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Abstract

The rapid development and applications of high throughput measurement techniques bring the

biological sciences into a 'big data' era. The vast available data for enzyme and metabolite

concentrations, fluxes, and kinetics under normal or perturbed conditions in biological networks

provide unprecedented opportunities to understand the cell functions. On the other hand, it brings

new challenges of handling, integrating, and interpreting the large amount of data to acquire

novel biological knowledge. In this thesis, we address this problem with a new ordinary

differential equation (ODE) model based on the mass-action rate law (MRL) of the biochemical

reactions. It describes the detailed biochemical mechanisms of the enzyme reactions, and

therefore reflects closely of how the enzymes work in the systems. Because the MRL models are

constructed with elementary enzyme reaction steps, it is also much more flexible than the

aggregated rate law (ARL) model to incorporate new enzyme interactions and regulations. Two

versions of the MRL model ensembles for the central carbon metabolic network, which generates

most of the precursors for the secondary metabolite, were constructed. The E. coli version

contains the basic reactions in this network and was applied to optimize the aromatic amino acid

production which requires fine-tuned flux partition between glycolysis pathway and the pentose

phosphate pathway. The S. cerevisiae version is more sophisticated with the incorporated

dynamics of the NAD/NADH and NADP/NADPH, as well as the automatic switch from aerobic

to anaerobic condition. It was applied to maximize the ethanol production yield, for which the

NAD/NADH ratio is a crucial regulating factor. In order to develop methodologies to understand

the intrinsic network properties and optimize the network behavior, we further explored

approaches for the identification of pathway bottlenecks. Four computational assays were studied,
including metabolite accumulation, conditional Vmax, increased glucose input, and decreased Eo,
which were applied to the ethanol model ensemble to discover their effectiveness in bottleneck

identification in this network. The TDH reaction was detected as a major bottleneck restricting
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carbon flow towards the ethanol pathway and affecting NADH availability. To manipulate the
network for desired production rates of target metabolites, we developed an optimization
technique for mass-action rate law ODE models that allows parallel or sequential combinations
of enzyme knock-out and over-/under-expression strategies to be conducted on the model. Many
strategies were suggested to improve the aromatic amino acid production and help identify the
two-direction flux feature of the pentose phosphate pathway. Strategies were also found to
enhance the ethanol production yield above 95% of the theoretical yield. Although the two
applications studied here are both in the field of metabolic engineering, it is anticipated that the
mass-action rate law models for the central carbon metabolism can be extended to study the
cancer metabolism. Preliminary studies show promising results for designing cancer clinical trial
simulations with a combined model incorporating high level cancer progression and detailed
cancer biochemical metabolism.

Thesis Supervisor: Bruce Tidor

Title: Professor of Biological Engineering and Computer Science
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Chapter 1

Introduction

High-throughput technologies in biological and medical studies have improved significantly

in quality while reducing their cost in the past decade, which has led to the generation of large

data sets describing biological network topology, enzyme kinetic behavior, biochemical reaction

dynamics, and species concentrations. Free access to these data sets makes it possible to create

quantitative models for large-scale biological networks that describe their behavior at the

mechanistic level. High-quality mechanistic models are expected to be capable of providing

critical insights into the behavior of biological networks and thus lead to the development of new

biological knowledge and guide experiments in network re-engineering. With proper control of

uncertainty, computational modeling can save researchers in academia and industry both time

and money by providing valuable predictions, prototyping experiments, and directing design.

Modeling can also help to discover important but sometimes hidden network properties, such as

alternative network states or intrinsic bottlenecks. New techniques are needed to manipulate

these detailed and often complex models in order to develop strategies that optimize network

behavior to suit biomedical or biotechnological goals. More than just the construction of

computational models, the development of strategies for studying, analyzing, and designing with
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these models provides tremendous potential for impact and growth of capabilities, particularly to

advance metabolic engineering and medical applications.

1.1 Computer-aided biological network analysis and optimization

With biology increasingly becoming a data-rich field, an emerging challenge is how to

organize, sort, interrelate, and contextualize all of the high-throughput data sets becoming

available. Most of these data sets are large enough to exceed the human ability to directly read

out deep biological knowledge. Traditional biological techniques are no longer enough to

efficiently interpret these large data sets. This challenge has motivated the field of computational

and systems biology, wherein computational and statistical analyses of high-throughput data are

used to infer biochemical network structure, function, and response to stimulation and

intervention. During the past few decades, most of efforts in computational and systems biology

have been focused on solving three major problems: reconstruction of biological networks,

simulation of network responses, and optimization of network behaviors. Two classes of

biological systems, gene expression regulatory networks and metabolic networks, have received

the most attention and are used as case studies to develop novel computational methodologies.

Many modeling techniques have been developed to infer or 'reverse-engineer' gene networks

(Bansal et al., 2007), which is defined as the process of identifying gene interactions from

experimental data through computational analysis, including clustering (Amato et al., 2006;

Eisen et al., 1998), Bayesian analysis (Friedman et al., 2000; Yu et al., 2004), information

theoretic approaches (Margolin et al., 2006; Steuer et al., 2002), and ordinary differential

equation modeling (Bansal et al., 2006; Gardner et al., 2003; di Bernardo et al., 2005). These

methodologies generally utilize steady-state gene expression data or short time-series data to
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infer gene interactions and have different performance depending on the quality of the data and

the network properties (Bansal et al., 2007). With the vast availability of genome sequence data,

the genome-scale metabolic reconstructions have also exploded during the past decade

(Oberhardt et al., 2009). Since the publication of the first genome-scale metabolic reconstruction

of Haemophilus influenza (Edwards & Palsson, 1999), the field of genome-scale metabolic

network analysis has expanded rapidly, and more than 50 genome-scale metabolic

reconstructions have been published.

With the expanded use of computational techniques, many models have been constructed for

biological networks, and network topologies as well as molecular mechanisms through which

regulation is achieved have been identified and reported in several major databases (e.g., KEGG

(Kanehisa & Goto, 2000), BRENDA (Scheer et al., 2010)). However, our understanding of the

functioning of the regulatory systems is still insufficient for many applications. Nevertheless,

techniques to simulate models and develop novel knowledge are important research frontiers.

Simulation techniques have been developed for different formalisms, including directed graphs,

Bayesian networks, Boolean networks and their generalizations, ordinary and partial differential

equations, qualitative differential equations, stochastic master equations, and rule-based

formalisms (de Jong, 2002). The biological results for gene regulation networks obtained through

these applications have been the subject of several reviews (Endy & Brent, 2001; Hasty et al.,

2001; McAdams & Arkin, 1998; Smolen et al., 2000).

The desire to engineer cellular features to produce desired molecules and other cellular

functions has led to the rapid development of metabolic engineering and synthetic biology, both

of which aim to manipulate microorganisms or other cells in order to optimize desired cell

behavior. Metabolic engineering studies the directed improvement of cellular properties through
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modification of specific biochemical reactions or introduction of new ones with the use of

recombinant DNA technology. There are numerous applications of metabolic engineering

published in the scientific and patent literature, a major effort of which has been on the improved

fermentation production of chemicals of commercial and industrial importance, such as amino

acids, polymers, lipids, and biofuels (Alper & Stephanopoulos, 2009; Atsumi & Liao, 2008;

Bailey, 1991; Barkovich & Liao, 2001; Bongaerts et al., 2001; Cameron & Tong, 1993; Cameron

& Chaplen, 1997; Keasling, 1999; Li & Vederas, 2009; Stephanopoulos & Sinskey, 1993; Tyo et

al., 2007). Synthetic biology aims to modify cellular behavior to perform new tasks and construct

complex networks in single-cell and multicellular systems. Recent achievements include the

development of sophisticated non-native behaviors such as bi-stability, oscillations, proteins

customized for biosensing, optimized drug synthesis, and programmed spatial pattern formation

(Andrianantoandro et al., 2006; Benner & Sismour, 2005; Khalil & Collins, 2010; McDaniel &

Weiss, 2005). For both metabolic engineering and synthetic biology, computational modeling

and optimization play crucial roles. Research can be done utilizing the strengths of both (Lee et

al., 2008).

1.2 Mechanistic modeling of metabolic networks

Metabolic networks, especially the central carbon metabolic network, are popular targets for

developing modeling techniques, because they are among the best studied networks with well

studied network topology, regulation, and measurement data. Escherichia coli has gained the

most attention as a model organism given the mature techniques for DNA manipulation of its

genome (Oberhardt et al., 2009). Saccharomyces cerevisiae is also a frequently used model

organism due to its popularity in producing industrial alcohol. Many of the desired metabolic
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products are end or intermediate compounds of the central carbon metabolic network, which

usually includes the glycolysis pathway and the pentose phosphate pathway. Twelve well-known

precursor metabolites serve as branch points from the central carbon metabolic network to

generate biomass, and nine of them sit in glycolysis and the pentose phosphate pathway

(Neidhardt et al., 1990). Glucose is the main carbon input of the central carbon metabolic

network. It is oxidized via either glycolysis to generate ATP and metabolic intermediates, or the

pentose phosphate pathway to yield ribose 5-phosphate for nucleic acid synthesis and NADPH

for reductive biosynthetic processes. For most eukaryotic cells and many bacteria living under

aerobic conditions, pyruvate produced by glycolysis is further oxidized to H20 and CO 2 via the

citric acid cycle (TCA cycle), in the process generating significant energy in the form of ATP

(Nelson & Cox, 2008). In order to maximize the production yield of the desired metabolites by

designing and predicting productive modifications to this complex network, considerable effort

has been put into developing a quantitative understanding and mathematical description of

central carbon metabolism. Several mathematical models of various types have been developed

and applied over the past few decades, including flux balance analysis (FBA) and ordinary

differential equation (ODE) models (Burgard et al., 2003; Chassagnole et al., 2002; Edwards &

Palsson, 2000; Pramanik & Keasling, 1998; Schmid et al., 2004; Usuda et al., 2010; Vital-Lopez

et al., 2006). The FBA model is one of the most widely used model types in the field of

metabolic engineering. It requires relatively modest information regarding biological

mechanism, which usually includes a list of chemical reactions with their stoichiometry, flux

constraints, and specification of feeds and metabolic demands (Kauffman et al., 2003;

Stephanopoulos et al., 1998; Varma & Palsson, 1994). Most of the information can be readily

acquired from existing literature and databases (e.g., KEGG (Kanehisa & Goto, 2000) and
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BRENDA (Scheer et al., 2010)). A set of linear equations is constructed from the stoichiometry

of the reactions so that the fluxes going in and coming out from a node (metabolite) of the

network are the same. The fluxes of each branch of the network at steady state can then be

learned by solving this set of equations. Therefore, FBA models have advantages when modeling

large-scale (e.g., whole genome) networks. However, the steady-state condition is assumed for

FBA models, which usually leads to an underdetermined set of equations with a continuous

space of acceptable solutions. In practice, maximizing biomass production on the assumption

that evolution would favor such solutions or minimizing metabolic adjustment (MOMA), in

which it is assumed that metabolic fluxes in a knock-out strain undergo minimal redistribution

with respect to the flux configuration of the wild type (Segre et al., 2002), is used in order to

obtain a unique solution. The risk is if the assumptions are not valid, the optimal FBA solution

may not correspond to the observed flux distribution in the cell (see review by Edwards et al.,

2002). Yet, this condition becomes problematic for mutant strains, in which evolution may not

have achieved optimality. Therefore, the predictive ability of FBA can be limited, especially for

mutant strains with gene knock-outs.

In contrast to the steady-state nature of FBA models, ODE models, including the aggregated

rate law (ARL) and the mass-action rate law (MRL) forms, incorporate network dynamics and

are considered to represent the actual enzyme mechanisms of the network (Chassagnole et al.,

2002; Lee et al., 2006; Liao et al., 1996; Tzafriri, 2003). ARL modeling simplifies the

description of a single enzymatic step by aggregating the elementary steps associated with a

specific mechanism into a single reaction, where the rate becomes a sometimes complex and

very non-linear function of the species concentrations involved (Lee et al., 2006; Liao et al.,

1996; Tzafriri, 2003). The rate formulae are usually derived from mass-action laws with certain

22



assumptions (e.g., quasi-steady state) or acquired as empirical equations from the literature.

MRL modeling does not simplify the elementary enzymatic reaction steps and includes all

intermediate metabolites as tractable variables, which makes it possible to detect which

intermediate step of the enzymatic reaction causes problem when a certain enzyme becomes

bottleneck of the network. ODE models generally have more parameters than the corresponding

FBA models and require more experimental data to fully determine these parameters. At the

same time, the higher dimensional parameter space makes ODE models more flexible to

incorporate complicated network topologies and regulations. If unconstrained, the space of

steady states reachable by both FBA and ODE models is the same, but ODE models can readily

map the parameter constraints into the kinetically feasible regions of the solution space, whereas

it is not easily transferable to FBA models (Machado et al., 2012).

In this thesis, I present two versions of mass-action rate law model ensembles for the central

carbon metabolic network, one for E. coli and one for S. cerevisiae. The E. coli version contains

the basic reactions in this network and is suitable for analyzing basic network behavior and

optimizing most amino acid productions. The S. cerevisiae version incorporates the dynamics of

the NAD/NADH and NADP/NADPH, as well as the switch from aerobic to anaerobic conditions.

It is thus a more comprehensive tool and can be used for analyzing effects from a wide variety of

experimental conditions, such as different glucose and oxygen conditions. The implemented

oxygen consumption mechanism by oxidative phosphorylation enables the model to convert to

anaerobic condition when oxygen is depleted, which makes it possible to analyze the steady-state

changes for all metabolites in the network after this crucial condition switch. It can also provide

deep insight into the regulatory function of the NAD to NADH ratio on the dynamics of this

network, which is demonstrated as an important regulating factor for the network state. The E.
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coli model was applied to optimize the aromatic amino acid production (Chapter 2) and the S.

cerevisiae model was applied to maximize the ethanol production yield (Chapter 3). They can be

easily extended to study production of other chemicals branching from the central carbon

metabolic network (e.g., high carbon alcohol).

1.3 Techniques for rate-limiting reaction detection and release

Increasing the productivity of target chemicals is the main goal of metabolic engineering.

Although much effort has been made to determine efficient strategies that improve the

production rate of target chemicals, there is less research on how to systematically discover the

bottlenecks in the system--that is, to identify targets for rational genetic engineering. In order to

increase the productivity and yield of metabolite production, researchers have focused almost

exclusively on enzyme amplification or other modifications of the product pathway

(Stephanopoulos & Vallino, 1991). In those studies, an enzymatic reaction is often labeled a

bottleneck if overexpressing that enzyme improves the production of target chemicals (Dai et al.,

2002; LUtke-Eversloh & Stephanopoulos, 2008). However, increased production of many

metabolites requires significant redirection of flux distributions in primary metabolism, such as

glycolysis, the pentose phosphate pathway, and the citric acid (TCA) cycle. It can be especially

challenging to identify bottlenecks in primary metabolism, because of the complexity of network

topology and regulation. Approaches such as metabolic control analysis (Heinrich & Rapoport,

1974; Kacser & Bums, 1973) have received considerable attention. However, their value in

guiding metabolic engineering efforts remains uncertain, given the significant drawback that this

method of only valid in the local neighborhood of the operating point evaluated (Stephanopoulos

& Vallino, 1991). Dynamic sensitivity analysis is another effort to detect bottlenecks in primary

24



metabolism, in which relative changes of target metabolite concentration caused by an

infinitesimal percentage change in any enzyme activity are calculated and used to predict

bottlenecks (Shiraishi & Suzuki, 2009). However, this method provides limited insight into the

intrinsic properties of the network that cause those reactions to be bottlenecks. The network

rigidity and principal nodes theory has been developed by Stephanopoulos and Vallino (1991),

which can identify nodes in the network that have inherent resistance to flux partitioning

alterations. This theory is useful to identify branching nodes and enzyme reactions that are

crucial and potentially harder to modify in order to increase the yield of target chemicals.

In this thesis, I present a framework to systematically identify bottlenecks in a biological

network and to study detect their relevance for target chemical production. Four computational

tests, including metabolite accumulation, conditional Vmax, glucose input, and decreased Eo, are

developed, which can be easily and efficiently calculated based on mass-action kinetical models

or ensembles of models. In particular, the conditional Vmax test is able to provide critical insight

into the intrinsic cause of network bottlenecks, which is valuable to guide design strategy

development for production improvements. A detailed description of the bottleneck detection

framework is presented in Chapter 3.

Due to the complex interactions of the central carbon metabolic network, it is usually not

obvious how to manipulate the enzymes in the network for the optimized production of the target

chemicals, even if we may already know where the bottlenecks are in the network. In Chapter 2,

I reported an optimization framework for mass-action kinetic models and their ensembles that

can efficiently identify strategies leading to enhanced aromatic amino acid production. This

optimization method allows enzyme knock-outs, in which an enzyme activity is completely

removed from an organism through genetic disruption, as well as enzyme over- and under-
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expression spanning a range from ten times to one-tenth the unperturbed concentration. All

combinations of single, double, and triple enzyme knock-outs as well as all combinations of one-

and two-enzyme expression changes were constructed and studied for aromatic amino acid

overproduction. Efficient strategies with high confidence even in the presence of parameter

uncertainties were identified. In Chapter 3, this optimization method was further developed into

a sequential single-enzyme over- and under-expression optimization framework. Compared to

the exhaustive multiple-enzyme optimization reported in Chapter 2, the single-enzyme

optimization is much more computationally efficient, as the optimization number required on the

same order of magnitude as the enzyme number in the network; whereas that of the multiple-

enzyme optimization could rapidly increase due to the large number of possibilities of enzyme

combinations. Therefore, the single-enzyme sequential optimization method is a useful technique

to identify efficient enzyme strategies for a large-scale network. The bottleneck identification

and release methodologies developed in this thesis are of general value, and are applicable to

other metabolic products beyond those studied here.

1.4 Anticipated impact on cancer therapy and clinical trial

improvement

In recently years, central carbon metabolism has been increasingly linked to cancer

progression and possible therapies. Described decades ago, the Warburg effect of aerobic

glycolysis is a key metabolic hallmark of cancer; however, its significance remains unclear (Hsu

& Sabatini, 2008; Kroemer & Pouyssegur, 2008). Research has been carried out attempting to

decode the causal relation between enhanced glycolysis and cancer development (Hsu & Sabatini,
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2008), but cancer mechanism and central carbon metabolism are both sufficiently complex that

no simple answer has emerged. The NAD/NADH ratio in cells, however, was reported as being

related to tumor development (Koukourakis et al., 2006). With the capability to model the

NAD/NADH dynamics in the network, it may now be possible to use the central carbon

metabolism model I establish in this thesis to understand cancer mechanisms and predict possible

therapeutic approaches. Some preliminary work has been conducted in this direction, which I

briefly describe here.

To link detailed mechanistic models of central carbon metabolism with higher-level cancer

progression, a cancer progression model can be used with a mutation or growth rate that depends

on the mechanistic model's output. A commonly used cancer progression model from Frank et al.

(2004), which describe the transition from wild-type cells to transformed cells using four

mutation steps with different mutation and reproduction rates, was chosen for this preliminary

test. A much simpler mechanistic model that describes selenium metabolism was used to test this

concept. Dietary selenium supplementation was reported to possibly reduce the risk for prostate

cancer; however, too high selenium levels in cells could potentially increase DNA damage

(Gromer & Gross, 2002; K6hrle et al., 2000; Schrauzer, 2000). We therefore built a simplified

mass-action model of selenium metabolism in which the selenium input can be metabolized into

selenide or methylselenol. The selenide directly can damage DNA and methylselenol can oxidize

H20 2 in the system to reduce DNA damage. We further define the mutation rate in the cancer

progression model to be proportional to the amount of the damaged DNA in the mechanistic one.

By simulating this combined model with different selenium input levels, we are able to observe

different corresponding cancer progression rates, which can be explained by the relative fluxes of

the selenide (DNA damaging) and methylselenol (H20 2 neutralizing). The results indicate that
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this type of model is capable of predicting how intracellular metabolism can affect cancer

progression. Cancer clinical trial simulation can also be established based on this combined

model. The kinetic parameters of the reactions in the selenium mechanistic model can be

sampled from a Gaussian distribution to simulate enzyme activity variations in populations. The

selenium level can also be sampled from a distribution to represent the variation in baseline

selenium in different human individuals. Cancer progression can be efficiently simulated for at

least tens of thousands of individuals. Statistical tests can then be conducted on the cancer

progression simulations to predict the outcome of clinical trials. Preliminary results show that the

outcomes of clinical trials are highly dependent on selenium response curves in human

individuals and pre-screening of patients may be needed in order to appropriately identify

patients who would benefit from dietary selenium supplementation and increase the chance of

positive clinical trial outcomes.

