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Safety control of piece-wise continuous order preserving systems

Reza Ghaemi and Domitilla Del Vecchio

Abstract— This paper is concerned with safety control of
systems with imperfect state information and disturbance input.
Specifically, we consider the class of systems whose dynamic
preserve a partial ordering. We provide necessary and sufficient
conditions under which a given set of initial states is steerable
away from a specified bad set. Moreover, a control strategy
is provided that guarantees that the bad set is avoided. Such
characterization is achieved for order preserving systems while
for general systems only an approximated solution is achievable.
A method for implementation of the control strategy is provided
and the effectiveness of the proposed method is illustrated via
a numerical example and employed for obstacle avoidance of
a ship.

I. INTRODUCTION

In this paper, we consider safety control of piece-wise
continuous systems with disturbance input, imperfect state
information, and order preserving flow. For general hybrid
systems, the safety control problem is extensively considered
assuming perfect state information [1]-[6]. The control prob-
lem is addressed by computing the capture set, that is, the
set of all initial states from which, with any control signal,
the trajectories enter the bad set. The capture set is used to
provide a static feedback law that guarantees that the bad
set is avoided. The proposed methods are computationally
demanding and are not guaranteed to terminate in a finite
time [4]. Over-approximations of the capture set are often
considered to reduce the computational burden [7], [8].
Safety control using reachability analysis is also considered
[9], for nonlinear systems where the nonlinear system is
approximated by a linear one and an over-approximation of
reachable set is provided. Over-approximation of reachable
set for linear systems is also considered via discretizing the
continuous system and set-valued iterations [10]. The above
approaches provide over approximation of the reachable sets.

The aforementioned works only consider systems with
perfect state information where the state of the system is
assumed to be available to the controller. Dynamic feedback
in a special class of discrete hybrid systems with imperfect
state information is considered in [12], however safety invari-
ance is not considered. For discrete-time systems, dynamic
control of block triangular order preserving hybrid automata
with imperfect state information is considered in [13]. In
[14], safety control results are extended to continuous time
hybrid systems where the flow preserves a partial order.
These results are extended to systems with input disturbances
in [15]. However, the system is assumed to be in the form
of the parallel composition of two decoupled systems, the
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state uncertainty is assumed to be convex, and the bad set is
assumed to be order preserving connected.

In this paper, we relax all these assumptions. We do not
require that the system is the parallel composition of two
decoupled systems. The set of initial states and bad set are
just assumed to be connected. A necessary and sufficient con-
dition for existence of a control signal that guarantees the bad
set avoidance, with imperfect state information, is provided.
A control strategy that guarantees the bad set avoidance is
proposed. Moreover, instead of over approximation of the
capture set we provide exact computation of the capture set
under the assumption that the system is order-preserving.
The class of order-preserving systems is widely considered
from engineering and mathematical perspective. These class
of systems where the flow preserves a pre-defined ordering
in state space with respect to inputs and states are also
called monotone systems [16]. In biology, several biological
systems are shown to have the monotone property or to be
composition of subsystems with monotone property [17],
[18]. Transportation networks where each carrier, car or a
train, moves unidirectionally according to a pre-determined
path is considered as a system where a group of agents with
monotone property interact [19].

In order to implement the proposed control strategy for
monotone systems, an algorithm is introduced that requires
forward computation of 8 trajectories over a compact interval
of time corresponding to two states, two disturbance signals,
and two input signals. Confining the computation over a com-
pact interval of time guarantees termination of the algorithm
in a finite time, as long as the trajectories over a finite interval
are computable. Hence, the implementation algorithm is
computationally as demanding as the computation of a finite-
time trajectory. Therefore, the computational complexity
scales linearly with the number of states. We employ the
proposed control strategy in a ship steering problem where
a ship must avoid an obstacle.

The paper is organized as follows. In Section II, the
definitions are introduced. In Section III, the class of systems
under consideration is provided and general assumptions are
introduced. Problem statement is introduced in Section IV.
Section V provides necessary and sufficient conditions for
the set of initial states to be steerable away from the bad
set. Based on the results in Section V, a control strategy
is provided in Section VI that guarantees the bad set is
avoided. Implementation of the proposed control strategy is
elaborated in Section VII. In Section VII, numerical results
are presented.



