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ABSTRACT

The adaptive immune system is one of the primary mediators in almost every major

human disease, including infections, cancer, autoimmunity, and inflammation-based

disorders. It fundamentally functions as a molecular classifier, and stores a memory of

its previous exposures. However, until recently, methods to unlock this information or

to exploit its power in the form of new therapeutic antibodies or affinity reagents have

been limited by the use of traditional, low-throughput technologies. In this thesis, we

leverage recent advances in high-throughput DNA sequencing technology to develop new

methods to characterize and probe the immune repertoire in unprecedented detail. We

use this technology to 1) characterize the rapid dynamics of the immune repertoire in

response to influenza vaccination, 2) characterize elite neutralizing antibodies to HIV,

to better understand the constraints for designing an HIV vaccine, and 3) develop new

methodologies for discovering autoantigens, and assaying large libraries of protein antigens

in general. We hope that these projects will serve as stepping-stones towards filling the gap

left by low-throughput methods in the development of antibody technologies.
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Chapter 1

Introduction

I have had the privilege of sitting at the epicenter of a revolution in the way the life sciences

arc researched: the emergence of high-throughput DNA sequencing. Experiments that were

laughably difficult at the start of my graduate training are now commonplace and unremarkable.

This thesis details my efforts (along with a slew of incredible collaborators) to point this brand-

new "microscope" toward the functioning of the adaptive immune system, a field that touches

practically every biological/medical process in humans, and has been relatively slow to embrace

high-throughput technologies.

1.1 The immune system is a pattern classifier

One of the primary functions of the immune system is to function as a molecular pattern clas-

sifier: discriminating between "self" and "non-self" and between "safe" and "dangerous" [1].

In order to be effective, the immune system must be able to 1) respond to an enormous diver-

sity of molecular patterns and 2) respond in a timely manner to a changing array of molecular

antigens. (Indeed, the ocean of pathogens trying to colonize your body is constantly trying to

circumvent your immune system.) The number of possible molecular shapes on which your

body must make life-or-death decisions is enormous; stored as digital data, this amount of infor-

mation would easily surpass all the information stored in all the genomes of living individuals.

Yet remarkably, your body can respond to virtually any substance by using a small library of

genetic components occupying less than 0.2% of your genome. This feat is accomplished by

One arbitrary way to arrive at this calculation is the requirement to respond to every possible confirmation of

every 5-mer sequence of amino acids. Say you store the backbone confirmation of every possible 5-mer peptide.

This is equivalent to 8 4 and V) angles, each stored with, say, 8 bits, along with the identities of the side chains (not

even including rotamers), for which you need < 5 bits each: 89 bits per 5-mer. To encode every possible 5-mer,

along with its tertiary structure would require 289 bits, or 77 yottabytes, which could be stored in 309 Ybp of DNA

at 2 bits per base [2].
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Germline DNA - heavy chain locus

V1... V46 D1... D23 J 1-6

Germline DNA - light chain locus
Vi... V33

C

Figure 1.1: VDJ recombination

the combination of a molecular mechanism for generating a large diversity of molecules, along

with evolutionary selective pressures at the population and somatic levels.

More concretely, the function of the adaptive immune system is largely mediated by a collec-

tion of lymphocytes (B and T cells) that each a express a unique, genetically-encoded receptor.

In order to generate the repertoire of antibodies necessary for antigen recognition, each lym-

phocyte independently constructs a unique receptor through the process of VDJ recombination;

each cell randomly selects a single V, D, andJ gene segment through genetic recombination,

introducing additional non-germline-encoded nucleotides at the junctions (Figure 1.1). This

process creates the antibody diversity, the majority of which is encoded in the heavy chain com-

plementarity determining region 3 (CDR3) [3].

1.2 The immune system stores a database of immune

exposures

The immune system functions as a renewing, flowing, distributed computer (in contrast to the

immune system, which operates on a fixed structure) [1]. Recognition of particular patterns is
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stored in individual cells that encode a protein that is a receptor for that pattern. While the

supply of cells is constantly renewing itself (to maintain the ability to adapt to new threats), the

immune system also stores those receptors that it deems useful and that were activated by their

cognate antigens. Indeed, the memory compartment of lymphocytes contains the "fossil record"

of exposures that each individual has experienced in his life [4]. This "database" of interactions

is a treasure-trove of useful information. In principle, each individual carries with him the

history of every disease he has had; the potential immunity he would have to new diseases;

information on allergies; unique places to which he traveled; potential for autoimmunity; etc.

However, because this information is stored as the sum total of millions of unique receptors, the

technology to assay it did not exist until recently.

1.3 All DNA-encodable assays are now high-throughput

Since the release of the first high-throughput sequencing (HTS) platforms [5, 6], improvements

in the technology have been surpassing Moore's law (Figure 1.2) [7, 8]. Because of the massive

increase in data-generation capabilities, any assay that can be encoded in DNA now has a high-

throughput instrument available, even dark matter detection [9].
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1.4 High-throughput sequencing for the immune system

Indeed, immune repertoire sequencing is particularly well-suited to HTS, as antibodies and T

cell receptors are inherently encoded in the genome. Of particular interest in our case is the

relationship between the universe of antibodies and the universe of antigens. In principle, the

space of possible antibodies and antigens is enormous, and it is of n 2 complexity; but luckily, the

space of interacting pairs is thought to be sparse. Our overarching vision is to use DNA sequencing

as a method to assay this space of antibody-antigen interactions in high-throughput. There has

been a considerable amount of interest in applying HTS to the immune system in the last several

years. However, much of that work has focused either on characterizing the immune system for

its own sake or using the immune system to discover biomarkers for diseases (e.g., [10-12]).

We have been particularly interested in developing methods for directly understanding how

the immune system interacts with antigens. Indeed, such a capability would have significant

implications for understanding the immune system, but also for designing vaccines, multiplexed

diagnostics, and therapeutic discovery.

1.5 Summary of thesis work

In this thesis, I will describe four bodies of work approaching the antibody-antigen problem in

three different ways (categorized using machine learning terminology).

1. Unsupervised-learning. In the first project, we attempt to characterize the functioning of

the immune system to a controlled immune challenge, without using any of the cell-

state/phenotype characterization techniques that much of immunology depends on and

that is generally very low-throughput. We find evidence for an innate-adaptive spectrum

in the antibody repertoire, and find that the immune system is generally incredibly dy-

namic at even the shortest time-scales.

2. Supervised-learning. As the immune system turns out to be very noisy, our next project used

information about known antibodies against a known antigen: HIV We used HTS to

"fish" for variants of known, elite neutralizing HIV antibodies so that we can understand

how they evolved and use the information to improve HIV vaccine design.

3. Label-only. The first two projects approach the antibody-antigen interaction problem from

the antibody side. In the second two projects, we take the inverse approach, focused on

antigens. Using a synthetic peptide library encoding the entire human peptidome, we in-

terrogate the adaptive immune system by defining what functionalities it has, without ever

determining the identities of the particular antibodies. This approach is also significant
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because even raw results can lead to biological insight, since the identities of particular

antigens are assayed from the start. We use the technique as a method to discover au-

toantigens for autoimmune diseases.

We conclude by presenting some proposed methods to directly assay interacting antibody-

antigen pairs.

19 of 160



20 of 160



Chapter 2

High-Resolution Antibody Dynamics of

Vaccine-Induced Immune Responses

2.1 Introduction

The immune system is able to rapidly sense and respond to a vast array of invading organisms.

Its arsenal must contain components that are immediately effective against commonly-seen pat-

terns (innate immunity) and components that are capable of responding to novel invaders (adap-

tive immunity). Given the acute nature and diversity of infections, the immune system must be

capable of rapid excitement and contraction of a highly specific response. To achieve these

goals, the immune system relies on a constantly-renewing, enormous library of antibody recep-

tors while simultaneously storing the most useful ones (via memory cells) for rapid use when

challenged by the same foreign molecules. This repertoire of immune receptors is genetically

encoded in the somatically-modified genomes of billions of individual lymphocytes.

Currently, many immunology studies depend on characterizing cell-state markers (e.g., cell-

surface receptors) and the ability to correlate them to encoded genetic information [13]. While

it has been difficult to generate cell-state information in at large scales, recent advances in high-

throughput sequencing (HTS) [7] have enabled any DNA-encodable assays to produce massive

amounts of data. Indeed, HTS has enabled unprecedented views into the immune repertoire,

as its diversity is naturally stored as genetically-encoded receptors among a complex collection

of lymphocytes [11, 12, 14-16].

This study set out to dissect the rapid dynamics of the antibody response against a controlled

immune challenge (vaccination), without the a priori notion of cell state markers or functions.

We vaccinated three individuals a total of four times and banked blood samples at multiple time

points before and after the vaccinations. Using the 454 sequencing platform, we analyzed the

dynamic behavior of the immune repertoire in response to the vaccinations. We found that the
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immune system is highly dynamic, and each vaccine response was qualitatively different. In

contrast, we found that each individual uses the germline-encoded library of antibody compo-

nents in very similar ways. Because the immune system is shaped by selective pressures at both

the population and somatic levels [1], we observed that some germline components are geared

towards innate action, while others are more likely to mutate and adapt to new challenges. Fi-

nally, we synthesized a collection of the strongest-responding clones one week after vaccination,
and tested them for affinity against the vaccine antigens.

2.2 Results

2.2.1 Vaccination time-course design

We characterized the antibody repertoire of three Personal Genome Project (PGP) subjects,
GMC, IB, and FV, in response to vaccination. In 2008, GMC was vaccinated against seasonal

influenza, hepatitis A, and hepatitis B; in 2009, GMC, IB, and FV all received the seasonal flu

vaccine. Blood samples were collected before and after the vaccination, as specified in 2.1. One

of the goals of the study was to track the response of the immune system exclusively through ge-

netic information. Therefore, lymphocytes were not sorted for particular subsets or activation

states; total RNA from ficolled PBMCs was extracted and processed as described below. Each

sequencing library of B cell antibody genes was generated using gene-specific reverse transcrip-

tion and PCR. Each sample was uniquely bar-coded during the process and subjected to 454

sequencing and analysis.

2.2.2 Reproducibility and quantitation

Through the course of 7 runs of 454 sequencing, we obtained 4.3 million reads that successfully

aligned to the IMGT germline reference database (Figure 2.1. Our initial experiments focused

on characterizing the reproducibility of our library preparation method and calibrating our

computational pipeline. We sequenced one library twice (generating sequencing replicates SR1

and SR2) and also sequenced an independent library from the same RNA sample (technical

replicate TR1). Between these three sequencing runs, 477118 unique clones were identified

of which only 3% were shared between the three runs and 14% were observed in at least two

runs (Figure 2.2a). However, those shared clones accounted for 59% and 710% of all reads,
suggesting that the highly expressed clones are actually sampled significantly between replicate

runs. This was further validated by a strong correlation between technical replicate samples,
confirming technical reproducibility of our approach (Figure 2.2b). Furthermore, resampling

our data showed that 105 reads are sufficient to properly characterize a sample and obtain high
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correlations between replicates (Figure 2.2c).

2.2.3 Characteristics of the static heavy chain repertoire

Overall usage of the individual V and J components was highly non-uniform within a given

individual (Figure 2.3). The most frequently observed V segments were IGHV3-23 (11% of

all reads), IGHV3-30 (8%), IGHV4-59 (7%), and IGHVI-69 (6%) while the most frequent

J segments were IGHJ4 (41%) and IGHJ6 (31%), consistent with previous studies [16, 17].

Nevertheless, utilization of the germline-encoded VDJ gene library was quite similar between

individuals and across time. Indeed, the Spearman correlation between VJ-usage vectors was

consistently high across time points and individuals (Figure 2.4) and VJ-usage time series are
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remarkably stable as well (Figure 2.5). Finally, we built a neighbor-joining tree using the V-

usage vectors of each of the samples to see how V-usage is structured. For the most part, V-usage

clustered first by individual, and then by isotype, implying that while V usage is grossly similar

across individuals, each individual still has a unique signature (Figure 2.6).

For a majority of the reads, we were able to genetically discern the antibody isotype. We

found that IgM antibodies were the most abundant (43% of all reads), followed by IgA (27%),

IgG (2 1%), IgD (9%), and IgE (0.0 1%) (Figure 2.1). However, the isotype usage varied signifi-

cantly between time points (Figure 2.7).

Mutation levels were also measured across each of the reads. As expected, mutation rates

were higher in the CDR regions of the antibodies, and were much higher in IgG and IgA

antibodies (Figure 2.8). We further processed our reads through the BASELINe pipeline that

estimates selection pressure on the antibodies [18]. Framework regions (FWR) were universally

negatively selected, while CDR regions showed either neutral to slightly negative selection on

average; however, CDR selection values were always more positive than FWR selection values

(Figure 2.9).

The CDR3 length distribution we observed was consistent with both TCR data [19] as well

as IMGT/LIGM data [20] (Figure 2.10). The 5th and 95th percentiles of the observed CDR3

lengths are 36 nt and 75 nt with median length 54 nt (with longest observed CDR3 at 140 nt).

Antibodies can be present at vastly different quantities, depending on cell types and whether

they have been activated and are proliferating. Because the VDJ recombination process intro-

duces so much diversity, the CDR3 sequence effectively functions as a natural barcode for a par-

ticular clone [21]. To functionally define antibody clones, we perform clustering of the CDR3

sequences and define two reads as derived from the same clone if their CDR3 sequences are

highly similar, since it is unlikely that two independent B cells will generate the same nucleotide

sequences. In total, we observe > .4M clones across all of our data; however, only 150k clones

had at least 3 reads each and only 24 clones with >l0k reads each. Separately, approximately

84k clones were seen in two separate time points, while only 257 heavy-chain clones were seen

in every time point (for a given individual)(See Figure 2.1 for more information).

We also found that the propensity for a clone to become activated (estimated assuming a

binomial distribution) is reproducibly biased by VJ usage (Figure 2.11). The V regions most

likely to become activated are dominated by IGHV4- and IGHV5-family genes, and the three

individuals have highly correlated biases in the VJ-activation probabilities (Spearman correla-

tion of 0.7). Nevertheless, we find that there is virtually no correlation between whether a VJ

combination is likely to become activated and whether it is highly used (Figure 2.12). Taken

together, this provides evidence that the antibody repertoire is shaped by selective forces at both

population and somatic timescales, and individual antibodies occupy their own innate-adaptive
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spectrum [1]. More precisely, utilization of the VDJ germline library may be optimized for

naive interactions with common pathogens at the population scale, while the propensity of any

given germline gene to somatically mutate may be optimized for the evolvability of the target

organisms.

2.2.4 Antibody repertoire dynamics

In the hope of capturing at least one immunological event, we coordinated our experiments with

clinically-indicated vaccinations. Each individual was given the seasonal flu vaccine, and GMC

was also given boosters to hepatitis A/B in 2008. None of the subjects were naive to the antigens

at the time of vaccination (through either prior vaccination or infection). Each read was assigned

to a clone and a timepoint, allowing us to compute time series. The clone frequencies were

tracked across all 38 time points to produce >20M clone-frequency measurements. In contrast

to the relative stability of the VJ usage, antibody clones were highly dynamic and variable across

individuals (Figures 2.13 and 2.14).

Responses to each of the four vaccination events were qualitatively different: IB produced

a "textbook" response with large proliferating clones 7 days after vaccination; FV was likely
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responding to some other immune challenge prior to vaccination but still responded with large

clones 7 days post-vaccination; GMC was also responding to something prior to his first vaccina-

tion, with no strong response afterwards, while his second vaccination appears to have produced

no significant responses.

We verified that samples that are closer in time share more unique clones. We computed the

number of shared CDR3 sequences between all 703 possible pairs of samples across all 38 time

points, and observed that closer time points within an individual indeed share a larger number

of unique CDR3s (Figure 2.15). Consistent with this, inter-individual comparisons between

time points showed very little CDR3 overlap.

We also quantified the range of dynamic behavior of the clones, finding that clones generally

fluctuate wildly (Figures 2.16). Interestingly, each individual had a number of clones that were

present at every time point sampled, including the samples separated by over a year (257 clones

total; Figure 2.17). It is possible that these clones are chronically responding to antigens (foreign

or auto) that are always present; indeed, these clones include sequences that are highly mutated

(Figure 2.17b).

2.2.5 Clone analysis

It is a commonly accepted that expanding clone populations should arise from an immune

challenge about 7 days after flu vaccination [22]. Therefore, we picked a subset of the largest

clones from multiple time points before and after vaccination (-2 day, +7 days, +21 days), and

synthesized, expressed and panned them by phage display. We were surprised to find very few

strong binders against the vaccine hemagglutinin antigens.

Interestingly, even though GMC showed no significant response in 2009, the strongest binder

(GMC J-065) was found in his day 7 response of that year. We then applied the Immunitree

algorithm on clone GMC J-065 to infer the most likely evolutionary pathway [23]. The tree

was also overlayed with selection values estimated using the BASELINe algorithm [18] as well

as mutation levels (Figure 2.18). As expected, most nodes in the tree displayed significant neg-

ative selection in the FWRs, while some of the nodes show significant positive selection in the

CDRs. We are currently in the process of analyzing clones of these trees that are more evolved

and show signs of greater selection pressure.

2.3 Discussion

In this study, we generated the first high-throughput profile of the short-timescale dynamics

of the antibody heavy chain repertoire. For proper function, the immune system requires the

ability to rapidly expand and contract, and such highly dynamic behavior is consistent with
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our observations. We also found evidence that even the adaptive immune system (antibody

repertoire) functions on an innate-adaptive spectrum, where usage of the germline antibody

VDJ library is simultaneously shaped by population selection and somatic selection pressures.

Indeed, it is apparent that utilization of the germline library is strongly stereotyped between

individuals, but particular clones are highly dynamic.

While we were able to glean significant insights into the immune system from genetics alone,

it appears that using the information for predictive purposes still requires a significantly greater

amount of data [24]. Analogous to the dichotomy between supervised and unsupervised learn-

ing in statistics, we have attempted to understand the dynamics of the immune response using

exclusively genetic information (high-throughput) without the limitation of functionally labeling

our data (low-throughput). We hope that such approach will eventually enable the analysis of

immune functions and also mining the "fossil record" [4] of individual antigen exposures.

While we have thus far not been able to realize this vision, we believe that this study rep-

resents a necessary milestone in a collective effort for the development of new tools to harness

the full potential of the immune system. To that extent, we are focusing on developing method-

ologies for high-throughput capture of paired heavy and light chain sequences from single cells.

Coupled with significant advances in DNA synthesis technology [8, 25], we should soon be able

to assay a large immune repertoire against large, synthetic library of antigens (autoantigens,

allergens, infectious agents, etc.) [26-28]. Doing so will further the development of immune

repertoire profiling and facilitate our progress towards the next-generation of diagnostics, vac-

cines, and personalized therapeutic discovery.

2.4 Materials and Methods

2.4.1 Sample collection

Blood samples were collected under the approval of the Personal Genome Project [29]. Sample

collection was coordinated with clinically indicated vaccinations for each individual. Total RNA

was immediately extracted from each blood sample and stored at -80 until use.

2.4.2 Primer design

All oligonucleotides where ordered from Integrated DNA Technologies (IDT, Coralville, IA).

For the design of the upstream variable-region oligonucleotides (IGHV-PCR), we extracted the

L-PART 1 and L-PART2 sequences from all IMGT/GENE-DB [30] reference segments anno-

tated as "functional" or "ORF". These two segments are spliced together in vivo to form the

leader sequence. We positioned our primer sequence to cross the exon-exon boundary to ensure
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amplification from cDNA rather than gDNA. For the design of the downstream constant-region

oligonucleotides (IGHC-RT and IGHC-PCR), the first 100 nucleotides of the CH1 exon were

extracted from the IMGT/GENE-DB. Oligonucleotides were then selected as close as possi-

ble to the 5' end of the C-region to take advantage of sequence conservation between different

variants, and to ensure that isotypes would be distinguishable.

2.4.3 Sequencing library preparation

We reverse-transcribed the immunoglobulin heavy chain mRNA using a pool of 6 primers spe-

cific to the Ig constant regions and amplified the cDNA using 16 cycles of PCR with a pool of

46 V region-specific primers and 6 nested constant region primers. Following ligation of 454-

compatible sequencing adapters, we purified the expected VH fragment using PAGE. Each

sample derived from a given time-point was uniquely bar-coded during the ligation process, al-

lowing subsequent mixing of all the time points into one common reaction sample (performed

independently for each replicate run). Emulsion PCR and 454 GS FLX sequencing were per-

formed directly at the 454 Life Sciences facility according to the manufacturer's standard pro-

tocols.

2.4.4 Data processing overview

Following data generation, the resulting reads were processed through an in-house software

pipeline. The sequencing reads were filtered for quality, proper fragment size, and presence of

a sample identity barcode. The reads were aligned to the reference IMGT database to identify

the V, D, andJ regions. We then partitioned the reads by VJ usage and hierarchically clustered

them using their CDR3 junction to define unique clones. This data was finally used for subse-

quent time series and statistical analyses, including selection estimation with BASELINe [18]

and phylogeny inference with Immunitree.

2.4.5 VDJ alignment process

For each segment we performed a semiglobal dynamic programming alignment against each

reference sequence, choosing the best match. To maximize the number of distinguishing nu-

cleotides, we performed our alignment in order of decreasing segment length (V then J then

D), and subsequently prune off successfully aligned V orJ regions before attempting alignment

of the next segment. Since we know that the V and J segments must reside at the ends of the

reads, we used a method that is similar to the Needleman-Wunsch algorithm [31]. In contrast

to the canonical algorithm, we used zero initial conditions to allow the start of the alignment to

occur anywhere without penalty. The alignment is then reconstructed and scored by starting
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at the maximum value of the score matrix along the last row or last column, and backtracing.

Finally, the identified V orJ segments are removed before proceeding to theJ or D alignment,

respectively. For the D region alignment, we used the canonical Smith-Waterman local align-

ment algorithm [31], as we have no prior information as to where the D segment should reside.

Finally, we compared the performance of our aligner against IMGT/V-QUEST [32] and gen-

erate ROC curves (Figure 2.19).

2.4.6 Sequence clustering

We performed sequence clustering in order to group our sequences (reads) into unique clones.

This process is primarily used to associate sequences that originated from the same cell/clone,

while allowing minor variations attributable to sequencing errors. For most of our work, we

chose to use single-linkage agglomerative hierarchical clustering with Levenshtein edit distance

as the metric. To make the clustering process more tractable, we partitioned our reads based on

VJ identity. Within each partition, we then performed sequence clustering using only the CDR3

junction nucleotide sequence. To account for sequencing errors, we examined the distribution

of cophenetic distances observed in the linkage tree, and determined the optimal distance to

clip the tree at 4-5 edits (Figure 2.20).

2.4.7 Mutation analysis pipeline

After removing the primers from both ends of each raw read, High V-Quest [33] was used to

assign a V andJ genes and to align the sequences through the IMGT unique numbering scheme.

In this step most of the insertions/deletions were identified and corrected by either removing

any insertion or adding "N" to replace any deletion.

Following this step, sequences that potentially had artificial mutations due to incorrect germline

assignments were excluded. This was done by: 1) excluding nonfunctional sequences (due to

the occurrence of a stop codon and/or due to a shift in the reading frame between the V and

theJ gene), 2) excluding sequences with more than 14% mutations, 3) excluding sequences with

more than 7 mutations in any 12 nucleotide window. This final step was taken in order to ac-

count for the possibility of an insertion following a deletion event which can be wrongly viewed

as several dense point mutations.

