroid at a fixed orientation is assumed to be modulated with a Rayleigh distributed

random variable [9, 10]. This is expected to be further modulated by an equation

related to (4.8) and (4.9) with an exponential dependence upon k2 h2 . However, the
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PDF is normalized with respect to the root mean square (rms) amplitude. As a result

of the normalization, the exponential modulation drops out and has no effect on the

PDF.

Using the formula for the distribution of the product of two random variables

(derived in Section 2.1.2), the echo from the smooth prolate spheroid modulated by

a Rayleigh distributed random variable is:

00

Prs (|frs|) = -Pray (X) ps(, dx (4.10)

Where Prs and ps, are the echo amplitude distributions of rough and smooth prolate

spheroids, respectively, and Pray is the standard Rayleigh PDF. Due to the complex

analytical description of ps, and the presence of 1/x as a function argument within

the integral, finding an analytical solution for (4.10) is very difficult.

As in the case of the beampattern PDF, a solution is numerically calculated in

Matlab and the result is shown in Fig. 4-3. This figure plots the PDF of rough

prolate spheroids of varying aspect ratios with respect to normalized amplitude. As

illustrated in the plot, an increase in the aspect ratio of the prolate spheroid moves

the tail of the PDF away from that of the Rayleigh distribution, thus increasing the

degree to which the echo PDF is non-Rayleigh.

Unlike the echo PDFs of the smooth spheroids shown in Fig. 4-2, the PDFs of

the rough spheroids lack singularities. This is due to the continuous and unbounded

nature of the Rayleigh PDF. Modulating the scattering amplitude of smooth prolate

spheroid with a Rayleigh distributed random variable has the effect of "smoothing

over" the singularities, resulting in continuous, smooth PDFs.

Fig. 4-3 includes the special case corresponding to a rough sphere, or a rough

prolate spheroid with an aspect ratio of unity. In this case, the scattering ampli-

tude of the smooth sphere is constant and independent of the orientation -/ of the
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sphere. Therefore, the PDF of the scattering amplitude from the smooth sphere is

a delta function, normalized to unit amplitude. The resulting PDF of the scatter-

ing amplitude of the rough sphere p,, is identical to the Rayleigh distribution, since

multiplication by a constant has no effect on a normalized probability distribution.

C
0
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C
0)a
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(U

-D
0
0.

10"

102

10

10~10 0 -0 1 10 2

Normalized Echo Amplitude

Figure 4-3: PDFs of scattering amplitude for randomly oriented rough prolate
spheroids of varying aspect ratios, without beampattern effects. The circular

markers represent the results of Monte Carlo simulations for validation, discussed
later in the thesis.
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Chapter 5

Scattering by Prolate Spheroids

with Beampattern Effects

The probability distributions of the beampattern and the echo amplitude of a ran-

domly oriented rough prolate spheroid have been determined in chapters 3 and 4,

respectively. As shown in chapter 2, the total echo amplitude of the system is the

product of the beampattern and the scattering amplitude (without beampattern ef-

fects) of the rough prolate spheroid. The effects of the system constants are not

considered, as the PDFs are normalized with respect to their rms values. The nor-

malization results in PDFs that are invariant under changes to the system constants.

The PDF of the overall echo amplitude for the system of a cylindrical aperture and

a randomly oriented and located prolate spheroid can now be derived using (4.10),

(3.1), and (3.7). The result of the calculation is presented in Figs. 5-1 - 5-3. For

comparison, the cases of a smooth spheroid, a Rayleigh scatterer and a point object are

also included, with beampattern effects applied to each scatterer. Finally, a Rayleigh

distribution is shown to illustrate the degree to which the above distributions are

non-Rayleigh.

From Fig. 5-1, some important characteristics of the echo amplitude PDFs are ap-
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Figure 5-1: Scattering amplitude PDFs for various scatterers, with beampattern
effects.

parent. The point scatterer and smooth prolate spheroid PDFs have a finite maximum

value and the probability of obtaining a stronger echo are zero. This is intuitively

correct, as the point scatterer returns the strongest possible echo when 0 = 0* and

the smooth prolate spheroid does so when both <p and 0 are 0'. For the case of a

Rayleigh scatterer, the beampattern's echo amplitude is modulated by a Rayleigh

random variable with no upper bound. Therefore, there is a small non-zero probabil-

ity of obtaining an echo amplitude above any positive number. Similarly, the rough

prolate spheroid modulates the finite echo amplitude of a smooth prolate spheroid,

with a Rayleigh random variable. The resulting PDF is once again positive up to

infinity.

