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Abstract

Understanding the cell as a system has become one of the foremost challenges in the post-genomic era.  

As a result of advances in high-throughput (HTP) methodologies, we have seen a rapid growth in new 

types of data at the whole-genome scale. Over the last decade, HTP experimental techniques such as 

yeast two-hybrid assays and co-affinity purification couple with mass spectrometry have generated 

large amounts of data on protein-protein interactions (PPI) for many organisms.

    We focus on the sub-domain of systems biology related to understanding the interactions between 

proteins that ultimately drive all cellular processes. Representing PPIs as a protein interaction network 

has proved to be a powerful tool for understanding PPIs at the systems level. In this representation, 

each node represents a protein and each edge between two nodes represents a physical  interaction 

between the corresponding two proteins. With this abstraction, we present algorithms for the prediction 

and analysis of such PPI networks as well as web servers and databases for their public availability:

1. In many organisms, the coverage of experimental determined PPI data remains relatively noisy 
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and  limited.  Given two protein  sequences,  we describe  an  algorithm,  called  Struct2Net,  to 

predict if two proteins physically interact, using insights from structural biology and logistic 

regression. Furthermore, we create a community-wide web-resource that predicts interactions 

between any protein sequence pair and provides proteome-wide pre-computed PPI predictions 

for Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae.

2. Comparative  analysis  of  PPI  networks  across  organisms can  provide  valuable  insights  into 

evolutionary conservation. We describe an algorithm, called IsoRank, for global alignment of 

multiple PPI networks. The algorithm first constructs an eigenvalue problem that models the 

network and sequence similarity constraints. The solution of the problem describes a k� partite 

graph that is further processed to find the alignments. Furthermore, we create a community-

wide web database, called IsoBase, that provides network alignments and orthology mappings 

for the most commonly studied eukaryotic model organisms:  Homo sapiens,  Mus musculus,  

Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae.

Thesis Supervisor: Bonnie Berger

Title: Professor of Applied Mathematics and Computer Science

4



Contents

1 A Web Server and Web Database For Predicting Protein-Protein Interactions Using a 
Structure-Based Approach

7

1.1 Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7

1.2 Struct2Net Algorithm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 14

1.3 Struct2Net Web Server and Database  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19

1.3.1 Query Options 19

1.3.2 Search Results 20

1.3.3 Data Availability 23

1.3.4 Sample Evaluation of Predictions in Struct2Net 23

1.4 Limitations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 25

1.5 Conclusion .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 26

2 A Web Database For Orthology Prediction Using a Network-Based Approach 27

2.1 Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27

2.2 IsoRank and IsoRankN Algorithm   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30

2.3 IsoBase Web Database    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31

2.3.1 Data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31

2.3.2 Gene Search .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 32

2.3.3 Keyword Search   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35

2.3.4 Browse  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35

2.3.5 Data Availability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 35

2.4 Evaluation of Predictions in IsoBase   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36

2.5 Conclusion .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39

5



6



Chapter 1

A Web Server and Web Database For Predicting Protein-

Protein Interactions Using a Structure-based Approach

1.1    Introduction

Systems biology research is like solving a jigsaw puzzle: the goal is to figure out how the various parts 

(i.e. genes and proteins within the cell) interact and work together. The interactome of an organism is  

then analogous to  the puzzle’s  key:  it  describes the network of all  the protein–protein interactions 

(PPIs) in a cell. As such, identifying all the protein-protein interactions for an organism is of great 

value, akin to sequencing its genome. Despite the use of high-throughput techniques in discovering 

PPIs, however, the coverage of experimentally determined PPI data remains poor (Table 1). Such low 

coverage is partly because the set of possible PPIs to be verified is so large (100 million for a species  

with 10 000 genes) that any exhaustive experimental verification will take a long time, even with high-

throughput techniques. Indeed, the rate of PPI discovery has slowed down in recent years (Figure 1). 

Furthermore, the experimental approaches have limitations of their own. For example, tandem affinity 

purification experiments have historically had difficulty identifying transient interactions, while yeast 

two-hybrid  experiments  may  produce  false  positives  due  to  promiscuous  proteins  [1];  recently, 

statistical methods have been proposed to improve confidence in the output of these experiments [2, 3].
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Organism Number of interactions Percentage  of  proteins  with  at 
least one interaction

Mouse 1486 6.0

Human 26,640 41.8

Worm 4559 14.5

Fly 22,740 52.7

Yeast 48,901 93.5

Table 1. Availability of experimental PPI data for major eukaryotic organisms.

Figure 1. Rate of discovery of new eukaryotic PPI data has slowed.
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    The paucity of interactome coverage has motivated significant research interest  in methods for 

supplementing experimentally determined PPI data with interactions inferred or predicted from other 

sources. A wide variety of methods have been proposed. One approach is to use interologs, which are 

basically PPIs mapped from another species to the target species [4, 5]. The key problem there is to 

correctly map homologs across species [6, 7]. Another approach is to use functional genomic data and 

leverage the observation that a pair of interacting proteins is also likely to have similar GO annotations, 

occupy the same cellular sub-compartments, or correspond to genes with similar expression profiles [8, 

9]. Consequently, many researchers have described machine learning-based approaches to predict PPI 

data from functional genomic data such as gene expression, cellular localization and GO annotation. 

    Predictions from many of these approaches have been aggregated into a number of databases/web 

services  offering  predicted  PPIs.  The  STRING database  [10]  combines  experimental  datasets  (e.g. 

