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73aINFN Sezione di Trieste, I-34127 Trieste, Italy

73bDipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
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We present a measurement of the Bþ ! !‘þ� branching fraction based on a sample of 467 million B �B

pairs recorded by the BABAR detector at the SLAC PEP-II eþe� collider. We observe 1125� 131 signal

decays, corresponding to a branching fraction ofBðBþ ! !‘þ�Þ ¼ ð1:21� 0:14� 0:08Þ � 10�4, where

the first error is statistical and the second is systematic. The dependence of the decay rate on q2, the

invariant mass squared of the leptons, is compared to QCD predictions of the form factors based on a

quark model and light-cone sum rules.

DOI: 10.1103/PhysRevD.87.032004 PACS numbers: 14.40.Nd, 12.15.Hh, 13.20.He

I. INTRODUCTION

Most theoretical and experimental studies of exclusive
B ! Xu‘� decays have focused on B ! �‘� decays,

while B ! �‘� and Bþ ! !‘þ� [1] decays involving

the vector mesons � and ! have received less attention.

Here ‘ is an electron or muon, and X refers to a hadronic

state, with the subscript c or u signifying whether the state

carries charm or is charmless. Measurements of the

branching fraction of B ! �‘� are impacted by an irre-

ducible B ! Xu‘� background, typically the dominant

source of systematic uncertainty. In studies of Bþ !
!‘þ�, that background can be suppressed to a larger

degree, since the ! width is about 15 times smaller than

that of the �. Extractions of the Cabibbo-Kobayashi-

Maskawa matrix element jVubj from Bþ ! !‘þ� and

B ! �‘� decay rates have greater uncertainties than those
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from B ! �‘�, due to higher backgrounds and more
complex form-factor dependencies. The persistent discrep-
ancy between jVubj measurements based on inclusive and
exclusive charmless decays is a motivation for the study of
different exclusive B ! Xu‘� decays [2,3].

Measurements of BðBþ ! !‘þ�Þ have been reported
by Belle [4,5]; a measurement by BABAR has been per-
formed on a partial data set [6]. In this analysis we use
the full BABAR data set to measure the total branching
fraction BðBþ ! !‘þ�Þ and partial branching fractions
�BðBþ ! !‘þ�Þ=�q2 in five q2 intervals, where q2 refers
to the momentum transfer squared to the lepton system.

The differential decay rate for Bþ ! !‘þ� is given
by [7]

d�ðBþ ! !‘þ�Þ
dq2

¼ jVubj2 G2
Fq

2p!

96�3m2
Bc

2
V

� ½jH0j2 þ jHþj2 þ jH�j2�; (1)

where p! is the magnitude of the ! momentum in the B
rest frame, mB is the Bmass, and GF is the Fermi coupling

constant. The isospin factor cV is equal to
ffiffiffi
2

p
for Bþ !

!‘þ� [8]. As described in a related BABAR paper [9], the
three helicity functions H0, Hþ, and H� can be expressed
in terms of two axial vector form factors A1 and A2 and one
vector form factor V, which describe strong interaction
effects,

H�ðq2Þ ¼ ðmB þm!Þ
�
A1ðq2Þ � 2mBp!

ðmB þm!Þ2
Vðq2Þ

�
;

H0ðq2Þ ¼ mB þm!

2m!

ffiffiffiffiffi
q2

p �
�
ðm2

B �m2
! � q2ÞA1ðq2Þ

� 4m2
Bp

2
!

ðmB þm!Þ2
A2ðq2Þ

�
:

We compare the measured q2 dependence of the decay rate
with form factor predictions based on light-cone sum rules
(LCSR) [8] and the ISGW2 quark model [10]. We also use
these form factor calculations and the measured branching
fraction to extract jVubj.

II. DETECTOR, DATA SET, AND SIMULATION

The data used in this analysis were recorded with the
BABAR detector at the PEP-II eþe� collider operating at
the �ð4SÞ resonance. We use a data sample of 426 fb�1,
corresponding to (467� 5) million produced B �B pairs. In
addition, we use 44 fb�1 of data collected 40 MeV below
the B �B production threshold. This off-resonance sample is
used to validate the simulation of the non-B �B contributions
whose principal source is eþe� annihilation to q �q pairs,
where q ¼ u, d, s, c.