The PDFs of the echo amplitudes of rough prolate spheroids that are randomly

oriented, taking into account bearnpattern effects, are shown in Fig. 5-2. As is the

case when beampattern effects are not taken into account (Fig. 4-3), prolate spheroids

with higher aspect ratios have PDFs that are increasingly non-Rayleigh in nature. In

particular, the tails of the PDFs deviate further from the tail of the Rayleigh PDF

with increasing aspect ratio.
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For a rough prolate spheroid of a given aspect ratio, taking beampattern effects

into account increases the degree to which the amplitude PDF is non-Rayleigh (Figs.

4-3 and 5-2). This is especially true at lower values of the echo amplitude. When

beampattern effects are not included, the PDF increases steadily until it reaches

a mode. After this point, the curve decreases monotonically, with a tail that is

dependent on the aspect ratio of the prolate spheroid. When beampattern effects are

taken into account, the complexity of the PDF function increases significantly. The

presence of a mode in the distribution is no longer obvious, and PDFs of different

aspect ratios intersect at up to five points. Without beampattern effects, the PDFs

of spheroids of two different aspect ratios always intersect at two points.

---- 1:1 --- 10:1
5:

2:---:1
-- 21 ---- :1

10 yeU.

1:110

- - -_eRy-eigh

00

Increasing 0 ~ 0

_________________________Aspegj Ratio 0 0 o

10 1------------- 1 - - -' 1 -

Normalized Echo Amplitude Normalized Echo Amplitude

Figure 5-2: Echo amplitude distributions for rough prolate spheroids of varying
aspect ratios, with beampattern effects. The data points are the results of Monte

Carlo simulations for validation, discussed later in the paper. The plot on the right
provides a zoomed-in view focusing on the tails of the PDFs for prolate spheroids of

various aspect ratios.

For practical applications, inspecting the probabilities of false alarm (PFA) for

each of the cases discussed previously may be insightful. In particular, it is apparent

from Fig. 5-3 that the tails of the PFAs for each case are non-Rayleigh to different

extents. The rough prolate spheroid with a 10:1 aspect ratio has the most strongly
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non-Rayleigh echo PFA. Compared to a smooth prolate spheroid, the difference in

probabilities is large above a normalized echo amplitude of 20. The smooth prolate

spheroid is, in turn, more strongly non-Rayleigh than the Rayleigh scatterer with

beampattern effects.

Point scatterer
----------- -- s terer

- - Smooth 10:1 prolate spheroid
---- Roug 10:1 prolate spheoid

--------,--------- --- ------- --- ----- ----------

Rayleigh
-ra e - ---------

4~id 1lo1-' 1* 1' 1

Normalized Echo Amplitude

Point scaterer
-Rayleigh scatterer

Smooth 10:1 prolate spheroid
------ Rough 10:1 prolate spheroid

i ~ Rough
------------- . pird

Point
------ --------------- 

to'
Normalized Echo Amplitude

Figure 5-3: Plot of the scattering amplitude PFAs for various types of scatterers

(corresponding to Fig. 5-1), as well as a plot focused on the tails of these PFAs.
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Chapter 6

Monte Carlo Validation and

Computational Issues

Due to the difficulty of obtaining analytical solutions to the integrals described in

chapters 2 - 5, these integrals are solved numerically in the MatLab programming

environment. Since MatLab operates on discrete data sets with finite resolution, it

is important to validate the results to ensure that accuracy is not compromised. The

validation procedure is performed using Monte Carlo methods described in Section

6.1 below.

Modeling continuous functions with discrete data sets also lead to various com-

putational issues, which are described and addressed in Section 6.2. The foremost

problem encountered during validation was caused by the singularities in the beam-

pattern PDFs. The presence of these singularities necessitated adaptive sampling

methods to obtain high accuracy and successfully verify the results of the numerical

integration.
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6.1 Monte Carlo Validation

To verify the probabilistic calculations, the rough prolate spheroid case was simulated

using Monte Carlo methods. Each of the variables associated with the characteristics

of the prolate spheroid is generated according to the appropriate random distribution.

The orientation of the prolate spheroid # and its location in the beampattern 0 are

both uniform between 0 and ir/2. An inbuilt MatLab routine was used to generate

these random variables. The problem of constructing sets of pseudorandom numbers

from deterministic information is well studied, and MatLab's results fulfill certain

statistical tests, such as negligible correlation between random numbers in the same

set. Therefore, MatLab's inbuilt rand(...) function is used without any modifica-

tions. The echo amplitude of the prolate spheroid is then calculated according to

the generated values of # and 0. To account for the roughness, the echo amplitude

is multiplied by a Rayleigh random variable. MatLab also has an inbuilt routine

for generating random numbers that are distributed according to the Rayleigh PDF.