KEGG, BioGRID, HPRD) with computational predictions based on co-expression, interologs and text-

mining, etc. The entries in this database correspond to functional inter- actions, and may not always be 

directly interpretable as PPIs. Another database,  IntAct [11], focuses more on inferring interactions 

from expert curation of data from literature. Other public services include DOMINO [12], InterDom 

[13] and I2D [14]. However, all of these data- bases suffer from a common selection bias: often, the  

proteins that have been selected for PPI experiments are usually genes/proteins that have received some 

attention before and, as such, are also more likely to have functional genomic data. 

    In this article, we describe Struct2Net, a web service for predicting PPIs using a structure-based 

approach. Our method predicts interactions by threading each pair of protein sequences onto potential 

structures  in  the  Protein  Data  Bank  (PDB)  [15].  Struct2Net  provides  PPI  predictions  that  are 

independent of all the non-structure-based approaches and may thus be combined with any of them. 

Another key advantage of our web server is that, apart from the PDB data, the prediction algorithm 
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only requires protein sequence data as input. It can thus be applied to proteins for which no functional 

data is available provided there is a suitable PDB structural template available. 

    The use of structure-based approaches to predict inter- action has been previously proposed. Aloy 

and Russell [16] suggested the use of structure-based approaches to predicting PPIs. Lu  et al. [17] 

constructed  statistical  potential  functions  to  evaluate  potential  PPIs  and  later  described 

MultiProspector,  a  structure-based  prediction  algorithm  [18].  In  a  previous  paper,  we  proposed  a 

prediction  algorithm  (also  used  by  Struct2Net).  Our  algorithm  builds  upon  previous  work  like 

MultiProspector,  by combining a threading approach for template  alignment with a novel  machine 

learning approach to estimate a confidence score for the interaction. In our previous proof-of-concept 

paper, we discussed how Struct2Net’s results compare favorably to related work [19]. 

    Unfortunately, the progress made in prediction has not yet translated into comprehensive community 

resources. Aloy and Russell [20] have described InterPreTS, a web server to predict PPIs for a given 

protein, using a homology modeling approach. We have already mentioned Lu et al.’s MultiProspector 

tool which also predicts PPIs [17]. More recently, Fukuhara and Kawabata have described HOMCOS 

[21, 22] a web server that performs a similar task by homology modeling. MODBase is a database of 

homology models for protein complexes that have high sequence similarity to known structures [23]. 

ADAN is a specialized database for prediction of PPIs mediated by linear motifs and utilizes position-

specific matrices to assess putative interactions [24]. 

    We believe that Struct2Net offers a significant advantage over such homology modeling approaches. 

Successful use of homology modeling requires relatively high sequence similarity between the query 

and template protein pairs. In contrast, we use a threading-based approach which widens the range of 

proteins for which predictions can be made. The use of threading also offers us improved performance: 

Fukuhara et al. [22] have reported that HOMCOS achieves a recall of 80% with a precision of about 
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10%; in comparison, Struct2Net achieves a recall of 80% with a precision of 30% [here, recall = (true 

positives)/(true  positives  +  false  negatives)  and  precision  =  (true  positives)/(true  positives  +  false 

positives)].

    The Struct2Net approach can also be contrasted with methods that model PPIs based on domain-

domain interactions.  These approaches  argue that the structural  basis  of protein interaction can be 

traced to the presence of interacting domains. A domain can be represented simply by its sequence 

motif or as a structure-fragment. Given a set of known PPIs, one can infer the set of domain pairings  

that are presumably the underlying cause of interaction. In principle, these pairs can then be used to 

make  prediction  for  unannotated  protein  pairs.  There  has  been  a  significant  amount  of  work  on 

analyzing  PPIs  using  such  domain  interactions.  Some  researchers  focus  solely  on  the  sequence 

signature of the domains, proposing methods to predict PPIs using these sequence domains [25, 26]. In 

previous work, we have discussed how such sequence-domain-based prediction can be combined with 

our approach in a machine-learning framework [19]. We also described some results that suggest that 

Struct2Net’s predictive ability compares well with the sequence-domain approaches. 

    Other researchers have aimed to understand these domains from a structural perspective. Prieto and 

Las Rivas [27] have reviewed publicly available databases that facilitate  analysis  of domain-based 

PPIs: 3did [28], SNAPPI-DB [29], iPfam [30], PIBASE [31] and PSIBase [32]. While our approach 

has some parallels with these approaches, our goal is significantly different. The domain interaction 

databases  are  essentially  repositories  of  known  structural  data,  analyzed  specifically  from  a  PPI 

perspective. Prediction, which is our core goal, is usually out of the scope of these approaches. In the 

‘Struct2Net Algorithm’ section below, we suggest how Struct2Net could take advantage of some of 

these  databases.  The  Struct2Net  database  and  web-service  are  freely  available  at 

http://struct2net.csail.mit.edu.
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1.2    Struct2Net Algorithm

The guiding intuition behind our prediction approach is that if a potential interaction is sufficiently 

favorable from a thermodynamics perspective, it is likely to be true. We provide a brief description of 

the  algorithm  here.  For  more  details,  see  Singh  et  al.  [19],  which  describes  a  proof-of-concept 

implementation of the algorithm. 

Our approach proceeds in two broad stages. Given a pair of protein sequences, the first stage predicts 

the most likely structure of the complex formed by the two proteins and produces a vector of scores 

that quantitatively represent the thermodynamic suitability of this structure. For this task, we start by 

analyzing the PDB to construct a database of complex-structure templates; then we thread the two 

sequences jointly through the various templates in this database and identify the best fitting template. 