The PEP-II collider and BABAR detector have been
described in detail elsewhere [11]. Charged particles are
reconstructed in a five-layer silicon tracker positioned close
to the beampipe and a forty-layer drift chamber. Particles of

different masses are distinguished by their ionization en-
ergy loss in the tracking devices and by a ring-imaging
Cerenkov detector. Electromagnetic showers from elec-
trons and photons are measured in a finely segmented CsI
(Tl) calorimeter. These detector components are embedded
in a 1.5 T magnetic field of a superconducting solenoid; its
steel flux return is segmented and instrumented with planar
resistive plate chambers and limited streamer tubes to detect
muons that penetrate the magnet coil and steel.
We use Monte Carlo (MC) techniques [12,13] to simu-

late the production and decay of B �B and q �q pairs and the
detector response [14], to estimate signal and background
efficiencies and resolutions, and to extract the expected
signal and background distributions. The size of the simu-
lated sample of generic B �B events exceeds the B �B data
sample by about a factor of 3, while the MC samples for
inclusive and exclusive B ! Xu‘� decays exceed the data
samples by factors of 15 or more. The MC sample for q �q
events is about twice the size of the q �q contribution in the
�ð4SÞ data.
The MC simulation of semileptonic decays uses the

same models as in a recent BABAR analysis [9]. The
simulation of inclusive charmless semileptonic decays
B ! Xu‘� is based on predictions of a heavy quark ex-
pansion [15] for the differential decay rates. For the simu-
lation of B ! �‘� decays we use the ansatz of Ref. [16]
for the q2 dependence, with the single parameter �BK set to
the value determined in a previous BABAR analysis [17].
All other exclusive charmless semileptonic decays B !
Xu‘�, including the signal, are generated with form factors
determined by LCSR [8,18]. For B ! D‘� and B ! D�‘�
decays we use parametrizations of the form factors [19,20]
based on heavy quark effective theory; for the generation
of the decays B ! D��‘�, we use the ISGW2 model [10].

III. CANDIDATE SELECTION

In the following, we describe the selection and kine-
matic reconstruction of signal candidates, the definition of
the various background classes, and the application of
neural networks to further suppress these backgrounds.
The primary challenge in studying charmless semilep-

tonic B decays is to separate signal decays from Cabibbo-
favoredB ! Xc‘� decays, which have a branching fraction
approximately 50 times larger than that of B ! Xu‘�. A
significant background also arises due to multi-hadron
continuum events.
Based on the origin of the candidate lepton we distin-

guish the following three categories of events: (1) Signal
candidates with a charged lepton from a true Bþ ! !‘þ�
decay; (2) B �B background with a charged lepton from all
nonsignal B �B events; (3) Continuum background from
eþe� ! q �q events. The ! meson is reconstructed in its
dominant decay, ! ! �þ���0. For each of the three
categories of events we distinguish correctly reconstructed
! ! �þ���0 decays (true-!) from combinatorial-!
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candidates, for which at least one of the reconstructed
pions originates from a particle other than the !.

A. Preselection

Signal candidates are selected from events with at least
four charged tracks, since a Bþ ! !‘þ� decay leaves
three tracks and the second B in the event is expected to
produce at least one track. The magnitude of the sum of the
charges of all reconstructed tracks is required to be less
than two, helping to reject events with at least two unde-
tected particles.

The preselection places requirements on the recon-
structed lepton, ! meson, and neutrino from the Bþ !
!‘þ� decay. At this stage in the analysis, we allow for
more than one candidate per event.

The lepton is identified as either an electron or muon.
The electron identification efficiency is greater than 90%
and constant as a function of momentum above 1 GeV,
while the muon identification efficiency is 65%–75% for
momenta of 1.5–3 GeV. The pion misidentification rates
are about 0.1% for the electron selector and 1% for the
muon selector. The lepton is required to have a momentum
in the center-of-mass (c.m.) frame greater than 1.6 GeV.
This requirement significantly reduces the background
from hadrons that are misidentified as leptons and also
removes a large fraction of true leptons from secondary
decays or photon conversions and from B ! Xc‘� decays.
The acceptance of the detector for leptons covers polar
angles in the range 0:41 � � � 2:54 rad.

For the reconstruction of the decay ! ! �þ���0, we
require that the candidate charged pions are not identified
as leptons or kaons. The reconstructed ! mass must be in
the range 680<m3� < 860 MeV, and the �0 candidate
is required to have an invariant mass of 115<m�� <

150 MeV. To reduce combinatorial ! background, we
require minimum momenta for the three pion candidates,
p�� > 200 MeV and p�0 > 400 MeV, and also energies
of at least 80 MeV for photons from the �0 candidate.