Clonality was determined using a two-step approach. First, the sequences were divided into

groups based on equivalence of their V-gene assignment,J-gene assignment, and the number of

nucleotides in their junction. Following this step, clones were then defined within each of these

groups as a collection of sequences with junction regions that differ from one sequence to any

of the others by no more than three point mutations. The threshold of three was determined
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after manual inspection of the mutation patterns in resulting clones identified through building

phylogenetic trees.

2.4.8 Analysis of selection pressures

Selection pressure analysis was carried out using BASELINe (Bayesian estimation of Antigen-

driven SELectIoN) [18] based on the local test formalism (see [34]). The output of BASELINe

is a full posterior probability distribution function for each sequence and for a collection of

sequences. Here, we used the mean selection estimation for each sequence for the tree analysis.

For Figure 2.9, we have calculated a combined selection score (and 95% confidence intervals)

for each combination of individual, time point and isotype.

2.4.9 Clone phylogeny inference

To determine the most likely phylogeny of a clone of reads, we use the Immunitree algorithm.

Immunitree uses a probabilistic generative model that assigns a probability to each possible phy-
logeny. We apply MCMC to sample from this probability distribution of possible phylogenies,
subject to the constraint that the phylogeny must generate the observed empirical data. MCMC
generates an entire chain of samples of possible phylogenetic trees. Per MCMC iteration, we

perform block gibbs on each of the parameters: phylogenetic tree structure, birth and death

times of individual subclones, birth and death rates, mutation rates, read error rates, subclone

consensus sequences, and assignment of reads to subclones. Finally, we perform a brief opti-

mization on each of the sampled trees, and select the best such optimized sample as the final

output.

2.4.10 V-usage clustering

After assigning the sequences to clones, each clone is associated with one V-gene. A V-gene

usage vector for each individual-isotype combination was created. Using a Euclidean distance

metric for these vectors, a neighbor joining tree was created in Figure 2.6.

2.4.11 Clone synthesis/affinity

We tested whether we could find antigen-specific clones by choosing the most highly expressed

clones at the +7 day time points. We picked a subset of the largest clones from multiple time

points before and after vaccination (-2 day, +7 days, +21 days) and synthesized them chemically.

Because high-throughput technology to pair heavy and light chains from single cells are yet

to be available, we cloned the full light chain repertoires from the corresponding time points.
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The constructs were then paired in an scFv format and panned using phage display against the

influenza antigens present in the vaccines. After three rounds of selection against hemagglutinin,

we found only a single clone at days +7 from GMC-2009 that displayed significant affinity.

2.4.12 Software tools

Processing of raw data was performed by python packages and is available here:

- https://github.com/laserson/vdj

- https: / /github.com/laserson/pytools

Figures were produced with matplotlib, R, and graphviz. Scripts for figure preparation are

available upon request.

2.5 Author contributions

Uri Laserson originated the experiment. Francois Vigneault designed experimental procedures

and performed the majority of the experiments, including library preparation, and heavy chain

synthesis. Uri Laserson wrote software for analysis, performed the majority of the data analy-

sis, and generated most of the figures. Daniel Gadala-Maria, Gur Yaari, Mohamed Uduman,

Jason Kasvin-Felton, and William Kelton performed data analysis, especially around mutation

and selection analysis. William Kelton and Sang TaekJung performed protein expression and

characterization on synthesized clones. Jonathan Laserson and Yi Pei Liu generated the Im-

munitree algorithm and applied it to our data. Rajagopal Chari performed germline analysis.

Jehyuk Lee performed phlebotomy. Ido Bachelet performed some expression analysis. Brendan

Hickey and Erez Lieberman-Aiden contributed software. Bozena Hanczaruk, Birgitte Simen,

and Michael Egholm contributed 454 sequencing services. Daphne Koller, George Georgiou,

Steven Kleinstein, and George Church supervised research.
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Chapter 3

Broadly Neutralizing HIV-1 Antibodies

With Low Levels of Somatic

Hypermutation Isolated by Deep

Sequencing Analysis

3.1 Introduction

HIV- 1 comprises numerous clades and subtypes with recombinant forms constantly emerging

and circulating worldwide [35]. This diversity presents an unprecedented challenge to the hu-

moral immune response. For most infections, the immune system readily adapts and eliminates

the pathogen, but the high mutation frequency of HIV- 1 invariably produces an escape vari-

ant, which ultimately leads to chronic infection [36]. Accordingly, a protective vaccine against

HIV-1 would likely require the elicitation of broadly neutralizing antibodies (bNAbs), which

are capable of neutralizing an extensive cross-clade panel of virus strains and thereby prevent

acquisition of the virus rather than clearing it after infection.

Recent work has suggested that approximately 5-20% of chronically infected individuals

develop bNAbs to some degree, but the details of how these antibodies emerge and mature

remain unclear [37-41]. A common observation among bNAbs, however, is their unusually

high mutation rate. While conventional antibodies diverge 5-15% from germline in the affinity

maturation process, the CD4 binding site bNAb VRCO1 is 40% divergent from germline in

its variable heavy chain sequence [42, 43]. To a lesser extent, the quaternary epitope-specific

bNAb PG9 is 18% divergent from heavy chain germline, but also has an unusually elongated

CDRH3 that is 30 amino acids in length [38]. Finally, the recently described PGT antibodies,
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which bind to proteoglycan epitopes involving the glycan at position 332 of Env, are 20-25%
divergent from heavy chain germline and demonstrate the highest observed potency against a

broad panel of HIV- 1 isolates [37].

It remains to be determined if antibodies with high levels of SHM can be elicited by vacci-

nation. In natural infection, isolated anti-gp 120 binding antibodies exhibit a mutational level of

approximately 20-25% from germline [44]. This high level of mutation stands in stark contrast

to the mutation levels induced by vaccination for HIV- 1, which range between 4-14% [45-47].

This gap between natural infection and vaccine-induced mAbs is not as wide in other viruses

such as influenza, where natural infection yielded antibodies with mutation levels ranging be-

tween 15-30% compared to 13% for the broadly neutralizing influenza antibody CR6261,
which was isolated via phage display from a healthy vaccinated individual [48, 49]. Given the

low level of SHM for HIV-1 mAbs generated by vaccination, it is critical to understand the

extent to which antibody maturation is necessary for neutralization breadth and potency.

Characterizing the evolutionary pathway of such highly-mutated bNAbs requires the use of

high-throughput DNA sequencing to observe thousands of related antibody variants in a sea

of unrelated antibodies (the needles in the haystack). These variants are subsequently used to

build an evolutionary tree including the affinity matured bNAb. Recent work using 454 pyrose-

quencing attempted to uncover a roadmap from germline to affinity-matured mAb using such

an approach [43]. They were hampered, however, by phylogeny methods that were ill-suited to

analyzing antibody somatic hypermutation (SHM). In this work, we have addressed these issues

by using a new phylogeny method, Immunitree, specifically designed for high-throughput anal-

ysis of SHM [23]. Because the method is probabilistic, it naturally allows for the incorporation

of the state-of-the-art in mutation and sequencing error models. Furthermore, the process of

SHM does not guarantee that the leaf nodes in a phylogenetic tree are the most fit. To address

this, Immunitree allows for the observation of intermediate clones, which can be further char-

acterized in functional assays. Our approach is also distinct from previous work as the focus is

not on the evolution toward an affinity-matured bNAb, but rather on the evolution from the

germline. While the former is critically dependent on correct heavy and light chain pairing, the

latter assumes that all combinations are possible and focuses instead on the degree of deviation

from germline and its effect on neutralization breadth and potency.

We applied this new approach to PBMC samples from the elite neutralizer donor 17 from

whom the bNAbs PGT 12 1-123 were isolated [37]. This set of antibodies are among the most

potent of bNAbs described to date and have recently been shown to protect against SHIV chal-

lenge in passive transfer macaque studies. After 454 sequencing and phylogeny with Immuni-

tree, we identified a predicted antibody precursor that is 90% similar to germline but demon-

strated high neutralization potency and moderate breadth. This less-mutated clone appears
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to preferentially bind trimeric Env over monomeric gp 120, suggesting that Env trimer may be

more effective for initiating affinity maturation than monomeric gp 120. After estimating se-

lection pressures on the bNAbs, we find they have experienced considerable negative selection.

This work suggests that while somatic hypermutation does play a role in increasing breadth and

potency, our successful observation of low-mutation neutralizers demonstrates that extensive

SHM is not as important for conferring function as previously thought. The results presented

here are highly important for vaccine design as it will likely be more feasible to re-elict bNAbs

that are less mutated from germline than highly affinity matured antibodies.

3.2 Results

3.2.1 Global repertoire of chronically-infected donor 17 is slightly

perturbed relative to health donors

Total RNA was extracted from sorted IgG memory B cells from donor 17 PBMCs. The RNA

was reverse-transcribed and used for full-repertoire sequencing. Reads were aligned to the

IMGT germline reference database and similar CDR3 sequences were clustered together as

clones.

The full-repertoire sequencing did not successfully achieve the read depth necessary to find

variants of the PGT antibodies (only 70k and 90k reads for heavy and light loci). However, it

did allow us to compare characteristics of the global repertoire of the chronically infected donor

17 with healthy donors (HDs). In contrast to the donor 17 sequencing, which was performed on

sorted IgG memory cells, the HD sequencing was performed on PBMCs. Accordingly, to help

ensure a fair comparison, we only counted HD reads that were genetically determined to derive

from IgG cells (though this approach may have included non-memory IgG cells). Interestingly,

the global repertoires of the HD donors were qualitatively similar to the donor 17 repertoire

despite the chronic infection (Figure 3.1). Overall SHM levels were similar between all four

individuals, while CDR3 length tended to be slightly shorter for donor 17. V-usage tends to

be similar between all individuals (>0.8 Spearman correlation between all comparisons), but

the HD repertoires cluster closer to each other than the chronically infected patient. However,

there could be other confounding variables (e.g., all HD patients are western Caucasian males,

while donor 17 is African; donor 17 libraries were prepared with different primer sets).
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Full-repertoire Family-specific
Heavy Light Heavy Light

Total reads 70063 1 92627 1 376114 1 530197 1

IGHV4-59 or IGLV3-21 2695 4% 5923 6% 129410 34% 505359 95%

Enrichment 9 fold 15 fold

Table 3.1: Donor 17 sequencing summary.

3.2.2 Family-specific deep sequencing allows discovery of PGT an-

tibody variants and prediction of low-mutation precursors

Our full-repertoire data set was not sampled deeply enough to capture any PGT variants. In-

deed, only 5% of reads were of the target V-gene family and only a small fraction of these would

be PGT variants. To address this issue, we designed primers specific for the PGT V-gene families

(IGHV4/IGHG for heavy, IGLV3-2 1/IGLC for light) and sequenced more deeply (Table 3.1).

The resulting amplicons were sequenced on the 454 platform, resulting in 376114 heavy chain

reads and 530197 light chain reads that are identifiable as immunoglobulins. The V andJ gene

for each read is determined, along with its percent mutation from the corresponding germline

sequence. The IMGT-defined CDR3 sequences from all the reads are then clustered at 90%

identity with USEARCH to define clones. For the heavy and light chain loci, we achieved 9-

and 15-fold enrichment of the target V-gene family, with much higher overall coverage.

In order to identify variants of the PGT antibody sequences, we first computed divergence-

mutation information: each read is scored on its sequence identity to one of the PGT antibodies

(divergence) and also for its mutation level compared to the germline V-gene (mutation) (Fig-

ure 3.2). Small clusters of reads with above-background identity to the PGT antibodies were

easily identifiable. All reads from the high-identity clones were manually extracted and carried

forward for phylogeny inference with the Immunitree algorithm.

The Immunitree algorithm performs Bayesian phylogeny inference on antibody sequences

[23]. It naturally encodes known models of somatic hypermutation as well as sequencing error

rates. And critically, in contrast to traditional phylogeny methods, Immunitree allows for the

observation of intermediate nodes in the resulting tree. High-identity reads from heavy and light

chain data were separately run through the Immunitree algorithm, including the PGT antibody

sequences (Figure 3.3). The PGT antibodies were observed at relatively low levels on the trees.

Furthermore, we estimated selection pressures on the reads using the BASELINe algorithm

(Figure 3.4) [18]. In an ad hoc manner, we chose both precursor clones as well as clones that

were more highly evolved and chemically synthesized them for expression and characterization.
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3.2.3 Heavy chain and light chain nodes are capable of functionally

complementing each other and demonstrate neutralizing ac-

tivity

While 454 pyrosequencing has the capacity to generate hundreds of thousands of heavy and light

chain variable reads, it is unable to preserve the original pairing from the same memory B cell

clone. To determine if selected nodes are capable of generating mAb clones with neutralizing

activity, selected heavy and light chain nodes were paired and tested for neutralizing activity on

a six-virus panel previously determined to be representative of breadth on a larger virus panel

(Figure 3.5). All combinations successfully produced recombinant antibody as measured by

anti-Fc ELISA. Some combinations, however, were unable to demonstrate neutralizing activity,

which could be due to incorrect pairing or missing heavy/light chain clones from the broader

repertoire in our analysis.

Interestingly, antibody clones comprising heavy and/or light chain sequences that are more

divergent from germline consistently demonstrated greater neutralization potency and/or wider

breadth on the six-virus panel (Figure 3.5b). This correlation can also be seen visually on the tree

with highly broad and potent clones occupying nodes furthest from germline, which is located at

the root of the tree (Figure 3.6). Based on the data, it appears that somatic hypermutation does

directly influence the breadth and potency of the antibody. Notably, the predicted early clones

3H+3L and 32H+3L were still capable of neutralizing three out of the six viruses on the panel

with high potency. To better understand the contribution of SHM to neutralization breadth

and potency the following pairs were expressed, purified, and further characterized: 3H+3L,

32H+3L, and 3H+87L.

3.2.4 Characterization of intermediate nodes demonstrates corre-

lation between level of SHM and breadth and potency

The paired clones 3H+3L, 32H+3L and 3H+87L were expressed in mammalian suspension

cells and purified with a protein A column before testing for neutralization breadth and potency

on a 38 cross-clade pseudovirus panel. The 3H sequence is 10% (amino acid) mutated from

germline, 32H is 16% mutated, 3L is 13% mutated and the 87L sequence is 3 0 % mutated.

This pairing allows a direct comparison between the effects of mutations among heavy chain

sequences and among light chain sequences. The paired clones were tested for neutralization

activity compared to PGT121 (Figure 3.7).

The results indicate that both neutralization breadth and potency increases with divergence

from germline. The lowest divergent pair, 3H+3L, demonstrated the lowest breadth at 17/38
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virus straing. The length of the line and the color both represent the neutralization potency.
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viruses. The overall mutation level of both heavy and light chains for this clone yields a total

homology of 89% to germline in heavy and light chain combined. Interestingly, the clone was

still able to maintain a high level of potency with a mean IC50 of 0.29 pg/mL and a median

IC50 of 0.061 pg/mL. With a few additional mutations in the heavy chain (an overall heavy

and light chain germline homology of 86%), the clone 32H+3L was able to increase breadth

and potency, neutralizing 29/38 viruses in the panel with a mean IC50 of 0.35 pg/mL and a

median IC50 of 0.035 pg/mL. A higher amount of mutations in the light chain (3H+87L) yields

an even broader and more potent antibody capable of neutralizing 35/38 viruses in the panel

at a mean IC50 of 0.11 pg/mL and a median IC50 of 0.025 pg/mL. These values suggest that

this specific VDJ recombination junction and heavy/light chain pairing might be capable of

producing an antibody that is highly potent from the onset and/or the epitope to which it binds

to enables a high level of potency. The capacity for breadth, however, appears to be a secondary

development and is a direct product of SHM. These findings have valuable implications for

immunogen design as it suggests that certain antibodies and/or epitopes may be more capable

of eliciting physiologically relevant serum responses than others.

3.2.5 Genomic sequencing and paratope mapping indicate residues

that have arisen from SHM and are important for neutralizing

breadth and potency

In order to better determine if key residues in the variable region are a result of SHM or are

possibly due to polymorphisms in the donor, gDNA from the donor was extracted and V and

J genes from both heavy and the light chains were amplified and sequenced (Figure 3.8). The

results indicate that the deletion in the 5' end and the insertion in FW3 of the light chain were

features that developed following recombination.

In order to the determine the minimal amount of mutations necessary for neutralizing activ-

ity, the least mutated clones were aligned to the germline sequence and residues resulting from

SHM were identified. Single amino acid changes in 3H and 3L sequences were individually

reverted, paired with corresponding light or heavy chain clones, and then tested on the 6-virus

panel (Figure 3.9). For the 3H heavy chain, only residues in the CDRH3 demonstrated a signif-

icant change in neutralization IC50 and this observation was consistent for multiple light chain

pairs. Given these results, we completely reverted the heavy chain to the germline sequence

and still found similar neutralization activity, suggesting that most of the residues mediating

neutralization are in the CDRH3.

For the 3L light chain, the effects of single amino acid reversions depended on the degree of

divergence in the heavy chain. When paired with a less mutated heavy chain (3H), residues in
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FR2, CDRL2, and the CDRL3 were found to be critical for neutralization activity. Addition-

ally, alanine scanning of the insertion in FR3 abrogated neutralization. When 3L was paired

with the highly matured PGT 121 heavy chain, however, only residues in CDRL2 and CDRL3

were found to be critical for neutralization. These findings suggest that initially the light chain

likely makes more significant contacts on HIV- 1 Env than the heavy chain, but that this depen-

dency on light chain binding decreases with increased affinity maturation on the heavy chain.

Having identified the residues that are necessary for neutralizaton activity in the light chain,
the sequence was fully reverted to germline and might continue to neutralize, but only with the

most matured heavy chain, and with reduced potency (these last results are preliminary).

3.2.6 Comparison of affinity-matured sequences identified gain-of-

function mutations that enable neutralization breadth and po-

tency

Although the clone 32H is only 3% more mutated than 3H, the 32H+3L pair is capable of

neutralizing 12 additional viruses on the 38 virus panel compared to 3H+3L. Similarly, 87L

is 18% more mutated than 3L, but this higher affinity-maturation increases the neutralization

breadth from 17/38 to 35/38 viruses between 3H+3L and 3H+87L. In order to decipher which

residues enables this increase in neutralization breadth, single amino acids in 32H were reverted

to amino acids in 3H and then tested against viruses that could be neutralized by 32H+3L but

not 3H+3L. A similar approach was perfomed for 87L, in which individual amino acids were

mutated to corresponding residues in 3L. As seen in Figure ??, single amino acid changes did not

show demonstrable effects on neutralization IC50 for the 32H reversion (need to do doubles).

Results are being repeated for 87L.

3.2.7 The predicted precursor binds preferentially to cell surface

Env than monomeric gpl20 and may require crosslinking for

neutralization

It remains to be determined what form the HIV- 1 Env epitope is presented to B cells to trigger

activation and begin the affinity maturation process. Many groups have attempted to create

germline derivatives of known bNAbs, but these constructs have not been able to bind recombi-

nant gp 120 or to neutralize virus strains. It is possible that the host germline antibody responded

to an Env clone specific to the infecting virus and that breadth and potency developed gradually

as the antibody matured.

To measure differences in binding affinity between the antibody pairs in this study, ELISAs
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Figure 3.10: Targeted reversion to detect neutralization. Values are fold differences in IC50 of
pre-reverted to post-reverted.

were perfomed using both recombinant and lysed virus supernatants. The results show that

the least mutated pair (3H+3L) had very little affinity for recombinantly produced monomeric

gp120 compared to the more matured pairs (3H+87L and 32H+3L) (Figure 3.1la). This dif-

ference in affinity is mirrored by ELISA binding to gp 120 protein extracted from lysed virus

supernatents. Interestingly, binding to cell surface Env trimer measured by flow cytometry did

not show a marked difference between 3H+3L and 3H+87L (figure). These results suggest

that the least mutated clone prefers binding to cell surface trimer more than monomeric gp 120

and that despite this difference in affinity, the antibody is still capable of neutralization activity.

Next, we wanted to determine if the affinity for trimer involved crosslinking between gp 120 pro-

tomers. To test this possibility, the antibody IgGs were digested into Fab fragments and tested in

neutralization assays. The results demonstrate that the least mutated pair 3H+3L loses neutral-

izing activity when tested as Fabs, while the more mutated pairs neutralize with similar potency

(Figure 3.11 b). Accordingly, it is possible that less mutated precursors are able to crosslink be-

tween protomers within a trimer and that this increased valency served as a means to increase

avidity and thereby positive selection.

Finally, we wanted to determine if this preference for trimer was exclusive to cell surface

expression or if binding to recombinant versions of Env trimer was possible. To test this, an

ELISA was performed using YU2 foldon gp 140 trimer. Unlike the quarternary epitope-specific

antibody PG9, 3H+3L was able to have a measurable affinity for the gp140 foldon. This finding

suggests that the preference for trimer is distinct from the trimer epitope that is unique to PG9.
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More importantly, this finding also suggests that trimeric Env would serve as a better immuogen

than monomeric gp 120 in binding to candidate germline antibodies.

3.3 Discussion

A number of bNAbs against HIV- 1 Env have been identified and the epitopes to which they

bind have been structurally and/or biochemically defined [37, 38, 42, 50-54]. The concept of

structure-based reverse vaccinology is to utilize this information to guide the design of immuno-

gens, which would be capable of re-eliciting bNAbs following vaccination. The ideal vaccine

would likely attempt to re-elicit a cocktail of antibodies to target various sites of vulnerability on

HIV- 1 Env, but it remains to be determined if some epitopes are more readibly elicitable than

others. Currently, most immunogen design focuses on pushing the immune response towards a

fully affinity matured antibody. All known bNAbs, however, are mutated to the point that vac-

cination is unlikely to reproduce them. An alternative approach would be to find less-mutated

versions of the bNAbs that still maintain considerable neutralization breadth and potency. To

do so, we must delineate the landscape that defines bNAbs. In other words, understanding

the degree to which the level of deviation from germline is necessary for a bNAb's neutraliza-

tion breadth/potency would prioritize different targets and directly inform immunogen design

approaches.

The work presented here attempts to execute exactly this program, as the focus is primarily

on the role of SHM on the development of antibodies' neutralization breadth and potency.

Using 454 deep sequencing and a novel approach to phylogeny, we were able to predict and

identify clones with neutralizing activity that are closer in homology to germline antibody. As

our focus is on the evolution from germline and its effect on neutralization breadth and potency,

we assume that all heavy and light chain combinations are possible. This approach differs from

previous studies, which have attempted to map the evolution of highly mutated bNAbs and is

therefore dependent on accurate heavy and light chain pairing. Furthermore, we are primarily

interested in demonstrating the existence of low-mutation antibodies that could plausibly be

elicited by vaccination. While our work found a positive correlation between the degree of SHM

and neutralization breadth, pairing the least divergent heavy and light chain clones (3H+3L)

showed that clones with relatively lower levels of SHM still demonstrated a high level of potency

and moderate breadth. It is possible that this specific family of antibodies and/or specific VDJ

recombination was able to generate a clone that is highly potent against viruses harboring the

epitope and that wider breadth developed subsequently through SHM. This would stand in

contrast to the MPER antibody 4E 10, however, which demonstrates the highest breadth among

all bNAbs, but lacks in potency. Interestingly, 4E 10 is relatively less divergent from germline and
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it is possible that the potency for these types of antibodies could increase through SHM.

Notwithstanding the target, there are two important obstacles in re-eliciting a bNAb of inter-

est. The first is priming naive B cells with an immunogen capable of binding germline precur-

sors. The second is driving this B cell response towards a specific affinity maturation pathway.

The data presented here suggests that the binding epitope on HIV- 1 can evolve over time. For
this specific antibody family, it appears that the affinity begins first on trimeric forms of Env and
subsequently matures to gain tighter avidity on monomeric forms of gp 120. This process could
likely be due to a valency effect, where oligmeric forms could enhance low binding affinities. In
terms of application to immunogen design, a possible strategy would first involve priming with
trimeric forms of Env and subsequently boosting with monomeric immunogens. Indeed, it has
been shown by a number of studies that trimeric forms of Env do provide a stronger immune
response than monomer alone.