II. DEFINITIONS

A cone C ⊂ Rn is a set that is closed under multiplication
by positive scalars and 0 ∈ C. The sets of non-negative
real numbers is denoted by R+, i.e, R+ := {x ∈ R | x ≥
0}. X denotes an ordered Banach space with respect to a
predetermined cone. ‖ · ‖ denotes the norm in Banach space
X. Given a Banach space X, x0 ∈ X, and ε > 0, Bε(x0) :=
{x ∈ X | ‖x − x0‖ < ε}. The set Xo ⊂ X is called the
set of initial states. Given a Banach space Bu and U ⊂ Bu,
C(U) denotes the set of all piece-wise continuous functions
R : R+ → U . Given a Banach space Bu and U ⊂ Bu, S(U)
denotes the set of all measurable functions R : R+ → U .
The sets C(U) and S(U) equipped with the norm ‖f‖∞ =
supt∈R+

‖f(t)‖ form Banach spaces denoted C∞(U) and
S∞(U), respectively. In the sequel, we drop subscript ∞
to simplify notation. If v ∈ Rn, then vi denotes the i’th
element of the vector v. For any set A ⊂ Rn and a ∈ R,
A≤(≥)a := {x ∈ A|x1 ≤ (≥)a}. For x ∈ Rn and A ⊂ Rn,
d(a,A) := infy∈A ‖x − y‖ denotes the distance of x from
A. A family of non-empty compact subsets of Rn is denoted
by Com(Rn). For X ⊂ Rn, Cl(X) denotes the closure of
X . Given two sets A,B ⊂ Rn, A ⊕ B := {a + b | a ∈
A and b ∈ B}.

A mapping f : Rn → Com(Rn) is said upper-
hemicontinuous at x0 ∈ Rn if for all ε > 0, there exists
δ > 0 such that for all x ∈ Bδ(x0) we have that f(x) ⊂
f(x0)⊕ Bε(0). A mapping is said upper-hemicontinuous if
it is upper-hemicontinuous at all points in Rn. A mapping
f : Rn → Com(Rn) is lower-hemicontinuous at x0 ∈ Rn if
for all ε > 0, there exists δ > 0 such that for all x ∈ Bδ(x0)
we have that f(x0) ⊂ f(x) ⊕ Bε(0). A mapping is said
lower-hemicontinuous (upper-hemicontinuous) if it is lower-
hemicontinuous (upper-hemicontinuous) at all points in Rn.
[11].

III. SYSTEM CLASS

Definition 3.1: A system Σ with imperfect state informa-
tion is a tuple Σ = (X,D,U ,M, f, h), where X ⊂ Rn is
the state space, D ⊂ Rp and U ⊂ Rm are the sets of values
that disturbances and control can take at each time instant,
respectively, and M is the set of outputs measurement,
f : X × DU → X is a piecewise continuous vector field,
h :M→ 2X is the output map.

Let g : X → M be a continuous output map and the
mapping φ̄ : R+ ×X×C(D)×C(U)→ X denote the flow
of the system where C(U) is the set of control input signals
and C(D) is the set of disturbance input signals. In addition,
let Y := g(φ̄) : R+ × X × C(D) × C(U) →M denote the
output of the system Σ.

We define the order preserving property for system Σ as
follows

Definition 3.2: The system Σ is said to be input/output
order preserving provided that

1) The space of disturbance signals is connected. Namely,
C(D) is connected.

2) The set U is partially ordered with respect to a cone
∆u ⊂ Rm, i.e., for all u1, u2 ∈ U , u1 ≥ u2 if and only

if u1 − u2 ∈ ∆u. Moreover, there are um, uM ∈ U
such that for all u ∈ U , u ≥ um and u ≤ uM .

3) The set M is partially ordered with respect to a cone
∆y ⊂M.

4) The flow of the system Σ is continuous with respect
to the time. Namely, for all x ∈ X, u ∈ C(U), and
d ∈ C(D), the mapping φ̄(·, x,d,u) : R+ → X is
continuous.

5) The flow of the system is continuous with respect
to initial condition and disturbances, over a compact
interval of time. Namely, for u ∈ C(U), ε > 0, T > 0,
there exists δ > 0 such that for all d0 ∈ C(D), and
x0 ∈ X, if ‖x − x0‖ < δ and ‖d − d0‖ < δ, then
supt∈[0,T ] ‖φ̄(t, x,d,u)− φ̄(t, x0,d0,u)‖ < ε.

6) The output flow Y is an order preserving map with
respect to input. Namely, for all u1, u2 ∈ C(U),
such that u1 ≥ u2, we have that Y (t, x,d,u1) ≥
Y (t, x,d,u2) for all x ∈ X , d ∈ C(D), and t ∈ R+,
where the output space M is partially ordered with
respect to the cone ∆y .

Note that the order-preserving property is extensively
considered and is easily verifiable as shown in [20], and
reiterated in the following. The following Theorem [20].

