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Abstract

Studying oceanic eddies is important for understanding and predicting ocean circu-
lation and climate variability. The central focus of this dissertation is the energy
exchange between eddies and mean flow and banded structures in the low-frequency
component of the eddy field. A combination of a realistic eddy-permitting ocean
state estimate and simplified theoretical models is used to address the following spe-
cific questions. (1) What are the major spatial characteristics of eddy-mean flow
interaction from an energy perspective? Is eddy-mean flow interaction a local process
in most ocean regions? (2) The banded structures in the low-frequency eddy field are
termed striations. How much oceanic variability is associated with striations? How
does the time-mean circulation, for example a subtropical gyre or constant mean
flow, influence the origin and characteristics of striations? How much do striations
contribute to the energy budget and tracer mixing?
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Chapter 1

Introduction

1.1 Motivation

Oceanic variability occurs over all known spatial and temporal scales. This thesis

focuses on the large-scale and mesoscale subinertial oceanic variability, which is here-

after termed eddies. Eddies are prevalent in the global ocean (Figure 1-1). Their

dominant scales are 50∼100 km in the off-equatorial region (Ferrari and Wunsch,

2009) and most eddy kinetic energy is located in the western boundary current re-

gions and the Southern Ocean (Figure 1-2).

It is important to characterize oceanic eddies and explore eddy dynamics for the

following reasons. First, eddies contain most kinetic energy in the world ocean, trans-

port tracers (e.g. heat and salt), and they greatly influence the oceanic circulation

through many processes. For example, the eddy field can influence water mass trans-

formation by contributing to the total subduction and ventilation rates (e.g. Gebbie,

2007; Nishikawa et al., 2010; Lachkar et al., 2009). Also, eddies are key in balancing

the heat budget in the overflow regions and the deep convection sites (e.g. Marshall

and Schott, 1999; Voet and Quadfasel, 2010; Spall, 2012); thus they influence the
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Figure 1-1: The global distribution of sea surface height on August 28, 1996 from the
altimeter data. From Chelton et al. (2011).

Figure 1-2: The surface geostrophic kinetic energy of oceanic variability multiplied
by sin2φ in (cm/s)2, where φ is the latitude. This estimate is based on the altimeter
data. From Wunsch and Stammer (1998).
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dense water mass properties and variability there and the meridional overturning

circulation. Another example is that eddies exchange energy with the time-mean cir-

culation through eddy-mean flow interaction (e.g. Marshall, 1984; Plumb and Ferrari,

2005). The conversion rate from the time-mean circulation to eddy kinetic energy

through baroclinic instability is roughly one third of the total wind power input into

geostrophic flows (Wunsch, 1998; Ferrari and Wunsch, 2009).

Second, the short-term and accurate prediction of oceanic eddies can guide us in

how to deal with the natural or human-induced disasters. For example, eddies can

influence the intensity of hurricanes (e.g. Wu et al., 2007; Shay et al., 2000; Hong

et al., 2000). Eddies, as an important part of oceanic motions, greatly influence

the pathways of pollutants, such as oil from the massive spill in the Gulf of Mexico

and nuclear waste. Thus, eddy prediction is crucial for the prediction of pollutant

pathways.

Third, climate change can greatly affect human life, through influencing atmo-

spheric temperature, sea ice coverage, global sea level, and the ocean ecosystem.

Thus, accurate climate prediction is urgently needed to enhance our ability to respond

to climate change. Recent developments in climate models show that increasing the

resolution of ocean models to eddy-permitting levels can improve climate simulations

(Delworth et al., 2012). This result indicates that oceanic eddies are one of the cru-

cial components of the climate system and investigating them is a key to improving

the long-term prediction of climate variability and related policy decisions. Here are

some examples of specific reasons why understanding eddies is important for climate

simulations:

• Atmospheric temperature is greatly influenced by the ocean through meridional

oceanic heat transport and air-sea interaction. Eddies contribute significantly
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to the meridional heat transport (Volkov et al., 2010). The air-sea exchange of

heat, momentum, and greenhouse gases takes place in the mixed layer. Rea-

sonable representations of mixed layer eddies can reduce biases of mixed layer

depth, and consequently can probably increase the model fidelity in the aspect

of air-sea interaction (Fox-Kemper et al., 2008, 2011).

• The ocean has enormous heat capacity, and the slow component of the cli-

mate response to the greenhouse gas increase depends on the efficacy of ocean

heat uptake (Gregory, 2000; Held et al., 2010). At high latitudes, mixing and

convection processes transfer heat from the surface down to the deep ocean,

and the globally integrated ocean heat uptake in climate models is sensitive to

mixing parameterizations (Boé et al., 2009; Gregory, 2000; Huang et al., 2003).

Eddy dissipation can sustain oceanic mixing (Ferrari and Wunsch, 2009); thus

resolving or properly parameterizing eddy dissipation processes is essential to

accurately estimating the ocean heat uptake and, ultimately, climate variabil-

ity.

Fourth, because eddies greatly influence the ocean ecosystem, investigating eddies

is essential to understanding the ocean ecosystem’s response to climate variability.

For example, eddies can induce strong vertical motions, and the resulting vertical

advection of nutrients contributes significantly to the nutrient budget of the euphotic

zone; eddies can also affect the exposure of biomass to light by moving biomass

vertically in the light-varying field (Flierl and McGillicuddy, 2002).

Finally, from a public policy perspective, regional sea-level trends are more rele-

vant than the globally averaged sea-level change, as our response to climate change

should be city-specific. Advection, mixing and surface exchanges all affect the steric

sea level, and advection contributes to more than half of the low-frequency variability
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of steric sea level in many regions (Piecuch and Ponte, 2011). We speculate that

eddies play a non-negligible role in advection and thus investigating eddies is useful

for predicting regional sea-level trends.

1.2 Research problems

Given the importance of oceanic eddies in various aspects, as discussed above, a great

deal of effort has been made towards understanding oceanic eddies. Some examples

of such efforts are characterizing the properties of coherent structures in the eddy

field using altimeter data (e.g. Chelton et al., 2007; Xu et al., 2011), formulating

and improving eddy parameterization schemes (e.g. Gent and Mcwilliams, 1990; Fox-

Kemper and Menemenlis, 2008), developing and improving observation techniques,

such as the wide-swath altimeter (e.g. Fu et al., 2010), and investigating mechanisms

for the damping of mesoscale eddies, such as radiation of Rossby waves, frontogenesis

and lee internal waves (e.g. Flierl, 1984; Capet et al., 2008; Nikurashin and Ferrari,

2010).

Though extensively studied, there are still many open problems about oceanic

eddies for us to tackle before we can fully understand them and their implications,

and can predict the variability of the oceanic circulation and the climate system

accurately. This thesis focuses on two topics related to oceanic eddies: eddy-mean

flow interaction and banded structures in the low-frequency component of the eddy

field.

1.2.1 Eddy-mean flow interaction

The energy exchange between eddies and mean flow is an integral component of the

global energy pathway, starting from the external forcing (e.g. wind stress) and ending
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at dissipation at molecular scales (Ferrari and Wunsch 2010). Studying eddy-mean

flow interaction is useful in understanding the generation/damping of oceanic eddies

and thus oceanic mixing. Chapter 3 focuses on eddy-mean flow interaction.

Baroclinic instability, introduced by Charney (1947) and Eady (1949), is one type

of eddy-mean flow interaction. It has been identified as an important eddy generation

mechanism in the ocean (Gill et al., 1974; Robinson and McWilliams, 1974). Quite

a few recent studies about eddy dynamics are based on the local baroclinic insta-

bility hypothesis (e.g. Held and Larichev, 1996; Tulloch et al., 2011; Panetta, 1993;

Venaille et al., 2011; Arbic and Flierl, 2004), and these investigations suggest that

this hypothesis is useful in many contexts. For example, Smith (2007) and Tulloch

et al. (2011) found that the eddy scale with the fastest growth rate, based on the

local linear instability analysis, is smaller than the observed eddy scales and they

concluded that inverse cascade is important in setting the observed eddy scales.

To our best knowledge, there is no global survey about how well eddy-mean flow

interaction in the ocean resembles the local baroclinic instability process from the

energy perspective. Exploration in this aspect may help make the gap between the

ocean and theories smaller. The local baroclinic instability hypothesis assumes that

the ocean region is homogeneous and thus the energy released from the baroclinically

unstable mean flow is used to sustain the eddy growth in the same region. However,

the ocean is more complicated in many aspects. For example, some ocean regions

are very inhomogeneous, indicating that some energy from the mean flow may be

exported elsewhere through the divergence term, rather than being transferred to

eddies in the same region (e.g. Kundu and Cohen, 2004). Also, in some regions, such

as the Southern Ocean, mean flow can gain kinetic energy through eddy-mean flow

interaction (e.g. McWilliams et al., 1978; Marshall, 1984; Johnson et al., 1992).1

1Some other studies about eddy-mean flow interaction are summarized in Section 3.1.

16



Motivated by the lack of the global survey and recognizing that a description of

the energy pathway is as important to our understanding about eddies as detailed

process studies about energetics, we aim to describe eddy-mean flow interaction in an

eddy-permitting model. Our specific aim is two-fold: mapping the respective change

rate of energy in eddies and the mean flow through eddy-mean flow interaction in the

global ocean; testing the local hypothesis from the energy perspective in the energetic

ocean regions.

1.2.2 Banded structures in the low-frequency eddy field

The temporal average of the eddy field has banded structures in many ocean regions

(Figure 1-3). This feature has been identified in both observations and numerical

Figure 1-3: The 18-week average of the zonal geostrophic velocity anomaly in cm/s
at the ocean surface, calculated from the altimeter data. From Maximenko et al.
(2005).

simulations (e.g. Cox, 1987; Maximenko et al., 2005; Richards et al., 2006) and it

is termed “striations”. Chapters 4 and 5 focus on the amplitude, origin and conse-

quences of striations.
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Though striations have attracted much theoretical attention recently, it is still

unclear how important striations are. For example, whether striations contribute sig-

nificantly to energy pathways, tracer mixing and thus the climate mean state is to be

assessed. A related question is how much oceanic variability is contained in striations.

If the percentage is noticeable, the consequences of striations on the energy pathway

and mixing are probably not negligible. We aim to explore these questions. To solve

the related technical issues, we also provide a criterion to extract striations from the

eddy field and formulate diagnostic framework to evaluate striations’ consequences

on tracer mixing and energy budgets.

Besides striations’ amplitude and consequences, we also investigate the effect of

time-mean circulation on striations’ origin and direction. The formation mechanism

of striations is still under debate and several hypotheses have been proposed. For ex-

ample, banded structures can arise in the two-dimensional turbulence on a beta plane

due to the arrest of inverse cascade by beta effect (Rhines, 1975, 1979); they can also

arise as an averaging effect of many coherent vortices propagating westward (Schlax

and Chelton, 2008). Some other mechanisms are beta plumes (e.g. Afanasyev et al.,

2011), radiating instabilities of the eastern boundary current (e.g. Hristova et al.,

2008; Wang et al., 2012), stationary Rossby waves (e.g. Maximenko et al., 2008),

and the nonlinear self-interactions of the linear eigenmodes (e.g. Berloff, 2005). The

origin of striations in the ocean is complicated, as many factors in the ocean can

possibly influence striations, such as stratification and the large-scale wind forcing.

One important fact ignored in the previous studies listed above is that striations

are embedded in the large-scale time-mean circulation (Figure 1-4). There are sub-

tropical and subpolar gyres in the Atlantic and Pacific Oceans, and the Antarctica

Circumpolar Current (ACC) in the Southern Ocean. The direction of the time-mean

circulation at a given location can be zonal, meridional, or in other directions. Since
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Figure 1-4: The 16-year average of the transport stream function in 106 m3/s. From
Wunsch (2011).

both striations and the large-scale time-mean circulation are pervasive in the ocean,

the effect of time-mean circulation on the origin and properties of striations is a rele-

vant research problem. We present our results about this question in part of Chapters

4 and 5.

1.3 Methodology and outline

The Estimating the Circulation and Climate of the Ocean, phase II: high resolution

global-ocean and sea-ice data synthesis (ECCO2) state estimate is an important tool

in this thesis research. There are quite a few basin and global eddy-permitting models,

such as NLOM, POP, OFES and HYCOM (McClean et al., 2008). Numerical models

have many uncertainties, such as the bottom drag coefficient. Compared to other

eddying models, the advantage of the ECCO2 state estimate is that it is a forward

run using the optimized values of these uncertain parameters, which are calculated by
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reducing the model-data misfit using the Green function approach. Thus, the ECCO2

state estimate is both realistic and dynamically consistent (Menemenlis et al., 2008).

Besides the ECCO2 state estimate, we also use simplified ocean models in this

thesis. We estimate the percentage of oceanic variability associated with striations in

the ECCO2 state estimate and then formulate/test the diagnostic framework about

striations’ consequences on mixing and energy pathway using a simple model. We

also characterize striations in the subtropical gyre in the ECCO2 state estimate and

then explain these characteristics using a 1.5-layer model. The ECCO2 state estimate

guarantees that the research problems are relevant and helps identify key dynamical

factors used to build up simple models. The simple models can provide dynamical

insights due to the ease of interpretation and are useful in framework testing due to

their computational efficiency.

This thesis is organized as follows. Chapter 2 describes and evaluates the ECCO2

state estimate. Chapter 3 characterizes the eddy-mean flow interaction in the global

ocean from the energy perspective using the ECCO2 state estimate. Chapter 4 es-

timates the percentage of variability contained in striations using the altimeter data

and the ECCO2 state estimate, formulates an idealized model and then uses it to as-

sess the effect of a subtropical gyre on the origin and direction of striations. Chapter 5

formulates the diagnostic framework for evaluating the consequences of striations on

tracer mixing and energy budget, and then illustrates their utility using a barotropic

model. Chapter 6 summarizes the key findings and discusses remaining issues.
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Chapter 2

The description of the ECCO2

state estimate

2.1 Introduction

The Estimating the Circulation and Climate of the Ocean, phase II: high resolution

global-ocean and sea-ice data synthesis (ECCO2) project aims to produce a physically

consistent state estimate for the ocean circulation and sea ice. Two types of state

estimation methods are employed in the ECCO2 project: the adjoint method (Wunsch

and Heimbach, 2007) and the Green function method (Menemenlis et al., 2005a). The

best available eddy-permitting solution at the time the author did her research was the

cube87 version of the CS510 runs using the Green function approach. This solution is

least-squares fit to observations. References describing this solution are Menemenlis

et al. (2008, 2005a,b). Information about this solution and the ECCO2 project is also

available at www.ecco2.org.

In this thesis, diagnosing the ECCO2 state estimate serves as an important method-

ology for the study of eddy-mean flow interaction and striations. There have been
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several previous successful studies about eddies using the ECCO2 state estimate. For

example, Fu (2009) found that the eddy propagation velocity at the surface from the

altimetry is consistent with those from the ECCO2 state estimate, indicating that

the model captures well the eddy dynamics at the ocean surface. Volkov et al. (2008)

and Volkov and Fu (2008) demonstrated that the ECCO2 state estimate is useful for

the investigation of eddies and the oceanic heat transport variability in the Argentine

Basin in the South Atlantic Ocean.

Though there are publications and information online about the ECCO2 state

estimate using the Green function approach, here I give an elementary introduction

about the state estimate for two purposes: provide enough background about the

model configuration, state estimation method and observations for the convenience

of the reader; discuss why the model solution is useful to study oceanic eddies. This

chapter is organized as follows. Section 2.2 describes the model configuration, includ-

ing surface/bottom boundary conditions, grids and resolution. Section 2.3 is about

the state estimation method, observations used for the state estimation and the choice

of control parameters. The model-data comparison shows that the model solution is

overall very realistic (Section 2.4). Section 2.5 is the summary and discussion.

2.2 Model configuration

The ECCO2 project uses the Massachusetts Institute of Technology ocean general

circulation model (Marshall et al., 1997a,b). The ocean model is coupled with an

interactive sea ice model (Menemenlis et al., 2008); however, the discussion of sea ice

is beyond the scope of this dissertation. Eq. 2.1-Eq. 2.7 are the governing equations

for the ocean model.
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where u, v, and w are velocities, f is the Coriolis parameter, p is the pressure, Az

is the vertical Laplacian viscosity, A4 is the horizontal biharmonic viscosity, ρ0 is

the constant reference density (1027.5 kg/m3 in this configuration), ρ is the insitu

density, S is salinity, θ is potential temperature with surface as the reference level,

and Kz is vertical diffusivity. Using the equation of state in Jackett and McDougall

(1995), the model calculates density ρ from potential temperature θ, salinity S and

the constant pressure p0, where p0 = −gρ0z and z is water depth. Fθ and FS are

surface forcing defined in Eqs. 2.8 and 2.9. The momentum equation used in the

model configuration is the vector invariant form of Eqs. 2.1 and 2.2.

Spatial domain and grids

The model solution is from a free forward run on the entire globe with a finite

volume discretization and 20-minute time step; it is saved at a three-day time interval

and covers the period of 1992-2007. The longitude-latitude grid can be problematic
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for global simulations, as it produces two singularities at the poles; the cube-sphere

grid avoids the singularity problems (Adcroft et al., 2004). Thus, the model employs

a cube-sphere grid (Adcroft et al., 2004): the entire sphere is divided into six parts,

with a 510×510 grid on each side (Figure 2-1). The model uses a z-coordinate vertical

discretization and has 50 vertical levels. The mean horizontal resolution is roughly

18 km and the vertical resolution decreases from 10 m at the surface to 456 m at the

maximum model depth (Figure 2-1). The model uses General Bathymetric Charts

of the Ocean for the topography in the Arctic Ocean and uses the bathymetry data

from Smith and Sandwell (1997) for the rest of the ocean (Menemenlis et al., 2008).

Figure 2-1: Left panel: the global bathymetry in m on the cube-sphere grids used in
the model. Right panel: the depth of levels (y axis) in m as a function of level (x
axis).

Model assumptions and boundary conditions

The Boussinesq approximation (Eq. 2.3) and the hydrostatic assumption (Eq. 2.4)

are used in the model run. Given that the spatial resolution of this eddy-permitting

model is 18 km on average, it is reasonable to use the hydrostatic assumption. The

model uses slip boundary condition at the lateral boundaries and no-slip boundary
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condition at the ocean bottom. Physical processes at the bottom of the ocean are

very complicated, involving internal waves and bottom boundary layer dynamics, etc.

The model parameterizes these processes with the quadratic drag law:

τb = −ρ0Cd|u|bub,

where τb is the bottom stress, ub is the bottom velocity and Cd = 0.0021.

Surface forcing for potential temperature and salinity in Eqs. 2.6 and 2.7 follows

Fθ =
Qnet −Qsw

Cpgρ0δz
+

Qsw

Cpgρ0δz1

+ non-local transport term (2.8)

and

FS = −(E − P −R)S(x, y, t, z = 0)

δz
+ non-local transport term, (2.9)

where Qnet is the net heat flux, Qsw is the short wave radiation, Cp = 3994 J/(C ·kg),

g = 9.81 m/s2, ρ0 = 1027.5 kg/m3, δz is the depth of the first level, δz1 is the

penetration depth of shortwave radiation in the ocean (Paulson and Simpson, 1977),

E is the evaporation rate, P is the precipitation rate, R represents the river runoff

and S(x, y, t, z = 0) is the local surface salinity. Non-local transport terms represent

the temperature/salinity change due to the entrainment process parameterized using

the K-profile parameterization (KPP) mixing scheme (Large et al., 1994).

Subgrid scale parameterizations

Current computers are not capable of resolving dissipation at molecular scales for

simulations in the global domain. To make the model solution realistic, choosing the

right sub-grid scale parameterization is important.

Biharmonic horizontal viscosity is used instead of the Laplacian horizontal vis-

cosity in the ECCO2 state estimate. Biharmonic horizontal viscosity is determined
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by the modified version of the Leith scheme, which is a useful parameterization for

simulations with gridscale smaller than the Rossby deformation radius (Fox-Kemper

and Menemenlis, 2008). Explicit horizontal diffusivity is zero; however, the advection

scheme is flux limited, which results in a numerically induced horizontal diffusivity.

The KPP scheme (Large et al., 1994) is used to parameterize unresolved vertical

mixing processes, such as convection and double diffusion. In the ECCO2 state

estimate, the vertical diffusivity and vertical viscosity change spatially and temporally,

and they have the largest value in the KPP mixing layer. Note that the mixing layer

is different from the mixed layer: the mixing layer depth is defined as the depth to

which the KPP mixing penetrates at each time step, while the mixed layer is a result

of the cumulated effect of mixing over a time interval. The mixing layer depth has

large spatial and temporal variability: the daytime depth can be 5 m and the depth at

convection events can be 2000 m or more (D. Menemenlis and H. Zhang 2012, personal

communication). The background vertical viscosity is approximately 5.7×10−4 m2/s,

but it is roughly [5−100]×10−3 m2/s in the mixing layer. Another region with large

vertical viscosity is the equatorial region, as shear instability penetrates below the

ocean surface there.

Forcing and initial conditions

The ECCO2 solution is constrained to observations by adjusting several control

parameters based on the model-data misfit (Table 2.1 and Table 2.2). The control

parameters include initial conditions and atmospheric surface forcing; thus, the initial

condition and atmospheric forcing are a blend of several products (Table 2.1).
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2.3 The dynamically consistent state estimation

method

Model biases and drifts are very common in model simulations and we need to reduce

them as much as possible in order to accurately simulate the ocean circulation. One

advantage of the ECCO2 state estimate used in the thesis is that the solution is

optimized and thus model drifts and biases are greatly reduced; however, the solution

is still dynamically consistent. Next, we provide a heuristic description about the

optimization method. Readers can refer to Menemenlis et al. (2005a) and Wunsch

and Heimbach (2007) for a rigorous discussion.

2.3.1 Green function method

A general circulation model (GCM) solves the equations (Eq. 2.1-Eq. 2.7) through

discretization. Though complicated, the GCM can be represented as

Xf (ti+1) = Mi[X
f (ti, η)], (2.10)

where Xf is the GCM state vector (temperature, salinity, velocity, etc.), and ti (ti+1)

is the discrete time in the model at time step i (i + 1). Mi denotes the computing

rules in the GCM, which can calculate the state vector at ti+1 from that at previous

time steps. η represents the control parameters to be adjusted through the Green

function method, such as initial conditions, viscosity, diffusivity and the bottom drag

coefficient. In practice, there are more unknown parameters in a GCM than the ones

that we choose to adjust and these are given fixed values based on experience or

previous studies.

Y o denotes observations that are used in the state estimate to obtain the optimized
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values of η. It satisfies

Y o = G(η) + ε, (2.11)

where G is the Green function and it is related to Mi. G(η) are values from the

model solution at the locations and time of observations. ε represents the differ-

ence between observations and modeled values, and it includes the measurement

error, model solution errors and the interpolation error caused by mapping model

solution to observation locations. There are many types of model solution errors: er-

rors/assumptions in the governing equations (Eq. 2.1 -Eq. 2.7), such as hydrostatic

approximation, the Boussinesq approximation and inaccurate parameterizations of

subgrid scale processes; truncation errors from discretization; errors and uncertain-

ties in initial conditions Xf (t = 0) and in surface forcing (e.g. wind stress and heat

flux). These errors can propagate and contaminate the solution.

The Green function method minimizes the misfits between model and observations

by using an optimized set of control parameters η. To obtain the optimized control

parameters, first we linearize Eq. 2.11

Y 0 = G(η0) + (η − η0)G + ε, (2.12)

where G(η0) is the model solution at the data locations in the baseline experiment

and η0 is the control parameters used in the baseline solution. G can be obtained

from a set of sensitivity experiments, in which the perturbed values of the control

parameters are used (details are in Menemenlis et al., 2005a). A useful representation

of the model-data misfit is the cost function

J = ηTQ−1η + εTR−1ε, (2.13)
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where R are the covariances of observations (i.e. weights) and Q are the covariances

of η. The optimized control parameters (ηa), which minimize the cost function J

given Eq. 2.12, can be obtained by solving the linear simultaneous equations. The

solution is

ηa = η0 + (Q−1 + GTR−1G)−1GTR−1[Y 0 −G(η0)]. (2.14)

The ECCO2 state estimate we use is essentially a free forward run using the

optimized control parameters. Note that observations are only used to find the opti-

mized control parameters and to compare with the model solution. Thus, the ECCO2

solution is dynamically consistent.

2.3.2 Control parameters, observations and weights

The number of sensitivity experiments needed to obtain G is directly proportional to

the number of control parameters. Thus, only a small number of uncertain variables

in the GCM are chosen as control parameters (Table 2.1). The one dimensional

control parameters used in the baseline experiment are only slightly different from

the optimized ones; however, the model-data misfit is greatly reduced by using the

optimized ones (Figures 2-3, 2-4, and 2-5).

Observations used to determine the optimized control parameters include sea sur-

face height (SSH), temperature, salinity and sea ice thickness/concentration during

the period of 1992-2002 (Table 2.2). Temperature/salinity observations include CTD

(conductivity, temperature and depth), XBT (expendable bathythermograph), Argo

float profiles and TAO (tropical atmosphere ocean) profiles. The spatial pattern of

the data distribution is shown in Figure 2-2. Overall, the hydrography measurements

cover most of the region in the global ocean. However, there are not many ARGO

measurements before the year 2003 from the mid-latitudes of the Pacific Ocean; the
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hydrography data in the polar region is also very sparse. The amount of available

hydrography data generally decreases with depth. The XBT hydrography data used

covers the upper 1000 m; the ARGO hydrography data used covers the upper 2000

m; the TAO hydrography data used covers roughly the upper 800 m. The CTD

cross sections used extend to roughly 5500 m and are the only hydrography data to

constrain the solution below 2000 m; however, the CTD data is sparse horizontally

(Figure 2-2).

Figure 2-2: The number of observed vertical profiles in each 1o × 1o grid box. Upper
left: the number of temperature/salinity vertical profiles from ARGO (1994-2002);
upper right: the number of temperature/salinity profiles from CTD (1992-2002);
mid-left: the number of temperature vertical profiles from XBT (1992-2002); mid-
right: the number of temperature vertical profiles from TAO (1992-2002); bottom:
the number of salinity vertical profiles from TAO (1992-2002).
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Besides observations, weights are needed to determine the optimized control pa-

rameters (Section 2.3.1). Each observation value has a corresponding weight. The

weights for temperature observations (ARGO, XBT, TAO, CTD) are

[max(σT (i), σT0)]−2,

where σT0 is a constant with small magnitude representing the instrument error.

σT (i) is the temperature standard deviation at the regular grid point closest to the

location of the in-situ profile and it is from Forget and Wunsch (2007). The weights

for salinity observations are determined in a similar way.

The model is overall consistent with the observations within the error bars. Table

2.2 shows the normalized cost for each dataset. The normalized cost is

Normalized cost =
1

N

N∑
i=1

[Varmodel(i)− Varobservation(i)]2 ×Weight(Var, i),

where Varmodel is the variable in the model, such as sea surface height, temperature

and salinity. Varobservation is the observed variable, N is the number of observed

values of the particular dataset, and Weight(Var, i) is the corresponding weight for

each observed value, which is discussed in the last paragraph. The normalized cost is

an indicator of the model-data consistency. If the normalized cost is one, the model

is consistent with observations within the error bars. However, if the normalized cost

is larger than one, either the weights chosen are too small or the model-data misfit

is large. The normalized costs shown in Table 2.2 range from 0.54 to 2.6, indicating

that the state estimate is roughly consistent with observations.
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2.4 Model-data comparison

To assess whether the ECCO2 state estimate is realistic enough for the eddy study,

the hydrography and eddy variability in the ECCO2 state estimate is compared with

observations. Data sets used for the comparison include ARGO, XBT, WOA05 (Col-

lier and Durack, 2006), sea surface height from AVISO during 1992-2007 (Dibarboure

et al., 2009) and the hydrographic variability data (Forget and Wunsch, 2007). Most

of these observations are used to get the optimized control parameters for the state

estimate. Results here are incomplete; for example, the comparison between modeled

and observed sea surface temperature has not been done.

2.4.1 Comparison between modeled and observed hydrogra-

phy

The hydrography in both the baseline (cube37) and the optimized (cube87) exper-

iments is compared with observations (ARGO, XBT, and WOA05). The misfit of

the model state to the observed hydrography is reduced through the state estimation

(Figures 2-3, 2-4 and 2-5).

Figure 2-3 shows the misfit of the model solution to the XBT and ARGO data.

The temperature in the baseline experiment is higher than that from the XBT/ARGO

profiles in most regions. Compared to the XBT temperature, the temperature in the

optimized experiment is slightly lower in the subtropical gyres and slightly higher in

the high latitudes of the North Pacific and North Atlantic. The misfit pattern of the

optimized model state to the ARGO temperature is similar to that of the baseline

model state, but with smaller magnitude. The salinity misfit is not reduced much

through the optimization except in the equatorial Atlantic region. The salinity in

the model is too high in the high latitudes of the North Atlantic and too low in the
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Figure 2-3: Left panel: the misfit of the baseline model state (cube37) to “XBT tem-
perature” in oC (upper) ,“ARGO temperature” in oC (middle) and “ARGO salinity”
(bottom). Right panel: the misfit of the optimized model state (cube87) to “XBT
temperature” in oC (upper), “ARGO temperature” in oC (middle) and “ARGO salin-
ity” (bottom). “XBT temperature” refers to the temporally and vertically averaged
temperature from XBT in the upper 1 km during 1992-2002. “ARGO temperature
(salinity)” refers to the temporally and vertically averaged temperature (salinity)
from ARGO in the upper 2 km during 1992-2002. From Hong Zhang and Dimitris
Menemenlis.

subtropical gyre regions in the North Atlantic.

There are two notable features in the spatial pattern of the misfit (Figures 2-3,

2-4 and 2-5). First, the misfit of the model state in the optimized experiment to

the observed hydrography is larger in the high latitudes than that in the mid- and
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Figure 2-4: Upper panel: the vertical average of temperature in oC (left) and salinity
(right) over the upper 750 m from the WOA05 dataset. Middle panel: the misfit of
the baseline model state (cube37) to the vertically averaged temperature in oC (left)
and salinity (right) over the upper 750 m from the WOA05 dataset. Lower panel: the
misfit of the optimized model state (cube87) to the vertically averaged temperature
in oC (left) and salinity (right) over the upper 750 m from the WOA05 dataset.
The model climatology is the temporal average over the year 1992-2002. From Hong
Zhang and Dimitris Menemenlis.

low latitudes. Possible reasons are discussed in Section 2.4.2. Second, the misfit

in the optimized experiment, such as the salinity misfit, is generally larger in the

Atlantic Ocean than that in the Pacific Ocean. This suggests that the model has

better performance in the regions without dense water formation and overflow.
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Figure 2-5: Upper panel: the vertical average of temperature in oC (left) and salin-
ity (right) over [750, 3250] m from the WOA05 dataset. Middle panel: the misfit
of the baseline model state (cube37) to the vertical average of temperature in oC
(left)/salinity (right) over [750, 3250] m from the WOA05 dataset. Lower panel:
the misfit of the optimized model state to the vertical average of temperature in oC
(left)/salinity (right) over [750, 3250] m from the WOA05 dataset. The model cli-
matology is the temporal average over the year 1992-2002. From Hong Zhang and
Dimitris Menemenlis.