This routine uses the inverse sampling method to derive Rayleigh distributed random

numbers from a uniform distribution, and it was used without modifications in this

research.

In most practical situations, the tail of the probability of false alarm will be of the

most interest. To obtain an accurate simulation of the tail of the curve, many events

with probabilities below 10-6 must be evaluated. To ensure a statistically significant

number of samples even at very low probabilities, several million prolate spheroid

coordinates are generated. The data points obtained for their echo amplitudes are

then binned with logarithmic bin widths. The number of spheroids assigned to each

bin is normalized by the width of the bin and the whole curve is normalized to

ensure the area below the probability distribution is 1. This result is then compared

to the numerically evaluated analytical formulas as shown in Figs. 4-3 and 5-2.

As evident in these plots, there is close agreement between the Monte Carlo and
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analytical methods. The beampattern PDF for a cylindrical transducer contains a

number of singularities that occur when the differential of the beampattern function

with respect to 0 approaches zero. For a PDF derived from Monte Carlo simulations,

it is difficult to obtain an accurate estimate of the integral of the function over a

singularity. This explains why the match between analytical and Monte Carlo data

in Fig. 5-2 is not perfect.

6.2 Computational Issues

All of the above computations are conducted using discrete data sets in Matlab. The

discrete nature of the data means that additional care must be taken while perform-

ing operations meant for continuous functions, especially derivatives and integrals.

In particular, the integral in the formulation for the product of two random variables

is difficult to evaluate with high precision (2.12). Ideally, Matlab's inbuilt routine for

performing Simpson's method may be used to provide a very good approximation for

an integral. However, this routine requires a function that can be evaluated at arbi-

trary values. Due to the process of normalization and the lack of a simple analytical

formulation for the functions being used, the distribution can only be computed over

a finite set of amplitudes. The values required for evaluating the product integral

must be interpolated from this set.

As shown in Section 2.1.2, the product of two random variables is a commutative

operation. In the context of (4.10), this means that the order of the prolate spheroid

echo PDF and the Rayleigh 'roughness' PDF can be interchanged. Since the function

with AL as a parameter will require interpolation, we choose this function to be thex

Rayleigh PDF. This is because of the well known analytical formulation of a Rayleigh

PDF, which Matlab's inbuilt routines can evaluate with very high precision.

While validating the beampattern PDFs using Monte Carlo methods, the pres-
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ence of singularities required the use of adaptive sampling. The singularities in the

theoretical beampattern distribution arise at the maximum amplitude of the sidelobe,

where the slope changes sign. The theoretical PDF has a very sharp peak near this

amplitude that Monte Carlo simulation with fixed bin widths cannot account for.

The area under the singularity leads to a significant difference in the theoretical and

simulated curves once they are normalized. This issue was corrected by sharply re-

ducing bin widths in the vicinity of known singularities in the beampattern PDF. The

bin widths were reduced until the area under the singularity converged to a constant

value. This correction resulted in well matched theoretical and simulated curves.

The comparison of the analytical and Monte Carlo methods for calculating the

beampattern PDF is illustrated in Fig. 6-1 for the case of ka = 27r. Here, the

'analytical' method refers to numerical evaluation of the analytical formula (3.1).

As seen in the plot, the singularities that are apparent in the analytical plot (solid

line, (3.1)) are not accurately reflected in the Monte Carlo simulation (circles, (3.7)).

Therefore, the area contained in a narrow region around the singularity is much larger

for the analytical curve, when compared to the Monte Carlo curve. Since the total

area under the PDF is normalized to unity, the Monte Carlo curve lies above the

analytical curve for all values other than at the singularities.

The result of the Monte Carlo simulation when using the adaptive sampling tech-

nique described above is shown in Fig. 6-2. In this case, the width of the bins is

initially constant on a logarithmic scale at all points on the curve. The algorithm,

implemented in Matlab, analyzes the analytically generated PDF curve to find sin-

gularities. The bins that lie near the singularity are then subdivided up to fifty times

in order to allow the Monte Carlo simulation to capture the singularity with better

accuracy. As seen in Fig. 6-2, the peaks in the Monte Carlo curve are almost as

high as those in the analytically generated PDF. As a result, there is very little dif-

ference overall between the two methods, and the analytical procedure is successfully
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Figure 6-1: Beampattern PDF associated with two-way composite beampattern for
a circular aperture with ka = 27r. The numerically calculated curve (solid line)

based on analytical formulas (3.1) and (3.7), is compared to a Monte Carlo
simulation of a scatterer with constant scattering amplitude in the beam (circles).