IV. PROBLEM STATEMENT

Under the condition that the state is not perfectly mea-
sured, x̂(t,Xo,u, z) denotes the set of all possible states at
time t compatible with the output signal (z) measured up to
time t, the control input (u) applied up to the time t, and
the set of initial states, denoted by Xo. This set is formally
defined as

x̂(t,Xo,u, z) :={x ∈ X | ∃ x0 ∈Xo,d ∈C(D), s.t.

x= φ̄(t, x0,d,u) &∀τ ∈ [0, t], φ̄(τ, x0,d,u)∈h(z(τ))}.
(1)

Let B ⊂ M be the bad (open) set in the output space
that must be avoided. The first problem we consider is to
characterize all the sets of initial sets Xo that are steerable
away from the bad set B in the output space.

Moreover, we assume the output space to be a subspace of
R2, i.e., M⊂ R2. The cone that orders the output space is
assumed to be ∆y := {(x1, x2) ∈ R2 | x1 ≥ 0 and x2 ≤ 0}.

Problem 1: Given system Σ, determine the maximal safe
controlled invariant set given by

W := {Xo ⊂ X | ∃ u ∈ C(U), s.t.

∀ z ∈ S(M), g(x̂(R+, X
o,u, z)) ∩ B = ∅}.

(2)

The second problem is to determine the control map that
keeps, at each time instant, the set of all possible states away
from the bad set.

Problem 2: Determine a control map K : 2X → 2U

such that for all output observations z ∈ S(M) and Xo ∈
W , we have that g(x̂(R+, X

o,u, z)) ∩ B = ∅ if u(t) ∈
K(x̂(t,Xo,u, z)), for all t ∈ R+.

We solve the above two problems under the liveness
assumption that is stated in the following

Assumption 4.1: .



i. There exists ξ > 0 such that f1(x,d(t),u(t)) ≥ ξ for
all t ∈ R+, u ∈ C(U), and d ∈ C(D).

ii. f2(x,d(t),u(t)) ≥ 0 for all t ∈ R+, u ∈ C(U), and
d ∈ C(D).

The output of the system is the first two elements of the
state x, i.e., Y = g(φ̄) = (φ̄1, φ̄2). In this paper, we have the
following two more assumptions on the initial set Xo and
the bad set B.

Assumption 4.2: For all x ∈ Xo, B≥x1
is either empty or

non-empty connected.
The above assumption guarantees that the trajectory Y
intersects the bad set B if and only if the output trajectory
Y intersects the projected bad set B in R2 space.

Assumption 4.3: The set Xo is such that for all (b1, b2) ∈
B, Xo≤b1 is either empty or non-empty connected.
The above assumption expresses that the set of all initial
states that initiate a trajectory that potentially intersects the
bad set is connected.

Assumption 4.4: .
i. The map h : M → 2X is closed value, i.e., for all
z ∈M, h(z) is a closed set.

ii. There exists z ∈M, such that h(z) = X.
The above assumption expresses that there exists at least an
output observation that provides no information regarding
states of the system.

V. SOLUTION TO PROBLEM 1 : CHARACTERIZATION OF
THE MAXIMAL SAFE CONTROLLED INVARIANT SETW
In this section, we provide necessary and sufficient con-

ditions that determine for a given set Xo whether there is
a control signal such that for all disturbance signals, the
projection of the trajectories originated from Xo in the output
space M do not enter the bad set B.

Given u ∈ C(U), define the set

Cu :={x ∈ X | ∃ d ∈C(D) s.t. Y (R+, x,d,u)∩B 6=∅}. (3)

The set Cu is the set of all initial states such that there exists a
disturbance signal whose corresponding trajectory intersects
the bad set.

Theorem 5.1: Given the set of initial states Xo, then Xo /∈
W if and only if Cum ∩Xo 6= ∅ and CuM

∩Xo 6= ∅.
Proof: Here we provide the sketch of the proof.

The statement of the theorem can be rephrased as follows:
Xo /∈ W if and only if Y (R, Xo, C(D),um) ∩ B 6= ∅ and
Y (R, Xo, C(D),uM )∩B 6= ∅. The main challenge is to show
the “if” part. Assume b1, b2 ∈ B, x1, x2 ∈ Xo, d1,d2 ∈
C(D), and t1, t2 ≥ 0 are such that φ(t1, x1,d1,um) = b1

and φ(t2, x2,d2,uM ) = b2. Without loss of generality we
assume b11 ≤ b21. Consider the line L : x1 = b21. Using
order preserving property, it can be shown that there exist
two output trajectories initiating from the set Xo such that
they intersect the line L at points above and below the
point b2 in the plane R2. Using connectedness of Xo and
C(D) continuity of the trajectories, it can be shown b1 ∈
Y (R, Xo, C(D),u). Hence, φ(R, Xo, C(D),u) ∩ B 6= ∅,
which implies Xo /∈ W .

Theorem 5.1 implies that to check if the set of initial states
are steerable away from the bad set, it is sufficient to only
consider the behavior of the system with constant inputs
uM and um. This dramatically reduces the computational
demand since it removes the need to search for all possible
control inputs to determine whether a set is a member of
W . However, still there is a need for search over all possible
disturbances. This problem will be addressed in Section VII,
where the implementation problem is considered.