2.4.2 Comparison between modeled and observed eddies

It is not realistic for the model to predict the location and properties of each vortex

correctly. Thus, here we compare the spatial pattern and the order of magnitude of

temporal variability in the optimized experiment (cube87 run) with those in observa-

tions. There has been no standard way to test the model fidelity quantitatively and
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here we choose an arbitrary standard: we consider the modeled eddies realistic, if the

relative misfit

|σobservation − σmodel|/σobservation < 0.5,

where σobservation (σmodel) is the standard deviation of the observed (modeled) variable

(e.g. SSH, T and S).

Figure 2-6 compares the observed SSH variability from AVISO with that in the

model. The spatial pattern is qualitatively similar: the variability is large in the

western boundary currents and the ACC; it is small in the eastern part of the basin.

Most regions with large misfit are the regions with large variability. The model over-

estimates the variability in the Kuroshio Current, the Gulf Stream and the Agulhas

ring region; but it underestimates the variability east of these two western boundary

currents and the variability in the southwest part of the Indian Ocean. The relative

misfit (lower right panel) is generally smaller than 0.5 in the mid- and low latitudes,

but larger than 0.5 in the high latitudes. Consistently, the misfit of the modeled

SSH to observations is also smaller in the mid- and low latitudes than high latitudes

(Figures 2-7 and 2-8). The observed SSH is slightly lower than the modeled value

near the Antarctica, in the northwestern part of the Pacific and the northernmost

Atlantic Ocean; it is slightly higher in the subtropical region, especially in the region

where the horizontal gradient of the thermocline depth is large.

Wortham (2012) compared the frequency-wavenumber spectrum of sea surface

height variability in the ECCO2 state estimate with that from the altimeter data in

a representative high energy region and a representative low-energy region. He found

that the spectra in the model are qualitatively similar to the observed spectra in the

two regions. This indicates that the simulated eddy-eddy interaction and eddy-mean

flow interaction process in the model is reasonable, as the spectral structure is a result
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of external forcing and the nonlinear process in the ocean.

Figure 2-6: σSSHo in m (upper left), σSSHm in m (upper right), σSSHo − σSSHm in
m (lower left) and the relative misfit |σSSHo − σSSHm|/σSSHo (lower right). σSSHo
(σSSHm) is the standard deviation of the observed (modeled) sea surface height over
1992-2007. Sea surface height here refers to the sea surface height relative to the
global mean SSH at the same time step. Magenta contours in the lower right panel
have the value of 0.5.

Figures 2-9, 2-10 and 2-11 compare the temperature and salinity variability in

the model with the observed variability from Forget and Wunsch (2007). The overall

spatial features and the order of magnitude of hydrographic variability in the model

are consistent with observations. For example, the variability at 250 m in both

observations and the model is large in the Kuroshio Extension, the Gulf Stream

Extension, the ACC and the thermocline; the relative misfit at 250 m is smaller than

0.5 in most regions, but it is larger than 0.5 in some regions in the Southern Ocean,

the northernmost part of the Atlantic and some spots in the equatorial region (Figure
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Figure 2-7: SSHo in m (upper left), SSHm in m (upper right), SSHo − SSHm in
m (lower left) and |SSHo − SSHm|/σSSHo (lower right). SSHo (SSHm) is the time
mean of observed (modeled) sea surface height over 1992-2007 with global mean SSH
subtracted.

Figure 2-8: The zonal average of the normalized misfit (|SSHo − SSHm|2/σ2
SSHo).

.

2-9).

Figure 2-10 shows the relative misfit of hydrographic variability as a function
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Figure 2-9: σTo in oC (upper left), σTm in oC (upper right), the misfit σTo − σTm in
oC (lower left) and the relative misfit |σTo − σTm|/σTo (lower right) at 250 m. σTo
(σTm) is the standard deviation of observed (modeled) temperature omitting seasonal
variability. Magenta contours in the lower right panel have the value of 0.5.

of latitude and depth. The relative misfit of temperature (salinity) variability is

smaller than 0.5 in the upper 4000 m (2000 m) in the mid- and low latitudes. The

relative misfit of both the temperature and salinity variability is larger than 0.5

throughout the water column in the high latitudes. The relative misfit of salinity

variability is generally larger than that of temperature variability below 2000 m. Some

representative cross sections of the hydrographic variability in the model are shown

in Figure 2-11, as an example to illustrate the consistency between the observed and

modeled hydrographic variability in the upper ocean. Similar to the corresponding

observations (Figure 5 in Forget and Wunsch, 2007), the hydrographic variability in

Figure 2-11 is large at the depth range with strong stratification in the equatorial
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Figure 2-10: Zonally averaged relative misfit (left: |σTo − σTm|/σTo; right:
|σSo − σSm|/σSo) as a function of latitude and depth (m). σSo (σSm) is the stan-
dard deviation of observed (modeled) salinity omitting seasonal variability. Black
contours have the value of 0.5.

region and at the depth range with large horizontal temperature gradient.

To conclude, the variability in the model is overall consistent with the observed

variability, especially in the upper ocean of mid- and low latitudes. The comparison

of the modeled total kinetic energy with those from moorings also suggests that the

ECCO2 model has better performance at low latitudes than high latitudes (Wortham,

2012). There are several possible reasons why the relative misfit is smaller in the

upper ocean of these latitudes. First, the dominant scale of eddies is closely related

to the first baroclinic deformation radius, which is smaller in high latitudes; thus

the model resolution is not high enough to resolve motions on the deformation scale

there. Second, the vertical resolution of the model is higher in the upper ocean than

that in the deep ocean. Furthermore, the upper ocean is away from the topography,

some of which is too steep or of too small scale for the model to resolve; thus the

model performance in the deep ocean near topography may not be good. Third, fewer

observations are available in the deep ocean and high latitudes, such as the Southern

Ocean; thus the model solution is less constrained there. Fourth, the scarcity of
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Figure 2-11: Cross sections of σTm in oC in the Indian Ocean at 64.35oE (upper left),
in the Pacific Ocean at 164.5oE (upper right), in the Atlantic Ocean at 322.5oE (lower
left) and along the equator at 0.5oS (lower right). Black contours are isotherms and
the thick ones denote the 14oC and 22oC isotherms. The depth is in m.

observations in the deep ocean and high latitudes may contribute to the possible poor

quality of the estimated hydrographic variability from Forget and Wunsch (2007) and

thus contribute to the large relative misfit there. Similarly, the smaller relative misfit

of temperature variability than that of salinity may also be partially due to the better

quality of temperature observations.

2.5 Conclusions

The ECCO2 state estimate is used in our research presented in Chapters 3 and 4.

This chapter briefly discusses the model setup, the state estimation method and the
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model-data misfit. It is an appropriate tool for the investigation of energy pathways

and structures of oceanic eddies, and the diagnostic results in later chapters should be

reasonable especially in the upper ocean of the mid- and low latitudes. The reasons

are as follows: (1) The state estimation method is the Green function approach.

The solution used in the thesis is essentially a free forward run using the optimized

control parameters. Because no data is inserted in the forward run, neither unphysical

jumps nor artificial sources/sinks are introduced in this dynamically consistent state

estimate (Wunsch et al., 2009). Thus, the solution is useful for process studies and

budget diagnosis (e.g. eddy energy budgets). (2) Due to the properly chosen sub-

grid parameterization schemes and the state estimation method, the properties of

the model solution, such as the magnitude and the frequency-wavenumber spectrum

of sea surface height anomaly, are realistic. (3) Also the model output is saved at

a three-day interval, which is short enough to capture most eddy signals. (4) The

horizontal resolution of the model (18 km on average) is high enough to simulate

baroclinic/barotropic instability processes. The eddy energy level in the deep ocean

is extremely low; thus, the low vertical resolution there probably will not affect much

the estimate of the globally integrated energy conversion rates. (5) Several previous

studies about eddies using the ECCO2 state estimate (e.g. Fu, 2009; Volkov et al.,

2008; Volkov and Fu, 2008) also indicate the utility of the solution.
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Chapter 3

A description of eddy-mean flow

interaction in the ECCO2 state

estimate

3.1 Introduction

The ocean circulation is generated as a result of the external forces including winds,

tides and heat exchanges with the atmosphere (e.g. Ferrari and Wunsch, 2010; Huang,

2004). Several studies have described the spatio-temporal patterns of the wind work

and have estimated that the total wind power input into the surface geostrophic flow

in the global ocean is roughly 0.8 TW (e.g. Wunsch, 1998; Scott and Xu, 2009).

However, the uncertainty of this number is significant (Zhai et al., 2012). The ways

in which the energy, momentum, vorticity and enstrophy from these external forces

move through the global ocean, transform in their nature and scale, are exchanged

with the atmosphere and cryosphere, and are dissipated are extremely complicated.

Many aspects of this process are still unknown and full descriptions about this do not
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exist.

The ocean circulation varies on a broad range of spatio-temporal scales, and the

time-varying flows can exchange energy, vorticity and momentum with the time-mean

circulation through eddy-mean flow interaction. These exchanges influence the nature

of both the mean and the perturbations. Within the ocean, the time-mean circulation

contains most of the potential energy, whereas the time-varying flow contains most of

the kinetic energy. A large body of literature exists on the conversion of energy from

the time-mean circulation to the time-varying flow through barotropic, baroclinic,

mixed instability processes, etc. (e.g. Gill et al., 1974; Pedlosky, 1987; Vallis, 2006;

Spall, 2000). Energy from the time-varying flow can also be transferred back to

the time-mean circulation through a variety of processes including rectification and

topography steering (e.g. Whitehead, 1975; McWilliams et al., 1978; Marshall, 1984;

Johnson et al., 1992; Witter and Chelton, 1998); similar phenomena are found in

atmospheric jet streams (e.g. Williams et al., 2007). At the same time, energy can

also be redistributed among different spatial scales/vertical modes through energy

cascades (e.g. Salmon, 1978; Scott and Wang, 2005; Fu and Flierl, 1980) and be

transmitted over large distances through e.g. advection or the propagation of rings

and waves (e.g. Flierl, 1977).

von Storch et al. (2012) studied the ocean Lorenz energy cycle using a 1/10o

global simulation and suggested that, even though the eddy-mean flow interaction in

the ocean involves many physical processes, the dominant globally integrated energy

pathway between eddies and the mean flow in both the ocean and the atmosphere

is identical to the energy pathway in idealized local baroclinic instability processes

(Pedlosky, 1987; Lorenz, 1955). The generation rate of eddy kinetic energy through

this energy pathway in the global ocean is roughly one third of the total wind power

input into the geostrophic flow (Ferrari and Wunsch, 2009; Scott and Xu, 2009).
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A large literature exists discussing the simple and yet compelling local baroclinic

instability hypothesis, its plausibility in the mid-ocean, and its utility in explaining

eddy properties and generation in the global ocean (e.g. Robinson and McWilliams,

1974; Held and Larichev, 1996; Venaille et al., 2011; Smith, 2007; Tulloch et al.,

2011). This hypothesis has two aspects: (1) each region in the ocean is assumed to

be horizontally homogeneous and thus all the energy released from the baroclinically

unstable mean flow is used to sustain the local eddy energy growth, which is bal-

anced by other terms in the eddy energy budget (e.g. mixing and dissipation); (2)

the dominant source for eddy growth in this patch is the energy released from the

mean flow through baroclinic instability, not from advection, external forcing, etc.

(e.g. Tulloch et al., 2011). Observed eddies in the mid-ocean have similar properties

to those from local linear baroclinic instability analysis and to those from relevant

idealized experiments with reasonable parameters, indicating the plausibility of this

hypothesis in the mid-ocean (Gill et al., 1974; Arbic and Flierl, 2004). Many oceanic

problems, such as jet dynamics, eddy heat fluxes, time-dependent instabilities and

energy cascades, have been investigated in the doubly-periodic two-layer model with

vertical shear in which local baroclinic instability occurs (e.g. Panetta, 1993; Salmon,

1978; Thompson, 2010).

This study is concerned with the first aspect of the local baroclinic instability

hypothesis, which is assumed in many instability theories (Pedlosky, 1987). The ac-

tual time-mean circulation is not homogeneous (Tulloch et al., 2011; Arbic, 2000),

implying that the energy released from the mean flow through eddy-mean flow in-

teraction can be transmitted to other regions through the divergence term (Section

3.2; Liang and Robinson, 2007; Kundu and Cohen, 2004). The amount of energy

transmitted elsewhere and the impact of this nonlocal nature of eddy-mean flow in-

teraction on energy cascades, eddy fluxes, jet dynamics and eddy properties are still
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largely unknown.

We do not have a theory to test. The goals of this mainly descriptive chapter are

simply to (1) map the respective change rate of energy in eddies and the mean flow

through eddy-mean flow interaction and (2) characterize the regional energy route

through eddy-mean flow interaction and discuss whether the energy released from

the mean flow is used to support the local eddy energy growth in energetic regions.

The oceanic community lacks the long-term observations of global velocity, salinity

and density fields, which are needed to pursue this study. However, previous studies

show that diagnosing oceanic models is a useful way to explore oceanic energetics

problems (e.g. Cox, 1987; von Storch et al., 2012; Zhai and Marshall, 2012). Here

we use the ECCO2 state estimate, noting that it is dynamically consistent and thus

applicable to the energy budget analysis, and with the implicit assumption that the

simulated oceanic circulation is quantitatively accurate enough for the task.

Our results are not definitive and come with several caveats. First, the ECCO2

state estimate does not resolve submeoscale variability, and the fidelity of the mesoscale

variability from the state estimate remains partially uncertain (Chapter 2). Second,

an important assumption here is that the 16-year model output is long enough to sep-

arate the putative time-mean flow from the oceanic variability. Finally, the definition

of available potential energy (APE) is arguable; and we assume that the definition

based on the quasi-geostrophic assumption (Lorenz, 1955; Oort et al., 1989) is rea-

sonable enough for the purpose here. These points are discussed to some extent later.

More accurate or different answers might be obtained using other numerical models

and other APE diagnostic frameworks.
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3.2 Diagnostic framework

3.2.1 Derivation of the framework

On the notation

Here we briefly discuss the notations used in this section. · denotes the time mean

and ·′ denotes the deviation from the time mean. For example, we can split the zonal

velocity u and the in-situ density ρ into the time-mean components and the deviation

components, i.e.,

u(x, y, z, t) = u(x, y, z) + u′(x, y, z, t), (3.1)

ρ(x, y, z, t) = ρ(x, y, z) + ρ′(x, y, z, t). (3.2)

< · > denotes the global mean at a given depth. For example, the vertical profile

of the global- and time-mean in-situ density is

< ρ(x, y, z, t) >=< ρ(x, y, z) >= ρ̃(z). (3.3)

Thus, we can split the in-situ density into two components, i.e.,

ρ(x, y, z, t) = ρ∗(x, y, z, t) + ρ̃(z). (3.4)

We can split the hydrostatic pressure p in a similar way, i.e.,

p(x, y, z, t) = p∗(x, y, z, t) + p̃(z). (3.5)

Note that

ρ∗
′
(x, y, z, t) = ρ∗(x, y, z, t)− ρ∗(x, y, z, t) = ρ′(x, y, z, t), (3.6)
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p∗
′
(x, y, z, t) = p∗(x, y, z, t)− p∗(x, y, z, t) = p′(x, y, z, t). (3.7)

Definition of kinetic energy and available potential energy

Ocean variability encompasses a continuum of spatial scales, ranging from sub-

mesocale and mesoscale motions to gyre shifts and basin oscillations; it also spans

a wide range of temporal scales, ranging from superintertial to seasonal and decadal

variability. In this chapter, mean flow refers to the flow temporally averaged over the

specific 16 years available from the ECCO2 model. The entire time-varying flow in

the ECCO2 model, which is the deviation from the 16-year average and independent

of spatial scale, is termed “eddies” as a short hand. One caveat is that decadal vari-

ability and submesoscale variability at a horizontal scale of a few kilometers, though

not resolved in the ECCO2 model, might contribute significantly to the energy bud-

get. Also note that eddies at different spatio-temporal scales probably contribute

differently to the eddy-mean flow interaction, though we do not consider this issue

here.

Thus, the kinetic energy in the mean flow is defined as

ekmean(x, y, z) =
1

2
ρ0(u2 + v2) (3.8)

and the kinetic energy in the time-varying flow is defined as

ekeddy(x, y, z) =
1

2
ρ0(u′2 + v′2), (3.9)

where ρ0 is the constant reference density (1027.5 kg/m3 in the ECCO2 state esti-

mate). Here vertical velocities have negligible contribution to kinetic energy and thus

are being ignored.

The concept of available potential energy (APE), introduced by Margules (1905),
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has been widely used to explore the energy cycle in the atmosphere and the ocean

(e.g. Lorenz, 1955; Oort et al., 1989; Huang, 2005). It refers to the difference in

potential energy between the actual state, which is the state that we are studying

(e.g. oceanic state in the ECCO2 state estimate), and the reference state, which has

the minimum amount of potential energy (Huang, 2005). APE in a Boussinesq ocean

is

∏
= g

∫
v

(ρz − ρrZ)dV , (3.10)

where v denotes some volume, ρr (ρ) and Z (z) are the in-situ density and vertical

position of water parcels in the reference (actual) state (e.g. Winters et al., 1995).

The reference state can be determined through adiabatic mass adjustment using an

iterative algorithm and then APE can be determined (Huang, 1998). However, the

partition of APE in Eq. 3.10 into eddy available potential energy (EAPE) and mean

available potential energy (MAPE) is still an open question, as it is challenging to

quantify the contribution of eddies to Z (Hughes et al., 2009). Developing an eddy-

mean flow interaction energetics framework based on this definition is a separate

problem, which we will not address here.

Instead, this study uses the quasi-geostrophic definition of APE, which has been

widely used in the ocean studies (e.g. Oort et al., 1989, 1994; Pedlosky, 1987; Huang,

2010; von Storch et al., 2012; Brown and Fedorov, 2010):

χ(x, y, z) = − g

2n0

[ρ(x, y, z, t)− < ρ(x, y, z, t) >]2 = − g

2n0

ρ∗(x, y, z, t)2 , (3.11)

where ρ(x, y, z, t) is the in-situ density at the actual state. The time mean and global

mean of ρ(x, y, z, t) (< ρ(x, y, z, t) >) is the in-situ density at the reference state. n0
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is the time mean and global mean of the vertical gradient of local potential density

n0(z) = −ρ0

g
N2(z) =< [

∂ρ(x, y, z, t)

∂z
]x,y,t > − < [

∂ρ(S, θ, z)

∂z
]S,θ >, (3.12)

where N2(z) is the time mean and global mean of Brunt-Väisälä frequency (Huang,

2010), S and θ denote salinity and potential temperature and they are functions of

space and time. Note that if the goal is to evaluate the APE budget of mesoscale

motions, one should choose spatial average over a few degrees, not the global average

as the reference state (Huang, 2010). Here our focus is on exploring the interaction

between the mean flow and the time-varying flow, which has a wide range of spatial

scales. Thus, it is reasonable to choose the global mean as the reference state. This

choice of the reference state has recently been used to evaluate the Lorenz energy

cycle in the ocean and the energy budget of time-varying flows with the period of 10

minutes ∼10 years from a global perspective (von Storch et al., 2012). Our diagnostic

framework introduced next (Eq. 3.15 ∼ Eq. 3.18) is mathematically self-consistent

and is useful to evaluate the eddy-mean flow interaction problem.

Here we provide our definition of MAPE and EAPE. The total available potential

energy (Eq. 3.11) is the difference between the potential energy stored in the snapshot

isopycnals in the actual state and that in the reference state. Since density in the

actual state is the instantaneous density ρ(x, y, z, t), the density in the time-mean

actual state is ρ(x, y, z, t). MAPE is the difference between the potential energy

stored in the time-mean actual state and that in the reference state:

χmean(x, y, z) = − g

2n0

ρ∗(x, y, z) 2. (3.13)

EAPE is the difference between the potential energy in the actual state and that in
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the time-mean actual state:

χeddy(x, y, z) = − g

2n0

ρ∗′(x, y, z, t)2 = − g

2n0

ρ′(x, y, z, t)2 . (3.14)

Note that χ(x, y, z) = χmean(x, y, z) + χeddy(x, y, z).

Energy equations for the mean flow and eddies

In some atmospheric and Southern Ocean studies, mean flow is often defined as

the zonally averaged flow, and the transformed Eulerian mean framework is used to

explore eddy-mean flow interaction (e.g. Vallis, 2006; Plumb and Ferrari, 2005; Kuo

et al., 2005). Here we need a framework consistent with our definition of eddies and

mean flow. A detailed derivation of the kinetic and available potential energy equa-

tions appropriate to the ECCO2 state estimate is provided in the appendix (Sections

3.6.1 and 3.6.2). These equations are

∂

∂t
ekmean +∇ · (uekmean) +∇ · (u p∗) = −BMKE + CMKE +DMKE (3.15)

∂

∂t
ekeddy +∇ · [u1

2
ρ0(u′2 + v′2)] +∇ · (u′p′) = BEKE + CEKE +DEKE (3.16)

∂

∂t
χmean +∇ · (uχmean) = BMAPE +BMKE +DMAPE +Rχmean

(3.17)

∂

∂t
χeddy +∇ · [−ugρ′2/(2n0)] = BEAPE −BEKE +DEAPE +Rχeddy , (3.18)

where

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂,

∂

∂z
p∗ = −ρ∗g, ∂

∂z
p
′
= −ρ′g

and u is the three-dimensional velocity vector.

The terms on the left-hand side of Eqs. 3.15-3.18 represent the local change rates

of the energy and redistribution of energy through advection and pressure work. The

B terms, listed in Table 3.1, are eddy-mean flow interaction terms related to the eddy
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density flux. The C terms, listed in Table 3.1, are eddy-mean flow interaction terms

related to eddy momentum flux. The D terms denote the change rate of MAPE

and EAPE due to vertical mixing, heat and freshwater fluxes (DMAPE and DEAPE)

and the change rate of kinetic energy in the mean flow (MKE) and kinetic energy in

eddies (EKE) due to friction, wind stress and bottom drag (DMKE and DEKE). The

R terms and the vertical advection of APE are additional terms with higher order

Rossby numbers , which do not exist in the quasi-geostrophic framework. These terms

can be neglected below the surface mixed layers and away from convective regions

and are ignored in our later discussion. Note that the local change rates (the first

term on the left-hand side) in Eqs. 3.15−3.18 are negligible.

To tackle the proposed questions, we focus on determining the eddy-mean flow in-

teraction terms listed in Table 3.1. Evaluating all the terms of these energy equations,

even with a model, is formidable undertaking for several reasons: certain variables,

such as temporally/spatially varying viscosity and diffusivity, are not available; we

use three-day averaged fields and thus cannot determine the contribution of high-

frequency motions to the energy budget.

Table 3.1: The eddy-mean flow interaction terms diagnosed in this study. uH is
horizontal velocity vector and ∇H = ∂

∂x
î + ∂

∂y
ĵ. v is meridional velocity and w is

vertical velocity.

term mathematical form meaning

BMAPE g
n0
ρ∗ ∇H ·(u′Hρ

′
)

MAPE change rate due to horizontal density
flux

BEAPE g
n0

u′Hρ
′·∇Hρ∗

EAPE+EKE change rate due to horizontal den-
sity flux

BEKE −gρ′w′ Gain rate of EKE from EAPE

CMKE −ρ0[u∇·(u′u′)+v∇·(v′u′)] MKE change rate due to eddy momentum flux

CEKE −ρ0(u
′
u′·∇u+v

′
u′·∇v) EKE change rate due to eddy momentum flux
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3.2.2 Interpretation

Local vs. nonlocal eddy-mean flow interaction

Here we provide our definitions of local eddy-mean flow interaction and non-local

eddy-mean flow interaction. The rate of energy released from the mean flow through

eddy-mean flow interaction is the sum of BMAPE and CMKE. We can gain some

insight into the pathways of energy released from the mean flow through the equation

for total mechanical energy:

∂

∂t
(ekmean+ekeddy+χmean+χeddy) = (BMAPE+BEAPE+CMKE+CEKE)+Res, (3.19)

which is the sum of Eq. 3.15 ∼ Eq. 3.18. The B and C terms on the right hand of

Eq. 3.19 are the change rates of total kinetic and available potential energy at a given

location due to eddy-mean flow interaction. Res represents all the other terms. If the

sum of the B and C terms in Eq. 3.19 integrated over a region is negligible, all the

energy released from the mean flow is converted to eddy energy in the same region

and thus the eddy-mean flow interaction in this case is local. On the contrary, if it is

not negligible, some of the energy released from the mean flow is not used to sustain

the eddy growth in the same region and the eddy-mean flow interaction is nonlocal.

This is further illustrated in Figure 3-1. Note that other nonlocal terms (advection

and the work done by pressure work) exist in all the oceanic regions; however, the

definition of local vs. nonlocal eddy-mean state interaction in this study is based

on the sum of the B and C terms, not based on the magnitude of advection term,

pressure work, etc. Thus, though the energy gained by eddies is always balanced by

other terms in the eddy energy budgets including advection and pressure work, the

eddy-mean flow interaction process is termed local in this study, as long as the sum

of the B and C terms in Eq. 3.19 integrated over a region is negligible.
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Figure 3-1: Schematics illustrating the energy transfer through eddy-mean flow inter-
action (other energy terms are omitted, except BMKE). (a) illustrates the case when
eddy-mean flow interaction is nonlocal. Only part of the energy released from the
unstable mean flow through terms CMKE and BMAPE is used to support the local
eddy growth; the rest of the energy released is transported elsewhere through the
divergence terms CEKE +CMKE and BMAPE +BEAPE. (b) illustrates the case when
the eddy-mean flow interaction is local: in this case, the divergence terms are approx-
imately zero and thus all the energy released from the unstable mean flow through
eddy-mean flow interaction transfers to eddies in the same region.

The nonlocal interaction can occur because the energy release rate from the mean

flow due to eddy-mean flow interaction in a region (BMAPE and CMKE) is not neces-

sarily equal to the gain rate of energy in the eddies (BEAPE and CEKE) in the same

region:

BMAPE +BEAPE = ∇H · (u′Hρ
′ g

n0

ρ∗) 6= 0 (3.20)

CMKE + CEKE = −ρ0[∇ · (uu′u′) +∇ · (vv′u′)] 6= 0. (3.21)
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These terms in Eqs. 3.20 and 3.21 have a divergence form and thus the global integral

is zero1. Therefore, the part of energy released from the mean flow which is not used

to sustain the local eddy energy growth is essentially transported elsewhere through

the divergence terms (Eqs. 3.20 and 3.21), as illustrated in Figure 3-1.

Diagram (a) in Figure 3-1 is different from the traditional Lorenz energy diagram

(e.g. Lorenz, 1955; von Storch et al., 2012) by including the divergence components

(BMAPE +BEAPE, CEKE +CMKE). The global integral of the divergence components

is zero and thus it is not included in the traditional Lorenz energy diagram, which is

used to illustrate the energy pathway in the global atmosphere or ocean. Diagram (a)

can be used to illustrate the energy route for eddy-mean flow interaction in selected

regions. Diagram (b) in Figure 3-1 illustrates the local eddy-mean flow interaction

route.

Divergent eddy fluxes and pathway of energy gained by eddies

Using the concepts of divergent eddy fluxes and rotational eddy fluxes, Marshall

and Shutts (1981) proposed a pathway of BEAPE, which is the gain rate of eddy

energy by eddy-mean flow interaction through horizontal eddy density fluxes. Eddy

density fluxes can be decomposed into two parts:

u′Hρ
′ = (u′Hρ

′)D + (u′Hρ
′)R, (3.22)

where (u′Hρ
′)D is the divergent eddy flux satisfying

∇H × (u′Hρ
′)D = 0

and (u′Hρ
′)R is the rotational eddy flux (e.g. Fox-Kemper et al., 2003). Thus, we can

1The global integral of BMAPE +BEAPE is only approximately zero, as we ignored the vertical
eddy density flux contribution (see Section 3.6.2).
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split BEAPE into two parts:

BEAPE = BEAPE,D +BEAPE,R, (3.23)

where

BEAPE,D =
g

n0

(u′Hρ
′)D · ∇Hρ∗, BEAPE,R =

g

n0

(u′Hρ
′)R · ∇Hρ∗.

Marshall and Shutts (1981) investigated the pathway of BEAPE in a steady quasi-

geostrophic system satisfying the following criteria: the sources/sinks of EAPE and

the advection of EAPE by eddies are negligible in the EAPE budget, the mean flow

roughly aligns with the mean density contours and the mean stream function is lin-

early related to the mean density. They proved that, in such an idealized system,

BEAPE,D balances BEKE and BEAPE,R balances the advection of EAPE by the mean

flow, i.e.,

BEAPE,D = BEKE, and BEAPE,R = uH · χeddy.

They further infer that, in more general cases, BEAPE,R is probably balanced by the

advection of EAPE and thus does not contribute to the energy transfer from EAPE

to EKE.

We discuss the applicability of the above general statement in some regions in

Section 3.4.2. Specifically, we infer the magnitude of BEAPE,R based on some previous

literature and compare it with the magnitude of the horizontal advection term in the

EAPE budget in the ECCO2 state estimate. In practice, the decomposition of eddy

density fluxes into divergent and rotational components is sensitive to the boundary

condition imposed in a bounded domain (e.g. Eden et al., 2007; Fox-Kemper et al.,

2003). Thus, the diagnosis of BEAPE,R in the ECCO2 state estimate is left for future

work.
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We can see, from Table 3.1, that only the divergent component of eddy density

fluxes contributes to the energy release from the mean state through eddy density

fluxes (BMAPE), as

∇H · (u′Hρ
′) = ∇H · (u′Hρ

′)D.

Thus, the divergent component of eddy fluxes is more relevant to eddy parameteriza-

tion problems (e.g. Griesel et al., 2009). However, both the divergent and rotational

components of eddy fluxes contribute to the divergence terms (BMAPE +BEAPE and

CMKE + CEKE).

3.3 ECCO2 state estimate evaluation

The model configuration and model-data comparison about eddies are discussed in

Chapter 2. This section further discusses the fidelity of the 16-year ECCO2 state

estimate in the aspect of energetics and eddy-mean flow interaction.

3.3.1 On the length of the record

One question is whether the 16-year record available from the ECCO2 state estimate

is long enough to evaluate the eddy-mean flow interaction terms (the B and C terms).

These terms involve eddy momentum and eddy density fluxes. Are the amplitude and

spatial pattern of eddy momentum and density fluxes sensitive to the record length?