The charged lepton candidate is combined with a !
candidate to form a so-called Y candidate. The charged
tracks associated with the Y candidate are fitted to a
common vertex Yvtx. This vertex fit must yield a �2 proba-
bility Probð�2; YvtxÞ> 0:1. To further reduce backgrounds
without significant signal losses, we impose two-
dimensional restrictions on the momenta of the lepton
and !. Each Y candidate must satisfy at least one of the
following conditions on the c.m. momentum of the lepton
and !: p�

! > 1:3, or p�
‘ > 2:0, or p�

‘ þ p�
! > 2:65 GeV,

where quantities with an asterisk refer to the c.m. frame.
These requirements reject background candidates that are
inconsistent with the phase space of the signal decay. The
condition j cos�BYj � 1:0, where cos�BY ¼ ð2E�

BE
�
Y �

M2
B �M2

YÞ=ð2p�
Bp

�
YÞ is the cosine of the angle between

the momentum vectors of the Bmeson and the Y candidate,
should be fulfilled for a well-reconstructed Y candidate

originating from a signal decay [21]. The energy E�
B and

momentum p�
B of the B meson are not measured event by

event. Specifically, E�
B ¼ ffiffiffi

s
p

=2, where
ffiffiffi
s

p
is the c.m. en-

ergy of the colliding beams, and the B momentum is

derived as p�
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
B �m2

B

q
. To allow for the finite reso-

lution of the detector, we impose the requirement
�1:2< cos�BY < 1:1.
The neutrino four-momentum is inferred from the

missing energy and momentum of the whole event:
ðEmiss; ~pmissÞ ¼ ðEeþe� ; ~peþe�Þ � ðPiEi;

P
i ~piÞ, where

Eeþe� and ~peþe� are the energy and momentum of the
colliding beam particles, and the sums are performed
over all tracks and all calorimeter clusters without an
associated track. If all tracks and clusters in an event are
well measured, and there are no undetected particles
besides a single neutrino, then the measured distribution
of the missing mass squared, m2

miss ¼ E2
miss � p2

miss, peaks

at zero. We require the reconstructed neutrino mass to be
consistent with zero, jm2

miss=ð2EmissÞj< 2:5 GeV, and the

missing momentum to exceed 0.5 GeV. The polar angle
of the missing momentum vector is also required to pass
through the fiducial region of the detector, 0:3< �miss

<2:2 rad.
Other restrictions are applied to suppress q �q back-

ground, which has a two-jet topology in contrast to B �B
events with a more uniform angular distribution of the
tracks and clusters. Events must have R2 � 0:5, where R2

is the second normalized Fox-Wolfram moment [22],
determined from all charged and neutral particles in the
event. We also require cos��thrust � 0:9, where ��thrust is
the angle between the thrust axis of the Y candidate’s decay
particles and the thrust axis of all other detected particles
in the event. We require L2 < 3:0 GeV, with L2 ¼P

ip
�
i cos

2��i , where the sum runs over all tracks in the
event excluding the Y candidate, and p�

i and ��i refer to
the c.m. momenta and the angles measured with respect to
the thrust axis of the Y candidate.
We reject candidates that have a charged lepton and

a low-momentum charged pion consistent with a B0 !
D��‘þ�, D�� ! �D0��

slow decay as described in Ref. [23].

The kinematic consistency of the candidate decay
with a signal B decay is ascertained by restrictions
on two variables, the beam-energy substituted B
mass mES, and the difference between the reconstructed
and expected energy of the B candidate �E. In
the laboratory frame these variables are defined as

mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=2þ ~pB � ~peþe�Þ2=E2

eþe� � p2
B

q
and �E ¼

ðPeþe� � PB � s=2Þ= ffiffiffi
s

p
, where PB ¼ ðEB; ~pBÞ and

Peþe� ¼ ðEeþe� ; ~peþe�Þ are the four-momenta of the B
meson and the colliding beams, respectively. For correctly
reconstructed signal B decays, the �E distribution is cen-
tered at zero, and the mES distribution peaks at the B mass.
We restrict candidates to �0:95< �E< 0:95 GeV and
5:095<mES < 5:295 GeV.
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B. Neural network selection

To separate signal candidates from the remaining back-
ground, we employ two separate neural networks (NN) to
suppress q �q background and B ! Xc‘� background. The
q �q NN is trained on a sample passing the preselection
criteria, while the B ! Xc‘� NN is trained on a sample
passing both the preselection and the q �q neural network
criteria. The training is performed with signal and back-
ground MC samples. These NN are multilayer perceptrons
that have two hidden layers with seven and three nodes.