The simulation data is divided into bins with equal width on a log scale.
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a circular aperture with ka = 27r, using (3.1) and (3.7). The numerically calculated

curve (solid line) is compared to a Monte Carlo simulation of a scatterer with
constant scattering amplitude in the beam (circles). The simulation data is

adaptively divided into bins with varying width. The width of bins is much lower
near the singularities present in the curve.
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Chapter 7

Summary and Conclusion

The primary contributions of this thesis are related to the approach of determining

echo statistics from first principles rather than inferring these statistics from previ-

ously obtained experimental data. In contrast to previous studies that used generic

statistical functions to describe the echo statistics and whose parameters were based

principally or solely on data, the formulation described herein rigorously relates key

physical characteristics of the scatterer and parameters of the transceiver system to

the shape of the echo PDF. The formulation takes into account previously published

studies on the beampattern effects of the sensing system, which are randomized due

to the random location of the scatterer. Thus, this physics-based approach is predic-

tive and can be applied to a wide range of types of scatterers and transceivers. A

summary of the main contributions is presented below.

" The echo statistics for a randomly oriented prolate spheroid are derived, first

without beampattern effects.

- Smooth prolate spheroid, varying aspect ratios

- Rough prolate spheroid, varying aspect ratios

" The echo statistics of the overall system are now derived, taking into account
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beampattern effects.

- Smooth prolate spheroid with beampattern effects, varying aspect ratios

- Rough prolate spheroid with beampattern effects, varying aspect ratios

e The theoretical predictions were validated through Monte Carlo simulations.

In addition, the following calculations were made:

" A comparison between beampattern PDFs when the scatterer is restricted to

the MRA plane versus when it is assumed to lie at any location in the 27r half

plane.

" A comparison between beampattern PDFs for different values of ka.

" PDFs of various types of scatterers, with beampattern effects are explored. In

particular, differences in the slopes of the tails of each curve and the degree to

which they are non-Rayleigh are demonstrated. These properties are shown to

be dependent on the presence of surface roughness and the aspect ratio of the

prolate spheroid.

" The PFAs of the scatterers analyzed above are also shown, with qualitatively

similar results.

The predictions show that the echo PDF from the spheroid in the beam is strongly

non-Rayleigh. The degree to which it is non-Rayleigh and, specifically the tail of the

distribution, increases with increasing complexity of the scatterer (point scatterer

through rough spheroid) as well as increasing aspect ratio of the spheroid. It had

long been known that beampattern effects and number of scatterers contribute to

the non-Rayleigh nature of echoes. This study shows that the complexity of the

scatterer also contributes to the non-Rayleigh nature of the echo and must be taken

into account.
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Also, the calculations were limited to the direct path geometry (that is, no waveg-

uide effects) and the case in which the orientation and location of the spheroid were

varied uniformly over all angles in the same plane that also contains the MRA. The

two important cases of a waveguide environment and arbitrary range of orientation

and location are outside the scope of this current study. However, it has been shown

in the first case that the effects of a long-range multi-path environment in which there

are both reflections directly from the scatterer and from the boundaries, the echo will

tend toward Rayleigh for many paths [23]. Also, it is anticipated in the second case

that once the orientation of the prolate spheroid span all angles and the scatterer is

located anywhere in the beam (i.e., neither quantity is limited to being in a plane),

the results would be qualitatively similar. The results could differ significantly when

the orientations and/or locations are limited to arbitrary ranges of angles.
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Appendix A

Matlab Code

This section includes selected Matlab code files written by the author that were critical

to the research described in this thesis. The source code was run using Matlab R2011b.

A.1 ellipsoid.m

This function calculates the scattering amplitude and the PDF of the scattering am-

plitude of a prolate spheroid with given eccentricity eac over one million uniformly

spaced values of 0 between 0 and r/2. The prolate spheroid is assumed to have a

minor axis of length 0.1 m. However, the final dimensions of the spheroid are not

relevant as the final result is normalized. The function implicitly assumes that the

scattering amplitude is non-negative and monotonic over all calculated values of 0.

The PDF of 9 is assumed to be uniform over the range, and the PDF of the scattering

amplitude is derived using (4.7).