The ideal vaccine antibody response that would be protective against HIV- 1 will likely pos-
sess three properties: wide breadth to protect against HIV- 1 genetic diversity, high potency to
produce physiologically viable serum titers, and low divergence from germline to increase the
likelihood of re-elicitation. We chose to focus on the bNAbs PGT 12 1-123 because they were
recently described to be the most potent antibodies identified to date and are still capable of neu-
tralizing > 70% of HIV- 1 isolates. These antibodies are ideal vaccine targets because their high
potency suggests that even a modest response is capable of providing protection. The caveat to
these antibodies, however, is their high level of mutation, with only 7 5 % homology to germline
for heavy and light chain combined. To date, antibodies elicited through vaccination have not
demonstrated this high level of SHM. Accordingly, identifying antibodies that are capable of
breadth and potency but have lower levels of SHM would redefine bNAb re-elicitation targets.

To better understand the contribution of SHM to neutralization breadth and potency, we used
deep sequencing analysis to identify and predict clones with varying levels of divergence from
germline. These results discovered a predicted antibody that is TO% mutated, but still capable
of neutralizing 17/38 viruses in a cross clade panel with a potent mean IC50 of 0.289 pg/mL.
This analysis can be extended to other bNAbs that target different epitopes to similarly deter-
mine if less mutated antibodies can be identified. These results have important implications for
vaccine design as it suggests that bNAbs do not require unconventionally high levels of SHM in
order to have breadth and potency.

70 of 160



3.4 Materials and Methods

3.4.1 Human specimens

Peripheral blood monoculear cells (PBMCs) were obtained from donor 17, a HIV-1 infected

donor who is a part of the previously described IAVI Protocol G cohort. All human samples

were collected with informed consent under clinical protocols approved by the appropriate in-

stitutional review board.

3.4.2 Cell sorting and RNA extraction

Frozen vials of 10 x 106 PBMCs were thawed and washed before staining with Pacific Blue

labeled anti-CD3 (UCHT 1), Pacific Blue labeled anti-CD14 (M5E2), FITC labeled anti-CD19

(HIB 19), PE-Cy5 labeled anti-CD 10 (HIlOa), PE labeled anti-CD27 (M-T27 1), and APC la-

beled anti-CD21 (B-ly4), all from BD Biosciences. Sorts were done on a high speed BD FAC-

SAria into miRVana lysis buffer (Ambion). All sorted populations were CD3-, CD14-, and

CD19+. Immature B cells were CD10+, exhausted tissue-like memory were CD10-, CD21-

, CD27-, activated mature B cells and resting memory B cells were combined in the CD 10-,

CD27+ gate and short-lived peripheral plasmablasts were CD10-, CD27++, CD2llow [55].

Approximate cell yields per patient were: Immature, 1-2 x 104, Memory 0.2-1 x 106, Exhausted

5- lOx 104, Plasmablasts 2-5 x 103. Total RNA from the cells was then extracted using the mir-

Vana RNA extraction kit (Ambion) according to manufacturer's instructions. RNA was quan-

titated on a 2100 Bioanalyzer (Agilent).

3.4.3 Full-repertoire sequencing library preparation

Total RNA was reverse transcribed as follows. Each sample was used for two heavy chain and

two light chain RT reactions. For each reaction, 9.5 pL of total RNA was combined with 2.5

pL gene-specific primer (2 pM each), and 1 pL of 10 mM dNTP. The mixture was incubated

at 65'C for 5 min, then 1 min on ice. Meanwhile, for each reaction the following mix was

prepared: 4 pL of 5x FS buffer, 1 pL 0.1 M DTT, 40 U RNase inhibitor (Enzymatics), and 1 PL

SuperScript III RT (200 U/pL; Invitrogen). The mix was added to the reaction and incubated

at 55'C for 60 min, followed by inactivation at 70'C for 15 min. The two cDNA reactions for

each sample-locus combination were combined prior to PCR, and the RNA/DNA hybrid was

removed with 2 pL RNase H (Enzymatics) incubated at 37'C for 20 min.

For each sample-locus combination, four 50 pL PCR reactions were performed from the

corresponding cDNA samples. Each reaction was comprised as follows: 27.5 pL water, 10 pL

cDNA, 10 pL 5x HF buffer (detergent-free), 1 pL 10 mM dNTP, 0.5 pL each primer (from 2.5
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pM stock), and 0.5 pL Phusion II Hot Start polymerase. Note that theJ-side primers included

sample barcodes, and all primers included adaptor sequences for 454 emPCR. The reactions
were cycled as follows.

Heavy chain:

1. 98 0C, 30 s

2. 980C, 10 s

3. 580C, 30 s

4. 720C, 40 s

5. Goto 2, 20x

6. 720C, 5 min

7. 100C, forever

Light chain:

1. 98 0C, 30 s

2. 980C, 10 s

3. 650C, 30 s

4. 72 0C, 40 s

5. Goto 2, 19x

6. 72 0C, 5 min

7. 100C, forever

The reactions were cleaned and concentrated with AMPure XP beads (Agencourt) used at

the standard 1:1.8 ratio and eluted in 30 pL Tris buffer. The desired bands were finally purified

using a Pippin prep 1.5% gel, gated from 400-480 bp (heavy) and 370-450 bp (light). The

eluates were cleaned on a QAquick column (Qagen), eluted in 30 pL, and quantitated on a

2100 Bioanalyzer. The samples were finally mixed to produce equimolar ratios, and sent to

454 Life Sciences for sequencing. The sequencing was performed according to manufacturer's

protocol.
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3.4.4 Family-specific sequencing library preparation

Reverse transcription was performed as follows. 10 pL total RNA was combined with 2 pL RT

primer mix (50 pM oligo-dT and 25 pM random hexamer). The mixture was heated at 95'C

for 1 min, 65'C for 5 min, then cooled on ice for 1 min. Then the following were added: 4 pL

5x FS buffer, 1 pL 10 mM dNTP mix, 1 pL 0.1 M DTT, 1 pL RNase inhibitor (Enzymatics),

1 pL SuperScript III RT (Invitrogen), and incubated as follows: 25 0C for 10 min, 35'C for 5

min, 55'C for 45 min, 85'C for 5 min. RNA/DNA hybrid was removed by adding 4 pL E. coli

RNase H (Enzymatics).

PCR reactions were assembled as follows: 13.75 pL water, 5 pL cDNA, 5 pL 5x HF buffer,

0.5 pL 10 mM dNTP, 0.25 pL of each 100 pM primer stock, 0.25 pL Phusion Hot Start. Cycle:

1. 98 0C, 60 s

2. 980C, 10 s

3. 620C, 20 s

4. 720C, 20 s

5. Goto 2, 24x

6. 720C, 5 min

7. 40C, forever

Samples were purified on a QAquick column, and run on a 2% agarose gel. The desired

bands were cut out, cleaned on Qiagen MinElute gel extraction kit, eluted twice with 10 pL

EB buffer, and quantitated on a 2100 Bioanalyzer. Samples were sent to SeqWright for 454

sequencing, which was performed per manufacturer's instructions.

3.4.5 Raw data processing: VDJ alignment and clone definition

Raw sequencing data were processed using in-house tools written in python. Reads were split

into barcodes (if necessary), size-filtered, and aligned to IMGT's germline VDJ reference database.

The alignment was accomplished by performing semi-global dynamic programming alignment

of each read against all possible germline sequences, choosing the best match if it met a mini-

mum threshold score. The scores were kept low, as we were interested in sequences that were

very highly mutated. The V region is aligned first, then removed, followed byJ, then removed,

followed by D. The IMGT-defined CDR3 sequence of each read was then extracted. The
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CDR3 sequences were sorted by abundance and clustered with USEARCH5.1 with the op-

tions "-minlen 0 -global -usersort -iddef 1 -id 0.9". Finally, each CDR3 sequence was

aligned to the "target" antibody sequences of PGT 121-123 to determine a "divergence" value

from these antibodies

3.4.6 Antibody variant identification and analysis

The divergence-mutation plots are used a a tool to "fish" for reads that are similar to the known

PGT 121-123 antibodies. High-identity clusters of sequences and clusters that are above "back-

ground" (i.e., the large mass of reads) are manually identified and used as input for a phylogeny

inference algorithm specifically designed for SHM, Immunitree.

Immunitree implements a Bayesian model of somatic hypermutation of clones, including

probabilistic models of SHM and sequencing error, and also allows for the observation of inter-

mediate nodes in the tree [23]. It performs Markov chain Monte Carlo over the tree structure,
birth/death times of the subclones, birth/death, mutation, and sequencing error rates, subclone

consensus sequences, and assignment of reads to nodes.

Nodes were were chosen on an ad hoc basis for synthesis. The underlying node consen-

sus sequence was analyzed for possible out-of-frame indels and manually corrected. (This was

sometimes necessary for precursor nodes for which there was a dearth of data.)

The tree structure is also used for multiple computations and to overlay different informa-

tion. Significantly, we estimate the selection pressure that a given node has experienced using

the BASELINe algorithm [18]. It performs a Bayesian estimation of selection pressure by com-

paring the observed number of replacement/silent mutations in the CDRs/FWRs of the node

consensus sequence.

3.4.7 Software tools

Raw data analysis tools are available here:

- https://github.com/laserson/vdj

- https://github.com/laserson/pytools

Figures were generated primarily with matplotlib, and trees visualized with Graphviz. Immu-

nitree is implemented in MATLAB, and BASELINe is implemented in R.

3.4.8 Antibody and protein expression and purification

Antibody sequences were synthesized by GeneWiz and cloned into heavy and light chain Nuss

Vectors. The plasmids were then co-transfected at a 1:1 ratio in either HEK 293T or 293
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FreeStyle cells using Fugene 6 (Promega) or 293fection (Invitrogen), respectively. Transfections

were performed according to the manufacturer's protocol and antibody supernatents were har-

vested four days following transfection. Antibodies produced in 293T cells were quantified by

ELISA as described below and used directly in neutralization assays. Antibodies produced in

293 freestyle cells were further purified over a protein A column and dialyzed against phosphate-

buffered saline. Mutations were introduced by site-directed mutagenesis using the QuikChange

site-directed mutagenesis kit (Stratagene) and mutants were verified by Sanger DNA sequencing.

3.4.9 Pseudovirus production and neutralization assays

To produce pseudoviruses, plasmids encoding Env were co-transfected with an Env-deficient

genomic backbone plasmid (pSG3AEnv) in a 1:2 ratio with the transfection reagent Fugene 6

(Promega). Pseudoviruses were harvested 72 hours post transfection for use in neutralization

assays. Neutralizing activity was assessed using a single round of replication pseudovirus assay

and TZM-bl target cells, as described previously. Briefly, TZM-bl cells containing the luceriface

reporter gene were seeded in a 96-well flat bottom plate at a concentration of 20000 cells/well.

The serially diluted virus/antibody mixture, which was pre-incubated for 1 hr, was then added

to the cells and luminescence was quantified 72 hrs following infection via lysis and addition

of Bright-GloTM Luciferase substrate (Promega). To determine IC50 values, serial dilutions

of mAbs were incubated with virus and the dose-response curves were fitted using nonlinear

regression.

3.4.10 ELISA assays

Ninety-six-well ELISA plates were coated overnight at 4C with 50 uL PBS containing 100 ng

of goat anti-human IgG Fc (Pierce) or 100 ng of gp 120 per well. The wells were washed four

times with PBS containing 0.05% Tween 20 and blocked with 3% BSA at room temperature for

1 h. Serial dilutions or mAb were then added to the wells, and the plates were incubated at room

temperature for 1 hour. After washing four times, goat anti-human IgG F(ab')2 conjugated to

alkaline phosphatase (Pierce) was diluted 1:1000 in PBS containing 1% BSA and 0.025% Tween

20 and added to the wells. The plate was incubated at room temperature for 1 h, washed four

times, and the plate was developed by adding 50 uL of alkaline phosphatase substrate (Sigma)

to 5 mL alkaline phosphatase staining buffer (pH 9.8), according to the manufacturer's instruc-

tions. The optical density at 405 nm was read on a microplate reader (Molecular Devices). An-

tibody concentration was calculated by linear regression using a standard concentration curve

of purified IgG protein.
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3.4.11 Cell surface binding assays

To produce cell surface Env trimer, plasmids encoding Env were co-transfected with an Env-

deficient genomic backbone plasmid (pSG3AEnv) in a 1:2 ratio with the transfection reagent

Fugene 6 (Promega). The cells are then harvested 48 hrs following transfection and the super-

natent discarded. Titrating amounts of mAbs were added to the transfected cells and incubated

for lh at 4C in lx PBS. The cells were washed three times with lx PBS and fixed with 2% PEA

(vendor) for 20 min at RT. Following three washes with lx PBS, the cells were then stained with

a 1:200 dilution of goat anti-human IgG F(ab')2 conjugated to phycoerythrin (Jackson) for lh

at RT. Binding was analyzed using flow cytometry, and binding curves were generated by plot-

ting the mean fluorescence intensity of antigen binding as a function of antibody concentration.

FlowJo software was used for data interpretation.
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Chapter 4

Autoantigen Discovery With a

Synthetic Human Peptidome

4.1 Abstract

In this study, we improve on current autoantigen discovery approaches by creating a synthetic

representation of the complete human proteome, the T7 "peptidome" phage display library

(T7-Pep), and use it to profile the autoantibody repertoires of individual patients. We pro-

vide methods for 1) designing and cloning large libraries of DNA microarray-derived oligonu-

cleotides encoding peptides for display on bacteriophage, and 2) analyzing the peptide libraries

using high throughput DNA sequencing. We applied phage immunoprecipitation sequencing

(PhIP-Seq) to identify both known and novel autoantibodies contained in the spinal fluid of three

patients with paraneoplastic neurological syndromes. We also show how our approach can be

used more generally to identify peptide-protein interactions and point toward ways in which

this technology will be further developed in the future. We envision that PhIP-Seq can become

an important new tool in autoantibody analysis, as well as proteomic research in general.

4.2 Introduction

Vertebrate immune systems have evolved sophisticated genetic mechanisms to generate anti-

body repertoires, which are combinatorial libraries of affinity molecules capable of distinguish-

ing between self and non-self. Recent data highlight the delicate balance in higher mammals

between energy utilization, robust immune defense against pathogens, and autoimmunity[56].

In humans, loss of tolerance to self-antigens results in a number of diseases including type I

'Published as [26]: Larman, et al., Autoantigen Discovery With a Synthetic Human Peptidome, Nature Biotech-

nology, 29 (6): 535-541, 2011.
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diabetes, multiple sclerosis, and rheumatoid arthritis. Knowledge of the self antigens involved

in autoimmune processes is not only important for understanding the disease etiology, but can
also be used to develop accurate diagnostic tests. In addition, physicians may someday utilize
antigen-specific therapies to target auto-reactive immune cells for destruction or quiescence.

Traditional approaches to identification of autoantibody targets largely rely on expression
of fragmented cDNA libraries. Important technical limitations of this method include the small
fraction of clones expressing in-frame coding sequences (with a lower bound of 6%) [57], and
the highly skewed representation of differentially expressed cDNAs. Nevertheless, expression

cloning has led to the discovery of many important autoantigens[58-60]. Strides have been

made to improve peptide display systems [61, 62], but there remains an important unmet need
for better display libraries and methods to analyze binding interactions.

Here, we have constructed the first synthetic representation of the complete human pro-

teome, which we have engineered for display as peptides on the surface of T7 phage. This T7
"peptidome" library (T7-Pep) was extensively characterized and found to be both faithful to its

in silico design and uniform in its representation. We combined our T7-Pep library with high-

throughput DNA sequencing to identify autoantibody-peptide interactions, a method we call
phage immunoprecipitation sequencing (PhIP-Seq). This approach provides several advan-

tages over traditional methods, including comprehensive and unbiased proteome representa-
tion, peptide enrichment quantification, and a streamlined, multiplexed protocol requiring just

one round of enrichment. We have applied PhIP-Seq to interrogate the autoantibody repertoire

in the spinal fluid of patients with neurological autoimmunity and identified both known and
novel autoantigens. We further demonstrate how PhIP-Seq can also be used more generally to

identify peptide-protein interactions.

4.3 Results

4.3.1 Construction and characterization of the T7-Pep library

We sought to create a synthetic representation of the human proteome. We began by extracting
all open reading frame (ORF) sequences available from build 35.1 of the human genome (24239;
23% of which had "predicted" status). When there were multiple isoforms of the same protein,
we randomly selected one representative ORE We modified the codon usage by eliminating

restriction sites used for cloning and by substituting very low abundance codons in E. coli with
more abundant synonymous codons. We parsed this database into sequences of 108 nucleotides
encoding 36 amino acid tiles with an overlap of seven residues between consecutive peptides
(Figure 4.1), the estimated size of a linear epitope. Finally, the stop codon of each ORF was
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removed so that all peptides could be cloned in-frame with a C-terminal FLAG tag.

The final library design includes 413611 peptides spanning the entire coding region of the

human genome. The peptide-coding sequences were synthesized as 140-mer oligonucleotides

with primer sequences on releasable DNA microarrays in 19 pools of 22000 oligos each, PCR-

amplified and cloned into a derivative of the T7Select 10-3b phage display vector (Novagen;

Figure 4. lb i and Supplementary Methods). We also generated two additional libraries com-

prising the N-terminal and C-terminal peptidomes (T7-NPep, T7-CPep), which encode only

the first and last 24 codons from each ORE

The extent of vector re-ligation, multiple insertions, mutations, and correct in-frame phage-

displayed peptides was determined by plaque PCR analysis (Table 4.1), clone sequencing (Fig-

ure 4. lc), and FLAG expression (Table 4.2) of randomly sampled phage from all subpools. Se-

quencing revealed that 83% of the inserts lacked frameshifting mutations. These data indicate

that a much greater fraction of in-frame, ORF-derived peptides is expressed by our synthetic

libraries compared to those constructed from cDNA (Table 4.3).

After combining 5 x 108 phage from each subpool and amplifying the final library, Illumina

sequencing was performed at a median depth of 45-fold coverage (Figure 4.1 d) and detected

91.2% of the expected clones. Chaol analysis was performed to estimate the actual library

complexity (assuming infinite sampling), which predicted that >91.8% of the library was repre-

sented (Figure 4.2) [63]. In addition, T7-Pep is highly uniform, with 78% of the library members

within 10-fold abundance (having been sequenced between 10 and 100 times). These data sug-

gest that our library encodes a much more complete and uniform representation of the human

proteome than can otherwise be achieved with existing technologies (Table 4.3).

We next optimized a phage immunoprecipitation protocol for detecting antibody-peptide

interactions within complex mixtures (Figure 4.3). By combining this protocol with T7-Pep

and deep sequencing DNA analysis, we have developed a new method to quantitatively profile

autoantibody repertoires in patients (Figure 4.1 b).

4.3.2 Analysis of a PND patient with NOVA autoantibodies

Cancers often elicit cellular and humoral immune responses against tumor antigens which may

limit disease progression[64]. In rare cases, tumor immunity can recognize central nervous

system (CNS) antigens, triggering a devastating autoimmune process called paraneoplastic neu-

rological disorder (PND). Clinical presentations of PND are heterogeneous and correlate with

the CNS autoantigens involved. PND has served as a model for CNS autoimmunity, and the

application of phage display to PND autoantigen discovery has met with much success [58, 65].

To assess the performance of PhIP-Seq for autoantigen discovery, we examined a sample of

cerebrospinal fluid (CSF) from a 63-year-old female (Patient A) with non-small cell lung cancer
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Figure 4.1: Construction and characterization of T7-Pep and the PhIP-Seq methodology. (a)
The T7-Pep library is made from 413611 DNA sequences encoding 36 amino acid peptide tiles
that span 24239 unique ORFs from build 35.1 of the human genome. Each tile overlaps its
neighbors by seven amino acids on each side. (b) The DNA sequences from (a) were printed
as 140-mer oligos on releasable DNA microarrays. (i) After oligo release, the DNA was PCR-
amplified and cloned into a FLAG-expressing derivative of the T7Select 10-3b mid copy phage
display system. (ii) The T7-Pep library is mixed with patient samples containing autoantibodies.
(iii) Antibodies and bound phage are captured on magnetic protein A/G coated beads. (iv) DNA
from the immunoprecipitated phage is recovered and (v) library inserts are PCR-amplified with
sequencing adapters. A single nucleotide change (arrow) is introduced for multiplex analysis. (c)
Pie chart showing results of plaque sequencing of 71 phage from T7-Pep Pool 1 and T7-CPep
Pool 1. (d) Histogram plot showing results from Illumina sequencing of T7-Pep. 78% of the
total area lies between the vertical red lines at 10 and 100 reads, demonstrating the relative uni-
formity of the library. Representation of each subpool in T7-Pep (inset) compared to expected
(horizontal red line).
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Plaques
with Plaques

Plaques multiple % Multiple with vector /a Vector
Pool analyzed inserts inserts religation Religation

T7-Pep pool 1
T7-Pep pool 2
T7-Pep pool 3
T7-Pep pool 4
T7-Pep pool 5
T7-Pep pool 6
T7-Pep pool 7
T7-Pep pool 8
T7-Pep pool 9

T7-Pep pool 10
T7-Pep pool 11
T7-Pep pool 12
T7-Pep pool 13
T7-Pep pool 14
T7-Pep pool 15
T7-Pep pool 16
T7-Pep pool 17
T7-Pep pool 18
T7-Pep pool 19
T7-NPep pool 1
T7-CPep pool 1
T7-NPep pool 2
T7-CPep pool 2

Total

45
39
39
38
38
39
31
62
54
31
62
69
31
31
31
31
30
30
31
46
47
48
44

947

1
3
1
3
2
0
1
3
0
1
3
1
0
1
1
0
1
1
1
3
2
0
1

30

2.2
7.7
2.6
7.9
5.3
0.0
3.2
4.8
0.0
3.2
4.8
1.4
0.0
3.2
3.2
0.0
3.3
3.3
3.2
6.5
4.3
0.0
2.3
3.2

1
0
0
0
0
0
0
1
0
0
1
4
0
0
1
1
0
0
0
1
0
3
1

14

2.2
0.0
0.0
0.0
0.0
0.0
0.0
1.6
0.0
0.0
1.6
5.8
0.0
0.0
3.2
3.2
0.0
0.0
0.0
2.2
0.0
6.3
2.3
1.5

Table 4.1: Subpool analysis of multiple insertions and vector re-ligation after cloning of the
T7-Pep, T7-NPep, and T7-CPep libraries. Phage plaques from each subpool were randomly
selected and PCR analyzed to examine the frequency of multiple insertions and vector religa-
tions present within each pool.

