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Stochastic Analysis of Retroactivity in Transcriptional Networks through
Singular Perturbation

Reza Ghaemi and Domitilla Del Vecchio

Abstract— The input/output dynamic behavior of a biomolec-
ular system is affected by interconnection to other downstream
systems through impedance-like effects called retroactivity.
In this paper, we study the effects of retroactivity at the
interconnection between two transcriptional modules, focusing
on stochastic behavior. In particular, we describe the system
through the Master equation and develop a singular perturba-
tion theory to obtain a reduced Master equation. We prove
that the solution of the original Master equation converges
fast to an ε neighbor of the solution of the reduced Master
equation, in which ε is the singular perturbation parameter. Our
analysis shows that the upstream system and the downstream
one are statistically independent at the steady state. However,
the interconnection slows down the dynamics of both the
expectation and the variance of the output of the upstream
transcriptional module.

I. INTRODUCTION

Modularity is a fundamental property that guarantees that
the input/output behavior of a system does not change upon
interconnection with other systems. This property is often
employed in biomolecular systems to predict the behavior
of a complex network from the behavior of the composing
modules characterized in isolation [1]. It has been recently
shown that the dynamic behavior of a biomolecular system,
such as a transcriptional network, is affected by the inter-
connection with other systems through a phenomenon, called
retroactivity, which is similar to loading and impedance in
engineering systems [2–4]. All these works characterizing
retroactivity have assumed deterministic ordinary differen-
tial equation (ODE) models. Biological networks, however,
exhibit stochastic behavior and fluctuations [5], which can
be studied through stochastic models. These models describe
the behavior of the number of molecules and, as opposed to
ODE models, hold even for very low molecule numbers [6–9,
16]. Hence, to have a complete and general characterization
of retroactivity, we need to perform stochastic analysis.
Initial results in this direction have appeared in [12, 13], in
which approximated stochastic models, such as the Langevin
equation and/or linear noise approximation are employed.

In this paper, we employ an approach different from those
of [12, 13]. Specifically, we analytically study the chemical
Master equation [23] for a transcriptional component both
when isolated and when connected to its downstream sys-
tems, by exploiting the natural time scale separation char-
acterizing the constituent processes. In fact, transcriptional
networks are characterized by large time scale separation
between protein production/decay processes and the binding
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of protein with DNA, which provides the physical means by
which transcriptional modules are connected with each other
[24]. For ODE models, singular perturbation theory provides
tools for analyzing systems with time scale separation [14,
15], which have been extensively applied to biochemical
systems [10, 11]. By contrast, for stochastic models such
as the Master equation, singular perturbation theory has
been rarely addressed. Pioneering work in this area has
recently appeared, which allows to reduce the dimension
of large stochastic models, hence lightening the computa-
tional cost of simulation [9, 16–18]. In particular, in [16] a
singular perturbation method is introduced that is based on
approximating an infinite dimensional stochastic model with
a finite one using a projection algorithm [19] in conjunction
with singular perturbation. In [17], power expansion of the
probability distribution in terms of a perturbation parame-
ter is employed to derive the reduced model of the slow
time-scale process of the system. However, even though
the finite dimensional system can approximate the infinite
dimensional one, the reduced model approximation of the
finite-dimensional system that is achieved using singular
perturbation analysis is not generally an approximation of
the infinite-dimensional system. As described in [22] page
160, with ε being the singular perturbation parameter and
N being the dimension of the finite dimensional system
that approximated the infinite-dimensional one, the limits
N → ∞ and ε → 0 are not in general interchangeable.
Consequently, it is inferred that singular perturbation analysis
applied on the finite-dimensional systems does not provide
an approximation of the infinite-dimensional system.

