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Recently, polymeric nanoparticles (NPs) have attracted enormous attention as targeted drug
delivery vehicles.[1-4] Especially, biodegradable and biocompatible polymeric NPs
comprised of poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) block
copolymers exhibit optimal physicochemical characteristics such as the ability to
incorporate various targeting agents, enhanced immune evasion, controlled drug release, and
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high payload of drug molecules.[5-6] Targeted PLGA-PEG NPs have shown very promising
in vivo results for treatment of cancer[7-9] and they are now poised to enter clinical trials.
Preparation of such targeted NPs in a robust and reproducible manner has thus become very
important for therapeutic applications where precise control of the physicochemical
properties of NPs is required to achieve optimal biodistribution and therapeutic efficacy.[10]

While the conventional approach to synthesize polymeric NPs relies on ‘bulk’
nanoprecipitation by solvent exchange,[11-12] our group recently reported a new reproducible
synthesis of highly uniform PLGA-PEG NPs using 2D hydrodynamic flow focusing (HFF)
in microfluidic channels.[13-14] In this method, the polymer stream in acetonitrile (ACN)
horizontally focused only by water sheath streams experiences rapid mixing with water with
a characteristic mixing time faster than the NP assembly time, resulting in homogeneous
NPs.[13,15] However, one of the challenges for optimal NP synthesis by 2D HFF is that NPs
made from polymers with a PLGA block of high molecular weight (MW) (> 45 kDa) tend to
aggregate on the channel walls, resulting in clogging of the channels. Aggregation is caused
by the adsorption of the hydrophobic PLGA onto the hydrophobic walls of PDMS, which
depends both on concentration and molecular weight.[16-17] This substantially reduces the
robustness of operation – the ability to synthesize NPs without device failure – and is a
nontrivial drawback of the 2D HFF technique because NPs made from high MW PLGA
blocks tend to exhibit higher drug loading and tunable drug release profile as the polymer
MW is varied.[12,18-19] Furthermore, aggregation of the polymer on the channel walls
frequently causes the device to irreversibly fail due to increased internal pressure.[20] Such
channel fouling may be circumvented by modification of the channel surface with Teflon-
like materials.[21] However, efficient surface modification requires laborious silicon/glass
fabrication or a separate deposition/curing step that is extremely demanding, and the coating
tends to degrade over time. For this application and many others, a preferred solution would
be to isolate the precipitating polymer from the channel walls by 3D focusing in both the
horizontal and the vertical dimensions, thereby preventing aggregation and clogging. Over
the past few years, several unique 3D HFF systems have been reported,[22-31] including
intrinsic 3D structures such as horizontal nozzles[22-23] and vertical chimneys[24]. Other 3D
HFF systems with 3D channel network either with a single two-level layer[27-28] or with two
individual layers[29-31] have been also proposed. However, their construction requires high-
level expertise of fabrication, considerably high costs and limited reproducibility. More
recently, ‘microfluidic drifting,’ a methodology of 3D fluid manipulation in a single layer,
has been also introduced.[25-26] Despite its fabrication simplicity, this method functions only
at high Re numbers and a relatively low sample flow rate, which may cause substantial
dilution of the sample flow and low throughput. Because of the complications with the
previously proposed 3D HFF systems, there is demand for a platform that is sufficiently
versatile and simple for both fabrication and operation.

In this paper we present a simple design for 3D HFF composed of a monolithic single layer
with three sequential inlets for vertical focusing followed by a conventional cross junction
for horizontal focusing. We use this device for the synthesis of polymeric NPs at various
polymer concentrations and MWs —the assembly of some of them being significantly
difficult by 2D HFF or bulk nanoprecipitation. Optimal ranges of operational parameters are
predicted by mathematical modeling and geometric dimensions of channels and inlet holes
are fine-tuned by finite element simulations to ensure that the polymer stream is sufficiently
exposed to the anti-solvent (water) stream but is not in touch with channel walls. Using
confocal microscopy, we further confirm the presence, the position and the shape of the 3D
focused polymer stream, which is important for optimal nanoprecipitation of polymeric NPs.

Figure 1a shows a schematic of our 3D focusing channel design for polymeric NP
synthesis. The polymer flow (Inlet B) containing polymer precursors dissolved in ACN is
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first vertically focused by two vertical ACN sheath flows (Inlet A and C). The vertically
arranged stream is subsequently focused horizontally by the water sheath streams and the
resulting solvent exchange induces self-assembly of the nanoparticles. Thus, 3D focusing
enables isolation of the precipitating polymer from the channel walls. Using this
microfluidic device, we synthesized various PLGA-PEG NPs at different polymer precursor
concentrations and MWs to investigate the robustness of nanoprecipitation by 3D HFF. In
Figure 1b, TEM images of PLGA-PEG NPs made from polymers with various MW and
concentrations by 3D HFF show that this method yields fairly monodisperse NPs with a
range of sizes.