Pool FLAG-positive plaques T7 tall fiber positive plaques % In-frame phage
T7-Pep pool 2 44 69 64%
T7-Pep pool 3 61 94 65%
T7-Pep pool 4 43 64 67%
T7-Pep pool 5 48 70 69%

Total 196 297 66%

Table 4.2: Subpool analysis of FLAG expression after cloning of T7-Pep. Plaque lifts from four

subpools were analyzed by immunoblotting using FLAG and T7 tail fiber antibodies to measure
in-frame and total plaques, respectively. Plaques staining positive were counted and a percent-
age of in-frame, FLAG-expressing phage was determined. The vast majority of frameshift-

ing mutations present in the phage inserts is due to errors in DNA chemical synthesis on the
releasable DNA microarrays. In parallel oligonucleotide synthesis, sequence integrity can be
compromised by depurination side reactions, inefficient nucleoside coupling, and reversible 5'-
hydroxyl deprotection reactions, leading to mutations of the desired oligonucleotide.
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Feature Classic cDNA Phage Protein Array 17-Pep + PhIP-Seq
Display

Proteome * incomplete - Small fraction - Nearly complete
representation - Highly skewed distribution - Uniform distribution - Uniform distribution
Fraction of clones As low as 6% Up to 100% -83%
expressing an
ORF peptide In
frame
Size of displayed Up to full-length proteins Up to full-length proteins 36 amino acid overlapping tiles
peptides
Rounds of Requires multiple selection No selection Single selection, which
selection rounds, which favor more eliminates clone growth bias

abundant and faster growing and population bottleneck
clones"

Analysis Individual clone sequencing: Microarray scanning: Deep sequencing of library:
- Initial abundance unknown - Quantitative - Quantify population before
- Requires population - Statistical analysis of and after a single round of

bottleneck antibody binding selection
- Statistical analysis of

enrichments
Determination of Difficult Not possible Often straightforward for
antibody antigens of known crystal
_olyclonailty structure
Epitope mapping Difficult Not possible Often straightforward
Effort Labor intensive Minimal Minimal
Sample Low Medium Adaptable to 96 well format
throughput
Multiplexing No No Yes
capabIlity__________________________
Coat Low Moderate to high Moderate

Table 4.3: Comparison between T7-Pep + PhIP-Seq and current proteomic methods for au-
toantigen discovery
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Figure 4.2: The effect of sequencing depth on estimated library complexity. Chaol estimates
of library complexity given by SChaol = S obs + n/2n2 are shown as a function of simulated
T7-Pep library sampling. SChaol is the estimated complexity, where Sob, is the observed library
complexity, ni is the number of library members observed once, and n 2 is the number of li-
brary members observed twice. For the data points shown, Sobs, ni, and n 2 were simulated
by randomly sampling the actual sequencing data "Number of Reads" times without replace-
ment. SChaol was then calculated as above. The sequencing depth actually achieved, 20 million
reads, appears to be near saturating with respect to Chao 1 estimate of the library complexity,
at 361070 library members (or 91.8% of the 393053 resolvable clones).
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Antibody
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anti-FLAG:SerumAb

PhIP-Seq
Protocol

Plaque Lift, count FLAG plaques

Phage
a.
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Figure 4.3: Optimization of PhIP-Seq target enrichment. A. A FLAG-expressing T7 phage
(depicted with red peptide) was diluted at 1:1,000 into native, non-FLAG-expressing T7 phage
to mimic a target peptide within the T7-Pep library. An anti-FLAG monoclonal antibody (M2,
Sigma-Aldrich; shown with red variable region) was diluted 1:1,000 into human serum antibod-
ies (shown with black variable region) to mimic a rare autoantibody within a patient's antibody
repertoire. After performing the IP, plaque lift analysis for FLAG expression was performed
to determine enrichment using the equation shown (E = enrichment; D = dilution factor =
1,000; F = fraction of FLAG expressing clones on plaque lift). Enrichment was optimized with
respect to type of beads, number of washes, order of antibody-phage/antibody-bead complex
formation, and relative concentrations of phage and antibody. B. Enrichment factor was found
to depend on the relative concentrations of phage and antibody during complex formation. We
thus varied these parameters independently and found an optimum at about 5x1010 pfu/ml
phage and 2 mg/ml total antibody.
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(NSCLC) who presented with a PND syndrome and was found to have anti-NOVA autoanti-

bodies [66]. The NOVA autoantigen (neuro-oncological ventral antigen, or "Ri") is commonly

targeted in PND triggered by lung or gynecological cancers, and results in ataxia with or without

opsoclonus/myoclonus. A concentration of 2 pg/ml of CSF antibody was spiked with 2 ng/ml

of an antibody specific to SAPK4 (positive control) to monitor enrichment of the targeted pep-

tide on protein A/G beads. Despite extensive washing, 298667 unique clones (83% of the input

library) were found in the immunoprecipitate. A significant correlation was observed between

the abundance of input clones and immunoprecipitated clones (Figure 4.4a), likely due to weak

nonspecific interactions with the beads.

To approximate the expected distribution of IP'ed clones' abundances, we employed a two-

parameter generalized Poisson (GP) model (as recently demonstrated for RNA-seq data [68])

and found that this distribution family fits the data well at various input abundances (Fig-

ure 4.4b). We calculated the GP parameter values for each input abundance level [67] and

regressed these parameters to form our null model for the calculation of enrichment signifi-

cance (p-values) of each clone (Figure 4.4c and online methods). Comparing the two PhIP-Seq

replicates revealed that the most significantly enriched clones were the same in both replicas

(Figure 4.4d), highlighting the assay's reproducibility. This contrasts dramatically with a com-

parison of clones enriched by two different patients (Figure 4.5). Performing PhIP-Seq in the

absence of patient antibodies identified phage capable of binding to the protein A/G beads. We

thus defined Patient A positive clones as those clones with a reproducible Log10 p-value greater

than a cutoff (Figure 4.4d, dashed red line), but not significantly enriched on beads alone (P <

10-3). Patient A positives included the expected SAPK4-targeted positive control peptide (P <

10-15), the expected NOVAl autoantigen (P < 10-15), and six additional candidate autoantigens

(Table 4.4).

We tested three of these predictions by expressing full-length TGIF2LX, DBR 1 and PCDH 1

in 293T cells and immunoblotting with patient CSF TGIF2LX (TGFB-Induced factor home-

obox 2-like, X-linked) was confirmed as a novel autoantigen, as we detected strong immunore-

activity at the expected molecular weight (Figure 4.6a). Full-length DBR1 and PCDH1, while

expressed well in 293T cells (not shown), were not detected by CSF antibodies. We observed

two bands in the untransfected lysate migrating at approximately 50 and 62 KDa, possibly rep-

resenting endogenously expressed proteins that correspond either to untested candidates or to

false negatives of the PhIP-Seq assay.

Strikingly, the hypothetical protein LOC26080 had seven distinct peptides that were sig-

nificantly enriched, and they all appeared to share a nine residue repetitive motif. We used

MEME software [69] to characterize this motif, which represents the likely epitope recognized

by Patient As autoantibodies (Figure 4.6b).
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Figure 4.4: Statistical analysis of PhIP-Seq data. (a) Scatter plot comparing sequencing reads
from T7-Pep input library and from Patient A immunoprecipitated (IP) phage (Pearson coeffi-
cient = 0.435; P = 0). Highlighted are all clones with an input abundance of 50 reads (red), and
all clones with an input abundance of 100 reads (blue). The target of the SAPK4 control anti-
body is highlighted in green. (b) Histogram plot of sequencing reads from the data highlighted
in (a) with corresponding colors. The curves are fit with a generalized Poisson (GP) distribution.
pmf is the probability mass function of the corresponding GP distribution and x is the number
of IP sequencing reads. (c) Plots of lambda and theta for each input abundance, calculated using
the method of Consul et al [67]. Lambda is regressed to its average value (black dashed line)
and theta is linearly regressed (red dashed curve). (d) Scatter plot comparing clone enrichment
significances (as -Log10 p-value) from two independent PhIP-Seq experiments using CSF from
Patient A. Red dashed line shows the cutoff for considering a clone to be significantly enriched,
and the SAPK4 control antibody target is highlighted in green.
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Figure 4.5: Comparison of PhIP-Seq experiments on different patients. Scatter plot as in Fig-

ure 4.4d from text, but comparing clone enrichment p-values from two different patients: Pa-

tient A (y-axis) versus Patient C (x-axis). Both experiments included the SAPK4 spike-in anti-

body. X'ed circles were enriched by beads and SAPK4 antibody alone (no patient antibody in

IP). Filled purple and orange circles are the Patient A- and Patient C-specific positives given in

Table 4.4 from the text.
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Patnt Info ProteIn Vallidion

A: 63 y.o. female 15.38 NEURO-ONCOLOGICAL VENTRAL ANTIGEN 1 (NOVA1) 1 WB+
with nOn-small cell 14.76 HYPOTHETICAL PROTEIN LOCEUOW 7 DB+
lung cancer. 14.54 TGFINDUCED FACTOR HOMEOBOX 2-LKE, X-LI4NKED (TGIF2LX) 1 WB+Presents with __

classic cerebellar 8.00 NEBULIN (NEB) 1 NT
syndrome. CSF 69 DEBRANCHImG ENZYME HOMOLOG 1 (DR) 1 WB-,DB+
POROtW for Wrd- 6.20 PROTOCADHEEN 1 (PCDH1) 1 WB-,DB+
NOVA andbodie. 4.29 INSUUN RECEPTOR (INSR) 1 NT
5: 59 y.o. female 15.18 SOLUTE CARRIER FAMILY 25 MEMBER 43 (SLC2543) 1 NT
with non-small cell 13.06 GLUTAMATE DECARBOXYLASE 2 (GADM5) 2 RIA+,WB-,
lung cancer. IP+
Presents with 129 ESI EXPRESE SEQUENCE 2 (TEX2) I DB+
dysarthrla, atwdal 12.11 ATAXIN 7-LIKE 3 ISOFORM B (ATXN7L3) 1 NT
head tbation __ __ _ _ _ _ _ _ _ __ _

and Muscle lock. 11.93 ETsIELATED TRANSCRIPTION FACTOR ELF-i (ELFi) 1 NT
Paraneoplastlc 11.91 TGF-INDUCED FACTOR HOMEOBOX 2-UKE, X-LNKED (TGIF2LX) 1 WB+
antibody panel Is 11.34 INSULIN RECEPTOR SUBSTRATE 4 (FRS4) 1 NT
negative.

6.98 HEPATOMA-DERIVED GROWTH FACTOR-RELATED PROTEIN 2 1 NT
(HDGFRP2)

6.60 TUBULIN, BETA (TUBS) I WB-
6.54 CANCER/TESTIS ANTIGEN 2 (CTAG2) 1 WB+
6.30 DENUMIADD DOMAIN CONTAa G1A (DEIND1A) I WB-,DB+
6.00 DOUBLESEX AND MAB-3 RELATED TRANSCRIPTION FACTOR 1 NT

(DMRT2)

5.53 TUDOR AND KH DOMAIN CONTAINING ISOFORM A (TDRKH) 1 NT
C: 59 y.o. female 15.72 TRIPARTITE MOTIF-CONTAINING 67 (TRIM67) 2 WB+
with melanoma. 15.65 TRIPARTITE MOTiF-CONTAINING 9 (TRIMS) 3 WB+
Presents with 1213 FIROBLAST GROWTH FACTOR S (GUJA-ACTVATI FACTOR) I WB-,DB+
ataxia, dysarthria, {FF_
horizontal gaze 10.18 DuAL-PECIF rfROBm YHOsPHORYLAON 1 WB-,DB+
palsy. REGULATED KINASE 3 (DYRK3)

Paraneoplastlc 6.93 CENTROSOMAL PROTEIN 152KDA (CEP152) 1 NT
antibody panel is 6.57 TmN (TTN) 1 NT
negative. 6.34 NUCLEOPORIN LIKE 2 (NUPL2) 1 NT
However, CSF SA3 iaTONE DEACETYLASE 1 (HDACi) I WB-,DB+
stained brain and 5.3 MITOCHONDRIAL POSOMAL PROTEIN L2 (MPLU0) 1 WB-,DB+
cerebellar IHC s-As CHROMOSOME 10 OPEN READING FRAE 82 (C1000F2) I WB-,DB+
slides. 5.15 NLR FAMILY, PYRIN DOMAIN CONTAINING 5 (NLRP5) 1 NT

4.83 TASPABE, THREONiNE ASPARTASE, i (TASP1) 1 NT
4.70 KIAA0O00 1 NT
4.55 SERSIE (OR CYSTEINE) PROTEINASE INHIBITOR, CLADE A (ALPHA- 1 NT

1 ANTIPROTEINASE, ANTITRYPSIN), MEMBER 9 (SERPINAS)
4.21 PROTEIN TYROSINE PHOSPHATASE, NON-RECEPTOR TYPE S 1 WB-,DBI+

_ne_

Table 4.4: Results of PhIP-Seq for 3 Patients. A previously validated autoantigen is shown in
italics. Autoantigens confirmed by any secondary assay are shown in bold. Confirmation of
patient antibodies with the full-length protein via western blot is indicated by red type. Average
of replicate -Log 10 p-values are shown in column 2. If multiple peptides from the same ORF
are enriched, the average -Log10 p-value of the most significantly enriched peptide is shown.
Secondary validation assay abbreviations: WB = western blot of full-length proteins; IP = im-
munoprecipitation of full-length proteins followed by western blotting for the fusion tag; RIA
radioimmunoassay; DB = dot blot; NT = not tested. Validation assay is followed by "+" or -

depending on whether the results were positive or negative.
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Figure 4.6: Validation of full-length PhIP-Seq candidates. (a) Western blot with CSF from Pa-

tient A, staining for full-length TGIF2LX-GFP expressed in 293T cells by transient transfection.

Bands corresponding to TGIF2LX-GFP are denoted by an arrow. (b) ClustalW alignment of

the seven significantly enriched hypothetical protein LOC26080 peptides, and the nine-element

MEME-generated recognition motif. (c) Western blot with CSF from Patient B, staining for in-

dicated full-length proteins expressed in 293T cells by transient transfection. (d) Bar graph of

-LoglO p-values of enrichment for the indicated TGIF2LX peptides by the three patients. (e)

Immunoprecipitation of the GAD65-GFP from 293T cell transfected lysate by CSF from Pa-

tient B (but not Patient A). (f) Western blot with CSF from Patient C, staining for indicated

full-length proteinss expressed in 293T cells by transient transfection. (g) Phage lysates from

candidate T7 clones were spotted directly onto nitrocellulose membranes, which were subse-
quently immunoblotted with patient CSE
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4.3.3 Analysis of two PND patients with uncharacterized autoanti-

bodies

Having established that PhIP-Seq could reliably identify known and novel autoantigens, we ex-

amined CSF from two additional patients who had suggestive PND presentations but tested
negative for a panel of commercially available PND autoantigens. Patient B was a 59-year-old

female with NSCLC, who presented with dysarthria, ataxia, head titubation and muscular rigid-

ity. PhIP-Seq analysis yielded three particularly interesting candidate autoantigens: TGIF2LX,
CTAG2 (cancer/testis antigen 2), and GAD65 (glutamate decarboxylase 2) (Table 4.4). Both

TGIF2LX and CTAG2 were confirmed by immunoblotting (Figure 4.6c). Surprisingly, Patient

B, like Patient A, was auto-reactive against TGIF2LX. The enriched peptide was distinct from,
but overlapped the peptide enriched by Patient A (Figure 4.6d).

CTAG2 is a member of a family of cancer/testis antigen (CTAG) proteins that are normally

germ cell restricted, but frequently expressed in cancers and often elicit anti-tumor immune

responses [70]. Several reports have described both humoral and cellular immune responses

targeted against CTAG2 [71, 72]. TGIF2LX is also testis restricted [73, 74] and may be a new

CTAG family member. As a negative control, we found TGIF2LX reactivity to be absent in the

CSF of three patients with non-PND CNS autoimmunity and oligoclonal Ig bands (Figure 4.7).

Having confirmed TGIF2LX autoreactivity in two NSCLC patients, we wondered whether it

could be a new biomarker for this disease. However, the serum of 15 additional NSCLC patients

without PND did not contain TGIF2LX antibodies detectable by immunoblotting (Figure 4.8).

Neither CTAG2 nor TGIF2LX is expressed in the brain, and thus are unlikely to explain the

neurological syndrome experienced by Patient B. GAD65, however, is the rate-limiting enzyme

in the synthesis of the inhibitory neurotransmitter GABA. GAD65 is also a well-characterized

autoantigen targeted in the autoimmune disorder Stiff Person Syndrome (SPS; OMIM ID

184850). Two non-overlapping GAD65 peptides derived from the domain known to be tar-

geted by pathogenic autoantibodies in SPS patients [75, 76] were enriched by Patient B's CSE
A commercial radioimmunoassay (RIA 81596; Mayo Medical Laboratories), confirmed the

presence of high titer anti-GAD65 autoantibodies (5.12 nmol/L; >250 fold above the reference

range). Surprisingly, direct immunoblotting with Patient B's CSF did not demonstrate reac-

tivity (Figure 4.6c), suggesting that denatured GAD65 epitopes are not recognized by Patient

B's antibodies. Successful immunoprecipitation of GAD65 from the same cell lysate with CSF
confirmed this hypothesis (Figure 4.6e).

Patient C, a 59-year-old female with PND secondary to melanoma, had an unusual presen-

tation that included horizontal gaze palsy. PhIP-Seq analysis of Patient C's CSF yielded five

significantly enriched peptides from two homologous members of the tripartite motif (TRIM)
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Figure 4.7: TRIM9 and TRIM67 autoreactivity is not present nonspecifically in CSE Western
blotting with CSF from Patients A and C, as well as three patients with non-PND related CNS
autoimmune syndromes. In each blot, lanes 1, 2, and 3 were loaded with lysate from 293T cells
overexpressing either TGIF2LX-GFP, FLAG-TRIM9, or FLAG-TRIM67, respectively.

family, TRIM9 and TRIM67 (Table 4.4). Both candidate autoantigens were confirmed by im-

munoblotting lysates from TRIM9- or TRIM67-overexpressing cells (Figure 4.6f). TRIM67 is

expressed in some normal tissues (including skin) and is often highly expressed in melanoma

[74]. TRIM9 has recently emerged as a brain-specific E3 ubiquitin ligase and has been impli-

cated in neurodegenerative disease processes [77]. Based on their high degree of homology, our

data suggest the possibility that tumor immunity targeting TRIM67 might have spread to, or

cross-reacted with TRIM9 in the CNS (Figure 4.9). TRIM9 and TRIM67 autoreactivity was

not detected in the CSF of three patients with non-PND CNS autoimmunity (Figure 4.7).

In total, 16 of the candidate autoantigens in Table 4.4 were available to us as full-length

Gateway Entry clones from the ORFeome collection [78]. Of these, 10 were not confirmed by

immunoblotting or immunoprecipitation of the full-length protein. We wondered whether this

reflected a high rate of false positive discovery inherent to PhIP-Seq, or rather a requirement that

the peptides be presented with intact conformation, as was the case for GAD65. We synthesized

9 of these 10 candidate T7 clones, plus 2 additional high confidence T7 clones, for validation in

a dot blot assay. Each of these clones exhibited immunoreactivity above background with the

appropriate patients' spinal fluid as predicted by the PhIP-Seq dataset (Figure 4 .6g; Figure 4.10).

This finding indicates that PhIP-Seq analysis can have a low rate of false positive discovery, and

supports the hypothesis that the 36 amino acid peptides retain a significant amount of secondary

structure during display on the T7 coat.
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IB: GFP
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Figure 4.8: Immunoblots for TGIF2LX and CTAG2 reactivity in the serum of NSCLC patients
without PND. Sera from fifteen non-small cell lung cancer (NSCLC) patients were used to blot
SDS-PAGE separated 293T cell lysate overexpressing either TGIF2LX (left lane) or CTAG2
(right lane), fused with C-terminal GFP. Staining for GFP (left blot) demonstrates overexpression
of TGIF2LX and CTAG2 at the expected weights. Only patient 2 was found to have anti-

CTAG2 serum antibodies (marked by *). No patients were found to have anti-TGIF2LX serum

antibodies.
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Gene T7-Pep Clone Peptides Enriched by Patient C

NP_443210.1_2
WN 443210.1 3

TR N P 443210.A 4
UP443210.. 1

TRI67 NP 001004342.2_4
UP7001004342.2 5

TRIM9 NP 443210.1 6
NP_001004342.2_6

TRIM67 NP_001004342.27
3P_001004342.28

TRIN9 NP443210.112
TRIMN67 ZI_001004342.2_14

1001004342.2_15

TRIM9 NP_443210.1_19

TR1N67 P001004342.221
T M 001004342.2 22

LD-- -------- -- -- - T ASP I

[PINRVLGVIDRYOOSK---------AAALKCQLCKAP-KEATVMI
QRN4RL)
QRNRLLEAIVQRYQQGRGAVPGTSAAAAVAICQL)

(AVAIC0LCDRTPPEPAATL

**na*grna.*2**raa..g.a ,ruat.*enn*nutenaLVDALTRsexMAsWMsv

(AFrNTGVSPYSKTLVLQTSEGGALOQYPS---------------------RZLRGI I
AFSSGVGPYSKTVVLOTSDVATTDPBS]

(FTFDPNSGBRDILSNDNQTATCSSYDDRVVUGY

Figure 4.9: Alignment among enriched peptides from TRIM9 and TRIM67. Significantly en-
riched peptides (in red) from TRIM9 and TRIM67 shown with corresponding ClustalW-aligned
peptides from the homologous protein (in black). Boundaries of phage-displayed peptides are
denoted with brackets. Peptides are shown next to their -Log10 p-value of enrichment.

4.3.4 PhIP-Seq can identify peptide-protein interactions

The utility of T7-Pep is not limited to autoantigen identification. To explore more general inter-

actions, we have used the library in an in vitro peptide-protein "two-hybrid" interaction experi-

ment with GST-RPA2 (replication protein A2) as bait for T7-Pep. We were again able to utilize

the generalized Poisson method for determining the significance of phage clones' enrichment.