The preliminary results we observed suggest this type of combined model and clinical trial

simulation potential to be extended to other mechanistic metabolism models and can be used to

yield insights into clinical trial design. Further work will be required but there is in principle no

barrier to incorporating the entire central carbon metabolic network into cancer progression

models. Valuable insights about the relation between glycolysis metabolism and cancer

development are anticipated from the analysis of these models.
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Chapter 2

A Mass-Action Rate Law Ensemble Model of
E. coli Central Carbon Metabolism Applied
to Amino Acid Production

Abstract

Two types of computational models that dominate the field of metabolic engineering are flux

balance and aggregated rate law models, both of which have strengths and shortcomings. In this

report, we present a model from a third class, a mass-action rate law (MRL) model, for the E.

coli central carbon metabolic network. This mechanistic model does not require assuming

optimal behavior of the metabolic network as for flux balance modeling and also involves fewer

assumptions than aggregated rate law modeling. To estimate the uncertainty of model predictions

due to parameter uncertainty, an ensemble of sub-models was built using latin hypercube

sampling. The ensemble model was used to identify enzyme expression change strategies for

overproducing aromatic amino acids. The predicted strategies revealed implications of

complexity in the pentose phosphate pathway (PPP) and suggested that fine-tuning both the

direction and volume of the PPP flux can play an important role in improving aromatic amino

acid production. The ensemble model presented here for central carbon metabolism provides
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new opportunities for applying metabolic engineering to the production of commercially and

industrially important chemicals.
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2.1 Introduction

Metabolic engineering studies the directed improvement of cellular properties through

modification of specific biochemical reactions or introduction of new ones with the use of

recombinant DNA technology. There are numerous applications of metabolic engineering

published in the scientific and patent literature, a major effort of which has been on the improved

fermentation production of chemicals of commercial and industrial importance, e.g. amino acids,

polymers, lipids, and biofuels (Alper and Stephanopoulos, 2009; Atsumi and Liao, 2008; Bailey,

1991; Barkovich and Liao, 2001; Bongaerts et al., 2001; Cameron and Chaplen, 1997; Cameron

and Tong, 1993; Keasling, 1999; Li and Vederas, 2009; Tyo et al., 2007; Stephanopoulos and

Sinskey, 1993). One of the primary host organisms for this purpose has been Escherichia coli,

because of its wide range of growth substrates and the powerful molecular biological tools

available for its manipulation (Cameron and Tong, 1993; Feist et al., 2010; Leuchtenberger et al.,

2005). Because many of the desired metabolic products are end or intermediate compounds of

the central carbon metabolic network, it has become one of the most studied and well understood

of the biochemical pathways. Glucose, the main network input, is not only an excellent fuel but

also a remarkably versatile precursor, capable of supplying a vast array of metabolic

intermediates for biosynthetic reactions. Glucose is oxidized via two major paths - (i) through

glycolysis to generate ATP and metabolic intermediates, or (ii) through the pentose phosphate

pathway to yield ribose 5-phosphate for nucleic acid synthesis and NADPH for reductive

biosynthetic processes. For most eukaryotic cells and many bacteria living under aerobic

conditions, pyruvate produced by glycolysis is further oxidized to H20 and CO 2 via the

tricarboxylic acid (TCA) cycle, in the process generating significant energy in the form of ATP

(Nelson and Cox, 2008). Twelve well-known precursor metabolites serve as branch points from
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the central carbon metabolic network to generate biomass, and nine of them sit in the glycolysis

and pentose phosphate pathway (Neidhardt et al., 1990). In order to design and predict

productive modifications to this complex network, considerable effort has been put into

developing a quantitative understanding and mathematical description of central carbon

metabolism. Several mathematical models of various types have been developed and applied

over the past few decades, including flux balance analysis (FBA) and ordinary differential

equation (ODE) models (Burgard et al., 2003; Chassagnole et al., 2002; Edwards and Palsson,

2000; Pramanik and Keasling, 1998; Schmid et al., 2004; Usuda et al., 2010;Vital-Lopez et al.,

2006).

The flux balance form is one of the most widely used model types in the field of metabolic

engineering. It is based on the assumption that metabolic transients are more rapid than both

cellular growth rates and dynamic changes in the organism's environment (Stephanopoulos et al.,

1998; Varma and Palsson, 1994). In this view, the metabolic fluxes are considered in quasi-

steady state relative to growth. A useful feature of metabolic flux models is the relatively modest

requirements necessary in terms of specific information regarding biological mechanism. Only

three types of information are required: a list of chemical reactions with their stoichiometry; flux

constraints, such as a maximum rate for each reaction (Vnax); and specification of feeds and

metabolic demands (Kauffman et al., 2003; Stephanopoulos et al., 1998; Varma and Palsson,

1994). For the E. coli metabolic network, this information can be readily acquired from existing

literature and databases, which makes it relatively straightforward to build, although the Vmax

information is less certain. However, the steady-state condition usually leads to an

underdetermined set of equations indicating a continuous space of acceptable solutions. In

general, a unique solution is obtained by optimizing a metabolic objective function, such as
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maximizing biomass production on the assumption that evolution would favor such solutions.

Other approaches, like minimization of metabolic adjustment (MOMA), have also been

suggested, where it is assumed that metabolic fluxes in a knock-out strain undergo minimal

redistribution with respect to the flux configuration of the wild type (Segre et al., 2002). Thus,

FBA can be defined as a linear programming problem with a set of constraints. The constraints

are typically upper and lower flux bounds that define the space of allowable distributions, and

can include bounds obtained from different carbon sources and limited oxygen supply to

simulate environmental conditions (Orth et al., 2010). This construction allows FBA calculations

to proceed very quickly even for large networks and makes FBA models attractive for genome-

wide modeling. FBA has been widely used to model large-scale E. coli metabolic networks,

where several successes have been reported in predicting experimental growth rates under

different environmental and growth conditions (Edwards and Palsson, 2000; Edwards et al., 2002;

Segr& et al., 2002). However, failure to incorporate gene regulatory events and to account for

toxic intermediate build-up has led to discrepancies between model results and experimental

observations. In addition, FBA assumes consistency between the mathematical objective

function and the evolutionary objective. If untrue, the optimal FBA solution may not correspond

to the observed flux distribution in the cell (see review: Edwards et al., 2002). Yet, this condition

becomes problematic for mutant strains, in which evolution may not have achieved optimality.

Therefore, the predictive ability of FBA can be limited, especially for mutant strains with gene

knock-outs. Moreover, the detailed dynamic behavior of the network and the metabolite

concentrations are also not captured by FBA models, although they may not be necessary for

successful metabolic engineering.
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In contrast to the steady-state nature of FBA models, in recent years ordinary differential

equation (ODE) models have started to attract attention as dynamic models of metabolic

networks. Two variants of ODE models have been reported that differ in the types of rate laws

used - the aggregated rate law (ARL) model and the mass-action rate law (MRL) model. ARL

modeling simplifies the description of a single enzymatic step by aggregating the elementary

steps associated with a specific mechanism into a single reaction, where the rate becomes a

sometimes complex and very non-linear function of the species concentrations involved (Lee et

al., 2006; Liao et al., 1996; Tzafriri 2003). The rate formulae are usually derived from mass-

action laws with certain assumptions (e.g., quasi-steady state) or acquired as empirical equations

from the literature. A particularly useful ARL model for the E. coli central carbon network was

presented by Chassagnole et al. (2002). The model covers both glycolysis and the pentose-

phosphate pathway, and it is composed of 30 enzymes and 17 metabolites (Figure 1). The

aggregated reactions and their rate parameters were acquired from published literature and

databases. The model was validated with measured metabolite concentrations under transient

conditions and captures experimentally observed dynamics of metabolite concentrations.

Here we present a new mathematical model for the E. coli central carbon metabolic network.

The model is based on the Chassagnole et al. (2002) ARL model, but we recast it as an MRL

model and re-fit the parameters to additional data. In contrast to ARL, MRL models represent

enzyme reactions with a series of elementary reactions and express the reaction rate with rate

laws consisting of only second-, first-, and zeroth-order reactions. The MRL model can be

mechanistically more accurate, does not require a quasi-steady state assumption, and could be

valid over a wider range of concentrations and conditions. The general formulae of the MRL

model can be expressed in Kronecker form as
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-~ = AM'b + A X X® + B(1 )i- + BU~i 0x~ k
dt

where X is a vector of dynamic species concentrations in the network as a function of time t; Ui is

a vector of network input concentrations that are externally controlled and not evolved by the

model; 20x represents a vector Kronecker product, which is a column vector containing all

possible pair-wise combinations of the species concentrations; Ui®X is a column vector

containing all pair-wise combinations of species and network input concentrations; AM, A

BM, and BC2 ) are the corresponding coefficient matrices, the entries of which are the first- and

second-order rate constants, separately; and k contains zeroth-order rate constants. As all the

reactions in the MRL model are elementary reactions, the species vector contains not only the

metabolites and enzymes, but also the different intermediate complexes between metabolites and

enzymes. Each species participates in only a small set of elementary reactions; thus, the

coefficient matrices are sparse. This ODE-type model can be integrated numerically by a variety

of means to acquire the concentrations of all species as a function of time; long-time solutions

approach the steady state of the system. In addition to its mechanistic realism, which could make

it applicable across broad sets of conditions, the simple and standard Kronecker mathematical

representation provides an opportunity to develop standard and general software to study this

type of model.

Both the ARL and MRL forms of ODE models can simulate network dynamics and provide

both transient and steady-state information on metabolite concentrations, in contrast to FBA

models. ODE models tend to have one or a very small number of steady states, eliminating the

need for biomass maximization or MOMA assumptions as with FBA to reach a unique steady-
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state solution for a given glucose input. It was reported that if unconstrained, the space of steady

states by both FBA and ODE models is the same, but constraints of parameter range can be

readily mapped into kinetically feasible regions of the solution space of ODE models that is not

easily transferable to FBA models (Machado, et al. 2012). However, ODE models require

significant knowledge in the form of kinetic parameters, enzyme levels, and mechanistic

formulae for enzyme reactions. MRL formulations avoid the quasi-steady state assumption of

ARL ones. Moreover, ARL models require knowing the lumped enzyme reaction rate formulae,

which in theory can be obtained based on physical mechanism but are often acquired as

empirical equations. This can complicate incorporation of new enzyme reactions or regulation,

such as inhibitors or activators, which may require new lumped formulae to reactions affected.

MRL formulations, however, because of their mechanistic nature, are generally straightforward

to augment with inhibition and regulation when known.

We built out initial MRL model for E. coli central carbon metabolism from the Chassagnole

et al. (2002) model by expanding each aggregated enzyme reaction to expose the intermediate

elementary steps with their associated rate constants. The overall MRL model was then fit to the

Chassagnole et al. model so that the two models produced essentially identical rates for each

enzyme as a function of substrates. This initial model was successful at matching trajectories

from the Chassagnole et al. model. The two models showed similar behavior for the wild-type E.

coli network; interestingly, though, they started to diverge in behavior for enzyme knock-outs.

Next, this initial MRL model was improved by refitting to a combination of synthetic data

produced from the ARL model and newer experimental data from knock-out strains (Ishii et al.,

2007). In this refitting, rather than produce a single model, we produced a collection of models

that are similarly good fits to the data. This ensemble provides an estimate of uncertainty in the
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parameters fit and in the predictions made. MRL models tend to have a greater number of

adjustable parameters than ARL models, which provides the potential for underdetermination

and overfitting. Here that possibility was minimized by using the ARL model to produce a

substantial number of data points such that the MRL parameters were fit to an overabundance of

data, but non-identifiability is not ruled out.

One of the most appealing and challenging goals of metabolic engineering is to design more

efficient biological systems for industrial use. The mathematical model ensemble built here

provides a foundation for such rational design studies. In order to propose metabolic engineering

changes to the E. coli central metabolic network to produce valuable metabolites, we introduced

an optimization framework, optModulation, for the MRIL model. The approach identifies and

qualifies metabolic improvements. The proposed optModulation scheme was tested by

determining optimal genetic manipulation strategies to maximize a pre-defined reaction flux,

namely, aromatic amino acid production.

Over the past 5 years the global market for fermentation amino acid products has increased

more than 40%, but the efficiency of aromatic amino acid production, particularly tryptophan, by

fermentation remains low (Ikeda, 2003; Leuchtenberger et al., 2005). One difficulty in

tryptophan overproduction is to properly balance the supply of its three precursors. In E. coli, the

production of 1 mole of any aromatic amino acid starts with combining 1 mole of erythrose 4-

phosphate (E4P) with 1 mole of phosphoenolpyruvate (PEP) to form a common precursor

chorismate. In addition, 1 mole of PEP and I mole of serine are further consumed in the pathway

from chorismate to tryptophan (Ikeda, 2006; Nelson and Cox, 2008). Different strategies have

been attempted to modify either the common pathways or the tryptophan branch by metabolic

engineers (see review: Ikeda, 2006). Using the model ensemble, we identified complexities in the
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pentose phosphate pathway such that the direction of flux through this bi-direction loop strongly

affects the choice of manipulation strategies for overproducing aromatic amino acids. The results

of this study also predict that balancing the precursors for tryptophan could be beneficial for its

overproduction.
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2.2 Modeling

2.2.1 Mass-Action Rate Law Model

The ARL model built by Chassagnole et al. (2002) provides a good reference model from

which to generate a more comprehensive MRL model for the central carbon metabolic network

(Figure 1). Foundational work by King and Altman (1956) and Cleland (1963) provides a bridge

between the elementary rate constants of MRL models and the more abstract parameters of ARL

models. The authors of those studies describe a graphical method to derive the steady-state rate

law from a system of elementary reactions. This method has since been developed into a formal

algorithm (Cornish-Bowden, 1977) and is available as a web tool (Kuzmic, 2008). To convert

the Chassagnole et al. ARL model into an MRL model, we constructed elementary reactions for

each enzyme in the ARL model based on the enzyme mechanisms reported in Chassagnole et al.

Next, a steady-state rate law was derived using the King-Altman method. Then, we optimized a

preliminary set of MRL parameters by fitting the rate versus substrate concentration curves

calculated from the King-Altman steady-state rate law for MRL model to those simulated from

the ARL model. This process was carried out for each enzyme in the ARL model. The objective

function for the fitting, Gchassagnoie, was similar to a chi-square metric, being a sum of squared

differences weighted by the inverse variance.

2

Gchassagnoe= rpred,chassagnole - rdatachassagnole
chassagnoagnle

rdata,chassagnole Cdata,chassagnole

In this objective function, rdaaa,chassagnoL is the steady-state reaction rate at given species

concentrations based on the ARL model, and rpred,chassagnole is the steady-state reaction rate at the
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same species concentrations based on the King-Altman method calculated from the MRL model.

The range for the species concentrations used in the fitting varied for different metabolites and

different enzyme reactions, but generally spanned from 0.01 mM to 100 mM. Typically 1,000-

27,000 points were used to fit each enzyme; the points were equally spaced in the logarithm of

the concentration. Grids of species concentrations were created and used for reactions involving

more than one species in the rate law. The optimization was done using the fmincon function

in MATLAB (version 2008b; The MathWorks, Inc.; Natick, MA).

2.2.2 Network Topology Augmentation

The initial MRL model converted from the Chassagnole et al. model was updated to include

several important enzymes and metabolites in the glycolysis and pentose phosphate pathways.

To make the network model more comprehensive, the KEGG database (8/6/2009; Kanehisa and

Goto, 2000) was used to select model additions. The complete list of changes is given in Table 1,

and some are described in the following paragraph.

A number of enzymatic conversions in E. coli are carried out by multiple isomers with the

same general activity but with potentially different rate parameters and cellular concentrations.

The original Chassagnole et al. model used a single enzyme to represent such instances. Because

of our interest in designing meaningful genetic variants for metabolic engineering, we

augmented the topology to include ten separate pairs of isomers where previously ten individual

enzymes represented the biochemistry. This expansion led to locally parallel routes, instead of a

single path, which makes it possible to design knock-out mutant strains that only partially shut

down a pathway. In addition, three new enzyme reactions (due to the enzyme products of the

genes pgl, edd, and eda) and 2 new metabolites (gluconolactone-6P and KDPG [2-keto-3-deoxy-
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6-phosphogluconate]) were also added to the network. The edd and eda reactions represent the

Entner-Doudoroff pathway, which is an alternate route that catabolizes glucose to pyruvate. It

has been shown that the accumulation of KDPG in bacteria is correlated with an immediate and

significant decrease in growth. In fact, the gene product of eda has been considered a target for

the development of new bacteriostatic or bactericidal drugs (Braga et al., 2004). In the

Chassagnole et al. model, two constant fluxes are used to model the production of G3P and PYR

from tryptophan synthesis. The cellular concentration of tryptophan and its precursors could be

dramatically affected by metabolic engineering manipulations, which would not be properly

reflected by this constant flux treatment. We thus elected to make these fluxes dependent on the

available concentrations of precursors. Specifically, we assumed that all fluxes that produce the

aromatic amino acid precursor chorismate are converted to tryptophan, and ignored the

production of phenylalanine and tyrosine. Two enzyme reactions based on TrpSynthl and

TrpSynth2 were added to model this process of generating tryptophan and thus directly linked to

G3P and PYR dynamically.

The enzyme reaction mechanisms were preserved for enzymes in the Chassagnole et al. model;

whereas those of added enzymes were determined based on the BRENDA database (8/6/2009)

(Scheer et al., 2010). Most of the isomers share a similar mechanism with their parallel enzymes,

but some isomers (e.g., PFKB) do not show the same cooperative interaction with their ligand or

are not affected by inhibitors. Additionally, some isomers do not equally share activity; instead,

one of the parallel isomers accounts for most of the enzyme activity, either due to rate constants

or concentration.

The main input of the model is the supply of glucose. Chassagnole et al. modeled supply as a

constant extracellular concentration in the starting model. Because most experimental data about
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metabolic reactions are based on chemostats in which glucose flows in and is removed from the

reaction vessel as a flux with a specific flow rate, we changed the constant glucose feed into

dynamical flux reactions in the model. After all of these changes were made, the new model

consists of 43 enzyme reactions, 211 species, and 263 free kinetic parameters. Figure 1 depicts

the overall topology of the model. The model is available as supplementary material.

2.2.3 Parameter Fitting

We adopted a dual strategy for parameter estimation. One aim was to select parameters for our

MRL model so that the dose-response curve of the enzyme reaction rates as a function of

metabolite concentrations matched those from the original model of Chassagnole et al. (2002).

Simultaneously our second aim was to select parameters that produced results matching a more

recent experimental data set published by Ishii et al. (2007), containing normalized steady-state

concentrations for 12 of the 18 metabolites in the model for wild-type E. coli K- 12 strain

BW25113 as well as for 22 variant strains each with one enzyme knocked out. The actual steady-

state concentrations were recreated from these normalized data by re-scaling them so that the

wild-type metabolite concentrations match those calculated from the Chassagnole et al. model

with the dilution rate and glucose feed the same as in the Ishii et al. experiments.

Candidate parameter sets that fit both the Ishii et al. measurement data and the Chassagnole et

al. enzyme reaction rates were generated by fitting to a weighted component objective

G(w) containing two terms, one representing deviation from the Chassagnole et al. rates and the

other deviation from the Ishii et al. data.
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2

G (w) = w - rpredchassagnole - rdata,chassagnole

rdata,chassagnole (data,chassagnole

+ Xpredishii - Xdata,ishii

Xdataishii Jdata,ishii )

The first summation was the same as described for Chassagnole et al. model fitting. The second

summation represented sum-of-squares fitting of the predicted chemical concentrations from the

model to the measured Ishii et al. data, normalized by the variance of the measurement data. To

generate initial parameters for this dual fitting, 1000 parameter sets were generated based on the

optimized parameters from only fitting the Chassagnole et al. model. For each parameter set, a

random number of parameters up to 50% of all parameters were selected and replaced by a

random number based on a Gaussian distribution with mean as the value from Chassagnole et al.

fitting and the standard variation as one third of the log of the largest parameter value allowed

(i.e., 10"). The weighting factor w played an important role in the optimization. Small values

caused the optimization to focus only on optimizing the Ishii sub-objective with little control on

the Chassagnole sub-objective; whereas for large values the fitting of the Chassagnole sub-

objective would dominate the Ishii sub-objective. Rather than attempting to determine an ideal

balance between the fitting of Chassagnole and Ishii sub-objectives, we carried out a series of

optimizations with a range of values for w chosen that spanned 0.05 to 20.

This collection of optimization with various weights swept out a pareto optimal frontier

(Figure 2A). Each point represented the result of a single optimization for a particular value of w.

Moving along the frontier improved the fit to one part of the objective and degraded the fit to the
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other. Thus, the frontier represented different tradeoffs achievable. Naturally, a higher weight on

the Chassagnole part of the objective led to a better fit to that sub-objective and a worse fit to the

Ishii sub-objective. Examination of the fitting behavior for each of the 44 points on the frontier

demonstrated rather good fits to both sub-objectives. It is a somewhat arbitrary choice to select

the best fitted model from the pareto optimal frontier. Here we selected the blue point in Figure

2A as our fitted model and the basis for local sampling in parameter space; the red points were

also used but no further sampling around them was performed.

2.2.4 Model Ensemble

A potential problem for detailed mechanistic models is the combination of a high dimensional

parameter space and limited data available for training; this is especially an issue for mass-action

models due to their large number of parameters. Although there may be a set of optimal

parameters, wide ranges of parameters surrounding the optimum may fit the available data

almost as well. Such is the case here for our model fit to the Chassagnole et al. model and Ishii et

al. data. Moreover, due to measurement error, a parameter set with a somewhat disadvantaged

objective value may be closer to the true parameter values. To improve the reliability of model

predictions, we generated a model ensemble that represents the parameter uncertainty, and used

the ensemble to make predictions.

Latin hypercube sampling (LHS) (McKay et al., 1979; Stein, 1987) was used to collect

candidate parameter sets in order to distribute a reasonable number of samples over the

parameter space. In LHS all the parameters were assumed to follow a multivariate Gaussian

distribution, with mean values as the best fitted parameter values from the previous session and a

covariance matrix as the inverse of a modified Fisher information matrix calculated from the best
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fitted values. The Fisher information matrix was modified by replacing the eigenvalues smaller

than an arbitrary cutoff of 58.1 with this cutoff, which corresponds to approximately a 30%

change in the parameter values along the eigendirections. This choice retained 61 original

eigenvalues out of the 263 and removed the remaining flat eigendirections that could have

caused oversampling of invalid regions. 20,000 parameter set samples were drawn using LHS

and 85 of them fell within the tolerance level as fitting well to both the Chassagnole et al. model

and the Ishii et al. data. In order to reduce the bias effect of the arbitrarily chosen best fitted

model, all 44 frontier samples were also included into the final ensemble, giving 129 sub-models

in the ensemble.

