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Abstract

This paper will address the Fourier Series of functions with arbitrary period 2a.
We will derive forms of the Dirichlet and Fejer kernel’s, and eventually use these
to prove a form of Fejer’s theorem generalized to functions of arbitrary period.
We also discuss one specific example of a Fourier Series, apply Fejer’s theorem
to see that it converges to the correct function.



1. Introduction
We assume the reader is familiar with Fourier Series. So, we merely state,
without justification, the form of the Fourier series associated with a function
f(x) which is 2a periodic.

f(x) ∼ a0

2
+

∞∑
n=1

an cos
nπx

a
+ bnsin

nπx

a
,

where the constants an and bn are

an =
1
a

∫ a

−a

f(t) cos
nπt

a
dt, bn =

1
a

∫ a

−a

f(x)sin
nπt

a
dt.

We will notate the Nth partial sum of a Fourier series as

SN (x) =
a0

2
+

N∑
n=1

an cos
nπx

a
+ bn sin

nπx

a
.

We will also use σN (x), the arithmetic mean of the partial sums up to N ,
defined as follows.

σN (x) =
1

N + 1

N∑
n=0

Sn(x)

Additionally, in this paper, the following trigonometric identities will be
assumed without proof.

(1) cos(x) cos(y) =
1
2
(cos(x− y) + cos(x+ y)),

(2) sin(x) sin(y) =
1
2
(cos(x− y)− cos(x+ y)),

(3) sin(x) cos(y) =
1
2
(sin(x+ y)− sin(y − x)),

(4) sin2(x) =
1
2
(1− cos(2x)) .

2. The Dirichlet Kernel
We substitute the definitions of an and bn into SN (x) to give

SN (x) =
1
a

∫ a

−a

f(t)
2

dt

+
N∑

n=1

(
1
a

∫ a

−a

f(t) cos
nπt

a
cos

nπx

a
dt+

1
a

∫ a

−a

f(t) sin
nπt

a
sin

nπx

a
dt

)
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We then turn the sum of integrals into the integral of a sum, and apply (1)
and (2) in the Introduction. After canceling terms, we have

SN (x) =
1
a

∫ a

−a

f(t)

(
1
2
+

N∑
n=1

cos
nπ(t− x)

a

)
dt.

Then, we make the substitution u = t − x. Since f(x) has period 2a, this
substitution doesn’t require us to change the limits of integration. We then have

SN (x) =
1
a

∫ a

−a

f(x+ u)

(
1
2
+

N∑
n=1

cos
nπu

a

)
dt.

Now, note that we may take

2 sin
πu

2a

(
1
2
+

N∑
n=1

cos
nπu

a

)
= sin

πu

2a
+

N∑
n=1

2sin
πu

2a
cos

nπu

a
.

Applying the third trigonometric identity in the Introduction, and canceling
terms, we arrive at

1
2
+

∑
n=1

N cos
nπu

a
=

sin (N+1/2)πu
a

2 sin πu
2a

.

Substituting this result into the previous integral equation gives what is
commonly referred to as Dirichlet’s Integral.

Dirichlet’s Integral 1 SN (x) = 1
2a

∫ a

−a
f(x+ u)DN (u)du.

Here, DN is Dirichlet’s Kernel.

Dirichlet’s Kernel 1 DN (u) = sin
(N+1/2)πu

a

sin πu
2a

.

We will now prove one important property of the Dirichlet Kernel, to be
used later. Using the summation form of DN , we write

∫ a

−a

DN (x)dx =
∫ a

−a

(
1 + 2

N∑
n=1

cos
nπx

a

)
dx.

Again, we change the integral of a sum to a sum of integrals and evaluate.∫ a

−a

DN (x)dx = 2a+ 2
∑
n=1

N
a

πn
(sin(nπ) + sin(−nπ))

The right hand term evaluates to zero, and we have

(5)
1
2a

∫ a

−a

DN (x)dx = 1
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3. The Fejer Kernel
We define Fejer’s Kernel KN (x) in the following manner.

Fejer’s Kernel 1 KN (x) = 1
N+1

∑N
n=0 Dn(x)

However, we desire a closed form expression for Fejer’s Kernel. Toward this
end, we multiply the kernel by 2sin2 πx

2a , which, after applying the definition of
Dn, gives

2 sin2 πx

2a
KN (x) =

1
N + 1

N∑
n=0

2 sin
(n+ 1/2)πx

a
sin

πx

2a
.