1 function [pdf-x2, pdf-y2, cdf, pfa, theta, sigma-bs] = ellipsoid(e-ac)

2 % Calculates scattering amplitude of prolate spheroid according to angle.

3

4 % Setting constants
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s r = 0.1;

6 c = ((r^3)/(e-ac^2))^(1/3);

7 e-ba = 1;

s theta = linspace(O.0001, pi/2 - 0.0001, 1e6);

9

10 % Calculating scattering cross section

11 sigma-bs = (((c^2)* (eba^2))/4)* ((sin(atan(e-ac./tan(theta)))./cos(theta)).4);

12

13 % Convering t-o PDF

14 protopdf = sqrt(sigma-as); % Converting from scattering cross section to scattering amp

15 pdfsize = le4;

16 pdf-y = zeros(1,pdfsize);

17 pdf-x = zeros(1,pdfsize);

18 inc2 = length(theta)/pdfsize;

19

20 parfor i = 1:pdfsize - 1

21 y = protopdf(floor(inc2*i):floor(inc2*(i + 1)));

22 x = theta(floor(inc2*i):floor(inc2*(i + 1)));

23 if (length(y) > 1)

24 pdf-y(i) = 1/(mean(abs(diff(y))));

25 pdf-x(i) = mean(y);

26 end

27 end

28 [pdfx2 idx] = sort(pdf-x);

29 pdf-y2 = pdf-y(idx);

30

31 [pdf-x2, pdf-y2] = pdf-normalizer(pdf-x2 (2:end), pdf-y2 (2:end));

32

33 cdf = cumtrapz(pdf-x2, pdf-y2);

34 pfa = 1 - cdf;
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A.2 cylbpnum2.m

This function calculates the PDF of the beampattern amplitude generated by a cylin-

drical piston transducer of radius a that is emitting sound with wavenumber k. The

function accepts the product of both values as the sole input parameter. Due to sym-

metry, the beampattern is calculated for values of 0 between 0 and 7r/2. The PDF of

the beampattern is derived using (4.7).

i function [pdf-x pdf-y theta bp] = cylbp-num2 (ka)

2 % Numerically calculates PDF of the beampattern of cylindrical piston transducer given

3

4 theta = logspace(-12, log(pi/2 - le-6), 5e6);

5

6 % Calculating beampattern for piston transducer

7 nump = 2*besselj(1, ka*sin(theta));

8 denp = 2*pi*sin(theta);

9 bp = (nump./denp).^2;

10

ii di f f _bp = abs (gradient (bp, theta) ) ;

12

13 % Numerically calculating PDF from beampattern

14 pdfsize = 1500;

is % inc = max(abs(bp))/pdfsize;

16 inc = logspace(-6, 0, pdfsize + 1);

17 temp-y = zeros (1,pdfsize);

18 temp-x = zeros(1,pdfsize);

19

20 parfor i = 1:pdfsize

21 idx = (bp > inc (i)) & (bp < inc (i + 1));

22 if sum(idx) > 1

23 bo = bwboundaries(idx);
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means = zeros(length(bo), 1);

for j = 1:length(bo)

xi = bo{j}(1:ceil((end-1)/2),2);

means (j) = mean (1. /(dif f-bp (xi)));

end

temp-y(i) = sumn(means);

temp-x(i) = mean(bp(idx));

elseif sum(idx) == 1

temp-y(i) = mean(1./(diff-ap(idx)));

temp-x(i) = bp(idx);

end

end

temp-x = temp-x(temp-y y 0);

temp-y = temp-y(temp-y # 0);

% [temp-x2 ind] = sort(temp-x);

% temp.y2 = temp-y(ind);

[pdf-x pdf-y] = pdf-normalizer(temp-x, temp-y);

% pdf-x = temp-x;

% pdf-y = temp-y/trapz(tempx, temp-y);

% % Debug plots

% close all

% figure(1)

% semilogy(theta, bp, '.')