Previous studies and our analysis show that large-scale features in the time-mean

eddy fluxes are not very sensitive to the record length. The characteristics of sur-

face momentum fluxes at the Kuroshio and Gulf Stream Extension regions estimated

using a 5-year altimetric data are similar to those estimated from the 13-year data

(Greatbatch et al., 2010). Our analysis also shows that the spatial pattern and mag-
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nitude of eddy fluxes from the 16-year record is remarkably similar to those estimated

from shorter records. For example, BEKE (the time-mean vertical eddy density flux

multiplied by −g) estimated from the 1992-1997 output and that from the 1992-2007

output in the global ocean have a spatial correlation of 0.8. The ratio of the globally

integrated BEKE based on the 16-year record and that based on the 6-year record is

one. Figure 3-2 shows the comparison in the Kuroshio Extension region. The mag-

nitude of the two patterns is almost the same. The large-scale features survive even

in the estimates using the 6-year record: BEKE is positive (negative) in the western

(eastern) part of the extension regions. This suggests that the large-scale features

and globally integrated values are not very sensitive to the record length. Thus, the

16-year record is probably long enough for us to characterize the large-scale features

of the global energetics patterns and the energy route averaged in selected regions.

Figure 3-2: BEKE in W/m3 at 550 m in the Kuroshio Extension region, estimated
from the 6-year and 16-year ECCO2 state estimate.

Small-scale features still exist even in our estimate based on the 16-year record

(Figure 3-2). Where do the small-scale features in the time-mean eddy fluxes come

from? Oceanic motions and the associated hydrographic field have a wide-range of

spatial scales at each frequency (Wortham, 2012), as a result of eddy-eddy interac-

tion, instability, and the wide-range of spatial scales in external forcing, topography,

coastlines, etc. Consequently, small-scale features should exist in the time-mean eddy
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fluxes. The amplitude, position and structures of these small-scale features will prob-

ably change as the record length increases. However, the detailed description and

understanding of these small-scale features are left for future work, as our focus here

is on the large-scale patterns and regional characteristics.

3.3.2 Model-data comparison of energetics

On the spatial pattern

Chapter 2 compares the magnitude and spatial patterns of the oceanic variability

in the ECCO2 state estimate with the observed variability in Forget and Wunsch

(2007). To determine whether the ECCO2 state estimate is reasonable to evaluate the

proposed problem, we also need to assess whether the spatial patterns of eddy-mean

flow interaction terms in the model are consistent with observations. However, testing

the model fidelity in this aspect is challenging and a research topic by itself, mostly

due to the lack of long-term and large-area salinity, density and velocity observations.

Using the altimetric data, we can evaluate the time-mean contribution of geostrophic

flows to CEKE at the oceanic surface in the ECCO2 model, that is,

CEKE,geo = −ρ0(u′geo
−→u ′geo · ∇Hugeo + v′geo

−→u ′geo · ∇Hvgeo). (3.24)

ugeo (vgeo) is the zonal (meridional) geostrophic velocity estimated from sea surface

height:

vgeo =
g

f

∂η

∂x
and ugeo = − g

f

∂η

∂y
,

with f is the Coriolis parameter and η the sea surface height. Note that the concept

of CEKE,geo breaks down at the equator due to the vanishing of f there; thus the

equatorial regions are masked in the global pattern of CEKE,geo shown in Figure 3-3.
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The spatial pattern of CEKE,geo estimated from the ECCO2 state estimate is

similar to that from the altimetry in the off-equatorial regions (Figure 3-3). Both maps

show large magnitudes of CEKE,geo in the western boundary currents and the Southern

Ocean. Large magnitudes of CEKE,geo in the Southern Ocean occur within roughly

the same longitude ranges in these two maps. The zonally integrated values from

the ECCO2 state estimate and altimetry are also very similar in the off-equatorial

regions: both with peaks at 40oS, 25oN and 35oN (not shown). However, the ECCO2

model underestimates CEKE,geo in the equatorial region and exploring the reasons is

beyond the scope of discussion here.

Another similarity is that, in the Southern Ocean and western boundary exten-

sion regions, both positive and negative spots exist, though their detailed locations

are only roughly the same in the two maps. We also computed CEKE,geo using the

8-year altimetry and ECCO2 state estimate (1993-2000). The location of these pos-

itive/negative spots based on the short record are the same as those based on the

long record in roughly 80% of the global ocean. The short-record and the long-record

estimated time-mean fields based on the ECCO2 model have a correlation of 0.9.

The short-record and the long-record estimated fields based on the altimetry have a

correlation of 1.0.

On the globally integrated values

Another extensively explored topic related to eddy-mean flow interaction is the

kinetic energy budget. Table 3.2 compares the globally integrated values from the

ECCO2 state estimate with those in previous studies based on observations, models

and parameterization schemes. The global integrals of BEKE and the wind power

input into the surface geostrophic flow (τs·ugeo) are consistent with previous estimates.

The work done by the fluctuating winds (τ
′
s·u

′
geo) appears overestimated in the ECCO2

model.
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Figure 3-3: The smoothed CEKE,geo in µW/m3 at the oceanic surface using the weekly
sea surface height during 1993-2007 from the altimetry (upper) and from the ECCO2
state estimate (lower). The regions within 3 degree of the equator are masked. The
smoother is 3-degree running average. Both patterns are dominated by large values
in the western boundary currents and the Southern Ocean and both are patchy in
the Southern Ocean.

The bottom drag dissipation (τb ·ub) in the ECCO2 model may be underestimated

to some extent (Table 3.2). Consistently, Wortham (2012) found that the total kinetic

energy in the ECCO2 state estimate below 2000 m at the mooring sites is approx-

imately half of the kinetic energy observed from the current meters. On the other
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Table 3.2: The 16-year average of the globally integrated energy terms from the
ECCO2 state estimate and previous estimates (TW ). The errors shown are σ/

√
N ,

where σ is the standard deviation and N is the number of degrees of freedom (Section
3.6.3). The global integral of the wind power input excludes the equatorial region
(within ±3o of the equator), but the the global integrals of other terms listed include
the equatorial region. τs is wind stress, ugeo is the surface geostrophic velocity, τb is
bottom drag based on the quadratic drag law, and ub is bottom velocity.

Energy terms Estimates from ECCO2 Previous estimates

BEKE 0.31±0.01 (0.2 ∼ 0.8) from Wunsch and Ferrari
(2004); 0.3 from Ferrari and Wunsch
(2009).

τs · ugeo 0.81±0.02 0.88 from Wunsch (1998); 0.75 ∼ 0.9 from
Scott and Xu (2009).

τ
′
s · u

′
geo 0.12±0.00 (0.04 ∼ 0.06) from Zhai et al. (2012); 0.04

from Wunsch (1998).
τb · ub 0.03±0.00 at least 0.2 from Sen et al. (2008); (0.14 ∼

0.65) from Arbic et al. (2009).

hand, differences in estimation methods probably also contribute to the difference be-

tween our estimates and previous estimates about bottom drag dissipation. Sen et al.

(2008) estimated the bottom drag dissipation using mooring observations, which are

very sparse in space. Arbic et al. (2009) estimated the bottom drag dissipation from

the snapshot bottom velocity in oceanic models, which includes the high frequency

component. However, our estimate is calculated from the 3-day averaged bottom

velocity.

Besides bottom drag, the kinetic energy in the model can also be dissipated

through interior vertical viscosity and biharmonic viscosity. From the momentum

equations in the x and y direction in the appendix (Section 3.6.1), we can get the

formula of the dissipation in the global ocean interior due to vertical viscosity Az:

ε = ρ0

∫∫∫
Az(x, y, z, t)[(

∂u

∂z
)2 + (

∂v

∂z
)2]dxdydz. (3.25)

The output for the temporally and spatially varying Az is not available, but we
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do know that the background value of Az is roughly 5.7 × 10−4 m2/s and Az is

around (5 ∼ 100) × 10−3 m2/s in the KPP mixing layer (Chapter 2). ε due to the

background value of Az is 0.2 TW in the ECCO2 state estimate. Assuming that

the KPP mixing layer is 100 m at all the time steps and Az in the mixing layer is

always 5×10−3 m2/s, the dissipation in the KPP mixing layer is roughly 1 TW in the

ECCO2 state estimate. The contribution of biharmonic viscosity to the kinetic energy

dissipation is even larger than the contribution of vertical viscosity (D. Menemenlis

2012, personal communication).

3.4 Results

3.4.1 Global pattern of eddy-mean flow interaction

Figure 3-4 shows the spatial pattern of eddy-mean flow interaction due to eddy density

fluxes (the B terms). The patterns of the B terms are dominated by large magnitude

in the Southern Ocean, north of 40oN in the Atlantic Basin, in the western boundary

current regions and in the subtropical gyre. In most of these areas, eddies grow

through the interaction with the mean flow (BEAPE > 0) and the mean flow releases

available potential energy by interacting with eddies (BMAPE < 0). However, in the

eastern part of the Kuroshio and Gulf Stream extension regions, eddies lose energy

and the mean flow gains it.

To determine the realism of these patterns, we compare our results with previous

modeling studies. The overall pattern of BEKE in the North Atlantic is consistent

with that in Zhai and Marshall (2012). von Storch et al. (2012) presented the spatial

pattern of BEKE and BEAPE from a 1/10o global simulation. Though their time-

varying flow includes variability with periods from 10 minutes to 10 years and our
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Figure 3-4: The 3-degree running averaged BEKE, BEAPE and BMAPE integrated
over the whole water column (W/m2). These terms describe energy change rates
due to eddy-mean flow interaction through eddy density fluxes (Table 3.1). Positive
(negative) BEAPE (BMAPE) means eddies (mean flow) gain (releases) potential energy
through this process. Positive BEKE means EAPE is converted to EKE. Magnitudes
in the six black boxes are large. 66



time-varying flow includes variability with periods from 3 days to 16 years, the spatial

patterns of the vertically integrated BEKE and BEAPE in our study is similar to theirs:

values are large in the Southern Ocean and western boundary currents and are small

in the subpolar gyres; negative spots occur in the western bounder extension regions.

The similarity between the BEKE and BEAPE patterns in Figure 3-4 suggests

that part of BEAPE transfers to EKE through the term BEKE, which is consistent

with baroclinic instability theory (Pedlosky, 1987). However, the globally integrated

BEAPE (0.5 TW ) is larger than the globally integrated BEKE (0.3 TW ); thus only

part of the energy extracted by EAPE from MAPE is used to support the EKE growth

and the remaining part is used to balance other terms in the EAPE budget. However,

the detailed pathway of the energy transferred to EAPE from MAPE (BEAPE) in the

realistic eddy-permitting models is still largely unknown.

Figure 3-5 shows the spatial pattern of vertically integrated eddy-mean flow energy

exchanges due to eddy momentum fluxes (the C terms). The patterns are dominated

by large magnitude in the western boundary currents and the Southern Ocean and by

small magnitude elsewhere. Eddies gain kinetic energy in most areas of the western

boundary currents and many spots in the Southern Ocean (CEKE > 0), but they lose

kinetic energy in many places in the Southern Ocean (CEKE < 0). CMKE also has a

sequence of positive and negative values in the Southern Ocean. This phenomenon

has been identified in previous observation and modeling studies (e.g. Johnson et al.,

1992; Morrow et al., 1992; Wilkin and Morrow, 1994).

We find that, from a global integral perspective, eddies gain kinetic energy through

CEKE at 0.1 TW and the mean flow releases kinetic energy through CMKE at the

same rate. To put this number into context, it is roughly 12% of the wind power

input into the time-mean surface geostrophic flow and it is one third of the globally

integrated BEKE. In a local region, part of the wind power input into geostrophic flow
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Figure 3-5: The 3-degree running averaged CEKE (upper) and CMKE (lower) inte-
grated over the whole water column (W/m2). These two terms are about the energy
change rates due to eddy-mean flow interaction through eddy momentum fluxes (Ta-
ble 3.1). Positive (negative) CEKE (CMKE) means eddies (mean flow) gain (releases)
kinetic energy through this process. Their magnitudes are large in the western bound-
ary currents and the Southern Ocean.

is converted to potential energy (Roquet et al., 2011) and then can be released from

MAPE through BMAPE and sustain the eddy growth. The other part of the wind

power input is transformed to pressure work (Roquet et al., 2011), which can change

the local MKE budget and influence the energy released from MKE through CMKE.
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Our calculation suggests that a major portion of the wind power input is used to

sustain the BMAPE and BEAPE terms, but the contribution of the wind power input

to the C terms is also not negligible.

Lorenz energy cycle comparison

Now consider the energy pathway due to eddy-mean flow interaction integrated

over the entire global ocean. The MAPE, EAPE, MKE and EKE reservoirs in a

three-dimensional volume are defined as

MAPE =

∫∫∫
V

χmean(x, y, z)dν (3.26)

EAPE =

∫∫∫
V

χeddy(x, y, z)dν (3.27)

MKE =

∫∫∫
V

ekmean(x, y, z)dν (3.28)

EKE =

∫∫∫
V

ekeddy(x, y, z)dν, (3.29)

where V is a three-dimensional volume in the ocean, such as a region or the entire

global ocean.

Figure 3-6 shows a subset of the traditional Lorenz energy cycle diagram (Lorenz,

1955). von Storch et al. (2012) compared the Lorenz energy cycle in the global ocean,

estimated from an eddying model, with the atmospheric one. Our estimate is similar

to theirs in several aspects. First, the arrow direction in these two estimates are the

same. Both estimates show that the arrow direction is not entirely the same as that

in the atmosphere, in which eddy kinetic energy is converted to mean kinetic energy.

One caveat here is that eddies in the atmosphere are defined as deviations from the

zonal mean, whereas oceanic eddies in von Storch et al. (2012) and this chapter are

time-varying flows. Second, the numbers in these two estimates are on the same
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Figure 3-6: The global energy diagram about eddy-mean flow interaction in TW based
on the ECCO2 state estimate (a) and the estimate from von Storch et al. (2012) using
the STORM/NCEP simulation (b). MAPE, EAPE, MKE and EKE in the boxes are
defined in Eqs. 3.26-3.29. The number between MAPE and EAPE in both (a) and
(b) is the global integral of BEAPE, not BMAPE. As mentioned previously in the text,
the globally integrated BEAPE +BMAPE is only approximately zero (Section 3.6.2).

order of magnitude. However, our estimate has smaller values for the baroclinic

energy pathway MAPE → EAPE → EKE. This may be due in part to differences

in model configuration and definitions of eddies. The ECCO2 state estimate is data

constrained (Chapter 2), whereas the STORM/NCEP simulation is not. Their time-

varying flows include motions with period of 10 minutes ∼ 10 years, whereas ours

include motions with period of 3 days ∼ 16 years.

3.4.2 Regional energy routes of eddy-mean flow interaction

The energy route through eddy-mean flow interaction in specific regions is generally

different from the global diagram in Figure 3-6. Next we describe the energy routes

through eddy-mean flow interaction in some energetic regions. These regional energy

routes (Figures 3-7, 3-8 and 3-9) are the integral of the energy diagram shown in

Figure 3-1 over selected regions; however, the energy exchange rates between MKE

an MAPE (BMKE) are not included in these regional energy routes, as we focus on

eddy-mean flow interaction.
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Southern Ocean

The Southern Ocean plays a key role in the global energy budget. The Southern

Ocean receives more than 75% of the total global wind power input (Roquet et al.,

2011). The surface westerly wind stress in the Southern Ocean drives surface water

northward and thus the water below the surface is brought upward to conserve mass.

Isopycnals are thus tilted upward towards the pole and the Deacon cell meridional

overturning circulation is formed and further maintained by the surface buoyancy

forcing (e.g. Doos and Webb, 1994; Marshall and Radko, 2003; Thompson, 2008).

These previous studies agree that available potential energy stored in these tilted

isopycnals can be released and used to generate eddies through baroclinic instability.

On the other hand, previous observation and modeling work suggests that eddies

generated through baroclinic instability in the Southern Ocean can intensify the mean

flow through the convergence of eddy momentum fluxes (CMKE > 0) in some regions

and decelerate the mean flow through the opposite process (CMKE < 0) in some

other regions (e.g. Johnson et al., 1992; Morrow et al., 1992; McWilliams et al., 1978;

Wilkin and Morrow, 1994; Lenn et al., 2011).

The eddy-mean flow interaction in the Southern Ocean in the ECCO2 state es-

timate is consistent with studies summarized above in three aspects. First, in the

ECCO2 state estimate, energy is released from the mean available potential energy

stored in the tilted isopycnals and eddies are generated (BEKE > 0 and BMAPE < 0).

Second, the gain rate of EKE from EAPE (BEKE) in the Southern Ocean is roughly

half of its globally integrated value, suggesting the key role of the Southern Ocean

in the global energy cycle. Third, eddies drive the mean flow through eddy momen-

tum fluxes in some patches (CMKE > 0) and decelerate the mean flow in some other

patches (CMKE > 0).

We also identify several new aspects about the eddy-mean flow interaction in the
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Southern Ocean, summarized in Figure 3-7. First, the negative and positive patches

of CMKE integrated over the three Southern Ocean boxes shown in Figure 3-5 mostly

cancel out. The contribution of CEKE to the eddy growth in the Southern Ocean is an

order of magnitude smaller than the contribution of BEAPE. Second, energy released

from the mean flow through BMAPE is 214 GW, but only 139 GW transfers to the

EAPE reservoir through the term BEAPE. Thus, two thirds of energy released from

the available potential energy stored in the tilted isopycnals is used to support the

eddy growth in the Southern Ocean and the rest of the energy released from the mean

flow is transported out of the domain through the divergence term BMAPE +BEAPE.

This indicates that eddy-mean flow interaction in the Southern Ocean is non-local to

some extent. The nonlocal nature arises from the spatial inhomogeneity of the eddy

density fluxes and the mean flow, as it is

BMAPE +BEAPE =
g

n0

∇H · (u′Hρ
′ ρ∗) 6= 0.

Both the mean flow, dominated by fronts and jet features, and the time-mean observed

eddy heat fluxes in the Southern Ocean have rich small-scale variations (e.g. Lenn

et al., 2011).

The energy routes in the Indian Sector, the Pacific Sector and the Atlantic Sector

of the Southern Ocean are not entirely the same (Figure 3-8). In all the three sectors,

the contribution of the C terms to the eddy growth is negligible compared to the con-

tribution of the B terms. In the Indian Sector (Atlantic Sector), roughly 70% (40%)

of the energy released from the MAPE reservoir is used to sustain the eddy growth in

the same region; in the Pacific Sector, however, roughly 90% of the energy released

from the MAPE reservoir is used to sustain the eddy growth in the same sector. The

mechanism for the differences between these sectors is still to be determined.
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Figure 3-7: The energy diagram in 109 W (GW ) (Figure 3-1) in the three boxes in
the Southern Ocean (a) and in the three boxes in the northern hemisphere (b, c, d)
shown in Figure 3-4. In diagram a, only part of the energy released from MAPE
through eddy-mean flow interaction supports local eddy energy growth. In diagram
b, eddy-mean flow interaction is local. In diagrams c and d, the contribution of B
and C terms to the eddy growth is on the same order of magnitude. Errors shown
here are one standard error, as that in Table 3.2. Two standard errors correspond
to 95% confidence level. MAPE, EAPE, MKE and EKE in the boxes are defined in
Eqs. 3.26-3.29.

We also find that, compared to eddy-mean flow interaction through density fluxes,

horizontal advection contributes much less to the eddy energy change. First, the EKE

change rate due to horizontal advection in each sector is less than 4 GW and the EKE

change rate due to horizontal advection integrated over these three sectors is 0 GW .

Second, the EAPE change rate due to horizontal advection in each sector is less than

2 GW . The divergent eddy heat fluxes are strong in the Southern Ocean (Jayne

and Marotzke, 2002) and thus the divergent eddy density fluxes are also strong here,
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Figure 3-8: The energy diagram in 109 W (GW ) (Figure 3-1) in the Indian Sector
(diagram a), the Pacific Sector (diagram b) and the Atlantic Sector (diagram c) of
the Southern Ocean, denoted by the boxes in Figure 3-4. The contribution of the
C terms to eddy growth is negligible. In the Indian and Atlantic Sectors, only part
of the energy released from MAPE through eddy-mean flow interaction supports the
eddy energy growth in the same domain. In the Pacific Sector, roughly all the MAPE
released supports eddy energy growth in the same domain. Errors shown here are
one standard error, as that in Table 3.2. Two standard errors correspond to 95%
confidence level. MAPE, EAPE, MKE and EKE in the boxes are defined in Eqs.
3.26-3.29.

assuming that the effect of salinity on the density fluxes is small. Thus, BEAPE,R is

probably much smaller than BEAPE,D. Consistently, BEAPE is dominated by BEAPE,D

and BEAPE roughly balances BEKE in all the three sectors.

Subtropical gyres

Figure 3-7 shows the energy route through eddy-mean flow interaction in a mid-

ocean patch in the subtropical gyre, indicated by the black box in the mid-ocean of

the North Pacific in Figure 3-4. In this region, eddy-mean flow interaction due to eddy
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momentum fluxes is negligible (the C terms are zero). Approximately all the energy

released from MAPE is used to sustain the local EAPE growth and little energy is

exported elsewhere through BMAPE + BEAPE. Thus, eddy-mean flow interaction in

this patch is local and the local assumption used in previous studies (e.g. Gill et al.,

1974; Tulloch et al., 2011; Arbic and Flierl, 2004) is accurate in this region. We

also find that the EKE change rate due to horizontal advection in this region is 0

GW . Also 35% of BEAPE balances BEKE and 9% of BEAPE balances the horizontal

advection of EAPE; thus more than half of BEAPE balances other terms in the EAPE

budget. Whether the results in this patch are representative of the subtropical gyres

in other ocean basins is to be determined.

Western boundary extensions

The energy routes in the Kuroshio and Gulf Stream Extension regions, denoted

by the two black boxes around 35oN in Figure 3-4, are shown in Figure 3-7. First,

BEKE is positive in the western part of the extension and negative in the eastern

part, whereas CMKE is positive in the eastern part of the extension and negative in

the western part (Figures 3-4 and 3-5). These features are consistent with previ-

ous observation, modeling and theoretical studies (e.g. Waterman and Jayne, 2011;

Nishida and White, 1982; Eden et al., 2007; Zhai and Marshall, 2012; Hall, 1991).

The consistency indicates that the energetics of the ECCO2 simulation are reasonable

in these areas. Second, in the ECCO2 state estimate, the EAPE loss rate through

horizontal advection is 6 GW (5 GW ) in the Kuroshio (Gulf Stream) Extension re-

gion, which is non-negligible compared to BEAPE. Previous modeling and mooring

analysis shows that the rotational eddy heat fluxes in the Gulf Stream Extension

region are large (Cronin and Watts, 1996; Jayne and Marotzke, 2002). This suggests

that a non-negligible part of BEAPE is BEAPE,R, which may balance the EKE loss

through horizontal advection in this region.
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The energy route in these extension regions is different from those in the Southern

Ocean and the subtropical gyre in the following aspect (Figure 3-7). Eddies integrated

over the whole extension regions gain energy from the mean flow through both the

B and C terms, whose contribution to the EKE growth is on the same order of

magnitude. The energy input through the boundaries of this region (BMAPE+BEAPE)

is also not negligible.

Here we discuss the energy route in the Kuroshio Extension region in more detail

by dividing it into two subregions (Figure 3-9). Figure 3-7 (c) shows that, in the

Kuroshio Extension region, energy is transferred from MAPE to EAPE with some

energy input from the boundaries of the region and a small portion being converted

to EKE. The EKE loss rate through horizontal advection in this region is negligible

(1 GW ) compared to the gain rate of EKE from EAPE and MKE. More detailed

examination shows that the energy pathway in Figure 3-7 (c) is essentially the average

over two different dynamical regimes (Figure 3-9). In the western half, energy is

transferred from both the kinetic energy and available potential energy reservoir in

the mean flow to the eddy energy reservoir. The energy input from other regions

is small and the eddy-mean flow interaction is approximately local. Only 26% of

EAPE extracted from the mean flow is converted to EKE, and the EKE loss rate

from horizontal advection is 37% of the gain rate of EKE from EAPE and MKE. By

contrast, energy in the eastern half is converted from EAPE to MAPE; however, this is

not the local baroclinic instability mechanism operating in reverse, as a large portion

of the energy fed into MAPE is supplied from elsewhere through the divergence term

and most of the EAPE loss to MAPE is not supplied by the local EKE reservoir.

The gain rate of EKE through horizontal advection in the eastern half is three times

larger than the EKE loss rate to EAPE. Note that, compared to the energy route in

the eastern half, the energy route in the western half resembles more the energy route
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for the whole Kuroshio Extension region, shown in Figure 3-7 (c).

Figure 3-9: The energy diagram in 109 W (GW ) (Figure 3-1) in the western half (a)
and eastern half (b) of the Kuroshio Extension region, denoted by the box in Figure
3-4. In (a), energy is transferred from the mean flow to eddies through both the B
and C terms; in (b), energy is transferred from EAPE to MAPE. Errors shown here
are one standard error, as that in Table 3.2. Two standard errors correspond to 95%
confidence level. MAPE, EAPE, MKE and EKE in the boxes are defined in Eqs.
3.26-3.29.

To our best knowledge, neither a complete diagnosis of the eddy-mean flow in-

teraction terms in Table 3.1 nor a complete theory exist in previous studies about

energetics in the Kuroshio Extension region. However, using two-year mooring data

at one site in the Kuroshio Extension region (35oN, 152oE), Hall (1991) found that

BEKE < 0 and BEAPE < 0 at 350 dbar and CEKE is generally negative at this site.

Waterman and Jayne (2011) found that, by analyzing the potential vorticity and

enstrophy budgets in an idealized two-layer model, eddies can drive the mean flow

in the eastern part of the Kuroshio Extension through nonlinear eddy rectification

processes due to localized forcing. Different from Waterman and Jayne (2011), we

find that both eddies and the energy input through the boundaries contribute to the

APE increase in the mean flow in the eastern part of the Kuroshio Extension region

(Figure 3-9). A complete theory about the energy pathways in Figure 3-9 does not

exist. Whether these energetic features exist in the instability processes due to the
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localized forcing (e.g. pulse instabilities) is still not known (e.g. Farrell, 1982; Helfrich

and Pedlosky, 1993, 1995).

3.5 Conclusions

This chapter provides a global description about the energetics of eddy-mean flow

interaction in the ECCO2 state estimate. From a global integral perspective, the

dominant energy route through eddy-mean flow interaction is from mean available

potential energy to eddy available potential energy then to eddy kinetic energy; how-

ever, the energy transfer from the mean kinetic energy to eddy kinetic energy is also

not negligible (Figure 3-6).

The energetics of eddy-mean flow interaction vary geographically. The mean flow

releases energy through eddy-mean flow interaction in most regions, but gains energy

in some other regions. Interactions due to eddy density fluxes are pronounced in

the Southern Ocean, western boundary extension regions and the subtropical gyres

while interactions due to eddy momentum fluxes play a large role in the Southern

Ocean and western boundary current regions. The interaction is approximately local

in the selected subtropical gyre region, but it is nonlocal in the Southern Ocean,

where the oceanic circulation is less spatially homogeneous. Energetics in the eastern

half and the western half of the Kuroshio Extension region are very different. In the

western half, the mean flow is both baroclinically and barotropically unstable and

most energy released from the mean flow transfers to eddies; in the eastern half, eddy

energy transfers back to the mean flow and eddy-mean flow interaction is nonlocal,

as the divergence terms are non-negligible.

Some tasks for the future are (1) to explore the sensitivity of the results to the

spatial resolution, record length and the region size by examining regions with dif-
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ferent sizes and carrying out longer and higher resolution numerical simulations, (2)

to develop a diagnostic framework based on a more accurate definition of available

potential energy, (3) to diagnose other terms in the energy budgets and evaluate the

vorticity, enstrophy and momentum budgets in order to have a more complete de-

scription of eddy-mean flow interaction in the global ocean, and (4) to partition the

contribution of oceanic variability at different spatial and time scales to the eddy-

mean flow interaction process. Besides these future tasks, the results in this chapter

also raise more puzzles:

• Small-scale features are prevalent in the temporally averaged sea surface height

field over four years (Wunsch, 2010). Here we find that small-scale features are

also prevalent in the time-mean eddy-mean flow interaction patterns. Do these

features become less pronounced if we use a longer record?

• In our current estimate, one third of the energy released from the APE in the

mean flow of the three boxes in the Southern Ocean moves to other regions

through the divergence term. Assuming this result is not sensitive to the model

resolution, record length and diagnostic framework, it is important to study (1)

what causes the non-local nature of eddy-mean flow interaction in the Southern

Ocean? (2) What are the consequences of this non-local nature on jet behaviors,

eddy characteristics, and their contributions to oceanic circulation, mixing and

transport in the Southern Ocean? (3) What is the impact of the non-local

nature on the time-mean circulation, eddy field and energetics in other regions?

(4) Is it important to develop parameterization schemes not using the local

assumption?
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3.6 Appendix

3.6.1 Governing equations for kinetic energy

As discussed in Chapter 2, the momentum equations in the x and y directions in the

ECCO2 state estimate are

∂u

∂t
+∇ · (uu)− fv = − 1

ρ0

∂

∂x
p+Du (3.30)

∂v

∂t
+∇ · (vu) + fu = − 1

ρ0

∂

∂y
p+Dv, (3.31)

where

Du =
∂

∂z
Az
∂u

∂z
+ A4∇4

hu and Dv =
∂

∂z
Az
∂v

∂z
+ A4∇4

hv (3.32)

respectively representing the change rates of momentum in the x and y direction due

to vertical and horizontal friction. ρ0 is constant reference density, p is the hydrostatic

pressure, Az is the vertical viscosity and A4 is the horizontal biharmonic viscosity. u

is the zonal velocity and v is the meridional velocity. u denotes the velocity vector

and ∇· is the divergence operator:

u = ûi+ vĵ + wk̂, ∇· = ∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.

Multiply Eqs. 3.30 and 3.31 by u and v respectively, sum them together and

perform a temporal average to obtain the mean kinetic energy equation:

∂

∂t
ekmean+∇·(uekmean)+∇·(u p) = −gρ w−ρ0[u∇·(u′u′)+v∇·(u′v′)]+ρ0(uDu+vDv),

(3.33)
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where

ekmean(x, y, z) =
1

2
ρ0(u2 + v2) (3.34)

and ρ is the in-situ density.

Multiply Eqs. 3.30 and 3.31 by u′ and v′ respectively, sum them together and

perform a temporal average to obtain the eddy kinetic energy equation:

∂

∂t
ekeddy +∇ · [u1

2
ρ0(u′2 + v′2)] +∇ · (u′p′) =− gρ′w′ − ρ0(u′u′ · ∇u+ v′u′ · ∇v)

+ ρ0(u′D′u + v′D′v),

(3.35)

where

ekeddy(x, y, z) =
1

2
ρ0(u′2 + v′2). (3.36)

According to Eqs. 3.4 and 3.5, we can decompose the pressure and in-situ density

as follows:

p(x, y, z, t) = p∗(x, y, z, t) + p̃(z), ρ(x, y, z, t) = ρ∗(x, y, z, t) + ρ̃(z);

also noting that the hydrostatic approximation is employed in the ECCO2 state es-

timate, we obtain

∇ · (u p) + gρ w = ∇ · (u p∗) + gρ∗ w. (3.37)

Thus, we can write the equations for kinetic energy (Eqs. 3.33 and 3.35) into the

following form:

∂

∂t
ekmean+∇·(uekmean)+∇·(u p∗) = − gρ∗ w︸ ︷︷ ︸

BMKE

−ρ0[u∇·(u′u′) + v∇·(v′u′)]︸ ︷︷ ︸
CMKE

+ ρ0(uDu + vDv)︸ ︷︷ ︸
DMKE

,

(3.38)
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∂

∂t
ekeddy+∇ · [u

1

2
ρ0(u′2 + v′2)]+∇·(u′p′) = −gρ′w′︸ ︷︷ ︸

BEKE

−ρ0(u′u′ · ∇u+ v′u′ · ∇v)︸ ︷︷ ︸
CEKE

+DEKE,

(3.39)

where

DEKE = ρ0(u′D′u + v′D′v).