Again applying (2) and canceling terms, we get

2 sin2 πx

2a
KN (x) =

1
N + 1

(
1− cos

(N + 1)πx
a

)
.

Finally, applying (4) and solving for KN (x) yields

KN (x) =
1

N + 1
1− cos (N+1)πx

a

1− cos πx
2a

.

We wish to prove four properties of Fejer’s Kernel. Firstly, that

(6) KN (x) ≥ 0.

This fact is obvious if we apply (4) to both cosine terms, giving

KN (x) =
1

N + 1

(
sin (N+1)πx

2a

sin πx
2a

)2

.

For the second property, we use the definition of KN to write

∫ a

−a

KN (x) =
1

N + 1

N∑
n=0

∫
−a

aDN (x)dx.

Using (5) to evaluate the right hand integral to 2a for each n immediately shows
that

(7)
1
2a

∫ a

−a

KN (x)dx = 1.

For the third property, we let 0 < δ ≤ |x| ≤ a. This implies that cos πδ
a ≥

cos πx
a . This, in turn, implies that

KN (x) =
1

N + 1
1− cos (N+1)πx

a

1− cos πx
2a

≤ 1
N + 1

1− cos (N+1)π∗x
a

1− cos πδ
2a

.

3



Additionally, it is clear that 1− cos (N+1)πx
a ≤ 2. So, we arrive at

(8) KN (x) ≤ 1
N + 1

2
1− cos πδ

a

whenever 0 < δ ≤ |x| ≤ a.
The last property is what is called Fejer’s Integral. Recalling the definition

of σN (x) and Dirichlet’s Integral, we may write

σN (x) =
1

N + 1

N∑
n=0

Sn(x) =
1

N + 1

N∑
n=0

1
2a

∫ a

−a

f(x+ u)Dn(u)du.

Again taking the sum inside the integral, we find

σN (x) =
1
2a

∫ a

−a

f(x+ u)

(
1

N + 1

N∑
n=0

Dn(u)

)
du.

Remembering the definition of KN (x) at the start of this section, we arrive at
Fejer’s Integral.

(9) σN (x) =
1
2a

∫ a

−a

f(x+ u)KN (u)du.

4. Convergence by Arithmetic Means

Before proving Fejer’s Theorem, we will give a brief proof of the following
fact:

Convergence Theorem 1 If the limit of {Sn} exists, then limn→∞Sn = limn→∞σn,
where Sn and σn have the same definitions as in the introduction.

Having a proof of this theorem will make Fejer’s Theorem much more meaning-
ful.

Proof: Suppose the sequence in question converges to S. That is, limn→∞Sn =
S. Then, there exists an integer N such that for every n ≥ N , |S − Sn| < ε

2 .
Then, we may write

S − σn =
(n+ 1)S
n+ 1

− 1
n+ 1

n∑
k=0

Sk.

We let n ≥ N . We then take S inside the sum and divide the sum into two
parts, giving

S − σn =
1

n+ 1

N∑
k=0

(S − Sk) +
1

n+ 1

n∑
k=N+1

(S − Sk).
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We may of course apply the triangle inequality over both sums to give absolute
values. Since N + 1 ≥ 1, the right hand sum is less than (n+ 1) ε

2 . So we have

|S − σn| < 1
n+ 1

N∑
k=0

|S − Sk|+ ε

2
.

As N is a constant, we may let n grow large until the left hand sum is less than
ε
2 . So we then have

|S − σn| < ε

for all n ≥ M ≥ N , where M is some constant integer. Therefore, σn converges
to S.

5. Fejer’s Theorem

We now come to Fejer’s Theorem, which is stated below.

Fejer’s Theorem 1 If f is a real valued, continuous function with period 2a,
then σn(x) converges uniformly to f(x).

Proof: Remembering (7) and (9), we write the difference between σN (x)
and f(x) as

σN (x)− f(x) =
1
2a

∫ a

−a

f(x+ u)KN (u)du− f(x)
1
2a

∫ a

−a

KN (u)du.

We may combine these integrals, and apply the triangle inequality to get abso-
lute values on both sides. We write KN (u) outside the absolute value since we
have already shown that it is always greater than or equal to zero.

|σN (x)− f(x)| ≤ 1
2a

∫ a

−a

|f(x+ u)− f(x)|KN (u)du.