Stitle (sprintf('Beampattern intensity, ka = %upi', ka/pi))

% grid on

% set(gca, 'XMinorGrid', 'Off', 'YMinorGrid', 'Off');

% axis([le-4 pi/2 le-10 10])

Sfigure ('PosItion', [0 0 400 400])

% loglog(pdf-x, pdf-y, 'k', 'LineWidth', 1.2)

% % title (sprintf('Beampattern PDF, ka = %upi', ka/pi))

% grid on

% set(gca, 'XMinorGrid', 'Off', 'YMinorGrid','Off');
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57 % legend('Point scatterer')

58 % axis( [2e-3 1e2 le-3 le3])

A.3 prosph-simulation.m

This function implements a Monte Carlo simulation in order to generate the PDF

of the echo amplitude of a system with a rough prolate spheroid scatterer of given

eccentricity and a transducer with fixed ka = 27r, using (3.7) and (4.2) . A total of

five million "spheroids" are simulated and the echo amplitude of each object is sorted

into bins that have uniform width on a logarithmic scale. This binned data is then

utilized to verify the outcome of the analytical calculations performed in this thesis.

1 function [pdf-x, pdf-y] = prosph-simulation(e-ac)

2 % Physics based simulation representing a randomly rough, randomly oriented

3 % prolate spheroid of eccentricity e-ac randomly located in a cylindrical

4 % aperture beampattern of ka = 2*pi.

5

6 % Setting constants

7 r = 0.1;

8 c = ( (r^3) / (e...ac^2) ) (1/3);

9 e-ba = 1;

10

11 % Generating random variables

12 theta-sph = rand(1, 5e6)*pi/2;

13 roughness = raylrnd(ones(1, 5e6)/sqrt(2));

14

15 % Calculating echo amplitude

16 rsa = (((c^ 2 ) * (e-ba 2 ) ) /4 ) *((sin (atan (e-ac. /tan (theta-sph) ))./cos (theta-sph)) .2);

17

18 % Multiplying factors
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19 data = rsa.*roughness;

20

21 % Binning data

22 [pdf-x, pdfiy] = logbinner(data, 300, 0);

A.4 pdffmultiplier2.m

This function finds the PDF of the product of two random variables with known

PDFs using (2.13). The second PDF that is entered as a parameter to this function

is interpolated in order to perform discrete numerical integration with a rational ex-

pression in the function argument. The primary loop is parallelized for computational

efficiency. This function should be called with Matlab's inbuilt matlabpool routine

for faster computation on multicore systems.

1 function [x-pdf, y-pdf, cdf, pfa] = pdf-multiplier2(xb, yb, x2, y2)

2 % Written by Saurav Bhatia, WHOI, summer 2009.

3 % Combines PDFs assuming x2, yb is beampattern PDF and y2 is the

4 % target response across all values of x2. Uses equation (15)

5 % from paper by Chu, Stanton.

6

7 x2 = x2(x2 0 0);

8 y2 = y2(x2 0 0);

9

10 % if length(xb) > length(x2)

11 domain = xb;

12 % else

13 domain = x2;

14 % end

15

16 v = logspace(-5, 6, 2e3); % The output PDF is calculated on this set of points
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y-pdf = zeros (1, length (v) ) ;

parfor ii = 1:length(v)-1

y2_temp = interpl(x2, y2, v(ii)./xb, 'spline', 'extrap');

acc = yb.*y2_temp./xb; % Calculating integrand

% acc(xb < v(ii)) = zeros(l, length(acc(xb < v(ii)))); % Setting limits of integrat:

y-pdf(ii) = trapz(xb, acc); % Integrating

24 end

25

26 [x-pdf, y-pdf] = pdf-normalizer(v, y-pdf);

27

cdf = cumtrapz(x-pdf, y-pdf);

pfa = 1 - cdf;

A.5 roughprolatespheroid.m

This function provides examples of calls to the other functions listed in this appendix

and generates Figs. 5-2 and 5-3.

1 close all

2 % load('data/tsdata.mat')

3 % load(' data/pdf-prolatespheroid. mat')

4 % matlabpool open 8

5

6 %% Analytical rough prolate spheroid calculations

7 [x_10_lr, y_10-lr, cdflOr, pfalOr] = roughellipsoid(O.1);

8 [x_5-lr, y_5-lr, cdf5r, pfa5r] = roughellipsoid(O.2);

9 [x_3-1r, y_3-lr, cdf3r, pfa3r] = roughellipsoid(1/3);

10 [x-2_lr, y_2-lr, cdf2r, pfa2r] = roughellipsoid(0.5);

11

12 %% Numerical rough prolate spheroid calculations
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x-r = logspace(-5,

xi = logspace(-5,

xh = logspace (-6,

y-r = raylpdf(x-r,

[x_10_1

[x-5-1,

[x_3-1,

[x_2_1,

5, 5000);

5, 5000);

5, 200);