In this paper, we introduce singular perturbation analy-
sis for the Master equation modeling the cascade of two
transcriptional components, to analytically study the effects
of retroactivity from the downstream component on the
upstream one. Specifically, our analysis provides two Master
equations with different time scales, slow and fast, which
together accurately approximate the joint probability distri-
bution of the species of the whole system with quantified
accuracy over a finite interval of time. To reach this result, we
employ singular perturbation theory for continuous Markov
chains [22] and adapt it to the system under study. We
analyze both the transient and stationary stochastic behavior
of the upstream transcriptional component as a function of
retroactivity from the downstream system employing the re-
duced Master equation. We show that the mean and variance
of the number of protein molecules in the upstream transcrip-
tional component converge to their steady states slower when
the system is connected. Specifically, we quantify the amount



by which this transient behavior is slowed down as a function
of the biomolecular characteristics of the interconnection. By
contrast, we show that the stationary values of the mean and
variance do not depend on the downstream component.

II. DEFINITIONS AND PRELIMINARIES

Consider a stochastic process M with finite or countably
infinite state space M. Let M(t) denote the state of the
system at time t. If for any realization of M , there exist
sequences {τk} and {mk} such that

M(t) =


m0, 0 ≤ t < τ1
m1, τ1 ≤ t < τ2
m2, τ2 ≤ t < τ3

...

then the process M is a jump process. If limk→∞ τk = ∞,
almost surely, i.e., P (limk→∞ τk = ∞) = 1, then the
process is a pure jump process. In other words, the process
is pure if it does not jump infinitely in a finite interval of
time.

Let P (m; t,m0) denote the probability that a process
starting in state m0 at time zero will be in state m at time t,
called transition function. A pure jump process satisfies the
stationary Markov property if for 0 ≤ t1 ≤ · · · ≤ tn ≤ t′ ≤
t, and m1, · · · ,mn,m

′,m ∈ N, we have that

P (M(t)=m | M(t1)=m1, · · · ,M(tn)=mn,M(t′)=m′)

= P (m; t−t′,m′).
(1)

A pure jump process that satisfies the stationary Markov
property is a Markov pure jump process. The infinitesimal
parameters of the process are defined as

w(m,m0) :=
d

dt
P (m; t,m0) |t=0 . (2)

The function π is a stationary distribution if π(m), m ∈
M are nonnegative numbers summing up to one and if∑
m̄∈M π(m̄)P (m; t, m̄) = π(m) for all m ∈ M and all

t > 0.
A Markov pure jump process is irreducible if, starting

from a state m1, it reaches to state m2 in finite time with
positive probability for all choices of m1 and m2.

For a Markov pure jump process, the transition function
P (m; t,m0) satisfies the following differential equation,
called the forward equation or Master equation [21, 23]:

d

dt
P (m; t,m0) =

∑
m̄∈M

w(m, m̄)P (m̄; t,m0). (3)

Proposition 2.1: A function π :M→ [0, 1] ⊂ R is a sta-
tionary distribution if and only if

∑
m̄∈M w(m, m̄)π(m̄) =

π(m).
According to Proposition 2.1, π is a stationary distribution

if and only if it is the steady state solution of the Master
equation.

Proposition 2.2: Let M be an irreducible Markov pure
jump process that has a stationary distribution π such that

π(m) > 0 for all m ∈ M.Then π is the unique stationary
distribution for M . Moreover,

lim
t→∞

P (m; t,m0) = π(m) for all m,m0 ∈M (4)

lim
t→∞

P (M(t) = m) = π(m). (5)
Note that (4) states that the conditional probability
P (M(t) = m |M(0) = m0) converges to the stationary dis-
tribution π(m) independent of initial state m0. Additionally,
(5) states that the probability of being at state m converges to
the stationary distribution π(m) as time goes to infinity (at
steady state). l1 denotes the space of all sequences equipped
with l1 − norm.

III. TRANSCRIPTIONAL SYSTEM

To analyze the effect of retroactivity, we consider a
transcriptional component connected to a downstream one
(Figure 1). The upstream transcriptional component takes
a transcription factor (protein) as an input and produces a
transcription factor Z as an output. The rate of expression
of protein Z is k and its decay (degradation or dilution)
rate is identified by δ. Interconnection of this transcriptional
component to a downstream one occurs through a reversible
binding reaction between Z (output of upstream transcrip-
tional component) and DNA binding sites P (present on
the promoter controlling the production of the downstream
transcriptional component protein).