VI. SOLUTION TO PROBLEM 2:THE CONTROL STRATEGY

In this section, we introduce a control strategy that solves
Problem 2. As defined in Section II, signals um and uM
adopt constant values um ∈ U and uM ∈ U , respectively.
Before introducing the control strategy, we first show some
preliminary properties.

Lemma 6.1: Assume the set of initial states Xo is com-
pact. Then, for u ∈ C(U), the set φ̄(t,Xo, C(D),u) :=
{φ̄(t, x,d,u)| x ∈ Xo d ∈ C(D)} is compact for all t ∈ R.

Lemma 6.2: Given u ∈ C(U), the set valued function
φ̄(·, Xo, C(D),u) : R→ Com(X) is upper-hemicontinuous.

Lemma 6.3: Given u ∈ C(U), the set Cu defined in
equation (3) is open in Banach space X.
To characterize the control strategy, we introduce the map
K : 2X → 2U as follows:

K(S)=



um
if S ∩ CuM

6= ∅, S ∩ Cum
= ∅

and S ∩ ∂Cum
6= ∅

uM
if S ∩ Cum 6= ∅, S ∩ CuM

= ∅
and S ∩ ∂CuM

6= ∅

{um, uM}
if S∩CuM

=∅, S∩Cum
=∅,

S∩∂Cum
6=∅ and S∩∂CuM

6=∅
U otherwise.

(4)
Before introducing the control strategy, we show the com-
pactness of x̂.

Proposition 6.1: For all t ∈ R+ and z ∈ S(M), the set
x̂(t,Xo,u, z) is compact.

The following theorem proves that the control strategy
provided in equation (4) prevents the flow from entering the
bad set B.

Theorem 6.1: Let the set of initial states Xo ⊂ Rn be a
compact set such that Xo ∩ Cum

= ∅ or Xo ∩ CuM
= ∅. If

u(t) ∈ K(x̂(t,Xo,u([0, t)), z)) (5)

then g(x̂(R+, X
o,u, z)) ∩ B = ∅, for all z ∈ C(M).

Proof: Here we provide a sketch of the proof. Proceed-
ing by contradiction, we assume there is a time t1 ∈ R+ such
that x̂(t1, X

o,u, z)∩Cum
6= ∅ and x̂(t1, X

o,u, z)∩CuM
6= ∅.

Using Lemmas 6.2 and 6.3, it can be shown that there
is a time t̄ such that x̂(t̄, Xo,u, z) ∩ CuM(m)

6= ∅ and
x̂(t̄, Xo,u, z) ∩ ∂Cum(M)

6= ∅ and after the time t̄ the
estimation set x̂ intersects both CuM

and Cum
. Moreover,

applying control strategy (5) at the time t̄ prevents x̂ to
intersect either of the two sets CuM

and Cum for a time
interval starting from t̄ with infinitesimally small length. This
leads to a contradiction. Hence x̂ never intersects the two sets
CuM

and Cum
simultaneously.



VII. ALGORITHM IMPLEMENTATION

To implement the control strategy (5), we need to deter-
mine at each instant of time whether x̂(t,Xo,u, z) intersects
the set Cum

, its boundary ∂Cum
, the set CuM

, and its
boundary ∂CuM

. So far, we have considered systems that
are order preserving with respect to the input as stated in
Assumption 3.2-6. In this section, we consider the class
of systems that not only are order preserving with respect
to the input, but also are order preserving with respect to
disturbance and state.

Assumption 7.1: For control signals u1 and u2, distur-
bance signals d1 and d2 in partially ordered space C(D),
initial states x1 and x2 such that u1 ≥ u2, d1 ≥ d2,
x1 ≥ x2, we have that φ̄(t, x1,d1,u1) ≥ φ̄(t, x2,d2,u2),
for all t ∈ R+.

In addition, we assume the cone that characterizes the
ordering of the state space Rn is of the following form:

Con = {(x1, · · · , xn) ∈ Rn| x1 ≥ 0, x2 ≤ 0, x3 ≥ (≤)0,

· · · , xn ≥ (≤)0}.
(6)

Therefore, Assumption 7.1 guarantees that the Assump-
tion 3.2-6 is satisfied.

Hence, if x ≥ y for x, y ∈ Rn, the projection of the
two vectors in R2 subspace are ordered with respect to the
cone defined in Section IV. The flow being order preserving
with respect to the cone Con is a special case of the order-
preserving property introduced in Definition 3.2. Further-
more, we assume that the closure of bad set B and initial
set Xo accept maximal and minimal elements with respect
to the corresponding partial orderings. These assumptions are
formally characterized as follows.