Whereas GST alone did not significantly enrich any library clones (P < 10-4; Figure 4.11),
PhIP-Seq with GST-RPA2 robustly identified the N-terminal peptide from the known interactor

SMARCAL1 (P < 10-14, Figure 4.12), among others (Supplementary Table 3.3). The enriched

SMARCAL1 peptide contains a previously identified motif known to bind RPA2 [79, 80]. Pep-

tides from four proteins known to contain this motif (UNG2, TIPIN, XPA and RAD52) were

significantly disrupted by the positions of the breaks between peptides (Table 4.6). One peptide

from UNG2 retained most of the motif and that peptide was correspondingly enriched (P <

10-5), demonstrating the power of this approach to identify linear interaction motifs.
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Figure 4.10: Quantification of T7 Candidate Dot Blots. The dot blots in Figure 4.6g were ana-
lyzed to determine the signal-to-noise ratio arising from each T7 candidate clone immunoblot-
ted with each of the patients' spinal fluid. The data from the candidates expected to react with
a given patient's antibodies are shown in red, whereas that data from the candidates that are
expected not to react with a given patient's antibodies are shown in black.
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Figure 4.11: PhIP-Seq -LoglO p-values for T7-Pep enrichment by GST alone. GST coated

glutathione magnetic beads were used to precipitate phage from the T7-Pep library Illumina

sequencing data was analyzed using the generalized Poisson method. No library members were

significantly enriched by GST alone (P < 10-4).
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Figure 4.12: PhIP-Seq can identify protein-protein interactions. GST-RPA2 was used to pre-
cipitate phage from the T7-Pep library on magnetic glutathione beads. -Log10 p-values of
enrichment were calculated using the generalized Poisson method. Clones are arranged in in-
creasing input abundance from left to right. The experiment identified two of the known RPA2
binding partners SMARCAL1 (P < 10-14) and UNG2 (P < 10--5), highlighted in red
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Rank T7-Pep Clone Peptide Log P GST Log PGST-RPA2

NP_054859.2_1

NP_055877.3_31

NP_006360.3_18

NP_060903.2_28

XP_372311.2_13

NP_060876.2_13

XP_372592.2_4

NP_057131.1_2

NP_003353.1_3

NP_443728.2_10

NP_004981.2_2

NP_078997.2_120

NP_004697.2_27

NP_003425.2_23

NP_996882.1_34

NP_783324.1_3

NP_000341.1_5

NP_689896.1 1

XP_095991.7_15

NP_741996.1_43

NP_997191.1_49
NP_775902.2_9

XP_496363.1_6

NP_001026.1_92

NP_006359.3_11

NP_002146.2_6

NP_065987.1_4

NP_079279.2_13

NP_055987.1_47

NP_005712.1_2

NP_079165.3_2

NP_006609.2_26

NP_149163.2_41

NP_001004750.1_11

MSLPLTEEQRKKIEENRQKALARRAEKLLAEQHQRT 0.29 14.61

TPPSMSAALPFPAGGLGMPPSLPPPPLQPPSLPLSM

TLSYNGLGSNIFRLLDSLRALSGQAGCRLRALHLSD
AVLQQNPSVLEPAAVGGEAASKPAGSMKPACPASTS

LTLYDGPNVSSPSYGPYCRGDTSIAPFVASSNQVFI

LTPVTTSTVLSSPSGFNPSGTVSQETFPSGETTISS

AALIHVPPLSRGLPASLLGRALRVIIQEMLEEVGKP

ITAEEMYDIFGKYGPIRQIRVGNTPETRGTAYVVYE

AEQLDRIQRNKAAALLRLAARNVPVGFGESWKKNLS

IRPMDDDLLKLLLPLMLQYSDEFVQSAYLSRRLAYF

ISTVGPEDCVVPFLTRPKVPVLQLDSGNYLFSTSAI

TTSTSQSAASSNNTYPHLSCFSMKSWPNILFQASAR

ITETAGSLKVPAPASRPKPRPSPSSTREPLLSSSEN

SHLSRHRKTTSVHHRLPVQPDPEPCAGQPSDSLYSL

LDRFKNRLKDYPQYCQHLASISHFMQFPHHLQEYIE

PHPSALSSVPIQANALDVSELPTQPVYSSPRRLNCA

PESQHLGRIWTELHILSQFMDTLRTHPERIAGRGIR

MNRKWEAKLKIEERASHYERKPLSSVYRPRLSKPE

IKTRDICNQLQQPGFPVTVTVESPSSSEVEEVDDSS

ITNGLAMKNNEISVIQNGGIPQLPVSLGGSALPPLG

SVYGWATLVSERSKNGMQRILIPFIPAFYINQSELV

IHSGERPYECSECGKLFMWSSTLITHQRVHTGKRPY

PVRRGYWGNKIGKPHTVPCKVTGRCGSALVHLIPVP

LSRKLFWGIFDALSQKKYEQELFKLALPCLSAVAGA

THQWLDGSDCVLQAPGNTSCLLHYMPQAPSAEPPLE

ITVPAYFNDSQRQATKDAGAIAGLNVLRIINEPTAA

ITPTRELAIQIDEVLSHFTKHFPEFSQILWIGGRNP

SHHDTAVLITRYDICSSKEKCNMLGLSYLGTICDPL

PKGEPTRRGRGGTFRRGGRDPGGRPSRPSTLRRPAY

IIPSCIAIKESAKVGDQAQRRVMKGVDDLDFFIGDE

SPPSQLFSSVTSWKKRFFILSKAGEKSFSLSYYKDH

PPYKYKLRYRYTLDDLYPMMNALKLRAESYNEWALN

INLTIRGHEVVGIVGRTGSGKSSLGMALFRLVEPMA

IHFLFPPFMNPFIYSIKTKQIQSGILRLFSLPHSRA

Table 4.5: Candidate RPA2 interacting proteins. PhIP-Seq was performed using GST-RPA2
as bait, and enrichment scores (-Log 10 p-values estimated by the generalized Poisson method)
were compared to enrichment on GST alone.
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Gene Symbol

1.09
2.23
0.07

1.65
1.87

0.28
0.47
0.20
1.32

1.60

0.22

2.14

1.28

0.54
2.11
0.02

0.78

1.04
1.60
0.86
1.31
1.66
0.05
0.78
1.37
2.50

0.24
1.62
1.82
1.75
0.63
1.01
0.79

6.60
6.59
5.95
5.90
5.68
5.39

5.26
5.23

5.06

5.00
4.96
4.96

4.81

4.80
4.71

4.70
4.68
4.65
4.60

4.48
4.41

4.34
4.29
4.24
4.23
4.18
4.17

4.13
4.13
4.13
4.08
4.04

4.03

SMARCAL1

PPRC1

LRRC41

KDM3A
LOC389958

MUC4

PGPEP1L

SF3B14

UNG2

MED12L

MARS

ZFHX4

ARHGEF1

ZNF133

CNOT1

RAB3IP

ABCA4

CCDC111

CEP78

SALL3

NUP210L

ZNF547

RNF11

RYR2

CREB3

HSPA6

DDX55

ADAMTS20

BAT2L2

ACTR3

C100RF81

LOC100133760

ABCC11

OR51B6



Gene T7-Pep Clone Aligned Peptide -Logu0
P Value

SMARCAL1 NP_054859.2_1 MSLPLTEEQRK-KIEENRQK--ALARRAEKLLAEQHQRT 14.6

UNG2 NP_003353.1_2 ... PSSPLSAEQLD-RI-- 0.1

NP_003353.1_3 AEQLD-RI--QRNKAAAL----LRLAARNVPV... 5.2

TIPIN NP_060328.1_7 . . .LSRSLTEEQQR-RIE--RNKQLA 1.1

NP_060328.1_8 E--RNKQLALERRQAKLLSNSQTL ... 0.4

XPA NP_000371.1_1 ...QPAELPASVRA-SIERKRQRAL 0.3
NP_000371.1_2 RKRQRALML--RQARLAARPYSA ... 0.1

RAD52 NP_002870.2_9 ...SLSSSAVESEATHQRKLRQKQLQQQF 1

NP 002870.2 10 KQLQQQFR-ERMEKQQVRV... 0.1

Table 4.6: Dependence of peptide-RPA2 interaction on integrity of RPA2 binding motif
Aligned phage peptides containing the RPA2-binding motif (underlined) are shown next to their
-Log10 p-value of enrichment. Significantly enriched peptides are shown in bold.

4.4 Discussion

We have developed a new proteomic technology called Phage Immunoprecipitation Sequencing

(PhIP-Seq), which is based on a synthetic phage library (T7-Pep) made to uniformly express the

complete human peptidome on the coat of T7 phage particles. Combining T7-Pep with high

throughput DNA sequencing enables a variety of innovative proteomic investigations. In addi-

tion to applications in autoimmune disease, PhIP-Seq can be utilized to identify peptide-protein

interactions and can be a viable alternative to two-hybrid analyses. From a methodological per-

spective, the robust single-round enrichment signals and the ability to adapt the assay to 96-well

format suggests the feasibility of performing automated PhIP-Seq screens on large sets of sam-

ples.

Antibodies bind protein antigens by a variety of mechanisms and several studies have un-

covered some general themes underlying these interactions. For instance, antibody combining

surfaces on natively folded proteins tend to be dominated by "discontinuous" epitopes, which are

patches of 4-14 amino acid side chains formed by two or more noncontiguous peptides brought

into proximity during protein folding [81, 82]. If the protein is divided into its constituent pep-

tides, antibody affinity is expected to decrease due to 1) the loss of contacts contributed by non-

contiguous residues, and 2) the increased entropic costs of binding a free peptide as opposed

to the natively constrained peptide. The degree to which individual peptides are still able to

interact with a given antibody is difficult to predict, and is expected to vary widely. While our

study demonstrates the utility of 36 amino acid tiles, further work will be required to define

the true false negative discovery rate inherent to the use of T7-Pep. Autoantibodies that target
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normally inaccessible epitopes have also been reported, such as those that recognize proteolytic

cleavage products [83, 84], misfolded proteins or protein aggregates [85, 86]. Antigen discov-

ery with full-length, folded proteins may thus be less sensitive than tiled peptides in some such

circumstances.

In our study, performing PhIP-Seq with CSF from a well characterized PND patient (Pa-

tient A), identified a known (NOVA1) and a novel, testis-restricted [74] autoantigen (TGIF2LX).

Since we also found anti-TGIF2LX antibodies in the spinal fluid of a second PND patient with

NSCLC, this protein may represent a new cancer-testis antigen family member, and should be

further investigated as a biomarker for PND. PhIP-Seq analysis of CSF from two PND patients

with uncharacterized antibodies (Patients B and C) uncovered likely neuronal targets of their

autoimmune syndromes. In Patient B, high titer anti-GAD65 antibodies bound two distinct

peptides from the region of the protein associated with Stiff Person Syndrome (SPS). Interest-

ingly, GAD65 targeting in SPS occurs more often in patients without cancer, raising the possi-

bility that at least part of this neurological syndrome may have been unrelated to the patient's

cancer. This finding highlights the utility of unbiased antibody profiling to distinguish between

deceptively similar disease states [87]. In Patient C, we identified TRIM9 as a likely neuronal

autoantigen and suggest the possibility of epitope spreading from tumor-derived TRIM67 as

a potential mechanism. It should be noted that demonstration of a protein's autoreactivity is

not evidence for its role in disease pathogenesis, since the autoantibodies might be incidental in

nature, arise due to epitope spreading, or might simply exhibit non-cognate cross-reactivity.

Several interesting features of the T7-Pep + PhIP-Seq platform emerged during this proof-

of-concept study. We found that patient antibodies targeting GAD65 robustly recognized two 36

amino acid peptides, but not the corresponding denatured full-length proteins, indicating that

an important degree of conformational information is retained in the peptide library. Second,

for proteins with known crystal structures, using tiled peptides can facilitate determination of

the antibody clonality, as well as the location of the targeted epitope. Finally, the simultaneous

quantification of a large number of peptide enrichments permits the discovery of epitope motifs.

Autoantibodies from Patient A targeted seven peptides from a repetitive hypothetical protein,

and we were thus able to calculate a motif that most likely represented the antigenic epitope, a

task less easily performed with alternative technologies.

T7-Pep could be improved in several ways. The generation of longer oligos will decrease

the complexity of the library, thereby increasing the sampling depth and making it possible

to generate domain libraries that capture more protein-folding units. In addition, PhIP-Seq

with libraries of peptides from human pathogens could permit rapid analysis of antibodies to

infectious agents, thus aiding vaccine research and the diagnosis of infectious diseases.

We have taken a synthetic biological approach to develop a proteomic resource useful in
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translational medicine. When combined with high throughput DNA sequencing, our method-
ology permits unbiased and quantitative analysis of autoantibody repertoires in human patients.
PhIP-Seq thus complements existing proteomic technologies in the study of autoimmune pro-
cesses for which the relevant autoantigens remain unknown.

4.5 Methods

4.5.1 Design of T7-Pep, T7-CPep and T7-NPep ORF sequences

We first downloaded all human protein and cDNA sequences available from the RefSeq database
at build 35.1 of the human genome. Accession numbers between a protein and its cDNA were
matched, and the paired sequences were used to construct the library. All the ATG start codons
in the cDNAs were compared to the corresponding protein sequences until the correct ORF se-
quence was found. Seventy-two nucleotide (nt) fragments were then separated and overlapped
with adjoining sequences by 21 nt (7 amino acids). Each DNA fragment was then scanned for
the eight relatively rare codons in E. coli (CTA, ATA, CCC, CGA, CGG, AGA, AGG, GGA),
and they were replaced by more abundant, synonymous codons (selected randomly if there was
more than one replacement available). After that, each DNA fragment was rescanned for the
four restriction sites (EcoRI, XhoI, BseRI, Mmel), and they were eliminated by replacement of
one codon with a different, abundant, synonymous codon. Sequences were scanned iteratively
to ensure the final ORF fragments were free of both rare codons and restriction sites. Finally,
common primer sequences were added.

4.5.2 Cloning of T7-Pep

The proteome-wide library (19 pools of 22,000 synthetic oligos per pool) and N/C-terminal
libraries (two pools each of 18,000 synthetic oligos per pool) were PCR-amplified as 23 inde-
pendent pools with common primer sequences using the following conditions: 250 mM dNTPs,
2.5 mM MgCl2, 0.5 pM each primer, 1 pl Taq polymerase and 350 ng oligo DNA per 50 pl
reaction. The thermal profile was 1. 95 'C 30 s, 2. 94 'C 35 s, 3. 50 *C 35 s, 4. 72 *C 30 s, 5.
Go to step 2 3x, 6. 72 *C 5 min, 7. 95 *C 30 s, 8. 94 'C 35 s, 9. 70 0C 35 s, 10. 72 *C 30 s,
11. Go to step 8 29x, 12. 72 0C 5 min The PCR product was then digested and cloned into the
EcoRI/SalI sites of the T7FNS2 vector with an average representation of at least 100 copies of
each peptide maintained during each cloning step. The T7FNS2 vector is a derivative of the
T7Select 10-3b vector (Novagen), which is a lytic, mid-copy phage display system, and displays
5-15 copies as C-terminal fusions with the T7 capsid protein. We modified the T7Select 10-3b
vector to generate T7FNS2 by inserting a sequence encoding a FLAG epitope in the NotI and
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XhoI sites to generate an in-frame FLAG C-terminal fusion with the inserted peptide. Cloning

of the synthetic peptide libraries into the T7FNS2 vector results in a C-terminal fusion of the

ORF fragments with the T7 lOB capsid protein, followed by a C-terminal FLAG epitope tag

and stop codon (except for those in T7-CPep, which retain the native stop codons).

4.5.3 Patient samples

Collection and usage of human specimens from consenting patients were approved by the

Brigham and Women's Hospital Institutional Review Board (protocol no. 2003-P-000655).

Cerebrospinal fluid was aliquoted and kept at -80 'C until used, and freeze-thawing was avoided

as much as possible after that. Neurological evaluations were performed by a board-certified

neurologist. Serum samples from patients with confirmed NSCLC were from Bioserve.

4.5.4 Detailed PhIP-Seq protocol

The following were the multiplex barcode-introducing forward primers. The common P5 se-

quence for Illumina sequencing is in bold. The underlined segment was where the sequencing

primer annealed. The 3-nt barcode is in italics.

HsORF-FL-mmBC1-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCACTGCGC

HsORF-FL-mmBC2-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGCCGCGC

HsORF-FL-mmBC3-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCCCTGCGC

HsORF-FL-mmBC4-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCTCTGCGC

HsORF-FL-mmBC5-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGATGCGC

HsORF-FL-mmBC6-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGGTGCGC

HsORF-FL-mmBC7-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGTTGCGC

HsORF-FL-mmBC8-F

AATGATACGGCGACCACCGAAGGTGTGATGCTCGGGGATCCAGGAATTCCGCGGCGC

P7-T7Down (this is the common reverse primer):

CAAGCAGAAGACGGCATACGAC ACTG AACCCCTCAAGACCCGTTTA

mmBC-FLseqprim (for sequencing the barcode and the library insert at P5 in forward direc-
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tion):

AGGTGTGATGCTCGGGGATCCAGGAATTCC

Immunoprecipitation wash buffer consisted of 150 mM NaCl, 50 mM Tris-HCl, 0. 1% NP-
40 (pH 7.5).

Procedure: 1.5 ml tubes were blocked (including under cap) with 3% fraction V bovine

serum albumin (BSA) in tris-buffered saline with 0.5% tween-20 (TBST) overnight at 4 *C

rotating. Positive control SAPK4 C-19 antibody (Santa Cruz, sc-7585) was added (2 ng/ml

final concentration; 1/1,000 of patient antibody) to phage stock (5 x 1010 pfu T7-Pep/ml final

concentration) and mixed before being added to patient antibody (2 pg/ml final concentration).

Each IP reaction was brought to a final volume of 1 ml using M9LB (Novagen).

Note: replicas were independent after this point (that is, there were two IP reactions as above

for each sample).

Tubes were rotated at 4 *C for 24 h. 40 pl of 1:1 mix of Protein A and Protein G coated

magnetic Dynabeads (Invitrogen, 100.02D and 100.04.D) slurry was added to each tube. Tubes

were rotated for 4 more hours at 4 *C. Beads were washed 6 times in 500 pl IP wash buffer by

pipetting up and down eight times per wash. Tubes were changed after every second wash. As

much wash buffer as possible was removed and beads were resuspended in 30 p1 H20. IP was

then heated at 90 'C for 10 min to denature phage and release DNA. 50 pl PCR reactions were

prepared with TaKaRa HS Ex polymerase (TAKARA BIO), using the entire 30 pl of IP: 9.5 pl
H20, 5 pl lOx TaKaRa buffer, 4 pl dNTP (2.5 mM each), 0.5 pl P7-BC-T7Down (200 pM), 0.5
pl P5-mmBCn-F (100 pM), 0.5 pl TaKaRa HS Ex enzyme mix, 30 pl phage IP The thermal
profile was 1. 98 'C 10 s, 2. 56 *C 15 s, 3. 72 *C 25 s, 4. Go to step 1 39x, 5. 72 'C 7 min The
number of cycles can optionally be increased to 45. PCR products were gel purified individually.

Concentration was measured and then 500 ng of each barcoded sample was mixed together

and Illumina sequencing was then performed on final material, using mmBC-FLseqprim as

sequencing primer.

The first seven nt calls arose from the DNA barcode, and were used to parse the data by

sample. Remaining sequence was aligned against the reference file. The reference sequences

were truncated to the length of the reads and alignment was constrained to the appropriate

strand.

4.5.5 RPA2-peptide interaction screen

Full-length, sequence-verified RPA2 was recombined from an available entry vector into pDEST-

15 for inducible expression in E. coli as an N-terminal GST-fusion protein. A pDEST- 15 clone

expressing GST alone was used as a negative control. Protein expression was induced with 0.1

pM IPTG for 5 hours at 30*C. Protein lysate from 50 ml of bacterial culture was prepared in
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1.5 ml of lysis buffer (50 mM tris pH 7.5, 500 mM NaCl, 10% glycerol, 1% triton, 10 mg/ml

lysozyme) and sonicated before removing insoluble material by centrifugation. 40 pl of Mag-

neGST Glutathione beads (Promega, V86 11) were incubated in 1 ml of undiluted bacterial

lysate for 2 hours. Beads were then washed 3 times with PBS. 1 ml of M9LB containing 5x1010

pfu of T7-Pep was then used to resuspend the beads (now coated with GST or GST-RPA2).

The mix was rotated 24 hours at 4*C. At this point the beads were washed 6 times in 500 pl IP

wash buffer, and the remaining protocol for PhIP-Seq given above was followed precisely.

4.5.6 Estimation of general Poisson model parameters and regres-

sions

We assessed several distribution families for their ability to appropriately model the PhIP-Seq

enrichment data, and found the two-parameter generalized Poisson distribution to be the best:

pmf(x) = 0(0 + xA)-le-O-xA/x!

For each value of input read number that had at least 50 corresponding clones, we used the

following maximum likelihood estimators to calculate the values of lambda (A) and theta (0) for

the corresponding distribution of n IP reads (xi) [67].

-n =t i x(I1- x) _X

.X + (xi - X)A

where
Xn Xi

i=1

and

0 = X(1 - A)

Upon calculation of X across all the input read numbers, we found it to be approximately

constant. For each experiment, we thus regressed this parameter to be equal to the mean of all

calculated X's (Figure 4.4c). Calculation of 6's for all input values revealed the near linearity of

this parameter, and so we linearly regressed this parameter prior to calculating the p-values.

4.5.7 Western blot validation of candidate autoantigens

We utilized the ORFeome collection of full-length proteins, which was generated by PCR and

Gateway recombinational cloning [88], as a source for testing autoantigen candidates by im-
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munoblot. Entry vectors were recombined into the appropriate mammalian expression vector
(CMV promoter driving ORF expression with either C-terminal GFP fusion or N-terminal
FLAG epitope tag) and miniprepped for transient transfection.

293T cells were plated 24 hours before transfection at a density of 0.8 million cells per well of
a 6-well plate and grown in DMEM containing 10% FBS. TransIT-293T transfection reagent
(Mirus, MIR 2700) was mixed with 2 pg expression plasmid per well, and added to the cells.
After 24 hours, cells were harvested in 200 pl standard lx RIPA-based laemmli/DTT sample
buffer with Complete protease inhibitor cocktail (Roche) and sonicated for 30 seconds. Insoluble
material was removed by centrifugation. 2-20 pl of lysate was run on 4-20 Bis-Tris polyacry-
lamide gels and transferred onto nitrocellulose using the iBlot system (Invitrogen). Membranes

were blocked 1 hr in 5% milk and then stained with either patient CSF (1:250 to 1:1,000) or the
appropriate primary anti-GFP (JL-8 monoclonal antibody; Clontech, 632381) or anti-FLAG
(M2 monoclonal antibody; Sigma-Aldrich, F9291) antibody in 2.5% milk, TBST Human an-
tibody from CSF was detected with 1:3,000 peroxidase-conjugated goat affinity purified anti-
Human IGG (whole molecule) secondary antibody (MP Biomedicals, 55252) in 2.5% milk,
TBST.

For IP-western blotting, cell lysate was harvested in standard RIPA buffer with Complete
protease inhibitor cocktail and sonicated for 30 seconds. Insoluble material was removed by
centrifugation. 150 pl of lysate was mixed with 1 pg of patient antibodies and rotated overnight
at 4C. A 40 pl slurry of 1:1 mix of Protein A coated magnetic Dynabeads and Protein G coated
magnetic Dynabeads was added to each tube. Tubes were rotated 4 hours at 4*C. Beads were
washed 3 times in 500 pl RIPA buffer, and then harvested in 25 pl of laemmli/DTT sample
buffer. The IP'ed protein and 10% of the input lysate were subject to SDS-PAGE analysis as
above, and protein was detected by staining for the protein tag (e.g. GFP).

4.5.8 Dot blot validation of candidate autoantigens

Individual clones were made by synthesizing the peptide-encoding insert as a single, long DNA
oligo (IDT, UltramerTM) that was PCR amplified and then cloned into T7FNS2 in the same
way as described for the library. Clones were sequence verified and titered. 2 pl of each clone,
after normalizing for titer, was spotted directly onto a nitrocellulose membrane and allowed
to dry for 30 minutes. Membranes were blocked with 5% milk, TBST for 1 hour at room
temperature, and then stained overnight at 4C with 1 pg/ml of CSF antibody diluted in a
solution containing a 1:1 mix of 5% milk, TBST and T7 10-3b-FLAG phage lysate. Human
antibody from CSF was then detected with 1:3,000 peroxidase-conjugated goat affinity purified
anti-Human IGG (whole molecule) secondary antibody (MP Biomedicals, 55252) in 2.5% milk,
TBST Quantification was performed by scanning developed films and analyzing the .tiff file
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with ImageJ software.
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Chapter 5

High Throughput PhIP-Seq Definition

of Autoantibody Repertoires in Health

and Disease1

5.1 Abstract

Autoimmune disease results from a loss of tolerance to self-antigens in genetically susceptible

individuals. Understanding this process requires knowledge of the target molecules, and thus

a number of techniques have been developed to determine immune receptor specificities. We

have previously reported the construction of a T7 phage-displayed synthetic human peptidome

and its application to autoantigen discovery using cerebrospinal fluid from 3 patients with para-

neoplastic neurological disorder. Here we present data from the first large-scale phage im-

munoprecipitation sequencing ("PhIP-Seq") screen of 298 independent antibody repertoires,

including those from 73 healthy sera. The resulting database of peptide enrichments charac-

terizes each individual's unique "autoantibodyome", and includes specificities found to occur

frequently in the general population or associated with disease. Sera from 39 type 1 diabetes

(Ti D) patients were screened, revealing a prematurely polyautoreactive phenotype compared

to their matched controls. Screening a collection of cerebrospinal fluids and sera from 63 mul-

tiple sclerosis patients uncovered novel, as well as previously reported specificities. Finally, a

screen of synovial fluids and sera from 64 rheumatoid arthritis patients revealed novel recur-

rent autoantibody specificities that were independent of seropositivity status. In sum, this work

demonstrates the utility of performing PhIP-Seq screens on large numbers of individuals and is

a step toward defining the full complement of autoimmunoreactivities in health and disease.