Z

Pz

Upstream transcriptional component

Fig. 1. Interconnected transcriptional components.

In this paper, we analyze the stochastic model of the
connected transcriptional components to study the effect of
retroactivity on the behavior of the upstream system. The
reactions of the interconnected system are given by

∅
k

GGGGGBFGGGGG

δ
Z, Z + P

kon
GGGGGGGBFGGGGGGG

koff
C. (6)

Note that the total amount of DNA is conserved, i.e., P+C =
pT . It is important to understand the effect of the down-
stream system P , or load, on the steady state and transient
behavior of the transcription component. Specifically, it is
important to know the effect of the downstream system on
the concentration of the transcription factor Z. To analyze the
behavior of this system, a deterministic approach is adopted
in [2] which analyzes the steady state as well as transient
behavior of the concentration of Z. However, to be reliable,
the deterministic approach requires the number of molecules



to be large. Moreover, the deterministic approach does not
provide an insight on how the load affects the intrinsic noise
that is present in the system, specifically the noise on the
concentration of Z. In addition, stochastic analysis allows
calculation of the mean and the variance of the number
of molecules Z over time, which describes the dynamic
behavior of the concentration of Z as well as the noise
accompanying this concentration.

IV. STOCHASTIC MODELING

The number of molecules of C, Z, and P are stochas-
tic processes. That is at each time instant the number of
molecules is a random variable. Assume the system starts
at time 0 with number of molecules (C(0), Z(0),P(0)) =
(c0, z0, p0). The system remains in this state until some
positive time τ1, at which the system jumps to a new
state (C(τ1), Z(τ1),P(τ1)) = (c1, z1, p1) and the system
continues in the way that it remains in state (ck, zk, pk)
until time τk+1 at which it jumps to state (ck+1, zk+1, pk+1).
Hence, the stochastic process M := (C,Z,P) is a jump
process. In system (6), only a finite number of jumps occurs
in finite time. That is if {τk} is the sequence of time instants
at which a jump occurs, limk→∞ τn = ∞. Therefore the
stochastic process M is a pure jump process.

Let P (c, z, p; t,m0), or equivalently P (m; t,m0), denote
the probability that the process starting in state m0 =
(c0, z0, p0) at time zero, is in state m = (c, z, p) at time
t, i.e., P (m; t,m0) := P (M(t) = m | M(0) = m0). It
is assumed, as elaborated upon in [23], that the pure jump
process M has the Markov property and therefore it is a
Markov pure jump process.

The infinitesimal parameters for the Markov pure jump
process M , according to (6) and [23, p. 172], are given by

w((c,z+1, p),(c, z, p))=Ωk,w((c, z−1, p), (c, z, p))

= Ωδ, w((c+1, z−1, p−1), (c, z, p)) = konz
(p)

Ω
,

w((c− 1, z + 1, p+ 1), (c, z, p)) = koffc

w((c, z, p), (c, z, p))

= −(w((c, z+1, p), (c, z, p)) + w((c, z−1, p), (c, z, p))

+ w((c+1, z−1, p−1), (c, z, p))

+ w((c−1, z+1, p+1), (c, z, p))),
(7)

where Ω denotes the volume of the system. w(m,m0) can be
interpreted as transition probability per unit time from state
m0 to state m, once m 6= m0. The infinitesimal parameters
for all other transitions are zero.

As mentioned before, the total number of molecules of
type C and P are constant. Hence, for all t ≥ 0, C(t) +
P(t) = pT = C(0) + P(0) = c0 + p0 where pT is
the initial total number of molecules. For system (6) the
forward equation or the Master equation that characterizes
the evolution of the joint probability distribution of number

of molecules of C and Z over time is as follows:

ṖC,Z(c, z; t,m0)

= Ω[kPC,Z(c, z−1; t,m0) + δ
(z+1)

Ω
PC,Z(c, z+1; t,m0)

+ kon
(z + 1)

Ω

(pT − c+ 1)

Ω
PC,Z(c− 1, z + 1; t,m0)

+ koff
(c+ 1)

Ω
PC,Z(c+ 1, z − 1; t,m0)