2.2.5 Model Manipulation

An optimization framework was applied to the model ensemble to identify strategies leading

to enhanced aromatic amino acid production. The objective function was the aromatic amino

acid production rate from the reaction catalyzed by the enzyme DAHPS complex from the two

substrates PEP and E4P. The set of strategies considered consisted of enzyme knock-outs, in

which an enzyme activity was completely removed from the model, as well as enzyme over- and

under-expression (termed "expression change" here) spanning a range from ten times to one-

tenth the unperturbed concentration. All combinations of single, double, and triple enzyme

knock-outs as well as all combinations of one and two enzyme expression changes were

constructed and studied. If one enzyme concentration in a two enzyme expression-change

strategy was suggested to be the value of the lower bound (one-tenth the unperturbed

concentration), a knock-out of that enzyme plus an expression change of the other enzyme was

also studied.
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The effect of pure knock-outs, whether single or multiples, was studied by simulating until a

steady state was reached and evaluating the objective function in the steady state. The effect of

perturbations that included one or more expression-changed enzymes was studied by optimizing

to find the combination of levels of modified enzymes leading to the maximum objective. The

optimization was done using the f mincon function in MATLAB (version 2008a; The MathWorks,

Inc.; Natick, MA). These evaluations were carried out individually on each sub-model in the

ensemble. For the case of enzyme expression changes, the level of modification was taken as the

median across all sub-models in the ensemble, and each sub-model was re-simulated with this

value to re-evaluate the objective in order to reflect the production improvement for the

ensemble. For both knock-out-only and enzyme expression-change perturbations, the score of a

strategy was taken as the average production improvement ratio of perturbed strain against wild-

type strain over all sub-models in the ensemble, and the support rate of a strategy was defined as

the percentage of sub-models showing any improvement (greater than 0.1%) over the objective

in the unperturbed network.
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2.3 Results and Discussion

The E. coli central carbon metabolism model of Chassagnole et al. (2002) was converted to

mass-action form, augmented with additional enzymes, and reparameterized using both the rate

behavior from the starting model and experimental data from Ishii et al. (2007; see MODELING).

The resulting model provided an excellent fit to the training data (Figure 2). The value of the 210

computed steady-state metabolite concentrations was within 2 fold of the values obtained by

Ishii et al. (2007), with an average difference of roughly 50% (Figure 2B). Simultaneously, most

of the enzyme reactions had a perfect or near perfect fit to the corresponding Chassagnole et al.

reactions (Figure 2D), with only a few reactions fitting worse but still reasonably (the worst fits

are shown in Figure 2C). From this single parameter set, an ensemble of 129 models was

constructed that fit the data essentially equally well and that differed from each other only in

their parameters (see MODELING). Each member of the ensemble was an excellent fit to the

training data and together the ensemble represented the parameter uncertainty inherent in

underdetermined biochemical models; in the work here, the ensemble was used to compute a

representation of prediction uncertainty.

2.3.1 Knock-out strategies reveal the complexity of the pentose phosphate pathway

Each of the 129 models in the ensemble was explored using combinations of one, two, or three

gene knock-outs to identify variants with increased production of aromatic amino acids. The

results for single knock-outs are examined here first and the model ensemble shows strong

consensus for nearly all of the knock-outs (Figure 2). Each knock-out was classified by

computing a productivity factor, which is the ratio of the steady-state aromatic amino acid

production rate with and without the knock-out. The categories used were reduced (<0.8 fold,
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blue), neutral (0.8-1.2 fold, yellow), marginally increased (1.2-1.5 fold, orange), and increased

(>1.5 fold, red). Most of the knock-outs were predicted to lead to reduced or neutral production

in each of the 129 models. A few gene knock-outs were predicted to lead to increased production

in all (ppc and pykF) or most (gipat, pgm, and rpe) models. Even when most but not all models

predicted increased production, the dissenting models usually predict marginally increased or

neutral production. Interestingly, rpe is the exception; most models expected increased

production, but thirteen predicted reduced production. Moreover, the talB knock-out has

complementary behavior; most models predicted reduced production, except the same thirteen

that predicted an enhancement. Finally, a minority of models predicted enhanced production for

rpiA and rppk knock-outs, with the remaining models predicting neutral or marginally increased

production in all but two cases. Interestingly, the two most strongly predicted knock-outs for

improved yield (ppc and pykF) have been tested and proved effective experimentally by several

research groups (Backman, 1992; Gosset et al., 1996). In particular, a pykF and pykA double

knock-out in E. coli PB 103 strain resulted in a 3.4-fold increase in carbon flux to aromatic

biosynthesis (Gosset et al., 1996), which is very similar to the predicted 4.03-fold improved

aromatic amino acid production by our ensemble model.

Analysis of steady-state fluxes in all 129 models of the ensemble was carried out to understand

the source of computed improvements in aromatic amino acid synthesis (see Figure 4). The gene

products ofppc and pykF are both responsible for fluxes away from the metabolite

phosphoenolpyruvate (PEP), which is one of the two precursors of aromatic amino acid synthesis.

Steady-state flux results indicated that knocking out either gene singly increased the steady-state

amount of PEP significantly (average 14.0 and 2.1 fold, respectively) as well as the flux into

aromatic amino acid synthesis (average 55.9 and 4.0 fold, respectively). On the other hand, the
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genes rpe, rpiA, and talB are all located in the pentose phosphate pathway and thus may be

responsible for increasing the steady-state concentration of erythrose-4-phosphate (E4P), the

other precursor of aromatic amino acid synthesis, and the corresponding flux. Knocking out the

gene rpe, rpiA, or talB did not affect steady-state PEP concentration significantly, but did

increase E4P concentration for all but thirteen models, 114 models, and thirteen models,

respectively. The thirteen models showing decreased E4P concentrations with rpe knock-out or

increased E4P concentrations with talB knock-out were the same thirteen models mentioned

above that showed improved aromatic amino acid production. The other three single knock-outs

predicted to increase aromatic amino acid synthesis in some or most of the models (pgm, g1pat,

and rppk) terminate carbon fluxes flowing away from the central pathway toward biosynthesis;

knocking-out each one individually should also direct more carbon into PEP and E4P. The

results indeed show that these three knock-outs moderately increase the steady-state

concentrations of both PEP and E4P, as well as the flux toward aromatic amino acid synthesis.

Results above show that knocking out the pentose phosphate pathway genes rpe, rpiA, and

talB can increase steady-state E4P concentration and thus aromatic amino acid synthesis rates.

However, it is still not clear why these knock-outs increase E4P concentration, partially due to

the complex topology of the pentose phosphate pathway. It is particularly surprising to see that

knocking out the gene talB, the product of which is the immediate enzyme that generates E4P, is

able to increase E4P concentration and aromatic amino acid synthesis in some models. A more

detailed steady-state flux analysis was thus carried out to understand the carbon flow in the

pentose phosphate pathway. Interestingly, the results indicate two distinct wild-type steady-state

flux patterns for the pentose phosphate pathway among the models - a clockwise flux and a

counter-clockwise flux (Figure 5). In the wild-type case (black lines), most models have a carbon
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flow direction from metabolite Ru5P to X5P/R5P, to S7P/G3P, to E4P/F6P, and to F6P/G3P

(clockwise flux); whereas thirteen models have a reversed flux direction for the enzymes RPE,

TKTa/TKTb, and TALa/TALb (counter-clockwise flux). Previously we noted that the rpe

knock-out was predicted to increase aromatic amino acid synthesis in all but thirteen models;

whereas the talB knock-out had the complementary behavior. Further investigation revealed that

the models in which the rpe knock-out showed improvement corresponded to the clockwise flux

models, and those for which the talB knock-out showed improvement corresponded to the

counter-clockwise flux models. The steady-state flux analysis in Figure 5 showed that in

clockwise flux models the rpe knock-out (red lines) reduced the carbon flux from metabolite

Ru5P to E4P (tktA/tktB-S7P and talA/ta/B flux) and induced a reversal of the tktA/tktB-F6P flux,

which corresponds to a switch from a clockwise pentose phosphate pathway flux pattern to a

counter-clockwise pattern. In the counter-clockwise flux models, the talB knock-out (green lines)

terminates the flux flowing away from the metabolite E4P and thus directs more flux toward

aromatic amino acid synthesis. Putting the knock-out strategies into the "wrong" flux pattern

model results in a decrease of aromatic amino acid synthesis. Interestingly, Ikeda (2003)

suggested a possible theory of two-way flux for the effect of manipulating the pentose phosphate

pathway in his review of amino acid production. He suggested that a clockwise flux from

glucose-6-P to ribose-5-P and then to E4P helps the accumulation of ribose-5-P and thus

increases histidine production, whereas a counter-clockwise flux increases E4P concentration

and improves aromatic amino acid production. This theory is consistent with our results from

ensemble modeling, namely that there could be two distinct flux directions in the pentose

phosphate pathway and the conversion from clockwise to counter-clockwise flux increases

aromatic amino acid production. The results also indicate that the choice of knock-out strategies
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for aromatic amino acid overproduction may depend on the particular wild-type flux pattern of

the pentose phosphate pathway under the particular growth conditions. On the other hand,

experimental tests on talB and rpe knock-outs will provide insights for eliminating inappropriate

models from the ensemble.

For a defined system, the steady-state concentrations are usually determined by the parameters.

However, our model topology only covers a subset of the whole cell system, and there is a

possibility of having a different steady state for the whole system. In order to determine whether

the two-way flux pattern was caused by intrinsic variance of the parameter sets or extrinsic

differences of the metabolite steady state, the tkt flux generating F6P and G3P was recalculated

for each model using the wild-type steady-state concentrations from all models. Only the results

of the 44 frontier models are shown in Figure 6, as the LHS models have similar behaviors.

Results show that there is one model that always has a clockwise pattern for all steady-state

concentrations tested, and there is another model that always has the counter-clockwise pattern

for all steady states. The rest of the models can have either the clockwise or the counter-

clockwise pattern depending on which steady state they experience, although some models may

have a bias. This indicates that both the intrinsic parameters of the model and the environmental

species concentrations matter for determining the flux direction in the pentose phosphate

pathway.

When double and triple knock-outs were included, many more options were identified that

improved aromatic amino acid production. Multiple knock-outs also showed greater increases in

the production rate; the model, unaware of limitations on metabolism outside of the central

carbon pathway, claimed to have found a 245-fold improvement with the best performing double

knock-out and a 410-fold improvement with the best performing triple knock-out, compared to
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67 fold for the best single knock-out. Large variation was observed in the support rate across

different strategies, where a strategy can receive between 100% and 0.8% support from the sub-

models. (The support is defined as the fraction of models in the ensemble that predict an

improvement in production, and thus serves as a proxy for level of consensus in the result.) This

variation reflects differences and parameter uncertainty among sub-models. Interestingly, a

combination of the talB knock-out discussed above and one of the zwf pgl, or gnd knock-outs

increases the support rate of the model ensemble to 100%; whereas a single talB knock-out alone

received a positive vote from 13 of the 129 sub-models. Further investigation showed that an

additional knock-out of zwf pgl, or gnd helped reverse all clockwise models to counter-

clockwise models, so that the talB knock-out, which blocked carbon from leaving E4P in

counter-clockwise models, worked for all the sub-models and reached an average of 6.7-fold

increase for aromatic amino acid production. This result indicates that multiple knock-outs may

identify more reliable strategies despite the parameter uncertainty, and those strategies may lead

to higher success rates in experimental tests.

2.3.2 Up and down regulation allow new engineering strategies to improve aromatic

amino acid production

Rather than using only knock-outs, next we considered combinations of different genetic

modifications. Specifically, we allowed up or down regulation or knock-out of up to two

enzymes, and we optimized for aromatic amino acid production (see Methods). The upper and

lower bound on the enzyme gene expression changes were selected based on examples from the

literature and common laboratory practice. Some research groups report enhancing the activity of

the glycolytic enzymes PPS and aldolase by 10-15 fold (Babul et al., 1993; Patnaik and Liao,

1994). The general practice for enzyme regulation in research laboratories is approximately up to
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a 10-fold enhancement or reduction (Alper et al., 2005). For the current study we thus chose

expression changes of up to 10 fold in either direction. To increase the reliability of candidate

strategies identified, we further required consensus among sub-models - at least 80% for single

modifications and 90% for double modifications. Additionally, double modifications were

required to have a higher production rate than both of the corresponding single changes.

Strategies identified based on these criteria are listed in Table 2. Results of single and double

knock-outs, one knock-out plus one up or down regulation, and two up or down regulations are

incorporated together to make this table comprehensive.

Compared to knock-out-only strategies, the inclusion of enzyme up or down regulation allows

for new modes for increasing aromatic amino acid production. A total of 37 strategies were

identified that involved up regulation of at least one enzyme. Many of these strategies involved

overexpression of dahps alone or in combination with a change to another enzyme, leading to

modeled production increases of 9 fold to 220 fold. The gene product of dahps in the model

represents a lumped enzyme that converts a molecule of erythrose-4-phosphate (E4P) and one of

phosphoenolpyruvate (PEP) to shikimate-3-phosphate (S3P), which combines with another

molecule of PEP to form, in two enzymatic steps, chorismate, the common precursor to aromatic

amino acids (Figure 1). While it is intuitive that dahps is on the synthetic pathway and thus could

be limiting, there are many enzymes (e.g., trpSynth1, trpSynth2) on the direct synthetic pathway,

and the model has done something significant and non-obvious in identifying this enzyme group

as limiting. To what extent dahps plays as a limiting factor depends on its kinetic parameters. If

we increase the kcat and ko, of dahps binding E4P and PEP by 100 fold, any further increase of

dahps concentration will not increase the production rate of aromatic amino acids. In other words,

dahps is no longer the rate limiting factor under this arbitrary condition. In fact, several research
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groups have overexpressed the collection of individual enzymes represented by dahps and

observed production improvements that form the basis for industrial production strains (Azuma

et al., 1993; Berry, 1996; Chan et al., 1993). Other enzymes whose overexpression increases

aromatic amino acid synthesis were distributed throughout glycolysis (pts, fbaB, tis, pgk, gpmB,

pykF, and pfkA) and the pentose-phosphate pathway (rpiB, tktB, and talB), indicating other

limitations as well. Interestingly, many of the overexpressed enzymes did not optimize to the full

10-fold overexpression bound, but rather converged at an intermediate value. Most of these cases

involve enzymes in the pentose phosphate pathway (e.g., tktB, talB, and rpiB) or the triangle

region before G3P (e.g.,.fbaB and tis), where further overexpression of the enzymes beyond the

optimal value starts to decrease the production rate. This indicates the complexity of the two

regions in the network and the importance of the fine-tuned enzyme optimization strategies.

The knock-down results provide an interesting comparison to the knock-out results. In some

cases, a complete knock-out further enhances productivity compared to partial knock-down,

including ppc (10-fold knock-down increases production 45.1 fold; knock-out increases

production 66.6 fold). However, in a number of cases, a partial knock-down results in greater

productivity than a complete knock-out, including gapA (10-fold knock-down increases

production 35.9 fold; knock-out has zero production due to complete depletion of PEP, which

makes sense given the topology of Figure 1). The existence of multiple isomers with the same

activity provides a convenient way to partially knock down a pathway by knocking out only one

of the parallel isomers.

60



2.3.3 Engineering strategies that rebalance carbon fluxes between glycolysis and pentose

phosphate pathway lead to improvement of aromatic amino acid production

A group of high-performance strategies involving down-regulating enzymes or knocking out

isomers located downstream of G3P in the glycolysis pathway (gapA, pgk, gpmA, and eno) were

observed, which are not intuitive as these enzymes directly lead to the generation of the

precursor PEP for aromatic amino acid production. A further examination shows that the steady-

state concentration of PEP is approximately 13 fold higher than that of E4P in wild-type models

(Figure 7A). A 10-fold knock-down of gapA reduced the steady-state concentration of PEP to

91.9% while increasing that of E4P to 3.9 fold (PEP to E4P ratio is 3.2); the corresponding

aromatic amino acid production rate was increased to 13.6 fold. A combination of a 10-fold

knock-down of gapA and a 10-fold knock-down of gpmA decreased the concentration of PEP to

28.0% while increasing the concentration of E4P to 7.0 fold (PEP to E4P ratio is 1.4); and the

corresponding aromatic amino acid production rate was further increased to 33.4 fold (Figure

7A). On the other hand, a combination of tktB and ppc knock-outs corresponding to an increase

of PEP concentration and decrease of E4P concentration (PEP to E4P ratio is 1243) resulted in a

significantly lower aromatic amino acid production rate (12.1% of the wild-type level). The

production of 1 molecule of an aromatic amino acid requires I molecule of PEP and I molecule

of E4P - an equal amount of the two precursors. The results above indicate that strategies that

increased the level of E4P to match that of PEP led to significant improvement in aromatic

amino acid production, whereas strategies that increased the discrepancy in the amounts of the

two precursors reduced productivity. This effect can also be seen in Figures 7B and 7C, showing

that a relative ratio of PEP to E4P closer to one resulted in higher aromatic amino acid

productivity.
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Further investigation was conducted to understand the relative sensitivity of aromatic amino

acid production to the concentrations of E4P and PEP. The rpe + rppk + pgm triple knock-out

model and tktB knock-out model had approximately the same level for PEP steady-state

concentrations, but increased E4P steady-state concentration to 7.6 fold and decreased E4P

concentration to 24.0% of the wild-type value, respectively. The corresponding aromatic amino

acid production rate increased to 55.1 fold and decreased to 5.9% of the wild-type level,

respectively (Figure 7A). On the other hand, the triple knock-outs rpe + ppc + talB and pdh +

rpiA + pgl kept E4P levels approximately the same, but either increase or decrease the PEP

steady-state concentration. Interestingly, a 20.5-fold increase in PEP concentration resulted in

only a 1.9-fold increase in the aromatic amino acid production rate (Figure 7A). This indicates

that the E4P concentration has a limiting role under the conditions of this study, and aromatic

amino acid production is much more sensitive to the concentration of E4P than to that of PEP.

The gapA and gapA + gpmA knock-down strategies discussed above reduced carbon flow

through the glycolysis pathway toward PEP and redistributed the carbon flux toward E4P. They

increased the overall production rate significantly by sacrificing some amount of PEP in order to

increase the E4P concentration. Conventionally, metabolic engineers focus more on increasing

one or both of the precursors of aromatic amino acid synthesis, but little attention has been

focused on creating a balance between the two, partially because of the difficulty in identifying

proper experiment strategies. Our results show that the mathematical models we presented here

are capable of identifying the limiting precursor and providing strategies that rebalance the

precursors and efficiently improve productivity.

Unlike the strategies such as ppc knock-out, synth1 knock-out, and g1pat knock-out, which

work by removing a carbon sink and thus directing more carbon toward aromatic amino acid
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production, the rebalancing strategies re-distribute redundant carbon from PEP to E4P and thus

do not require increased carbon supply to enhance productivity. A combination of these two

types of strategies resulted in the largest computed improvement of aromatic amino acid

production.

The synthesis of tryptophan, an aromatic amino acid, also requires serine as an additional

precursor in the path that branches past chorismate. Therefore, strategies that reduce serine

production, e.g. knock-out of the serine synthesis reaction, would not be good candidates for

tryptophan production. We simulated the level of serine production for each strategy in Table 2

and calculated the serine production improvement ratio (see Table 2). If tryptophan

overproduction were the target, the serine production improvement ratio would also need to be

taken into account. All of the strategies reported in Table 2, except for the serine synthesis

reaction knock-out, have a small effect on or negligible reduction of (approximately 10% or less,

if any) the serine production rate.
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2.4 Conclusions

The central carbon metabolic network is one of the most important biological networks in

metabolic engineering, as most of the precursors for primary and secondary metabolites that have

industrial interests are coming from this network. Given the complicated enzyme interactions

and regulations in this network, it is often not straightforward to identify efficient strategies to

optimize the production rates of the target metabolites. Here we presented a mass-action model

ensemble, which incorporated the most up-to-date knowledge about the topology and enzyme

isomers, for the E. coli central carbon metabolic network. The model ensemble includes 129

individual models which have equally good fit to the steady-state data from Ishii et al. and the

reaction rate data from Chassagnole et al. The variations of parameters among different models

thus provide a useful measurement for the impact of parameter uncertainty on model predictions.

An exhaustive optimization search, including single, double, and triple enzyme knock-outs as

well as single and double enzyme over- and under-expressions, was applied to the model

ensemble in order to identify enzyme strategies that can maximize the aromatic amino acid

production rate. The rpe and talB single knock-outs identified through the optimization reveal

the complexity of the pentose phosphate pathway and suggest there could be two natural flux

direction of the pentose phosphate pathway, clockwise direction and counter-clockwise direction.

More importantly, different strategies may be needed to optimize the aromatic amino acid

production, depending on the natural direction of the system. As two precursors are required for

the aromatic amino acid production, it is believed that a balanced precursor level could benefit

the production the most. Non-obvious strategies that help re-partition the carbon fluxes towards

the PEP and E4P precursors were identified by the optimizations. It improves the aromatic amino

acid production without the need to increase the network carbon input. Without the
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computational model ensemble we built, it would be difficult to identify these strategies given

the complexity of the central carbon metabolism. The mathematical model ensemble and the

manipulation tool we built here can be easily extended to study other chemicals of interests that

have precursors from the central carbon metabolic network. With limited data, it is anticipated to

have the capability to provide insightful guidance of experimental designs that optimize the

production yields of the desired chemicals.

65



Acknowledgement

We thank Eug6nio Ferreira, Daniel O'Keefe, Mark J. Nelson, Kristala Jones Prather, and

Isabel Rocha for helpful and insightful discussions. This work was partially supported by the

DuPont MIT Alliance and the MIT Portugal Program.