Our threading algorithm formulates the threading problem as an integer linear program (ILP) and uses 

branch- and-bound techniques to efficiently find the solution. The ideas in this algorithm, when applied 

to a single-protein threading context in the RAPTOR program, have performed well at various blind 

tests and competitions [33, 34]. To speed up prediction, we ran PSI-BLAST (35) before running our 

threading algorithm. If some templates in our database appear in the list of PSI-BLAST top hits (E-

value <10-4),  we simply thread the sequence pair to these templates instead of the whole template 

database.  This  speedup procedure  does  not  lose accuracy since  PSI-BLAST is  very good at  close 

homolog detection. 

    We now briefly describe how the database of complex templates was constructed. We begin by using 

a  simple geometric criterion to determine if  two protein chains form a complex. This provides an 

unbiased and objective way of characterizing an interaction. Given two protein chains in the same PDB 

entry, we first calculate the distance between two (non-hydrogen) atoms from these two chains. We 
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assume that there is an interaction between two residues of different chains if there is at least one pair 

of atoms from these two residues with distance <3.5 A .̊ If there are at least 10 interacting residue pairs  

between two chains A and B, we say these two chains form a complex. To avoid redundancy, we 

enforce the constraint that any two templates in the database share <70% sequence identity. Following 

this procedure, our database currently contains 10,111 dimers. While our template database (and the 

web server’s predictions) are currently built at the chain level, we intend to explore the incorporation of 

domain–domain interactions (from databases like SNAPPI, 3did, PSIBase, PIBASE, etc.) into it. This 

may help enlarge the database’s coverage. 

    The second stage of our prediction approach evaluates the likelihood of the interaction based on the 

predicted  structure. We compute various energy scores that evaluate the structure (e.g. the quality of 

the  interfacial  region,  the  quality  of  fit  for  the  individual  proteins).  Given  these,  we  use  logistic 

regression to predict  whether an interaction will  occur. Let  yi be an indicator variable representing 

protein interaction, i.e. y = 1 if the protein pair  i interacts and 0 otherwise. Let xi = {x i
1 , xi

2 ,....}  be 

the vector of scores we use for prediction. We fit the following model: 

log
P (y i=1∣xi)
P( y i=0∣xi)

=α+β1 x i
1+β2 x i

2+...

where α, β1, β2, etc. are parameters to be learned from data. To train this model, we constructed positive 

and negative training sets. Obviously, the choice of these sets can have a substantial impact on the 

prediction algorithm’s quality. 

    We have developed criteria for constructing these datasets. The exact criteria and a discussion about 

the rationale behind them are available at the Struct2Net website. Briefly, we require that the positive  

examples either come from a small set of trustworthy protocols or from low-throughput experiments; or 

roughly correspond to co-clustered protein pairs in the PPI network. We chose BioGRID [36] as our 
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data-source, but other multi-species genome-wide databases (e.g. MINT [37] or APID [38]) could also 

be used. For negative examples, we require that the two proteins either be disconnected in the PPI 

network or be at least 3 hops away from each other. Using these criteria, we had a training set of 62,519  

pairs and a test set of 15,635 pairs (with a positive:negative ratio of 1:6 approximately, in both sets). 

We believe that these datasets provide good evidence of validation. Our construction of the negative 

dataset was motivated by similar approaches in literature [8]. For positive datasets, we believe that our 

approach identifies true PPIs with better confidence than an alternative approach that would select  

repeatedly observed PPIs (across multiple experiments). Our scheme emphasizes protocols and studies 

with  low  error-rates.  In  contrast,  many  high-throughput  protocols  (e.g.  yeast  two-hybrid)  have 

systematic biases which may manifest as repeated false positives, even across multiple experiments. 

    In addition to the energy scores from the first stage, we aimed to enhance the model’s predictive 

power by adding extra terms to it. These included interaction terms, non-linear functions of the energy 

scores,  as well  as normalized scores (e.g.  interfacial  energy normalized by the average of the two 

proteins’ sequence length). We then used the Akaike information criterion (AIC) to select the model 

with  the  best  trade-off  of  higher  explanatory  power  and  lower  complexity.  Using  this  model,  we 

computed the interaction score for the given joint structure. 

    As seen by the graph in Figure 2, our method has significant predictive power when tested on current 

data.  For  further  details,  including  the  construction  of  training/test  datasets  and  evaluation  of  the 

algorithm, please see ‘About’ on the Struct2Net website. As the threshold for the interaction score is 

increased, the specificity of the model rises. Higher sensitivity, on the other hand, can be achieved by 

choosing lower specificity. Also, we note here that we do not make a prediction for a candidate protein  

pair if the first stage of our algorithm fails to predict a structure for them. 
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Figure 2.  Sensitivity versus specificity. The prediction algorithm can achieve 60% sensitivity while 
maintaining  75% specificity  as  measured on the  test  set.  Here,  sensitivity  = (true  positives)/  (true 
positives + false negatives) and specificity = (true negatives)/ (true negatives + false positives). We 
constructed a training set  and test  set  of positive and negative examples from yeast  and fly, using 
criteria we have developed to identify high-confidence positive and negative examples of PPIs (see the 
website  FAQ  for  details).  After  training  the  logistic  regression  model  on  the  training  set,  its 
performance was measured on the test set. 
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1.3    Struct2Net Web Server and Database

1.3.1 Query Options

The Struct2Net server provides multiple querying options. For the most commonly studied organisms 

(Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens), PPI predictions have been pre-

computed and can be retrieved by gene name or a wide array of gene identifiers, including ‘ids’ from 

Ensembl,  EMBL,  Entrez,  UniProtKB,  GenBank,  FlyBase  and  Saccharomyces  Genome  Database 

(SGD; Figure 3A). For proteins from other organisms, the users can query by sequence in FASTA 

format (Figure 3B). Users have the option of getting a quick-but-approximate result, by retrieving pre- 

dictions  from  the  best-hit  ortholog  over  pre-computed  results,  or  have  a  full-blown  computation 

performed (Figure 3C). Furthermore, with full-blown computations, a batch query option is available 

for querying multiple sequences at a time. In addition, with orthology-based approximation, users can 

specify just one protein identifier or FASTA sequence; in that case, all the interactions involving that 

protein will be returned. 