Assumption 7.2: Given the set of initial states Xo ⊂ Rn,
there are am ∈ Xo and aM ∈ Xo such that for all a ∈ Xo,
we have that a ≥ am and a ≤ aM with partial ordering
characterized by the cone Con defined in (6). Moreover,
there are disturbance signals dm and dM such that for all
d ∈ C(D), we have that d ≥ dm and d ≤ dM .

Assumption 7.3: There are bm ∈ ∂B and bM ∈ ∂B such
that for all b ∈ B, we have that b ≥ bm and b ≤ bM with
partial ordering characterized by the cone {(x1, x2) | x1 ≥
0 and x2 ≤ 0}.

Note that, in the case in which the sets Xo and B are
rectangles, then Assumptions 7.2 and 7.3 hold. Moreover,
similar to Assumption 4.3, we assume that for all a ∈ Xo

and all b ∈ B, a1 ≤ b1, i.e.,
Assumption 7.4: aM 1 ≤ bm1.
The projection of each trajectory in R2 partitions the R2

space into three sets. The trajectory, the set of all points
above the trajectory, and the set of all points below it. These
sets are employed for the characterization of the capture set
as well as for the implementation of the algorithm in the
sequel.

γo(x,d,u) := {Y (t, x,d,u) | t ∈ R+} (7)
γ+(x,d,u) (8)
:={(Y1(t, x,d,u), y) | t ∈ R+ and y > Y2(t, x,d,u)}
γ−(x,d,u) (9)
:={(Y1(t, x,d,u), y) | t ∈ R+ and y > Y2(t, x,d,u)}.

The following theorem proposes an implementation
method to determine for a given set Xo and control signal
u, whether Xo ∩Cu = ∅. Hence, we can determine whether
Xo ∩ Cum = ∅ or Xo ∩ CuM

= ∅, which is essential for
implementation of the control law (5).

Theorem 7.1: Let the set Xo be compact and u be a given
control signal. Then Xo ∩ Cu = ∅ if and only if bM ∈
Cl(γ+(am,dm,u)) or bm ∈ Cl(γ−(aM ,dM ,u)) where γ+,
γ− are defined in Definitions (8) and (9), respectively.

The following are the steps that should be taken to evaluate
the control strategy (5).
• For a given set Xo and B, identify elements am and
aM that satisfy Assumption 7.2 and elements bm and
bM that satisfy Assumption 7.3.

• Take T ≥ bM 1

ξ , where ξ is introduced in Assump-
tion 4.1-i.

• For u = uM and u = um, calculate γo(am,dm,u) and
γo(aM ,dM ,u) defined in (7), which determine the sets
γ+(am,dm,u) and γ−(aM ,dM ,u).

• For u = uM and u = um, determine if Xo ∩ Cu = ∅
or Xo ∩ ∂Cu = ∅ as follows

– If bM ∈ γ+(am,dm,u) or bm ∈ γ−(aM ,dM ,u)
then Xo ∩ Cu = ∅ and Xo ∩ ∂Cu = ∅.

– If bM ∈ γo(am,dm,u) or bm ∈ γo(aM ,dM ,u)
then Xo ∩ Cu = ∅ and Xo ∩ ∂Cu 6= ∅.

– If bM ∈ γ−(am,dm,u) and bm ∈ γ+(aM ,dM ,u)
then Xo ∩ Cu 6= ∅.

VIII. A NUMERICAL EXAMPLE

As an example to illustrate the application of the proposed
algorithm, we consider the problem of steering a ship from an
initial position to a desired target position, where an obstacle
is avoided. The following ship model, taken from [21], is
considered:

ẋ1 = x5 cos(x3)− (r1x4 + r3x
3
4) sin(x3)

ẋ2 = x5 sin(x3) + (r1x4 + r3x
3
4) cos(x3)

ẋ3 = x4

ẋ4 = −ax4 − bx34 + cur

ẋ5 = −fx5 −Wx24 + ut,

(10)

where x1 and x2 are the ship position (in nautical miles
(nm)) in the R2 plane, x3 is the heading angle, x4 is the
yaw rate, and x5 is the forward velocity. The two control
inputs are: the rudder angle ur and the propeller thrust ut.
Figure 1 represents the ship with the coordinates. The model
parameters are summarized in Table I. With these parameters,
the ship has a maximum speed of 0.25 nm/min = 15 knots for



Fig. 1. Ship coordinate system. The obstacle on the path of the ship is
a line segment that connects point bm = (b1, b2) = (8, 5) to the point
bM = (b1, b2) = (5, 8). That is, the ship is not allowed to pass over the
line segment. The initial heading angle is x3 = π/4 and the ship initially
is heading toward the target, moving toward the middle of the obstacle. The
ship heading angle x3 and heading velocity x4 are measured perfectly, while
the position of the ship is initially known with an uncertainty of ±0.1 m.

a maximum thrust of 0.215 nm/min2. The maximal rudder
angle is 35o, i.e.,|ur| ≤ umr = 0.61 rad.