66



References

Alper, H., Fischer, C., Nevoigt, E., Stephanopoulos, Gregory., 2005. Tuning genetic control
through promoter engineering. Proceedings of the National Academy of Sciences of the United
States of America 102, 12678-83.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= 1 200280&tool=pmcentrez&renderty
pe=abstract.

Alper, H., Stephanopoulos, Gregory., 2009. Engineering for biofuels: exploiting innate microbial
capacity or importing biosynthetic potential? Nature reviews. Microbiology 7, 715-23.
http://www.ncbi.nlm.nih.gov/pubmed/19756010.

Atsumi, S., Liao, James C., 2008. Metabolic engineering for advanced biofuels production from
Escherichia coli. Current opinion in biotechnology 19, 414-9.
http://www.ncbi.nlm.nih.gov/pubmed/1 8761088.

Azuma, S., Tsunekawa, H., Okabe, M., Okamoto, R., Aiba, S., 1993. Hyper-production of 1-
trytophan via fermentation with crystallization. Applied Microbiology and Biotechnology 39,
471-476. http://www.springerlink.com/index/T2P26XUG17N3521R.pdf (Accessed March 8,
2011).

Babul, J., Clifton, D., Kretschmer, M., Fraenkel, D.G., 1993. Glucose metabolism in Escherichia
coli and the effect of increased amount of aldolase. Biochemistry 32, 4685-92.
http://www.ncbi.nlm.nih.gov/pubmed/8485146.

Backman, K.C., 1992. Method of biosynthesis of phenylalanine. 5, 169, 768.

Bailey, J.E., 1991. Toward a science of metabolic engineering. Science (New York, N.Y.) 252,
1668-75. http://www.ncbi.nlm.nih.gov/pubmed/2047876.

Barkovich, R., Liao, J C., 2001. Metabolic engineering of isoprenoids. Metabolic engineering 3,
27-39. http://www.ncbi.nlm.nih.gov/pubmed/1 1162230.

Berry, A., 1996. Improving production of aromatic compounds in Escherichia coli by metabolic
engineering. Trends in biotechnology 14, 250-6. http://www.ncbi.nlm.nih.gov/pubmed/8771798.

Bongaerts, J., Kramer, M., Mller, U., Raeven, L., Wubbolts, M., 2001. Metabolic engineering
for microbial production of aromatic amino acids and derived compounds. Metabolic
engineering 3, 289-300. http://www.ncbi.nlm.nih.gov/pubmed/ 11676565 (Accessed August 3,
2010).

Braga, R., Hecquet, L., Blonski, C., 2004. Slow-binding inhibition of 2-keto-3-deoxy-6-
phosphogluconate (KDPG) aldolase. Bioorganic & medicinal chemistry 12, 2965-72.
http://www.ncbi.nlm.nih.gov/pubmed/15142555 (Accessed February 22, 2011).

67



Burgard, A.P., Pharkya, P., Maranas, C.D., 2003. Optknock: a bilevel programming framework
for identifying gene knockout strategies for microbial strain optimization. Biotechnology and
bioengineering 84, 647-57. http://www.ncbi.nlm.nih.gov/pubmed/14595777.

Cameron, D C, Tong, I.T., 1993. Cellular and metabolic engineering. An overview. Applied
biochemistry and biotechnology 38, 105-40. http://www.ncbi.nlm.nih.gov/pubmed/8346901.

Cameron, D.C., Chaplen, F.W.R., 1997. Developments in metabolic engineering. Current
opinion in biotechnology 8, 175-180.
http://linkinghub.elsevier.com/retrieve/pii/SO958166997800985 (Accessed February 28, 2011).

Chan, E.-C., Tsai, H.-L., Chen, S.-L., Mou, D.-G., 1993. Amplification of the tryptophan operon
gene in Escherichia coli chromosome to increase 1-tryptophan biosynthesis. Applied
Microbiology and Biotechnology 40, 301-305.
http://springerlink.metapress.com/openurl.asp?genre=article&id=doi:10.1007/BFOO170384.

Chassagnole, C., Noisommit-Rizzi, N., Schmid, J.W., Mauch, K., Reuss, M., 2002. Dynamic
modeling of the central carbon metabolism ofEscherichia coli. Biotechnology and
Bioengineering 79, 53-73. http://doi.wiley.com/10.1002/bit.10288.

Cleland., 1963. The kinetics of enzyme-catalyzed reactions with two or more substrates or
products. I. Nomenclature and rate equations. Biochimica et Biophysica Acta 67:104.
http://www.ncbi.nlm.nih.gov/pubmed/20875501.

Cornish-Bowden, A., 1977. An automatic method for deriving steady-state rate equations.
Biochemical Journal 165, 55.

Edwards, J S, Palsson, B 0., 2000. Robustness analysis of the Escherichia coli metabolic
network. Biotechnology progress 16, 927-39. http://www.ncbi.nlm.nih.gov/pubmed/ 11101318.

Edwards, Jeremy S., Covert, M., Palsson, B., 2002. Metabolic modelling of microbes: the flux-
balance approach. Environmental Microbiology 4, 133-140.
http://doi.wiley.com/10.1046/j.1462-2920.2002.00282.x.

Feist, A.M., Zielinski, D.C., Orth, J.D., Schellenberger, J., Herrgard, M.J., Palsson, B.O., 2010.
Model-driven evaluation of the production potential for growth-coupled products of Escherichia
coli. Metabolic engineering 12, 173-86. http://www.ncbi.nlm.nih.gov/pubmed/19840862
(Accessed December 15, 2010).

Gosset, G., Yong-Xiao, J., Berry, a., 1996. A direct comparison of approaches for increasing
carbon flow to aromatic biosynthesis in Escherichia coli. Journal of industrial microbiology 17,
47-52. http://www.ncbi.nlm.nih.gov/pubmed/8987689.

Ikeda, M., 2003. Amino acid production processes. Advances in biochemical
engineering/biotechnology 79, 1-35. http://www.ncbi.nlm.nih.gov/pubmed/12523387.

68



Ikeda, M., 2006. Towards bacterial strains overproducing L-tryptophan and other aromatics by
metabolic engineering. Applied microbiology and biotechnology 69, 615-26.
http://www.ncbi.nlm.nih.gov/pubmed/16374633 (Accessed September 5, 2010).

Ishii, N. et al., 2007. Multiple high-throughput analyses monitor the response of E. coli to
perturbations. Science (New York, N.Y.) 316, 593-7.
http://www.ncbi.nlm.nih.gov/pubmed/17379776.

Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids
research 28, 27-30.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid= I 02409&tool=pmcentrez&rendertyp
e=abstract.

Kauffman, K.J., Prakash, P., Edwards, Jeremy S., 2003. Advances in flux balance analysis.
Current Opinion in Biotechnology 14, 491-496.
http://linkinghub.elsevier.com/retrieve/pii/SO958166903001174 (Accessed July 16, 2010).

Keasling, J.D., 1999. Gene-expression tools for the metabolic engineering of bacteria. Trends in
biotechnology 17, 452-460. http://linkinghub.elsevier.com/retrieve/pii/SO167779999013761
(Accessed February 28, 2011).

King, E.L., Altman, C., 1956. A schematic method of deriving the rate laws for enzyme-
catalyzed reactions. The Journal of Physical Chemistry 60, 1375-1378.

Kuzmic, P., 2008. The king-altman method. http://www.biokin.com/king-altman/index.html.

Lee, J.M., Gianchandani, E.P., Papin, J. a., 2006. Flux balance analysis in the era of
metabolomics. Briefings in bioinformatics 7, 140-50.
http://www.ncbi.nlm.nih.gov/pubmed/16772264.

Leuchtenberger, W., Huthmacher, K., Drauz, K., 2005. Biotechnological production of amino
acids and derivatives: current status and prospects. Applied microbiology and biotechnology 69,
1-8.

Li, J.W.-H., Vederas, J.C., 2009. Drug discovery and natural products: end of an era or an
endless frontier? Science (New York, N.Y.) 325, 161-5.
http://www.ncbi.nlm.nih.gov/pubmed/19589993 (Accessed July 16, 2012).

Liao, J C, Hou, S.Y., Chao, Y.P., 1996. Pathway analysis, engineering, and physiological
considerations for redirecting central metabolism. Biotechnology and bioengineering 52, 129-40.
http://www.ncbi.nlm.nih.gov/pubmed/18629859.

Machado, D., Costa, R.S., Ferreira, E.C., Rocha, I., Tidor, B., 2012. Exploring the gap between
dynamic and constraint-based models of metabolism. Metabolic engineering 14, 112-9.
http://www.ncbi.nlm.nih.gov/pubmed/22306209 (Accessed October 27, 2012).

69



McKay, M.D., Beckman, R., Conover, W., 1979. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. Technometrics 21, 239-
245. http://www.jstor.org/stable/1271432 (Accessed January 31, 2011).

Neidhardt, F., Ingraham, J., Schaechter, M., 1990. Physiology of the Bacterial Cell: A Molecular
Approach. Sinauer Associates Inc.

Nelson, D.L., Cox, M.M., 2008. Lehninger principles of biochemistry. 5th ed. W. H. Freeman.

Orth, J.D., Thiele, I., Palsson, B.O., 2010. What is flux balance analysis? Nature biotechnology
28, 245-8. http://www.ncbi.nlm.nih.gov/pubmed/20212490.

Patnaik, R., Liao, J C., 1994. Engineering of Escherichia coli central metabolism for aromatic
metabolite production with near theoretical yield. Applied and environmental microbiology 60,
3903-8.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=201913&tool=pmcentrez&rendertyp
e=abstract.

Pramanik, J., Keasling, J D., 1998. Effect of Escherichia coli biomass composition on central
metabolic fluxes predicted by a stoichiometric model. Biotechnology and bioengineering 60,
230-8. http://www.ncbi.nlm.nih.gov/pubmed/10099424.

Scheer, M. et al., 2010. BRENDA, the enzyme information system in 2011. Nucleic Acids
Research 39, D670-D676. http://www.nar.oxfordjournals.org/cgi/doi/1 0.1 093/nar/gkq 1089
(Accessed February 11, 2011).

Schmid, J.W., Mauch, K., Reuss, M., Gilles, E.D., Kremling, A., 2004. Metabolic design based
on a coupled gene expression-metabolic network model of tryptophan production in Escherichia
coli. Metabolic engineering 6, 364-77. http://www.ncbi.nlm.nih.gov/pubmed/1 5491865.

Segre, D., Vitkup, D., Church, G.M., 2002. Analysis of optimality in natural and perturbed
metabolic networks. Proceedings of the National Academy of Sciences of the United States of
America 99, 15112-7.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=137552&tool=pmcentrez&rendertyp
e=abstract.

Stein, M., 1987. Large sample properties of simulations using Latin hypercube sampling.
Technometrics 29, 143-15 1. http://www.jstor.org/stable/1269769 (Accessed January 31, 2011).

Stephanopoulos, G, Sinskey, a J., 1993. Metabolic engineering--methodologies and future
prospects. Trends in biotechnology 11, 392-6. http://www.ncbi.nlm.nih.gov/pubmed/7764086.

Stephanopoulos, Gregory, Aristidou, A., Nielsen, J., 1998. Metabolic Engineering: Principles
and Methodologies. 1st ed. Academic Press.

70



Tyo, K.E., Alper, H.S., Stephanopoulos, G.N., 2007. Expanding the metabolic engineering
toolbox: more options to engineer cells. Trends in biotechnology 25, 132-7.
http://www.ncbi.nlm.nih.gov/pubmed/17254656.

Tzafriri, a R., 2003. Michaelis-Menten kinetics at high enzyme concentrations. Bulletin of
mathematical biology 65, 1111-29. http://www.ncbi.nlm.nih.gov/pubmed/14607291 (Accessed
February 16, 2011).

Usuda, Y. et al., 2010. Dynamic modeling of Escherichia coli metabolic and regulatory systems
for amino-acid production. Journal of biotechnology 147, 17-30.
http://www.ncbi.nlm.nih.gov/pubmed/20219606 (Accessed February 19, 2011).

Varma, A., Palsson, B.O., 1994. Metabolic flux balancing: basic concepts, scientific and
practical use. Nature Biotechnology 12, 994-998.
http://www.nature.com/nbt/journal/vl2/nI0/abs/nbt1094-994.html (Accessed February 17, 2011).

Vital-Lopez, F.G., Armaou, A., Nikolaev, E.V., Maranas, C.D., 2006. A computational
procedure for optimal engineering interventions using kinetic models of metabolism.
Biotechnology progress 22, 1507-17. http://www.ncbi.nlm.nih.gov/pubmed/1 7137295.

71



Figures

Glucose External

PEP Internal
pts

PYR

GP m 26 G6P - 4 GL6p -Z 6PG -24Ru5P
rpiA

g1pat Pg rpe P

mureinemu F6P XSP RSP
synthesis+ - # dete

pfkA fbp tkt I synthesis

- pfkB tktA S p Ip
seccharlde F1,6P theg
synthesis KDPG

fbB -P E4P FOP edo
DHAP G3P

g3pdh gapA

glycerol - S P PEP

synthesis pyk tvpsvth1|

serine , erSvnth 3PG 13G PYR
synthesis gpmA rn

gpmB F- 4rply,"
I~m G3P tryptophan
2PG

0aa
P1"

eno

mur
synthesis

ppsA
"'k4 1 accoa

mnet metSynth PY 0&
syntesis- fejlala,kival,dipimn

synth2 synthesis

Figure 1. Structure of the central carbon metabolic network model. The red box indicates the glycolysis pathway; the blue box

indicates the pentose phosphate pathway; and the yellow box indicates the aromatic amino acid synthesis pathway. The blue
letters are the terminal products as output of the network. The enzymes and metabolites in red are the modifications made to the

Chassagnole et al model. The aromatic amino acid synthesis pathway (yellow box) was added to the Chassagnole et al. model to
replace the constant carbon flux to G3P and PYR due to tryptophan synthesis.
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Tables

Table 1. The enzyme reaction modification.

79

Old enzyme New enzymes Mechanisms

PGIuMu GPMA/GPMB Uni-Uni reversible

R5PI RPIA/RPIB Uni-Uni reversible

Aldolase FBAA/FBAB Uni-Bi ordered reversible

PFK PFKA/PFKB/FBP Uni-Uni irreversible with and without Hill Coef

TA TALA/TALB Bi-Bi ordered reversible

Tka Tka/TKb Bi-Bi ordered reversible

TKb Tka/TKb Bi-Bi ordered reversible

PK PYKF/PYKA/PPSA Uni-Uni irreversible with Hill Coef

G6PDH ZWF/PGL Uni-Uni reversible/Uni-Uni irreversible

EDD/EDA Uni-Uni reversible/Uni-Bi ordered reversible

TrpSynth TrpSynthl /TrpSynth2 Bi-Bi ordered irreversible/Uni-Uni irreversible



Strategies Support E/EO Score Serine Strategies Support E/E Score Serine Strategies Support E/E0  Score Serine
EDD+ PYKA 96.1% KO/KO 1.001 1.00 RPIA 91.5% KO/KO 1.40 0.94 PFKA 100% KO/KO 1.24 1.01
EDD+FBAA 92.2% KO/KO 1.004 1.00 Ru5P 93.0% KO/KG 2.84 0.89 PFKB 100% KO/KO 1.26 1.02
PYKA + FBAA 92.2% KO/KO 1.004 1.00 GPMB 99.2% 10/10 2.93 2.52 RPPK 100% KO/KO 1.30 1.10
PGK + PTS 92.2% 0.1/0.1 1.29 0.97 PFKB 100% KO 1.08 0.96 RPIA 96.9% KO/KO 1.59 1.04
RPIA + GND 99.2% KO/KO 1.78 0.93 TALA 100% KO/KO 1.09 0.96 Synth1 100% KO 1.16 1.07
RPIA + PGL 99.2% KO/KO 1.86 0.94 MetSynth 100% KO/KO 1.09 0.96 G3PDH 200% KO/KO 1.17 1.07
GPMA+ PTS 98.4% 0.1/0.1 3.09 2.43 PPSA 100% KO/KO 1.09 0.96 ZWF 100% KO/KO 1.21 1.09
GPMA + PGM 100% 0.1/KO 5.15 2.82 PYKA 100% KO/KO 1.09 0.96 PFKA 100% KO/KO 1.23 1.02
GPMA+ Ru5P 99.2% 0.1/KO 5.62 2.43 EDD 100% 0 KO/KO 1.09 0.96 PFK8 100% KO/KO 1.26 1.02
TALB+ GND 100% KO/KO 6.24 0.97 FBAB 100% KO/KO 1.09 0.97 RPPK 100% KO/KO 1.31 1.11
TALB + PGL 100% KO/KO 6.39 0.99 FBAA 100% KO/KO 1.09 0.97 Mur 100% KO/KO 1.35 1.13
TALB +ZWF 100% KO/KO 6.67 1.02 G3PDH 100% KO/KO 1.09 0.97 RPIA 96.9% KO/KO 1.59 1.04
G3PDH 100% KO 1.01 1.00 ZWF 100% KO/KO 1.14 0.99 SerSynth 200% KO 1.20 0

TALA 100% KO/KO 1.01 1.00 RPIA 91.5% KO/KG 1.42 0.95 ZWF 100% KO/KO 1.25 0
PPSA 100% KO/KO 1.01 1.00 RPPK 100% KO 1.12 1.04 PFKA 100% KO/KO 1.27 0
EDD 100% KO/KO 1.01 1.00 TrpSynth2 100% KO/KG 1.12 1.04 PFKB .100% KO/KO 1.29 0
PYKA 100% KO/KO 1.01 1.00 TALA 100% KO/KO 1.12 1.04 RPPK 100% KO/KO 1.35 0
FBAB 100% (/1(0 1.01 1.00 PPSA 100% KO/0 1.12__ _1.04 Mur 100% KO/KO 1.39 0
FBAA 100% KO/KO 1.01 1.00 PYKA 100% KO/KO 1.12 1.04 Synth1 100% KO/KO 1.42 0

ZWF 100% KO 1.04 1.02 EDD 100% KO/KG 1.12 1.04 RPIA 98.4% K/KO 1.64 0
MetSynth 100% KO/KO 1.04 1.02 FBAB 100% KO/KO 1.13 1.04 Ru5P 90.7% KO/KO 2.83 0
TALA 100% KO/KO 1.04 1.02 FBAA 100YO KO/KO 1.13 1.04 GIPAT 100% KO 1.56 1.19
PPSA 100% KO/KO 1.04 1.02 G3PDH 100% KO/KO 1.13 1.04 G3PDH 100% KO/KO 1.57 1.19
PYKA 100% KO/KO 1.04 1.02 ZWF 100% 0 KO/KO 1.17 1.06 FBAB 100% KO/KO 1.58 1.19
FBAA 100% KO/KO 1.05 1.02 PFKA 100% (KO/KO 1.23 1.00 FBAA 100% KO/KO 1.58 1.19
FBAB 100% KO/KO 1.05 1.02 PFKB 100% KO/KO 1.24 1.01 ZWF 100% KO/KO 1.64 1.21
G3POH 100% KO/KO 1.05 1.02 RPIA 100% KO/KO 6.70 1.02 RPPK 100% KO/KO 1.75 1.24
RPIA 99.2% KO/KO 2.05 0.98 Ru5P 100% KO/KO 50.60 0.86 PFKA 100% K0/KO 1.77 1.16

PFKA 98.4% KO 1.07 0.96 Mur 100% KO 1.16 1.06 PFKB 100% KO/KO 1.78 1.17
TALA 98.4% KO/KO 1.07 0.96 FBP 100% KO/KO 1.16 1.06 Mur 100% KO/KO 1.80 1.26
MetSynth 98.4% KO/KO 1.07 0.96 MetSynth 100% KO/KG 1.16 1.06 SerSynth 100% KO/KO 1.92 0
PPSA 98.4% KO/KO 1.07 0.96 TALA 100% KO/KG 1.16 1.06 Synthl 100% KO/KO 1.85 1.28
PYKA 98.4% 1(0/1(0 1.07 0.96 PPSA 100% 1(0/KG 1.16 1.06 RPIA 100% (0/1(0 2.17 1.16
EDD 98.4% (0/1(0 1.07 0.96 EDD 100 1(0 K/KG 1.16 1.06 Ru5P 92.2% 0/1(0 3.64 1.13
FBAB 98.4% (0/1(0 1.07 0.96 PYKA 100 1(0/KG 1.16 1.06 PGM 100% 1(0 1.57 1.19
FB 984% _ 0 KO/KO_ 1.07 0.96 FBAA 100% KO/KO 1.16 1.06 G3PDH 100% KO/KO 1.58 1.19
G3P!H 98.4% 1(/._ 1.07 0.96 F _AB 100% 1(O/_0 1.16 1.06 FBAB 100% 1(/1O_ 1.58 1.19
TKb 93.0% 2.00/1.90 1.09 1.00 G3PDH 100% KO/KG 1.16 1.06 FBAA 100% KO/KO 1.58 1.19
ZWF 100% KO/KO 1.13 0.98 ZWF 100% KO/KO 1.20 1.08 ZWF 100% KO/KO 1.64 1.21

Table 2. The list of best strategies for improving aromatic amino acid productions