The variables used as inputs to the q �q NN are R2, L2,
cos��thrust, cos�BY, m2

miss=ð2EmissÞ, Probð�2; YvtxÞ, the

polar angle of the missing momentum vector in the labo-
ratory frame, and the Dalitz plot amplitude ADalitz ¼
�j ~p�þ � ~p��j, with the �þ and �� momenta measured
in the ! rest frame and scaled by a normalization factor �.
True ! mesons typically have larger values of ADalitz than
combinatorial ! candidates reconstructed from unrelated
pions. The B ! Xc‘� NN uses the same variables, except
for cos��thrust, which is replaced by cos�W‘, the helicity
angle of the lepton, defined as the angle between the
momentum of the lepton in the rest frame of the virtual
W and the momentum of the W in the rest frame of the B.
The data and MC simulation agree well for the NN input
variables at each stage of the selection. The NN discrim-

inators are chosen by maximizing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2sig þ ð1� 	bkgÞ2

q
,

where �sig is the efficiency of the signal and 	bkg is the

fraction of the background misidentified as signal.
The selection efficiencies for the various stages of the

candidate selection for the signal and background compo-
nents are given in Table I. After the preselection and NN
selection, 21% of events in data contribute multiple Bþ !
!‘þ� candidates. The candidate with the largest value of
Probð�2; YvtxÞ is retained. For the remaining candidates,
the reconstructed 3-pion mass is required to be consistent
with the ! nominal mass [24], jm3� �m!j< 23 MeV.
The overall signal efficiency is 0.73% if the reconstructed
candidate includes a true ! and 0.21% if it includes a
combinatorial !. The efficiencies of the B �B and q �q back-
grounds are suppressed by several orders of magnitude
relative to the signal.

C. Data-MC comparisons

The determination of the number of signal events relies
heavily on the MC simulation to correctly describe the
efficiencies and resolutions, as well as the distributions
for signal and background sources. Therefore a significant
effort has been devoted to detailed comparisons of data and
MC distributions, for samples that have been selected to
enhance a given source of background.
Specifically, we have studied the MC simulation of

the neutrino reconstruction for a control sample of
B0 ! D��‘þ� decays, with D�� ! �D0��

slow and �D0 !
Kþ���0. This final state is similar to that of the Bþ !
!‘þ� decay, except for the addition of the slow pion ��

s

and the substitution of a Kþ for a �þ. This control sample
constitutes a high-statistics and high-purity sample on
which to test the neutrino reconstruction. We compare
data and MC distributions for the control sample and find
good agreement for the variables used in the preselection
and as inputs to the NN. We have also used this sample to
study the resolution of the neutrino reconstruction and its
impact on q2, mES, and �E.

IV. SIGNAL EXTRACTION

A. Fit method

We determine the signal yields by performing an
extended binned maximum-likelihood fit to the observed
three-dimensional �E-mES-q

2 distributions. The fit tech-
nique [25] accounts for the statistical fluctuations of the
data and MC samples.
For this fit the �E-mES plane is divided into 20 bins, as

shown in Fig. 1, and the data are further subdivided into
five bins in q2, chosen to contain roughly equal numbers of
signal events. The q2 resolution is dominated by the neu-
trino reconstruction. It can be improved by substituting the
missing energy with the magnitude of the missing momen-
tum and by rescaling ~pmiss to force �E ¼ 0, q2corr ¼
½ðE‘; ~p‘Þ þ 
 � ðpmiss; ~pmissÞ�2, where 
 ¼ 1� �E=Emiss.
This correction to q2 is used in the fit.

TABLE I. Successive efficiencies (in %) predicted by MC
simulation for each stage of the selection, for true- and
combinatorial-! signal, and backgrounds from B �B and q �q
events.

Source

true-!
signal

combinatorial-!
signal B �B q �q

Preselection 1.9 4.8 0.0094 0.00073

Neural nets 43 17 7.9 11

3-pion mass 88 26 24 30

Total (product) 0.73 0.21 0.00018 0.000024
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FIG. 1 (color). Distribution of�E versusmES for true-! signal
MC. The 20 bins into which the plane is divided for the fit
histogram are overlaid.
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We describe the measured �E-mES-q
2 distribution as a

sum of four contributions: Bþ ! !‘þ� signal (both
true-! and combinatoric-!), true-! B �B, true-! q �q, and
the sum of the combinatorial-! background from B �B and
q �q events.