For comparison between the conventional 2D HFF and 3D HFF, we also constructed 2D
HFF channel with identical geometry except for the absence of the two ACN sheath inlets in
Figure 1a and we maintained all flow parameters such as net organic stream and water
stream flow rates, ensuring similar focused stream geometry and molecular residence time
the same for 2D and 3D. When comparing nanoprecipitation using 2D versus 3D HFF
(Figure 2a), we found that only the 3D HFF method could successfully produce NPs with
long-term operation (>10 min) without channel fouling. Polymers with high MWs or high
concentrations are usually more susceptible to aggregation in microchannels. Such
aggregation during 2D HFF occurred unpredictably at random locations along the channel
and thus resulted in poor reproducibility. We also compared the size and monodispersity of
NPs synthesized by 3D HFF to 2D HFF and conventional bulk nanoprecipitation for various
concentrations (10-50 mg mL-1) and PLGA-PEG MWs (27, 45, and 95 kDa) to verify the
quality of NPs prepared by this method (Figure 2b). 3D HFF consistently yielded NPs with
the smallest size and lowest polydispersity while 2D HFF and bulk method sometimes
produced distinctly larger NPs, or failed to produce NPs at all. NP synthesis by 2D HFF was
impossible for high MW and high concentration cases due to device failure caused by
aggregation. Figure 2c shows a comparison of the size distributions of NPs made from
PLGA95K-PEG5K precursors at low and high concentrations (10 mg mL-1 and 50 mg mL-1,
respectively) using the three different methods. At high concentrations, NPs obtained by 2D
HFF and bulk method yielded highly polydisperse particles of extremely large size (>1000
nm), while 3D HFF consistently resulted in smaller NPs with relatively low polydispersity
regardless of polymer concentrations. These observations indicate that 2D HFF is
comparable with 3D HFF only for small MW polymers or very low polymer concentrations
where the channels are less susceptible to fouling. Consequently, 3D HFF is the only
method that enables the reproducible synthesis of monodisperse NPs made from different
PLGA MWs and at different concentrations with average NP sizes ranging from 30 to 230
nm.

To identify conditions that enable robust nanoprecipitation in our 3D HFF device, we
assembled pure poly(lactic-co-glycolic acid) (PLGA) NPs that are especially prone to
aggregation due to the absence of the protective hydrophilic PEG chain as an extreme case
model of PLGA-PEG NPs without the PEG shell. Since the flow velocity is slow before
horizontal focusing by the water streams, diffusion of the vertically focused polymer stream
to the walls must be minimized to prevent isolation. We used a mathematical model to
predict optimal parameter ranges for reproducible synthesis of PLGA NPs without
aggregation. These parameters collectively define two phases to which the synthesis
conditions correspond; the conditions where good and predictable NPs are synthesized in the
microfluidic rapid mixing environment without aggregation (Phase I, Good NPs) and the
conditions where aggregation occurs (Phase II, Aggregation) (Figure 2d). We expressed the
phase space in terms of two parameters: i) the fraction of polymer flow rate and ii) the
modified Péclet number (Pe*). First, as the fraction of polymer flow rate in total organic
(polymer + ACN) flow rate (f) increases, the vertical sheath layer becomes thinner, and
eventually the focusing profile approaches to 2D HFF (f=1 for 2D HFF), where the system is
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more susceptible to aggregation . Second, Pe*, defined as a product of the Péclet number
(umax·h/D, where umax is the maximal flow velocity and D is the diffusion coefficient of
polymer precursors in ACN) and the ratio of channel height to focusing length (h/L), takes
into account the relative importance of convection to diffusion of the polymer precursor.
The solid green line in Figure 2d represents conditions where the focusing Péclet number,
Pef=(1/3)*Pe*·(1-f)2, is 10, which indicates that axial convection effectively dominates over
lateral diffusion. This dimensionless number not only describes the ratio of diffusive and
convective timescales but accounts for thickness of the sheath layer during flow focusing.
For low Pe*, precursor molecules in the focused stream rapidly diffuse from the center to
the channel wall. We then expect significant concentration of polymer at the wall,
invalidating vertical focusing. The condition where Pef=10 thus serves as a suggested
boundary line between Phasse I and II. The polymer precursor concentration near the walls
acts as a critical determinant of aggregation. Based on the empirical observations that
aggregation occurred only when the polymer concentration exceeded a certain threshold (in
case of 2D HFF), we defined a critical wall concentration (1 mg/mL for PLGA70K) for 3D
HFF, above which aggregation may be expected. Conditions under which a wall
concentration of 1 mg/mL is obtained from mathematical modeling (dashed red line in
Figure 2d) agree qualitatively with the line corresponding to Pef=10, as is expected for the
polymer concentration used in experiments. Consequently, Figure 2d shows good agreement
between experimental data and the calculated phase diagram. These results suggest that
diffusion of polymers into the vertical sheath flows, governed by the polymer flow ratio (f)
and the modified Péclet number can explain regimes where the 3D HFF device can
successfully isolate the precipitating polymers from the channel walls and operate without
aggregation. Thus, we can mathematically predict optimal operating conditions in our
system that result in robust nanoprecipitation of NPs and prevent fouling of the
microchannel (For detailed discussion about mathematical modeling and analysis, see the
supporting information).