'Submitted for publication as: Larman, et al., High Throughput PhIP-Seq Definition of Autoantibody Reper-

toires in Health and Disease, 2012.
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5.2 Introduction

Our understanding of autoimmunity has been limited by available technologies, which cannot

capture the molecular complexity of intact immune systems in large numbers of individuals.

To address these limitations, we have recently developed an unbiased proteomic technology,
phage immunoprecipitation sequencing (PhIP-Seq), with the capacity to quantitatively measure

interactions between an individual's antibody repertoire and each of over 400000 overlapping

36 mer peptides that together span the open reading frames of the human genome [26]. In this

work, we have improved the PhIP-Seq method in two ways. First, sample processing was made
96-well plate compatible and implemented on a Biomek FX liquid handling robot, resulting in

a more reproducible, high throughput protocol. Second, we developed a method to perform

96-plex analysis of individual PhIP-Seq libraries using just 2-3 lanes of an Illumina HiSeq 2000

flow cell [89]. This degree of multiplexing reduces the cost of each screen to about $25 per

sample, thereby enabling cohort-scale repertoire screening projects.

There are several autoimmune diseases of relatively high incidence for which the role of
antibody-mediated autoimmunity is appreciated but not understood. Of these, we selected type

1 diabetes (TID), multiple sclerosis (MS) and rheumatoid arthritis (RA) for autoantibody reper-
toire analysis by high-throughput PhIP-Seq screening. Strong genetic linkage to class II HLA
alleles in each of these diseases supports the view that there is an important role for antigen

presentation and subsequent activation of CD4+ helper T cells with self-specificity [90]. The
role of B cells in these diseases is less clear, but several lines of evidence indicate that analysis

of secreted antibodies may provide insight into disease pathogenesis. For example, pancreatic
beta cell destruction in TID is thought to be largely a consequence of CD8+ T cell activity,
yet autoantibodies targeting islet-associated antigens are routinely used for diagnosis and risk
stratification [91]. In MS, secondary lymphoid tissue with germinal center activity often forms
in the meninges of patients with advanced disease [92] and oligoclonal IgG bands of unknown

specificity are frequently found in cerebrospinal fluid (CSF) [93]. Patients with RA are classi-
fied as seropositive or seronegative depending on the presence of rheumatoid factor (antibodies
against the Fc portion of IgG) and/or antibodies that recognize the citrulline post translational

protein modification. Beneficial clinical response to CD20+ B cell depletion therapy in RA has
prompted the adoption of rituximab as a second line therapy for patients with high disease ac-
tivity and features of a poor prognosis [94, 95]. In the treatment of MS and T lD, several studies

have demonstrated a benefit after B cell depletion, but with perhaps more elusive optimal dosing
regimens [96, 97].

Here we report the first high throughput PhIP-Seq analysis of autoantibody repertoires from
a large number of TID, RA, and MS patients, for comparison to each other and to a set of 73
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healthy controls. Our findings describe both known and novel properties of immunoenriched

peptides, and sets the stage for additional large scale PhIP-Seq investigations.

5.3 Results

5.3.1 Polyautoreactivity and screen sensitivity

We used PhIP-Seq to analyze 298 antibody repertoires. This collection of samples included

39 sera obtained from newly diagnosed TlD patients, 44 synovial fluids and 20 sera from RA

patients, and 28 CSF samples and 35 sera from MS patients (including 6 matching CSF/serum

sets). Additionally, 73 sera from healthy donors, including a set of 41 age/sex-matched controls

for the T 1 D cohort, were analyzed. To control for differences in fluid composition, we screened

synovial fluid samples from 19 individuals with gout or osteoarthritis, as well as CSF from 10

patients with non-MS associated meningitis, subacute sclerosing panencephalitis, or paraneo-

plastic neurological disorder. Finally, we had previously screened a collection of 29 sera from

patients with estrogen and progesterone receptor positive breast cancer (BC), and while analysis

of the BC dataset is not presented here, it was utilized to increase power of the antigen-disease

specificity tests. Table 5.1 provides a summary of these samples. A more detailed description

can be found in Table 5.2.

After immunoprecipitation of the T7-Pep phage library with patient antibodies, peptide

enrichments were quantified using massively parallel DNA sequencing. We considered peptides

with a P-value < 10-4 (-log10 P-value greater than 4) as scoring positively above background

(see Methods, Figure 5.1) [26]. To exclude peptides that immunoprecipitated nonspecifically,

we ignored 1404 peptides that displayed enrichment with -log10 P-values equal to 3 or greater

in two or more out of 8 negative control (no patient sample) IPs.

We first turned our attention to the data from the 73 healthy donors. In sum, 14604 unique

peptides were enriched by at least one healthy donor. An overwhelming majority (12727) of

these autoreactivities were "personal" in the sense that they were observed to occur in only

one individual (Figure 5.2A). At the other extreme, we observed a smaller number of peptides

that were more frequently enriched by healthy individuals. For example, we found that serum

from 40% of individuals significantly enriched a single peptide from the activin receptor type IIB

(ACVR2B), and serum from 44% of individuals had reactivity against a peptide from melanoma

antigen family E, 1 (MAGEE 1). Notably,. these two autoreactivities were not significantly cor-

related, suggesting that they arise independently of each other. As it is not immediately clear

whether these common autoantibodies are antigen driven or simply cross-reactive, we looked

for evidence of multi-epitope targeting within the database. Whereas we did find convincing
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Figure 5.1: Dataset reproducibility threshold. P value threshold for reproducibility was es-

tablished using the data from each sample duplicate pair. Scatter plots of duplicate I versus

duplicate 2 were used to perform a signal-to-noise analyses. A. Typical behavior of a duplicate

scatterplot. As -log10 P values increase, the average mean (signal) increases while the stan-

dard deviation (noise) decreases. The point at which they cross is considered the reproducibility

threshold. B. Histogram plot showing where the mean passed above the variance in all screen

duplicates. Based on this analysis, we chose -log10 P value = 4 as a low stringency cutoff for

reproducibility.
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Class Subclass Fluid Total

Type 1 Diabetes serum 39

Multiple Sclerosis (RRMS/SPMS/PPMS) serum 35
CSF 28

serum 10

Rheumatoid Arthritis synovial fluid 22
serum 10

Seronegative .eum1
synovial fluid 22

Healthy Controls serum 73

Non MS CSF Controls SSPE, PND, Meningitis CSF 10

Non RA synovial fluid controls Gout, OA synovial fluid 20

Breast Cancer ER+/PR+ serum 29
Total 298

Table 5.1: Summary of the samples screened by high throughput PhIP-Seq. RR, relapse remit-

ting MS; SP, secondary progressive MS; PP, primary progressive MS; SSPE, subacute sclerosing

panencephalitis; PND, paraneoplastic neurological disorder; OA, osteoarthritis; ER+, estrogen

receptor positive; PR+, progesterone receptor positive. Six sets of MS CSF/serum samples are

patient matched.

examples of antigen-driven responses (e.g. the scleroderma antigen CENPC 1, Figure 5.2B),

this was not true for ACVR2B or MAGEE 1. We therefore conclude that these recurrent anti-

peptide antibodies are most likely cross-reactive and because they occur frequently in the serum

of healthy individuals are unlikely to have a pathological consequence.

Patterns of disease-associated autoreactivity may only become apparent in the context of

aggregated peptide enrichments, since different individuals may produce antibodies that rec-

ognize distinct epitopes of the same protein. We therefore collapsed the peptide enrichment

matrix onto an ORF enrichment matrix by taking the most significant value from the set of

peptides corresponding to each ORE Again, if this -log10 P-value was greater than 4, the ORF

was considered enriched by the individual. Analysis of ORF enrichments by healthy individuals

resulted in a distribution similar to the peptide enrichments, with the majority of significantly

enriched ORFs (58%) arising in just one person (Figure 5.2C). This analysis is biased toward

larger proteins being commonly enriched, and indeed significant reactivity against at least one

peptide from titin (TTN, the largest ORF in our library) was observed in 45 of the 73 healthy

individuals (Supplementary Discussion).

We screened a collection of serum samples obtained from 39 newly diagnosed T1D patients.

As controls for comparison, we screened sera from 41 healthy donors (matched for age and gen-

der) in the same automated PhIP-Seq run. Titers of clinically utilized autoantibody biomarkers
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Experiment 1
Class Subclass Male Female Age Fluid Total
Breast Cancer ER+/PR+ 0 29 52.3 (7.0) serum 29
Multiple Sclerosis (RRMS/SPMS) 0 29 52.8 (6.7) serum 29
Healthy Controls 0 30 48.1 (9.5) serum 30

Experiment 2
Class Subclass Male Female Age Fluid Total
Multiple Sclerosis

RRMS (in remission) 0 6 39.9 (7.6) serum 6
RRMS (in remission) 5 12 45.2 (8.9) CSF 17
SPMS 10 1 44.4 (7.6) CSF 11

Controls
Meningitis 4 0 ? CSF 4
PND 0 2 61(2) CSF 2
SSPE 3 1 17.5 (2.6) CSF 4

Experiment 3
Class Subclass Male Female Age Fluid Total
Type 1 Diabetes 21 18 17.4 (9.4) serum 39
Healthy Controls 23 20 20.1 (10.4) serum 43

Experiment 4

Class Subclass Male Female Age Fluid Total
Rheumatoid Arthritis

Seropositive ? ? ? serum 10
Seronegative ? ? ? serum 10
Seropositive 4 17 60.7 (18.3) synovial 22
Seronegative 9 13 54.3 (16.6) synovial 22

Controls
Gout 8 2 55.2 (14.3) synovial 10
Osteoarthritis 2 8 65.4 (11.1) synovial 10

Table 5.2: Detailed composition of patient cohorts. Each experiment represents a different 96
well plate of samples, whose positions were randomized across the plate. ER+, estrogen re-
ceptor positive; PR+, progesterone receptor positive; RR, relapse remitting MS; SP, secondary
progressive MS; PP, primary progressive MS; ?, unknown status; PND, paraneoplastic neu-
rological disorder; SSPE, subacute sclerosing panencephalitis. Average patient age is given
alongside standard deviation of ages in parentheses.
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Figure 5.2: Enrichment recurrence and multi-epitope targeting. A. Frequency distribution of

the 14604 unique peptides enriched by greater than -log 10 P value of 4 in healthy individuals.

Peptides enriched above a threshold of -log10 P value of 3 or greater in 2 or more negative

controls were considered nonspecific and removed from the analysis. AAb, autoantibody; TTN,
titin; ACVR2B, activin receptor type-2B; MAGEE 1, melanoma antigen family E, 1. Number

following underscore denotes which 36-residue tile was enriched (order is N- to C-terminus). B.

Multi-epitope targeting of the CENPC 1 protein. Peptides are organized from top to bottom.

Peptide enrichment -log 10 P values greater than 4 are colored black and less than 4 are colored

white. Three individuals exhibit evidence of multi-epitope responses (BC, breast cancer; HC,
healthy control; MS, multiple sclerosis). C. Frequency distribution of the 7619 unique ORFs

enriched by greater than -log 10 P value of 5 in healthy individuals. NEB, nebulin.
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(islet cell cytoplasmic antibody, "ICA'; insulin autoantibody, "IAA"; glutamic acid decarboxy-

lase 2 antibodies, "GADA"; protein tyrosine phosphatase, receptor type, N antibodies, "PT-

PRNA' or "IA2A'; zinc transporter, member 8 antibodies, "ZnT8A') were also measured for

each of the T 1 D patients and controls. In order to determine the false negative rate (sensitivity),
we compared radioimmunoassay (RIA) measurements for each biomarker in each individual

with the corresponding PhIP-Seq ORF enrichment scores. No PhIP-Seq enrichment was ob-

served in any of the patients for insulin or ZnT8A, whereas GAD2 and PTPRN enrichment

was observed in some of the Ti D patients who had the highest RIA titers for those antigens

(Figures 5.3A and 5.4).

We reasoned that if the amount of antibody-self peptide cross-reactivity in any way re-

flected the complexity of the antibody repertoire, then serum of older individuals should bind

more unique peptides compared to their younger counterpart. Comparing ages 12 and under

("young") with those 18 and older ("adult"), we observed a significant difference in the number

of enriched peptides between young and adult healthy controls (P = 0.03; Student's t test, 1 tail;

Figure 5.3B). However, when we performed the same analysis of the TID cohort, we found

young TID patients to be significantly precocious in their development of autoreactive anti-

bodies compared to their age-matched healthy counterpart (P = 0.01). There was no difference

in the number of enriched peptides between healthy and Ti D adults, or between young and

adult Ti D patients.

5.3.2 Disease-specific autoantibodies

We next identified peptide and ORF autoreactivities specifically associated with each autoim-

mune disease under investigation. For this analysis, each disease group was compared to all

other samples, in the form of a Fisher's exact test to determine significance of association. This

analysis was performed for each peptide in the library, and so a distribution of >400,000 Fisher's

P values was obtained. To account for multiple hypothesis testing, we created a null distribution

of "expected" Fisher's P values by randomly permuting the sample labels 1000 times (Meth-

ods). We compared the distribution of expected significance values to that which was actually

observed, and then set a threshold for 10% false discovery rate (FDR). All peptide/ORF autore-

activities that exhibited disease association with this level of confidence are reported in Table 5.3

(see Table 5.4 for peptide sequences).

We first examined peptide/ORF autoreactivities specifically associated with RA (Table 5.3,
Figure 5.5). Of the 16 peptides with an FDR <I10%, 11 assorted with patients nonrandomly

as two peptide clusters, "RAl" and "RA2", composed of 3 and 8 peptides, respectively. Inter-

estingly, none of the RA-associated enrichments appeared to correlate with seropositivity (i.e.

reactivity against rheumatoid factor and/or citrullinated peptide; Figure 5.5B). Despite attempts
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Figure 5.3: Analysis of TID and healthy control sera. A. Sensitivity of PTPRN (IA2) autoanti-

body detection by PhIP-Seq compared to RIA in TID patients (red boxes) and healthy controls

(circles). PhIP-Seq values correspond to the most enriched peptide from the PTPRN ORE A

value of >0.5 is considered positive for RIA. B. Comparison of the total number of unique pep-

tides enriched by individuals of different age groups and disease status. "Youth" individuals are

12 years old or younger; 'Adult" individuals are 18 years old or older. Statistical comparisons

of the means were performed using the Student's t test, with one tail.
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Gene -logl0 Summary of positives Extra-
Dz Symbol Gene name associated with peptide or ORF Fisher Cluster T1 D RA MS HC BC OA/Gout CSF Ctr[ cell-

P val (39) (64) (57) (73) (29) (20) (10) ular
BCOR BCL6 corepressor 5.9 RA1 0 11 0 1 0 1 0 N
LOC645453 ring finger protein, LIM domain interacting; similar to ring finger protein (C3H2C3 type) 6 5.3 RA1 0 9 1 0 0 0 0 N
ATAD5 ATPase family, AAA domain containing 5 4.1 RA1 0 6 0 0 0 0 0 N
Hcn3 hyperpolarization activated cyclic nucleotide-gated potassium channel 3 4.0 0 7 0 0 0 1 0 P
FAM135A family with sequence similarity 135, member A 3.4 0 7 1 0 0 1 0 ?
HRNR hornerin 3.4 0 7 0 0 1 0 0 N
ADAM33 ADAM metallopeptidase domain 33 3.4 RA2 0 7 0 0 0 1 0 L

RA PTK2 PTK2 protein tyrosine kinase 2 3.4 RA2 0 5 0 0 0 0 0 N
SNRPB small nuclear ribonucleoprotein polypeptides B and B1 3.1 RA2 0 8 1 1 1 1 0 N
KRT33B keratin 33B 2.7 RA2 0 5 0 0 0 1 0 N
ATXN2 ataxin 2 2.7 RA2 0 5 0 0 0 1 0 N
S100A11 S100 calcium binding protein Al1; S100 calcium binding protein Al1 pseudogene 2.7 0 5 0 0 0 1 0 N
Lrba LPS-responsive vesicle trafficking, beach and anchor containing 2.7 RA2 0 5 0 0 0 1 0 N
CREB3L1 cAMP responsive element binding protein 3-like 1 2.7 RA2 0 5 0 0 0 1 0 N
SEPT8 septin 8 2.7 RA2 0 5 0 0 0 1 0 N
Krt75 keratin 75 6.7 MS1 0 0 9 0 0 0 0 N
TRIO triple functional domain (PTPRF interacting) 5.9 MS1 0 0 8 0 0 0 0 N
Sox17 SRY (sex determining region Y)-box 17 5.4 0 1 13 5 1 0 0 N
LOC388182 LOC388182 5.1 MS1 0 0 7 0 0 0 0 ?
METTL23 methyltransferase like 23 5.1 MS1 0 0 7 0 0 0 0 ?
DENND4C DENN/MADD domain containing 4C 5.1 MS1 0 1 9 0 0 0 1 N
PPARGC1A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha 5.0 0 0 8 0 1 0 0 N

MS SFRS16 splicing factor, arginine/serine-rich 16 4.4 MS1 0 0 6 0 0 0 0 N
KIAA1045 KIAA1045 4.4 MS1 0 0 6 0 0 0 0 ?
FRMD4B FERM domain-containing protein 4B 4.4 MS1 0 0 6 0 0 0 0 N
N/A N/A 4.4 MS1 0 0 6 0 0 0 0 ?
RIMS2 regulating synaptic membrane exocytosis 2 4.3 MS1 0 1 7 0 0 0 0 Y
PPP1R10 protein phosphatase 1, regulatory (inhibitor) subunit 10 3.8 1 2 15 9 4 1 0 N
Baz2a bromodomain adjacent to zinc finger domain, 2A 3.6 MS1 0 0 5 0 0 0 0 N
tes testis derived transcript (3 LIM domains) 3.6 0 0 5 0 0 0 0 P
USP11 ubiquitin specific peptidase 11 3.1 0 0 6 0 2 0 0 N

Table 5.3: Peptide/ORF enrichments associated with disease. All disease-associated autoantigens with a false discovery rate of 10% are
listed. ORF-only associations are shown in italics. If the peptide is among a nonrandomly assorted cluster, the name of that cluster is
provided. The summary of enrichments provides the total number of individuals from each group that displayed immunoreactivity against
the peptide/ORE TID, type 1 diabetes; RA, rheumatoid arthritis; MS, multiple sclerosis; HC, healthy controls; BC, breast cancer; OA,
osteoarthritis; CSF, cerebrospinal fluid. In parentheses are the total number of individuals from the group. N/A: no longer associated
with an expressed sequence. Last column indicates whether protein is predicted to be localized extracellularly: "N", no; "Y", yes; "P",
possibly; "L", likely; "?", unknown.
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Table 5.4: Sequences of MS and RA specific peptides. Sequences of peptides associated with

disease at a false positive discovery rate of 10%. If the peptide is among a nonrandomly assorted

cluster, the name of that cluster is provided. The MS 1 motifs are highlighted in bold.
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Dz Gene Symbol Gene name associated with peptide or ORF Cluster

- UU KPSKLAKRIANSAGYVGDRFKCVTTELYADSSQLSR RA1

LOC645453 VLDLQVRRVRPGEYRQRDSIASRTRSRSQTPNNTVT RA1

ATAD5 SKNISKAKQLIEKAKALHISRSKVTEEIAIPLRRSS RA1

Hcn3 MYFIQHGLLSVLARGARDTRLTDGSYFGEICLLTRG

HRNR STHGQHGSTSGQSSSCGQHGASSGQSSSHGQHGSGS
ADAM33 VLQGHIPGQPVTPHWVLDGQPWRTVSLEEPVSKPDM RA2

PTK2 RTHAVSVSETDDYAEIIDEEDTYTMPSTRDYEIQRE RA2

RA SNRPB RPPMGPPMGIPPGRGTPMGMPPPGMRPPPPGMRGLL RA2

KRT33B LECEINTYRSLLESEDCKLPSNPCATTNACEKPIGS RA2

ATXN2 ELTANEELEALENDVSNGWDPNDMFRYNEENYGVVS RA2
S10OAll MAKISSPTETERCIESLIAVFQKYAGKDGYNYTLSK

Lrba VMDNMVMACGGILPLLSAATSATHELENIEPTQGLS RA2

CREB3L1 MDAVLEPFPADRLFPGSSFLDLGDLNESDFLNNAHF RA2

SEPT8 LKIRRSLFDYHDTRIHVCLYFITPTGHSLKSLDLVT RA2

Krt75 MSRQSSITFQSGSRRGFSTTSAITPAAGRSRFSSVS MS1
TRIO SGGPSSCGGAPSTSRSRPSRIPQPVRHHPPVLVSSA MS1

Sox17 SALHVYYGAMGSPGAGGGRGFQMQPQHQHQHQHQHH
LOC388182 KRTPPAPQNPGGSTQAPQRVVGKSHSGIRMPAKSRN MS1
METTL23 MLGRSRATATWPAASRSRSLAARSLPRSPARPGPND MS1

DENND4C LDHGSPAQENPESEKSSPAVSRSKTFTGRFKQQTPS MS1

SFRS16 TRSRSHSPSPSQSRSRSRSRSQSPSPSPAREKLTRP MS1
MS KIAA1045 SAAPEPRPAPGRSRAMGVLMSKRQTVEQVQKVSLAV MS1

FRMD4B WPGRTVKDEFGGRLDPPAASRSRRREPRRAGRWGRG MS1

N/A NPGCHPSPTPMLASQRHCRDSAAVCVHVTPSPSRSL MS1

RIMS2 SMPSLMTGRSAPPSPALSRSHPRTGSVQTSPSSTPV MS1
PPP1R10 HRPHEGPGGGMGAGGGHRPHEGPGGSMGGSGGHRPH
Baz2a AAHASLNPALFSMKMELAGSNTTASSPARARSRPLK MS1

tes KRNVMILTNPVAAKKNVSINTVTYEWAPPVQNQALA

USPi1 ISHSCVGCRRERTAMATVAANPAAAAAAVAAAAAVT
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Figure 5.4: PhIP-Seq false negative rate for GAD65 autoantibodies. Sensitivity of GAD65
autoantibody detection by PhIP-Seq compared to RIA in T1ID patients and healthy controls.

PhIP-Seq values correspond to the most enriched peptide from the ORE Dashed lines illustrate

threshold for positivity.

to uncover a shared sequence motif among RAIl- and RA2-clustered peptides using blastp and

MEME algorithms, none was identified [69].

MS patients are frequently found to have oligoclonal immunoglobulin in their CSF, which is

resolvable by isoelectric focusing. As the presence of these oligoclonal IgGs is the most consistent

laboratory abnormality in MS (detectable in about 95% of patients compared with 10%-15%

of controls), it has long been assumed that the specificities of intrathecally-produced antibodies

harbor clues to the pathogenesis of the disease. We therefore screened 28 CSF samples and 35

serum samples (including 6 CSF-serum pairs) from patients with clinically definite MS. As addi-

tional negative controls, we screened 10 CSF samples from individuals with subacute sclerosing

panencephalitis (SSPE), paraneoplastic neurological disorder (PND) and meningitis. We exam-

ined the set of 15 peptides that were enriched by MS patients with a disease association FDR of

< 10% (Figure 4A, Table 5.3). Eleven of these peptides assorted non-randomly among a subset

of MS patients, and motif discovery revealed a 7 amino acid sequence contained in all of them

("9MSl"35, Figures 5.6B-D). Notably, a motif nearly identical to MS1I was previously identified

by Cepok et al. in a similar screen of MS CSF samples [98], and they reported an alignment

with the BRRF2 protein of the Epstein-Barr virus, a pathogen repeatedly implicated in MS

pathogenesis. We performed an alignment of the MS1I motif against the UniProt database of all

proteins from viruses with human tropism, collapsed onto 90% identity clusters (7546 UniRef
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Figure 5.5: RA associated peptides and their clusters. A. Permutation analysis of peptide en-

richments associated with RA. "Observed" bars indicate the number of peptides associated with

RA at a given P-value by Fisher's exact test. "Expected" bars show the number of peptides ex-

pected to have a -log10 Fisher P-value at least that extreme due to chance alone (as determined

by permuting sample labels). B. RAL and RA2 peptide enrichment heat map (as in Figure 5.2)

illustrating nonrandom segregation of peptide enrichments (rows) and RA patients (columns).