Table I: Constant parameters of ship model
Parameter value unit

a 1.084 1/min
b 0.62 min/rad2

c 3.553 1/min2

r1 −0.0375 nm/rad
r3 0 Nm.min2/rad3

f 0.86 1/min
W 0.067 nm/rad2

With constant propeller thrust ut, and the effect of heading
velocity on the speed of the ship being negligible, the speed
of the ship is assumed to be constant at V = 0.25 nm/min.
Therefore, for the forward velocity x5, we have that x5(t) =
V for all t ≥ 0. Moreover, according to Table I, r3 = 0.
Hence, the model is reduced to the following:

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 = f(x, ur) =


V cos(x3)− (r1x4)sin(x3)
V sin(x3) + (r1x4)cos(x3)

x4
−ax4 − bx34 + cur

 .
(11)

Without loss of generality, we assume that the ship moves
from the origin heading toward a target in the first orthant
and therefore, the heading angle x3 is restricted to

α ≤ x3 ≤ π/2− α, (12)

with α ∈ [0 π/2]. This constraint is imposed to prevent
the ship from getting away from the target while it avoids
the obstacle. Moreover, it will be shown in the sequel that
this constraint provides order preserving property once the
effect of the heading velocity on position of the ship is
considered as a disturbance. The obstacle on the path of the
ship is a line segment that connects point bm = (b1, b2) to
the point bM = (b1, b2). That is, the ship is not allowed
to pass over the line segment. The initial heading angle
is x3 = π/4 and the ship initially is heading toward the

target, moving toward the middle of the obstacle. The ship
heading angle x3 and heading velocity x4 are measured
perfectly, while the position of the ship is initially known
with an uncertainty of ±0.1 m. The ship dynamics are
characterized as Σ = (X,D,U ,M, f, h) where X = R4,
U = {ur | |ur| ≤ umr = 0.61}, D = ∅, M = [−π, π] × R,
f is the vector-field introduced in (11), and

h(x̃1, x̃2, x̃3, x̃4)={(x1, x2, x3, x4) |x1∈ [x̃1 − δx, x̃1 + δx],

x2 ∈ [x̃2 − δx, x̃2 + δx], x3 = x̃3, and x4 = x̃4},
(13)

where [x̃1, x̃2, x̃3, x̃4] ∈M is the measurement. The Bad set
is B = {bm + (1 − α)bM | α ∈ [0, 1]}. The set B is the
line segment that connects bm to bM . The output map g is
defined as Y := g(x) = (x1, x2), where x is state and Y is
the output which is the position of the ship.

We summarize the objective as follows:
• Keep the ship in the first orthant, while the constraint

(12) is satisfied.
• Avoid the obstacle (the aforementioned part line), while

the ship is contained in the first orthant and the con-
straint (12) is satisfied.

A. Constraining the ship in the first orthant
To constrain the ship in the first orthant, in accordance

with constraint (12), we need to determine the maximal
controlled invariant set, SM , contained in the set {x ∈
R4 | α ≤ x3 ≤ π/2 − α}. Moreover, the corresponding
control law that keeps the state of the system inside SM
needs to be determined.

Considering equation (11), we have that ẋ4 = −ax4 −
bx34 + cur. Let xm4 be such that −axm4 − bxm4 3 + cumr = 0.
Considering the saturation constraint |ur| ≤ umr , for x4 >
xm4 we have that

ẋ4 = −ax4 − bx34 + cur < −axm4 − bxm4
3 + cumr = 0.

Similarly, for x4 < −xm4 , we have that ẋ4 > 0. Therefore,
for all ur(·), the set S1 := {x| |x4| ≤ xm4 } is an attracting
invariant set and for the dynamics (11), we have |x4| ≤ xm4 ,
where xm4 = 0.49 rad/sec. Hence, the maximal controlled
invariant set SM is contained in S1. Moreover, since all states
in SM satisfy the constraint (12), the set SM is contained in
S := {x | α ≤ x3 ≤ π/2− α, |x4| ≤ xm4 }.

The boundary of the set SM is partially determined by
the flow of the system that crosses the point (α, 0) with
ur = umr , called Γ1, and the flow of the system that crosses
the point (π/2 − α, 0) with ur = −umr , called Γ2. In the
following, we introduce Γ1 and Γ2 fromally.