    Predictions are retrieved almost instantaneously when querying by ids. When querying by protein 

sequence  and with  orthology-based approximation selected,  typical  run-times are  within 20s.  Full-

blown computations finish within 45 mins, given query and subject sequences. Because of the potential 

for long run-times (e.g. if the server is overloaded), we encourage the user to supply an email address 

to which a job id and a link to the progress page are sent upon submission. Alternatively, users can 

check the progress of a submitted job by entering a job id in the ‘Fetch Job’ webpage. Upon completion 

of a job, an email with a link to the results page will also be sent. 
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1.3.2 Search Results

For pre-computed predictions in  S.  cerevisiae,  D.  melanogaster and  H.  sapiens, the output for each 

query protein sequence consists of a list of all predicted interactions along with their confidence scores 

(Figure 3D).  Struct2Net interactively links each gene hit  to various sequence databases along with 

associated GO annotations  and aliases.  Results  are  also cross-referenced with BioGrid  in  the  case 

where experimental data is available for a predicted interaction. For predictions in other organisms 

using  the  Struct2Net  algorithm,  the  output  for  each  sequence  pair  contains  details  on  the  best-fit  

complex templates used during the computation including sequence alignments, alignment scores, their 

associated  z-scores and an interfacial  energy calculated between the sequence pair  (Figure 3D).  In 

addition, an overall confidence score is provided for each potential interaction. The confidence score 

ranges from 0 to 1, with 0 indicating minimum confidence and 1 indicating maximum confidence. In 

the ‘About’ page of the website, we discuss threshold choices that would allow a user to achieve a 

desired level of specificity in the output or a desired number of interactions above the threshold. For 

batch queries, results are separated by each pair of protein sequences. 
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Figure 3.  Web interface and output of Struct2Net. (A and  B) Web server entry page. (C) A query 
option for either a quick-but-approximate approach (using orthology over pre-computed predictions 
from yeast, fly and human) or a full-blown computation using the Struct2Net algorithm. (D) Example 
of an output page when choosing to thread pairs of sequences onto all templates. Confidence scores for 
a potential interaction are displayed along with associated template–sequence alignments and threading 
details. 
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1.3.3 Data Availability

For users interested in performing large-scale database analysis and classification, bulk download of 

predictions for S. cerevisiae, D. melanogaster and H. sapiens is also available. We have further made 

available a script on the Download page that facilitates the integration of Struct2Net’s predictions with 

other tools. In the future, we plan to update our template database every 3 months. Every 6 months, we 

will update our pre-computed predictions using the latest template database. 

1.3.4 Sample Evaluation of Predictions in Struct2Net

In Table 2, we provide an example of our algorithm’s results on a set of protein pairs often used as test  

cases. For comparison, we have also displayed the results of HOMCOS and InterPretS for these pairs. 

Multiprospector no longer seems to be publicly available, and we could not include its results. The test 

cases we have chosen are the same as chosen by Fukuhara et al. for evaluating HOMCOS [22]. As can 

be seen, for pairs that are thought to be interacting (Table 2), the final scores from Struct2Net are, on 

average,  significantly higher than for non-interacting pairs  (Table 2).  Furthermore,  normalizing the 

difference between the average interacting and non-interacting scores for each method by the standard 

deviation  of  the  method’s  scores  suggests  that  the  discriminatory  ability  of  Struct2Net  compares 

favorably with HOMCOS and InterPretS.
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Jobid Struct2Net HOMCOS InterPre
tS

Test pairs Uniprot IDs Templates Confidence Zseqcon Zcon Best Z-
score

Interacting protein pairs

1OLYN2PM 1b34AB P62314, P62316 1d3bAB 0.620 -40.9 -3.37 1.62

N9LJTIPG 1g65JK P22141, P30656 1iruKL 0.590 -62.7 -1.34 No Hits

Q44OTFMD 1gl2BC O70439, O88384 1gl2BC 0.958 -37.9 -4.38 3.42

HZ0N1HR9 1sxjBC P40339, P38629 1sxjBC 0.251 -81.3 -3.77 2.87

NQARC82J 1finAB P24941, P20248 1e9hAB 0.428 -70.7 -2.96 3.04

4LJQHZA 1ukvGY P39958, P01123 1ukvGY 0.662 -67.3 -6.23 3.90

4LFMIDJ 1bi7AB Q00534, P42771 1bi7AB 0.385 -51.1 -2.37 0.84

9N2PHLBI 1id3AF P61830, P02309 1aoiAB 0.989 -45.6 -5.39 4.59

SNTT8NHN 1s1hJN P38701, P41058 1s1gJN 0.990 -23.7 -0.27 1.28

NBTGSU4P 1ow3AB Q07960, P61586 1ow3AB 0.425 -62.3 -3.98 2.58

Average 0.63 -54.35 -3.57 2.87

Standard 
Deviation

0.25 14.9 1.72 1.14

Non-interacting protein pairs

JTP3Q280 1g3nAB Q00534, P42773 1g3nAB 0.347 -57.1 -2.88 1.61

JCEFCQGQ 1oiuBC P24941, P20248 1e9hBA 0.428 -70.5 -2.87 3.04

YD4L76VD 1gotAB P04695, P62871 1gg2AB 0.249 -83.5 -3.39 2.98

YRJQ0JZI 1ow3AB Q07960, P61586 1ow3AB 0.425 -62.3 -3.98 2.62

JQ260ZEC 1f3mAC Q13153, Q13153 1f3mAC 0.718 -43.5 -7.05 3.49

VJ8BPGQ2 1a9nAB P09661, P08579 1a9nAB 0.334 -45.1 -2.82 2.69

0OLMGNWZ 1k5dAC P62826, P41391 one 0.169 -66.7 -4.15 2.29
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8WEA7WWS 1fq1AB Q16667, P24941 1fq1AB 0.425 -60.9 -1.90 1.83