Note that the global integral of CMKE +CEKE is zero, as it has the divergence form:

∫∫∫
V

(CEKE + CMKE)dν = −ρ0

∫∫∫
V

([∇ · (uu′u′) +∇ · (vv′u′)])dν = 0.

3.6.2 Governing equations for available potential energy

A prerequisite to deriving the MAPE and EAPE equations consistent with the ECCO2

state estimate is to obtain the in-situ density equation consistent with the ECCO2

state estimate. The potential temperature (θ) and salinity (S) equations in the

ECCO2 state estimate are

dθ

dt
=
∂θ

∂t
+ (u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)θ = Hθ, (3.40)

dS

dt
=
∂S

∂t
+ (u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)S = HS, (3.41)

where

Hθ =
∂

∂z
(Kz

∂θ

∂z
) + {Fθ( surface level)

penetrating short wave radiation (interior)
, (3.42)

HS =
∂

∂z
(Kz

∂S

∂z
) + {FS( surface level)

0 (interior)
. (3.43)

Fθ and FS represent surface forcing and they are defined in Chapter 2. Kz is vertical

diffusivity used to parameterize the mixing process in the model and it is spatially and
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temporally varying. As discussed in Chapter 2, the equation of state in the ECCO2

state estimate is

ρ(x, y, z, t) = ρ(θ, S, ρ0gz), (3.44)

where ρ is the in-situ density; thus

dρ

dt
= (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)ρ

= (
∂ρ

∂S
)θ,z(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)S + (

∂ρ

∂θ
)S,z(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)θ

+w(
∂ρ

∂z
)S,θ.

(3.45)

Using Eqs. 3.40 and 3.41, we obtain

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= Hρ + wρ̂z, (3.46)

where

ρ̂z = (
∂ρ

∂z
)S,θ. (3.47)

and

Hρ = (
∂ρ

∂θ
)S,zHθ + (

∂ρ

∂S
)θ,zHS. (3.48)

As discussed in von Storch et al. (2012), the vertical gradient of local potential

density is due to the change of salinity and potential temperature with depth at the

same location:

∂ρ

∂z
− ρ̂z = (

∂ρ

∂S
)θ,z

∂S

∂z
+ (

∂ρ

∂θ
)S,z

∂θ

∂z
(3.49)

and thus the time-mean and global mean of the local potential density vertical gra-
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dient is

n0 =<
∂ρ

∂z
− ρ̂z > . (3.50)

As defined in the main text (Eqs. 3.4-3.6),

ρ(x, y, z, t) = ρ̃(z) + ρ∗(x, y, z) + ρ
′
(x, y, z, t). (3.51)

Similarly, we can also decompose ρ̂z into three parts:

ρ̂z(x, y, z, t) =< ρ̂z > (z) + ρ̂z
∗(x, y, z, t) =< ρ̂z > (z) + ρ̂z

∗(x, y, z) + ρ̂z
′
(x, y, z, t).

(3.52)

Substituting Eqs. 3.51 and 3.52 into Eq. 3.46, we obtain the density equation for ρ∗:

∂

∂t
ρ∗ +∇ · (uρ∗) + wn0 = Hρ + wρ̂z

∗. (3.53)

Eq. 3.53 can be rewritten as

∂

∂t
(ρ∗ + ρ′) +∇ · [u(ρ∗ + ρ′)] + wn0 = Hρ + wρ̂z

∗. (3.54)

Multiply Eq. 3.54 by −gρ∗/n0 and then time average, we can get the MAPE

equation:

∂

∂t
χmean +∇ · (uχmean) = ρ∗ ∇ · (u′ρ′ g

n0

)︸ ︷︷ ︸
BMAPE,0

+ gρ∗ w︸ ︷︷ ︸
BMKE

− g

n0

ρ∗ Hρ︸ ︷︷ ︸
DMAPE

+Rxmean,0 , (3.55)

where

χmean(x, y, z) = − g

2n0

[ ρ∗(x, y, z) ]2,

84



Rxmean,0 = −χmean ·
w

n0

∂n0

∂z
− gρ∗ w′ρ′ ∂

∂z
(

1

n0

)− g

n0

ρ∗ wρ̂z
∗. (3.56)

Multiply Eq. 3.54 by −gρ′/n0 and then time average, we can get the EAPE equation:

∂

∂t
χeddy +∇ · [−ugρ′2/(2n0)] = u′ρ′

g

n0

· ∇ρ∗︸ ︷︷ ︸
BEAPE,0

− (−gρ′w′)︸ ︷︷ ︸
BEKE

− g

n0

ρ′H ′ρ︸ ︷︷ ︸
DEAPE

+Rxeddy,0 , (3.57)

where

χeddy(x, y, z) = − g

2n0

ρ′(x, y, z, t)2 ,

Rxeddy,0 = gρ′2/(2n0) · w
n0

∂n0

∂z
− g

n0

ρ′wρ̂z
∗. (3.58)

Note that

∫∫∫
V

(BEAPE,0 +BMAPE,0)dν =

∫∫∫
V

(∇ · (u′ρ′ g
n0

ρ∗)dν = 0,

where V here refers to global integral. BEAPE,0 and BMAPE,0 can be divided into a

horizontal eddy density flux part and a vertical density flux part:

BEAPE,0 = u′Hρ
′ g

n0

· ∇Hρ∗︸ ︷︷ ︸
BEAPE

+w′ρ′
g

n0

∂

∂z
ρ∗

BMAPE,0 = ρ∗ ∇H · (u′Hρ
′ g

n0

)︸ ︷︷ ︸
BMAPE

+ρ∗
∂

∂z
(w′ρ′

g

n0

),

where uH is horizontal velocity and

∇H =
∂

∂x
î+

∂

∂y
ĵ.

This chapter diagnoses BEAPE and BMAPE instead of BEAPE,0 and BMAPE,0, as
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BEAPE and BMAPE are involved in quasi-geostrophic eddy dynamics and can be

used to indicate baroclinic instability. For convenience purpose, we write Eqs. 3.55

and 3.57 into the following form:

∂

∂t
χmean +∇ · (uχmean) = ρ∗ ∇H · (u′Hρ

′ g

n0

)︸ ︷︷ ︸
BMAPE

+ gρ∗ w︸ ︷︷ ︸
BMKE

− g

n0

ρ∗ Hρ︸ ︷︷ ︸
DMAPE

+Rxmean , (3.59)

∂

∂t
χeddy +∇ · [−ugρ′2/(2n0)] = u′Hρ

′ g

n0

· ∇Hρ∗︸ ︷︷ ︸
BEAPE

− (−gρ′w′)︸ ︷︷ ︸
BEKE

− g

n0

ρ′H ′ρ︸ ︷︷ ︸
DEAPE

+Rxeddy , (3.60)

where

Rxmean = Rxmean,0 + ρ∗
∂

∂z
(w′ρ′

g

n0

), Rxeddy = Rxeddy,0 + w′ρ′
g

n0

∂

∂z
ρ∗. (3.61)

BMKE is the exchange rate between MKE and MAPE. Rχmean and Rχeddy do not exist

in the APE budgets under quasi-geostrophic assumption (Pedlosky, 1987; von Storch

et al., 2012) and these two terms are not the focus of this chapter. Note that the

global integral of BEAPE +BMAPE is

∫∫∫
V

(BEAPE+BMAPE)dν =

∫∫∫
V

∇H · (u′Hρ
′ g

n0

ρ∗)dν = −
∫∫∫

V

∂

∂z
(w′ρ′

g

n0

ρ∗)dν,

which is a negligible number under quasi-geostrophic assumption. Our calculation

using the ECCO2 state estimate confirms this statement. The global integral of

BEAPE + BMAPE is -0.07 TW, which is much smaller than the global integral of

BEAPE (0.51 TW) and the global integral of BMAPE (-0.58 TW).
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3.6.3 Determine the standard error

The standard error σ/
√
N is used in Table 3.2 and Figures 3-7 ∼ 3-9. This appendix

describes how to determine the standard error of a time series X. Assuming X is

normally distributed,

X − µ
σ/
√
N

has a Student’s t distribution, where X represents the sample mean, σ represents the

sample variance, µ represents the true mean of X and N is the number of degrees of

freedom. Thus, at roughly 65% confidence level, the true mean lies in the following

interval

X − σ√
N
< µ < X +

σ√
N
.

The number of degrees of freedom can be determined from the following formula:

N = M/max[

N0∑
n=−N0

C(n)],

where M is the number of data in the time series and C(n) is the autocorrelation

function of X, which can be determined from the xcov command in Matlab. σ/
√
N

is the one standard error. The window of ±2 standard errors about X corresponds

to the 95% confidence interval.
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Chapter 4

Quantify and interpret striations in

a subtropical gyre from a spectral

perspective

4.1 Introduction

As the ocean modeling and observation techniques enter the eddy regime, a new

feature of the oceanic circulation emerges: the temporal average of some oceanic

variables, such as zonal velocity, has banded structures. These banded structures

have been identified from eddying numerical models (Cox, 1987; Richards et al.,

2006; Nakano and Hasumi, 2005; Galperin et al., 2004), the satellite altimetric data

(Maximenko et al., 2005), and the insitu XBT/float data (Maximenko et al., 2008).

Previous studies term these features jets or striations. This chapter follows the termi-

nology “striations”. As an integral part of oceanic circulation, striations are pervasive

in almost all the ocean basins, and they contribute to the transport of heat, tracers,

chemicals and biota (e.g. Baldwin et al., 2007; Kamenkovich et al., 2009a). Thus,

89



many studies have been done recently about striations. Yet, many aspects about

striations are still under debate, such as their amplitude and origins.

Oceanic variability has much larger amplitude than the time-mean circulation

and part of the oceanic variability has banded structures; however, it is still unknown

how much oceanic variability is associated with striations. Banded structures in the

regions away from the Southern Ocean are visible in the temporally averaged eddy

field, not in the flow snapshot (Berloff et al., 2011; Thompson, 2010). Thus, many

previous studies explore striations by temporally averaging the eddy field over some

time period, such as 18 weeks, 4 months, or 3 years (Richards et al., 2006; Nakano

and Hasumi, 2005; Maximenko et al., 2005). The amplitude of banded structures

generally decreases as the averaging length increases. It is still unclear how long the

temporal average should be in order to include all the striations but not other eddies.

Exploring this question can help us quantitatively determine the role of striations in

eddy energy budgets, tracer transport and mixing process.

Another aspect under debate is the origin of striations. One hypothesis is that they

are Rhines jets, which arise from the arrest of inverse cascade by beta effect (Rhines,

1975, 1979). Previous studies show that Rhines jets can form in the barotropic

quasi-geostrophic system on a beta plane (Rhines, 1975, 1979), the two-layer quasi-

geostrophic system on a beta plane with mean vertical shear imposed (Panetta, 1993;

Thompson, 2010; Boland et al., 2012), and the three-dimensional primitive equation

system (Sayanagi et al., 2008). Schlax and Chelton (2008) proposed that striations

could be an artifact of vortex propagation. They found that the temporal average

of westward propagating vortices, with statistical characteristics similar to altimeter

observations, has striation features, as cyclones (anticyclones) contribute westward

(eastward) flow at the northern edge of the track and eastward (westward) flow at

the southern edge of the track. We term this hypothesis the “vortex-propagation
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mechanism”. Other formation mechanisms include, but are not limited to, station-

ary Rossby waves (Maximenko et al., 2008), beta plumes (Afanasyev et al., 2011),

radiating instabilities of the eastern boundary current (Hristova et al., 2008; Wang

et al., 2012), and the nonlinear self-interactions of the linear eigenmodes (Berloff,

2005; Berloff et al., 2009).

The large-scale wind driven flow, which is ignored in the mechanisms summarized

above, further complicates the origin and characteristics of striations. Wang (2011)

discussed the effect of the double-gyre flow on radiating instabilities. Previous studies

found that striations can be generated in two-layer basin models forced by double-gyre

winds and their origin is interpreted using concepts, such as Rhines jets, nonlinear

rectification of basin modes and Rossby wave instabilities (e.g. Tanaka and Akitomo,

2010; O’Reilly et al., 2012). However, these studies do not explicitly examine the role

of the gyre mean flow on the origin and properties of striations.

This chapter does not aim to develop a new theory about the origin of striations.

Instead we study and interpret striations in the subtropical gyre in the frequency-

wavenumber space. Our goals are two-fold: (1) estimate the percentage of the zonal

velocity variability in the subtropical gyre region associated with striations from the

ECCO2 state estimate and altimetry (Section 4.3); (2) investigate the effect of a sub-

tropical gyre on the origin and properties of striations in an idealized model (Section

4.4). Applications of our results from the two goals are discussed in Section 4.5.
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4.2 Basic description about striations in ECCO2

model

We start our study from a visual description of striations in the time-mean zonal

velocity field from the ECCO2 model. Readers can refer to Chapter 2 for details

about the model. Figure 4-1 shows striations (upper panel) and the gyre flow (lower

panel) in the time-mean circulation on a representative isopycnal in the upper North

Pacific. Banded structures are pervasive in the domain and their amplitude is large

in the Kuroshio Extension, the Central North Pacific (hereafter CNP) and the East

North Pacific (hereafter ENP) regions.1

Direction

Striations in the CNP region are zonal, but striations in the southern part of the

ENP region tilt southwestward. The non-zonal feature of striations in the ENP region

has been identified in previous studies (e.g. Maximenko et al., 2008; Centurioni et al.,

2008). However, the mechanisms for the striation direction difference in these two

regions are still under debate. We note that the “environment” of striations in these

two regions is different: striations in the ENP region are embedded in the non-zonal

gyre flow and potential vorticity contours, whereas striations in the CNP region are

embedded in the zonal gyre flow (Figure 4-1). Here we propose that the large-scale

gyre flow contributes to the non-zonal feature in the ENP region and this hypothesis

will be tested using an idealized model in Section 4.4.

We also identify that, in the CNP region and south of 35oN of the ENP region,

striations roughly align with the eddy trajectories (Figure 4-2). One can get the

trajectories of eddies propagating at the time-mean eddy propagation velocity by

1This chapter focuses on striations in the CNP and ENP regions and those in the corresponding
regions in the idealized model, as the gyre-flow in these regions vary slowly spatially and the dynamics
are simpler than other regions in the subtropical gyre, such as the western boundary extensions.
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Figure 4-1: The time average of the small-scale zonal velocity over 1992-2007 (upper,
m/s), the direction of large-scale time-mean velocity (vectors, lower) and the potential
vorticity (color, lower, m−1s−1) on the isopycnal 1025.6 kg/m3 from the ECCO2
state estimate. Black boxes denote the Central North Pacific and East North Pacific
regions. Here “large-scale” means the 4o × 4o running average and “small-scale”
means the deviation from large-scales. Potential vorticity here is the Ertel potential
vorticity, which is approximately −ρ−1

0 fdρ/dz. ρ0 is the constant reference density
and ρ is the in-situ density. Dashed black lines in the upper panel denote the location
of the cross sections presented in Figure 4-3.

solving

dxeddy(t)

dt
= Cx(xeddy, yeddy),

dyeddy(t)

dt
= Cy(xeddy, yeddy),

with the initial condition xeddy(t = 0) = x0 and yeddy(t = 0) = y0. xeddy(t) and

yeddy(t) is the eddy position at time t. x0 and y0 is the initial position. Cx and Cy

are the zonal and meridional components of the 16-year averaged eddy propagation

velocity calculated from the correlation method, described in the appendix (Section

4.7.2) and Fu (2009). Eddies propagate westward in most part of the CNP region,

but they propagate in the southwestward direction in most part of the ENP region

(Figure 4-2). Consistently, the eddy trajectory tilts southwestward in the ENP region
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and is approximately zonal in the CNP region. However, in both regions, the angle

between the eddy propagation direction and the west direction is less than 30 degrees

(not shown).

Figure 4-2: The time-mean small-scale zonal velocity (color, m/s) as shown in Figure
4-1, the eddy propagation direction (vector), and the eddy trajectories (black line)
starting from the black boxes in the ENP (upper) and the CNP (lower) regions at
300m. The ECCO2 state estimate is used for this diagnosis.

The southward tilt of the eddy trajectories in the ENP region may be partially

due to the advection of the southward large-scale gyre flow. Recent observations show

that the effect of ocean currents on eddy propagation velocity in the mid- and high

latitudes is large (Fu, 2009). There is quite a large literature about interpreting the

propagation speed of vortices and planetary waves using linear theories with/without

topography and mean flow (e.g. Tulloch et al., 2009; Killworth et al., 1997). However,

the effect of meridional mean flow on the meridional eddy propagation speed in real-
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istic contexts is much less explored to our best knowledge. Using an idealized model

in Section 4.4, we will further discuss the effect of the meridional gyre flow on eddy

propagation direction, and the consistency between the eddy propagation direction

and the striation direction.

Vertical structure

Figure 4-3 shows representative vertical structures of striations in the two regions.

In the upper 1500 m, striations are surface intensified, but their positions and direc-

tions have strong vertical coherence. Their amplitude greatly decreases with depth,

with the surface amplitude 2 (6) times larger than that at 1500 m in the CNP (ENP)

cross section. In the upper 1500 m, the meridional width of striations is around 1-2

degrees, whereas narrower striations with the width of around 0.5 degree show up

between 1500 m and 3500 m. The differences of striation characteristics between the

upper and deep ocean suggest that the striation dynamics in the upper ocean might

be different from that in the deep ocean. The difference could be related to topog-

raphy, low eddy energy level in the deep ocean and the upper-ocean intensification

of the large-scale wind-driven flow. The structures below 3500 m are not shown, as

striations are invisible there. The transport due to eastward striations is approxi-

mately the same as the transport due to westward striations in these two regions in

the upper 3500 m.

The vertical coherence of the striation position and the decrease of the striation

amplitude with depth have also been reported in previous studies (e.g. van Sebille

et al., 2011; Richards et al., 2006). This feature suggests that both the barotropic

and baroclinic components are non-negligible parts of striations (Kamenkovich et al.,

2009b). The amplitude of the barotropic component is 0.4 cm/s (0.3 cm/s) along

the ENP (CNP) cross section. The baroclinic component is surface intensified. Its

amplitude in the upper 1000 m is 0.6 cm/s in both cross sections, which is 5 (3) times
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Figure 4-3: Meridional cross sections of the time-mean small-scale zonal velocity
(m/s) along the thick (left panel) and thin (right panel) black dashed lines, indicated
in the upper panel of Figure 4-1. These cross sections are representative in the ENP
region (left panel) and the CNP region (right panel).

larger than that between 1000-3500 m in the ENP (CNP) cross section.

4.3 Percentage of eddies associated with striations

in ECCO2 model and altimetry

This section tackles our first question: estimating the percentage of the zonal velocity

variability associated with striations. We first introduce a striation definition suitable

for our analysis and then present the results.

4.3.1 Our definition of striations

As discussed in the introduction and presented in the last section, striations are

mostly studied using the time-mean flow field. Depending on the record length and

the research goal, many choices of averaging length have been used, such as 18 weeks,

2 years or 8 years (e.g. Maximenko et al., 2005; van Sebille et al., 2011). We find that,
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in the CNP and ENP regions from the ECCO2 state estimate, the amplitude of the

time-mean small-scale 2 zonal velocity at 1000 m decreases 30% as one increases the

averaging length from one year to the longest available averaging length (16 years).

However, it remains unclear whether the amplitude will continue to decrease or level

off, if we further increase the averaging length beyond 16 years. It could be that some

striation features, such as those associated with topography (e.g. Hawaiian islands)

via the beta plume effect, are permanent features.

Here we define striations as the banded structures in the low-frequency motions,

because the temporal average essentially captures low-frequency features. This new

definition is consistent with the definition in previous literature and will be used in all

the remaining analysis about striations in the thesis. It has some advantages: we can

use this definition to characterize and interpret striations properties in the frequency-

wavenumber space, to explore the temporal variability of striations and the energy

source of striations, and quantify the contribution of striations to tracer mixing.3

Striations based on this definition include bands over a range of wavenumbers. Among

these, there is a dominant wavenumber (
−→
k S), which occurs at the maximum value

in the wavenumber spectrum of low-frequency motions. The striation direction is

approximately perpendicular to
−→
k S and the striation width is roughly 2π/|

−→
k S|. Note

that different oceanic variables have different wavenumber spectra; thus,
−→
k S can be

sensitive to the oceanic variable one chooses (e.g. temperature, stream function, zonal

velocity).

Since striations are bands in the low-frequency motions, a question arises: what

is the separation frequency (ΩS) between low-frequency and high-frequency eddies.

Using striations in the zonal velocity field as an example, we introduce one pos-

2“Small-scale” is defined in the caption of Figure 4-1.
3Utility of this definition in the studies about energetics and mixing is illustrated in Chapter 5.
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sible method to determine ΩS. First, we introduce the concept of the normalized

wavenumber spectrum of zonal velocity at frequency ωI :

|ũ(k, l, ωI)|2 = |û(k, l, ωI)|2/max (|û(k, l, ωI)|2),

where u is the zonal velocity, k is zonal wavenumber and l is meridional wavenumber.

|û(k, l, ωI)|2 is the frequency-wavenumber spectrum of zonal velocity in an ocean

region and max (|û(k, l, ωI)|2) is the maximum value of |û(k, l, ωI)|2 at frequency ωI .

Second, we define (kn, ln) as the wavenumbers where |ũ(k, l, ωI)|2 is larger than 0.2

(an arbitrary choice). The optimum ellipse denotes the smallest ellipse of which all

the (kn, ln) are inside, as illustrated in Figure 4-5. If the optimum ellipse is very

narrow, eddy structures are elongated along the minor axis of the ellipse and thus

banded structures dominate in the zonal velocity field at frequency ωI (Figure 4-4).

Therefore, here is our criterion: if the ratio between the major and minor axes of

the optimum ellipse on |ũ(k, l, ωI)|2 is larger than three (an arbitrary choice), then

the optimum ellipse is narrow and ωI is one of the frequencies with striations. In the

zonal velocity spectra in the ocean, the ratio between the major and minor axes of

the optimum ellipse generally decreases as the frequency increases. ΩS is the highest

frequency where all the ratios at frequencies lower than ΩS is larger than three.

However, the above method to obtain ΩS has some limitations. It does not apply

well in the region with large-area of land points, as it is challenging to compute the

wavenumber-frequency spectrum in a rectangular area with land points. If only a

very small percentage of area in a region is land points, one can pad these land

points with values surrounding them and the result is not contaminated much. Quite

a few seamounts exist below 1100m in the CNP region. Thus, next we only discuss

the percentage of variability associated with striations in the upper 1100m from the
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Figure 4-4: Schematics illustrating how we determine the separation frequency ΩS.
(a) If the optimum ellipse is very narrow, most variability is along the major axis
(dashed red line) and thus eddies are elongated in the direction of the minor axis
(solid red line), as illustrated in (b). (c) If the optimum ellipse is wide, the percentage
of oceanic variability at all directions are comparable to each other, eddies are more
isotropic, as illustrated in (d).

ECCO2 state estimate and the percentage from the altimetric data.

4.3.2 Results

As defined above, striations are the part of low-frequency motions inside of these nar-

row optimum ellipses in the frequency-wavenumber space; thus we can calculate the

percentage of zonal velocity variability associated with striations using the following

formula

percentage =

∫ ΩS

−ΩS

∫∫
Dkl(ω)

|û(k, l, ω)|2dkdldω/
∫∫∫

V

|û(k, l, ω)|2dkdldω, (4.1)
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where ΩS is the separation frequency obtained using the method described above,

Dkl(ω) represents the domain inside of the optimum ellipse in the k − l space at

frequency ω, and V represents the entire available three dimensional frequency-

wavenumer space. One caveat is that the percentage estimate is probably sensitive

to the record length available, though how the percentage changes with the record

length will not be explored here. One could probably also use this method to estimate

the percentage of variability in other oceanic variables (e.g. temperature) associated

with striations; however, this has not been done yet.

We choose to use the sea surface height anomaly data from AVISO and the zonal

velocity output from the ECCO2 model to estimate the percentage. Specifically,

we use the gridded weekly sea surface height anomaly data with the resolution of

1/4o × 1/4o during the year 1992∼2009 (Dibarboure et al., 2009). As to the zonal

velocity from the ECCO2 model, it is the 3-day averaged field during the year 1992

∼ 2007 and it is interpolated from the cube sphere grids onto the uniform 1/4o×1/4o

grids.

Now we further illustrate how to obtain the percentage using the altimeter data.

A key step is to obtain ΩS for the surface zonal geostrophic velocity anomaly (u′geo):

u′geo = − g
f

∂

∂y
η′,

where η′ is the sea surface height anomaly from AVISO and f is the Coriolis param-

eter. First, we compute the ratio between the major and minor axes of the optimum

ellipse for each frequency. The wavenumber spectrum generally gets more and more

isotropic as frequency increases and thus the ratio decreases with frequency. For ex-

ample, the ratio between the major and minor axes of the optimum ellipse is larger

than three for the part of u′geo with periods of 5.5 ∼ 16 years, but it is smaller than
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Figure 4-5: The normalized wavenumber spectra for the part of u′geo with periods of
5.5∼16 years (left) and 3.7 months (right) in the CNP region. Values of the spectra
on the black contours are 0.2. Blue contours denote the optimum ellipses. Colorbars
are on the logarithmic scale.

three for the part of u′geo with a period of 3.7 months (Figure 4-5). Inferred from these

ratios at all the available frequencies, the separation period TS (1/ΩS) is 8.6 months

in the CNP region and 2.7 years in the ENP region. Figures 4-6, 4-7 and 4-8 suggest

that this choice of ΩS is reasonable: the frequency-wavenumber spectrum integrated

over frequencies lower than ΩS is much more anisotropic than that integrated over

frequencies higher than ΩS (Figure 4-6) and banded structures do show up in the

part of the eddy field with frequencies lower than ΩS (Figures 4-7 and 4-8). After ΩS

is obtained, we can estimate the percentage using Eq. 4.1.

Our analysis shows that a non-negligible percentage of zonal velocity variability is

associated with striations. Using the method described above, we find that 13% (23%)

of the variability in surface zonal geostrophic velocity is associated with striations in

the ENP (CNP) region. We also estimated the percentage of the zonal velocity

variability associated with striations in the upper 1100 m from the ECCO2 state

estimate using the same approach. In the upper 1100 m of the CNP and ENP

regions, only at 15-35 m of the ENP region that no frequency passes the criterion

and the reason is to be determined. The percentage in the ENP region does not vary
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Figure 4-6: Left: normalized wavenumber spectrum of the part of u′geo with frequency
lower than ΩS in the CNP (upper) and ENP regions (lower). Right: normalized
wavenumber spectrum of the part of u′geo with frequency higher than ΩS in the CNP
(upper) and ENP regions (lower). Colorbars are on logarithmic scale.

Figure 4-7: Upper (lower) panel shows a snapshot of the part of u′geo in m/s with
frequency lower (higher) than ΩS in the CNP region.
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Figure 4-8: Left (right) panel shows a snapshot of the part of u′geo in m/s with
frequency lower (higher) than ΩS in the ENP region.

much with depth, but the percentage in the CNP region decreases in the upper 300

m and then levels off (Figure 4-9). The vertically averaged separation period (TS) in

the upper 1100 m is 4.1 months (3.2 years) in the CNP (ENP) region. The vertically

averaged percentage in the upper 1100 m is 49% (14%) in the CNP (ENP) region.

The implications of the surprisingly large percentage are briefly discussed in Section

4.5.1.

Figure 4-9: The percentage of the zonal velocity variability associated with striations
as a function of depth from the ECCO2 state estimate.
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4.4 Effect of the gyre-flow on idealized striations

We propose in Section 4.2 that the gyre-flow may contribute to the difference of

the striation directions in the CNP and ENP regions. Here we test this hypothesis

by studying striations in the gyre-flow using an idealized model. Though greatly

simplified, the idealized model can produce striation features qualitatively similar to

those in the ECCO2 state estimate.

4.4.1 Model formulation

To explicitly examine the role of the gyre flow on the striation direction, we need a

model which solves mesoscale motions and at the same time explicitly includes the

gyre flow. The multiple-scale expansion method has been used in previous studies

about the balance of mesoscale motions (Charney and Flierl, 1981; Pedlosky, 1984).

For example, Pedlosky (1984) used this method and developed a stratified quasi-

geostrophic balance model for mesoscale motions which allows the slow variation of

the background stratification due to the gyre-scale flow. Using the same method as

Pedlosky (1984), Theiss (2004) formulated a 1.5-layer quasi-geostrophic model with

a latitude-dependent deformation radius. Here we also use the method and scaling

in Pedlosky (1984) and formulate a 1.5-layer model suitable for our study purpose.

For the convenience of the reader, we provide an informal derivation next. A rigorous

derivation is in the appendix (Section 4.7.1).

First, split the velocity into the gyre part (U) and mesoscale part (u′), and split

the layer thickness into the gyre part (H) and mesoscale part (h′). The gyre part of the

fields vary on a long scale (X, T ) and the mesoscale part vary on a short scale (x, t).

Assuming U and u′ are of the same order of magnitude as in Pedlosky (1984), the

relative vorticity is dominated by the mesoscale part and thus the potential vorticity
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for the 1.5-layer model is

q ≈ f + ζ ′

H + h′
, (4.2)

with f denoting the Coriolis parameter and ζ ′ the relative voticity from mesoscale

motions.

Second, assuming that the gyre-scale and mesoscale motions are geostrophic

U = k̂ × 1

f
∇X(g′H), u′ = k̂ × 1

f
∇x(g

′h), (4.3)

where g′ represents the reduced gravity. Since U ∼ u′ and ∇X � ∇x, h
′ � H. Then,

the potential vorticity in Eq. 4.2 can be expanded into the following form

q ≈ f

H
+

1

H
(ζ ′ − f h

′

H
). (4.4)

For the second and third term of q in Eq. 4.4 to be on the same order, the short scale

should be on the order of deformation radius (
√
g′H/f).

Then we get the balance equation for potential vorticity defined in Eq. 4.4:

(
∂

∂T
+U ·∇X)

f

H
+

1

H
[(
∂

∂t
+(U+u′) ·∇x)(ζ

′−f h
′

H
)+u′ ·(H∇X

f

H
)] = FX+Fx, (4.5)

with FX representing the gyre-scale forcing, Fx the mesoscale forcing, and ∇ the

horizontal gradient vector ∂
∂x
î+ ∂

∂y
ĵ.