Let φ̄(t, x, ur) be the flow of the system (11).
Let x1 = (x13,−xm4 ) be such that (α, 0) =
(φ̄3(t̄, x1, umr ), φ̄4(t̄, x1, umr )) for some t̄ ∈ R+. Similarly,
let x2 = (x23, x

m
4 ) be such that (π/2 − α, 0) =

(φ̄3(t̂, x2,−umr ), φ̄4(t̄, x2,−umr )) for some t̂ ∈ R+.
By symmetry, t̄ = t̂.

In addition, let the sets Γ1 and Γ2 be defined as follows

Γ1 := (φ̄3([0, t̄], x1, umr ), φ̄4([0, t̄], x1, umr ))

Γ2 := (φ̄3([0, t̄], x2,−umr ), φ̄4([0, t̄], x2,−umr )).
(14)



Considering the above definitions, it can be shown that the
control law associated with the maximal controlled invariant
set SM is given by

ur(t) ∈ G(x3(t), x4(t), u(t)) =

 umr if (x3, x4) ∈ Γ1

−umr if (x3, x4) ∈ Γ2

u(t) otherwise.
(15)

B. Avoiding the obstacle using order preserving properties
of the system

In Section VIII-A, the control law (15) is introduced which
guarantees the ship to stay in the first orthant and satisfy the
constraint (12). System (11) under the control law (15) forms
a new system with control input u as follows:

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 =


V cos(x3)− (r1x4)sin(x3)
V sin(x3) + (r1x4)cos(x3)

x4
−ax4 − bx34 + cG(x3, x4, u)

 . (16)

According to control law (15), ur(t) can take arbitrary
values in the interval [−umr , umr ], as long as (x3(t), x4(t)) is
not on Γ1 Γ2, defined in (14).

In this section, we show that system (16) is order preserv-
ing with respect to input u according to Definition 3.2-6.
Consider the system (16) as the cascade of the following
two systems[

ẋ1
ẋ2

]
=

[
V cos(x3)− (r1x4)sin(x3)
V sin(x3) + (r1x4)cos(x3)

]
(17)

and [
ẋ3
ẋ4

]
=

[
x4

−ax4 − bx34 + cG(x3, x4, u)

]
, (18)

where x3 and x4 are the outputs of system (18), inputs to
system (17), and u is the input to system (18).

We will show that system (17) is order preserving accord-
ing to Definition 3.2-6, when x3 is considered as a control
input and x4 is considered as disturbance. Moreover, we will
show that system (17) is order preserving with respect to the
input according to Definition main inpout order-6, once x4 is
considered as a disturbance in (17). Then, considering x4 as a
disturbance, we conclude that system (16) is order preserving
with respect to input, i.e., it satisfies Definition 3.2-6 and
order-preserving with respect to fictitious disturbance x4.
Moreover, the system is order-preserving with respect to
states x1 and x2. This allows us to apply the control strategy
proposed in this paper. Since |x4| ≤ xm4 , for system (17),
we consider x4 as a disturbance input d that is bounded, i.e.,
|d| ≤ xm4 . System (17) then modifies to[

ẋ1
ẋ2

]
=

[
V cos(x3)− (r1d)sin(x3)
V sin(x3) + (r1d)cos(x3)

]
(19)

According to [20], system (19) is order preserving with
respect to state x1, x2 and inputs x3, and d, if all elements

of the following Jacobian matrix are non-negative[
0 0 −(−V sin(x3)+|r1|d cos(x3)) |r1| sin(x3)
0 0 (v cos(x3)+|r1|d sin(x3)) −(−|r1| cos(x3))

]
.

(20)
In system (19) and (18), we have that α ≤ x3 ≤ π/2 − α
and |d| ≤ xm4 . By taking α = 4o, we have that tan(x3) ≥
tan(α) ≥ |r1|xm

4

V ≥ |r1|d
V . Therefore, −V sin(x3) +

|r1|d cos(x3) ≤ 0, (v cos(x3) + |r1|d sin(x3)) ≥ 0,
|r1| sin(x3) ≥ 0, and −|r1| cos(x3) ≤ 0. Consequently, (20)
holds and system (19) is order preserving with respect to
state (x1, x2) with the cone ∆, and inputs x3 with cone
{x3| x3 ≤ 0} and input d with cone {d| d ≥ 0}.