Strategies Support E/Eo Score Serine Strategies Support E/EO Score Serine Strategies Support E/E0 Score Serine
RPPK 100% KO/KO 1.76 1.24 PGK 98.4% 10/0.1 12.32 0.96 G3PDH 100% KO/KO 68.82 6.94
PFKA 100% KO/KO 1.78 1.17 PGM 100% 10/KO 13.63 1.13 ZWF 100% KO/KO 69.20 6.94
PFKB 100% KO/KO 1.79 1.17 RuSP 100% 10/KO 16.62 0.92 RPIB 100% KO/10 69.93 6.78
Mur 100% KOIKO 1.80 1.26 GPMB 99.2% 10/10 25.76 2.28 TKa 100% KO/0.55 70.18 6.68
Synthl 100% KO/KO 1.86 1.28 GPMA 98.4% 10/0.1 26.37 2.33 TKb 100% KO/2 70.68 6.65
SerSynth 100% KO/KO 1.92 0 PYKF 100% 10/KO 28.41 1.66 Mur 100% KO/KO 73.19 7.05
RPIA 100% KO/KO 2.18 1.16 GAPA 99.2% 0.1 13.08 0.92 PFKB 100% KO/KO 73.22 6.37
Ru5P 92.2% KO/KO 3.65 1.13 PYKA 100% 0.1/KO 13.09 0.92 RPIA 100% KO/KO 77.60 6.54

PYKF 100% KO 4.03 1.93. TIS 99.2% 0.1/1.61 13.09 0.92 RPPK 100% KO/KO 78.02 7.18
G3PDH 100% KO/KO 4.08 1.94 TALB 99.2% 0.1/1.90 13.09 0.92 GIPAT 100% KO/KO 94.90 7.53
PFKA 100% KO/KO 4.14 1.84 G3PDH 100% 0.1/KO 13.44 0.92 PGM 100% KO/KO 95.12 7.53
ZWF 100% KO/KO 4.28 1.98 RPIB 99.2% 0.1/1.27 13.11 0.92 GPMB 100% KO/10 109.47 8.16
PFKB 100% KO/KO 4.29 1.80 FBAB 99.2% 0.1/2.34 13.11 0.92 GPMA 100% KO/0.1 110.09 8.18
Mur 100% KO/KO 4.79 2.09 ENO 99.2% 0.1/0.66 13.12 0.92 Synthi 100% KO/KO 120.10 8.23
RPPK 100% KO/KO 4.84 2.09 RPPK 99.2% 0.1/0.97 13.14 0.92 SerSyrnth 100% KO/KO 138.41 0
RPIA 100% KO/KO 5.50 1.84 GIPAT 99.2% 0.1/0.98 13.17 0.92 GAPA 100% KO/0.1 202.32 3.68
PGM 100% 0.1/KO 5.70 2.23 ZWF 100% 0.1/KG 13.69 0.93 DAHPS 100% KO/10 220.30 4.66
Synthl 100% KO/KO 6.17 2.38 TKa 99.2% 0.1/0.49 14.17 0.89 PYKF 100% KO/KO 244.80 9.80
SerSynth 100% KO/KO 6.80 0 TKb 93.8% 0.1/2.40 14.23 0.88
GIPAT 100% KO/KO 6.94 2.47 Ru5P 100% 0.1/KO 14.62 0.92
PGM 100% KO/KO 6.96 2.47 Synth1 100% 0.1/KG 14.72 0.96
Ru5P 100% KO/KO 7.14 1.82 Mur 100% 0.1/K 14.95 0.96
GPMB 100% 10/KG 9.94 3.62 SerSynth 100% 0.1/KO 15.07 0
GPMA 100% 0.1/KO 10.09 3.66 PGK 99.2% 0.1/0.1 17.58 0.89

DAHPS 98.4% 10 9.02 0.97 PGM 100% 0.1/KO 19.81 1.06
TS 98.4% 10/4.44 9.03 0.97 GPMA 99.2% 0.1/0.1 31.95 2.13
G3PDH 100% 10/KO 9.06 0.97 PYKF 100% 0.1/KG 35.52 1.44
TALB 98.4% 10/5.72 9.11 0.97 DAHPS 99.2% 0.1/10 74.74 0.75 1
ZWF 100% 10/KO 9.36 0.99 PPC 100% KO 66.63 6.88
ENO 98.4% 10/0.1 9.50 1.01 TALA 100% KO/KO 66.64 6.88
RPIB 98.4% 10/8.64 9.63 0.96 PPSA 100% KO/KO 66.64 6.88
RPPK 98.4% 10/0.17 9.84 1.00 PTS 100% KO/2 66.65 6.88
TKa 98.4% 10/0.39 10.11 0.94 PYKA 100% KO/KO 66.66 6.88 1
TKb 98.4% 10/2.58 10.25 0.94 EDD 100% KO/KO 66.66 6.88
Synth1 100% 10/KO 10.28 1.03 TALB 100% KO/2 66.73 6.87
Mur 100% 10/KO 10.34 1.02 TIS 100% KO/2 66.74 6.88
SerSynth 100% 10/KO 10.55 0 PFKA 100% KO/KO 67.06 6.80
RPIA 100% 10/KO 10.72 0.95 FBAA 100% KG/KG 67,54 6.90
G1PAT 98.4% 10/0.52 10.98 1.04 FBAB 100% K0/8 68.42 6.92

Table 2 (continued). The list of best strategies for improving aromatic amino acid productions
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Chapter 3

Systematic bottleneck identification and
release for Saccharomyces cerevisiae ethanol
production

Abstract

Increased concern for the cost and supply of oil and its negative impact on the environment

has led to recent interest in renewable fuel alternatives. Most biofuels share similar precursors in

the central carbon metabolic network, and ethanol is the most common renewable fuel today.

The study of ethanol production from the central carbon metabolic network is becoming a classic

case for the development of techniques to understand and manipulate Saccharomyces cerevisiae

for optimized biofuel production. Here we present and apply a mass-action model ensemble for

the Saccharomyces cerevisiae central carbon metabolic network that incorporates the ethanol

synthesis pathway as well as the dynamics of NAD and NADH interconversion. This model

ensemble, which samples over parameter uncertainties, was used to design and then to analyze

strategies that improve ethanol production. We further explored approaches for the identification

of pathway bottlenecks. Four computational assays were studied, including metabolite

accumulation, conditional Vmax, increased input, and decreased enzyme, which were applied to

the ethanol model ensemble to study bottleneck identification in this network. The TDH reaction
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was detected as a major bottleneck restricting carbon flow towards the ethanol pathway and

affecting NADH availability. A computational process of greedy sequential single enzyme over-

and under-expression optimization was then conducted and several strategies were identified that

together improve the ethanol yield of a majority of models beyond 95% of the theoretical yield.

84



3.1 Introduction

Metabolic engineering has been widely used as an efficient tool to optimize the production of

industrial and commercial chemicals. It usually involves directed improvement of cellular

properties, using recombinant DNA technologies, through modification of specific biochemical

reactions or introduction of new reactions. Many successful applications have been reported to

elevate chemical production by re-engineering the genomes of microorganisms, in which popular

synthetic chemicals include amino acids, polymers, lipids, and biofuels (Alper & Stephanopoulos,

2009; Atsumi & Liao, 2008; Bailey, 1991; Barkovich & Liao, 2001; Bongaerts et al., 2001;

Cameron & Tong, 1993; Cameron & Chaplen, 1997; Keasling, 1999; Li & Vederas, 2009;

Stephanopoulos & Sinskey, 1993; Tyo et al., 2007). Because many of the desired metabolic

products are terminal or intermediate compounds of central carbon metabolism, composed of

glycolysis and the pentose phosphate pathway, it has become one of the most intensively studied

biochemical systems. Recent concerns about greenhouse gas emissions, as well as the supply and

cost of oil, have led to interest in alternative liquid transportation fuels, an often-touted version

of which is the cellular conversion of biomass into ethanol and other alternative fuels produced

from similar metabolic intermediates that are found in the glycolysis pathway (Alper &

Stephanopoulos, 2009). Regardless of which molecule or mix of molecules becomes the

dominant biomass-based fuel of the future, microbial conversion is at present the main avenue

for alternative fuel production. Ethanol production through the central carbon metabolic network

has become a useful case study to develop computational techniques to help improve the

fermentation production of renewable biofuels (Bro et al., 2006; Lee et al., 2008; Matsushika et

al., 2009).
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The most commonly used microbe for ethanol production has been yeast; Saccharomyces

cerevisiae which can produce ethanol to concentrations as high as 18% of the fermentation broth,

is the preferred species for most ethanol fermentation (Lin & Tanaka, 2006). This yeast can grow

both on simple sugars, like glucose, and on the disaccharide sucrose. As with many

microorganisms, Saccharomyces cerevisiae metabolizes glucose by the Embden-Meyerhof (EM)

pathway (Lin & Tanaka, 2006). Under aerobic conditions, the pyruvate formed in the final step

of glycolysis is oxidized to acetyl-CoA, which enters the citric acid cycle and is oxidized to CO 2

and H20. Under anaerobic conditions, there is no 02 to accept the electrons of NADH and thus

to reoxidize it to NAD, which threats the function of the glycolysis pathway. Saccharomyces

cerevisiae evolved to continually regenerate NAD during anaerobic glycolysis by transferring

electrons from NADH to ethanol, a reduced end product (Nelson & Cox, 2008; Pronk et al.,

1996). Pyruvate is converted to ethanol and CO 2 in a two-step process: pyruvate is decarboylated

in an irreversible reaction catalyzed by pyruvate decarboxylase; the acetaldehyde generated is

then reduced to ethanol through the action of alcohol dehydrogenase with the reducing power

furnished by NADH. These two steps can be combined into an overall reaction:

Pyruvate + NADH -I Ethanol + CO 2 + NAD (1)

As can be seen in this pathway, the NAD/NADH balance plays a crucial role in regulating the

flux distribution in the network. NADH and the related coenzyme NADPH serve different

functions in Saccharomyces cerevisiae metabolism. NADPH is mostly used as a reductant in

biosynthetic reactions; whereas the NADH/NAD ratio mainly determines the intracellular redox

potential (Bakker et al., 2001; Vemuri et al., 2007). The total amount of NADH and NAD can be

considered as a conserved quantity (Bakker et al., 2001). Reduction of NAD must be matched by

continuous reoxidation of NADH. There are several major 'sources and sinks' of NADH in the
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central carbon metabolic network (Bakker et al., 2001; Hou & Vemuri, 2010; Vemuri et al., 2007)

as shown in Figure 1. NADH is mainly produced by the gapA reaction in the glycolysis pathway,

where it participates in the conversion of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate.

Under aerobic conditions, additional NADH is produced through the citric acid cycle. The major

pathway to reoxidize NADH to NAD when oxygen is available is the respiration pathway in

mitochondria. In anaerobic conditions oxygen is not present to accept electrons from NADH.

Instead, ethanol is synthesized from pyruvate to reoxidize the NADH. In addition, the glycerol

synthesis pathway, which uses dihydroxyacetone phosphate in the glycolysis pathway as a

reactant, is also used to reoxidize the NADH that cannot be fully consumed by ethanol synthesis

in order to maintain the NAD/NADH balance. The dynamics of the NAD/NADH

interconversion is controlled by this complex network under aerobic and anaerobic conditions. It

determines the relative fluxes among different pathways, and thus is crucial to understand for the

purpose of optimizing ethanol production in Saccharomyces cerevisiae.

Due to the importance of ethanol in industrial use, much effort has gone into maximizing its

production. Improvements include pretreatment of feedstocks and introducing enzymes to digest

xylose (Hahn-Hagerdal et al., 2006; Lee et al., 2008; Lynd, 1996; Matsushika et al., 2009;

Nevoigt, 2008; Sinchez & Cardona, 2008). Less attention has been focused on regulation of the

overall central carbon metabolic network and on understanding bottlenecks in this network.

Because of the complexity of the NAD/NADH dynamics in this network, computational and

mathematical models may be especially useful in understanding and optimizing ethanol

production.

Recent research has led to computational models in order to efficiently analyze and optimize

metabolic networks. Two of the major model types that have been developed and applied are
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flux balance analysis (FBA) and ordinary differential equation (ODE) models (Burgard et al.,

2003; Chassagnole et al., 2002; Edwards & Palsson, 2000; Pramanik & Keasling, 1998; Schmid

et al., 2004; Usuda et al., 2010; Vital-Lopez et al., 2006). FBA models require relatively modest

information regarding biological mechanism, including a list of chemical reactions with their

stoichiometry, flux constraints, and specification of feeds and metabolic demands (Kauffman et

al., 2003; Stephanopoulos et al., 1998; Varma & Palsson, 1994), most of which can be readily

acquired from existing literature and databases. Therefore, FBA models have the advantage of

feasibility and simplicity when modeling large-scale (e.g., whole genome) networks. In contrast

to the steady-state nature of FBA models, ODE models, including aggregated rate law (ARL)

and mass-action rate law (MRL) forms, incorporate network dynamics and attempt to represent

detailed enzyme behavior (Chassagnole et al., 2002; Lee et al., 2006; Liao et al., 1996; Tzafriri,

2003). If unconstrained, the space of steady states from both FBA and ODE models are the same,

but ODE models can readily map parameter constraints into the kinetically feasible regions of

the solution space, whereas this information is not easily transferable to FBA models (Machado

et al., 2012).

A mass-action rate law model for the E. coli central carbon metabolic network has been

reported in Chapter 2, which includes glycolysis and the pentose phosphate pathway. As the

ethanol synthesis pathway is an extension at the end of the glycolysis pathway, the model in

Chapter 2 serves as a convenient initial model for this study. To convert the E. coli model into a

Saccharomyces cerevisiae model, the topology of the model in Chapter 2 was updated based on

the KEGG database (Kanehisa & Goto, 2000). To keep the conversion simple and focused on the

important features of NAD and NADH dynamics, we kept the same number of isomers for the S.

cerevisiae model as for the E. coli model. For reactions that have isomers in S. cerevisae but not
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in E. coli, the general name of the S. cerevisae gene was used (e.g., PGM was used for S.

cerevisae instead of PGMI, PGM2, and PGM3). For reactions have isomers in E. coli but not S.

cerevisae, the weaker isomer reaction in E. coli was removed. The gene names were updated to S.

cerevisae names based on the KGEE database. The parameters were re-fitted against the steady-

state flux data of the key branching reactions in the glycolysis pathway, pentose phosphate

pathway, and TCA cycle measured for S. cerevisiae (Jouhten et al., 2008). More importantly,

given NADH as a reactant for the ethanol synthesis reaction, the NAD and NADH

concentrations were added as explicit state variables into the model in order to analyze their

impact on ethanol production. The steady-state concentrations for NAD and NADH under

aerobic conditions (1.47mM and 0.1 mM, respectively) were borrowed from their E. coli

measured data (Chassagnole et al., 2002) as no S. cerevisiae measurements reported; however,

the total amount of NAD and NADH (around ImM) reported for S. cerevisiae (Bakker et al.,

2001) is similar to the total amount used in our models. The ethanol synthesis pathway was also

added to the model, with pyruvate and NADH as the two reactants. In the refitting, a collection

of models, instead of a single model, was produced, all of which have similarly good fits to the

flux and concentration data mentioned above. This ensemble provides an estimate of uncertainty

in the parameters fit and in the predictions made.

Although much effort in the field of metabolic engineering has gone into identifying efficient

strategies to improve the production rate of desired chemicals, there is less research on how to

directly and systematically discover the bottlenecks in the system -- that is, to identify the slow

steps that would presumably be high-priority targets for rational genetic engineering. In order to

increase productivity and metabolite yield, researchers have focused on enzyme amplification or

other modifications of the pathway that produce increased yield (Stephanopoulos & Vallino,
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1991). Retrospectively, an enzyme reaction can then be called a bottleneck because its

overexpression has improved productivity (Dai et al., 2002; Ltitke-Eversloh & Stephanopoulos,

2008). Here we take a complementary approach of independently studying bottlenecks through a

variety of approaches and then examining the effect of releasing them through overexpression in

simulation.

Alternative approaches such as metabolic control analysis (MCA) (Heinrich & Rapoport,

1974; Kacser & Bums, 1973) have been developed; however, their value in directing metabolic

engineering efforts remains uncertain. MCA, for example, is only valid in the local neighborhood

of the operating point (e.g., steady state) evaluated (Stephanopoulos & Vallino, 1991). This can

limit its applicability. Dynamic sensitivity analysis was developed and applied to primary

metabolism, in which the relative change of target metabolite concentration caused by an

infinitesimal percentage change in enzyme activity is calculated for each enzyme and used to

predict bottlenecks (Shiraishi & Suzuki, 2009). One drawback of this method is that the

sensitivity is calculated through differential equations which evaluate the production

improvement effect when changing the enzyme activity for only an infinitesimal percentage,

which is not realistic in experiments and may not hold valid when changing the enzyme activity

for a finite level. While useful, this approach provides only one perspective on bottlenecks

(discussed below). Network rigidity and principal nodes theory, developed by Stephanopoulos

and Vallino (1991), can identify nodes in the network that have inherent resistance to flux

partitioning alterations. The relative flux going down a certain branch of those nodes may not be

changed by simply modifying the corresponding enzyme activities. Those nodes, therefore,

should be given more attention when designing engineering strategies to improve the production
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rate of metabolic products on the branching pathways and can be considered as a different type

of "bottlenecks" for this concern.

Here we present a framework to systematically identify bottlenecks in the system and study

their relevance for production of a desired output. Four computational tests involved in the

framework are illustrated in Figure 2. They are metabolite accumulation, conditional Vma,

increased glucose input, and decreased E0. Based on the model ensemble we built for

Saccharomyces cerevisiae, we were able to identify bottlenecks in the central carbon metabolic

network through their framework. Analysis of these bottlenecks has led to insights about the

production of ethanol by the network.

Here we describe the four tests used for bottleneck identification. Detecting metabolite

accumulation is a method that is often used by experimentalists to identify network bottlenecks.

Significant (and possibly increasing) accumulation of certain metabolites when others appear to

have reached a constant low level can indicate a flux imbalance adjacent to the accumulated

metabolite. That is, a slower consuming flux cannot keep up with a faster generating flux. The

slow consuming flux usually indicates pathway bottleneck. Several studies have achieved

improved production rates of target chemicals by releasing these bottlenecks (Martin et al., 2003;

Simonsen et al., 2012). Adopting the same logic, our metabolite accumulation test works by

computationally detecting metabolite accumulations in the network. We simulate the model

ensemble of the central carbon metabolic network until most of the metabolites in the system

have reached a constant level, consistent with the experimental fermentation time (Lin & Tanaka,

2006). Upon further simulation, some metabolites retain their constant concentrations, but others

increase significantly. The first time point defines a pseudo-steady state of the system and serves

as a reference state, and the later one is used to detect metabolite accumulation. The flux
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immediately downstream of these accumulated metabolites is bottleneck candidate to be

examined further with the other three tests. Interestingly, rather than identifying a single rate-

determining step, here this approach found multiple slow steps simultaneously.

Based on our calculations (see Results and Discussion), many of the slow fluxes identified

through metabolite accumulation operate below their maximum Vmax. These fluxes don't use the

extra capacity because they tend to be reactions with multiple (two) substrates with one of the

substrates (usually the non-accumulated of two) limiting. Increasing the concentration of the

limiting substrate (a metabolite) generally could involve a shift to a new steady state which leads

to a faster flux. We thus introduce the concept of a conditional Vm.ax of an enzyme with respect to

a substrate to describe a system property of the enzyme where the actual flux capacity is limited

by the given steady state (or pseudo-steady state) of the substrates (occasionally also products)

and is smaller than the overall V.ax. The overall Vmax is a local property of the enzymes

determined by the enzyme kinetic parameters (e.g., kcat) and the enzyme availability (e.g., total

enzyme concentration, Eo). It does not depend on the system or network the enzyme locates and

describes a fixed upper limit for enzyme flux capacity. In contrast, the conditional Vmax describes

a realizable enzyme flux capacity at a given (pseudo-) steady state. For example, if one substrate

(usually a co-factor) of a two-substrate enzymatic reaction remains at a significant low steady-

state concentration determined by the system, no matter how much the other substrate

concentration is increased, the enzyme cannot run at its Vmax. We call the enzyme is running at

its conditional Vniax respecting to the first substrate and the first substrate is the limiting factor.

Under situation like this, the overall Vmax is useless, but it is the system property, the conditional

Vmax which depends on the current network concentration states, that provides valuable
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information of the available capacity of an enzymatic reaction. For single substrate reactions, the

conditional Vmiax, when holding product level at zero, is the same as the overall Vmax.

The metabolite accumulation test and the conditional Vmax test are methods to identify

bottleneck candidates. They make no reference to the desired output compound however and so

can suggest bottlenecks not relevant to production. The glucose input test and decreased Eo test

are additional tests that measure the relevance of candidates to production of the desired output.

As the ethanol production pathway is located near the end of glycolysis, whether the carbon

resources provided by glucose can reach this pathway efficiently is important for optimizing

ethanol yield. The glucose input test increases the glucose input flux by 2 to 1000 fold. If there is

no bottleneck for carbon flux in the network, all fluxes should be elevated with increased glucose

input. On the other hand, the bottleneck flux (and those downstream) will not increase when

increasing glucose input, as maximum capacity has been reached. By observing flux changes for

each enzyme in central carbon metabolism for increased glucose input, we were able to identify

the enzymes that constrain the carbon flux.