EWVFV6TL 1fbvAC P22681, P68036 1fbvAC 0.717 -53.2 -0.87 -0.31

WVW4S9TW 1qbkBC Q92973, P62826 one 0.180 -61.4 -1.35 2.48

Average 0.39 -60.42 -3.13 2.27

Standard 
Deviation

0.25 14.9 1.72 1.14

Table 2.  Struct2Net results for set of interacting (a) and non-interacting (b) protein pairs. We 
chose  sets  of  interacting  and  non-interacting  protein  pairs;  these  pairs  are  taken  the  scores  from 
HOMCOS and  InterPretS  for  these  pairs  are  also  shown.  Struct2Net  provides  a  confidence  score 
between 0 and 1 (0 indicates minimum confidence while 1 indicates maximum confidence). HOMCOS 
provides a Zcon measure, while InterPretS provides Z-scores. The average positive and negative scores 
are separated by a larger magnitude in Struct2Net: the separation is about 0.96 SD in Struct2Net; the 
corresponding separation in HOMCOS is 0.26S, and in InterPretS is 0.53 SD. Clearly, the Struct2Net 
score better distinguishes the between interacting and non-interacting pairs. 

1.4    Limitations

A problem common to all structure-based PPI prediction methods is coverage: the number of known 

protein structures is vastly smaller than the number of known protein sequences. As such, no structural 

template may be available for the protein pair being queried. In contrast to other web services that only  

use homology modeling, our use of protein threading affords not only greater accuracy but also greater 

coverage: in yeast and fly, it covers about 10% of the genome. This is because homology modeling 

matches query proteins based only on sequence alignments to sequences with known structures; in 

contrast,  threading  is  able  to  capture  alignments  more  in  the  ‘twilight  zone’ by  matching  query 

sequences to structural templates [19]. Furthermore, it has been shown that localized threading using 

interface profiles can further improve coverage and accuracy [39, 40]. While Struct2Net can be used 

for validation purposes (e.g. to double-check entries in BioGRID), its coverage limitations may at the 

present time make it better suited to be an exploratory tool, especially for unannotated proteins where 
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only sequence information is available, or to be used in conjunction with low-confidence experimental 

data. 

1.5    Conclusions

Although high-throughput biochemical approaches for discovering PPIs have proven very successful, 

the  current  experimental  coverage  of  the  interactome remains  inadequate  and would  benefit  from 

computational tools. The Struct2Net web server allows the user to easily query for high-probability 

structure-based interactions  as  a  potentially  high-quality,  high-coverage  data  source  for  large-scale 

integrative approaches to interactome construction. The predicted interactions also include a numeric 

score, allowing users to further filter the data. To the best of our knowledge, this web server is the first 

of its kind and will be of considerable value to systems biologists interested in PPIs, partly because of  

the effort  we have put  into identifying high-confidence positive and negative examples of PPIs as 

inputs to machine learning algorithms and the extensive computational effort involved in making each 

prediction. A strength of this web service is its ongoing integration of up-to-date structural templates 

for improving its predictions. Struct2Net’s predictions may be used on their own or as one of the inputs 

into a computational framework that combines them with other sources (e.g. low-quality experimental 

data or predictions from functional genomic data). For example, Jensen  et al. [10], Qi  et al. [8] and 

Srinivasan et al. [9] have described some general approaches for combining various predictors of PPI 

data. Struct2Net’s predicted interaction scores can easily be integrated into such models. 
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Chapter 2

A  Web  Database  For  Orthology  Prediction  Using  a 

Network-Based Approach

2.1    Introduction 

The concept of gene homology, i.e. sets of genes across species that have been derived from a common 

ancestor, has been a powerful tool in comparative genomics research. In addition to its usefulness in 

understanding  evolutionary  relationships  between  genes,  its  practical  application  allows  us  to 

extrapolate experimentally derived insights from one species to another. In this article, we focus on 

discovering orthologs, which are homologous genes separated by speciation events [41]. The concept 

of  gene orthology encompasses  two interpretations:  phylogenetic  and functional.  The phylogenetic 

interpretation is that orthologs are genes/proteins in different species that have evolved from the same 

gene in  a  common ancestor.  The functional  interpretation  is  that  orthologs  are  genes/proteins  that 

perform functionally equivalent roles in different species. The two interpretations do not always yield 

exactly the same answer, but they usually yield similar answers [42]. The functional interpretation of 

orthology has  been extremely  useful  in  annotation  transfer  tasks,  for  example,  for  identifying  the 

human gene that performs the same role as a given fly gene. This practical use has also motivated a 

significant amount of work in the identification of orthologs. 