1/sqrt(2));

y_10-1, cdfl0, pfalO] = ellipsoid(0.1);

y_5-1, cdf5, pfa5] = ellipsoid(0.2);

y_3-1, cdf3, pfa3] = ellipsoid(1/3);

y-2_1, cdf2, pfa2] = ellipsoid(0.5);

pfar = 1 - raylcdf(x-r, 1/sqrt(2));

fprintf('Simulating 10:1 smooth prolate spheroid PDF\n');

[xrhl0, yrhl0] = prosph-simulation(1/10);

fprintf('Simulating 5:1 smooth prolate spheroid PDF\n');

[xrh5, yrh5] = prosph-simulation(1/5);

fprintf('Simulating 3:1 smooth prolate spheroid PDF\n');

[xrh3, yrh3] = prosph-simulation(1/3);

fprintf('Simulating 2:1 smooth prolate spheroid PDF\n');

[xrh2, yrh2] = prosph-simulation(1/2);

figure

loglog(x_10_1r, y_10_1r, 'k', 'linewidth', 1.2)

grid on

hold on

loglog(x_5_1r, y_5_1r, 'k:', 'linewidth', 1.2)

% loglog(x_3-1r, y_3_lir, 'k', 'linewidth', 1.2)

loglog(x_2_1r, y_2_1r., 'k-.', 'linewidth', 1.2)

loglog(x-r, y-r, 'k-')

loglog(xrhlO(1:5:end), yrhlO(1:5:end), 'ko');

loglog(xrh5(1:5:end), yrh5(1:5:end), 'ko');

% loglog(xrh3, yrh3, 'ko');
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46 loglog(xrh2(1:5:end), yrh2(1:5:end), 'ko);

47 % loglog(xrh, yrh, 'g.');

48 axis([le-3 le2 le-6 le3])

49 legend('10:l', '5:1', '2:1', '1:1');

5o set(gca, 'XMinorGrid', 'Off', 'YMinorGrid', 'Off');

51 % ylabel('Probability Density Function')

52 % xlabel ('Normalized Echo Amplitude')

53 % title('Rough prolate spheroid echo PDF, no beampattern effects')

54

55 %% Beampattern Calculations

56 fprintf('Beginning beampattern calculations\n');

57 tic

58 [x-bp, y-bp] = cyl-bp-num2(2*pi); % Calculating beampattern

59 toc

60 % [x-bp2, y-bp2] = cyl-bp-num3 (2*pi) ; % Truncated beampattern

61 cdf-bp = cumtrapz(x-bp, y-bp);

62 pfa-bp = 1 - cdf-bp;

63 fprintf('Generating samples from beampattern PDF\n');

64 % samples-bp = randarb(x-bp, cdf-bp, 1e7);

65

66 %% Echo PDF calculations

67 % roughsph10-bp = prosph-bpsimulation (1/10);

68 % roughsph5-bp = prosphibpsimulation (1/5);

69 % roughsph3-bp = prosph-bpsimulation (1/3);

70 % roughsph2_bp = prosph.bpsimulation (1/2);

71 rayl-bp = prosph~bpsimulat ion (1);

72

73 fprintf('Calculating Rayleigh scatterer echo\n');

74 % [x-ra y-ra cdf-ra pfa-ra] = rayli-multiplier(x-bp, y-bp);

75 [x-ra y-ra cdf-ra pfa-ra] = pdf-multiplier2 (x-bp, y-bp, x-r, y.r);

76 % [xrb, yrb] = logbinner(rayl-bp', 100, 0);

77 fprintf('Calculating smooth prolate spheroid scatterer echo\n');

78 [x-ss y-ss cdf-ss pfass] = pdfxultiplier3(x-bp, y..bp, x-10-1, y-10-1);
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79 fprintf('Calculating 10:1 rough prolate spheroid scatterer echo\n');

80 [xrblO, yrblO) = prosph-bpsimulation(1/10);

81 [x-rslO y-rslO cdf-rsl0 pfa-rslO] = pdf-multiplier2(xbp, y-bp, x-10-1r, y_10-1r);

82 fprintf('Calculating 5:1 rough prolate spheroid scatterer echo\n');

83 [xrb5, yrb5j = prosph]bpsimulation(1/5);

84 [x-rs5 y-rs5 cdf-rs5 pfa-rs5] = pdfamultiplier2(x-bp, y-bp, x_5_1r, y_5_1r);

85 fprintf('Calculatirig 3:1 rough prolate spheroid scatterer echo\n');

86 [xrb3, yrb3] = prosph-bpsimulation(1/3);

87 (x-rs3 y-rs3 cdf-rs3 pfa-rs3l = pdf-ultiplier2(x-bp, y-bp, x-3-1r, y-3-1r);