While the �E-mES shapes for the signal and true-! B �B
and q �q sources are taken from MC samples, we choose to
represent the dominant combinatorial-! background by
the distributions of data events in the m3� sidebands,
thereby reducing the dependence on MC simulation of
these backgrounds. The normalization of these background
data is taken from a fit to the 3-� mass distribution in the
range 0:680<m3� < 0:880 GeV. To obtain a sample cor-
responding to the combinatorial-! background from B �B
and q �q events only, we subtract the MC simulated m3�

contribution of the small combinatorial-! Bþ ! !‘þ�
signal sample. To the resulting m3� distribution, we fit
the sum of a relativistic Breit-Wigner convolved with a
normalized Gaussian function, and the combinatorial
background described by a second degree polynomial.
The resulting fit to the m3� distribution for the all-q2

sample is shown in Fig. 2. The �2 per number of degrees
of freedom (dof) for the fits are within the range expected
for good fits. The fitted background function is used
to determine the weights to apply to the upper and lower
sidebands to scale them to the expected yield of
combinatorial-! B �B and q �q background in the m3�

peak region.
The peak and two sideband regions are chosen to have a

width of 46MeVand are separated by 23MeV, as indicated
in Fig. 2. Since the normalization of the combinatorial-!
signal contribution depends on the fitted signal yield,
which is a priori unknown, this component is determined
iteratively.

The fit has seven free parameters, five for the signal
yields in each q2 bin, and one each for the yields of the

true-! B �B and q �q backgrounds; the shapes of the distri-
butions are taken from MC simulations. The fitted yields
are expressed as scale factors relative to the default yields
of the MC simulation. The total signal yield is taken as the
sum of the fitted yields in the individual q2 bins, taking into
account correlations.

B. Fit results

The fitting procedure has been validated on pseudoex-
periments generated from the MC distributions. We find
no biases, and the uncertainties follow the expected
statistical distribution.
The yields of the signal, true-! B �B, and true-! q �q

components obtained from the binned maximum-
likelihood fit to �E-mES-q

2 are presented in Table II.
Projections of the fitted distributions of mES for the all-q

2

fit and for the five-q2 bins fit are shown in Fig. 3. The
agreement between the data and fitted MC samples is
reasonable for distributions of �E, mES, and q2, as indi-
cated by the �2=dof of the fit, 106=93, which has a proba-
bility of 16%. The fixed combinatorial-! background yield
accounts for 83% of all backgrounds. The correlations
among the parameters are listed in Table III. The strongest
correlation is �72%, between the signal and q �q yields in
the first q2 bin, which contains most of the q �q background.
The correlation between signal and B �B background is
strongest in the last q2 bin, �40%, because of a large
contribution from other B ! Xu‘� decays. Correlations
among signal yields are significantly smaller.
The branching fraction, BðBþ ! !‘þ�Þ, averaged

over electron and muon channels, is defined as BðBþ !
!‘þ�Þ ¼ P

iðNsig
i =�sigi Þ=ð4f�NB �BÞ, where Nsig

i refers to
the number of reconstructed electron and muon signal

events in q2 bin i, �sigi is the reconstruction efficiency, f�
is the fraction of BþB� decays in all B �B events, and NB �B is
the number of produced B �B events. The factor of 4 comes
from the fact that B is quoted as the average of ‘ ¼ e and
� samples, not the sum, and the fact that either of the two B
mesons in the BþB� event may decay into the signal mode.
The q2 resolution in the signal region is 0:36 GeV2,
smaller than the width of the q2 bins. To account for the
finite q2 resolution, the background-subtracted, efficiency-
corrected spectrum is adjusted by deriving from the signal
MC the ratio of the true and reconstructed q2 spectra,
ðdB=dq2trueÞ=ðdB=dq2recoÞ. The ratio is low by �9% at
low q2, and closer to 1.0 at higher values of q2. The partial
and total branching fractions listed in Table IV are cor-
rected for the effects of finite q2 resolution and efficiency.