The model for gyre-scale motions and the model for the mesoscale motions can

be obtained from Eq. 4.5. In Eq. 4.5, the terms independent of (x, t) should balance

and thus other terms should also balance. Then we get the model for the gyre-scale

motions

(
∂

∂T
+ U · ∇X)

f

H
= FX (4.6)
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and the model for the mesoscale motions

[
∂

∂t
+ (U + u′) · ∇x](ζ

′ − f h
′

H
) + u′ · (H∇X

f

H
) = HFx. (4.7)

Eq. 4.7 is the idealized model we aim to get: the effect of the subtropical gyre is

explicitly included in the model through U and H. Compared to the original Rhines

jet model in Rhines (1975, 1979), which is a barotropic (one-layer) quasi-geostrophic

model on a beta plane, our striation model is different in several aspects: the new

model is a 1.5-layer model; the background potential vorticity is influenced by the

gyre-scale layer thickness H and thus can be non-zonal; potential vorticity is advected

by both the mesoscale motions (u′) and the gyre-scale motions (U).

4.4.2 Experiment setup

Here we solve the idealized model to investigate striations. For simplicity purpose,

we further assume that the large-scale gyre flow is steady and has no slow temporal

variations, such as gyre shifts. However, we do not wish to give the impression that

the temporal variability of the gyre flow is not important for striations. Section 4.4.5

discusses more about the limitations and advantages of this idealized model. The

numerical model is

(
∂

∂t
+ U

∂

∂x
+ V

∂

∂y
)q̃ + J(ψ, q̃) + J(ψ,Q) = F(x , y , t)− r · q̃, (4.8)

with ψ denoting the eddy stream function and q̃ = ∇2ψ − F1ψ denoting potential

vorticity from the eddy motions. J is the Jacobian operator satisfying

J(a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
.
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U and V are the zonal and meridional velocity on the gyre-scale. F1 is the squared

inverse of the deformation radius. Q = βy + F1(Uy − V x) represents the gyre-scale

potential vorticity. Eddies in this idealized model are embedded in the gyre-scale flow

and gyre-scale potential vorticity. F(x , y , t) is the external forcing. r is the friction

coefficient.

The numerical code is a descendant of the two-layer channel model written by G.

Flierl and used in several previous studies (e.g. Kaspi and Flierl, 2007; Poulin et al.,

2010). The major changes made to the code are adding the spatially-varying gyre flow

and reducing it to the 1.5-layer form. The western/eastern boundaries are two walls

with no normal flow boundary condition and the model is periodic in the meridional

direction. We choose to use the channel model instead of a basin model, as zonal

boundary layers do not exist at the northern/southern boundaries of the channel and

thus their effects on striations can be excluded. The advection scheme is flux-limiter

on a C-grid. β is 2× 10−11 s−1m−1 and r is 3.5× 10−8 s−1. The deformation radius

Rd is 50 km. The domain size (8960 km × 5120 km) is approximately the size of

the North Pacific. Experiments are carried out at 256× 256 grid points and thus the

spatial resolution is roughly half of the deformation radius. The temporal resolution

is 1/8 day.

The imposed mean flow (U, V ) is a steady double gyre (Figure 4-10) and its

corresponding stream function is

ΨI = −1/(ρβ0D)curl(−→τ )(W − x)(1− e−x/δS), (4.9)

where ρ is density, β0 is the planetary potential vorticity gradient, D is water depth,

−→τ is the wind stress, W the width of the basin and δS the western boundary layer

thickness. curl(−→τ ) is a sine function (Figure 4-10), and it has similar magnitude and
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meridional structure to the observed wind stress curl in the North Pacific (Risien and

Chelton, 2008).

Figure 4-10: Left panel: the wind stress curl (10−6 Nm−3) that generates the large-
scale gyre flow on the right panel. Right panel: the stream function ΨI in 105 m2/s
from Eq. 4.9. To compute ΨI , I used these parameters: D = 700 m, β0 = 2 ×
10−11 s−1m−1, ρ = 1025 kg/m3, δS = 500 km, and W = 8960 km. The x and y axes
in the right panel are in km.

As in Maltrud and Vallis (1991), we choose to use the random Markovian formu-

lation for the external forcing F(x , y , t):

Fn =
√

1 − R2 · An + R·Fn−1 , (4.10)

where Fn−1 and Fn are respectively the forcing at time steps n− 1 and n. R is the

memory coefficient. The forcing is white noise if R = 0 and it is steady if R = 1

(Maltrud and Vallis, 1991). The decorrelation time scale of the observed surface

winds in the North Pacific is on the order of a few days (Schlax et al., 2001); thus

we choose R = 0.7, which corresponds to a decorrelation time of 8 times steps (one

day). An(x, y) is random forcing at time step n with a narrow-banded spectrum:

An = Ã · F−1[e−0.01(|K|2−K2
0 )2+i·θ(k,l)]/max(F−1[e−0.01(|K|2−K2

0 )2+i·θ(k,l)]), (4.11)
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where F−1 is the inverse Fourier transform operator, θ(k, l) is random numbers

representing the random phase at time step n, and Ã is the forcing amplitude.

K =
√
k2 + l2, where k is the zonal wavenumber and l is the meridional wavenumber.

K2
0 = 0.0076 cycle2/grid2.

Though the ocean system is nonlinear in most mid- and high latitude regions (Tul-

loch et al., 2009; Wortham, 2012), linear theories are still useful in interpreting many

ocean features, such as eddy length scales and time-mean circulation (Tulloch et al.,

2011; Wunsch, 2011). Thus, here we explore both the weakly-forced and strongly-

forced solutions of the idealized model. Two experiments are carried out: Exp1 and

Exp2. In Exp1, the external forcing has weak amplitude (Ã = 2.7× 10−12 s−2); thus,

the nonlinear term J(ψ, q̃) is much smaller than the linear terms in Eq. 4.8 and the

flow field is approximately linear. This experiment is used to test the validity of the

linear analytical solution we formulated next (Eq. 4.14). In Exp2, the external forc-

ing has strong amplitude (Ã = 4.3×10−11 s−2). The nonlinear term is of comparable

magnitude to the linear terms and this experiment aims to represent the mid-latitude

subtropical gyre regions in the ocean. After reaching statistical equilibration, the

experiments continue running for roughly 120 years. This 120-year output is used for

our analysis. The Central Region and the East Region, shown in Figure 4-11, corre-

spond to the the CNP and ENP regions in the ECCO2 model. The Central Region

represents the case with the zonal gyre flow and the East Region represents the case

with the non-zonal gyre flow (Figure 4-11). We will focus on studying striations in

these two regions due to the reasons stated in Section 4.2.

As the external forcing is narrow-banded, the large values on the wavenumber

spectrum at some frequency ranges are not clustered together as those in the realistic

context. Thus, the criterion to determine the separation frequency ΩS in the realistic

contexts in the last section does not apply here. Here we choose ΩS = 1/5000
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cycle/day. 5000 day is roughly 10% of the time length of our numerical output and

it is on the same order of magnitude as the time scale for long Rossby waves to cross

the model basin. Our striation interpretation presented next is not sensitive to the

specific value of ΩS. However, the percentage of eddies associated with striations

is sensitive to the choice of ΩS. On the other hand, the percentage estimate is less

important a problem than that in realistic contexts.

4.4.3 Striations in Exp1 and the linear theory

Striations

Striations exist in Exp1, which is weakly-forced, and are qualitatively similar to

those in the ECCO2 state estimate (Figure 4-11). In the linear system, there is

negligible energy transfer across spatial and temporal scales in the regions away from

the western boundary. Thus, the wavenumber spectrum of the eddy stream function

ψ(x, y, t) has similar structure to that of the external forcing (not shown) and ψ(x, y, t)

is also dominated by small scales. The striation width in the zonal velocity field is

roughly the same as the dominant spatial scale of the external forcing. Similar to

those in the ENP and CNP regions (Figure 4-1), striations here are non-zonal in the

East Region and are quasi-zonal in the Central Region.

Interpret striations using the analytical spectrum

Through analyzing striations in the frequency-wavenumber space, we find that

striations are essentially quasi-stationary linear Rossby waves in the linear limit of

our idealized model. Assuming the gyre flow U and V are constants in the Central

and East Regions and ignoring the nonlinear term J(ψ, q), we can get the analytical
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Figure 4-11: Snapshots of the time-dependent external forcing F(x , y , t) (upper,
10−12 s−2), eddy stream function ψ (middle, m2/s) and the part of zonal eddy veloc-
ity with frequency lower than ΩS (lower, 10−3 m/s) in the subtropical gyre in Exp1.
Black boxes denote the Central Region and the East Region, corresponding to the
CNP and ENP regions in the North Pacific. Black contours are those of ΨI .

solution to Eq. 4.8. The modal forms of ψ(x, y, t) and F(x , y , t) are

ψ(x, y, t) =

∫∫∫
ψ̂(k, l, ω)ei(kx+ly−ωt)dkdldω (4.12)

and

F(x , y , t) =

∫∫∫
F̂(k , l , ω)e i(kx+ly−ωt)dkdldω. (4.13)
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If we substitute Eqs. 4.12 and 4.13 into Eq. 4.8, we obtain

ψ̂(k, l, ω) =
F̂(k, l, ω)/i

(k2 + l2 + F1)[ω − ΩRossby + i · r]

with

ΩRossby = Uk + V l − β1k − β2l

k2 + l2 + F1

representing the Rossby wave frequency, k the zonal wavenumber, l the meridional

wavenumber, and ω the frequency. k, l and ω are all real numbers. Thus, the

amplitude of |ψ̂(k, l, ω)| depends on the forcing amplitude |F̂(k, l, ω)|, the friction

coefficient r and |ω − ΩRossby|. In the inviscid or small-friction case, resonance occurs

at the wavenumbers and frequencies satisfying the Rossby wave dispersion relation

(ω = ΩRossby). As long as the forcing spectrum is smooth near ΩRossby, which is

generally true in nature, the energy at ΩRossby is the largest and the eddy field can

be viewed as a set of linear Rossby waves. Therefore, striations in this case are a set

of quasi-stationary linear Rossby waves.

The striation direction is perpendicular to
−→
k S, which refers to the dominant

wavenumber of striations as defined in Section 4.3.1.
−→
k S roughly satisfies

|ψ̂(kS, lS, 0)| = max[|ψ̂(k, l, 0)|]

with

|ψ̂(k, l, 0)| = |F̂(k, l, 0)|
(k2 + l2 + F1)

√
(0− ΩRossby)2

(4.14)

in the inviscid case. Numerical solution, shown in Figure 4-12, is consistent with

the analytical solution (Eq. 4.14): |ψ̂(k, l, 0)| has large amplitude both on the circle,

where |F̂(k, l, 0)| is large, and on the curve ΩRossby = 0 in the k-l space. The maximum
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value of |ψ̂(k, l, 0)| occurs at the intersection point between the circle and the curve

ΩRossby = 0, as the numerator (denominator) of Eq. 4.14 reaches the maximum

(minimum) at this point. Thus,
−→
k S occurs at this intersection point.

The gyre flow (U, V ) influences the location of the intersection point and thus the

striation direction through influencing the curve ΩRossby = 0. In the East Region,

the curve ΩRossby = 0 deviates from k = 0, as V 6= 0; thus kS 6= 0 and striations are

non-zonal (Figures 4-11 and 4-12). In the Central Region, the curve ΩRossby = 0 is

close to k = 0, as V ≈ 0; thus kS ≈ 0 and striations are quasi-zonal (Figures 4-11 and

4-12). The caveat is that, besides the zero Rossby wave frequency curve, |F̂(k, l, ω)|

also influences the striation direction (Eq. 4.14).

4.4.4 Striations in Exp2 and the eddy-propagation mecha-

nism

Striations

Figure 4-13 shows snapshots of eddies and striations in Exp2, which represents

the nonlinear case. Compared to eddies in Exp1 (Figure 4-11), the spatial scale

of eddies here is larger due to inverse cascade. In the nonlinear barotropic system

on a beta plane, the deformation radius is infinite and Rhines jets are generated

(Rhines 1975). The formation of Rhines jets can be suppressed in the nonlinear 1.5-

layer quasi-geostrophic system because of the finite deformation radius (Okuno and

Masuda, 2003). In this experiment, the deformation radius is 50 km, eddies remain

roughly isotropic and thus Rhines jets are not relevant to the striation origin here.

Striations also exist in Exp2, but they are wider and more zonal than those in

Exp1 (Figure 4-13). The location of the bands is time dependent, and the striation

directions in the East and Central Regions are qualitatively similar to those from
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Figure 4-12: Upper panel: normalized wavenumber spectra of the external forcing at
zero frequency in the East (left) and Central (right) Regions, that is, |F̂(k, l, ω)|2 at
ω = 0; lower panel: the normalized wavenumber spectra of ψ with frequency lower
than ΩS in the East (left) and Central (right) Regions in Exp1. White contours are
those of ΩRossby = 0 and black dots denote (kS, lS). To calculate the Rossby wave
frequency, the imposed gyre flow in the two regions is chosen to be the spatial average
of the imposed gyre flow in the two regions. Colorbars are on the logarithmic scale.
The difference of the region size and thus the wavenumber resolution between the two
regions contribute to the slight difference of the forcing spectrum.

the ECCO2 state estimate (Figure 4-1). We diagnosed the eddy propagation veloc-

ity using the correlation method described in the appendix and find that striations

roughly align with the eddy propagation direction, as in the ECCO2 state estimate

(Figure 4-13). The eddy propagation direction is influenced by the subtropical gyre;

for example, the propagation direction in the East Region deviates from the west
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Figure 4-13: Snapshots of the eddy stream function ψ (upper, m2/s) and the part
of zonal velocity with frequency lower than ΩS (lower, 10−3 m/s) in Exp2. Black
lines denote the subtropical gyre. Black vectors denote the eddy propagation velocity
from the correlation method. Dashed green lines denote the direction of the region-
ally averaged eddy propagation velocity and solid green lines denote the dominant
wavenumber identified from the wavenumber spectra of low-frequency zonal velocity
in the two regions.

direction due to the southward advection of the gyre flow.

Model spectrum and eddy-propagation mechanism

To interpret why striations align with the eddy propagation direction, we study

striations in the frequency-wavenumber space. As in Exp1, the key is to get the

spectrum of the eddy stream function. As one cannot get an exact analytical solution

to the nonlinear equation, here we formulate a simple model for the spectrum.

Motivated by the fact that striations align with the eddy propagation direction, we

consider an idealized propagating eddy field. Many processes in the ocean can induce

eddy variation, such as eddy propagation and eddy-eddy interaction. We assume that
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eddies in the idealized field propagate at a constant velocity

−→
C eddy = Cx

−→
i + Cy

−→
j , (4.15)

with Cx denoting the zonal component of the eddy propagation velocity and Cy

denoting its meridional component. We also assume that the variation of the idealized

eddy field due to processes other than eddy propagation occurs on the slow time scale

εt, whereas its variation due to eddy propagation occurs on the fast time scale t. ε

is a parameter with small magnitude. Supposing we model the idealized eddy field

described above as

ψ(x, y, t) = φ(x− Cxt, y − Cyt, εt), (4.16)

we obtain

ψ̂(k, l, ω) =

∫∫∫
ψ(x, y, t)e−i(kx+ly−ωt)dxdydt

=

∫∫∫
φ(x− Cxt, y − Cyt, εt)e−i(kx+ly−ωt)dxdydt

=
1

ε

∫∫∫
φ(x′, y′, T̃ )e−i[kx

′+ly′−ΩT̃ ]dx′dy′dT̃ , (4.17)

with zonal wavenumber k, meridional wavenumber l and frequency ω, x′ = x− Cxt,

y′ = y − Cyt, T̃ = εt and Ω = (ω − kCx − lCy)/ε. From Eq. 4.17, we obtain the

spectrum for the idealized eddy field (i.e. Eq. 4.16):

|ψ̂(k, l, ω)|2 =
1

ε2
|φ̂(k, l,Ω)|2 =

1

ε2
|φ̂(k, l, (ω − kCx − lCy)/ε)|2, (4.18)

where

φ̂(k, l,Ω) =

∫∫∫
φ(x, y, t)e−i(kx+ly−Ωt)dxdydt. (4.19)

116



Now we interpret striations in the idealized eddy field using our model spectrum

(Eq. 4.18). In the non-propagating case (i.e. |
−→
C eddy| = 0), the model spectrum is

reduced to

|φ̂(k, l, ω/ε)|2/ε2. (4.20)

Energy tends to cascade to low frequencies (e.g. Arbic et al., 2012) and the spectra in

the ocean tend to be red (e.g. Wortham, 2012); therefore it is probably reasonable to

assume that the model spectrum for the non-propagating case (Eq. 4.20) has large

values in the low-frequency range [−ω0, ω0], not in the high-frequency range [ω0,+∞]

and [−∞, ω0]. Also note that the spectrum of propagating eddies (i.e. Eq. 4.18) is

a shift of the spectrum of non-propagating eddies (i.e. Eq. 4.20) in the frequency

domain. Thus large values on the spectrum of propagating eddies mostly occur in

the range

−ω0 6 (ω − kCx − lCy)/ε 6 ω0,

that is,

−εω0 + (kCx + lCy) 6 ω 6 εω0 + (kCx + lCy). (4.21)

Noting that ε ≈ 0, Eq. 4.21 is reduced to

ω − kCx − lCy ≈ 0. (4.22)

In other words, large values of the frequency-wavenumber spectrum occur on the

non-dispersive line:4

ω ≈ kCx + lCy =
−→
C eddy ·

−→
k = |

−→
C eddy|k0. (4.23)

4“Non-dispersive line” here refers to the straight line, where the large values of the ω−k0 spectrum
are concentrated on. Previous studies mostly focus on the non-dispersive lines in the ω−k spectrum
(e.g. Wortham, 2012).
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We define k0 as the wavenumber along the eddy propagation direction and l0 the

wavenumber perpendicular to the eddy propagation direction. Since striations are

bands in low-frequency motions, the dominant wavenumber of striations (
−→
k S) can be

derived from Eq. 4.23:

ωS =
−→
C eddy ·

−→
k S = |

−→
C eddy|k0S ≈ 0, (4.24)

where ωS is the striation frequency and k0S is the component of
−→
k S along the eddy

propagation direction. Eq. 4.24 further leads to

−→
C eddy ⊥

−→
k S and k0S = 0. (4.25)

Thus, striations in the idealized eddy field, with constant propagating speed and

ε ≈ 0, align with the eddy-propagation direction.

Here we summarize our striation interpretation based on the spectrum of the

idealized eddy field. These idealized eddies propagate at a constant speed
−→
C eddy,

and their variation due to processes other than eddy propagation (e.g. cascades)

occurs on a time scale much slower than the eddy propagation time scale (i.e. ε ≈

0), that is, the eddy field is quasi-steady in the coordinates moving at the velocity

−→
C eddy. Large values of the spectrum of this idealized eddy field mostly occur on

the non-dispersive line ω = |
−→
C eddy|k0. Thus, though these eddies are composed

of motions with a wide range of wavenumbers, only motions with k0 ≈ 0 are low-

frequency motions. Note that k0 is the wavenumber along the eddy propagation

direction. Therefore, if we further assume the dominant l0 for low-frequency motions

is finite, low-frequency eddies are dominated by structures elongated along the eddy

propagation direction. We provide a diagram to further illustrate this interpretation
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(Figure 4-14). To conclude, from the kinematic and spectral perspective, striations

in this idealized scenario align with the eddy-propagation direction and they arise

as a temporal averaging effect of eddies propagating at a fixed speed. We term this

striation interpretation “eddy-propagation mechanism”.

Figure 4-14: This illustrates our striation interpretation based on the model spectrum
(Eq. 4.18). (a) In the flow snapshot, eddies include motions over a wide range
of wavenumbers and we cannot see banded structures. (b) In the low frequency
eddy field, the flow is dominated by motions with wavenumbers perpendicular to
the eddy propagation direction; thus elongated structures (striations) along the eddy
propagation direction are visible. Blue curves in (a) denote eddies; blue curves in
(b) denote striations; solid red arrows denote the eddy propagation direction and the
dashed red arrow denotes the wavenumber of striations.

An explicit example of the eddy-propagation mechanism

The eddy-propagation mechanism is introduced using an abstract function (Eq.

4.16) and its model spectrum (Eq. 4.18). Here we further explain the mechanism

and illustrate its relevance using a specific example. Motivated by the ubiquity of

vortices in the eddy5 field in the ocean (e.g. Chelton et al., 2011), we examine a highly

idealized eddy field, which only contains a single Gaussian vortex. Its stream function

is

ψ(x, y, t) = Ae−
(t−t0)

2

2T2 · e−
[x−x0−(t−t0)Cx]

2

2L2 · e−
[y−y0−(t−t0)Cy ]

2

2L2 , (4.26)

5Note that eddy in our thesis refer to large-scale and mesoscale subinertial variability (Chapter
1).
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with A denoting its amplitude, T the vortex life time, L the vortex length scale, and

−→
C eddy = Cx

−→
i + Cy

−→
j the vortex propagating velocity. (x0, y0) is its center position

at time t0. The model spectrum for this vortex is

|ψ̂(k, l, ω)|2 = |A|2e−k2L2−l2L2−(ω−kCx−lCy)2T 2

. (4.27)

Next we consider a vortex with typical mid-latitude parameters from Chelton et al.

(2011). The vortex length scale L is 50 km, the vortex life time T is 32 weeks, and

it propagates westward with the speed 5 cm/s. Note that T is much larger than the

vortex propagation time scale L/
−→
C eddy (2 weeks); thus ε for this vortex is small, as

our idealized eddy field (i.e. Eq. 4.16).

We obtain the two-dimensional spectra for this mid-latitude vortex from Eq. 4.27

and find that the spectra for this vortex have similar properties to the abstract model

spectrum (Eq. 4.18). Results are shown in Figure 4-15. The ω−k0 spectrum has large

values on the non-dispersive line. As ω → 0, k0 for the large values on the spectrum

approaches zero, but l0 for most large values on the spectrum remains finite (Figure

4-15). Consistently, the wavenumber spectrum for the zero frequency motions has a

shape of a narrow optimum ellipse with its minor axis along the k0 direction. Thus,

the low-frequency component of this propagating single vortex is elongated along the

k0 direction, as shown in Figure 4-16.

One can extend the above example into a more general case with multiple random

vortices. The multiple-vortex case is consistent with the scenario presented in Schlax

and Chelton (2008). They found that the temporal average of westward propagating

vortices has zonal bands and concluded that striations can be eddy artifacts. Both our

eddy-propagation mechanism and their scenario suggest that the temporal average of

propagating motions has banded structures. On the other hand, our work is different
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Figure 4-15: Upper panel: normalized ω − k0 spectrum and ω − l0 spectrum of ψ
for a single vortex; lower panel: normalized k0 − l0 spectrum for the zero frequency
component of ψ of the single vortex. k0 (l0) is the wavenumber along (perpendicular
to) the eddy propagation direction, which is zonal in this case.

Figure 4-16: The temporal average of the normalized stream function of the single
vortex (ψ/A) over 1000 days starting from t = t0. The red circle denotes the initial
position of the vortex and the red dashed line is the vortex trajectory.
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from their work in some aspects: (1) we provide an interpretation of these bands using

model spectrum (Eq. 4.18); (2) we find that ε ≈ 0 is a prerequisite for the existence

of these banded structures in the low-frequency eddy field; (3) our striation definition

in Section 4.3 suggests that these bands are part of the propagating eddy field. More

discussion about the relation between our work and their work is in Section 4.4.5.

Relevance of the eddy-propagation mechanism to Exp2

The striation interpretation discussed above is relevant to Exp2. As the model

spectrum of the idealized propagating eddies (Eq. 4.18) predicts, striations in Exp2

align with eddy propagation direction (Figure 4-13) and the spectrum indeed has most

energy along the non-dispersive line in the ω − k0 space (Figure 4-17). As ω → 0,

Figure 4-17: Normalized ω − k0 spectrum and ω − l0 spectrum of ψ in the Central
Region (upper) and East Region (lower). Here k0 (l0) is the wavenumber along
(perpendicular to) the direction of the regionally averaged eddy propagation velocity.
The black line is ω =

√
C2
x + C2

yk0 in the corresponding region.
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k0 → 0 and l0 is finite; thus low-frequency eddies are elongated in the k0 direction.

Note that k0 is the wavenumber along the eddy-propagation direction and l0 is the

wavenumber perpendicular to the eddy-propagation direction. The non-dispersive

line has also been identified by Early et al. (2011) in the zonal wavenumber-frequency

spectrum of sea surface height in a nonlinear 1.5-layer model seeded with many eddies.

Figure 4-18 illustrates how the imposed subtropical gyre influences the striations

in Exp2. The energy source of eddies is small-scale random potential vorticity forcing

and eddies have energy over a wide range of spatial scales as a result of eddy-eddy

interaction. Striations exist in both the Central and East Regions, align with the eddy

propagation direction, and arise as a temporal averaging effect of eddies propagating

in the fixed direction. Eddies are advected by the subtropical gyre and therefore

propagate southwestward (westward) in the East (Central) Region. Thus, striations

are non-zonal (zonal) in the East (Central) Region. However, more studies are needed

to quantitatively determine the role of the gyre flow on the eddy-propagation velocity

in both the idealized model and realistic contexts. This is relevant to the open

question discussed in Wortham (2012): what sets the slope of the non-dispersive line

(dominant phase speed)?

4.4.5 Discussion

Here we discuss the limitations and advantages of the idealized model, and point

out some remaining challenging puzzles relevant to the above interpretations. The

discussion here is incomplete and any further studies will be very useful.

Limitations and advantages of the model

The idealized model is limited in many aspects. The radiating instabilty of the

eastern boundary current can induce tilted banded structures in the flow snapshot
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Figure 4-18: A diagram illustrates the eddy-propagation mechanism and the effect of
the subtropical gyre. Magenta circles and curves denote the eddy field. Red arrows
denote the direction of the gyre flow, dashed blue arrows denote the eddy propagation
direction if there is no subtropical gyre and the solid blue arrow denotes the eddy
propagation direction if there is a subtropical gyre.

in the ENP region and the localized wind stress curl forcing at the Hawaiian Island

can induce the zonal currents in the north CNP region via the beta plume effect

(Wang et al., 2012; Stommel et al., 1958; Jia et al., 2011). However, these processes

do not exist in the idealized model. Also, this idealized model only has one equiva-

lent barotropic mode, in which the lower layer is quiescent, but striations have both

barotropic and baroclinic components. The analysis of the ECCO2 model output

and the mooring data suggests that both the first baroclinic mode and the barotropic

mode contain significant amount of energy and these two modes are coupled (Wun-

sch, 1997; Wortham, 2012). Furthermore, baroclinic instability process and eddies’

feedback on the gyre flow are not included. We choose to ignore these additional

dynamical factors in oder to isolate and focus on the gyre effect. However, we do not

intend to claim that these factors are not important for the striation dynamics.

On the other hand, it is easier to identify the physics using a simple model, as it

focuses on the limited key factors (e.g. mean flow’s impact on striations). The 1.5-

layer model has been widely used by the community to explore eddy characteristics
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and eddy mixing (e.g. Early et al., 2011; Cushman-Roisin et al., 1990; McWilliams and

Flierl, 1979; Jacob et al., 2002; Radko and Stern, 1999; Klocher et al., 2012a). Though

greatly simplified, the transport properties/zonal propagation speeds of the nonlinear

vortices and the non-dispersive line in the ω − k spectrum in the nonlinear 1.5-layer

model resemble those from the altimetry (Early et al., 2011). The characteristics of

striations in our 1.5-layer model, such as the direction, are qualitatively similar to

those in the double-gyre from idealized two-layer basin models (e.g. O’Reilly et al.,

2012) and to those in the ENP and CNP regions in the ECCO2 model (Figures 4-1

and 4-2). Thus, the 1.5-layer model is a useful tool for the proposed problem as a

simple starting point.

Wave mechanism vs. eddy-propagation mechanism

Analysis in Section 4.4.3 and Section 4.4.4 suggests two striation interpretations:

quasi-stationary linear Rossby waves or eddy-propagation mechanism. However, we

do not intend to claim that striations from the eddy-propagation mechanism cannot

behave like waves. Here are the reasons. At the ocean surface, the eddy field is

dominated by waves equatorward of 30o (Tulloch et al., 2009), but non-dispersive

lines on the spectra also exist in some regions equatorward of 30o (Wortham, 2012).

This suggests that striations from the eddy-propagation mechanism might behave

like waves in some oceanic regions. Thus, the two striation interpretations (wave

mechanism and eddy-propagation mechanism) are probably not completely separable.

Previous studies suggest that, in the nonlinear 1.5-layer quasi-geostrophic system,

the parameter ŨF1/|∇Q| may be useful in assessing whether part of the eddy field

behaves like waves. F1 and Q are defined in Section 4.4.2 and Ũ is the eddy velocity

scale. Penny et al. (2010) provide a more detailed derivation and interpretation than

our review below, which readers can refer to (they are not the original source for this

parameter though). In a nonlinear barotropic quasi-geostrophic system on a beta
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plane, the deformation radius is infinite and the separation wavenumber between

wave-like and turbulence-like motions is

kR =

√
β

Ũ
|cosα|,

with α denoting the angle between the wave propagation direction and the east, and β

denoting the planetary potential density gradient. Motions with wavenumbers smaller

than kR behave like waves (Rhines, 1975; Penny et al., 2010). In the nonlinear system

with finite deformation radius and the mean gyre-scale flow, as in our idealized model,

the separation wavenumber is kC , which is a modified version of kR:

kC =

√
|∇Q|
Ũ
|cosα| − F1

(e.g. Okuno and Masuda, 2003). If ŨF1/|∇Q| > 1, kC is imaginary and eddy motions

behave like turbulence in the entire wavenumber space; if ŨF1/|∇Q| < 1, kC is real

and eddy motions with wavenumbers smaller than kC is wave-like. This parameter

has been used to assess the nonlinearity of vortices (e.g. Chelton et al., 2011) and to

examine storms and vortices in gas planetary atmospheres (e.g. Penny et al., 2010;

Theiss, 2006). Using this argument, Tulloch et al. (2009) found that the eddy field is

dominated by waves equatorward of 30o from the altimetric observations.

Though the parameter ŨF1/|∇Q| has been widely applied in various contexts, to

our best knowledge, few studies exist rigorously testing the validity of using this pa-

rameter to separate the wave motions and turbulence motions. This separation issue

is still an ongoing research topic of the oceanic community. Thus, it remains challeng-

ing to fully clarify the relation between the wave mechanism and the eddy-propagation

mechanism about striations in the 1.5-layer model in a solid and convincing way.
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Comparison with the vortex propagation mechanism

Schlax and Chelton (2008) found that the temporal average of vortices propagat-

ing in a fixed direction can produce banded features along the vortex propagation

direction. The vortex example in Section 4.4.4 shows how to interpret bands in their

work using the spectrum argument. Striations in their work are essentially the low-

frequency component of these propagating vortices; while in our Exp2, striations

are essentially the low-frequency component of the propagating eddies. Note that

the eddy field in the ocean includes both vortices and the background field, though

more than 40% of eddy kinetic energy is in vortices with life time longer than 4

weeks (Chelton et al., 2011). A natural question is whether the low frequency part

of the background field has banded structures. And if it does, how much is their

contribution? However, to our best knowledge, theories about the contribution of the

background field to the spectrum shape do not exist. The separation of the eddy field

into the vortex part and the background part is not trivial. Also the factors control-

ling the ratio between energy in the background field and energy in vortices are rarely

explored, though there are explorations about the emergence and disappearance of

coherent structures (e.g. Maltrud and Vallis, 1991; Polvani et al., 1994). Studies in

this aspect are useful in further understanding striations’ origin.