To elucidate the effect of inlet hole geometry on device performance, we performed finite
element simulations using COMSOL. The aspect ratio (width to height, w/h) of the channel
where vertical focusing occurs and the size and position of inlet holes are particularly
important design factors since they determine the shape of 3D focusing in the channel. The
simulations showed a strong influence of the aspect ratio (w/h) on the distribution of the
polymer after vertical focusing (Figure 3a). For the deep channel with w/h < 2, vertical
lamination successfully occurred with a flat concentration profile, whereas the channel with
w/h > 2 resulted in a ‘banana-like’ profile with long tails extending to the top wall, making
this configuration more susceptible to aggregation. The inlet hole diameter was also found to
significantly influence the concentration profile (Figure 3b) and the most uniform vertical
focusing was obtained for hole sizes slightly larger than the channel width. Smaller holes
significantly compromised vertical focusing, again resulting in a ‘banana-like’ polymer
stream profile. Likewise, the lateral position of inlet holes affected the shape of vertically
focused polymer stream. Off-centered inlets resulted in a tilted polymer stream (Figure 3c),
which invalidates vertical focusing since precipitating polymer would touch the channel
wall. These simulations show that the best 3D focusing is obtained using deep, high aspect
ratio channels with well-centered holes of diameters slightly larger than the channel width.
Finally, we used confocal microscopy to verify the performance of 3D HFF by three
sequential inlets. We used a FITC (green) labeled stream as the focused stream, and a
rhodamine (red) labeled stream as the vertical sheath streams. The results in Figure 3d
showed vertical and horizontal hydrodynamic focusing with the three-sequential-inlet
system. In accordance with simulation results, we observed a biased distribution of the
focused flow for off-center holes. Similarly, with an inlet hole size smaller (~150 μm) than
the width (~200 μm) of the shallow channel, ‘banana-like’ concentration profiles were
observed as predicted with simulations. However, such distortion in polymer distributions
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was avoided and successful 3D focusing was obtained with a deep channel (low w/h). These
observations by confocal microscopy, collectively, are in good agreement with the previous
simulations. In summary, we presented a new yet simple method to isolate precipitating
precursors in microfluidic channels using 3D hydrodynamic focusing enabled by sequential
inlets. This approach was used to synthesize PLGA-PEG and PLGA NPs by
nanoprecipitation under conditions where monodisperse NPs could neither be synthesized
by 2D HFF nor by bulk mixing in a controlled manner. NPs synthesized by 3D HFF
exhibited smaller sizes and improved monodispersity compared to 2D HFF or bulk
synthesis, keeping the NP size small enough for optimal uptake (i.e. < 100 nm), which is
desired in applications where a high MW PLGA block is needed to obtain a specific release
profile or where different hydrophobic polymers are mixed.[32-34] More importantly, the
monodispersity of the 3D HFF enables the fine-tuning of NP size by carefully choosing
PLGA block size of the polymer and the concentration in ACN. Mathematical modeling,
together with simulations and confocal microscopy verified the design validity for the
performance of the device and defined optimal device geometry and operating conditions for
robust 3D HFF. This simple yet versatile design can be easily adapted to microfluidic
reactors for synthesis of various materials where isolation of precipitating or reacting flow
streams is desirable to prevent fouling and increase robustness during operation.[31, 35-37]

Experimental
Experimental Subheading

Experimental Details. 12 point, double-spaced. References are not superscripted and appear
before punctuation [6].