88 fprintf('Calculating 2:1 rough prolate spheroid scatterer echo\n');

89 [xrb2, yrb2] = prosph-apsimulation(1/2);

go [x-rs2 y-rs2 cdf-rs2 pfa-rs2l = pdfamultiplier2(x-bp, y-bp, x_2-1r, y_2-1r);

91 [xrb, yrb] = prosph-bpsimulation(1);

92

93 %% Plotting results

94

95 figure('Position', [1 400 400 400])

96 loglog(x-rslO, y-rs10, 'k', 'linewidth', 1.2)

97 grid on

98 hold on

99 loglog(x-rs5, y-rs5, 'k:', 'linewidth', 1.2)

100 % loglog(x-rs3, y-rs3, 'kI, 'linewidth', 1.2)

101 loglog(x-rs2, y-rs2, 'k-', 'linewidth', 1.2)

102 loglog(x-ra, y-ra, 'k-.', 'linewidth', 1.2)

103 loglog(xrblO, yrbl0, 'ko')

104 loglog(xrb5, yrb5, 'ko')

105 % loglog(xrb3, yrb3, 'ko')

106 loglog(xrb2, yrb2, 'ko')

107 loglog(xrb, yrb, 'ko')

108 loglog(x-r, y-r, 'k-')

109 % logg(xrht, yrht, 'k.')

1no axis([2 60 le-4 5e-2])

ni1 legend('Pointz scatterer', 'Rayleigh scatterer', 'Smooth prolate spheroid', 'Rough pro'
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legend('10:1', '5:1', '2:1', '1:1');

set (gca, 'XMinorGrid', 'Off', 'YMinorGrid', 'Off');

figure('Position', (1 400 400 400])

loglog(x-rslO, y-rs10, 'k', 'linewidth', 1.2)

grid on

hold on

loglog(x-rs5, y-rs5, 'k:', 'linewidth', 1.2)

% loglog(x-rs3, y-rs3, 'k', 'iinewidth', 1.2)

loglog(x-rs2, y-rs2, 'k-', 'linewidth', 1.2)

loglog(x-ra, y-ra, 'k-.', 'linewidth', 1.2)

loglog(xrbl0(1:5:end), yrbl0(1:5:end), 'ko')

% loglog(xrb5, yrb5, 'ko')

% loglog(xrb3, yrb3, 'ko')

% loglog(xrb2, yrb2, 'ko')

loglog(xrb(1:5:end), yrb(1:5:end), 'ko')

loglog(x-r, y-r, 'k-')

% loglog(xrht, yrht;_, 'k.')

axis([le-4 le2 le-4 le3])

% legend('Point scatterer', 'Rayleigh scatterer',

legend('10:1', '5:1', '2:1', '1:1');

set(gca, 'XMinorGrid', 'Off', 'YMinorGrid','Off');

'Smooth prolate spheroid', 'Rough pro.

figure

loglog(x-bp, y-bp, 'k', 'linewidth', 1.2)

grid on

hold on

loglog(x-ra, y-ra, 'k:', 'linewidth', 1.2)

loglog(x-ss, y-ss, 'k-', 'linewidth', 1.2)

loglog(x-rs10, y-rslO, 'k-.', 'linewidth', 1.2)

axis([le-2 1e2 le-6 le4])

legend('Point scatterer', 'Rayleigh scatterer (1:1)', 'Smooth 10:1 prolate spheroid', 'I

loglog(x-r, y-r, 'k-')

63



145 set(gca, 'XMinorGrid', 'Off', 'YMinorGrid','Off');

146 % % ylabel('Probability of False Alarm')

147 % % xlabel('Normalized Echo Amplitude')

148

149 figure('Position', [1 400 400 400])

15o loglog(x-bp, pfa-bp, 'k', 'linewidth', 1.2)

151 grid on

152 hold on

153 loglog(x-ra, pfa-ra, 'k:', 'linewidth', 1.2)

154 loglog(x-ss, pfa-ss, 'k-', 'linewidth', 1.2)

155 loglog(x-rs10, pfa-rs10, 'k-.', 'linewidth', 1.2)

156 axis([le-3 1e2 le-6 le4])

157 legend('Point scatterer', 'Rayleigh scatterer', 'Smooth 10:1 prolate spheroid', 'Rough

158 loglog(x-r, pfar, 'k-')

159 set(gca, 'XMinorGrid', 'Off', 'YMinorGrid','Off');
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