    The pioneering work of Tatusov et al. [43] introduced the Clusters of Orthologous Groups (COG) 

database, where clusters of orthologous genes were inferred using exhaustive sequence comparison of 

genes across multiple genomes. The basic approach described there continues to be used by much of 
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the orthology detection community: perform pairwise sequence comparison between all the genes in 

the input set, and then cluster genes into groups where the intra-group sequence similarity is high while 

the between-group similarity is low. The differences between the various approaches lie in the details:  

how the sequences are compared (local versus global alignment); the heuristics for choosing the seed 

gene pairs for each cluster and how to combine/prune clusters [44–47]. For example, InParanoid uses 

an ‘outgroup’ species to calibrate when the pairwise score is  high enough for the genes to be co-

clustered. As a pre-clustering step, OrthoMCL normalizes sequence comparison scores to adjust for 

differences in how far in the past speciation or gene duplication may have occurred. 

    In this article, we describe a different approach to the orthology detection problem. Our aim is to 

identify gene correspondences across species  that maximize functional  similarity.  As our approach 

emphasizes  functional  similarity  over  phylogenetic  relationships,  we  refer  to  our  predictions  as 

‘isologs’, rather than ‘orthologs’. To compute isologs across species, we integrate sequence data with 

PPI data. It is now well established that PPI data capture significant functional information: proteins 

that interact with each other are likely to perform similar functions [48, 49]. Proteins that occupy the 

same topological position in their respective species-wide PPI networks are thus likely to perform the 

same function.  In  our  approach,  sequence  comparisons  still  provide  a  strong signal,  but  they  are 

supplemented with PPI similarity information. We believe that this provides a stronger approach to 

inferring functional similarity than the sequence-only methods currently used. 

    We introduce IsoBase,  a web database of functionally related proteins based on the IsoRankN 

algorithm [50], currently covering the major eukaryotic model organisms:  Saccharomyces cerevisiae, 

Drosophila melanogaster,  Caenorhabditis  elegans,  Mus musculus and  Homo sapiens.  IsoRank and 

IsoRankN [50, 51] software was used to globally align PPI networks across multiple species and the 

results  were  then  used  to  cluster  proteins  across  the  various  species  such  that  these  clusters  best  
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represent  proteins  with  conserved  biological  function.  The  software  is  efficient  and  automatically 

adjusts  to  the  wide  variation  in  sizes  of  the  known  species-specific  networks.  IsoBase  will  be 

continually updated as more PPI data become available for additional as well as currently supported 

species.

    The IsoBase database may be browsed for functionally related proteins across two or more species. It  

may also be queried in various ways: based on accession numbers, species-specific identifiers (e.g. CG 

numbers), gene names or descriptions. IsoBase allows batch querying by uploading a file with multiple 

gene ids, names and/or keywords. The database can also be bulk-downloaded. The displayed results 

include mean normalized entropy scores for each cluster, allowing users to further filter the data by 

cluster consistency. 

    Compared  with  existing  sequence-only  approaches  (Homologene  [52],  Inparanoid  [46]  and 

OrthoMCL-DB [47]), we showed previously [50, 51] and further demonstrate  in ‘Statistics’ on the 

IsoBase website that incorporating PPI data helps significantly in finding functionally related proteins. 

Compared with methods like OrthoMCL, which explicitly claim to evolutionary insights, our approach 

produces protein–protein correspondences (which we refer to as ‘isologs’) that better preserve Gene 

Ontology  (GO)  functional  similarity  within  each  cluster.  Furthermore,  our  isology  mappings 

outperform those based on local  network alignment [50,  51],  such as NetworkBLAST-M [53] and 

Graemlin  2.0  [54].  The  database  and  details  on  the  entropy  comparisons  are  freely  accessible  at 

http://isobase.csail.mit.edu.
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2.2 IsoRank and IsoRankN Algorithm

We briefly describe the algorithm used in the database construction. For a fuller description, along with 

analysis and evaluations of the algorithms, please see [50, 51]. 

    The input to the algorithm consists of PPI and sequence data from multiple species. The algorithm 

first integrates sequence and PPI data to construct pairwise scores between the proteins in its input; it  

then uses these scores to cluster the proteins. Both the stages use spectral techniques. In the first stage, 

for every protein pair (i, j), where i and j are from different species, we compute the score Rij. We pose 

this  computation  as  an  eigenvalue  problem,  explicitly  modeling  the  tradeoff  between  the  twin 

objectives of high PPI network overlap and high sequence similarity between the protein pairs. Let R 

be the vector of scores Rij, normalized so that ∑ Rij=1 . We require 

R=α AR+(1−α) E

Here, α is a free parameter and E is the vector of sequence similarity scores Eij; we use the BLAST bit 

score.  A is a matrix that encodes the PPI networks’ connectivity information. Its rows and columns 

correspond to protein pairs:

A[i , j ][u , v ]={ 1
∣N (u)∣∣N (v )∣

if PPI edges(i , u)and( j , v)exist

0 otherwise

The eigenvalue equation above captures the following intuition: the score  Rij for matching a protein 

pair (i,  j) is a weighted sum of the sequence similarity score Eij and the total support provided to the 

match by each of the |N(i)||N(j)| possible matches between the neighbors of  i and  j. In return, each 

candidate pair of matching proteins (u, v) must distribute back its entire score Ruv equally among the

|N(u)||N(v)| possible matches between its neighbors. 
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    The scores Rij can be interpreted as a graph H, where each protein i corresponds to a node and an 

edge (i, j) exists with weight Rij, if Rij > 0. Given this graph, the second stage of our algorithm uses a 

spectral clustering approach. We choose an arbitrary species to start with and for each protein v in it, 

compute the subgraph Sv consisting of v and all nodes in H connected to it with a large weight. We then 

use spectral partitioning to identify S v
* , a high-weight clique-like subset of Sv. If two clusters S v1

*

and S v2
* have edges with high weight between them, we merge them. We repeat the entire process 

until all the proteins have been assigned to clusters (please see [51] for more details). 