4.5 Applications

Here we discuss some applications of our results in this chapter. First, the large

percentage of zonal velocity variability is associated with striations; thus, striations

may have non-negligible contributions to tracer transport, mixing and the energy

cycle. These contributions can probably be quantified using our striation definition

in Section 4.3.1 and our diagnostic frameworks in the next chapter. Second, we infer

127



that the eddy-propagation mechanism may be relevant to realistic striations in the

interior ocean between a few degrees off the equator and 45 degrees.

4.5.1 Tracer transport and energy pathway

The transport of tracers, such as temperature, salinity, pollutant, sediments and

larvae, is important to climate variability, coastal environment, pollutant pathway

prediction etc. Many studies exist about the contribution of eddies and the mean

flow to tracer transport and eddy diffusivity (e.g. Klocher et al., 2012a; Rypina et al.,

2012; Shuckburgh et al., 2009). Striations are coherent in the quasi-zonal direction

and can cause shear dispersion and thus anisotropic transport. Previous studies found

that the tracer transport in the ocean is indeed anisotropic (e.g. Kamenkovich et al.,

2009a; Rypina et al., 2012). However, the contribution of striations in the time-mean

circulation to the anisotropic transport is small in the North Atlantic (Kamenkovich

et al., 2009a).

We suspect the contribution of striations in the eddy field to the anisotropic trans-

port can be significant, as striations account for a non-negligible percentage of the

zonal velocity variability in the ENP and CNP regions. In analogy, the role of stri-

ations in the global energy budget is also likely to be important. Our inferences

about the significant consequences of striations in the aspect of energetics and tracer

spreading are to be tested. Using the criterion presented in Section 4.3.1, one can

separate striations from high-frequency eddies and then quantitatively estimate the

contribution of total striations to tracer transport and the energy pathway. Chapter

5 moves forward in this direction by presenting and testing the diagnostic frameworks

about the role of striations in tracer mixing and energy budgets.
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4.5.2 Interpret striations in ECCO2 model

On the applicability of eddy-propagation mechanism

One can identify the regions where the eddy-propagation mechanism may be rele-

vant from the spectrum in observations and the ECCO2 model. If the non-dispersive

line exists in the spectrum in an ocean region, the eddy-propagation mechanism pro-

posed in Exp2 is probably relevant there (Section 4.4.4). Figure 4-19 summarizes the

regions where the frequency-zonal wavenumber spectra of sea surface height (ω − k

spectrum) have been presented in previous studies (e.g. Ferrari and Wunsch, 2010;

Wortham, 2012). Non-dispersive lines exist in the solid black boxes and do not exist

along the white line and the dashed black boxes.

The eddy-propagation mechanism may be relevant in the ocean interior between

a few degrees off the equator and 45 degrees off the equator, as Wortham (2012)

proposed that the frequency-zonal wavenumber spectra has non-dispersive lines in

these regions, through analyzing the sea surface height data from the altimetry and

the ECCO2 model. The CNP and ENP regions are within this range. The rough

consistency between the eddy trajectories and the striation direction in the CNP

region and the southern part of the ENP region further suggests the relevance of the

eddy propagation mechanism there (Figure 4-2).

The eddy-propagation mechanism probably does not apply in the western bound-

ary current and its extension regions, the subpolar gyres, and the Southern Ocean.

This is because the non-dispersive lines in the ω − k spectra are absent in these

regions (Wortham, 2012). However, observations show that striations also exist in

these regions (Figure 1 in Maximenko et al., 2008). A prerequisite for our mechanism

is that, in a domain several times larger than the striation width, there is a domi-

nant eddy propagation direction and the eddy propagation speed should be roughly
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Figure 4-19: The climatological mean sea surface height in m from the altimetry
(color). Black boxes denote the off-equatorial regions where the ω − k spectra of
the observed sea surface height from the altimetry are presented in Wortham (2012).
Non-dispersive lines exist in the ω − k spectrum of sea surface height in the solid
black boxes and do not exist in the dashed black boxes. It also does not exist along
the white dashed line in the Southern Ocean (Ferrari and Wunsch 2010). Here ω is
frequency and k is zonal wavenumber.

constant. In the Gulf Stream and Kuroshio Extension regions, both westward and

eastward eddy propagation dominates (Wortham, 2012); in the Southern Ocean, the

eddy propagation speed is highly inhomogeneous due to the small-scale topography

steering and jet meandering, etc. (Fu, 2009). These might explain the breakdown of

our mechanism in these regions.

The above inference is neither definitive nor complete. We can further examine

the relevance of the eddy-propagation mechanism to the ECCO2 state estimate in

several ways.

a) We find, through analysis of Exp2, that non-dispersive lines exist in the ω − k0

spectrum, where k0 is the wavenumer along the eddy-propagation direction. In

some regions, eddy propagate velocity has a non-zonal component (Fu, 2009).

Thus, one can identify the regions where ω − k0 spectra have non-dispersive

lines in the ECCO2 model. Compared to the ω − k spectra, the ω − k0 spectra

are more proper to test the relevance of the eddy-propagation mechanism. One
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can also characterize striations at different depth levels and vertical modes,

examine whether the non-dispersive lines exist in the ω− k0 spectra of motions

at different depth levels and vertical modes.

b) One can compare the eddy-propagation direction from the correlation method

with the striation direction in the global ocean at each depth. If the eddy-

propagation direction is roughly homogeneous in a region and roughly aligns

with the striation direction, the eddy-propagation mechanism may be relevant.

c) In Exp2, the gyre flow influences the direction of eddy propagation and stria-

tions. One might quantify the effect of the subtropical gyre flow on the striation

formation by carrying our a parallel experiment to the ECCO2 state estimate.

This experiment is only forced by small-scale wind forcing. Comparison of this

experiment with the ECCO2 state estimate can illustrate how the gyre flow

influences the striation patterns. One caveat is that the large-scale wind not

only influences the eddy propagation direction, but also influences the eddy

generation mechanism and the whole oceanic energy cycle. Because the gyre

generated from the large-scale wind stores the mean available potential energy

which is an important energy source for baroclinic instability.

On the applicability of the linear theory

Though the ocean is never exactly linear, our linear theory may still be useful

in understanding the striation dynamics. Many studies show that linear theories,

which are generally simpler than nonlinear ones, are very useful in understanding

many aspects of the ocean, such as time-mean circulation, eddy length scales, eddy

generation mechanisms and eddy phase speeds (e.g. Wunsch, 2011; Tulloch et al.,

2011; Müller and Frankignoul, 1981; Frankignoul and Müller, 1979; Chelton et al.,

2007). The above list of examples is far from complete. Part of the reason for the wide
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usage is that insights can be gained by comparing linear theories with observations

and modeling results.

Our striation interpretation (quasi-stationary linear Rossby waves) from the lin-

ear theory (Eq. 4.14) might apply to some extent in the regions within 15o of the

equator. Previous studies have shown that amplitude and positions of the time-

mean barotropic jets are overall consistent with the linear wind-driven solutions at

5oS − 15oS in the South Pacific (e.g. Taguchi et al., 2012; Kessler and Gourdeau,

2006). However, our inference here comes with caveats. First, our linear theory

assumes that the energy for striations and eddies is only from the external forcing,

not from eddy-eddy interaction and eddy-mean flow interaction. However, at low-

latitudes, baroclinic instabilty at the deformation radius scale can provide energy to

waves (Tulloch et al., 2009). Second, the quasi-geostrophic model is not valid at the

equator due to the large Rossby wave number there (e.g. Theiss and Mohebalhojeh,

2009; Mohebalhojeh and Theiss, 2011).

As to further tests of the applicability of the linear theory to the ECCO2 state

estimate, one can ask to what extent striations from the ECCO2 state estimate in the

global ocean resemble those in the linear solution. Study along this line can reveal

quantitatively where the linear interpretation applies and the effect of nonlinearity

on the striation properties. The problem can be tackled in several ways. An easy way

is to solve our linearized idealized model using realistic wind forcing, parameters and

domain shape, and then compare the solution with those in the thermocline of the

ECCO2 state estimate. Another method is that one can solve the linear response of

the ocean to the realistic wind forcing using the stratified quasi-geostrophic equation

with the time-mean flow imposed. We can then compare the striations from the linear

model with those from the ECCO2 state estimate. Müller and Frankignoul (1981)

used a similar method to evaluate the role of wind in eddy generation.
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4.6 Conclusions

The main contributions of this chapter are (1) to estimate the percentage of oceanic

variability associated with striations and (2) to evaluate the effect of the gyre-scale

flow on striations using the frequency-wavenumber spectrum of the eddy stream func-

tion.

Using a criterion introduced in Section 4.3, we find that a non-negligible per-

centage of zonal velocity variability is associated with striations, which we define as

banded structures in the low-frequency motions. Striations account for 49% (14%)

of zonal velocity variability in the upper 1100m in the CNP (ENP) regions from the

ECCO2 state estimate. They account for more than 10% of the variability in the

surface geostrophic flow in the two selected regions. The non-negligible percentage

suggests that striations can probably contribute significantly to the tracer transport

and energy budgets.

We examined the effect of the gyre flow in the time-mean circulation on the origin

and direction of striations in both the ECCO2 model and an idealized model. In

the ECCO2 state estimate, striations are embedded in the large-scale gyre flows in

the ENP and CNP regions. They are non-zonal in the ENP region and zonal in the

CNP region. We propose that the gyre flow contributes to the striation direction

difference in the two regions. An idealized model is formulated and then solved to

test this hypothesis. The directions of striations in the idealized model qualitatively

resemble those in the ECCO2 state estimate. To further investigate how the gyre

flow influences striations, we study the frequency-wavenumber spectrum of the eddy

stream function. First, in the linearized limit, both the numerical and analytical

solutions of the spectrum suggest that striations in this case are quasi-stationary

linear Rossby waves and the gyre flow influences the striation direction by influencing
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the direction of the zero Rossby wave frequency curve. Second, in the nonlinear

case, both the numerical analysis and our simplified spectrum model are useful in

understanding striations and the gyre effect. In this case, striations arise from the

temporal averaging effect of non-dispersively propagating eddies (eddy-propagation

mechanism). The gyre flow influences striation properties by influencing the eddy

propagation direction. We also identify the link between the non-dispersive line in

the spectrum and the eddy-propagation mechanism.

Our work has some potential applications. First, we provide a new striation

definition and a criterion to quantitatively extract striations from the eddy field.

This criterion is useful in evaluating the role of striations to tracer transport, mixing

and the energy cycle. Second, though the eddy-propagation mechanism is derived

from the simple model, it is probably relevant to striations in the interior ocean

between a few degrees off the equator and 45o, where non-dispersive lines exist in the

spectra.

Many aspects about striations in the idealized model remain elusive, such as the

origin/slope of the non-dispersive lines (some discussions are in Ferrari and Wunsch,

2010), the transition between the wave mechanism and eddy-propagation mechanism

in the parameter space, and the quantitative estimate about the contribution of the

large-scale gyre flow to the eddy propagation velocity. Some other future studies

are (1) to estimate the percentage of the zonal velocity variability associated with

striations and to characterize the spatial/temporal characteristics of striations in the

global ocean using the ECCO2 model; (2) to estimate the contribution of striations to

the eddy energy budgets, mixing and tracer transport using the ECCO2 model; (3) to

test quantitatively the relevance of our striation interpretations in different oceanic

regions, vertical modes and depth levels; (4) to investigate the effect of additional

dynamical factors on striations using idealized models, such as the coupling of the
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vertical modes, the time-dependence of the gyre flow, the Hawaiian Island inducing

beta plumes, and the eastern boundary currents inducing radiating instabilities.

4.7 Appendix

4.7.1 Formal derivation of the idealized model

Here we provide a more rigorous derivation of the idealized model, starting from the

governing equations of the 1.5-layer model. To avoid confusion, note that the meaning

of the symbols in this appendix only applies in this appendix. As discussed in Huang

(2010), the momentum and mass conservation equations for the 1.5-layer model are

(
∂

∂t
+ u · ∇)u− fv = −g′ ∂

∂x
h (4.28)

(
∂

∂t
+ u · ∇)v + fu = −g′ ∂

∂y
h (4.29)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = −we, (4.30)

where u and v are zonal and meridional velocities, g′ is the reduced gravity. u = ûi+vĵ

is the two-dimensional velocity. ∇ = ∂
∂x
î+ ∂

∂y
ĵ. h represents the layer thickness and

f is the Coriolis parameter. Note that friction is ignored in the momentum equations

for simplicity purpose. we is the Ekman pumping velocity:

we = ∇× (
−→τ
ρ0f

) = curl(
−→τ
ρ0f

), (4.31)

where−→τ is the wind stress and ρ0 is the constant reference density. Cross-differentiating

Eqs. 4.28 and 4.29 and using Eq. 4.30, we can get the potential vorticity equation
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(
∂

∂t
+ u · ∇)

f + ζ

h
=

(f + ζ)we
h2

, (4.32)

where

ζ =
∂v

∂x
− ∂u

∂y

representing the relative vorticity.

As in Pedlosky (1984), we separate the variables into two parts

u(x, t) = U0[U(X, T ) + u′(x′, t′,X, T )] (4.33)

h(x, t) = H0[H(X, T ) + δh′(x′, t′,X, T )], (4.34)

U and H are gyre scale part. u′ and h′ are mesoscale part. (X, T ) are the coordinate

for the gyre-scale variation and (x′, t′) are the coordinate for the mesoscale-variation.

The key assumption, as stated in Pedlosky (1984), is that the gyre scale is much larger

and slower than the mesoscale, that is,

X = x/L, x′ = x/l, t′ = σt, T = t′l/L, δ = l/L� 1, (4.35)

where δ is the scale ratio. Also, we scale the Coriolis parameter: f ′ = f(Y )/f0. Now

we can write the spatial and temporal derivatives in the gyre-scale and mesoscale

coordinates

∂

∂x
=

1

l
(δ

∂

∂X
+

∂

∂x′
),

∂

∂y
=

1

l
(δ

∂

∂Y
+

∂

∂y′
), and

∂

∂t
=
U0

l
(δ

∂

∂T
+

∂

∂t′
). (4.36)

Using Eqs. 4.33-4.36, the momentum equations (Eqs. 4.28 and 4.29) can be
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nondimensionalized as

εDx(U + u′) + εδDX(U + u′) + fk̂ × (U + u′) = −∇X(H + δh′)−∇xh
′, (4.37)

where ε = U0/f0l and g′H0 = f0U0L. The operators DX and Dx denote

DX =
∂

∂T
+ (U + u′) · ∇X , Dx =

∂

∂t
+ (U + u′) · ∇x.

Note that, the primes in x′ and f ′ are dropped in Eq. 4.37 to simplify the presentation

and this simplification is also used for the rest of this appendix. The non-dimensional

potential vorticity is

q =
f + εζ ′ + εδ(VX − UY + v′X − u′Y )

H + δh′
= Q(X, t) + δq̃(x, t,X, T ) (4.38)

with

ζ ′ =
∂v′

∂x
− ∂u′

∂y
, Q =

f

H
, q̃ =

1

H + δh′
[
ε

δ
ζ ′ − f

H
h′ + ε(VX − UY + v′X − u′Y )]. (4.39)

We can then get the non-dimensional potential vorticity equation from Eqs. 4.32 and

4.38:

DXQ+Dxq̃ + δDX q̃ = FX + F ′x, (4.40)

where FX is the gyre-scale forcing and F ′x is the meso-scale forcing.

FX + F ′x ≈
we0L

H0U

f

H2
(We + w′e), (4.41)

where we0[We(X, T ) + w′e(x
′, t′,X, T )] = we.

Assuming δ ∼ ε � 1, the lowest order momentum and potential vorticity equa-
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tions are

fk̂ ×U + fk̂ × u′ = −∇XH −∇xh
′, (4.42)

[
∂

∂T
+ U · ∇X ]Q+ u′ · ∇XQ+ [

∂

∂t
+ (U + u′) · ∇x]q

′ = FX + F ′x, (4.43)

where

q′ =
1

H
(
ε

δ
ζ ′ − f

H
h′).

Eqs. 4.42 and 4.43 can be separated into one part independent of x and the other

part dependent of x. Setting each part to zero, we can get the leading order balances

for gyre-scale motions U and the leading order balances for meso-scale motions u′,

as listed below:

fk̂ ×U = −∇XH, (4.44)

[
∂

∂T
+ U · ∇X ]Q = FX , (4.45)

fk̂ × u′ = −∇xh
′, (4.46)

[
∂

∂t
+ (U + u′) · ∇x]q

′ + u′ · ∇XQ = F ′x, (4.47)

4.7.2 Calculation of eddy propagation velocity

The correlation method used to diagnose the eddy propagation velocity in this chapter

is similar to the maximum cross-correlation method in Fu (2009). To avoid confusion,

note that the meaning of the symbols in this appendix only applies in this appendix.

Let A(x, y, t) be a variable representing the flow field, such as eddy kinetic energy

or eddy stream function. In a spatial domain with width W and length L, the cross

correlation can be computed:

C(x, y, t, δx, δy, δt) = A(x, y, t)A(x+ δx, y + δy, t+ δt),
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where · is the spatial average over the spatial window. Define C0(x, y, t, δt) as the

maximum cross correlation for all possible choices of (δx, δy) at the location and time

(x, y, t) and time lag δt; also define (δx0(x, y, t, δt), δy0(x, y, t, δt)) as the spatial lags

at C0(x, y, t, δt).

When computing the eddy propagating velocity in the ECCO2 state estimate, A

is the eddy kinetic energy, where eddies are defined as the deviation from the 16-year

average (1992-2007). The spatial window is a small patch centered at (x, y) with the

size of 4o × 4o, but δt has multiple values, denoted by δtn. The eddy propagating

velocity is determined by

−−→
V eleddy(x, y, t) =

∑
n(δx0(x, y, t, δtn)/δtn

−→
i + δy0(x, y, t, δtn)/δtn

−→
j )C0(x, y, t, δtn)∑

nC0(x, y, t, δtn)
,

and the temporally averaged eddy propagating velocity is
−−→
V eleddy(x, y, t).

When computing the eddy-propagating velocity in the quasi-geostrophic experi-

ment with a double gyre, A is the stream function ψ, the spatial window is a small

patch centered at (x, y) and δt is a constant value δt0. The eddy propagating velocity

is determined by

−−→
V eleddy(x, y, t) = (δx0(x, y, t, δt0)/δt0

−→
i + δy0(x, y, t, δtn0/δt0

−→
j ).
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Chapter 5

Striations and their contribution to

the energy budget and tracer

mixing in the barotropic system

with mean flow

5.1 Introduction

Chapter 4 shows that striations are pervasive in the ocean basins and they account

for a non-negligible percentage of zonal velocity variability. Thus, we suspect that

striations can have significant consequences to the ocean general circulation in the

aspect of tracer mixing and energy budgets. This chapter focuses on studying stria-

tions’ consequences in these two aspects using a barotropic quasi-geostrophic model

on a beta plane. Our specific goals are (1) to develop diagnostic framework and

use them to evaluate striations’ contribution to mixing and energy budget, and (2)

to characterize and interpret the effect of mean flow on striations in the barotropic
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system.

There are several reasons why we choose the barotropic quasi-geostrophic model

on a beta plane. First, it is one of the simplest systems producing banded structures

and quite a few aspects about the eddy field in this system are known. For example,

Rhines jets can arise due to the arrest of inverse cascade by beta effect (e.g. Rhines,

1975). A kinematic interpretation of Rhines jets is the mixing of potential vorticity

by eddies (e.g. Dritschel and McIntyre, 2008). These existing theories are useful for

us in understanding striations and their consequences. Second, the simple model is

a good tool to test the validity of our diagnostic framework due to its computational

efficiency and the ease of interpretation. Third, recent studies demonstrate that this

model, though idealized, is still a useful tool for theoretical explorations about banded

structures and many related frontiers are still open (e.g. Srinivasan and Young, 2012;

Farrell and Ioannou, 2007; Danilov and Gurarie, 2004; Danilov and Gryanik, 2004).

Though the model is a highly simplified representation of the ocean, it produces

interesting results and our diagnostic framework is applicable in more complicated

systems. We find that whether Rhines jets are striations or not depends on the

imposed mean flow direction; the contribution of striations to mixing and the energy

budget is also sensitive to the imposed mean flow direction. Our results may not be

directly applicable to barotropic striations in the ocean, since the barotropic mode

in the ocean is coupled with and extracts energy from the baroclinic mode, whereas

our model only has a single mode forced by external forcing. However, our diagnostic

framework is applicable to investigating the contribution of realistic striations to

mixing and the global energy budgets (details about the applications of this chapter

are in Section 5.6).

This chapter is organized as follows. Section 5.2 is about the model setup. Section

5.3 compares the Rhines jets with striations, and compares the striation interpreta-
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tions in this chapter with the eddy-propagation mechanism from Chapter 4. Sections

5.4 and 5.5 present our key results: the formulation of the diagnostic framework and

the contribution of striations to mixing and energy budgets. We also present theories

about the effect of mean flow on total mixing and energy cascades in Sections 5.4 and

5.5. Section 5.6 discusses the application. Conclusions are given in Section 5.7.

5.2 Experiment setup

We start from the idealized model used in Chapter 4:

(
∂

∂t
+ U

∂

∂x
+ V

∂

∂y
)q̃ + J(ψ, q̃) + J(ψ,Q) = F(x , y , t)− r · q̃. (5.1)

As stated in Chapter 4, ψ denotes the eddy stream function, q̃ = ∇2ψ−F1ψ the eddy

potential vorticity (PV), and J is the Jacobian operator. F1 is the squared inverse of

the deformation radius Rd, Q = βy+F1(Uy−V x) represents the large-scale potential

vorticity, and r is the friction coefficient. Different from Chapter 4, U and V here

is the imposed constant mean flow, not the gyre flow; the equation is solved using

the “pseudo-spectral” method in a doubly-periodic domain, not in a channel. The

numerical method is described in detail in Arbic (2000). The doubly-periodic domain

is discretized at 128× 128 grid points and the domain size is 3000 km× 3000 km.

F(x, y, t) represents the random forcing and has the same formula as that in

Chapter 4 (Eq. 4.10 and Eq. 4.11). As in Chapter 4, the forcing has a narrow

banded spectrum; the memory coefficient is 0.7; thus the forcing decorrelates rapidly

and is approximately white noise.1 The forcing has a dominant spatial scale of 60

1In the barotropic quasi-geostrophic model with external forcing, the Galilean invariance holds if
the system is forced by white noise. Galilean invariance is useful in the interpretation of mean flow’s
effect on Rhines jets, energy cascades and spatially averaged mixing. These are discussed later in
the chapter.
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Table 5.1: The list of experiments.

Exp1 Exp2 Exp3

U (m/s) 0 0 -0.12

V (m/s) 0 0.12 0

Rd (103 m) ∞ ∞ ∞
r (10−9 s−1) 7 7 7

β (10−11 m−1s−1) 2 2 2

km. The amplitude of the forcing (Ã) is 2.7 × 10−11 s−2, which is strong enough to

make the system nonlinear. The time step is 1/32 day.

Chapter 4 examined the striation property in the case with finite deformation

radius. This chapter focuses on the case with the infinite deformation radius. Table

5.1 summarizes the three experiments analyzed in this chapter. Exp1 has no mean

flow imposed and represents the original case in Rhines (1975), Exp2 has northward

mean flow imposed, and Exp3 has westward mean flow imposed. All the experiments

start from rest and they are run for another 100 years after the statistical equilibrium

states have been reached. The analysis in this chapter uses the 100-year output in

the statistical equilibrium state.

5.3 Rhines jets vs. striations

5.3.1 Rhines jets

The existence and direction of Rhines jets do not depend on the imposed mean flow

in our experiments (Figure 5-1). In the barotropic quasi-geostrophic model on a

beta plane with no mean flow imposed, Rhines jets exist in the eddy snapshot as

the elongated structures (Rhines, 1975). Consistently, Rhines jets show up in the

snapshots of our experiments and they are all roughly elongated in the zonal direction
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(Figure 5-1). However, Rhines jets in Exp2 are advected northward by the imposed

northward mean flow (Figure 5-2).

Figure 5-1: Snapshots of the total eddy stream function ψ (104 m2/s) in the doubly-
periodic domain from Exp1 (left), Exp2 (middle) and Exp3 (right). Black arrows
denote the imposed mean flow direction in each experiment. x represents zonal dis-
tance and y represents meridional distance. Rhines jets are robust features in the
eddy snapshots of all the three experiments.

Figure 5-2: Hovmöller (time-meridional distance) plots of the zonally averaged eddy
stream function ψ (104 m2/s) in each experiment. This figure uses the zonally aver-
aged eddy stream function as an approximate indicator of Rhines jets. Rhines jets are
advected northward by the imposed northward mean flow in Exp2. The meridional
drifts of the jets are invisible over the 500 day time scale in Exp1 and Exp3 due to
the absence of meridional component of the imposed mean flow.

The Galilean invariance of the barotropic model can explain why the generation

145



and direction of Rhines jets do not depend on the imposed mean flow. The PV

equation for the barotropic quasi-geostrophic decaying turbulence on a beta plane is

∂

∂t
∇2ψ + J(ψ − Uy + V x,∇2ψ) + β

∂

∂x
ψ = 0. (5.2)

Define a moving coordinate (x′, y′, t′):

x′ = x− Ut, y′ = y − V t and t′ = t.

Then, we get Eq. 5.2 in the coorindates (x′, y′, t):

∂

∂t′
∇2ψ +

∂ψ

∂x′
∂q

∂y′
− ∂ψ

∂y′
∂q

∂x′
+ β

∂ψ

∂x′
= 0, (5.3)

which is the same as the original Rhines jet model, where no mean flow is imposed.

External forcing in Exp1, Exp2 and Exp 3 is of small spatial scale and of short

decorrelation time scale; thus the basic statistical behavior of large eddies in the

three experiments is the same as those in the decaying turbulence. Thus, eddies in

Exp2 and Exp3 in the coordinates (x′, y′, t′) have the same characteristics as eddies in

Exp1 in the coordinates (x, y, t): the dominant eddies become “zonal” when energy

cascades to low “wavenumbers” and low “frequencies” (here the “wavenumber” and

“frequency” is defined in the coordinates (x′, y′, t′)); Rhines jets are generated and

they align with the x′ direction. Note that x′ (y′) and x (y) are in the same direction.

Therefore, the generation and direction of Rhines jets do not depend on the imposed

constant mean flow.
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5.3.2 Frequency-wavenumber spectrum

Striations are not necessarily Rhines jets (Section 5.3.3). Following Chapter 4, we use

the spectral approach to interpret striations. Thus, here we describe some properties

of the spectrum as a preparation for the striation discussion.

We can obtain the spectrum of the eddy stream function in the case with mean

flow imposed from that in the case with no mean flow. We define φA(x, y, t) as the

solution to the experiment with no mean flow (Exp1) and define its spectrum as

|φ̂A(k, l, ω)|2 with

φ̂A(k, l, ω) =

∫∫∫
φA(x, y, t)e−i(kx+ly−ωt)dxdydt. (5.4)

According to Eqs. 5.2 and 5.3, the function

φB(x, y, t) = φA(x− Ut, y − V t, t) (5.5)

have the same statistical behavior as the solution to the experiment with the mean

flow (U, V ).

Using Eq. 5.5, we obtain the spectrum of φB(x, y, t):

|φ̂B(k, l, ω)|2 = |φ̂A(k, l, ω − kU − lV )|2, (5.6)

with

φ̂B(k, l, ω) =

∫∫∫
φB(x, y, t)e−i(kx+ly−ωt)dxdydt. (5.7)

Thus, shifting the frequency spectrum of φA(x, y, t) at (k, l) by kU+lV , we obtain the

frequency spectrum of φB(x, y, t) at (k, l). The comparison of the frequency spectrum

at each (k, l) in Exp1 with the frequency spectrum at the same (k, l) in Exp2 and
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Exp3 demonstrates that this is indeed valid.

The frequency-wavenumber spectrum suggests that eddies in our experiments

can be viewed as a set of weakly interacting Rossby waves.2 Figure 5-3 shows the

frequency-wavenumber spectrum in Exp1 (|φ̂A(k, l, ω)|2).3 In the barotropic turbu-

lence on a beta plane, energy cascades to large scales and motions with spatial scales

larger than a critical scale (roughly the Rhines scale) behave like waves (Rhines, 1975).

Consistently, we find that the large values of the spectra (red surface) roughly lie on

the surface of the Rossby wave dispersion relation (black mesh surface). |φ̂A(k, l, ω)|2

integrated over the red surface accounts for 90% of the integral of |φ̂A(k, l, ω)|2 over

the entire k − l− ω space. Thus, a large portion of the motions in Exp1 satisfies the

Rossby wave dispersion relation and the eddy field can be viewed as a group of Rossby

waves. This statement is also valid for Exp2 and Exp3, as both the frequency spec-

trum at each (k, l) and the Rossby wave frequency is shifted by kU + lV , compared

to the case with no mean flow imposed.

We find that the wavenumber spectrum of the eddy stream function does not

depend on the imposed mean flow, since

∫ ∞
−∞
|φ̂B(k, l, ω)|2dω =

∫ ∞
−∞
|φ̂A(k, l, ω − kU − lV )|2dω =

∫ ∞
−∞
|φ̂A(k, l, ω)|2dω. (5.8)

Again, the wavenumber spectra in our experiments are consistent with this statement,

given the expected variation from realization to realization.

2Rossy waves here refer to eddy motions satisfying the dispersion relation of Rossby waves.
3Wortham (2012) discusses how to compute the frequency-wavenumber spectra.
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Figure 5-3: The normalized three-dimensional frequency-wavenumber spectrum of
the eddy stream function in Exp1 viewed from two different angles. Slices show the
three-dimensional spectra through the plane ω = 0. Black mesh surfaces are those of
the dispersion relation of the barotropic Rossby waves. Points with the normalized
power larger than 10−3.2 are indicated in red. Colorbars are on the logarithmic scale.

5.3.3 Interpretation about barotropic striations

Striations exist in all three experiments and they are not necessarily dominated by

Rhines jets (Figure 5-4). In Exp1, their direction, width and magnitude are roughly

the same as Rhines jets (Figure 5-1). This indicates that when there is no mean flow

imposed, striations are dominated by Rhines jets. In Exp2, the imposed mean flow is

in the meridional direction; striations are tilted northwestward and their amplitude is

much weaker than those of Rhines jets (Figure 5-1). As in Exp1, the direction, width

and magnitude of striations in Exp3 are roughly the same as Rhines jets, indicating

that striations in Exp3 are also dominated by Rhines jets. Next, we explain these

phenomena.