The fourth test, decreased E0, is based on the assertion that if an enzyme reaction is a

bottleneck, it is already running at capacity; reducing the capacity by decreasing Eo should

further reduce downstream fluxes to the output, but not for non-bottlenecks. It is tempting to

propose an increased E0 test, as this corresponds to experimentally implemented enzyme

overexpression. Similar conclusions cannot as clearly be drawn for an increased E0 test, however,

because the flux might still be limited by something else (for instance, a second bottleneck);

release of either alone would not increase production, but both together would.
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Based on this four-test framework, we were able to identify bottleneck candidates in the

central carbon metabolic network and validate their relevance for ethanol production. The TDH

reaction, which is several steps upstream of the ethanol synthesis reaction, is identified as an

important bottleneck that regulates the carbon flow towards ethanol production. The NAD to

NADH ratio emerges as a crucial regulator for the TDH reaction and ethanol production. It

controls the balance and relative abundance of the carbon precursor, pyruvate, and the NADH for

ethanol synthesis. As the NAD and NADH molecules are involved in several enzyme reactions,

the fluxes of which are interdependent due to the network topology, it is not obvious how to

manipulate the enzymes in the network for optimum balance between NAD and NADH in order

to maximize ethanol yield. Here we use a single-enzyme, greedy sequential optimization method

to identify efficient strategies to enhance ethanol production. In each round, single-enzyme over-

or under-expression optimization was conducted, using similar procedures to those reported in

Chapter 2, for each enzyme in the network and for each model in the ensemble. Compared to the

exhaustive multiple-enzyme optimization reported in Chapter 2, the single-enzyme greedy

optimization is computationally more efficient (scales as the number of enzymes in the network

as opposed to combinatorially). Two rounds of sequential optimization are computed to lead to

raising ethanol yields from 75-85% to over 95% of the theoretical maximum for most of the

models in the ensemble. Further studies show that the strategies identified through this method

helped release the bottlenecks identified by the four-test framework. The model ensemble

technique and the bottleneck identification and release methods reported here can be readily

applied to extended pathways of central carbon metabolism and other networks to help improve

the production of chemicals of academic or commercial interest.
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3.2 Method

3.2.1 Modeling ethanol production in yeast central carbon metabolic network

A mass-action rate law model for E. coli central carbon metabolic network, which includes

glycolysis pathway, pentose phosphate pathway, and Entner-Doudoroff pathway, has been

reported in Chapter 2. As the central carbon metabolic network is highly conservative among

many microorganisms (Nelson & Cox, 2008), this model provides a good reference for

generating a comprehensive mass-action rate law model for Saccharomyces cerevisiae. In order

to update the model topologies from E. coli network to Saccharomyces cerevisiae network, the

KEGG database (Kanehisa & Goto, 2000) was used to select model additions and deletions. The

glucose uptake in Saccharomyces cerevisiae involves glucose membrane transporters (H XT) and

hexose phosphorylation enzymes (HXK1, HXK2, and GLK) (Barnett, 2008; Boles & Hollenberg,

1997; Fernandez, Herrero, 1985; Gancedo, 2008; Leandro, Fonseca, & Gongalves, 2009; Ozcan

& Johnston, 1999; Rintala, Wiebe, Tamminen, Ruohonen, & Penttila, 2008; Rolland,

Winderickx, & Thevelein, 2002), the mechanisms of which are different from the glucose uptake

of E. coli. The pts reaction (E. coli glucose uptake and phosphorylation reaction) in the E. coli

model was replaced by an artificial GT reaction for glucose transporter and HXK reaction for

glucose phosphorylation to simulate the glucose uptake for Saccharomyces cerevisiae. The

chemostat experimental setting in the E. coli model was replaced by a batch experimental setting,

by removing the constant in-flux and out-flux of glucose for the system and replacing with a

fixed initial extracellular glucose supply of 36 g/L. The elementary parameters for reactions GT

and HXK were estimated based on the literature Km and kcat value (Fernandez, Herrero, 1985;

Gao & Leary, 2003), and the enzyme concentrations of them were adjusted so that the system
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remains a similar glucose uptake rate as the model in Chapter 2. The Entner-Doudoroff pathway

(edd and eda) was removed from the model, as it does not exist in Saccharomyces cerevisiae

(Blank, Lehmbeck, & Sauer, 2005). The anaplerotic reaction pepc in the E. coli model was

replaced by PYRD reaction for the Saccharomyces cerevisiae model, as the pyruvate carboxylase,

instead of the phosphoenolpyruvate carboxylase, is the major enzyme to replenish the citric acid

cycle for oxaloacetate which is consumed during biosynthsis of amino acids. The PYRD reaction

was implemented to be sensitive to the concentration of acetyl-CoA to simulate the natural

behavior of this enzyme (Pronk et al., 1996). The ethanol production pathway was added as a

new branch taking away pyruvate and converting it into ethanol (Pronk et al., 1996). The detailed

reaction mechanisms can be found in the Appendix B.

The critical modifications of the Cui et al. model were the introduction of NAD/NADH and

NADP/NADPH balance into the model as well as the capability to model the transition from

aerobic to anaerobic conditions. The mechanisms of the major reactions responsible for the

NAD/NADH and NADP/NADPH balance were updated to include NAD, NADH, NADP, and

NADPH as reactants or products. In particular, the TDH enzyme reaction was updated from a

uni-uni reaction to a bi-bi reaction to include NAD as reactant and NADH as product. A

simplified three-reaction citric acid cycle (TCA cycle), which only takes into account of the three

steps involving NADH generation, was also added into the model to simulate the NADH

generation from NAD. The glycerol synthesis reaction and the ethanol synthesis reaction were

updated to include NADH as reactant and NAD as product, as the alcohol generation steps

consume NADH for redox balance. A simplified oxidative phosphorylation reaction was added

to simulate the conversion of NADH to NAD by oxygen under aerobic condition. Oxygen, which

was added as a tractable variable in the model, starts at a constant level and linearly decreases
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while consumed by the oxidative phosphorylation reaction. Oxygen concentration hitting a zero

marks the system converts from aerobic condition to anaerobic condition. The ZWF] and GND

reactions were updated to include NADP as reactant and NADPH as product; a first-order

reaction was added to simulate the consumption of NADPH to NADP by biosynthesis reactions

in yeast. The detailed reaction mechanisms and reference used for the reactions mentioned above

are listed in Table 1. After the modifications, the new yeast model consists of 46 enzyme

reactions, 235 species, and 423 free kinetic parameters. Figure 3 depicts the overall topology of

the model.

The carbon flux distribution measurement data of Saccharomyces cerevisiae CEN.PK1 13-1A

in different oxygenation conditions reported by Jouhten et al. (Jouhten et al., 2008) were used to

train the wild-type model behavior. In particular, the fluxes of the crucial branching reactions,

ZWF1, GND, glycerol synthesis, TDH, ethanol synthesis, FBA1, PYK, PYRD, PG11, PDB], and

the first TCA reaction, in both aerobic and anaerobic conditions were included in the objective

function for the parameter fitting. In addition, the concentrations of NAD and NADH under

aerobic condition were also included in the objective function of the fitting, so that the system

has a reasonable NAD/NADH balance at the initial stage of the experiment. The overall

objective function for the fitting is given as below:

2 2

G = rPredaerobic - rdata,aerobic + rpredanaerobic - rdataanaerobic

rdataaerobic 
6

data,aerobic rdata,anaerobic 
6
data,anaerobic

/ 2
Xpred,aerobic - Xdata,aerobic)

xdataUaerobic Cdata,aerobic

The first and second sums are for the reaction rate fitting for the 11 branching reaction fluxes

under aerobic and anaerobic conditions. The third sum is for the NAD and NADH concentration
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fitting under aerobic conditions. The NAD and NADH concentrations under aerobic conditions

were taken from Chassagnole et al. (2002). Six parameter sets from the frontier model sets in the

Chapter 2 model that represent the different pentose phosphate pathway behaviors were selected

as the initial parameters for the fitting. For each parameter set, four additional initial parameter

sets were generated by adding 10% random noise to each parameters. An Eo of 0.0176mM was

used for all enzymes except for the glucose transporters (Fraenkel, 2003). To take into account of

the uncertainties of average enzyme concentrations in yeast, each parameter set was also paired

with one of the five E0, 0.001mM, 0.005mM, 0.01mM, 0.025mM, 0.05mM, for the parameter

fitting. In total, 180 initial parameter sets were used for the optimization which was done using

the fmincon function in MATLAB (version 2008a; The MathWorks, Inc.; Natick, MA). The

boundaries of parameters were partially estimated based on Km and kcat reported in BRENDA

database (Scheer et al., 2010). 52 parameter sets were collected with good fits. These parameter

sets formed a model ensemble with 52 sub-models which share the same topology but have

different parameter values.

3.2.2 Calculation of metabolite accumulation

Each model was simulated to ti = 105s (27.8 hour) and to t2 = 1.5 x 105 s (41.7 hour). The t

time point was selected as a long enough time to allow the system reaches a pseudo-steady state.

It is consistent with the range of experimentally used measurement time for batch reactors

(Cheng & Hasan, 2009; Dombek & Ingram, 1987; aylak & Sukan, 1998). The concentrations

of all metabolites were collected at both time points. A comparison between the concentrations at

the first time point and those at the second time point showed that most of the intermediate

metabolites but eight stay at the same level. We then defined the first time point as a "pseudo-

steady state", which refers to a state that all but some "special behaving" metabolites have
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reached stable concentrations. The "special behaving" metabolites did not reach stable

concentrations when allowed to simulate up to 2x 105s (55.6 hour). The ratios of the metabolite

concentrations at t2 over ti were reported as indicators of abnormal metabolite accumulations in

the system.

3.2.3 Calculation of conditional Vmax

To calculate conditional Vm.ax, each model in the ensemble was first simulated to acquire

pseudo-steady state concentrations for all species at the given measurement time point t = 27.8

hour. For multiple reactants enzyme reaction, the conditional Vmax for a particular reactant was

calculated as the maximum flux this reaction can achieve when changing the concentration of

this reactant from zero to infinity (1010 mM was used for calculation) while fixing the

concentrations of all other reactants and products at the pseudo-steady state values simulated as

described above. The fluxes for each concentration state were calculated based on the steady-

state rate law derived using the King-Altman method from the elementary reactions (Cleland,

1963; Cornish-Bowden, 1977; King & Altman, 1956; Kuzmic, 2008). For single reactant enzyme

reactions, the conditional Vmax was calculated with fixed product pseudo-steady state

concentrations while changing the concentration for reactant from zero to infinity (1010 mM was

used for calculation). The conditional Vmax was calculated for every reactant of each enzyme

reaction. The actual enzyme flux for each reaction was also calculated based on the pseudo-

steady state concentrations of all species. The ratio between the actual flux and the conditional

Vmax is an indicator of the usage of flux capacity and is reported in Results and Discussion

session.
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3.2.4 Measurement of the effect of increasing glucose input

The Eo of GT and HXK enzymes were increased for 2, 5, 10, 25, 50, 100, and 1000-fold to test

increasing the glucose input for the corresponding fold for each model. The extracellular glucose

was kept excessive for all the tests. Under each glucose input level, the models were simulated to

the pseudo-steady state (t = ti) and the enzyme fluxes were calculated as the time derivative of

the product concentration of each reaction at the pseudo-steady state. The pseudo-steady state

flux changes for each enzyme of each model when increasing the glucose input level were

reported as a measurement of effect of increasing glucose input.

3.2.5 Measurement of the effect of decreasing enzyme Eo

The enzymes detected as bottleneck candidates based on the metabolite accumulation test and

the conditional Vmax test were measured for their effect on ethanol production rate when

decreasing their corresponding Eo. The Eo of glycerol synthesis enzyme, TDH, TALl, NQM1,

and the first enzyme in the TCA cycle were decreased to 80%, 50%, 10%, and 1%, respectively.

The corresponding pseudo-steady state flux changes for ethanol production were reported as

indicators of the relevance of the particular bottleneck candidate to the production rate of interest.

3.2.6 Sequential bottleneck release

A sequential single enzyme optimization framework was applied to the model ensemble to

identify strategies leading to enhanced ethanol production. The objective function was the

ethanol production rate from the reaction catalyzed by the enzyme Eole from the substrates

pyruvate, evaluated at the pseudo-steady state. A single enzyme over- and under-expression

(termed "expression change" here) spanning a range from 50 times to 1/50 the unperturbed

concentration was tested for each of the enzymes in the system for the model ensemble. The
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enzyme expression change strategy that results in the most increase of the ethanol yield

compared to that of the wild-type model was selected as the best strategy for that model at round

1. The best strategies for each model in the ensemble were applied to the wild-type models,

which generates the new base models. A second round optimization of single enzyme expression

change was then conducted on the base models to identify strategies that lead to the best increase

of ethanol yield. This process can be repeated several times until a preferred yield is achieved or

no further yield improvement can be acquired. A corresponding sequence of single enzyme over-

and under-expression for each model in the ensemble can be generated as the roadmap to

enhance ethanol production. The optimization was done using the f mincon function in MATLAB

(version 2008a; The MathWorks, Inc.; Natick, MA).
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3.3 Results and Discussion

The central carbon metabolism model for E. coli built in Chapter 2 was converted to a model

ensemble for Saccharomyces cerevisiae with updated network topology. The steady-state

concentrations of NAD and NADH under aerobic condition were borrowed from those in E. coli

(Chassagnole et al., 2002) given the total amount of them is similar in E. coli (1.57mM) and in S.

cerevisiae (around 1mM) described in Introduction.The model ensemble was reparameterized

using steady-state data of major carbon fluxes in S. cerevisiae through the glycolysis pathway,

pentose phosphate pathway, and the TCA cycle under both aerobic and anaerobic conditions

(Jouhten et al., 2008). The resulting models fit the training data very well, with 82.1% of the

calculated fluxes within 10% of the measured values and a maximum deviation of 24.6%.

3.3.1 Ethanol production bottleneck detection via the four-test framework

Metabolite accumulation test and conditional V,,,, test identify bottleneck candidates for further

investigation

Each of the 52 models in the ensemble was examined for metabolite accumulation. Each

model was simulated and examined at ti = 27.8 h and t2 = 41.7 h as described in Methods session.

Nearly all metabolites had reach low concentrations that remained constant over time at ti,

comparison between t2 and t, provided a convenient mechanism to identify those that

accumulated. The log ratios of the metabolite concentrations collected at t2 to that at tIare shown

as a heat map in Figure 4A, where the x-axis corresponds to different metabolites in the model

and y-axis corresponds to different models in the ensemble. The rows are ordered by the model's

ethanol yield, with the highest yield model at the top. The panel on the right of the heat map
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shows the corresponding yield for each model. Red indicates a significant concentration increase;

blue represents a significant decrease. Intermediate colors indicate intermediate changes.

The majority of the 26 metabolites consistently show consistent green color across all or

nearly all models, which indicates small or no concentration change. The consistency across

models indicates insensitivity to parameter uncertainties between models. One can consider the

systemas having reached a pseudo-steady state by ti, as most of the metabolites have reached a

stable level. Interestingly, several metabolites increase concentration (yellow to red) - namely,

F1,6P, G3P, E4P, DHAP, and acetyl-CoA. Moreover, those increases are consistent across most

of the models, which again indicates a relative insensitivity to parameters. Figure 4B shows a

box plot that summarizing the distributions across models from the heat map for each metabolite.

The five accumulated metabolites have the largest variation across models partially because the

models vary in the level of accumulation predicted but also because some models predict no

accumulation.

The carbon flow through glycolysis starts at glucose and progresses towards pyruvate. The

metabolites F1,6P, DHAP, and G3P are located immediately before the enzyme reaction

catalyzed by the product of the TDH gene. A concentration accumulation at this location

indicates an imbalance of fluxes going into and out of these metabolites. In particular, it suggests

the TDH and glycerol synthesis fluxes are slower than the PFK and FBA I fluxes and that the

FBA 1 fluxes are slower than the PFK ones (also confirmed by other results, see below), which

identifies TDH and the glycerol synthesis reactions as potential bottlenecks. Similarly, the

accumulation of acetyl-CoA suggests the first reaction in the TCA cycle, TCA1, could be a

potential bottleneck of the system. It is more complicated for the accumulation of E4P, as

reported in Chapter 2 that the flux in pentose phosphate pathway can flow in either the clockwise
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or counter-clockwise direction. Both the TAL and TKL reactions could be potential bottlenecks

depending on the flux direction.

To complement the metabolite accumulation simulations, the conditional Vmax for each

enzyme reaction was calculated for each model in the ensemble. As conditional Vmax measures

the maximum flux under current condition, the log ratios of actual fluxes to their condition Vm.ax

are given in Figure 5. Red indicates fluxes that are similar to the conditional Vmax and thus close

to capacity; the deepest blue indicates fluxes than 1% of their conditional Vmax and thus far

below capacity. Of the five accumulated metabolites identified above (E4P, acetyl-CoA, G3P,

DHAP, and F 1,6P), there is a corresponding enzyme running at its conditional Vmax just

downstream (TAL, TCA, TDH, and GLCE, respectively). This is as expected as described in

Figure 2B: bottleneck candidates predicted by the metabolite accumulation test should also be

selected by the conditional Vmax test, because metabolite accumulation indicates the consuming

flux cannot keep with the generating flux, which suggests the consuming flux is already running

at capacity. Interestingly, several new enzyme fluxes (ZWF1, GND, and the ethanol synthesis

reaction) are also identified as running at or close to the conditional Vm..ax, but were not selected

by the metabolite accumulation test. Further examination shows that, compared to the candidates

selected by both tests, there is no flux imbalance around ZWF] and GND, (Figure 6), consistent

with the lack of metabolite accumulation. A more detailed study (Figure 5) shows that the

limiting metabolites for the conditional Vmax for ZWF1 and GND are carbon precursors, whereas

those for the TDH, glycerol synthesis, and TCA reactions are the co-factors NAD or NADH.

Increasing glucose input (carbon input) increases the carbon precursor levels and thus increases

the conditional Vmax for ZWF1 and GND. By contrast, the conditional Vm'ax for reactions with

NAD or NADH as the limiting cannot be released by simply increasing glucose input level.
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These reactions (TDH, glycerol synthesis, and TCA reaction) are important bottleneck

candidates for further examination.

Glucose input test detected TDH reaction as major bottleneckfor carbonflow

Ethanol is produced by converting glucose through glycolysis. For the glucose input test,

increasing amounts of glucose from 2 to 1000-fold were input and the resulting flux changes

were observed. Figure 7 shows a small a heat map of relative fluxes adjacent to each reaction

(color from white to red indicates a flux increase from negligible to large). Two patterns are clear.

Fluxes near the top of the network increase with increased input; those near the bottom remain

unchanged. In particular, the ethanol production rate does not increase with enhanced glucose

input. This phenomenon is consistent across the model ensemble and is thus not sensitive to the

parameter uncertainties. The switch of the patterns occurs on the glycolysis pathway at the TDH

reaction. Thus, TDH is identified as a bottleneck. The flux of glycerol synthesis enzyme also

does not increase with increased glucose level and appears to be another bottleneck for carbon

flow. Therefore, the glucose input test further confirms that the TDH and glycerol synthesis

reactions suggested by the metabolite accumulation and conditional Vm.a, tests are relevant

bottlenecks for ethanol production. Additional bottlenecks could exist downstream of the TDH

reaction, the effect of which could have been hidden by the effect of TDH reaction.

Decreased EO test validates TDH, glycerol synthesis reaction, and tcal as bottlenecks for ethanol

production

Sequentially observing the effect of reduced enzyme concentrations (the decreased Eo test)

was conducted to examine further the relevance of bottleneck candidates identified previously. In

particular, the Eo for TDH, glycerol synthesis, TCA1, TAL1, and NQM] were each decreased to
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80%, 50%, 10%, and 1% of their base concentration. The corresponding log ratios of the ethanol

production rates relative to those with the original Eo are plotted in Figure 8. Decreasing the Eo

(and thus the Vmnax) of TDH, glycerol synthesis, and TCA lcauses the corresponding ethanol

production rates to decrease correspondingly. This matches the intuition that decreasing the flux

capacity of a limiting reaction would further reduce ethanol production. By constast, Figure 8

shows that changes of Eo for TAL1 and NQMJ do not affect ethanol production. It indicates that

although these enzymes may be bottlenecks for the network predicted by the metabolite

accumulation and conditional Vmax tests, they are not located on the pathways affecting ethanol

production and thus are not directly relevant to the improvement of ethanol production.

Interestingly, increasing the Eo of TDH, glycerol synthesis, and TCA1 do not provide much

benefit for improving ethanol production (data not shown), which suggests that a network

solution for maximizing the ethanol yield is not obvious even if the bottleneck enzymes have

already been identified. More sophisticated techniques are needed to manipulate the network.

3.3.2 NAD and NADH balance plays a crucial role in regulating ethanol production

I mole of ethanol is produced by consuming 1 mole of pyruvate and 1 mole of NADH. The

total amount of NAD plus NADH is relatively stable and has been reported around 1-1.57mM in

cells (Chassagnole et al., 2002; Richard, Teusink, Westerhoff, & van Dam, 1993; de Koning &

van Dam, 1992). The total amount is implemented as a constant of 1.57mM in the model based

on the Chassagnole et al. model. Consequently, reduction of NAD has to be matched by a

continuous reoxidation of NADH. The ratio of NADH over NAD is crucial for ethanol

production and higher NADH/NAD ratio favors the ethanol generation. Interestingly, the

bottleneck tests described above have identified the TDH and glycerol synthesis reactions, two
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enzyme reactions much earlier than the ethanol synthesis reaction, as the major bottlenecks that

affecting ethanol production rate in the yeast central carbon metabolic network. When we

examine the ethanol production reaction alone, there is a significant shift of nicotinamide

towards the NADH format after switching from aerobic to anaerobic condition and most of the

models have NADH as the dominant form (Figure 9). This major increase of NADH level

matches well with the significant increase of ethanol production in the anaerobic condition as

shown in Figure 9. Under aerobic condition, the NADH formed by TDH reaction is ultimately

reoxidized to NAD by passage of its electrons to 02 in mitochondrial respiration. However,

under anaerobic condition, NADH generated by glycolysis cannot be reoxidized by 02. Failure

to regenerate NAD would leave the cell with no electron acceptor and thus stop the glycolysis

pathway (Nelson & Cox, 2008). The pyruvate metabolism is thus switched from going towards

the TCA cycle which also requires NAD as reactant to going towards the ethanol synthesis

pathway which regenerates NAD by accepting the electrons. It is impressive that the models can

automatically capture this oxygen condition change and switch the pyruvate consumption

pathway accordingly. As mentioned in the conditional Vmax test, some models have the carbon

precursor, pyruvate, instead of the NADH as the limiting precursor for the ethanol production

reaction. How much pyruvate the downstream pathway can acquire, as pointed out by the

glucose input test, depends on the flux capacity of the TDH reaction. The conditional Vmax test

for the TDH reaction indicates that the limiting factor for the capacity of this reaction is the NAD

level in the system. Based on these analyses, the NAD and NADH balance is crucial for

determining the ethanol production rate in the system. A higher NAD to NADH ratio could

release the limitation of the TDH reaction and thus increase the carbon converted to pyruvate; on

the other hand, a lower NAD to NADH ratio would favor the ethanol synthesis reaction goes
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towards the ethanol production. The NADH generated by TDH and TCA reactions are consumed

by ethanol synthesis and glycerol synthesis reactions. The faster the ethanol synthesis reaction

runs, the more NAD gets recycled, and thus the faster the TDH reaction runs, until the NADH

has been consumed so much that it starts to become the limiting precursor instead of pyruvate.