V. SYSTEMATIC UNCERTAINTIES

Table V summarizes the contributions to the systematic
uncertainty. The event reconstruction systematic uncertain-
ties are most sensitive to the neutrino reconstruction, which
depends on the detection of all of the particles in the event.
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FIG. 2 (color online). Fit to the distribution of m3� for data
from the all-q2 sample, with MC combinatorial-! signal sub-
tracted. The dashed (red) and dotted (blue) curves describe the
fitted peaking and combinatorial background functions, respec-
tively, and the solid (black) curve is their sum. The peak and
sideband regions are also indicated.
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To assess the impact of the uncertainty of the measured
efficiencies for charged tracks, the MC signal and back-
ground samples are reprocessed and the analysis is
repeated, after tracks have been eliminated at random
with a probability determined by the uncertainty in the
tracking efficiency. Similarly, we evaluate the impact from
uncertainties in the photon reconstruction efficiency by
eliminating photons at random as a function of the photon
energy. Since a K0

L leaves no track and deposits only a

small fraction of its energy in the calorimeter, the recon-
struction of the neutrino is impacted. The uncertainty on
the K0

L MC simulation involves the shower energy depos-
ited by the K0

L in the calorimeter, the K0
L detection effi-

ciency, and the inclusive K0
L production rate as a function

of momentum from B �B events.
The impact of the changes to the simulated background

distributions that enter the fit are smaller than for the
signal, since the large combinatorial backgrounds are taken

TABLE II. Number of events and their statistical uncertainties, as determined from the fit, compared with the number of observed
events in data. The combinatorial-! background (bkgd.) yields are fixed in the fit; the quoted uncertainties are derived from the
sideband subtraction.

q2 range (GeV2) 0–4 4–8 8–10 10–12 12–21 0–21

All signal 257� 72 238� 44 161� 32 177� 32 293� 57 1125� 131
True-! signal 238 209 136 137 168 869

Combinatorial-! signal 19 28 25 40 125 256

B �B (true-!) 105� 19 192� 34 154� 27 195� 34 411� 73 1057� 187
q �q (true-!) 409� 96 145� 34 65� 15 34� 8 64� 15 716� 167
Combinatorial-! bkgd. 1741� 23 1818� 24 1240� 20 1520� 22 3913� 35 10232� 57
Data 2504� 50 2433� 49 1605� 40 1858� 43 4738� 69 13138� 115
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FIG. 3 (color online). Distributions of mES after the fit and the ratio of the data to the fitted predictions, for five separate q2 bins and
the full q2 range, in the �E signal band, �0:25<�E � 0:25 GeV. The points represent data with statistical uncertainties, while the
stacked histograms represent the sum of fitted source components, signal (white), true-! B �B (light gray), true-! q �q (dark gray), and
combinatorial-! background (diagonally thatched).
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from data, rather than MC simulations. As an estimate of
the impact of these variations of the MC-simulated distri-
butions on the q2-dependent signal yield, we combine the
observed reduction in the signal distribution with the
impact of the changes to q �q and B �B backgrounds on the
signal yield, taking into account the correlations obtained
from the fit (see Table III). Since the correlations between
signal and backgrounds are small at high q2, the impact of
the uncertainties in the background are also modest. This
procedure avoids large statistical fluctuations of the fit
procedure that have been observed to be larger than the
changes in the detection efficiencies. However, this proce-
dure does not account for the small changes in the shape of
the distributions, and we therefore sum the magnitude of
the changes for signal and background, rather than adding
them in quadrature or taking into account the signs of
the correlations of the signal and backgrounds in a given
q2 bin.

We assign an uncertainty on the identification efficiency
of electrons and muons, as well as on the lepton and kaon
vetoes of the ! daughter pions, based on the change in
signal yield after varying the selector efficiencies within
their uncertainties.

The uncertainty in the calculation of the LCSR form
factors impacts the uncertainty on the branching fraction
because it affects the predicted q2 distribution of the signal
and thereby the fitted signal yield. We assess the impact by
varying the form factors within their uncertainties. We
include the uncertainty on the branching fraction of the

! decay, Bð! ! �þ���0Þ ¼ ð89:2� 0:7Þ � 10�2 [24].
To evaluate the uncertainty from radiative corrections,
candidates are reweighted by 20% of the difference
between the spectra with and without PHOTOS [26],
which models the final state radiation of the decay.
The uncertainty on the true-! backgrounds has a small

impact on the signal yield since these components repre-
sent a small fraction of the total sample. To assess the
uncertainty of the �E-mES-q