-Log10 P-values less than 4 are white and greater than 4 are black. Patients are organized by

their seropositivity, and by their RA1 /RA2 status.
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sequences; 656 unique taxa), and also found the best alignment to be with the EBV BRRF2

protein (E value = 1.2; sequence: PAASRSK).

We considered the possibility that a peptide containing the MS 1 motif might have clinical

utility in the form of an ELISA assay. To this end, we immobilized the peptide which performed

best in our PhIP-Seq screen, Krt75_1 (9 positives of 57 MS samples, versus 0 positive of 239
non MS samples). Of 25 MS CSF samples tested by ELISA, 3 were positive, compared to 0 of

19 CSF samples from individuals with other inflammatory neurological diseases (Figure 5.7A).
Eight of the ELISA-tested MS samples had also been screened using PhIP-Seq, and we found

the latter method to have a greater sensitivity (Figure 5.7B).

5.3.3 Analysis of matched MS samples

As part of our collection, we obtained six sets of MS CSF-serum pairs. Each of these samples

was screened in duplicate, and we considered only those peptides that were reproducibly en-

riched with a -log10 P-value greater than 3 in both replicates from either compartment. For

each of these MS patient pairs, we plotted the average -log10 P-value for each peptide's CSF
enrichment against the average serum enrichment (Figure 5). In all cases we observed a strong

correlation in the enrichment profiles between these two fluid compartments. A majority of the

enrichments were found in both compartments, with a trend toward stronger enrichment in

the serum. In several cases, however, we did find peptides that were more highly enriched in

the CSF compartment. For example, CSF from patient 9292 enriched two homologous pep-

tides from interferon alpha 5 and 14 much more significantly than serum from the same patient

(Figure 5.8A; Table 5.5). This is unlikely to reflect cross-reactivity of inhibitor antibodies to

therapeutic interferon beta, however, as the homologous peptide from interferon beta was not

enriched in either compartment.

We systematically examined all the CSF-specifically enriched peptides (enriched by CSF
antibodies with -log10 P-value of at least 3 greater than the corresponding serum enrichment)

that were identified in the six patients (Table 5.5). Motif discovery was performed on each

set of CSF-specific peptides, and one motif was uncovered for patient 10894 (Figure 5.8B and

Table 5.5). This motif was searched into the database of human viruses, and a significant align-

ment was found with the major capsid protein VPl of the JC polyomavirus (JCV; E value =
0.03; sequence: RRVKNP). Similar to EBV, JCV infection is highly prevalent, infecting 70 to

90 percent of humans. Also of note, JCV can cross the blood-brain barrier into the central

nervous system, where it infects oligodendrocytes and astrocytes, possibly through the 5-HT2A

serotonin receptor [99].

Some MS patients exhibited little or no CSF-specific autoreactivity, an example of which is

shown in Figure 5.8C (patient 8911). This patient, however, did have serum samples drawn on
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SAAPEPR PAPGRSR
TRSRSHSPS PSQSRSR

AAHASLNPALFSMIKMELAGSNTTASS PARARSR
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Figure 5.6: MS associated peptides share a sequence motif. A. Permutation analysis of peptide
enrichments associated with MS. "Observed" bars indicate the number of peptides associated
with MS at a given P-value by Fisher's exact test. "Expected" bars show the number of peptides
expected to have a -log 10 Fisher P-value at least that extreme due to chance alone (as determined
by permuting sample labels). B. Peptide enrichment heat map (as in Figure 5.2) illustrating
nonrandom segregation of MS1 peptide enrichments (rows) and MS patients (columns). -Log10
P-values of enrichment less than 4 are white and greater than 4 are black. Patients are organized
by their MS 1 status. C. Alignment of the co-segregated peptides reveals a shared epitope. D.
MS associated epitope (MS 1) motif logo, calculated from the peptides in C (MEME software).
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Figure 5.7: ELISA testing of MS peptide Krt75_1. A. Results of ELISA assay comparing ratio of
signal from Krt75_1 peptide to signal from scrambled peptide ("scram") between 25 MS patient
CSF samples and 19 other inflammatory neurological diseases ("OIND") patient CSF samples.
Horizontal bar indicates mean ratio of cohort. B. Comparison between ELISA assay and PhIP-
Seq assay. ELISA confirmed 2 of the 5 PhIP-Seq positive CSF samples. 8 CSF samples in total
were tested by both methods. Dotted lines indicate threshold of positivity.
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Figure 5.8: Analysis of MS patient CSF/serum pairs. Scatter plots of matched samples from

the same individuals. Each sample was analyzed in duplicate and the average -log10 P-value is

plotted for peptides enriched by more than -log 10 P value of 3 in both duplicates. A. Patient

9292 peptide enrichments in CSF versus serum, and enrichment of nearly identical peptides

from IFN-c5/14 specifically in the CSE B. Patient 10894 peptide enrichments in CSF versus

serum, and C SF-specific enrichment of the JCV motif is illustrated. C. Patient 8911 peptide

enrichments in CSF versus serum. D. PhIP-Seq serum profile in patient 8911 taken at two time

points.
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-logic P-value
Patient CSF Serum Peptide aequence Symbol Gene name

5. 1 17.0 HSLNNRRTLMLMAQMRRISPFSCLKDRHDFEFPQEE I-NA14 interneron, alpha 14
20.8 1.6 HSLSNRRTLMIMAQMGRISPFSCLKDRHDFGFPQEE IFNA5 interferon, alpha 5
7.7 0.2 IIANALSSEPACLAEIEEDKARRILELSGSSSEDSE PRKDC similar to protein kinase, DNA-activated, catalytic polypeptide
7.9 0.6 RPLTTOQKLILRVESLLEVRPGNTRQKKQEDHSSGSL LOC283682 hypothetical protein LOC283682

9292 5.7 0.5 AFDVQASPNEGFVNQNITIFYRDRLGLYPRFDsAGR HYAL2 hyaluronoglucosaminidase 2
5.2 0.2 QFQLLEQEITKPVENDISKWKPSQSLPTTNSGVSAQ Nedd9 neural precursor cell expressed, developmentally down-regulated 9
4.9 0.5 AESLLEAGDMLQFHDVRDAAAEFLEKNLFPSNCLGM Klhl25 kelch-like 25 (Drosophila)
5.0 1.4 MVLGKVKSLTISFDCLNDSNVPVYSSGDTVSGRVNL arrdc3 arrestin domain containing 3
4.9 1.3 NKVLIAQKLHECARCGKNFSWHSDLILHEQIHSGEK ZNF311 zinc finger protein 311

16.5 8.6 LYSAPIFSSNYSSRSGTAAGAVPPPHPVSHPSPGHN Glis3 GLIS family zinc finger 3
6.6 1.1 AQEMFTYICNHIKYATNRGNLRSAITvFPQRCpoRG NOS3 nitric oxide synthase 3 (endothelia cell)

42.6 38.2 LDNTKFRSHEGETAYIRVKVDGPRSPSYGRSSRSR SFRS1 splicing factor, arginine/senne-rich 1
8.2 3.9 SDWEKSSNGRQWKPQLGFNRDRRPVHLDQAAFRTLG XRN2 5-3 exoribonuclease 2

9316 5.1 1.1 KLIAGKLRETLNISOPPLAGKTRNFYGLHQDFPSV LAP3P2 LAP3P2 pseudogene
4.1 0.4 CVMTPSPCSTPPVKSLEEDPWPRVNSKDHIPALVRS PPM1D protein phosphatase ID magnesium-dependent, delta isoform
9.6 5.9 EESDIDSEASSAFFMAKKKTPPKRERKPSGGSSRoN GTF2F1 general transcription factor lII, polypeptide 1, 74kDa
13.7 10.1 SPHEAWNRLHRAPPSFPAPPPWPKSVDAERVSALTN FBRSL1 fibrosin-like 1
4.0 0.6 NKKMMERLHKIKICIKESGQKLKKSRSVQSREENEM HERC1 hect (homologous to the E6-AP (UBE3A) carboxyl terminus) domain and RCC1 (CHC1)-like domain (RLD) 1
3.5 0.4 PAGALTPGPSTRLRCSVILAPAHPGETGPSPAPLRS removed removed
13.0 0.7 VDEYMLPFEEEIGQHPSLEzLQEVVVHKKMRPTIKD ACVR2B activin A receptor, type 116
30.5 21.7 RKITRPSQRPKTPPTDIIVYTELPNEsRSKVVScp KIR2DL1 killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 2
8.3 0.7 TDTSLTMDIYFDENMKPLEHLNHDSVWNFHVWNDcW Tgm1 transglutaminase 1
17.7 11.5 QQVCHAIANISDRRKPSLGKRHPPFRLPQEHRLFER NCAPD2 non-SMC condensin I complex, subunit D2
7.4 1.7 QIQVTHGKVDVGKKAEAVATVVAAVDQARVREPREP TTN titin
21.7 16.3 DTNKAHPDNKAEFPSYLLGGRSGALKNFIPKIKRD nipbl Nipped-B homolog (Drosophila)
5.8 0.4 ALGEVLVEKDVKISKKGKIYNLNEGoNAKYFDRAVT removed removed
6.3 1.0 KSQLQKVSGVFSSFMTPEKRMVRRIAELSRDKCTYr RIN2 Ras and Rab interactor 2
6.3 1.6 PFPsSPPFPssPPFPSSppppssppFpssppFpssp removed removed
6.5 1.9 MMSEKKKKNPTPESVAIGELKGTSKENRNLLFSGSP ARHGAP19 Rho GTPase activating protein 19
5.5 0.8 MAELQQLQEFEIPTGREALRGNHSALLRVADYCEDN AB13 ABlfamily, member 3

9358 6.0 1.8 LVNSLKVWGKKRDRKSAIQDIRISPDNRFLAVGSSE EML6 echinoderm microtubule associated protein like 6
8.4 4.4 EDNPRDLQLLRHDLPLHPAVVKPHLGHVPDYLVPPA ddx56 DEAD (Asp-Glu-Ala-Asp) box polypeptide 56
5.4 1.4 IRMPPLRNVGAGGVSGAIRTPRPMGQEASVTTGLGR ELFN1 leucine-rich repeat and fibronectin type IlIl domain containing 1
8.3 4.4 AVWCQNVKTASDCGAVKHCLQTVWNKPTVKSLPCDI PSAP prosaposin

71.7 67.9 KKKSSWKAFFGVVEKEDSQSTPAKVSAQGQRTLEYQ BCL2L14 BCL2-like 14 (apoptosis facilitator)
5.1 1.4 IRLPSLYHVLGPTAADAGPESEKGDEEVCEPAVSPP POPDC2 popeye domain containing 2
5.6 2.1 IKEIKMEEERNIIPREEKPIEDEIERKENIKPSLGS ARID4B AT rich interactive domain 4B (RBP1-like)
6.0 2.5 SSSLTVHKRTHVGRETIRNGSLPLSMSHPYCGPLAN ZNF333 zincfinger protein 333
6.1 2.8 QNIWNINLQLRPSLITGIMKDSGNKPPGLLPRKGLY gstk1 glutathione S-transferase kappa 1
4.9 1.8 KKRSLWDTIKKKKISASTSHNRRVSNIQNVNKTFSV ASPM asp (abnormal spindle) homolog, microcephaly associated (Drosophila)
4.9 1.9 GKDRVVSLSEKNFKQVLKKYDLLCLYYHEPVSSDKV Casq2 calsequestrin 2 (cardiac muscle)
3.3 0.3 LRSQLILKLRQHYRELCQQREGIEPPRESFNRWMLE PCIF1 PDX1 C-terminal inhibiting factor 1

9733 4.1 0.4 QSQSAHLWKSPFPDVVPLQPEVSSYRRGRKKRVPYT HOXC13 homeobox C13
21.8 0.9 RAACYFTMGLYEKALEDSEKALGLDSESIRALFRKA ZC3H7B zinc finger CCCH-type containing 7B
21.2 3.1 LNKATDPSMSEQDWSAIQNFCEQVNTDPNGPTHAPW Gga2 golgi associated, gamma adaptin ear containing, ARF binding protein 2
18.9 1.3 ARDLEDVRAEGTEDVGTEGTEDVGADSEDIRAESS removed removed
15.4 1.1 LRLEAPSPKAIVTRTALRNLSMQKGFNDKFCYGDIT PDZD8 PDZ domain containing 8
7.2 0.4 EDGGSEITNYIVDKRETSRPNWAQVSATVPITSCSv TTN titin
7.7 1.6 SLLPEGEDTFLSEzSDSEzERSSSKRRoRGSQKDTRA GTF3C1 general transcription factor I1C, polypeptide 1, alpha 220kDa
6.6 0.9 KVDEYTDTDLYTGEFLSFADDLLSGLGTSCVAAGRS Astn2 astrotactin 2
6.0 0.4 VSDVSRDSVNLTWTEPASDGGSKITNYIVECATTA TTN titin
6.1 0.6 RPVPGCVNTTEMDIRKCRRLINPQKVKKBVYGVTEE RGS6 regulator of G-protein signaling 6
5.5 0.1 LLDTQORDGLQNYEALLGLTNLSGRSDKLRQKIFKER UNC45B unc-45 homolog B (C

10894 5.6 1.0 GEDGsRRFGYCRRLLPGGKGKRLPEVYcIvsRLGCF DENND2A DENN/MADD domain containing 2A
5.0 0.5 LLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNNPS AGPAT3 1-acylglycerol-3-phosphate O-acyltransferase 3
6.3 1.8 RSRSKDEYEKSRSRSRSRSPKENGKGDIKSKSRSRS Sfrs6 splicing factor, arginine/senne-rich 6 similar to arginine/serine-ich splicing factor 6
5.8 1.3 EQKLKLERmENPDKAVPIPEKMSEWAPRPPPEFVR prkripl PRKR interacting protein 1 (ILL1 inducible)
5.0 0.5 SPGEWQQASAGPLHLSVPEPGRAWKNPERGSKSRWS BCYRN1 brain cytoplasmic RNA 1 (non-protein coding)
5.1 0.7 PEFEDSEEVRRIWNRAIPLWELPDQEzVQLADTMFG ctoorf2 chromosome 10 open reading frame 2
8.3 4.2 EKTIEDTIDKKMNDADSTSVEAMYSGASQCRHEKN IRAK4 interleukin-1 receptor-associated kinase 4
3.9 0.1 QKTCQEQELLKQEDISMTNLGSMACPIMEPLHLENT CCDC168 coiled-coil domain containing 168
4.2 0.9 SVGKQDKSGLLMKLQNLCTRLDQDESFSQRLPLNIE Apafl apoptotic peptidase activating factor 1
3.7 0.4 DAVYLDSEEERQEYVLTQQGFIYQGSAKFIENIPWN tgm2 transglutaminase 2 (C polypeptide, protein-glutamine-gamma-glutamyltransterase)
3.6 0.3 AEDPNLNQPVWMKPCRINSSYFRRVENPNNLDEIKS CEP350 centrosomal protein 350kDa
3.7 0.7 SVSAESCVLSWGEPKDGGGTEITNYIVEKRSGTTA TTN titin

6911 33.6 24.5 SOSGOSPGHGQRGSGSRQSPSYGRHGSGSGRSSSSG -HH-NH hiornenn

Table 5.5: Peptides more enriched in CSE Average -log10 P-values of duplicate peptide enrich-
ments are reported if they were at least 3 larger after IP with CSF compared to serum from the
same patient. The CSF-specific motif in patient 10894 is shown in bold.
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two separate occasions within one year, which allowed us to examine the persistence of PhIP-

Seq enrichments over this length of time. The scatterplot (Figure 5.8D) reveals minimal time-

dependent changes.

We were intrigued by the observation that the ACVR2B_15 peptide, which was very fre-

quently enriched in the sera of healthy individuals (Figure 5.2A), was enriched only in the CSF

compartment of MS patient 9358 (-logl0 P-value of 17.8 in CSF compared to 0.8 in serum;

Table 5.5). In hopes of identifying an epitope within the ACVR2B_15 peptide, we searched for

peptide enrichments that were highly correlated with ACVR2B_15. MEME analysis revealed

a motif shared by 3 peptides that were only enriched when ACVR2B was also enriched. In-

terestingly, the most significant viral peptide alignment was again found within the proteome

of EBV, but this time with the latent membrane protein-1 (LMP-1; E value = 0.03; sequence:

LTEEVANK).

5.4 Discussion

In this study we report the first large scale PhIP-Seq screen of a population of individuals with dif-

ferent autoimmune diseases for direct comparison to healthy controls and to each other. These

data provide an unbiased, proteomic-scale assessment of precise autoreactivities found within

298 independent antibody repertoires. The vast majority of autoreactivities were individually

unique, lending support to the notion that each person possesses a unique "autoantibodyome",

of which the impact on phenotype remains to be explored. It is interesting to note that as our

database of enriched peptides grows, so will the number of peptides recurrently enriched by

a small fraction of the population - a situation analogous to the ongoing identification of pro-

gressively less common alleles in sequenced genomes. Screening large numbers of genotyped

individuals will additionally reveal correlations between autoreactivities and HLA haplotypes,

antibody variable domain alleles, and other immunogenetic modifiers.

Our unbiased method revealed a large number of novel peptide autoreactivities, but when

compared to RIA-determined titers of known autoantibodies, appears to suffer from relatively

low sensitivity. We detected no anti-insulin antibodies in the T 1 D patients, with the important

caveat that we did not charcoal-extract insulin from the serum prior to performing PhIP-Seq,

which is standard protocol for the RIA assay. It is therefore possible that the anti-insulin anti-

bodies were occupied by endogenous or injected insulin and therefore not accessible for peptide

binding. Additionally, ZnT8 RIA titers were obtained using a fusion protein consisting of two

allelic variants of the immunodominant epitope, and so the single consensus sequence in T7-

Pep (the "CR" variant) may have contributed to the low sensitivity. The most important source

of the high false negative rate, however, is most likely the limited amount of conformational
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structure inherent to 36 amino acid peptide tiles. The findings presented here thus highlight

the need for improved display libraries that include more complex epitopes.

Despite this limitation, we observed a significantly accelerated polyautoreactivity in the sera

of younger TID patients compared with their matched controls. To our knowledge, this find-

ing has not been explicitly reported previously Several possible factors may confound this

finding. Perhaps most obvious is the role that HLA haplotype could play, since T ID genetic

risk is tightly linked to MHC class II alleles. It would therefore be interesting to explore the

relationship between TiD risk and protection-conferring alleles and PhIP-Seq polyreactivity.

Epidemiologically, these data are consistent with the existence of a "risk window", during which

increased polyreactivity provides more opportunities to acquire pathogenic autoreactivity.

While we did not observe TID-specific peptide/ORF enrichments at a frequency above

that expected by chance, the immunodominant peptide from PTPRN was enriched by 3 TI D

individuals and none of the non-TID individuals. Increasing the power of this study would thus

likely reveal this known, as well as additional novel, Ti D-associated autoantigens.

In contrast to T ID, our RA study was sufficiently powered to uncover novel disease-associated

anti-peptide antibodies. 13 out of the 64 RA patients (20%) exhibited immunoreactivity against

at least one RAI peptide, compared to 3 of 232 non RA individuals (1.3%). In addition, 16 of

the RA patients (25 %) exhibited immunoreactivity against at least one RA2 peptide, compared

to 6 non-RA individuals (2.6%). Taken together, 26 of the RA patients (41%) exhibited im-

munoreactivity against at least one RAl or RA2 peptide, compared to 9 non RA individuals

(3.9%; P = 7.8 x 10-13, Fisher's exact test, one tail); 16 RA patient samples enriched at least

two peptides from RAl or RA2. Further work is required to determine the nature of the rela-

tionships among these correlated autoreactivities.

Much effort has been invested to identify the specificities of oligoclonal bands in the CSF

of MS patients. Cortese et al. used a library of constrained nonamers to find mimitopes for

CSF antibodies in 2 MS patients . One of the sequences (KPPNP) is contained within sev-

eral of our library peptides. Of them, one peptide from XP_499190.1 (SQQWRENPRTQN-

QSAVERKPPNPEPVSSGEKTPEPR), was enriched by 6 of 57 MS patients and 9 of 235

non-MS individuals, and so was weakly associated with MS (Fisher's P value = 0.05). Perhaps

most notable of those studies, however, Rand et al. used a small collection of CSF samples

from MS patients to screen a phage library of random hexamers [100]. They uncovered a re-

currently enriched sequence (RRPFF) in several individuals, and reported alignment with the

heat shock protein QB crystallin and the Epstein-Barr virus nuclear antigen (EBNA-1). In our

study, the most commonly enriched peptide by healthy individuals, MAGEEl_25, contains

this same sequence (RAFAEGWQALPHFRRPFFEEAAAEVPSPDSEVSSYS; 32 of 73 posi-

tive; Figure 5.2A). We also detected MAGEEl_25 immunoreactivity in 10 of the 27 MS CSF
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samples and in 1/7 non-MS CSF controls. MAGEEl_25 was enriched with equal frequency

in the serum of MS patients compared to healthy controls (17/29 MS and 17/29 HC). Of the

six MS patients for which we had matching CSF and serum samples, two had MAGEEl_25

antibodies. Both of them exhibited stronger enrichment in their serum than in their CSE Taken

together, we believe the PhIP-Seq data are consistent with a scenario in which RRPFF antibod-

ies occur with equal frequency in the serum of MS and healthy individuals, and suggest that

they are unlikely to be produced specifically within the CNS. In sum, we detected three EBV

associated epitopes and one JCV associated epitope in our analysis. The EBNA- 1 and LMP- 1

epitopes were ubiquitously enriched, whereas the BRRF2 epitope (MS 1) was targeted with high

specificity by patients with MS. Importantly, the MS 1 antibodies exhibited a notable degree of

polyspecificity for self peptides (Figure 5.6B).

The majority of autoreactivities observed in MS patients' CSF were also observed in the

serum of the same individuals, though usually to a lesser extent. This result is somewhat sur-

prising, given that the total IgG concentration in CSF tends to be dominated by intrathecal

production. One explanation is that the majority of these intrathecal antibodies do not bind

epitopes contained within the T7-Pep phage library. Our comprehensive scan of minimally

conformational autoepitopes would therefore suggest that a universal MS associated intrathecal

specificity, if it exists, is likely to be either highly conformational, not human, post translation-

ally modified, or includes a non-protein component. Our results also imply that a blood test

(without lumbar puncture) will likely be sufficient to detect MS specific autoantibodies.

The findings presented here point to the accumulating value of high throughput, low cost

PhIP-Seq screening. As the sample size of our database grows, so will the power to detect

rare, yet significantly disease-associated autoantibodies. Quantitative elucidation of these di-

verse autoreactivities will be particularly important for understanding complex, heterogeneous

autoimmune disease pathogeneses. In the future, methods that query linear and conforma-

tional epitopes, as well as T cell epitopes, for both human and pathogen antigens will eventually

provide us with a comprehensive description of autoimmunity.