−
(
k + δ

z

Ω
+ kon

z(pT − c)
Ω2

+ koff
c

Ω

)
PC,Z(c, z; t,m0)],

(8)

where PC,Z(c, z; t,m0) denotes the conditional probability
that at the time t, Z = z and C = c. We first investigate
the steady state behavior of Master equation (8). Then,
we study the transient behavior of the system, under the
assumptions that binding(unbinding) of transcription factor
Z to(from) the promoter sites P is sizably faster than the rate
of expression of protein Z [24]. The transient time analysis
includes singular perturbation analysis and analysis of the
convergence of the probability distribution to the stationary
distribution. Based on these analyses, we are able to achieve
a reduced model for the joint probability distribution of
the number of molecules that makes it possible to study
the transient behavior of expectation and variance of Z.
Consequently, we can analyze the concentration of Z and the
effect of noise over time for the connected system, namely
when the downstream system is present.

V. STATIONARY ANALYSIS

In this section, we show existence and uniqueness of
the stationary distribution for stochastic processes (C,Z),
πC,Z(c, z). Consequently, we show that regardless of
the initial distribution of the process, the distribution of
(C(t), Z(t)) converges to the stationary distribution π.

Theorem 5.1: The process (C,Z) has a unique stationary
distribution πC,Z(c, z), which is the product of stationary
distribution of the random process Z, πZ(z), and stationary
distribution of the random process C, πC(c), i.e.,

πC,Z(c, z) = πC(c)πZ(z). (9)

Furthermore, the random process C has binomial stationary
distribution as follows

πC(c) =
pT !

c!(pT − c)!(kdkz)c
(1 +

1

kdkz
)−pT ,

kd :=
koff
kon

, kz :=
δ

k
,

(10)

and the random process Z has Poisson stationary distribution
given by

πZ(z) =
Ωzz
z!
e−Ωz , Ωz :=

Ω

kz
. (11)

Moreover, P ((C(t), Z(t)) = (c, z)) → πC,Z(c, z) as t →
∞.

Proof: The chemical reaction network (6) has a defi-
ciency of zero and is weakly reversible as defined in [20].
Therefore, considering [20], the stationary distribution is in



the form of sum of product of Poisson distributions for Z,
C and P subject to the constraint c + p = pT which leads
to the product of a binomial and Poisson distribution.
According to (9) and (11), Z has a Poisson stationary
distribution with expected value E(Z) = Ωz = k

δΩ. This
value is exactly the same as the expected value of the isolated
system when the downstream system is not connected. Since
the stationary distribution of Z is a Poisson distribution, the
variance is the same as the mean, i.e., V ar(Z) = Ωz which is
the same for the isolated system. Namely, stationary variance
and mean do not depend on load.

VI. SINGULAR PERTURBATION ANALYSIS OVER
COMPACT INTERVAL OF TIME

In this section, we seek to characterize the transient
behavior of mean and variance of Z and study how they
are affected by retroactivity. In system (6), the binding
and unbinding reactions between Z and P are much faster
than protein production and decay processes. Exploiting this
property, we now introduce a singular perturbation analysis
for Master equation (8), which results in a reduced model.
Using the reduced order model, we analysis the effect of the
downstream system on the upstream system and the transient
behavior of Z.

Let us define the process Y as Y := C + Z. Let
PC,Y (c, y; t,m0) denote the conditional probability that at
the time t, C = c and Y = y, starting from state m0 at
the time 0. Defining ε := δ

koff
, kd :=

koff
kon

, k̄on := δ
kd

, and
k̄off := δ, the Master equation (8) can be written in the
following form:

ṖC,Y (c, y; t,m0) = Ω[kPC,Y (c, y − 1; t,m0)

+ δ
(y − c+ 1)

Ω
PC,Y (c, y + 1; t,m0)

+
1

ε
k̄on

(y − c+ 1)

Ω

(pT − c+ 1)

Ω
PC,Y (c− 1, y; t,m0)

+
1

ε
k̄off

(c+ 1)

Ω
PC,Y (c+ 1, y; t,m0)

−
(
k + δ

y − c
Ω

+
1

ε
k̄on

(y − c)(pT − c)
Ω2

+
1

ε
k̄off

c

Ω

)
PC,Y (c, y; t,m0)].