Lemma 8.1: Let u1 and u2 be two control signals corre-
sponding the system (18) and x13(·) ∈ C(R) and x23(·) ∈
C(R) be the associated heading angle trajectories, respec-
tively. If u1 ≥ u2 then x13(t) ≥ x23(t) for all t ∈ R+

System (19) is order preserving with respect to input and
state, i.e., Assumption 7.1 is satisfied, and system (18) is
order preserving with respect to the input, according to
Definition 3.2-6. Hence, we conclude that the cascade of
systems (19) and (18), i.e., the following system

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 =


V cos(x3)− (r1d) sin(x3)
V sin(x3) + (r1d) cos(x3)

x4
−ax4 − bx34 + cG(x3, x4, u)

 . (21)

is order preserving with respect to input and disturbance.
Therefore, for system (21), the output flow Y (t, x, u) =
(φ̄1(t, x, u), φ̄2(t, x, u)) = (x1(t), x2(t)) is order-preserving
with respect to input and the cone {(x1, x2)|x1 ≥ 0 and x2 ≤
0}. Moreover, since ∂f

∂x1
≡ 0 and ∂f

∂x2
≡ 0, system (21) is

order preserving with respect to states x1 and x2, i.e., given
xo3 and xo4, if (xo1, x

o
2) ≥ (x̄o1, x̄

o
2) with respect to the cone

∆, then Y (t, (xo1, x
o
2, x

o
3, x

o
4), u) ≥ Y (t, (x̄o1, x̄

o
2, x

o
3, x

o
4), u)

for all t ∈ R+.
In the ship steering problem, we have imperfect obser-

vation of the position of the ship with state estimate of the
position of the ship x̂1 and x̂2 being x̂1 = [x̃1−0.1, x̃1+0.1]
and x̂2 = [x̃2 − 0.1, x̃2 + 0.1], while heading angle and
heading velocity is perfectly measured and x̃1 and x̃2 are
measured positions.

Figure 2 shows the projection of sets Cum
and CuM

onto the R2 space (x1, x2) for x4 = 0 and x3 = π/4.
The box represents the position estimate of the ship. The
ship keeps constant heading angle x3 = π/4 heading the
middle of the obstacle towards the target which is located
beyond obstacle. According to control strategy (4) for a
singleton state set, the ship applies u(t) = uM (t) = −umr ,
once at the discrete-time instant nT x(nT ) /∈ Cum

∪ CuM

and the predicted state x((n + 1)T ) ∈ CuM
∩ Cum

with
uM = −umr = −0.61 and um = umr = 0.61. Detecting if
the state belongs to the sets Cum or CuM

is performed by
forward propagation of the trajectories for u(t) = ±umr =
±0.61 and d = ±xm4 = ±0.49 and construction of γ+

and γ− introduced in (8) and (9), respectively. As shown
in Figure 2 (a), x̂(t) ∩ Cum

6= ∅, x̂(t) ∩ ∂CuM
6= ∅, and

x̂(t) ∩ CuM
= ∅. Therefore, according to control law (5),



the control u(t) = uM (t) is employed. Figure 2 (b) shows
that as the ship moves the set of state estimate is tangent
to the capture set CuM

. At each sample time instant tn,
the state estimate x̂, is constructed by intersection of the
evolution of the previous state estimate set x̂(tn−1), i.e.,
Ln := Y (tn − tn−1, x̂(tn−1),u, z), and h(z(tn)). At each
time instant tn, z(tn) is uniformly randomly chosen in the
vicinity of Ln such that h(z(tn)) ∩ Ln 6= ∅. x̂(tn−1) is a
rectangle that is characterized at each time instant by its
center, width and length.

The sets CuM
and Cum

, are calculated according to
maximum and minimum values of the fictitious disturbance
d = x4, i.e., d = 0.49 rad/sec or d = −0.49 rad/sec in the
modified dynamics (21). Hence, the actual dynamic may not
act according to the extreme cases. Therefore, in Figure 2
(c), we observe that the estimate set is close to ∂CuM

but
does not intersect it. Figure 2 (d), shows the time when the
ship passes the obstacle.

Fig. 2. Ship trajectory, slices of sets CuM and Cum corresponding different
heading angles and yaw velocities, and obstacle (the black part line), The
bad set B is the black part line. Four different time instants are depicted:
(a) shows the time instant where x̂(t)∩Cum 6= ∅, x̂(t)∩ ∂CuM 6= ∅, and
x̂(t) ∩CuM = ∅ and according to control law (5), uM is applied. (b) and
(c) x̂(t) is close to the set CuM but x̂(t) ∩ ∂CuM = ∅, x̂(t) ∩ CuM = ∅
and x̂(t) ∩ Cum 6= ∅. (d) shows when the ship has passed the obstacle.

IX. CONCLUSION

This paper considers the safety control of systems with
imperfect state information, with disturbance input, and with
order preserving flow. Under certain assumptions, the set of
all initial state uncertainties that are steerable away from
a bad set is fully characterized. Assuming that the set of
initial state uncertainty complies with the aforementioned as-
sumptions, a control strategy is provided that guarantees that
no possible trajectory intersects the bad set in the presence
of disturbances and imperfect information. Consequently, a
method for implementation of the control strategy is provided
and the effectiveness of the proposed method is illustrated
via a numerical example. In this example, the method is
employed for obstacle avoidance of a ship in which imperfect
information about the position of the ship is available.
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