2 shapes of the true-! q �q and
true-! B �B samples, the fit is repeated after the events are
reweighted to reproduce the inclusive ! momentum dis-
tribution measured in B �B and q �q events. We also assess the
uncertainty on the modeling of the semileptonic back-
grounds by varying the branching fractions and form fac-
tors of the exclusive and inclusive B ! Xu‘� [24] and
B ! Xc‘� backgrounds [3] within their uncertainties.
To assess the uncertainties that result from the MC

prediction of the m3� distribution of the combinatorial-!
signal, we use the uncorrected distribution, in which the
combinatorial-! signal is not subtracted from the m3�

sidebands, and the signal fit parameter is set to scale only
the true-! signal contribution. Twenty percent of the dif-
ference between the nominal and uncorrected results is
taken as the systematic uncertainty; it is largest for 12<
q2 < 21 GeV2 because the fraction of combinatorial-!

TABLE III. Correlations among the fit scale factors ps
k for the

simulated source s and q2 bin k. The scale factors for q �q and B �B
apply to the full q2 range.

pq �q pB �B p!‘�
1 p!‘�

2 p!‘�
3 p!‘�

4 p!‘�
5

pq �q 1.000 �0:466 �0:724 �0:106 �0:031 0.051 0.088

pB �B 1.000 0.223 �0:249 �0:253 �0:284 �0:401
p!‘�
1 1.000 0.121 0.061 0.001 �0:011

p!‘�
2 1.000 0.105 0.094 0.128

p!‘�
3 1.000 0.088 0.121

p!‘�
4 1.000 0.125

p!‘�
5 1.000

TABLE IV. Measured Bþ ! !‘þ� branching fraction and
partial branching fractions in bins of q2 with statistical and
systematic uncertainties.

q2 (GeV2) �B (� 10�4)

0–4 0:214� 0:060� 0:024
4–8 0:200� 0:037� 0:010
8–10 0:147� 0:029� 0:010

10–12 0:169� 0:031� 0:098
12–21 0:482� 0:093� 0:038
0–12 0:730� 0:083� 0:054
0–21 1:212� 0:140� 0:084

TABLE V. Systematic uncertainties in % on the branching
fraction.

q2 range (GeV2) 0–4 4–8 8–10 10–12 12–21 0–21

Event reconstruction

Tracking efficiency 3.9 1.5 2.8 2.3 1.1 2.0

Photon efficiency 2.0 1.7 3.3 1.1 0.6 1.5

KL detection 4.8 1.8 2.5 1.1 1.4 1.9

Lepton identification 1.6 1.5 1.5 1.2 1.2 1.3

K=‘ veto of ! daughters 1.7 1.7 1.7 1.7 1.8 1.7

Signal simulation

Signal form factors 6.3 1.5 1.1 2.9 4.6 4.8

Bð! ! �þ���0Þ 0.8 0.8 0.8 0.8 0.8 0.8

Radiative corrections 0.4 0.3 0.2 0.1 0.2 0.2

True-! background

q �q �E-mES-q
2 shapes 2.6 0.1 0.4 0.2 0.3 0.5

B �B �E-mES-q
2 shapes 2.0 0.9 1.8 0.2 0.1 0.8

B ! Xc‘� B and FF 0.2 0.6 0.3 0.2 0.2 0.2

B ! Xu‘� B and FF 0.3 0.4 0.4 0.3 0.5 0.4

Combinatorial-! sources

Signal m3� distribution 0.6 0.5 0.4 1.1 3.7 1.5

Bkgd. yield, stat. error 4.2 1.0 0.9 0.9 2.0 1.7

Bkgd. yield, ansatz error 1.7 2.2 2.7 2.7 3.5 0.9

B production

B �B counting 1.1 1.1 1.1 1.1 1.1 1.1

f� 1.2 1.2 1.2 1.2 1.2 1.2

Systematic uncertainty 11.1 5.2 6.8 5.8 7.9 6.9

Statistical uncertainty 28.1 18.7 20.0 18.1 19.4 11.6

Total uncertainty 30.2 19.4 21.1 19.0 20.9 13.5
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signal in this q2 bin is large. The sideband event yields
determined from the m3� fit are varied within their
fit errors to determine the statistical uncertainty on the
combinatorial-! background. The uncertainty in the
chosen m3� ansatz is assessed by repeating the m3� fits,
replacing the nominal functions for the peak and back-
ground components. For the background component, we
use a third- instead of a second-degree polynomial. For the
peaking component, we use a Gaussian function in place of
a relativistic Breit-Wigner convoluted with a Gaussian
function. The systematic error from them3� ansatz is taken
as the sum in quadrature of the change in signal yield for
each of these functional variations.