(12)

The infinitesimal parameters for the process (C, Y ) are

ω((c, y), (c0, y0)) := w((c, y−c, pT−c), (c0, y0−c0, pT−c0)).
(13)

We provide two probability distributions evolving ac-
cording to two different differential equations (or Master
equations). These two probability distributions approximate
the joint probability distribution PC,Y accurately, considering
the aforementioned two time scale property. In other words,
the probability distribution PC,Y is split into a fast evolving
part and a slow evolving part PY . Because the fast part
vanishes, the slow part will be the approximation of the main
joint probability distribution PC,Y introduced above. Hence,
analysis of the evolution of the joint probability distribution

is reduced to the analysis of the single distribution PY . This
allows mathematical analysis of the system.

To provide the singular perturbation analysis, we trans-
form the joint probability distribution PC,Y into a one-
variable probability distribution so that we can invoke
the results for singular perturbation theory for continuous
Markov chains [22]. In this section, we provide an O(ε)
approximation of the solution to (12). Let PY (y; t) be
the marginal probability distribution at the time instant
t, i.e., PY (y; t) :=

∑min y,pT
c=0 PC,Y (c, y; t), Es(C|Y =

y) :=
∑min y,pT
c=0 cπC|Y (c|y), πC|Y (c|y) :=

πC,Y (c,y)
πY (y) . Define

P sY (y; t) as the solution of the following forward equation:

Ṗ sY (y; t) = Ω[kP sY (y − 1; t)

+ δ
(y + 1− Es(C|Y = y + 1))

Ω
P sY (y + 1; t)

− (k + δ
y − Es(C|Y = y)

Ω
)P sY (y; t)],

(14)

with initial distribution P sY (y; 0) = PY (y; 0). Let
P fC,Y (c, y; τ) denote the solution to the following forward
equation

d

dt
P fC,Y (c, y; t)

= Ω[k̄on
(y−c+1)

Ω

(pT−c+1)

Ω
P fC,Y (c−1, y; t)

+ k̄off
(c+1)

Ω
P fC,Y (c+1, y; t)

− (k̄on
(y−c)(pT−c)

Ω2
+ k̄off

c

Ω
)P fC,Y (c, y; t)].

(15)

with initial distribution P fC,Y (c, y; 0) = PC,Y (c, y; 0) −
P sY (y; 0)πC|Y (c|y). The following Theorem provides an ap-
proximation of order ε of the solution to the forward equation
(12).

Theorem 6.1: Let P sY (y; t) and P fC,Y (c, y; t) be solutions
to (14) and (15), respectively, with specified initial dis-
tributions and let P eC,Y (c, y; t, ε) := P sY (y; t)πC|Y (c|y) +

P fC,Y (c, y; tε ). Then for all 0 < T <∞,

sup
t∈[0,T ]

‖PC,Y (·, ·; t, ε)− P eC,Y (·, ·; t, ε)‖1

= sup
t∈[0,T ]

{ ∞∑
y=0

pT∑
c=0

|PC,Y (c, y; t, ε)−P eC,Y (c, y; t, ε)|

}
=O(ε).

(16)

Moreover, there exists κ > 0 and α > 0 such that
‖P fC,Y (·, ·; τ)‖1 < κe−ατ .

Proof: Let us first transform the joint probability
distribution PC,Y (·, ·; t) ∈ RpT × l1 to a single probability
distribution P̃ (·; t) ∈ l1 at each instant of time t. To this end,
define my := min(y, pT ) + 1 and sy :=

∑y−1
i=0 mi and

P̃ (sy + c; t) := PC,Y (c, y; t). (17)

Considering (12), the infinitesimal generator Q, [21], of the
continuous Markov process P̃ is in the forms Q = A/ε+B,



i.e.,
d

dt
P̃ (·; t) = (A/ε+B)P̃ (·; t), (18)

where the generator A has the following diagonal form:

A = Diag{A0, · · · , Ay, · · · }, (19)

where Ay can be considered as the infinitesimal generator
of an irreducible Markov chain with V y = πC,Y (·, y) ∈
Rmin(y,pT )+1 being the stationary distribution and V :=
Diag({V y}). Considering asymptotic expansion method,
[22], a set of two dynamics approximates P (·; t), a slow
and a fast one. Let us define 1̃ with its ith column being

1̃
i

= [

sy︷ ︸︸ ︷
0, · · · , 0,

my︷ ︸︸ ︷
1, · · · , 1, 0, · · · ]T (20)

and v(t) = {v0(t), · · · , vy(t), · · · } be the sequence in l1

such that d
dtv(t) = 1̃

T
BP̃0(t)V v(t) with vy(0) = PY (y, 0)

and let P0(t) = 1̃v(t). Moreover, let P̄0(t) be the solution
of the following differential equation

d

dτ
P̄ (τ) = AP̄ (τ), (21)

with the initial condition P̄0(0) = P (0) − P0(0). It can
be shown that if λ(Ay) be the eigenvalue of Ay with the
smallest non-zero absolute value, then infy λ(Ay) > 0.

Therefore, employing Theorem 6.29 in [22], ‖P̃ (t) −
P0(t) − P̄0(t/ε)‖1 = O(ε) in t ∈ [0, T ]. It can be shown
that the dynamics of vy(t) is the same as (14). Hence, If we
transform this expression to the space of joint probability
distribution RpT × l1, the Theorem is proved.

VII. ANALYSIS OF TRANSIENT BEHAVIOR

In this section, we study the effect retroactivity on the
dynamics of the expectation and variance of the output of
the upstream component, i.e., Z. In the previous section,
it is shown that if ε is sufficiently small, P eC,Y (c, y; t, ε)
is an accurate approximation of the probability distribu-
tion PC,Y (c, y; t, ε). Moreover, since ‖P fC,Y (c, y; t/ε)‖ <

κe−α
t
ε , after a short interval of time t̄, P sY (y; 0)πC|Y (c|y)

is an order ε approximation of the probability distribution
PC,Y (c, y; t, ε) over the time interval [t̄, T ]. Therefore, to
study the transient behavior of the main Master equation
(12), it is sufficient to study the dynamics of the reduced
system (14). To derive the dynamics of E(Z) and V ar(Z),
we need to study the reduced Master equation (14) and
therefore we need to characterize Es(C|Y = y) which
appears as a nonlinear coefficient. According to (9) we have

πC|Y (c|y) =

1
c!(pT−c)!(Ωkd)c(y−c)!∑min(pT ,Ω)

c=0
1

c!(pT−c)!(Ωkd)c(y−c)!

. (22)

Therefore, as defined in the previous section, Es(C|Y = y)
can be written as follows

Es(C|Y = y) =

min y,pT∑
c=0

cπC|Y (c|y)

=

∑min(pT ,Ω)
c=0

c
c!(pT−c)!(Ωkd)c(y−c)!∑min(pT ,Ω)

c=0
1

c!(pT−c)!(Ωkd)c(y−c)!

.

(23)

Analyzing the transient behavior of the reduced system
(14) requires good understanding of Es(C|Y = y) as a
function of y. Such an understanding is hard to achieve from
(23). Therefore, we provide an explicit function of y that
approximates Es(C|Y = y) and show that this function is
indeed a satisfactory approximation. Consequently, we use
this approximation to analyze the transient behavior of the
reduced system (14).

The following lemma provides a recursive expression for
Es(C|Y = y) as a function of Es(C|Y = y − 1).

Lemma 7.1:

Es(C|Y = y) =
[pT − Es(C|Y = y − 1)]y

pT + kdΩ− Es(C|Y = y − 1)

=: Υ(Es(C|Y = y − 1), y),

(24)

with Es(C|Y = 0) = 0.
It can be shown that the function f̂ that is the fixed point
of the map Υ at y, i.e., f̂(y) = Υ(f̂(y), y), is a good
approximation of Es(C|Y = y). According to (24), f̂(y) =

[pT−f̂(y)]y

pT+kdΩ−f̂(y)
which can be converted to a second order

algebraic equation with f̂ being the solution in the following
form

f̂(y) =
y + pT + kdΩ−

√
(y + pT + kdΩ)2 − 4ypT

2
≈ Es(C|Y = y).