At the anaerobic pseudo-steady state observed in the model ensemble, there is a shift towards the

NADH format, which reduces the capacity of the TDH reaction and limits the pyruvate available

for ethanol production. For ethanol production, the availability of NADH and pyruvate is inter-

connected. A careful network flux control is needed to balance the precursors and maximize the

productivity.

The glycerol synthesis reaction also plays an important role in ethanol production. As the

generation of glycerol from DHAP converts NADH to NAD, it helps release the TDH bottleneck

by providing more NAD. However, as indicated by the conditional Vmax test, the glycerol

synthesis reaction may be already running at the overall Vm.ax. This means the glycerol synthesis

reaction already recycles NAD at its maximum capacity, and it cannot further help release the

TDH bottleneck. On the other hand, glycerol is usually considered as an unwanted side-product

for ethanol production. It has been estimated that elimination of glycerol production in industrial

yeast fermentations aimed at the production of alcohol might increase the annual worldwide

production of ethanol by 1.25 billion liters (Nissen et al., 2000). Therefore limiting the glycerol

reaction rate is usually desired in industry productions (Bakker et al., 2001). A flux control that

balances the benefit of releasing the TDH bottleneck and limiting the glycerol yield is desired to

maximize the ethanol industrial yield.
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3.3.3 Sequential bottleneck release increases ethanol production yield

The NAD and NADH inter-conversion is involved in multiple reactions in the central carbon

metabolic network and controls the yield of ethanol against glucose and glycerol. As discussed in

previous session, a careful control of the NAD to NADH balance is desired in order to achieve

the maximum ethanol production rate. However, due to the complicated inter-dependency of the

NAD/NADH related reactions, it is not obvious how to adjust the enzyme levels of each reaction

to optimize the network performance. A sequential single enzyme over- and under-expression

optimization was conducted on each enzyme and each model. When applied the first round of

single enzyme optimization, multiple optimization strategies have been identified that improve

the ethanol production. The maximum ethanol production yields for each model with single

enzyme optimization are shown in Figure 10. The models are ordered based on their wild-type

ethanol yield against glucose (blue bars). Enzyme strategies that are elected by more than one

model are marked out in different colors. 88.5% of the models in the ensemble have a wild-type

ethanol yield between 75-80% of the theoretical yield, which is similar to the reported

production from Saccharomyces cerevisiae (Nevoigt, 2008). The enzyme names and average

modulation ratios that lead to the best ethanol production rate for the models are listed in Table

2A.

The over-expression of the ethanol synthesis enzyme (EOLE) is the most popular strategy

which is elected as the best for 30 of the 52 models in the ensemble. In fact, over-expressing

EOLE improves the ethanol production in all the 52 models, although the effects are very mild

for some models. Recall that the ethanol synthesis enzyme is identified as running close to the

overall Vmax for many models based on the conditional Vmax test. An over-expression of this

enzyme for those models could increase the capacity of this reaction and allows higher flux.
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Indeed the ethanol synthesis fluxes of the models elected EOLE as the best strategy are on

average 13.9% closer to their corresponding conditional Vmax. Previously, the ethanol synthesis

reaction is not defined as a network bottleneck, mainly because it is only identified by the

conditional Vmax test but no major metabolite accumulation observed. However, we discussed

that under the anaerobic condition, there is a shift towards the NADH form compared to the

NAD form, and most of the nicotinamide exists in the NADH form for many models. This can

be considered as a type of metabolite accumulation of the NADH as well. The constant level of

NAD plus NADH of a mild 1.57mM made it hard to observe through the metabolite

accumulation test. Here, we would therefore define the EOLE reaction as another network

bottleneck. In previous discussion we mentioned that a faster ethanol production reaction can

lead to more NADH recycled to NAD which, in return, releases the TDH bottleneck for more

downstream pyruvate. The release of TDH bottleneck by EOLE over-expression can be indeed

observed in Figure 11 which shows that for all the models having metabolite accumulation

problem, the accumulations of F 1,6P, G3P, and DHAP that represent the TDH bottleneck have

been released. Figure 12, which plots the reaction rates of TDH and ethanol synthesis reaction

before and after applied the EOLE over-expression strategy, confirms that the increased EOLE

reaction rate does help increase the TDH flux and thus release the bottleneck. Under-expressing

glycerol synthesis enzyme (GL CE) is also selected by 4 models. The metabolite accumulation

test for these 4 models displays no obvious accumulation for any metabolites, which indicates no

significant bottleneck in these models. Under-expressing GLCE limits the NADH reoxidized by

glycerol synthesis reaction and thus could increase the NADH level in the system. The NADH

concentration indeed increased by 10% to 12-fold for these 4 models after applied GLCE under-

expression. The corresponding ethanol reaction and TDH reaction are increased for 8.6% and
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5.0%, respectively. The glucose transporter (GT) over-expression and CDC19 over-expression

are also selected by 4 and 3 models, respectively, which potentially increase the carbon

availability for the downstream ethanol pathway. Other strategies have relatively fewer

supporting models, which reflect the affects of parameter uncertainties on strategy selection.

After the first round of single enzyme optimization, the ethanol yields of many models are

enhanced to 80-90% of the theoretical yield (Figure 10) and all models have found at least one

strategy to improve their ethanol yields. A second round of single enzyme over- and under-

expression optimization was conducted based on the improved models from the first round.

Further benefit for ethanol yield is achieved. 57.7% models now have ethanol yield beyond 90%

of the theoretical yield (73.3% of them have ethanol yield beyond 95%) compared to only 15.4%

after the first round optimization (Figure 13). All but one model chooses a different enzyme

strategy than the first round. It indicates the first enzyme strategy already achieves the best

benefit it can lead to and it needs a manipulation of a different enzyme to achieve further

improvement. The strategies selected by the second round optimization are listed in Table 2B.

The CDC19 over-expression, which increases the conversion from PEP to PYR, is the most

elected strategy for the second round optimization. It may indicate that after the EOLE

bottleneck release, it now can use more carbon resources from the upstream network. It is

interesting that the over-expression of the bottleneck enzyme TDH is only elected by one model

in the first round and 3 model in the second round, which suggests that a direct over-expression

of the bottleneck enzyme may not be the most efficient strategy to improve the network

production. It may become significant after more optimization rounds when some other

bottlenecks have been released first. This also illustrates the complexity and difficulty when

there are multiple bottlenecks in the network that there may be an optimal order to release
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different bottlenecks. The order of these strategies may not be obvious and require computational

modeling to reveal the best recipe. For the second round optimization, the EOLE, GT, and some

other strategies show up again as popular strategies. Although coming in different orders for

different models due to the parameter uncertainties, it seems an exhaustive experimental test for

the combinations of four or five enzymes (EOLE, CDC19, GT, GLCE) would have a high

likelihood to result in the best improvement of the ethanol production. Further round of

optimizations can be conducted until it meets the ethanol yield requirement or no further

improvement can be acquired.
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3.4 Conclusions

There have been many practices using the experimental methods to detect the bottlenecks of

the metabolic networks, most of which involves detecting accumulated metabolites in the system

or randomly increasing the E0 of the enzymes on the direct pathway. These approaches are

usually time consuming and do not always generate biological insights, as enhanced production

of target chemicals caused by increased enzyme Eo does not directly indicate those enzymes are

bottleneck, because there may be other intrinsic bottlenecks get released by the increased Eo of

those enzymes. Many times, there are multiple bottlenecks in the network, without uncover all of

which, it is difficult to design strategies to achieve the best production. In this report, we

demonstrated a computational framework which can systematically identify bottlenecks in the

system with very limited data. In particular, TDH reaction, which is much earlier in the pathway

than the step of ethanol production, is detected as one of the major bottlenecks for ethanol

production in the central carbon metabolic network. The metabolite accumulation test shows

significant accumulation of precursors of the TDH reaction and glucose input test indicates TDH

reaction limits the carbon flow towards the downstream pathway (e.g., ethanol production). The

conditional Vmax test further suggests the NAD is the limiting factor for the TDH reaction. Our

study further indicates that the NAD and NADH balance is determined by several key reactions,

including TDH, ethanol synthesis reaction, glycerol synthesis reaction, TCA reactions, etc. and

the concentration ratio between NAD and NADH is a crucial regulator of the ethanol production

rate. In particular, the ethanol production requires two precursors, the carbon precursor pyruvate

and the NADH. Our analysis shows that the NADH and pyruvate concentrations are inter-

dependent, as higher NADH level leads to lower NAD level for TDH reaction and thus fewer

carbon available for downstream pathway. It is thus not obvious of how to manipulate the
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enzyme levels in the network in order to maximize the ethanol production. We presented a

sequential single enzyme optimization method to identify strategies that gradually release

network bottlenecks and increase the ethanol production yield. The over-expression of ethanol

synthesis enzyme is elected as one of the most popular strategies for the first round optimization,

which is consistent with the result that the ethanol production reaction has reached overall Vma,

and is also a major bottleneck for many models. Interestingly, CDC19 is selected as the most

efficient strategies for the second round of optimization, which indicates different strategies are

usually desired to further improve the production after releasing the first bottleneck. After two

rounds of single enzyme over- and under-expression optimization, 57.7% of the models in the

ensemble have reached over 90% of the theoretical ethanol production yield and all models have

improved ethanol production, compared to 70-80% of the theoretical yield for all wild-type

models. The model ensemble we built covers the parameter uncertainties introduced by fitting

the experimental data. Although different strategy orders are suggested for different models, a

similar set of strategies is elected for the first round and second round optimizations. Therefore,

an exhaustive experimental test of a limited set of enzyme strategies would lead to a high

likelihood to secure the most efficient strategies to achieve the best ethanol production yield. The

yeast central carbon metabolic network model we constructed here can be easily extended to

study other academically or commercially interesting chemicals, e.g. high carbon biofuel, etc.,

which are directly or indirectly linked to the glycolysis or pentose phosphate pathway. The four-

test bottleneck detection framework we developed demonstrated as an efficient technique to

discover valuable insights for network re-engineering before complicated experiments are

required.
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Figure 1. NAD and NADH dynamics in central carbon metabolic network. The blue blocks
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Tables

Enzyme reactions Functions Reaction mechanisms
TDH NAD to NADH G3P + NAD * PGP + NADH
PDB1 NAD to NADH PYR + NAD ACCOA + NADH
TCA1 NAD to NADH OXA + ACCOA + NAD * KG + NADH
TCA2 NAD to NADH KG + NAD * SCOA + NADH
TCA3 NAD to NADH SCOA + NAD* OXA + NADH
OPE NADH to NAD NADH + / O2- NAD + H20

EOLE NADH to NAD PYR + NADH-+ EOL + NAD
GLCE NADH to NAD DHAP + NADH- Glycerol + NAD

Table 1. Reaction mechanisms used to update NAD/NADH and NADP/NADPH balances. The
full names of the enzymes and metabolites can be found in Abbreviations session.
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A
Strategy name Number of models Modulation ratio

EOLE 30 22.7
GLCE, GT 4 0.07, 2.7

CDC19 3 40.3
TPI], TCA1 2 25.0, 29.1

TDH, PGI, RKIJ, TCA2, 1 12.0, 3.6, 32.2, 41.0,
OPE, PYRD 0.02, 0.02

B
Strategy name Number of models Modulation ratio

CDC19 11 45.7
EOLE 9 23.1

GT 5 2.0
TDH 3 24.0

TPI], PGI, PFK], TCA] 2 27.0, 45.5, 50, 30.5
ENO, PGM, PDB1, G1PAT, 50, 0.02, 0.04, 0.02, 38.8, 1.2,
NQMI, TCA2, GLCE, DEG, 1 2.4, 0.02, 0.02

PYRD

Table 2. Best enzyme strategies from the sequential single enzyme over- and under-expression.
A. the enzyme strategies from the first round optimization; B. the enzyme strategies from the

second round optimization. The first column shows the strategy name. The second column shows

the number of models elected the corresponding strategies. The third column shows the average

modulation ratio for the corresponding enzymes, with number above 1 for over-expression and

number below I for under-expression.
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Abbreviations

Enzymes
FBA
DAHPS
ENO
GIPA T
GLCE
TDH
metSynth
MUR
PFK
GND
PGII
PGK1
PDB1
PGM
PYK
RKI1
RPPK
RPE1
TA L
TPI]
TKL
trpSynth

Metabolites
2pg
3pg
6pg
accoa
e4p
f6p
fl,6p
gip
g6p
g3p
ile
lala
kival
dipim
nad
nadh
nadp
nadph

Aldolase
DAHP synthases
Enolase
Glucose-i-phosphate adenyltransferase
Glycerol-3-phosphate dehydrogenase
Glyceraldehydes-3-phosphate dehydrogenase
Methionine synthesis
Mureine synthesis
Phosphofructokinase
6-phosphogluconate dehydrogenase
Glucose-6-phosphate isomerase
Phosphoglycerate kinase
Pyruvate dehydrogenase
Phosphoglucomutase
Pyruvate kinase
Ribose-phosphate isomerase
Ribose-phosphate pyrophosphokinase
Ribulose-phosphate epimerase
transaldolase
Triosephosphate isomerase
Transketolase
Tryptophan synthesis

2-phosphoglycerate
3-phosphoglycerate
6-phosphogluconate
Acetyl-coenzyme A
Erythrose-4-phosphate
Fructose-6-phosphate
Fructose-1,6-bisphosphate
Glucose-I -phosphate
Glucose-6-phosphate
Glyceraldehydes-3-phosphate
Isoleucine
L-alanine
Alpha-ketoisovalerate
Diaminopimelate
Diphosphopyridindinucleotide, oxidized
Diphosphopyridindinucleotide, reduced
Diphosphopyridindinucleotide-phosphate, oxidized
Diphosphopyridindinucleotide-phosphate, reduced
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pep Phosphoenolpyruvate
pyr Pyruvate
r5p Ribose-5-phosphate
ru5p Ribulose-5-phosphate
s7p Sedoheptulose-7-phosphate
x5p Xylulose-5-phosphate
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Chapter 4

Conclusions and future directions

The rapid development of genome sequencing and high-throughput measurement techniques of

enzymes and species concentrations has the potential to bring the biological sciences into the era

of so-called 'big-data'. The large amount of available data for concentrations, fluxes, and

kinetics of enzymes under normal or perturbed conditions in biological networks provide

unprecedented opportunities to understand the functional mechanisms of cells. On the other hand,

it brings new challenges of handling, integrating, and interpreting the large amount of data to

acquire novel biological knowledge. With the development of computational and systems

biology, it is now commonly believed that system-level modeling may provide unique

opportunities to understand cellular function. New techniques for modeling biological networks,

which can incorporate the vast amount of available data and describe the underlying biochemical

mechanisms, are needed. It is also important to develop methodologies to analyze intrinsic

network properties and optimize system behavior to fit desired performance.
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In this thesis, I presented new ordinary differential equation (ODE) models of central carbon

metabolism for E. coli and S. cerevisiae based on mass-action rate laws (MRL) of the

biochemical reactions. They describe actual biochemical mechanisms of the enzyme reactions,

e.g., the binding and releasing of reactants, the conversion from reactant-enzyme complex to

product-enzyme complex, and the binding and release of the products, using separate kinetic

parameters. Therefore, it reflects closely of how real enzymes work and has the potential to

guide protein engineering. If well trained, the models can help predict the most efficient ways to

modify single enzymes, e.g. improving reactant binding, improving kcat, or improving product

release, in order to achieve a better level of network performance. Because the MRL models are

constructed with elementary enzyme reaction steps, it is much easier than in aggregated rate law

(ARL) models to incorporate new enzyme interactions and regulation, which makes this model

type very flexible to be extended for studying a different aspect of the same network. This point

is demonstrated in this thesis by converting the E. coli model from Chapter 2 to the

Saccharomyces cerevisiae model in Chapter 3. The new model includes the important new

features such as the oxygen dynamics, the automatic switch from aerobic to anaerobic condition,

and NAD/NADH balance, but it only requires minor changes of several elementary reaction

mechanisms. On the other hand, the ARL models would require updated aggregated reaction

formula incorporating the effect of the new co-factors. The modifications are not straightforward

as many reactions use empirical formula based on experiments with little theoretical rationale.

With new measurement data becoming available, the model can be easily re-fit to any new

concentration, fluxes, or enzyme kinetic data to refine the performance. This point is

demonstrated by re-fitting the E. coli model with new S. cerevisiae data in Chapter 3. The high

flexibility and mechanistically realistic features of the mass-action ODE models make it an
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attractive technique to model important biological systems, such as the highly conserved central

carbon metabolic network and gene expression regulatory networks.

The issue of parameter uncertainties exists for almost all modeling work, due to incomplete data

and lack of biological knowledge. In this thesis, we handle the parameter uncertainty problem by

introducing model ensembles. Multiple parameter values that fit equally well to the measured

data can be found. Instead of using one single model that best fits the available data to make

predictions, we collected a group of models based on proper sampling methodologies and use the

model ensemble to draw more reliable conclusions. The models in the ensemble all share the

same topology but have different parameter values. Without further experimental data, there is

no basis for choosing a single parameter set that represents the best biology. It is especially true

when it considering mutant networks that a good wild-type parameter set may not necessarily

represent the correct behavior after enzyme mutations or expression changes are applied. We

observed some inconsistency in predictions from the models in the ensemble from the studies

both in Chapter 2 and Chapter 3. It illustrates the significant impact of parameter uncertainty on

model predictions and demonstrates the risks of using a single model to draw conclusions with

limited data. In Chapter 2, we assign equal weight to each model and let them vote for the best

enzyme strategies that optimize the aromatic amino acid productions. If a high percentage of

models agree on certain strategies, we have more confidence in them as they are less sensitive to

parameter uncertainties existing in the models. It thus provides a way to evaluate the robustness

of different enzyme strategies and can potentially improve success rates when applying the

predicted strategies to experiments and industrial production. Compared to mathematical

methods (e.g., uncertainty propagation) to evaluate parameter uncertainties, the model ensemble

method is more straightforward to understand and thus easier to communicate with
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experimentalists. It could also be more accurate in many situations given the highly non-linear

properties of biological networks. Theoretically, the more models to be included in the ensemble,

the better coverage there could be for the parameter space. However, available computational

power could limit how many models it is feasible to incorporate into the ensemble. More

sophisticated technologies for uncertainty control should be developed in the future to more

efficiently handle the predictions from mass-action rate law ODE models.

The central carbon metabolic network is one of the most studied biological networks. It has

many good features as a case study to develop computational methodologies (e.g., the well

known topology, the known kinetics for many enzymes in this network, and large data set of

measured data). On the other hand, the complicated enzyme interactions and regulations in

central carbon metabolism also make it a challenging network to analyze and interpret with

computational models. Of the different properties we can learn about a network, bottleneck

analysis is one of the most important ones, because the increasing use of computational models

in metabolic engineering studies that aim to improve production rates of target chemicals.

However, limited research has been done in systematically identify bottlenecks in the central

carbon metabolic network. In Chapter 3 we developed a bottleneck identification framework,

composed of four computational tests, (i.e., metabolite accumulation, conditional Vmax, glucose

input, and decreased Eo). This framework is shown to efficiently identify relevant bottlenecks

limiting ethanol productions. In particular, the conditional Vmax test can directly determine the

utilization of available enzyme capacity at a given system state. More importantly, it can provide

valuable insights into the intrinsic rationale for the observed rate-limiting steps. Based on these

analyses, it is suggested that the balance between NAD and NADH molecules, determined by the

relative fluxes of eight enzyme reactions, is the crucial limiting factor for ethanol production.
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The TDH and ethanol synthesis reactions are two important bottlenecks in the network that

constrain the improvement of ethanol yield. Although the bottleneck identification framework

was developed and applied to the central carbon metabolic network, the concepts have general

value and can be applied to other metabolic networks.

Due to the complexity of central carbon metabolism, it is not obvious of how to manipulate the

network for optimized target production, even if we may have gained the knowledge of

bottlenecks in the network. In Chapter 2, we showed that aromatic amino acid production

requires two precursors, E4P and PEP, one from the pentose phosphate pathway and the other

from the glycolysis pathway. There are several branching points between the pentose phosphate

pathway and glycolysis. It is not immediately clear how to manipulate the network in order to

achieve balanced production of these two metabolites. In Chapter 3 we showed that there is a

trade-off between the production of two precursors, pyruvate and NADH, of ethanol synthesis.