2.3    IsoBase Web Database

2.3.1 Data 

IsoBase is compiled from two forms of data: PPI networks and sequence similarity scores between 

pairs of proteins. PPI networks from five major eukaryotic model organisms (H. sapiens, M. musculus, 

D. melanogaster, C. elegans and S. cerevisiae) were constructed by combining data from the Database 

of Interacting Proteins (DIP) [55], BioGRID [36] and Human Protein Reference Database (HPRD) 

databases [56]. In total, these PPI networks contained 48,120 proteins and 114,897 known interactions. 

As new PPI data become available and are released by DIP, BioGRID or HPRD, the IsoBase database 

will be updated; please see the website for the currently used version of the underlying data. Sequence 

similarity scores of pairs of proteins were obtained from Ensembl [57] and consisted of BLAST Bit-

values of the sequences. 
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2.3.2 Gene Search 

IsoBase provides a variety of ways to access functionally related proteins through its web interface. 

Query options and search results detailing fully annotated orthologs are summarized in Figure 4. We 

provide an online ‘Help’ page at the website which describes possible query options, supported gene 

ids and interpretation of search results.

    The user can search for isologs of their favorite protein based on gene name, gene symbol or a wide 

array  of  gene  identifiers,  including  ‘ids’ from  Ensembl,  Entrez,  GenBank,  RefSeq,  UniProtKB, 

Wormbase, Mouse Genome Informatics, FlyBase, Saccharomyces Genome Database, HPRD and DIP 

(Figure 4A). Upon submitting a query, IsoBase returns a cluster of functionally related proteins as well  

as  a  mean normalized  entropy score computed for  the  cluster  (Figure  4C).  IsoBase  annotates  and 

interactively links each isolog to GO, KEGG and various genome databases. Batch querying is also 

supported, giving users the option to upload a list of query proteins or genes in any of the supported  

identifier formats. IsoBase then returns a cluster of isologs for each query gene or protein in its search 

results (Figure 4B).
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Figure 4. Web interface and output of IsoBase. (A and B) Web server entry page. (C) Example of an 
output page when choosing to browse through all ortholog clusters predicted over the PPI network 
alignment of two species, D. melanogaster and S. cerevisiae. Mean entropy scores normalized by the 
number  of  distinct  GO terms  for  an  ortholog  cluster  are  displayed  along  with  external  sequence 
database links for each ortholog and associated KEGG and GO annotations.
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2.3.3 Keyword Search 

In addition, users can search using a single keyword, such as a description or general function of a 

protein. IsoBase will retrieve all clusters having identifiers or descriptions containing the keyword. For 

example,  a non-exact match for a keyword ‘YAL’ will  retrieve an identifier ‘YAL027W’, while an 

exact match would not. 

2.3.4 Browse 

IsoBase can be browsed in its entirety. Users can filter through the entire set of clusters by selecting 

which  eukaryotic  PPI  networks  are  included in  the  PPI  network  alignment.  For  instance,  if  three 

species  are  selected,  IsoBase  returns  clusters  that  include  proteins  from only  those  three  species. 

Entropy score cut-offs can also be lowered to increase the consistency of GO and KEGG annotations 

within each cluster, with an entropy of 0 indicating maximum consistency. In the ‘Statistics’ page of the 

website, we discuss the evaluation of our results using mean normalized entropy and how entropy is 

computed. 

2.3.5 Data Availability 

Although isolog predictions are accessible through query and browse functions from the IsoBase web 

interface, predictions are also freely available via bulk download. In addition, the website contains the 

set  of  clusters  for  all  species,  mean  normalized  entropy  scores  associated  with  each  cluster  and 

KEGG/GO annotations for each predicted isolog. IsoBase also provides mappings between IsoBase 

internal identifiers and identifiers from a variety of external genome databases. We further provide the 

GO information used in entropy calculations, the GO hierarchy (represented as a DAG) and scripts to 
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generate DAGs and identify all the GO terms at a given level. PPI networks for all eukaryotic species 

(fly, yeast, mouse, worm and human) and BLAST data have been made available in addition to the 

executables for running IsoRank and IsoRankN algorithms. The initial database covers the five species 

for which significant amount of PPI data are available; in the future, we anticipate that more PPI data 

may enable us to support additional species as well as better support the current species. We plan to 

update IsoBase on a semi-yearly basis. 

2.4    Evaluation of Predictions in IsoBase 

The key motivation behind IsoBase is the hypothesis that the combination of sequence and PPI data 

should  enable  better  identification  of  functionally  related  proteins  across  species  than  just  using 

sequence data. However, there is a lack of standardized techniques for benchmarking how well  an 

orthology detection method captures functional similarity [58]. To that end, we create an evaluation 

measure that can be used for benchmarking in an unbiased way and make it available for download on 

the IsoBase website. 

    To evaluate  our  predicted  clustering,  we measured  the  within-cluster  consistency of  GO [59] 

annotation of the predicted clusters. The intuition here is that each cluster should correspond to a set of  

genes with the same function. Thus, consistency measures the functional uni- formity of genes in each 

cluster, represented by mean normalized entropies calculated for each predicted cluster over all proteins 

within the PPI networks used by IsoRankN. Clusters with greater consistency have lower entropy and, 

therefore, a greater indication of proteins sharing the same function. The entropy of a given cluster

S v
* is: 

36



H (S v
*)=H ( p1, p2, ..., pd)=−∑

i=1

d

pi log pi

where pi is the fraction of S v
* with GO term i, and d is the number of GO terms in each cluster. Mean 

entropy  was  then  normalized  by  the  number  of  distinct  GO  terms  in  a  cluster  so  that 

H̄ = 1
log d

H (S v
*) .