(25)

Assuming that kd is sufficiently large compared to pT
Ω and

y
Ω , which is often a reasonable assumption, we have

f̂(y) =
2ypT

y + pT + kdΩ +
√

(y + pT + kdΩ)2 − 4ypT

≈ pT
pT + kdΩ

y.

(26)

Defining β := kdΩ
kdΩ+pT

, we have that

Es(C|Y = y) ≈ (1− β)y. (27)

From forward equation (14) and (27), according to [23], the
following differential equation characterizes Es(Y ; t)

d

dt
Es(Y ; t) = −δβEs(Y ; t) + kΩ. (28)

Moreover, according to [23], the second moment of the
random variable Y evolves according to the following dif-
ferential equation

d

dt
Es(Y 2; t) = Es(2Y (kΩ− δβY ); t) + Es(δβY + kΩ; t)

− 2δβEs(Y 2; t) + (2kΩ + δβ)Es(Y ; t) + kΩ.
(29)

The time constant corresponding to the dynamics of the
second moment of Y , i.e., Es(Y 2; t) is 1

2δβ , which is the
time constant of the variance as well. The time constant cor-
responding to the dynamics of the mean of Y , i.e., Es(Y ; t)
is 1

δβ . These would be the time constants corresponding to
the isolated system dynamics if we set β = 1. We see that



the dynamics of variance and mean of Y slow down when
the system is connected, compared to the isolated system.

Having dynamics of mean and variance of Y as in (28)
and (29), we now analyze dynamics of mean and variance
of Z. From (27), we have

Es(Z; t) = Es(Y − C; t) = Es(Es(Y − C|Y ); t)

=Es(Y −Es(C|Y ); t)=Es(Y −(1−β)Y ; t)

=βEs(Y ; t).

(30)

The second moment of Z can be written in the following
form

Es(Z2|Y =y)=Es(Z(Y −C)|Y =y)=Es(ZY |Y =y)

−Es(ZC|Y =y).

Considering the Lemma last lemma, it can be shown that
Es((Y −C)C|Y = y) = Es(C|Y = y − 1)Es(Y −C|Y =
y). Hence, we have

Es(Z2|Y =y)

=yEs(Z|Y =y)−Es(C|Y =y−1)Es(Y −C|Y =y)

yEs(Z|Y = y)− Es(C|Y = y − 1)Es(Z|Y = y).

Using approximation (27), we have

Es(Z2|Y = y) ≈ βy2−(1−β)βy(y−1) = β2y2+β(1−β)y.

Therefore,

Es(Z2; t) ≈ β2Es(Y 2; t) + β(1− β)Es(Y ; t). (31)

Since the fastest eigenvalue corresponding to which
Es(Y 2; t) and Es(Y ; t) evolve over time is 2δβ, we con-
clude that the dynamics of variance and the mean of Z slow
down when the system is connected (β < 1), compared to
the isolated system (β = 1).

VIII. CONCLUSION

In this paper, we studied the stochastic effects of retroac-
tivity in a transcriptional module connected to downstream
systems. Exploiting the natural time scale separation of the
processes that constitute the system, we developed singular
perturbation analysis for the Master equation. Specifically,
we provided a reduced Master equation describing the slow
processes and demonstrated that the solution of the original
Master equation fast approaches a neighbor of the solution of
the reduced Master equation. Employing the reduced model,
we mathematically analyzed how retroactivity impacts both
transient and stationary behavior of the system. We observed
that the upstream system and the downstream one are sta-
tistically independent at the steady state. However, the inter-
connection slows down the dynamics of both the expectation
and the variance of the output of the upstream transcriptional
module. These results are in contrast with the results obtained
in [12, 13], in which approximated techniques, such as the
Langevin equation and linear noise approximation, led to
conclude statistical dependence between the upstream and
downstream systems at steady state.
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