Due to the constant level of total NAD plus NADH, more NADH means less NAD in the system,

which in return, limits the TDH reaction rate and thus the availability of pyruvate to the ethanol

synthesis pathway. Six other enzyme reactions also contribute to the balance of NAD and NADH

in the system. It is not straightforward to identify the right strategies to balance the precursors for

best ethanol production. In this thesis, we developed an optimization methodology for mass-

action rate law ODE models that allows parallel or sequential combinations of enzyme knock-out

and over-/under-expression strategies to the model in order to search for the enzyme strategies

that optimize target production rates. The method is shown to be efficient and reliable, with

many of the suggested strategies tested to be positive through previous experiments. More

strategies that are never considered by previous researches are also predicted by the optimization

results, which serve as useful guidance for future experimental design. Results from
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experimental tests, whether successful or not, can be used to further refine the parameters of the

model or the composition of the ensemble. It can be expected cycles of prediction and testing

will lead to improved performance of computational models.

In this thesis, the two applications are both in the field of metabolic engineering, in which

optimization of the target chemical production is the major objective. However, the scope of

applications in which these types of models could be used is much broader. Recently there is

increasing interest in cancer metabolism, which suggests potential links between cancer

development and aerobic glycolysis. Decades ago, the Warburg effect described the increased

utilization of the glycolysis pathway under aerobic condition for cancer cells compared to normal

ones (Warburg, 1956). Since then, significant work has been conducted trying to determine the

causal relation between cancer development and abnormal flux in the glycolysis pathway (Fantin

et al., 2006; Hsu & Sabatini, 2008; Kroemer & Pouyssegur, 2008). Interestingly, the

NAD/NADH ratio has been identified as an important factor connecting central metabolism with

cancer cells (Koukourakis et al., 2006). Thus, it is possible that central carbon metabolism

models built from those described in this thesis, especially the NAD/NADH involved models

described in Chapter 3, can be used to understand cancer mechanism. A bridge between

mechanistic models of central carbon metabolism and higher-level cancer progression processes

needs to be found for the purpose of this study. As described in Chapter 1, some preliminary

research has been conducted where we adopted a commonly used cancer progression model and

defined the mutation rates of that model to depend on the output of the mechanistic models that

describe the selenium metabolism. The preliminary results of this combined model show the

variations of the cancer progress rates for different selenium input, which indicates that we can

indeed construct a cancer progression model that depends on detailed mechanistic models. With
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this proof-of-concept test on the simplified selenium metabolism model, it is expected that it

would be possible to incorporate the entire central carbon metabolism model with the cancer

progression model (for example using NAD/NADH ratio as a linker for the two models).

Significant impact can be anticipated for the application of this combined model. It can be used

to understand whether changes in central metabolism can speed up cancer progression, and

whether the development of cancer requires the enhanced glycolysis pathway to provide the

'building blocks'. Clinical trial simulations can be built on top of the combined model, so that it

is possible to identify possible therapies that reduce the cancer progression rate. With the

increasing availability of experimental and clinical data, the mass-action rate law models we

built here, and especially the methods developed and applied, will surely make a great impact on

biomedicine and metabolic engineering.
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Appendix A

Enzyme reaction mechanisms in E. coil mass-action model

F6P + Mur± Mur:F6P -+ murine + Mur

<}-- PYR

RPIA + Ru5Pi± RPIA:Ru5P:± RPIA:R5PW± R5P + RPIA

RPIB + Ru5P2W± RPIB:Ru5P2W± RPIB:R5PW± R5P + RPIB

RPE + Ru5P± RPE:Ru5PW± RPE:X5P:± RPE + X5P

R5P + TKTAW± TKTA:R5P

X5P + TKTA:R5P:± TKTA:R5P:X5P *± TKTA:S7P:G3Pi± S7P + TKTA:G3P

TKTA:G3Pi± G3P + TKTA

X5P + TKTAM± TKTA:X5P

E4P + TKTA:X5P2W± TKTA:X5P:E4Pi± TKTA:F6P:G3P4± F6P + TKTA:G3P

R5P + TKTBiL TKTB:R5P

X5P + TKTB:R5Pi± TKTB:R5P:X5PW± TKTB:S7P:G3PW± S7P + TKTB:G3P

TKTB:G3P~-± G3P + TKTB

X5P + TKTB-± TKTB:X5P

E4P + TKTB:X5P2i± TKTB:X5P:E4Pi-± TKTB:F6P:G3Pi± F6P + TKTB:G3P

G3P + TALAj± TALA:G3P

S7P + TALA:G31W* TALA:G3P:S7PW± TALA:E4P:F6PW± E4P + TALA:F6P

TALA:F6P2-± F6P + TALA

G3P + TALBi± TALB:G3P

S7P + TALB:G3P2± TALB:G3P:S7P TALB:E4P:F6P E4P + TALB:F6P

TALB:F6P4-- F6P + TALB

R5P + RPPKW RPPK:R5P-* nucleotide + RPPK

DHAP + G3PDHM G3PDH:DHAP* glycerol + G3PDH

3PG + SerSynth W± SerSynth:3PG -* serine + SerSynth
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PEP + Synth 1*± Synth :PEP -> chomur + SynthI

PYR + Synth2i± Synth2:PYR-* ile + Synth2

G6P + ZWFi± ZWF:G6P 2W ZWF:GL6P-* GL6P + ZWF

GL6P + PGLi PGL:GL6P-* PGL + 6PG

6PG + GND al GND:6PG-+ Ru5P + GND

DHAP + TIS2-± TIS:DHAPi± TIS:G3PW± G3P + TIS

3PG + GPMA -± GPMA:3PG-± GPMA:2PGW± 2PG + GPMA

3PG + GPMB--± GPMB:3PGaW GPMB:2PG-± 2PG + GPMB

G6P + PGM :±PGM:G6P--± PGM:G1Pi± GIP + PGM

2PG + ENOif ENO:2PGt± ENO:PEP4- PEP + ENO

G3P + GAPA;± GAPA:G3Pi± GAPA:PGPi± PGP + GAPA

PGP + PGK i PGK:PGPW PGK:3PG -3PG + PGK

FI,6P + FBAA2I FBAA:F1,6P*± FBAA:DHAP:G3P4± G3P + FBAA:DHAP

FBAA:DHAPi± DHAP + FBAA

F1,6P + FBAB27* FBAB:F1,6P--± FBAB:DHAP:G3PW± G3P + FBAB:DHAP

FBAB:DHAP;f DHAP + FBAB

PYR + PDHW± PDH:PYR_- * accoa + PDH

PYR + PDH:PYR_1+± PDH:PYR_2 -- accoa + PDH:PYR_1

PYR + PDH:PYR_2;± PDH:PYR_3-p accoa + PDH:PYR_2

PYR + PDH:PYR_3* ± PDH:PYR_4-* accoa + PDH:PYR_3

E4P + DHAPS002Z DHAPS10

PEP + DHAPSO 2± DHAPSO1

E4P + DHAPSO 1lW± DHAPS 11

PEP + DHAPSO1t DHAPSO2

E4P + DHAPSO24± DHAPS12

E4P + DHAPS10 DHAPS20

PEP + DHAPS1O± DHAPS1 1
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E4P + DHAPS1 1 ± DHAPS21

PEP + DHAPS114 DHAPS12

PEP + DHAPS20i± DHAPS21

E4P + DHAPS12:± DHAPS22

PEP + DHAPS21I± DHAPS22

DHAPS22-* S3P + DHAPS1 1

F1,6P + PPCO± PPCl

PEP + PPCOMi PPCOA-+ oaa + PPCO

F1,6P + PPC1± PPC2

PEP + PPC12i± PPC1A-+ oaa + PPC1

F1,6P + PPC2:a± PPC3

PEP + PPC2i± PPC2A-- oaa + PPC2

F1,6P + PPC3i PPC4

PEP + PPC3;± PPC3A-+ oaa + PPC3

PEP + PPC4i PPC4A-* oaa + PPC4

F1,6P + GIPATOi± GIPATI

F1,6P+GIPAT1g± GlPAT2

GIP + GlPA TOi± G1PATOA -+ PolySac + GIPATO

GIP + GlPAT*-± G1PATA-+ PolySac + GIPATI

GIP + GlPAT2W± GIPAT2A -* PolySac + GIPAT2

G6P + PGI W±PGI:G6P4± F6P + PGI-± PGI:F6P

6PG + PGIi± PGI:6PG

6PG + PGI:6PG2i± PGI:6PG:6PG

F6P + PGI:6PG2i± PGI:6PG:F6P2-± G6P + PGI:6PG-± PGI:6PG:G6P

F6P + PFKA_0_0i± PFKA_1_0-* F1,6P + PFKA_0_0

F6P + PFKA_1_0± PFKA_2_0-+ FI,6P + PFKA_1_0

F6P + PFKA_2_0W± PFKA_3_0--+ F1,6P + PFKA_2_0
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F6P + PFKA_3_0± PFKA_4_0-+ F1,6P + PFKA_3_0

F6P + PFKA_4_0± PFKA5_0-+ F1,6P + PFKA_4_0

F6P + PFKA_5_0:± PFKA_6_0-+ F1,6P + PFKA_5_0

F6P + PFKA_6_02± PFKA_70 -* F1,6P + PFKA_6_0

F6P + PFKA_7_0± PFKA_8_0-* F1,6P + PFKA_7_0

F6P + PFKA_8_0± PFKA_9_-+ F1,6P + PFKA_8_0

F6P + PFKA_9_0 W PFKA_10_0-* F1,6P + PFKA_9_0

F6P + PFKA 10_ 0± PFKA_1 _0 -+ F1,6P + PFKA 10_0

Repeat the above for PFKB

PEP + PFKA_0_04- PFKA_0_1

PEP + PFKA_0_1±- PFKA_0_2

PEP + PFKA_0_2i± PFKA_0_3

PEP + PFKA_0_3:± PFKA_0_4

F1,6P + FBP -Z FBP:F6Pi± F6P + FBP

PEP + PYKF00 PYKF10-* PYR + PYKFOO

PEP + PYKF10 ± PYKF20-* PYR + PYKF 10

PEP + PYKF202i± PYKF30-* PYR + PYKF20

PEP + PYKF3024± PYKF40-* PYR + PYKF30

PEP + PYKFO I PYKF1 1- PYR + PYKFO1

PEP + PYKF11 ±PYKF21-+ PYR + PYKF11

PEP + PYKF2 1-± PYKF3 1-* PYR + PYKF21

PEP + PYKF3 1;w± PYKF41 -* PYR + PYKF31

F1,6P + PYKF002W± PYKFO1

Repeat above for PYKA

PYR + PPSA ± PPSA:PYR * PPSA:PEP * PEP + PPSA

PEP + PTS i PTS:PEP

GIcEx + PTS:PEP2i± PTS:GlcEx:PEP-+ PYR + PTS:G6P
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PTS:G6P-* G6P + PTS

PYR + PTSi± PTS:PYR

G6P + PTS2W± PTS:Il

G6P + PTS:I1W± PTS:12

G6P + PTS:I22± PTS:13

G6P + PTS:I34W PTS:14

G6P + PTS:PEPW PTS:PEP:Il

G6P + PTS:PEP:IlW± PTS:PEP:12

G6P + PTS:PEP:I2W± PTS:PEP:13

G6P + PTS:PEP:I32-± PTS:PEP:14

G6P + PTS:PYR*± PTS:PYR:Il

G6P + PTS:PYR:Iit PTS:PYR:12

G6P + PTS:PYR:I24± PTS:PYR:13

G6P + PTS:PYR:I3W± PTS:PYR:14

G6P + PTS:GlcEx:PEPi± PTS:GlcEx:PEP:Il

G6P + PTS:GlcEx:PEP:I 1 PTS:GlcEx:PEP:12

G6P + PTS:GlcEx:PEP:I2i± PTS:GlcEx:PEP:I3

G6P + PTS:GlcEx:PEP:I3:± PTS:GlcEx:PEP:14

6PG + EDDW EDD:6PG- EDD:2KDPG4 2KDPG + EDD

2KDPG + EDAW± EDA:2KDPGW± EDA:PYR:G3PW± G3P + EDA:PYR

EDA:PYR i PYR + EDA

S3P + E1lW± E1:S3P

PEP + E1:S3Pi± E1:S3P:PEP* PYR + EI:13G

E1:13G-* 13G + El

13G + E2 *± E2:13G -* G3P + E2
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Appendix B

Enzyme reaction mechanisms in Saccharomyces cerevisiae mass-action model

F6P + Mur± Mur:F6P -+ murine + Mur

<-* PYR

RPIA + Ru5P2 ± RPIA:Ru5PW± RPIA:R5P2i± R5P + RPIA

RPIB + Ru5Pi± RPIB:Ru5P?-± RPIB:R5P2W± R5P + RPIB

RPE + Ru5Pi± RPE:Ru5Pi± RPE:X5PW± RPE + X5P

R5P + TKTA2i± TKTA:R5P

X5P + TKTA:R5Pi± TKTA:R5P:X5P i± TKTA:S7P:G3PW± S7P + TKTA:G3P

TKTA:G3P2j± G3P + TKTA

X5P + TKTAi± TKTA:X5P

E4P + TKTA:X5Pj± TKTA:X5P:E4P4± TKTA:F6P:G3P± F6P + TKTA:G3P

R5P + TKTBi TKTB:R5P

X5P + TKTB:R5PW TKTB:R5P:X5Pi± TKTB:S7P:G3Pi± S7P + TKTB:G3P

TKTB:G3P2W1 G3P + TKTB

X5P + TKTB± TKTB:X5P

E4P + TKTB:X5PW± TKTB:X5P:E4P± TKTB:F6P:G3Pi± F6P + TKTB:G3P

G3P + TALA± TALA:G3P

S7P + TALA:G31W* TALA:G3P:S7PM± TALA:E4P:F6PW E4P + TALA:F6P

TALA:F6PW± F6P + TALA

G3P + TALB*± TALB:G3P

S7P + TALB:G3P± TALB:G3P:S7P* TALB:E4P:F6P E4P + TALB:F6P

TALB:F6PW± F6P + TALB

R5P + RPPK* RPPK:R5P-*nucleotide + RPPK

NADH + GLCE:± GLCE:NADH

DHAP + GLCE:NADHi± GLCE:NADH:DHAP-* GLCE:Glycerol + NAD
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GLCE:Glycerol1d Glycerol + GLCE

3PG + SerSynth i SerSynth:3PG -* serine + SerSynth

PEP + Synthl 2i± Synth :PEP -* chomur + SynthI

PYR + Synth2W± Synth2:PYR-* ile + Synth2

NADP + ZWFi± ZWF:NADP

G6P + ZWF:NADPi± ZWF:NADP:G6Pi± ZWF:NADPH:GL6PjM NADPH + ZWF:GL6P

ZWF:GL6P± ZWF + GL6P

GL6P + PGLW± PGL:GL6P-* PGL + 6PG

NADP + GND i± GND:NADP

6PG + GND:NADPW± GND:NADP:6PG-* NADPH + GND:Ru5P

GND:Ru5Pi± Ru5P + GND

DHAP + TISi± TIS:DHAPW± TIS:G3P2W± G3P + TIS

3PG + GPMAW GPMA:3PGi± GPMA:2PGW± 2PG + GPMA

3PG + GPMBW± GPMB:3PG W GPMB:2PGi± 2PG + GPMB

G6P + PGM ±PGM:G6P--± PGM:GlP:± GIP + PGM

2PG + ENOW± ENO:2PG± ENO:PEPi± PEP + ENO

NAD + GAPAW± GAPA:NAD

G3P + GAPA:NADw± GAPA:NAD:G3Pi± GAPA:NADH:PGP*± NADH + GAPA:PGP

GAPA:PGPi GAPA + PGP

G3P + GAPAj± GAPA:G3Pi± GAPA:PGPi± PGP + GAPA

PGP + PGK 4 PGK:PGP W PGK:3PG i±3PG + PGK

F1,6P + FBAA2i± FBAA:F1,6P2-± FBAA:DHAP:G3PW± G3P + FBAA:DHAP

FBAA:DHAPW± DHAP + FBAA

F1,6P + FBABW± FBAB:F1,6Pi± FBAB:DHAP:G3P 4± G3P + FBAB:DHAP

FBAB:DHAP:± DHAP + FBAB

PYR + PDH --± PDH:PYR_1

NAD + PDH:PYR_14± PDH:PYR 1:NAD-+ accoa + PDH:NADH
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PDH:NADH ± PDH + NADH

PYR + PDH:PYR_14± PDH:PYR_2

NAD + PDH:PYR_2W± PDH:PYR_2:NAD- accoa + PDH:NADH:PYR_1

PDH:NADH:PYR1lg NADH + PDH:PYR_1

PYR + PDH:PYR_2W± PDH:PYR_3

NAD + PDH:PYR_3w± PDH:PYR_3:NAD-* accoa + PDH:NADH:PYR_2

PDH:NADH:PYR_2:± NADH + PDH:PYR_2

PYR + PDH:PYR_3* PDH:PYR_4

NAD + PDH:PYR_42W± PDH:PYR_4:NAD-* accoa + PDH:NADH:PYR_3

PDH:NADH:PYR_3W± PDH:PYR_3 + NADH

E4P + DHAPSOO ± DHAPS10

PEP + DHAPSOO ± DHAPSO1

E4P + DHAPSO1± DHAPS1 1

PEP + DHAPSO12:± DHAPSO2

E4P + DHAPSO2-± DHAPS12

E4P + DHAPS1I DHAPS20

PEP + DHAPS 1 0:± DHAPS 11

E4P + DHAPSI I W DHAPS21

PEP + DHAPSI 11± DHAPS12

PEP + DHAPS20W± DHAPS21

E4P + DHAPS12:± DHAPS22

PEP + DHAPS21 ± DHAPS22

DHAPS22-* S3P + DHAPS I

NAD + TCA14- TCA1:NAD

OXA + TCAI:NAD7± TCA1:NAD:OXA

Accoa + TCAI:NAD:OXAW± TCAI:NAD:OXA:accoa-- NADH + TCA1:KG

TCA1:KG W TCA1 + KG

153



NAD + TCA2*± TCA2:NAD

KG + TCA2:NAD ± TCA2:NAD:KG-* TCA2:SCOA + NADH

TCA2:SCOAW± TCA2 + SCOA

NAD + TCA3*± TCA3:NAD

SCOA + TCA3:NAD: TCA3:NAD:SCOA4 TCA3:OXA + NADH

TCA3:OXA-± TCA3 + OXA

NADH + OPEOO- OPE10

NADH + OPEIO4 OPE20

OPE20 + 02 -- OPE21-* NAD + OPE11

OPE1 1 -* NAD + OPE00

PYR + accoa-* accoa

F1,6P + GPATO.± GIPATI

F1,6P + G1PAT1g± G1PAT2

GIP + G1PATO.± G IPATOA -+ PolySac + GIPATO

GIP + G1PATl W± G1PATA-* PolySac + GIPATI

GIP + GlPAT2W± G1PAT2A-* PolySac + G1PAT2

G6P + PGI ;4±PGI:G6P:± F6P + PGIj± PGI:F6P

6PG + PGIi PGI:6PG

6PG + PGI:6PGi± PGI:6PG:6PG

F6P + PGI:6PGW± PGI:6PG:F6PW± G6P + PGI:6PGi± PGI:6PG:G6P

F6P + PFKA_0_0i± PFKA_1_0-* F1,6P + PFKA_0_0

F6P + PFKA_1_0± PFKA_2_0-+ F1,6P + PFKA_1_0

F6P + PFKA_2_0--± PFKA_3_0-* F1,6P + PFKA_2_0

F6P + PFKA_3_0± PFKA_4_0-+ F1,6P + PFKA_3_0

F6P + PFKA_4_0:i± PFKA_5_0-* F1,6P + PFKA_4_0

F6P + PFKA_5_0± PFKA_6_0-* F1,6P + PFKA_5_0

F6P + PFKA_6_0± PFKA_7_0-- F1,6P + PFKA_6_0
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F6P + PFKA_7_0± PFKA_8_0-* F1,6P + PFKA_7_0

F6P + PFKA_8_0± PFKA_9_-0 * FI,6P + PFKA_8_0

F6P + PFKA_9_0#± PFKA_10_0-* F1,6P + PFKA_9_0

F6P + PFKA_10_0 W PFKA_11_0 -* F1,6P + PFKA_10_0

Repeat the above for PFKB

PEP + PFKA_0_0* PFKA_0_1

PEP + PFKA_0_1± PFKA_0_2

PEP + PFKA_0_2i± PFKA_0_3

PEP + PFKA_0_3j± PFKA_0_4

F1,6P + FBP ± FBP:F6Pi± F6P + FBP

PEP + PYKF00 PYKF 10-* PYR + PYKFOO

PEP + PYKF10± PYKF20-* PYR + PYKF10

PEP + PYKF20 # PYKF30-* PYR + PYKF20

PEP + PYKF304± PYKF40-* PYR + PYKF30

PEP + PYKF0GIW± PYKF1 1-* PYR + PYKFOI

PEP + PYKFI IW± PYKF21-+ PYR + PYKFI 1

PEP + PYKF21 ± PYKF31-I PYR + PYKF21

PEP + PYKF31 W± PYKF41 PYR + PYKF31

F1,6P + PYKF00 PYKFO1

Repeat above for PYKA

PYR + PPSA t PPSA:PYR i PPSA:PEP W PEP + PPSA

S3P + E1± EI:S3P

PEP + E1:S3Pi E1:S3P:PEP-+ PYR + EI:13G

E1:13G-+ 13G + El

13G + E2 ;i± E2:13G -- G3P + E2

NADPH -* NADP

GicEx + GT*± GT:GlcEx-* GT + GlcIn
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GlcIn + HXK:± HXK:GlcIn-* G6P + HXK

PYR + EOLE4± EOLE:PYR

NADH + EOLE:PYRW± EOLE:PYR:NADH-* NAD + EOLE:EOL

EOLE:EOL-* EOLE + EOL
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