Striations are dominated by a group of quasi-stationary Rossby waves : this is

because eddy motions can be viewed as a set of Rossby waves (Figure 5-3) and

striations pick out the energy which is near the zero (shifted) frequency. Figure 5-5
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Figure 5-4: Snapshots of the part of the eddy stream function with frequency lower
than ΩS (104 m2/s) in the doubly-periodic domain in each experiment. We choose
ΩS = 1/600 cycle/day in order to put Rhines jet in Exp2 into the high-frequency part
and to illustrate a case that Rhines jets do not show up in the temporal average of
oceanic motions over some long time length. Black arrows denote the imposed mean
flow direction in each experiment.

further illustrates this statement. Wavenumbers with large values on the spectra,

especially the dominant wavenumber of striations, indeed lie on the zero Rossby wave

frequency curve. Note that, in the case with V 6= 0 (Exp2), the zero Rossby wave

frequency curve deviates from k = 0; thus ks 6= 0 and striations are non-zonal. While

in the case with V = 0 ( Exp1 and Exp3), the zero Rossby wave frequency curve is

k = 0; thus ks = 0 and striations are zonal.

Whether Rhines jets belong to striations depends on the frequency of Rhines jets.

Rhines jets are elongated in the zonal direction and they are located along k = 0 in the

wavenumber space. When V = 0 ( Exp1 and Exp3), the Rossby wave frequency for

Rhines jets is close to zero; thus Rhines jets are low-frequency motions and striations

are dominated by them. However, when V 6= 0 (Exp2), Rhines jets move meridionally

and their frequency is shifted from zero. In this case, Rhines jets are not part of the

striations. Since most energy in this turbulence system occurs at k = 0 due to the

beta effect, striations have less energy if Rhines jets are not part of the striations.
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Figure 5-5: Normalized wavenumber spectrum of the part of the eddy stream function
with frequency lower than ΩS on the logarithmic scale in Exp1 (left), Exp2 (middle)
and Exp3 (right). Black boxes denote the location of the dominant wavenumber
(ks, ls), where the wavenumber spectrum reaches its maximum value. Large values of
the spectra lie on the zero Rossby wave frequency curve, denoted by the black line.

5.3.4 Does eddy-propagation mechanism from Chapter 4 ap-

ply here?

The eddy-propagation mechanism identified from the experiments with finite defor-

mation radius in Chapter 4 is not the right way to interpret striations in our barotropic

experiments. This is because, in our barotropic experiments, energy is mostly concen-

trated on the surface of barotropic Rossby wave dispersion relation and thus eddies

propagate dispersively. It is more reasonable to interpret striations in our barotropic

experiments as quasi-stationary Rossby waves.

We find that the striation direction and the eddy-propagation direction in Exp2 are

different. This difference further suggests that the eddy-propagation mechanism does

not apply here. If the eddy-propagation mechanism applies, the non-dispersive line

exists and striations align with the eddy propagation direction (Chapter 4). Since

striations are perpendicular to striations’ dominant wavenumber, we obtained the

time series of the striation direction from the dominant wavenumber of striations at

every snapshot. Using the correlation method described in Chapter 4, we obtained the
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time series of eddy-propagation direction. We find that, in Exp2, the angle between

the time-mean striation direction and the west is 10o± 3o, but the angle between the

time-mean eddy-propagation direction and the west is 23o± 1o.4 Thus, the difference

between the eddy-propagation direction and the striation direction is significant.

5.4 Effect of mean flow on the energy pathway

This section discusses the effect of mean flow on energy cascade characteristics and

striations’ energy budget. Here we developed a diagnostic framework to investigate

the temporal energy cascades and striations’ energy budget, and formulated a theory

about the effect of mean flow on temporal and spatial energy cascade characteristics.

We find that, in the barotropic quasi-geostrophic turbulence on a beta plane, spatial

energy cascades do not depend on the imposed mean flow, but the energy budget of

striations and temporal energy cascades are sensitive to the imposed mean flow.

5.4.1 Diagnostic framework

The equations for temporal and spatial energy cascades are

∂

∂t
< KE<

Ω >=< ΠΩ > + < FΩ > + < DΩ > (5.9)

∂

∂t
< KE<

K >=< ΠK > + < FK > + < DK >, (5.10)

where < · > is the spatial average over the doubly-periodic domain and · indicates

the temporal average. The meaning of each term in Eqs. 5.9 and 5.10 is listed in

Table 5.2. The terms on the left-hand side represent the temporal change rates of

the energy reservoirs. The energy flux to the lower wavenumber or lower frequency

4The error here is one standard error, calculated using the method from Section 3.6.3.
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motions through eddy-eddy interaction is balanced by external forcing and friction.

Note that these equations are only valid in the barotropic quasi-gesotrophic system in

the doubly-periodic domain. The mean flow (U, V ) does not explicitly enter in the

diagnosis equations due to the doubly-periodic boundary condition. Details about

our diagnostic framework are provided in the appendix (Section 5.8.1).

The energy budget equation for striations can be obtained from Eq. 5.9. In the

frequency-wavenumber space, striations are the part of the low-frequency motions

inside of the narrow optimum ellipse (Chapter 4). In the three experiments, more

than 84% of the low-frequency motions are in the narrow optimum ellipse. Thus, it

is reasonable to use all the low-frequency motions as an approximation of striations.

The energy budget of striations is therefore approximately the energy budget of low-

frequency motions:

∂

∂t
< KE<

ΩS
>=< ΠΩS > + < FΩS > + < DΩS >, (5.11)

where ΩS is the separation frequency between low-frequency and high-frequency mo-

tions.

Our diagnostic framework is different from those in previous studies in some as-

pects. Our derivation of the diagnostic equation for spatial energy cascades (Eq. 5.10)

follows Scott and Wang (2005). Arbic et al. (2012) discussed the temporal energy cas-

cades; however, their diagnostic framework does not include the term about the local

change rate ( ∂
∂t
< KE<

Ω >), which is important if one studies the temporal variability

of striations. Also, our derivation about temporal energy cascades is more intuitive

compared to theirs. Assuming the spectrum gap exists between low-frequency and

high-frequency motions, Thompson and Richards (2011) derived an approximated en-

ergy budget equation for low-frequency motions in order to study the low-frequency
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Table 5.2: Terms in the energy diagnostic equations (Eqs. 5.9 and 5.10). a<Ω denotes
the part of a with frequencies lower than Ω and a<K denotes the part of a with
wavenumbers lower than K.
term mathematical form meaning

KE<Ω
1
2(∇ψ<Ω ·∇ψ

<
Ω ) Kinetic energy density from motions with frequencies

lower than Ω
ΠΩ ψ<Ω ·[J(ψ,∇2ψ)]<Ω

Energy flux to the KE<Ω reservoir due to eddy-eddy in-
teraction

FΩ −ψ<Ω ·[F(x,y,t)]<Ω
Energy input into the KE<Ω reservoir from the external
forcing

DΩ −r·KE<Ω Sink of KE<Ω due to friction

KE<K
1
2(∇ψ<K ·∇ψ

<
K) Kinetic energy density from motions with wavenumbers

lower than K
ΠK ψ<K ·[J(ψ,∇2ψ)]<K

Energy flux to the KE<K reservoir due to eddy-eddy in-
teraction

FK −ψ<K ·[F(x,y,t)]<K
Energy input into the KE<K reservoir from the external
forcing

DK −r·KE<K Sink of KE<K due to friction

jets in the Southern Ocean. However, this spectrum gap assumption is not used in

our diagnostic equation about striations’ energy budget (Eq. 5.11).

5.4.2 Results

Effect of mean flow on energy cascades

Using both theories and numerical analysis, we find that the energy cascade in the

wavenumber domain does not depend on the mean flow, but the energy cascade in

the frequency domain is sensitive to the mean flow. This simple and yet interesting

property has not been identified in previous studies, to our best knowledge. Using

the Galilean invariance of the barotropic model, < ΠK(x, y, t) > and < ΠΩ(x, y, t) >

in the case with any arbitrary mean flow imposed can be calculated from the eddy

field in the case with no mean flow imposed:

< ΠK(x, y, t) >=

∫
[φ̂A(k, l, ω)ĴA(−k,−l,−ω)H2

1 (k, l,K)dkdldω, (5.12)
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< ΠΩ(x, y, t) >=

∫
φ̂A(k, l, ω) · ĴA(−k,−l,−ω) ·H2

2 (ω+ kU + lV ,Ω)dkdldω, (5.13)

where ·̂ is the Fourier transform and φA(x, y, t) is the eddy stream function in the case

with no mean flow imposed. JA = J(φA,∇2φA), where J is the Jacobian operator.

H1(k, l,K) and H2(ω,Ω) are respectively the spatial-low-pass filter and temporal-low-

pass filter, such as the box-car filter:

H1(k, l,K) =
sin(πk/K)

πk/K

sin(πl/K)

πl/K
,H2(ω,Ω) =

sin[πω/Ω]

πω/Ω
, (5.14)

where K is the wavenumber
√
k2 + l2 and Ω is the frequency. Details are provided

in the appendix (Section 5.8.2). Thus, < ΠΩ(x, y, t) > depends on the imposed

mean flow, whereas < ΠK(x, y, t) > does not. Analysis of the three experiments

demonstrates that the above statement is valid (Figures 5-6 and 5-7): < ΠK > is the

same in the three experiments, but < ΠΩ > in Exp2 is different from those in Exp1

and Exp3.

Figure 5-6: The normalized integral energy budget in the wavenumber domain in
each experiment. Red curves denote < ΠK >, green curves denote < FK >, blue

curves denote < DK >, and magenta curves denote ∂
∂t
< KE<

K >.

In our experiments, the energy cascade in the wavenumber domain does not de-

pend on the mean flow (Figure 5-6). Positive (negative) slope of < ΠK > at the
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Figure 5-7: The normalized integral energy budget in the frequency domain in each
experiments. Red curves denote < ΠΩ >. Green and blue curves denote respectively

< FΩ > and < DΩ >. ∂
∂t
< KE<

Ω > is given by the magenta curve. Dashed lines

in black are at ΩS and the frequency with maximum < ΠΩ > (ΩM). Black boxes
are used to highlight the magnitude of each term at the frequency ΩS. The lower
right panel is an enlarged version of the upper right panel to highlight budgets at
frequencies lower than ΩS.

wavenumber K means that eddies at that wavenumber gain (lose) energy through

eddy-eddy interaction (Scott and Wang, 2005). The slope of < ΠK > is negative in

the wavenumber range indicated by the white area, but it is positive in the range

indicated by the red area (Figure 5-6). Thus, in all the experiments, energy moves to

motions at low wavenumbers through eddy-eddy interaction.

In our experiments, < ΠΩ > is sensitive to the meridional component of the mean

flow (Figure 5-7). Similar to < ΠK >, positive (negative) slope of < ΠΩ > at the

frequency Ω means that eddies at that frequency gain (lose) energy through eddy-eddy
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interaction. In Exp1 and Exp3, the slope of < ΠΩ > is negative at frequencies higher

than ΩM , < ΠΩ > is approximately constant over the frequency range [ΩS,ΩM ], and

the slope is positive at frequencies lower than ΩS. In Exp2, the slope of < ΠΩ > is

also negative at frequencies higher than ΩM , but at the frequency range [ΩS,ΩM ],

< ΠΩ > reduces from its maximum value at ΩM to roughly zero at ΩS. Therefore,

energy mostly flows to motions with frequencies lower than ΩS in Exp1 and Exp3, but

energy mostly flows to the frequency range [ΩS,ΩM ] in Exp2 (the diagrams shown in

Figure 5-8 further illustrate this point). Using Eq. 5.6, we find that the frequency

of Rhines jets in Exp1 and Exp3 is roughly zero, but the frequency of Rhines jets

in Exp2 lies in [ΩS,ΩM ]. Thus, in all the three runs, energy moves to the frequency

range where Rhines jets lie in.

Figure 5-8: Diagrams illustrating the meaning of the < ΠΩ > structure shown in
Figure 5-7. Black arrows at the bottom is the frequency axis Ω; red arrows denote
the nonlinear energy flux < ΠΩ >. In Exp1 and Exp3 (diagram a), the nonlinear
energy flux goes through the ΩM and ΩS boundaries and is eventually used to sustain
motions with frequencies lower than ΩS. In Exp2 (diagram b), the nonlinear flux
through the ΩM boundary is large, but little enters the ΩS boundary. Thus, motions
with frequencies lower than ΩS get little energy through eddy-eddy interaction.

The above analysis suggests that the sensitivity of < ΠΩ > to the imposed mean

flow is because energy always moves to Rhines jets, whose frequency depends on the

imposed mean flow. In the barotropic quasi-geostrophic system on a beta plane with

no mean flow imposed, energy cascades to both low frequencies and low wavenum-
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bers; Rhines jets are low-frequency motions and extract energy from high-frequency

motions (Rhines, 1975). Using the Galilean invariance of the barotropic system, we

know that Rhines jets extract energy from other eddy motions regardless of the im-

posed mean flow. However, the frequency of Rhines jets is sensitive to the imposed

meridional flow; thus, the structure of < ΠΩ > is sensitive to the imposed meridional

flow.

Energy budget of striations

The energy budget of striations is also sensitive to the imposed mean flow. The

magnitude of the terms in striations’ energy budget (Eq. 5.11) is highlighted by the

black boxes in Figure 5-7. In Exp2, where Rhines jets are not part of striations,

external forcing and eddy-eddy interaction are equally important energy sources of

striations; but the amount of energy extracted by striations from other eddies is small.

In Exp1 and Exp3, where striations are dominated by Rhines jets, the dominant

energy source for striations is eddy-eddy interaction; the amount of energy extracted

by striations from other eddies is large.

5.5 Effect of mean flow on total mixing and stria-

tions’ contribution

This section provides a diagnostic framework to partition the contribution of striations

and high-frequency eddies to mixing, and presents a theory about the effect of mean

flow on the spatially averaged mixing. We find that, in our experiments, mixing is

always zonally dominant regardless of the imposed mean flow direction, and striations

contribute significantly to zonal mixing only when striations are dominated by Rhines

jets.
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5.5.1 Diagnostic framework

Eddies can induce tracer mixing, which is often quantified by estimating the effective

diffusivity using either tracer-based or particle-based methods (e.g. Klocher et al.,

2012b). To our best knowledge, though the effect of mean flow on tracer mixing

induced by the total eddies has been studied (e.g. Klocher et al., 2012a; Shuckburgh

et al., 2009), the partition of the contribution of striations and high-frequency eddies

to mixing has not been explored. Next we present one possible framework to split

the contribution.

First, we describe how to parameterize the tracer mixing induced by total eddies.

The ensemble average of the eddy tracer flux is

Fi = u′ib
′,

where · is the ensemble average and u′i is the eddy velocity. b′ is the eddy tracer

concentration satisfying

[
∂

∂t
+ (u + u′s + u′h) · ∇ − κ∇2]b′ = 0, (5.15)

where u is the mean flow, u′s is the low-frequency eddy velocity, and u′h is the high-

frequency eddy velocity. Fi can be parameterized as

Fi = −Dij
∂b(x, t)

∂xj
. (5.16)

Diffusivity is the symmetric part of Dij and the transport due to the Stokes drift can

be diagnosed from the antisymmetric part of Dij. We use an unpublished formula
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from G. Flierl to calculate Dij:

Dij =

∫
u′i(x, t)Uj(x, t)dt, (5.17)

where Uj(x, t) essentially records the initial velocity; it can be solved numerically by

integrating

[
∂

∂t
+ (u + u′s + u′h) · ∇ − κ∇2]Uj(x, t) = 0, (5.18)

with Uj(x0, t0) = u′j(x0, t0) as the initial condition. Imagine the concentration of a

tracer has the same magnitude as the eddy velocity at t = t0 and then the tracer is

stirred by the total flow field; Uj(x, t) is just the concentration of the tracer at time t.

Dij involves an ensemble average and thus it does not depend on the initial condition

as long as enough ensembles are used in the calculation. These formulas (Eqs. 5.17

and 5.18) are based on the spatial homogeneity assumption. The appendix (Section

5.8.3) provides the details, and it also includes a formula without the homogeneity

assumption (Eq. 5.58).

One simple way to split the contribution of striations and high-frequency eddies

to mixing/transport is through the formula:

Fi = u′ib
′ = u′hib

′ + u′sib
′ = −∂b(x, t)

∂xj

∫
(u′hi + u′si)Uj(x, t)dt, (5.19)

where u′si is the low-frequency eddy velocity and u′hi is the high-frequency eddy veloc-

ity. Since striations account for more than 84% of the low-frequency motions in the

three experiments (Section 5.4.1), it is reasonable to assume that all the low-frequency

motions are striations. Thus u′sib
′ represents the contribution of striations to eddy

tracer flux. Using a procedure similar to that in the appendix (Section 5.8.3), we can
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parameterize the two parts of the eddy tracer flux as

u′sib
′ = −Dsij

∂

∂xj
b, u′hib

′ = −Dhij
∂

∂xj
b,

where

Dhij =

∫
u′hi(x, t)Uj(x, t)dt and Dsij =

∫
u′si(x, t)Uj(x, t)dt.

Uj here is exactly the same as the Uj in the Dij formula (Eq. 5.18). The symmetric

part of Dhij (Dsij) represents the contribution of high-frequency eddies (striations)

to mixing; the antisymmetric part of Dhij (Dsij) provides information about the

contribution of high-frequency eddies (striations) to the Stokes drift. Note that

Dhij +Dsij = Dij;

however, the tracer b′ is advected by both the high-frequency eddy motions and

striations (Eq. 5.15). Thus, the contribution of striations and high-frequency eddies

to tracer mixing is not completely separable.

5.5.2 Results

Here are the specific four steps to obtain < Dsij > and < Dhij > shown in Table

5.3: (1) calculate uhi, usi and Uj, (2) integrate uhiUj and usiUj over time t, (3)

average them spatially, and (4) repeat the above three steps to get several ensembles

and then ensemble average. We use a non-zero κ (120 km2/day) in order to make

the integration
∫
·dt reach equilibrium in a reasonable amount of computation time.

The calculation is computationally expensive, as it involves many ensembles and

it involves calculating and saving the high-pass-filtered and low-pass-filtered eddy

velocity at small time intervals. Thus, though Dij may be sensitive to the choice of
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κ in Eq. 5.15, we did not explore this sensitivity problem in this study.

Table 5.3: The average of < Dhij > and < Dsij > over 30 independent ensembles
(10m2/s), where < · > denotes the spatial average over the doubly-periodic domain.
The error bar is σ/

√
N , where σ is the standard deviation of < Dhij > and < Dsij >.

We choose N, the number of degrees of freedom, to be 30. D11 (D22) denotes zonal
(meridional) eddy diffusivity; D12 and D21 contain information about the Stokes drift.

Ds11 Dh11 Ds22 Dh22 Ds12 Dh12 Ds21 Dh21

Exp1 8198± 534 274± 21 27± 1 66± 2 20± 14 1± 5 1± 3 −5± 3

Exp2 581± 78 7403± 400 28± 1 67± 2 −3± 5 8± 15 −37± 5 39± 3

Exp3 7175± 461 336± 23 20± 0 76± 1 −1± 12 −3± 5 3± 2 −2± 3

Though the mean flow can suppress mixing in some more complicated systems (e.g.

Klocher et al., 2012a), the mean flow does not affect the domain averaged mixing in

our barotropic system. In Exp1-Exp3, the magnitude of < Dij >, which is equal to

< Dhij + Dsij >, does not differ much from each other (Table 5.3). This is related

to the Galilean invariance: tracers and the eddy field are all advected by the mean

flow. The appendix (Section 5.8.4) mathematically explains why the imposed mean

flow does not affect the domain averaged mixing.

Consistently, mixing is anisotropic and mostly in the zonal direction regardless

of the imposed mean flow: in all the three experiments, < D11 > has the largest

magnitude among the four components of < Dij > (Table 5.3). This phenomenon

can be interpreted as follows: in the coordinates moving with the imposed mean flow,

the eddy velocity is dominated by that of the Rhines jets, which are roughly zonal.

Thus, most particles (parcels) are moving in the quasi-zonal direction and mixing is

zonally dominant.

Rhines jets are always the dominant contributor to zonal mixing (< D11 >) and

thus striations contribute significantly to zonal mixing only when striations are dom-

inated by Rhines jets. Table 5.3 shows the magnitude of < Dsij > and < Dhij >. In
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Exp1 and Exp3, where the meridional component of the imposed mean flow is zero,

striations are dominated by Rhines jets and thus striations contribute much more to

zonal mixing than the high-frequency eddies. In Exp2, where the meridional compo-

nent of the imposed mean flow is not zero, Rhines jets are not part of the striations

and thus striations contribute much less to zonal mixing than the high-frequency

eddies.

5.6 Applications

Diagnostic framework

The key application of our work is that one can use our diagnostic framework and

their potential descendants to investigate the contribution of striations to mixing and

the energy cycle in realistic eddying ocean models, such as the ECCO2 state estimate.

Considering the non-negligible contribution of striations to the oceanic variability, the

contribution of striations to mixing and energy cycle is probably important (Chapter

4). Yet, little is known in this aspect.

Our framework in Section 5.5.1 is directly applicable to quantifying striations’ role

in tracer mixing in selected oceanic regions (local spatial homogeneity assumption is

required), such as the CNP and ENP regions discussed in Chapter 4. Specifically,

one could first identify the separation frequency between striations and high-frequency

eddies using the approach proposed in Chapter 4, then calculate eddy diffusivity due

to striations using our framework, and compare it with eddy diffusivity induced by

total eddies. Work in this aspect can shed light on the role of striations in the spatial

distribution of tracers (e.g. temperature, salinity) and thus the climate mean state

and variability.

As to our diagnostic framework about striations’ energy budgets (Section 5.4.1),
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it can be easily generalized to the form consistent with primitive equations. The

generalized diagnostic framework can be used in the study of striation energetics

in eddying ocean models. Compared to the framework in Thompson and Richards

(2011), the advantage of our framework is that no spectrum-gap assumption is made.

Striation interpretation

The ease of interpretation about striations in the barotropic quasi-geostrophic

model comes at a cost: different from the eddy-propagation mechanism proposed in

Chapter 4, our barotropic striation interpretation (quasi-stationary barotropic Rossby

waves) may not be directly applicable to most ocean regions. Rhines jets show up

in the snapshots in our experiments, whereas banded structures are latent in most

ocean regions (Thompson, 2010). Also the barotropic and the first baroclinic modes

are coupled in most ocean regions (Wortham, 2012), but the coupling cannot be

included in our barotropic model. In retrospect, we would further choose a multiple-

layer model or the ECCO2 state estimate to investigate the consequences of striations

to the oceanic circulation.

However, some kinematic aspects of our Exp2 in this chapter are analogous to

the Southern Ocean jets. In contrast to most oceanic regions, banded structures are

visible in the snapshot of the velocity field in the Southern Ocean and these structures

are termed “Southern Ocean jets” (Thompson, 2010). These jets are generated from

the mixing of potential vorticity by eddies from a kinematic perspective and they

are greatly influenced by topography (e.g. Thompson, 2008; Ivchenko et al., 2008).

For example, topography with the scale comparable to the jet width can cause the

meridional drifts of jets in the quasi-geostrophic two-layer model (Thompson, 2010).

Thompson and Richards (2011) found that meridional drifts of the jets also exist in

some region of the Southern Ocean in realistic eddy-permitting models. Our Exp2 is

analogous to some Southern Ocean jets in two kinematic aspects: banded structures
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are visiable in the instantaneous images of the flow field and they have meridional

drifts.5 Results from Exp2 suggest that striations in the Southern Ocean might be

different from the jets visible in the flow snapshots. The validity of the inference

needs to be tested.

5.7 Conclusions

This chapter presents diagnostic framework about striations’ contribution to mixing

and energy pathway, and presents the effect of mean flow on the origin and con-

sequences of barotropic striations. In our barotropic quasi-geostrophic system on a

beta plane, energy is mostly concentrated on the surface of barotropic Rossby wave

dispersion relation in the frequency and wavenumber space. Thus, striations can be

viewed as quasi-stationary barotropic Rossby waves. The eddy-propagation mecha-

nism identified from Chapter 4 does not apply here. In our experiments with no merid-

ional mean flow, Rhines jets are low-frequency motions; striations are dominated by

Rhines jets, contribute significantly to tracer mixing, and extract a signifiant amount

of energy from high-frequency eddies. In our experiment with meridional mean flow,

Rhines jets move meridionally and are not part of low-frequency motions; striations

are tilted, have weak amplitude, contribute little to tracer mixing, and extract little

energy from high-frequency eddies.

Our results can be useful in future explorations about striations and energetics.

First, our diagnostic framework and the potential descendants can be useful in stud-

ies about the consequences of striations in realistic ocean systems. Second, our Exp2

has kinematic analogy to the Southern Ocean jets in some regions: bands are visible

in the snapshots and they drift meridionally. Third, using the Galilean invariance

5The dynamical reasons for these two features in Exp2 are probably different from those in the
Southern Ocean.
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of the barotropic model, we formulated theories illustrating why the mean flow does

not influence the spatially averaged mixing and energy cascades in the wavenumber

domain, but does influence the energy cascades in the frequency domain. Though

these theories are only valid in our barotropic system, these simplifications may stim-

ulate interest and further investigation about mean flow’s effect on energy cascades in

observations and realistic models. Work in this aspect might be useful in explaining

the energy cascade features identified in Arbic et al. (2012).

Here we offer some critiques and caveats about this chapter. First, striations are

banded structures in the low-frequency motions (Chapter 4), and one issue is to de-

termine the separation frequency between low-frequency and high-frequency motions

(ΩS). The criterion to determine ΩS presented in Chapter 4 does not apply well in

idealized models and our choice of ΩS here put Rhines jets in Exp2 into high-frequency

motions. Though our striation interpretation (quasi-stationary Rossby waves) is not

sensitive to ΩS, results about striations’ energy budget and striations’ contribution

to mixing depend on ΩS. A more general criterion to determine ΩS needs to be de-

veloped. Second, motivated by the fact that striations dominate the low-frequency

motions in our three experiments, we assume all the low-frequency motions are stri-

ations, when we formulate our diagnostic framework about striations’ role in tracer

mixing and energy budget. However, only the banded structures in the low-frequency

motions are defined as striations (Chapter 4). Yet, it is easy to generalize our diag-

nostic framework to the version suitable for evaluating the consequences of only the

banded structures in low-frequency motions. Third, in our barotropic system, the

dependence of our results on other parameters, such as the mean flow magnitude,

bottom friction, the memory coefficient and the spectra of the external forcing, is

still uncertain. Fourth, different from the eddy propagation mechanism identified in

Chapter 4, our results here may not be directly applicable to most ocean regions due
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to the oversimplification of our model.

5.8 Appendix

5.8.1 Diagnosis method for energy cascades

Here we derive the diagnostic equations for temporal and spatial energy cascades.

Since our goal is to investigate the energy pathway in the barotropic runs (Exp1,

Exp2 and Exp3). We start the derivation from the barotropic potential vorticity

equation:

∂

∂t
∇2ψ + J(ψ,∇2ψ) + J(−Uy + V x,∇2ψ) + β

∂

∂x
ψ = F(x, y, t)− r∇2ψ. (5.20)

The variables in the above equation are defined in Section 5.2. First, we express the

eddy stream function ψ(x, y, t) by its Fourier series

ψ(x, y, t) =

∫
ψ̂(k, l, ω)ei(kx+ly−ωt)dkdldω. (5.21)

Then we can define the spatially low-pass-filtered ψ and the temporally low-pass-

filtered ψ:

ψ<K(x, y, t) =

∫
â(k, l, ω)ei(kx+ly−ωt)H1(k, l,K)dkdldω (5.22)

ψ<Ω (x, y, t) =

∫
â(k, l, ω)ei(kx+ly−ωt)H2(ω,Ω)dkdldω, (5.23)

where H1 and H2 are the low-pass filter, such as the box-car filter:

H1(k, l,K) =
sin(πk/K)

πk/K

sin(πl/K)

πl/K
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H2(ω,Ω) =
sin(πω/Ω)

πω/Ω
.

Thus, ψ<K(x, y, t) represents eddy motions with wavenumbers smaller than K and

ψ<Ω (x, y, t) represents eddy motions with frequencies lower than Ω. Then we obtain

the domain averaged kinetic energy density from the low-wavenumber motions:

< KE<
K >=<

1

2
(∇ψ<K · ∇ψ<K) >

and the domain averaged kinetic energy density from the low-frequency motions:

< KE<
Ω >=<

1

2
(∇ψ<Ω · ∇ψ<Ω ) >,

where < · > means the spatial average in the doubly-periodic domain. Here are some

properties of the low-pass filter, which are used in the remaining derivation in this

appendix:

(
∂

∂t
∇2ψ)<K =

∂

∂t
∇2ψ<K and (

∂

∂t
∇2ψ)<Ω =

∂

∂t
∇2ψ<Ω . (5.24)

Also in the doubly-periodic domain, variables are periodic and thus the following

relations hold:

< −ψ ∂
∂t
∇2ψ >=

1

2

∂

∂t
< ∇ψ · ∇ψ >

< βψ
∂

∂x
ψ >= 0, < ψ

∂

∂x
∇2ψ >= 0 and < ψJ(ψ,∇2ψ) >= 0.

To obtain the evolution equation of < KE<
K >, first we apply the spatially low-

pass filter to Eq. 5.20 and then multiply the low-pass-filtered Eq. 5.20 by −ψ<K .

Using the properties described above, we obtain:

∂

∂t
< KE<

K >=< ΠK > + < FK > + < DK >, (5.25)
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with

ΠK = ψ<K · [J(ψ,∇2ψ)]<K

representing the energy flux to the KE<
K reservoir due to eddy-eddy interaction;

FK = −ψ<K · [F(x, y, t)]<K

representing the energy input into the KE<
K reservoir from the external forcing; and

< DK >=< −ψ<K · [−r∇2ψ]<K >=< r · ψ<K · ∇2ψ<K >= −r ·KE<
K

representing the sink of KE<
K due to friction. Note that Eq. 5.25 is essentially the

one-layer version of the energy cascades equation for the stratified quasi-geostrophic

motions presented in Scott and Wang (2005).

We can obtain the evolution equation for ψ<Ω using the similar approach. Multiply

the temporally low-pass-filtered potential vorticity equation by ψ<Ω , then we find

∂

∂t
< KE<

Ω >=< ΠΩ > + < FΩ > + < DΩ >, (5.26)

with

ΠΩ = ψ<Ω · [J(ψ,∇2ψ)]<Ω

representing the energy flux to the KE<
Ω reservoir due to eddy-eddy interaction;

FΩ = −ψ<Ω · [F(x, y, t)]<Ω

169



representing the energy input into the KE<
Ω reservoir from the external forcing; and

< DΩ >=< −ψ<Ω · [−r∇2ψ]<Ω >=< rψ<Ω · ∇2ψ<Ω >= −r ·KE<
Ω

representing the sink of KE<
Ω due to friction.

In a system that reaches statistical equilibrium, ∂
∂t
< KE<

K > is approximately

zero. Thus, the forcing term and nonlinear flux term should balance the dissipation

term:

∂

∂t
< KE<

K >=< ΠK > + < FK > + < DK >≈ 0, (5.27)

where · means the long-term temporal average. Similarly, ∂
∂t
< KE<

Ω > should be

small for stationary processes and thus

∂

∂t
< KE<

Ω >=< ΠΩ > + < FΩ > + < DΩ >≈ 0. (5.28)

5.8.2 A theory about effect of mean flow on energy cascades

We developed a theory to explain why the mean flow does not influence the spatial

energy cascades, but does influence the temporal energy cascades. Basically, we

convert the nonlinear energy flux terms < ΠΩ > and < ΠK > into the frequency-

wavenumber form.