[CCDC nnnnnn contains the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.] ((delete if not applicable))

[Further details of the crystal structure investigation(s) may be obtained from the
Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (Germany), on
quoting the depository number CSD-...] ((delete if not applicable))

((Physical data should be quoted with decimal points and negative exponents (e.g. 25.8 J
K−1 mol−1), and arranged as follows where possible: mp/bp 20 °C; [α]D

20 = −13.5 (c = 0.2
in acetone) (please also give units for [α] and c, usually deg cm3 g−1 dm−1 and gcm−3,
respectively); 1H NMR (400 MHz, DMSO-d6, δ): 7.15 (s, 2H, Ar H), 1.3 (q, J = 8 Hz, 2H;
CH2), 0.9 (t, J = 8 Hz, 3H; CH3); 13C NMR (100 MHz, CDCl3, δ): 175.4 (C=O), 156.5 (C4);
IR (KBr): ν = 2972 (w), 2907 (w), ..., 1026 (s; νas(SiOSi)), 971 (vs), ..., 666 (w;
νs(SiOSi)), ..., 439 (m), 401 cm−1 (m); UV-vis (n-hexane): λmax (ε) = 320 (5000), 270 nm
(12000); EIMS (m/z (%)): 108 (20) [M+], 107 (60) [M+ − H], 91 (100) [C7H7

+]; HRMS
(ESI, m/z): [M + H]+ calcd for C21H38N4O6S, 475.2591; found, 475.2593. Anal. calcd for
C45H28N4O7: C 62.47, H 3.41, N 6.78; found: C 62.27, H 3.46, N 6.80.))

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Concept of device for 3D hydrodynamic focusing (not to scale) consisting of three
sequential inlets for vertical focusing and a separate inlet for side sheath flows (not shown).
The cross-sectional views in the inset show the vertically focused stream profile (left) and
the heterogeneous 3D hydrodynamic focusing where the sample flow is isolated both
horizontally and vertically (right). (b) TEM images of PLGA-PEG NPs obtained from
PLGA27K-PEG5K at 10 mg mL-1 in ACN (scale bar 100 nm), PLGA45K-PEG5K at 30 mg
mL-1 in ACN (scale bar 100 nm) and PLGA95K-PEG5K at 30 mg mL-1 in ACN (scale bar
200 nm) using 3D HFF with the flow ratio of Polymer:ACN = 3:7 and organic:water = 1:5.
Average NP sizes are 33.8, 55.0, and 200 nm, respectively.
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Figure 2.
Comparison of 3D HFF (f = 0.3), 2D HFF, and bulk nanoprecipitation of PLGA-PEG NPs
under different conditions with the flow ratio of organic:water = 1:10. (a) Representative
channel images of the device during synthesis of PLGA-PEG NPS by 3D HFF and 2D HFF
for various MW precursors, showing aggregation in the case of 2D HFF. All micrographs
were captured after ~500 s of operation (channel width 20 μm). (b) Effect of the PLGA-PEG
precursor concentration on the final NP sizes depending on the MW of the precursors and
the choice of a synthesis method. X = Clogging of channel within 3 minutes of operation. *
= Aggregation of polymer in channel observed after 5-10 minutes of operation. # =
Aggregation of polymer in channel observed after >10 minutes of operation. (c) Size
distributions by volume fraction of PLGA95K-PEG5K NPs prepared by microfluidic 3D
HFF, 2D, and bulk mixing methods for the precursor concentrations of 10 and 50 mg/mL,
respectively. Aggregated particles are found in the 1,000-10,000 nm range. (d) Phase space
of 3D HFF operation parameters (Pe* and f) for synthesis of PLGA NPs from pure
PLGA70K precursors (10 mg mL-1). Solid green line represents condisitons where Pef*=10
and dashed red line represents conditions under which the PLGA70K precursor reaches a
critical wall concentration (1 mg mL-1) that results in aggregation. Both lines delineate
conditions that result good synthesis of NPs (Phase I) from those that are susceptible to
aggregation (Phase II). Symbols indicate experimental data for the synthesis of PLGA70K
NPs. (O: reproducible, successful NP synthesis, X: aggregation with microparticle
formation, Δ: mild or occasional aggregation). Inset shows simulated concentration profiles
at the starting poirnt of nanoprecipitation under the conditions where flow rates (umax) are
different but f is the same for Phase I (*) and Phase II (**), respectively.
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Figure 3.
(a) 3D simulations with different channel aspect ratios (w/h); 3.33 (left) and 0.83 (right),
respectively. Perspective views of the channel with the width of 200 μm and the inlet of 150
μm. Only the left halves about the symmetry plane are shown. (b) Simulated cross-sectional
views for two different inlet hole diameters at a fixed channel aspect ratio (w/h = 3.33). (c)
3D simulations for a channel of w = 100 μm and h = 100 μm, showing off–centered inlet
(left), well aligned inlet (center), and slightly larger inlet (right). (d) Confocal micrographs
showing cross-sectional views of vertical focusing before (A) and after (B) horizontal
focusing. The top panel shows a top-view of the system near the lateral squeezing cross
juction. In the bottom left panel, off-centered holes directly compare with the left panel in
(c). The bottom center panel shows vertical focusing occurred in the channel of w/h = 3.33
while the sequential inlet hole size was slightly smaller. The bottom right panel shows
vertical focusing occurred in the channel of w/h = 1.0.
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