Note that [−a, a] is compact, and f is continuous on that interval. Therefore,
f is uniformly continuous on that interval. Since f is uniformly continuous,
there exists a δ > 0 (which does not depend on x) such that |x− y| < δ implies
|f(y) − f(x)| < ε

2 . Without loss of generality, we take δ < a. Additionally,
since f is continuous and periodic, it must be bounded above and below. We
let M = sup|f(x)|. We then have that |f(x+ u)− f(x)| ≤ 2M . Keeping all of
this in mind, we divide the above integral into three parts: −a to −δ, −δ to δ,
and δ to a. Taking advantage of the continuity of f in the middle term gives

|σN − f(x)| < 1
2a

(∫ −δ

−a

2MKN (u)du+
ε

2

∫ δ

−δ

KN (u)du+
∫ δ

a

2MKN (u)du

)
.
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The combination of both (6) and (7) requires that the middle term be less
than or equal to 2a ε

2 . Using this and (8) on the outer integrals gives

|σN (x)− f(x)| < 2M
2a(N + 1)

(∫ −δ

−a

2
1− cos πδ

a

du+
∫ a

δ

2
1− cos πδ

a

du

)
+

ε

2
.

Evaluating both integrals, we now arrive at

|σN (x)− f(x)| < 4M(a− δ)
a(N + 1)

(
1− cos πδ

a

) +
ε

2
.

Everything on the right hand side is constant except for N . Thus, for some
sufficiently large A,

|σN (x)− f(x)| < ε

whenever N ≥ A.
Note that nowhere is there a dependence on x in the right hand side, as M

depends only on δ, which doesn’t depend on x. This detail is of great impor-
tance, because it places bounds on the difference between σN and f everywhere.
One can imagine the nightmare in engineering applications if the bound on the
error of a Fourier approximation varied from point to point. Such a scenario
would significantly decrease the usefulness of Fourier Series.

This concludes our proof of Fejer’s Theorem.

6. The Triangle Wave

To conclude, we discuss an explicit example of a function to which the meth-
ods of Fourier Series are applicable. The function is the so called triangle wave,
defined as follows:

T (x) = 2|x− 3
2
| − 1 for

1
2
≤ x ≤ 5

2
, T (x+ 2) = T (x).

This is an odd function of period 2. Straightforward application of the
definitions given in the Introduction to this paper shows that the Nth partial
sum of the Fourier Series of T (x) is

SN =
8
π2

N∑
n=0

sin nπ
2

n2
sinnπx.

Noting that for even n, sin nπ
2 = 0, and that for odd n, sin nπ

2 = (−1)
n−1

2 , we
achieve the following form for the partial sums:

SN =
8
π2

N∑
n=1,3,5,..

(−1)
n−1

2

n2
sinnπx.

Included below are three graphs of S3(x), S5(x), and S9(x), respectively.
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Note that the sequence of partial sums clearly converges by the Weierstrass
M-test. We simply note that |(−1)

n−1
2 sinnπx| ≤ 1. Then, we simply need that∑∞

n=1,3,.. n
−2 converges, which it most certainly does. Note that this not only

proves that the partial sums converge, but that they converge uniformly.
Applying the formula for σN (x) from the introduction to this case, we get

σN (x) =
1

N + 1

N∑
n=0

8
π2

n∑
k=1,3,..

(−1)
k−1
2

k2
sin kπx.

Noting that the nth partial sum appears N +1−n times in σN (x), we see that

σN (x) =
8

π2(N + 1)

N∑
n=1,3,..

N + 1− n

n2
(−1)

n−1
2 sinnπx.

It is not so immediately clear that this sequence converges as N goes to
infinity. However, the theorem proved in Section 4 guarantess that it does.
Since {SN (x)} converges, {σN (x)} must as well. Furthermore, they converge to
the same thing.

Fejer’s Theorem, as proved in Section 5, guarantees that

lim
n→∞σN (x) = T (x).

In fact, Fejer’s Theorem implies even more: that this convergence is uniform. If
we again make use of the theorem from Section 4, we see that

lim
n→∞SN (x) = T (x)

as well. In this case, this convergence is also uniform, as shown by the Weier-
strass M-test above.

Included below, for those who desire visual clarification, are three graphs:
S3(x), S5(x), and S9(x), respectively. Note that each successive graph looks
more similar to T (x) than the previous one.

This concludes our discussion of the triangle wave, and the paper.
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