Background

As discussed in Section 5.3.2, assuming there is no external forcing or the external

forcing is white noise or close to white noise (the forcing has zero or small decorrelation

time scale), if φA(x, y, t) is the eddy stream function in the experiment with no mean

flow, then

φB(x, y, t) = φA(x− Ut, y − V t, t) (5.29)
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has the same statistical characteristics as ψ(x, y, t), which refers to the eddy stream

function in the experiment with mean flow. Thus, the nonlinear energy flux in the

experiments with mean flow (ΠΩ) can be represented as a function of φB(x, y, t):

ΠΩ = [ψ(x, y, t)]<Ω · [J(x, y, t)]<Ω = ΠB,Ω = [φB(x, y, t)]<Ω · [JB(x, y, t)]<Ω (5.30)

ΠK = [ψ(x, y, t)]<K · [J(x, y, t)]<K = ΠB,K = [φB(x, y, t)]<K · [JB(x, y, t)]<K , (5.31)

where

JB(x, y, t) = J(φB(x, y, t),∇2φB(x, y, t)),

J(x, y, t) = J(ψ(x, y, t),∇2ψ(x, y, t)),

a<Ω is the part of a with frequencies smaller than Ω, and a<K is the part of a with

wavenumbers smaller than K . Note that

JB(x, y, t) = JA(x− Ut, y − V t, t), (5.32)

where JA(x, y, t) = J(φA(x, y, t),∇2φA(x, y, t)). Also note that

φ̂B(k, l, ω) = φ̂A(k, l, ω − kU − lV ) and ĴB(k, l, ω) = ĴA(k, l, ω − kU − lV ), (5.33)

where

â(k, l, ω) =

∫∫∫
a(x, y, t)e−i(kx+ly−ωt)dxdydt. (5.34)

Next, we discuss the low-pass filter in the wavenumber or frequency domain. Take

the box-car filter as an example, the low-pass wavenumber filter is

H1(k, l,K) =
sin(πk/K)

πk/K

sin(πl/K)

πl/K
(5.35)
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and the low-pass frequency filter is

H2(ω,Ω) =
sin(πω/Ω)

πω/Ω
. (5.36)

Using the definition of filters (Eqs. 5.35 and 5.36), Eq. 5.29, Eq. 5.32, and Eq. 5.33,

we can get the following relations:

φ̂<B,K = φ̂B(k, l, ω) ·H1(k, l,K) = φ̂A(k, l, ω − kU − lV ) ·H1(k, l,K) (5.37)

Ĵ<B,K = ĴB(k, l, ω) ·H1(k, l,K) = ĴA(k, l, ω − kU − lV ) ·H1(k, l,K) (5.38)

φ̂<B,Ω = φ̂B(k, l, ω) ·H2(ω,Ω) = φ̂A(k, l, ω − kU − lV ) ·H2(ω,Ω) (5.39)

Ĵ<B,Ω = ĴB(k, l, ω) ·H2(ω,Ω) = ĴA(k, l, ω − kU − lV ) ·H2(ω,Ω). (5.40)

An important tool used in this problem is the 3-dimensional convolution theorem:

the Fourier transform of f(x, y, t)g(x, y, t) is the convolution of the Fourier transform

of f(x, y, t) and g(x, y, t). That is,

f̂ g(k, l, ω) =

∫
f̂(k′, l′, ω′)ĝ(k − k′, l − l′, ω − ω′)dk′dl′dω′ (5.41)

Also note that the definition of the Fourier transform tells us that

< f(x, y, t)g(x, y, t) >= f̂ g(k, l, ω)|k=0,l=0,ω=0, (5.42)

where < · > is the domain average and · is the time average. Thus,

< f(x, y, t)g(x, y, t) >=

∫
f̂(k′, l′, ω′)ĝ(−k′,−l′,−ω′)dk′dl′dω′. (5.43)
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The one dimensional version of the formula (Eq. 5.43) has been used by Chinn and

Gille (2007) to evaluate the effect of temporal sampling interval on eddy heat fluxes.

Energy cascades in the wavenumber domain

Next, we express the nonlinear flux < ΠK(x, y, t) as a function of the eddy field

in the case with no mean flow (φ̂a and Ĵa). Using Eq. 5.31, Eq. 5.37, Eq. 5.38 and

Eq. 5.43, we obtain

< ΠK(x, y, t) >=< [φB(x, y, t)]<K · [JB(x, y, t)]<K >

=

∫
φ̂B(k′, l′, ω′) · ĴB(−k′,−l′,−ω′) ·H2

1 (k′, l′, K)dk′dl′dω′

=

∫
φ̂A(k′, l′, ω′ − k′U − l′V ) · ĴA(−k′,−l′,−ω′ + k′U + l′V ) ·H2

1 (k′, l′, K)dk′dl′dω′

(5.44)

Define ω0 = ω′ − k′U − l′V , we can convert Eq. 5.44 to the following form

< ΠK(x, y, t) >=

∫
[

∫ ∞−k′U−l′V
−∞−k′U−l′V

φ̂A(k′, l′, ω0)ĴA(−k′,−l′,−ω0)dω0]H2
1 (k′, l′, K)dk′dl′.

(5.45)

That is,

< ΠK(x, y, t) >=

∫
[φ̂A(k, l, ω)ĴA(−k,−l,−ω)H2

1 (k, l,K)dkdldω. (5.46)

Therefore, the nonlinear energy flux in the wavenumber domain (< ΠKS(x, y, t) >) is

only a function of the eddy stream function in the case with no mean flow imposed.

This suggests that the spatial energy cascade characteristics do not depend on the

imposed mean flow (U, V ). This is confirmed by the numerical analysis as described

in the main text.
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Energy cascades in the frequency domain

Using the similar technique, we can also express the nonlinear energy flux as a

function of eddy stream function in the case with no mean flow (φ̂A and ĴA). Using

Eq. 5.30, Eq. 5.39, Eq. 5.40 and Eq. 5.43, we obtain

< ΠΩ(x, y, t) >=< [φB(x, y, t)]<Ω · [JB(x, y, t)]<Ω >

=

∫
φ̂B(k′, l′, ω′) · ĴB(−k′,−l′,−ω′) ·H2

2 (ω′,Ω)dk′dl′dω′

=

∫
φ̂A(k′, l′, ω′ − k′U − l′V ) · ĴA(−k′,−l′,−ω′ + k′U + l′V ) ·H2

2 (ω′,Ω)dk′dl′dω′.

(5.47)

If we define ω0 = ω′ − k′U − l′V , we obtain

< ΠΩ(x, y, t) >=

∫
φ̂A(k′, l′, ω0) · ĴA(−k′,−l′,−ω0) ·H2

2 (ω0 + k′U + l′V ,Ω)dk′dl′dω0.

(5.48)

That is,

< ΠΩ(x, y, t) >=

∫
φ̂A(k, l, ω) · ĴA(−k,−l,−ω) ·H2

2 (ω+ kU + lV ,Ω)dkdldω. (5.49)

As we change the imposed mean flow (U, V ), essentially the low-pass filter H2 in Eq.

5.49 picks up different part of φ̂A(k, l, ω) · ĴA(−k,−l,−ω) in the frequency domain.

Thus, the nonlinear energy flux in the frequency domain depends on the imposed

mean flow. Our numerical analysis in the main text confirms the sensitivity of the

temporal energy cascade characteristics to the imposed mean flow.

Arbic et al. (2012) also presents a formula about the nonlinear energy flux in the
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frequency domain. The barotropic version of their formula is

< ΠΩ(x, y, t) > = < [ψ(x, y, t)]<Ω · [J(x, y, t)]<Ω >

=

∫
|ω<Ω|

φ̂(k, l, ω) · Ĵ(−k,−l,−ω)dkdldω. (5.50)

Therefore, their formula essentially uses a rectangular filter, whereas our formula is

derived in a more rigorous way and it is more general allowing us to use any type of

filter (H2). The effect of mean flow on < ΠΩ > (Eq. 5.48) is also not discussed in

their work.

5.8.3 Diagnosis method for mixing and transport

Eddy tracer flux in this chapter is parameterized using an unpublished method from

G. Flierl. Here we describe the method in detail for the convenience of the reader.

Solution of eddy tracer flux

Assume the tracer equation is

∂b

∂t
+ u · ∇b = κ∇2b, (5.51)

where b is the tracer concentration. Decompose b into two components (ensemble

average and deviation): b = b + b′, substitute b = b + b′ into Eq. 5.51 and then

ensemble average, we obtain

∂b

∂t
+ u · ∇b+ u′ · ∇b′ = κ∇2b, (5.52)

where u is the mean velocity and u′ is the eddy velocity. Then using the Boussinesq
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assumption, we obtain

∂b

∂t
+ u · ∇b− κ∇2b = −∇ · F, (5.53)

where F = u′b′. Subtract Eq. 5.53 from Eq. 5.51, then we get the equation for b′:

∂b′

∂t
+ (u + u′) · ∇b′ − κ∇2b′ = −u′ · ∇b+∇ · F. (5.54)

The goal here is to parameterize F. First, assuming u, u′ and b are known, we

solve b′ in Eq. 5.54. Define the Green’s function for the linear operator for b′ on the

left hand side of Eq. 5.54 as G(x, t|x′, t′):

[
∂

∂t
+ (u + u′) · ∇ − κ∇2]G(x, t|x′, t′) = δ(x− x′)δ(t− t′). (5.55)

Thus, the solution to Eq. 5.54 is

b′(x, t) = −
∫
dx′dt′G(x, t|x′, t′)u′j(x′, t′)

∂b(x′, t′)

∂x′j
+

∫
dx′dt′G(x, t|x′, t′)∂Fj

∂x′j
(5.56)

and the eddy flux Fi is

Fi = u′ib′ = −
∫
dx′dt′u′i(x, t)G(x, t|x′, t′)u′j(x′, t′)

∂b(x′, t′)

∂x′j
(5.57)

+

∫
dx′dt′u′iG(x, t|x′, t′)∂Fj

∂x′j
.

Now we can get

Fi = u′ib′ = −
∫
dx′dt′Kij(x, t|x′, t′)

∂b(x′, t′)

∂x
′
j

+

∫
dx′dt′Hi(x, t|x′, t′)

∂Fj
∂x
′
j

, (5.58)
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where

Kij(x, t|x′, t′) = u′i(x, t)G(x, t|x′, t′)u′j(x′, t′)

and

Hi(x, t|x′, t′) = u′iG(x, t|x′, t′).

Eq. 5.58 tells us that the eddy tracer flux at (x, t) depends on both local and nonlo-

cal mean tracer gradient, indicating that the eddy tracer flux is a nonlocal process.

Note that the only assumption we used to obtain Kij(x, t|x′, t′) and Hi(x, t|x′, t′) from

Eq. 5.51 is the Boussinesq assumption and thus these formulas quite accurately cap-

ture the mixing properties of tracers. However, in practice, diagnosing Kij(x, t|x′, t′)

is challenging, as it involves the computation of Green function. Thus, for compu-

tation purpose, we next further simplify Eq. 5.58 by assuming that the system is

homogeneous.

Computation technique and interpretation

First, we focus on solving the term with Kij in Eq. 5.58. Define the operator

D =
∂

∂t
+ (u + u′) · ∇ − κ∇2. (5.59)

Consider the problem

DUi(x, t) = 0, (5.60)

with the initial condition

Ui(x, t0) = u′i(x, t0). (5.61)

In another form, the problem can be written as one single equation:

DUi(x, t) =

∫
u′i(x

′, t0)δ(t− t0)δ(x− x′)dx′. (5.62)
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Here we explain why Eq. 5.62 is equivalent to Eqs. 5.60 and 5.61. First,

∫
u′i(x

′, t0)δ(t− t0)δ(x− x′)dx′ = u′i(x, t0)δ(t− t0).

Thus, when t > t0, we obtain DUi(x, t) = u′i(x, t0)δ(t − t0) = 0, which is just Eq.

5.60. If we integrate Eq. 5.62 over an infinitesimal time interval [t0−∆t, t0 + ∆t], we

obtain

[Ui(x, t0+∆t)−Ui(x, t0−∆t)]+

∫ t0+∆t

t0−∆t

[(u+u′)·∇−κ∇2]Ui(x, t)dt = u′i(x, t0). (5.63)

Assuming Ui(x, t) is discontinuous at t = t0 and Ui(x, t) = 0 when t < t0, as ∆t→ 0,

the left hand side of Eq. 5.63 is reduced to Ui(x, t
+
0 ); thus Ui(x, t

+
0 ) = u′i(x, t0), which

is equivalent to Eq. 5.61.

Recall that

DG(x, t|x′, t0) = δ(x− x′)δ(t− t0). (5.64)

Integrate Eq. 5.64 with respect to x′, we can get

∫
u′i(x

′, t0)DG(x, t|x′, t0)dx′ = D

∫
u′i(x

′, t0)G(x, t|x′, t0)dx′ (5.65)

=

∫
u′i(x

′, t0)δ(t− t0)δ(x− x′)dx′.

Comparison between Eqs. 5.65 and 5.62 tells us that

Ui(x, t) =

∫
u′i(x

′, t0)G(x, t|x′, t0)dx′. (5.66)

Assuming the system is homogeneous, then ∇ ·F is not an important term in the

equation of b′ and thus the term with Hi in Eq. 5.58 is negligible. Also assuming
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that there is a scale separation, that is, ∇b is approximately a constant, we can get

Fi = u′ib′ = −
∂b(x, t)

∂xj

∫
dx′dt′u′i(x, t)G(x, t|x′, t′)u′j(x′, t′). (5.67)

That is,

Fi = −∂b(x, t)
∂xj

∫
dt′u′i(x, t)

∫
G(x, t|x′, t′)u′j(x′, t′)dx′. (5.68)

That is,

Fi = −∂b(x, t)
∂xj

∫
u′i(x, t)Uj(x, t)|t′=t0dt′. (5.69)

For stationary process, we can change dt0 into dt in the following integral:

Fi = −∂b(x, t)
∂xj

∫
u′i(x, t)Uj(x, t)dt0 = −∂b(x, t)

∂xj

∫
u′i(x, t)Uj(x, t)dt. (5.70)

Therefore,

Fi = −∂b(x, t)
∂xj

∫
u′i(x, t)Uj(x, t)dt = −Dij

∂b(x, t)

∂xj
, (5.71)

where Dij =
∫
u′i(x, t)Uj(x, t)dt.

Now consider the meaning of Dij. Substitute Eq. 5.71 into Eq. 5.53, we can get

∂b

∂t
+ u · ∇b− κ∇2b = −∇ · F = ∂i(Dij∂jb). (5.72)

Decompose Dij into two parts

Dij = Lij +Kij,

where Kij is the symmetric part and Lij is the antisymmetric part of Dij. Therefore,

∂b

∂t
+ (u + û) · ∇b− κ∇2b = ∂i(Kij∂jb), (5.73)

179



where û = −∂iLij representing the Stokes drift part. The right hand side represents

the eddy diffusion part. Kij is eddy diffusivity. Note that k � Kij.

To summarize, assuming the system is homogeneous and there is a scale separation

between the ensemble average and the eddies, the ensemble average of the eddy tracer

flux can be parameterized as

Fi = −Dij
∂b(x, t)

∂xj
,

whereDij =
∫
u′i(x, t)Uj(x, t)dt. Uj can be solved numerically by integratingDUi = 0,

with Ui(x0, t0) = u′i(x0, t0). The symmetric part of Dij is the eddy diffusivity Kij.

5.8.4 A theory about effect of mean flow on mixing

Here we discuss why the imposed mean flow does not influence the spatially averaged

Dij, that is < Dij >, in the barotropic quasi-geostrophic system on a beta-plane

forced by external forcing with small or zero decorrelation time scales.

First, consider Dij in a system with no mean flow imposed. The eddy velocity

and Dij in this case are respectively u′A and DAij. From Section 5.8.3, we know that

DAij =

∫
u′Ai(x, y, t)UAj(x, y, t)dt, (5.74)

where UAj(x, y, t) satisfies

(
∂

∂t
+ u′A · ∇ − κ∇2)UAj(x, y, t) = 0 (5.75)

with

UAj|t=0 = u′Aj(x, y, t)|t=0. (5.76)
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Next, consider Dij in a system with mean flow U imposed. The eddy velocity and

Dij in this case are respectively u′B and DBij. Again, we know from Section 5.8.3

that

DBij =

∫
u′Bi(x, y, t)UBj(x, y, t)dt, (5.77)

where UBj(x, y, t) satisfies

(
∂

∂t
+ U · ∇+ u′B · ∇ − κ∇2)UBj(x, y, t) = 0 (5.78)

with

UBj(x, y, t)|t=0 = u′Bj(x, y, t)|t=0. (5.79)

As in Section 5.3.1, if we use the Galilean invariance for the barotropic model and

define a moving coordinate (x′, y′, t):

x′ = x− Ut, y′ = y − V t, t′ = t,

we get

u′B(x, y, t) = u′A(x′, y′, t) = u′A(x− Ut, y − V t, t) (5.80)

from a statistical point of view (Section 5.3.2). Using Eq. 5.80, we can write Eqs.

5.78 and 5.79 in the coordinates (x′, y′, t′):

(
∂

∂t′
+ u′A(x′, y′, t) · ∇ − κ∇2)UBj = 0 (5.81)

with

UBj|t=0 = u′Bj(x, y, t)|t=0 = u′Aj(x
′, y′, t′)|t=0. (5.82)
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The comparison between Eqs. 5.81 and 5.82 with Eqs. 5.75 and 5.76 shows that

UBj = UAj(x
′, y′, t′) = UAj(x− Ut, y − V t, t). (5.83)

Eqs. 5.80 and 5.83 tells us that

u′BiUBj = u′Ai(x− Ut, y − V t, t)UAj(x− Ut, y − V t, t). (5.84)

Thus, at every time step in the doubly-periodic domain,

u′Bi(x, y, t)UBj(x, y, t)

has the same spatial pattern as

u′Ai(x, y, t)UAj(x, y, t).

Therefore,

< u′Ai(x, y, t)UAj(x, y, t) >=< u′Bi(x, y, t)UBj(x, y, t) >

and

< DAij >=< DBij >,

where < · > denotes the spatial average over the doubly-periodic domain. Therefore,

the spatially averaged eddy diffusivity does not depend on the imposed mean flow.
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Chapter 6

Conclusions

This thesis mainly presents our research on two problems about oceanic eddies. Chap-

ter 3 is about the eddy-mean flow interaction in the global ocean from the ECCO2

state estimate. Chapters 4 and 5 are about banded structures in the low-frequency

eddy field: their amplitude, contribution to mixing and energy budgets, and the ef-

fect of time-mean circulation on their origin and properties. Next, we summarize our

main findings and discuss some remaining questions.

6.1 ECCO2 state estimate evaluation

The ECCO2 state estimate is an eddy-permitting global simulation and it serves

as an important tool in this thesis. Thus, as a preparation for our study about

eddies, we describe the ECCO2 state estimate and explore its fidelity through model-

data comparison in Chapter 2. We find that the amplitude of eddies in the ECCO2

state estimate is consistent with observations, especially in the upper 2000 m of

the mid- and low latitude regions. Besides the consistency with observations, another

advantage of this simulation is that it is a free-forward run using the optimized control
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parameters, which are obtained by reducing the model-data misfit using the Green

function method. Therefore, the solution is dynamically consistent and thus is a

proper tool for budget diagnosis and dynamics exploration. This thesis illustrates the

utility of the ECCO2 state estimate in our eddy studies.

To further improve and develop the ECCO2 state estimate, we need to compare

many more aspects about the eddy field with observations. For example, the alti-

metric data has recently been used extensively to evaluate the lifetime, amplitude,

rotation speed and length scale of vortices (e.g. Chelton et al., 2011), and the particle

dispersion and tracer mixing rate induced by eddies (e.g. Rypina et al., 2012; Aber-

nathey, 2012). It is still unknown how much the ECCO2 state estimate is consistent

with those observed eddy properties.

To improve the state estimate, one should also go beyond the superficial compar-

ison and assess the causes of the model-data misfit. We speculate that the relative

larger misfit at high-latitudes and deep ocean could be due to a combination of lack

of observations there, poor quality of available observations, inadequate horizontal

resolution compared to the deformation radius, and inadequate vertical resolution.

Some sensitivity experiments may help assess the main source of errors and provide

guidance for further improvement of the state estimate.

6.2 Eddy-mean flow interaction in the global ocean

Chapter 3 is mainly a description about eddy-mean flow interaction in the global

ocean from the energy perspective. To out best knowledge, this is the first global

diagnosis of the complete set of eddy-mean flow interaction energy terms (i.e. those

listed in Table 3.1). Eddy-mean flow interaction through eddy momentum fluxes is

most active in the western boundary regions and the Southern Ocean, whereas the
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interaction through eddy density fluxes is most pronounced in the western boundary

regions, the Southern Ocean and the subtropical gyres. One of our contributions is

that we illustrate the value of our eddy-mean flow interaction diagram (Figure 3-1),

which is modified from the original Lorenz energy diagram by adding the energy

divergence terms through eddy-mean flow interaction. Using this diagram, we obtain

one of our key findings in this chapter: eddy-mean flow interaction through eddy

density fluxes is to some extent nonlocal in the Southern Ocean and the western

boundary extension regions, but it is local in the selected subtropical gyre region.1

Our results are incomplete and come with caveats. First, our results about lo-

cal and nonlocal eddy-mean flow interaction are certainly not final words, due to

uncertainties in the ECCO2 state estimate, the limited record length, and the quasi-

geostrophic assumption in our APE definition. Second, we did not close these energy

budgets, as some model variables (e.g. varying viscosity and high-frequency signals)

are not available due to the large storage requirement for the output. To close the bud-

get without increasing the storage cost, we suggest develop some codes for MITgcm

(Marshall et al., 1997a,b) to produce and save these energy terms or closely related

fluxes directly, as the model runs. Third, our description focuses on the energy per-

spective of eddy-mean flow interaction. The pathways of momentum, vorticity and

enstrophy in the ECCO2 state estimate during eddy-mean flow interaction process

are to be characterized and interpreted.

On the other hand, our work also points towards some key future directions. A

common assumption used in previous theoretical studies about eddies, jets and insta-

bilities is that the ocean patch is homogeneous (e.g. Arbic and Flierl, 2004; Venaille

et al., 2011; Panetta, 1993; Thompson, 2010). Eddy-mean flow interaction is local

under this assumption; however, our work indicates that eddy-mean flow interaction

1Local vs. nonlocal eddy-mean flow interaction is defined in Chapter 3.
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is non-local in some regions. A question thus arises: what are the consequences of this

non-local nature of eddy-mean flow interaction on instabilities, jet dynamics, eddy

characteristics and eddy’s contribution to transport and mixing? As to the cause of

this non-local nature, we only provide a superficial answer in this descriptive chapter:

many ocean regions are inhomogeneous. Further work needs to be done in this aspect.

More future directions are listed in Chapter 3.

6.3 Striations in the time-mean circulation and their

consequences

Amplitude and consequences of striations

One of the key conclusions in Chapter 4 is that a noticeable percentage of zonal

velocity variability is associated with striations. Specifically, the analysis using both

the ECCO2 state estimate and the altimetric data shows that more than 10% (20%) of

the zonal velocity variability is contained in striations in the upper 1100 m in the East

(Central) North Pacific region. To estimate the percentage, we define striations as

banded structures in the low-frequency motions and we provide a method to determine

the separation frequency ΩS between low-frequency and high-frequency motions. One

caveat is that our method to determine ΩS does not work at the depth level where a

large number of grid points represent land.

Motivated by the non-negligible percentage, we suspect that striations have non-

negligible contribution to tracer mixing/transport and energy cycle. Thus, in Chapter

5, we formulate diagnostic framework to quantify the consequences of striations in

these two aspects and use the barotropic quasi-geostrophic model on a beta plane to

test the utility of our framework. We find that, the contribution of striations to tracer
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mixing and energy budget has interesting behavior even in such a highly simplified

model: their contribution is sensitive to the imposed mean flow direction and only

when striations are dominated by Rhines jets that they contribute significantly to

mixing and the energy cycle. We also find that in such a simple system, the mean

flow has no effect on the energy cascade in the wavenumber domain and the spatially

averaged total mixing of passive tracers, but the mean flow does have an effect on the

energy cascade characteristics in the frequency domain.

Effect of time-mean circulation on striations’ origin

Besides the amplitude and consequences of striations, we also explore the origin of

striations in Chapters 4 and 5. Specifically, we investigate the effect of the time-mean

subtropical gyre on the origin and properties of striations. This study is motivated by

the fact that both striations and the gyre-scale time-mean circulation are pervasive

in the world ocean.

In Chapter 4, first we analyze striations in the ECCO2 state estimate. We find

that striations in the ENP region are embedded in a southward gyre flow and they tilt

towards the southwestward direction, while striations in the CNP region are embedded

in a westward gyre flow and they are zonal. One key finding is that striations roughly

align with the eddy-propagation direction in the CNP region and the southern part of

the ENP region. We proposed a hypothesis: the gyre-flow contributes to the difference

of the striation direction in these two regions.

Next, we test this hypothesis in Chapter 4 by formulating and solving an idealized

1.5-layer model, which explicitly includes the gyre flow. Since we define striations

as banded structures in low-frequency motions, we interpret their origin and the

gyre-effect from the frequency-wavenumber spectra of eddies. Striations do exist in

the idealized model and their directions are qualitatively similar to those from the

ECCO2 state estimate. In the linear limit, we derive the analytical solution of the
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spectra and find that striations are quasi-stationary linear Rossby waves. In this case,

the gyre-flow influences the striation direction through influencing the zero Rossby

wave frequency curve in the wavenumber space. In the nonlinear case, striations

follow the eddy propagation direction. We formulate a simplified spectra model for

non-dispersively propagating eddies, which is consistent with the numerical result.

The spectra model suggests that striations arise as the temporal averaging effect

of these non-dispersively propagating eddies. The consistency between the eddy-

propagation direction and the striation direction is related to the non-dispersive lines

in the spectra. In this case, the gyre-flow influences the striation direction by affecting

the eddy-propagation direction. For example, eddies in the East Region propagate

to the southwestward direction due to the advection of the southward gyre flow and

thus striations are titled.

As described above, the main purpose of Chapter 5 is to develop the diagnostic

framework to evaluate striations’ consequences. To help test the diagnostic framework

through further interpretation, Chapter 5 also explores the effect of mean flow on the

striation origin in this nonlinear barotropic model on a beta plane. We find that 90%

of the large values on the three-dimensional frequency-wavenumber spectra occur

roughly on the surface of Rossby wave dispersion relation. Therefore, the eddy field

here is approximately a set of weakly interacting Rossby waves. One main result is

that striations here are quasi-stationary Rossby waves and whether Rhines jets are

part of the striations depend on the meridional component of the imposed mean flow.

The eddy-propagation mechanism does not apply here.

Remaining problems

Here I offer a brief description about some remaining issues about striations’

amplitude, consequences, origin and mean flow’s effect. Readers can refer to Chapters

4 and 5 for more discussions about remaining issues and applications.
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First, we only estimated the percentage of zonal velocity variability contained in

striations in two regions. In order to get a more complete quantitative estimate about

the importance of striations in oceanic variability, one can extend our work to other

areas in the global ocean and to other oceanic variables. Besides using the ECCO2

state estimate and the altimetric data, one can also obtain the percentage from the

model spectra for many oceanic variables (e.g. three-dimensional velocity, density,

temperature) presented in Wortham (2012). The comparison between the percentage

estimate from the model spectra and those from observations and eddying models

is a test of whether the striation amplitude in the model spectra is realistic. This

comparison can be useful in further improving the model spectra, which have many

applications as listed in Wortham (2012).

Another possible future direction is to estimate the consequences of striations

in realistic contexts (e.g. their contribution to tracer transport, energy, momentum

and vorticity pathways in the global ocean). One limitation of Chapter 5 is that

our barotropic model is an oversimplified representation of the ocean and thus our

results may not be directly applicable to the ocean. Using our striation definition

and our diagnostic framework and their potential descendants, one can evaluate the

role of striations in tracer mixing, transport and energy cycle in some important

ocean regions, such as the region for the Diapycnal and Isopycnal Mixing Experiment

in the Southern Ocean (DIMES, Gille et al., 2007).2 The Southern Ocean State

Estimate (i.e. SOSE, Mazloff et al., 2010) is one of the models suitable for this

investigation. Studies in this aspect may eventually help assess the role of striations

in setting the climate mean state (e.g. temperature and salinity) and improve mixing

representations in oceanic models. Some other interesting questions are how much

2Previous studies show that striations do exist in the Southern Ocean (e.g. Figure 1 in Maxi-
menko et al., 2008).
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energy from the wind power input eventually transfers to striations and how much

energy loss is through the dissipation of striations.

A third question is to what extent our interpretations about the origin of striations

identified from our simple models are relevant to the ocean. Among the interpreta-

tions we proposed, the eddy-propagation mechanism is probably most relevant to

striations in the eddying realistic models and the ocean. This mechanism may be

relevant in the open ocean between a few degrees off the equator and 45 degrees.

Readers can refer to Sections 4.5 and 5.6 for more discussion about the relevance of

our interpretations to the ocean and possible methods for quantitative tests.

Fourth, our interpretations about striations’ origin are certainly not final. Our

interpretations are mostly based on either analytical frequency-wavenumber spectra

or idealized spectra model. We need to understand what sets the spectra shape, such

as the slope of the non-dispersive line in the 1.5-layer model and the sensitivity of

the spectra shape to the magnitude of deformation radius. Also many interpretations

about the striation origin in previous studies are dynamical, such as Rossby wave

instabilities and nonlinear self-interaction of eigenmodes (e.g. O’Reilly et al., 2012;

Berloff, 2005). It is still unknown whether these various mechanisms are different

or essentially consistent, and how to interpret these previously proposed mechanisms

from the spectral perspective. If these mechanisms are indeed different, which mech-

anism dominates in the ocean? If some of them are consistent, how to synthesize the

consistent ones into a general theory about striations? More relevant questions are

in Chapters 4 and 5.

Finally, one key limitation of our striation study is that our 1.5-layer model and

the barotropic model are the simplest possible ones. We choose these models because

one can isolate key dynamical factors and thus gain insights more easily, and one

can test the utility of the new diagnostic framework easily due to its computational
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efficiency. However, though our models are complex enough to produce some interest-

ing relevant features, some aspects of our models are not representative of the ocean

(e.g. the absence of topography and modal coupling). We suggest further investiga-

tions using a hierarchy of ocean models to assess the role of topography, mean flow,

modal coupling, eastern boundary current, islands and surface forcing on the origin,

direction, amplitude and consequences of striations. A proper choice of the more

complicated models is the two-layer model, the utility of which in the mid-latitude

vortex study and the Southern Ocean jets study have been suggested by Arbic and

Flierl (2004) and Thompson (2010). Comparison between results from these models

with those from the realistic ECCO2 state estimate can also be useful.
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