    An important factor we considered when evaluating GO enrichment of clusters was the use of  

standardized sets of GO terms. It would not make sense to conclude that a group of genes are not  

functionally related if all that differs is the level of detail in their GO annotation; recall that GO terms 

are related to each other as part of a directed acyclic graph (DAG). The use of GO Slim sets has 

become popular for similar reasons [57]. We created a standardized set by projecting GO terms to a 

common level of GO hierarchy. Details on the set of GO terms used and scripts for mapping GO terms 

to a common level in the GO hierarchy can be found on the ‘Download’ page of the IsoBase website. 

    Using the benchmark described above, we compared IsoRankN predictions to that of Homologene 

and OrthoMCL on five major eukaryotic networks (yeast, worm, fly, mouse and human). We did not 

compare  to  InParanoid,  because  it  only  provides  pairwise  orthology  predictions,  rather  than 

multispecies groupings.  Of 87,737 total  proteins,  IsoRankN clustered 48,120 (54.8%) proteins into 

12,693 isologous groups. It outperformed the other methods in terms of within-cluster consistency of 

GO annotations. Across all predicted clusters, mean normalized entropy for IsoRankN (0.0586) was 

substantially lower than Homologene (0.255) and OrthoMCL (0.215) (Table 3). Additionally, mean 

normalized entropies for predictions on pairs of species produced similar results. Clusters consisting of 

only  one  protein were  not  considered  in  the  entropy comparisons  because  these  cases  provide  no 

information regarding functional relatedness between orthologs. Details on the entropy comparisons 
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among IsoBase,  Homologene and OrthoMCL can be found on the ‘Statistics’ page of the IsoBase 

website. 

Table 3. Comparative consistency on the five eukaryotic networks.

IsoRankN Homologene OrthoMCL

Mean entropy 0.0740 0.284 0.241

Mean normalized entropy 0.0586 0.255 0.215

Exact cluster ratioa 0.489 (6204/12693) 0.355 (4470/12579) 0.237 (1973/8326)

Exact protein ratiob 0.539 (25,929/48120) 0.469 (13134/27988) 0.364 (5796/15940)
Mean entropy and mean normalized of predicted clusters. Note that the boldface numbers represent the 
best performance with respect to each measure.
aThe fraction of predicted clusters that are 'exact', that is all contained proteins have the same GO term.
bThe fraction of proteins in exact clusters.

    

    We also measured the fraction of predicted clusters that are ‘exact’, i.e. all contained proteins have  

the same GO term. We find that IsoRankN predicts a higher fraction of exact clusters (0.489) than that 

for Homologene (0.355) and OrthoMCL (0.237) (Table 3).

    In  addition,  we  evaluated  IsoRankN,  Homologene  and  OrthoMCL predictions  on  human–fly 

orthologs in particular. Upon closer examination, we find that IsoRankN predicts a higher number of 

clusters (151) involving many fly genes mapped to one human gene than either Homologene [43] or 

OrthoMCL [41]. For example, all methods predict fly gene CG8399 as an ortholog for human gene 

FRRS1. But IsoRankN also predicts CG14515 and CG7532 as orthologs. A closer look at these two fly 

genes  reveals  domain  overlap  with  FRRS1.  Another  example  shows  all  methods  identifying  fly 

homolog Dcr-1 for  human DICER1, a  ribonuclease that plays a  key role  in  the RNA interference 

(RNAi) pathway; but IsoRankN solely identifies fly homolog Dcr-2 (with domain and GO overlap) as 

well. See the ‘Statistics’ page for further examples. 

38



    In our previous work, we showed that IsoRankN outperforms other related techniques for PPI 

network  alignment  (NetworkBLAST-M [53]  and Græmlin2K [54])  in  terms of  number of clusters 

predicted,  within-cluster consistency and GO/Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment. See Liao  et al.  [50] for details. We also showed that IsoRank, the basis  of IsoRankN, 

compares favorable to InParanoid on pairs of species [51]. 

2.5    Conclusions

We have presented IsoBase, a database that contains groups of proteins predicted to be functionally 

related. Unlike much of the existing work in sequence-based orthology detection, IsoBase is primarily 

designed to provide function-oriented ortholog detection. This focus on functional relationships is of 

significant practical value [42]. Although our approach is not based on phylogenetic considerations, the 

phylogenetic  and  functional  interpretations  of  orthology  are  closely  related.  In  keeping  with  this 

intuition, sequence similarity information provides a large part of the signal used by our prediction 

algorithm, and our predictions broadly agree with existing sequence- based orthology predictions. The 

key contribution of IsoBase is the simultaneous use of PPI and sequence data in the prediction process. 

With the rapid growth of PPI data, the functional information provided by such data can be valuable in 

identifying functionally related proteins across species. The integrative approach used here allows us to 

make predictions where the within-cluster GO annotation similarity is better than in the predictions 

from sequence-only approaches. 

    In future work, we intend to explore synergies between our approach and existing sequence-only 

approaches. For example, using our method as a post-processing step after these approaches may help 

identify orthologs for proteins outside the existing methods’ coverage. Also, in cases where existing 
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methods produce multiple matches, our method may be used to rank them in the order of functional 

similarity. We also intend to expand the number of species available in our database. Finally, as more 

PPI data become available, we will update the database with improved predictions. 
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