The branching fraction depends inversely on the value of
NB �B, which is determined with a precision of 1.1% [27]. At
the �ð4SÞ resonance, the fraction of BþB� events is mea-
sured to be f� ¼ 0:516� 0:006 [24], with an uncertainty
of 1.2%.

VI. RESULTS AND CONCLUSIONS

We have measured the branching fraction,

BðBþ ! !‘þ�Þ ¼ ð1:21� 0:14� 0:08Þ � 10�4; (2)

where the first error is statistical and the second is system-
atic, based on 1125� 131 observed signal candidates.
Here, ‘ indicates the electron or muon decay mode and
not the sum over them. The measured partial branching
fractions are presented in Table IVand are compared to the
predictions from two form factor calculations in Fig. 4.
These QCD predictions have been normalized to the mea-
sured branching fraction.

Neglecting the theoretical uncertainties, the �2=NDF of
the measured distribution relative to the LCSR prediction
[8] is 2:4=4, corresponding to a �2 probability of 67%;

relative to the ISGW2 prediction [10] the�2=NDF is 4:2=4,
with a �2 probability of 40%. Within the large experimen-
tal uncertainties, both the LCSR and ISGW2 form factor
calculations are consistent with the data. The uncertainties
of the ISGW2 form factor calculation are not available.
The uncertainties of the LCSR calculation were estimated
by the authors to vary linearly as a function of q2; i.e.,
�dB=dq2=ðdB=dq2Þ ¼ 21%þ 3%� q2=ð14 GeV2Þ, for the
B ! �‘� decays [28]. It is assumed that this estimate is
also valid for Bþ ! !‘þ� decays.
The value of jVubj can be determined from the measured

partial branching fraction, the Bþ lifetime 
þ ¼ ð1:638�
0:011Þ ps [24], and the integral �� of the predicted differ-
ential decay rate,

jVubj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Bðq2min; q

2
maxÞ


þ��ðq2min; q
2
maxÞ

s
;

��ðq2min; q
2
maxÞ ¼ 1

jVubj2
Z q2max

q2
min

d�theory

dq2
dq2:

(3)

Table VI lists the values of �� and jVubj for LCSR and
ISGW2 in different ranges of q2. LCSR calculations are
more accurate at low q2, while ISGW2 predictions are
more reliable at high q2. Both form factor calculations
arrive at very similar values for jVubj. These values of
jVubj are consistent with the more precisely measured
values from B ! �‘� decays [29].
The value of BðBþ ! !‘þ�Þ measured in this analysis

supersedes the previous BABARmeasurement [6] based on
a smaller data sample and is in excellent agreement with a
recent result [30] based on the full BABAR data set. The
principal difference between this analysis and the previous
ones is that the combinatorial-! background is taken from
the sideband of the data m3� distribution rather than from
MC simulation. Although the dominant systematic uncer-
tainties from event reconstruction cannot be avoided, this
procedure substantially reduces the reliance on the MC
simulation of this largest source of background.
Currently, the QCD predictions of the form factors,

and in particular their uncertainties, have limited precision
for Bþ ! !‘þ� and B ! �‘� decays. These form factor
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-610×
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FIG. 4 (color online). Partial branching fractions (points with
error bars) with respect to q2. The data are compared with the
predictions from light-cone sum rules (LCSR) [8] and a quark-
model calculation (ISGW2) [10]. The uncertainty band (shaded)
is given for the LCSR calculation.

TABLE VI. jVubj, determined from two form factor calcula-
tions of �� , in different ranges of q2. The first uncertainty is
experimental (the sum in quadrature of statistical and system-
atic); the second uncertainty is from theory and is only available
for LCSR.

q2 (GeV2) �� (ps�1) jVubj (� 10�3)

LCSR [8]

0–12 3:9� 0:9 3:37� 0:23� 0:38
12–21 3:2� 0:8 3:04� 0:32� 0:37
0–21 7:1� 1:7 3:23� 0:22� 0:38

ISGW2 [10]

0–12 3.6 3:51� 0:24
12–21 3.4 2:94� 0:31
0–21 7.0 3:24� 0:22
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uncertainties impact jVubj derived from BðBþ ! !‘þ�Þ.
In the future, form factor calculations with reduced uncer-
tainties combined with improved branching fraction mea-
surements would enable tests and discrimination among
different predictions as a function of q2 and thereby
improve the determination of jVubj.
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