5.5 Supplementary Discussion

Titin autoantibodies have long been investigated in association with myasthenia gravis (MG),

since they occur in 20-30 % of patients with this autoimmune disease [101, 102]. The main im-

munogenic region of titin was mapped to a 30 KDa fragment spanning amino acids 7025-7311

of the novex-2 isoform (NP_597681.3) [103]. A second, recently discovered, MG-associated im-

munodominant region was mapped to amino acids 10319-10532.(19) Within our dataset, three

individuals (one healthy, one MS patient, and one BC patient), demonstrated reactivity against
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a single peptide from the first region (7193-7228), and one BC patient from our study had an-

tibodies targeting a peptide within the second region (10441-10476). It would be interesting to
determine whether these peptides are in fact the minimal epitopes of the MG-associated titin

antibodies. Strikingly, one titin peptide (8179-8214), which is not derived from either MG-
associated region, was enriched by 85 individuals, making it the third most commonly enriched
peptide by healthy controls (Figure 5.2A). To our knowledge, autoreactivity toward this peptide

has not been previously described, but due to its prevalence in healthy controls, is unlikely to
have pathological consequences.

5.6 Methods

5.6.1 Patient samples

Specimens originating from patients were collected after informed written consent was obtained

and under a protocol approved by the local governing human research protection committee.

Specimens which did not include personally identifiable private information or intervention or

interaction with an individual were collected under an exempt protocol approved by the local

governing human research protection committee.

5.6.2 TlD patient samples and matched controls

Type 1 diabetic patients (n=39, <40 years at diagnosis, male/female ratio = 1.18, average age
18 ± 2 years, range 3-37 years) were consecutively recruited by a Belgian network of endocri-
nologists between May 2004 andJanuary 2006. Blood was sampled within 7 days from clinical

onset/diagnosis by the Belgian Diabetes Registry (www.bdronline.be). Only diabetic patients
with three or more samples during yearly follow-up by the Registry were included in this study.
Age/sex-matched healthy control samples (n=41, male/female ratio = 1.18, average age 18 ± 2
years, range 4-37 years) were obtained from patients undergoing elective minor surgery. Con-
trols were verified to be negative for all known type 1 diabetic autoantibodies.

5.6.3 Insulin, GAD65, PTPRN and ZnT8 autoantibody radioimmu-
noassay

After acid charcoal extraction of the endogenous and/or injected insulin, serum was incubated
with radioactive labeled human recombinant insulin (mono- 1 251-tyrosin-A14-insulin) in the
presence and absence of an excess of unlabeled insulin. Immune complexes were precipitated

using polyethylene glycol (PEG). After washing (to remove the unbound 1251-insulin), radioac-
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tivity of the PEG precipitate was measured. The IAA concentration is expressed as specific

1251-insulin binding capacity of the serum (% tracer bound of the total amount of tracer added).

Sera with insulin binding > 0. 6 % were considered IAA positive.

GAD65, PTPRN (amino acids 603-980), and ZnT8 (gene SEC30A8 is a chimeric con-

struct of two peptides, amino acids 268-369), were produced in-house using in vitro transcrip-

tion/translation of pEX9 (cDNA) using the Promega L4600 TnT-Kit. For ZnT8, the CR vari-

ant carries 325Arg while the CW variant carries 325Trp. The chimeric CW-CR construct con-

tains both CR and CW [104]. The diabetes autoantibodies were determined by liquid-phase

radiobinding assays as described previously [101].

5.6.4 Islet cell IgG cytoplasmic autoantibodies

Indirect immunofluorescence was performed on non-fixed cryosections of human 0+ donor

pancreas, calibrated to aJuvenile Diabetes Foundation (JDF)-standard (assigned arbitrarily an

ICA titer of 200 JDF-units). Pancreas sections were incubated with a serial dilution of the un-

known serum, washed with phosphate buffer, and attached anti-islet IgG visualized by FITC-

labeled rabbit anti-human IgG gamma chain antibody. When islet immunoreactivity was de-

tected, the exact ICA titer was determined by further serial dilution (2-fold step), and samples

with titers > 12JDF-units are considered ICA+.

5.6.5 MS and encephalitis patient samples

A detailed clinical intake form was collected from outside investigators, summarizing the pa-

tient's neurological history, relapse features, neurological examination, MRI and CSF findings.

For samples collected at the Brigham and Women's Hospital, the same information was obtained

from the MS Center's clinical database. Patients were diagnosed with relapsing-remitting MS

according to the McDonald criteria.

Viral encephalitis serum samples were provided by the New York State Department of

Health. Sera from patients infected with West Nile virus or St. Louis Encephalitis virus were re-

active in ELISA tests and were confirmed by cross species plaque reduction neutralization tests

with paired acute and convalescent sera. Sera from patients with enteroviral infection were

collected on the same day as spinal fluids for which PCR tests for enteroviruses were positive

[102]. Healthy control samples were collected at Brigham and Women's Hospital from subjects

self-reported to be free of MS or other autoimmune disease. All serum and CSF samples were

stored in aliquots at -80'C.
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5.6.6 Patient synovial fluids

Human knee synovial fluids were obtained as discarded material from patients with various

arthritides undergoing diagnostic or therapeutic arthrocentesis. Arthritis diagnosis was ascer-

tained by an American Board of Internal Medicine certified Rheumatologist and/or by review

of laboratory, radiologic and clinic notes and by applying ACR classification criteria [103].

5.6.7 Breast cancer patient sera

Breast cancer patient serum samples were obtained from the Dana-Farber/ Harvard Cancer

Center (DF/HCC) Breast SPORE Blood Bank. These samples were originally collected under

Protocol #93-085 at the DF/HCC.

5.6.8 Phage immunoprecipitation

The T7-Pep library was prepared as described previously [26] and stored at -80 *C until used.

For all samples, the final amount of Ig added to each 1 ml IP mix was approximately 2 pg.

Serum/plasma samples were assumed to have 10 pg/ul of Ig, and so were diluted lOx in PBS

before addition of 2 pl to the IP mix. If patient samples were derived from a different fluid

compartment, their protein content was measured by Bradford assay and converted to an Ig

concentration in the following way. For CSF the Ig fraction was assumed to be 29% of the total

protein concentration. For synovial fluid, we used the following conversion: [Ig conc] = 0.154 x

[total protein conc] + 0.098. Sample dilutions were performed in a 96 well polystyrene PCR

plate that had been blocked overnight with 1% fraction V or agarose purified BSA (Invitrogen)

in PBS to minimize the amount of Ig lost to nonspecific binding of the polystyrene plate.

Each 1 ml IP mix contained 5x1010 T7-Pep phage particles and 2 ng of Positive control

SAPK4 C-19 antibody (Santa Cruz, sc-7585) diluted in M9LB (for IL: 46.7 ml 20X M9 salts,
18.7 ml 20% glucose (filtered), 0.93 ml 1 M MgSO4, 934 ml LB) with 100 pg/ml ampicillin. 1

ml IP mixes were placed in each well of a 96 deep well plate (Cole-Parmer, EW-07904-04). At

this point, each patient sample or control was randomly assigned to a position on the IP plate

and the appropriate volume for 2 pg of Ig was added to each IP The plate was then carefully

sealed with adhesive optical tape (Applied Biosystems) and placed on a rotator for 20 hours,
mixing at 4 *C.

The plate was briefly centrifuged to collect volume. 40 pl of 1:1 Protein A / Protein G slurry

(Invitrogen, 100-02D, 100-04D) was added to each well. The re-sealed plate was then placed

on rotator for 4 hours at 4 'C.

The plate was briefly centrifuged. At this point the beads were subjected to an automated

IP protocol, which was carried out on a BioMek FX liquid handling robot. Briefly, IPs were
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washed in 440 pl IP Wash Buffer (150 mM NaCl, 50 mM Tris-HCL, 0.1% NP-40, pH 7.5)

by pipetting up and down 30 times, for a total of 3 washes. Wash buffer was removed after

magnetic separation on a 96 well magnet. Beads were moved to a new, clean plate after the

second wash. After the final wash, IPs were resuspended in 40 pl of pure water and transferred

to a new polystyrene PCR plate. This plate was heated to 95 'C for 10 minutes and then frozen

at -80 *C until next step.

5.6.9 Preparation of immunoprecipitated T7-Pep sequencing libraries

Primers used (underlined sequences anneal with initial template, x's are the index barcode):

PCR1 forward: "IS7_HsORF5_2"

ACACTCTTTCCCTACACGACTCCAGTCAGGTGTGATGCTC

PCR1 reverse: "IS8_HsORF3_2"

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCGAGCTTATCGTCGTCATCC

PCR2 forward: "IS4_HsORF5_2"

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACTCCAGT

PCR2 reverse: "index N" (set of 96)

CAAGCAGAAGACGGCATACGAGATxxxxxxGTGACTGGAGTTCAGACGTGT

P5_Primer:

AATGATACGGCGACCACCGA

P7_Primer_2:

CAAGCAGAAGACGGCATACGA

Internal HsORF3' "TaqMan" FAM Probe:

GCCGCAAGCTTGTCGAGCGATG (modified with 5' 6-FAM-ZEN-3' Iowa Black FQ

T7-Pep Library Sequencing Primer "T7-Pep_96_SP":

GCTCGGGGATCCAGGAATTCCGCTGCGC

Standard Illumina Multiplex Index Sequencing Primer "Index SP":

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

We tested the sensitivity of several DNA polymerases to residual NP-40 detergent from the

wash buffer. Some of these enzymes performed poorly in the presence of this contaminant.

We found the Herculase II Fusion DNA Polymerase (Agilent) to perform the most efficiently

under all conditions, and so developed the following PCR protocol to recover IP'ed T7-Pep

libraries. For each 50 pl PCR1 reaction, the following components were mixed with 30 pl from

each IP: 8.75 pl water, 10 pl 5x Herculase Buffer, 0.5 pl of 100 mM dNTP, 0.125 p1 of 100 uM

IS7_HsORF5_2 forward primer, 0.125 pl of 100 uM IS8_HsORF3_2 reverse primer, and 0.5

pl of Herculase II enzyme. The reaction was then brought to 95 *C for 2 min, and cycled 30
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times with the following thermal profile. 1. 95 'C, 20s 2. 58 'C, 30s 3. 72 *C, 30s and then

subjected to a final extension for 3 min at 72 'C.

A set of 96, 7 nucleotide barcode-containing primers for PCR2 were designed using the

method of Meyer et al. [89] to 1) be compatible with standard Illumina multiplex sequencing, 2)

be base-balanced to maximize Illumina cluster definition, and 3) have no fewer than 3 nucleotide

differences between them to minimize misalignment. [89] This set of oligos was purchased from

Invitrogen in 10 pl 25 uM aliquots and then diluted to a final concentration of 2.5 uM by adding

90 pl of water.

For each 50 pl PCR2 reaction, the following components were mixed with 5 pl of the appro-

priate index primer and 1.5 pl of unpurified PCR1 product: 27.9 p1 water, 10 pl 5x Herculase

Buffer, 0.5 pl of 100 mM dNTP, 0.125 pl of 100 uM IS4_HsORF5_2 forward primer, and 0.5

pl of Herculase II enzyme. The reaction was then brought to 95 'C for 2 min, and then cycled

10 times with the following thermal profile. 1. 95 'C, 20s 2. 58 'C, 30s 3. 72 'C, 30s and then

subjected to a final extension for 3 min at 72 'C.

Unpurified PCR2 product was next quantified using real time quantitative PCR on a 7500

Fast PCR-System (Applied Biosystems). Each PCR2 product was serially diluted 100 fold to a

final 1 0,000x dilution in water. 4 pl of this dilution was added to 16 pl of master mix composed

of: 4 pl water, 10 pl Universal TaqMan 2X PCR Master Mix (Applied Biosystems, P04475),
and 2 pl of a P5/FAM Probe/P7_2 mix (5 uM P5, 5 uM P7_2, and 2.5 uM FAM Probe).

The thermal profile was: 1. 50 'C, 2m 2. 95 'C, 10m 3. 95 0C, 15s 4. 60 'C, 2m and

steps 3 and 4 were repeated 35 times. We estimated the DNA concentration (in ng/ul) by

[Conc] = 5000 * 10(C0 -3.0964)/-4.5781. 300 ng of each PCR2 product were then combined in a

single tube, mixed, and run on a 2% agarose gel. The dominant band at 316 bp was cut out

and column purified twice (QIAGEN).

This 96-plex pooled library was sequenced on 2 or 3 lanes of an Illumina HiSeq 2000 using

93+7 single end cycles (93 cycles from the "T7-Pep_96_SP" primer, and 7 cycles from the "Index

SP" primer) to obtain between 300 and 450 million reads.

5.6.10 PhIP-Seq informatics pipeline

We developed an informatics pipeline for processing the single end, 100 nucleotide sequencing

data generated from high throughput PhIP-Seq experiments. Unless otherwise noted, scripts

were written in python, and are available online for download from: https://github.com/laserson/phip-

stat This pipeline was implemented on Harvard Medical School's Orchestra Shared Research

Cluster. The pipeline assumes that the initial data set is a single .fastq file (not "de-multiplexed")

and that the barcode is in the header of each read. If reads have been de-multiplexed one can

skip fastq2parts.py and proceed to bowtieparts-withLSEpy. Note that these commands are
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for dispatch to the Platform LSF job scheduler.

The count data for each IP was then analyzed one sample at a time by comparison to the

counts obtained by sequencing the un-enriched T7-Pep library. We used our generalized Pois-

son significance assignment algorithm [26] to compute -loglO P-values for each peptide/sample

pair. Briefly, the IP count distribution for each input count was fitted to a generalized Poisson

(GP) distribution. The two GP parameters, A and 0 were then regressed to form a joint distribu-

tion between the IP counts and the GP parameters such that each IP count could be evaluated

for its likelihood of enrichment.

5.6.11 Analysis of high-throughput PhIP-Seq enrichment data

All computational analysis was performed in MATLAB software (MathWorks). Reproducibility

between each replica pair was assessed as follows. Scatter plots of the log 10 of the -log10 P-

values were generated, and a sliding window of width 0.05 was moved in steps of 0.05 from

-2 to 3 across the x-axis. The mean and standard deviation of the values within this window

were calculated at each step and plotted as a function of -log 10 P-values (see Figure 5.1 A for

example). For all such plots, at low -log1 0 P-values the standard deviation is larger than the

mean. At high -log10 P-values, however, the reverse is true. For each pair, we determined

the -loglO P-value at which the mean was equal to the standard deviation (analogous to the

"signal" being equal to the "noise"). A histogram plot of these values are given as Figure 5. 1B.

Based on this data, we chose a -log 10 P-value of 4 to be our cutoff for considering a peptide

to be significantly enriched. Within each 96-well plate screened, several samples were run in

duplicate so that the reproducibility of each run's automated IPs could be assessed. We found

that occasionally, sequences from random clones were amplified dramatically only in one of the

replicas. The cause of these potential false positives is under investigation, but they seemed to

follow no particular pattern so did not contribute to disease association of enriched clones. They

are unlikely to be due purely to spurious PCR amplification, as the same clones were amplified

from the same wells with two independent PCR reactions using two different enzymes.

For analyses of peptide/ORF-disease association, we set all -log10 P-values less than 4 equal

to 0, and -log 10 P-values greater than 4 equal to 1. This allowed us to sum the "hits" for each

peptide/ORF in each disease category and then to compute the P value for association using

Fisher's exact test. To correct for multiple hypothesis testing, we performed a permutation

analysis by randomly permuting the sample names and then calculating the "null" Fisher P-

values for each peptide/ORE This was repeated 1000 times and a final histogram of null Fisher

P-values was constructed. Finally, an "expected" Fisher P-value distribution could be calculated

for each P-value by summing the null distribution from each P-value to infinity. This expected

distribution indicates how many peptide/ORF associations with a P-value at least as extreme,
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would be expected by chance alone, given the same dataset with randomly permuted sample

names. We corrected for bias due to differences in the total number of hits between samples by

requiring that the difference in total number of hits after permutation is less than 3% compared

to before permutation. To find the 10% false discovery rate threshold, we compare the expected

Fisher P-values at each P-value to the sum of the observed Fisher P-values that are at least that

extreme. The P-value at which this ratio is 1:10 is then set as the 10% FDR threshold.

5.6.12 ELISA testing of CSF samples

High binding capacity streptavidin-coated 96-well ELISA plates (Pierce, USA) were coated with

biotin-Krt75_1 or biotin-scrambled peptide at 5pg/mL in Tris-buffer saline with 0.05% Tween

plus 0. 1% bovine serum albumin (TBST-BSA), pH 7.2, for 2 hours at room temperature. Af-

ter three washes with TBST-BSA, CSF samples were normalized to 5 pg/mL IgG and then

incubated in the wells with gentle agitation for 1 hour. Wells were washed three times with

TBST-BSA. Secondary goat anti-human HRP (Chemicon, USA) was prepared at 1:20,000

and incubated in the wells for one hour with gentle agitation. After three washes with TBST-

BSA, 50 uL of One-Step Ultra TMB ELISA developing reagent (Thermo Scientific, USA) was

added to each well and allowed to develop for 5 minutes. The reaction was stopped by addition

of 50 pl of IM sulfuric acid. The optical density of each well was measured at 455nm. Data is

reported as fold difference from signal from Krt75_1 versus that from scrambled peptide. E
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Chapter 6

Conclusion and Future Directions

We outlined a vision for using high-throughput DNA sequencing as an assay for antibody-

antigen interactions. In this thesis, I described several steps in this direction; however, in each

case, we only generate data for half the picture: either the antibodies alone, or the antigens

alone. In fact, in the case of the antibodies, we have not even generated information on the

entire receptor, as we have only obtained a single chain of the antibody heterodimer at a time.

Below I address some proposed methods for which we have performed preliminary work to

address these limitations.

6.1 Methods for single-cell coupling of heavy and light

chains

In Chapter 2, we successfully developed methods to characterize the VH antibody repertoire of

an individual human. However, knowledge of the heavy chains alone is not sufficient to truly

characterize the repertoire, and more importantly, does not allow the reconstruction of the an-

tibodies of interest. To rigorously confirm that certain clones are involved in immune responses

or to discover new antibodies against antigens of interest, it is a requirement to successfully cap-

ture both the heavy and light chains of individual antibodies. Because of the lack of methods

for capturing paired VH and VL chains in high-throughput, the best available protocols involve

sorting single cells into individual wells and performing PCR for the heavy and light chains seri-

ally (e.g., [105]). However, even with automated liquid handling robots, typical throughputs are

practically limited to 106 (at great expense). Another popular solution is to capture heavy and

light chain repertoires separately, and associate them randomly with each other in expression

vectors [106]. However, heavy and light chain pairing is likely far from randomly distributed,

'Adapted from thesis proposal from December 2009.
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and so these methods do not provide accurate portrayals of the underlying repertoires. (Indeed,

this is the approach we followed, to marginal success.)

The goal of this proposal is to develop a general method for capturing paired heavy and

light chains in millions of single cells in a single-reaction format. These methods should allow

the simultaneous manipulation of millions of cells in parallel, while keeping them isolated from

each other to maintain the natural chain pairing. The overall experimental design can be split

into two parts: the chain-linking biochemistry and the cell insulation method. Solutions for

each part can mostly be chosen independently.

All of the biochemical methods proposed are ultimately based on PCR. We can choose

between amplifying the target chains from the genomic DNA or perform RT-PCR from the ex-

pressed mRNAs. The former requires no reverse transcription step but has the risk of amplifying

non-functional receptors, while the latter can benefit from higher copy numbers and should only

capture functional, expressed receptors. The physical cross-linking can occur through multiple

mechanisms. The first is standard splicing-by-overlap-extension PCR (SOE-PCR, or fusion

PCR or crossover PCR), whereby two of the PCR primers have complementary sequences so

that the two amplicons function as primers and they fuse to each other [107]. The main advan-

tage of this method is that it has been used extensively, and the overlap sequence can be designed

so that the fused construct is immediately in a usable scFv format. The next mechanism is sim-

ilar to the SOE-PCR in that tags are incorporated into the PCR primers. In this case, the

tags contain loxP sites, so that fusion will occur upon Cre-mediated recombination [108, 109].

Finally, in the case of emulsion methods (see below), the final option for biochemistry is to am-

plify both the heavy and light chains onto beads [6, 110]. One advantage is that the beads

can be processed immediately for sequencing on bead-based next-generation sequencing sys-

tems. However, this is also a disadvantage, as it severely limits the range of options after chain

coupling. One alternative bead-based method is to amplify both chains onto beads, and then

couple the chains on the beads. This will increase the specificity of the whole process, albeit at

increased complexity of the protocol. All these methods are summarized in Figure 6.1.

The cell insulation methods fall into two main categories: in-cell methods and emulsion

methods. In-cell methods emulate the earliest attempt to couple two chains together, performed

in Greg Winter's group at MRC [111]. In this method, the cells are fixed in formalin and

permeabilized to allow the diffusion of biochemical reagents into the cell. The cell membrane

functions as the barrier that prevents cross-contamination of heavy and light chains between

cells. The advantages of this general approach are the relative simplicity of fixing the cells and

also the ability to serially apply reagent sets to all cells in parallel. However, the permeabilization

step is a two-edged sword, and potentially increases the chance that Ig chains will leak out of

cells and lead to cross-contamination.
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Figure 6.1: Chain coupling methods

For the emulsion-based methods, single cells are placed into individual compartments of a

water-in-oil emulsion [112, 113]. The primary advantage of such an approach is that the oil-

based separation of compartments should potentially provide nearly absolute insulation from

chain cross-contamination. But while the oil-separated compartments should stop any exchange

of material between compartments, a common problem of thermal cycling emulsions is that

compartments fuse together, leading to non-clonality. Furthermore, it is considerably more dif-

ficult to manipulate emulsions. Emulsions are generally formed using physical methods (e.g.,

vortexing) that depend on Poisson statistics to achieve clonality [114, 115]. However, this tends

to lead to a small fraction of non-clonal compartments, and also leads to a large number of un-

occupied compartments. However, to combat these problems, other groups, e.g. David Weitz's

group, have generated emulsions using microfluidic technology [112]. An additional disadvan-

tage to using emulsion methods is that once an emulsion is formed, it is difficult to exchange

additional material with the compartments in a controlled fashion. However, some companies

are researching this exact probem, like RainDance technologies, which has developed a so-

phisticated technology for fusing emulsion droplets in a controlled fashion [116, 117]. Finally,

emulsion PCR is often performed in conditions that are far from standardized protocols. In

these unique conditions, the performance and fidelities of the relevant enzymes have not been

well characterized. The cell insulation methods are summarized in Figure 6.2.

With these general considerations, we have identified six strategies to achieve coupling of
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Figure 6.2: Cell insulation methods

heavy and light chains. They are displayed in Figure 6.3:

1. Emulsion PCR from gDNA. This is the simplest emulsion-based approach.

placed in the emulsion along with reagents for a traditional PCR reaction.

form the SOE-PCR using the gDNA as a template.

The cells are

We then per-

2. In-cell RT and SOE-PCR or Cre-Lox coupling. Replicate the work of Embleton et al. [109,

111]. This involves fixing cells in formalin and permeabilizing them using one of several

methods (e.g., proteinase K). Because all cells are in solution, it allows a traditional RT-

PCR reaction by applying the relevant enzymes serially.

3. Tth-mediated emulsion RT-PCR. As described above, it is preferable to capture the Ig chains

from the mRNA sequence, as this avoids any non-functional receptor rearrangements

and also benefits from the potentially higher copy-numbers of expressed cells. However,

emulsion PCR only allows us to add biochemical reagents once. This makes Tth poly-

merase, which is capable of performing both RT and PCR [118], quite attractive for an

emulsion context. However, as it is already known that Tth has slightly lower fidelity

compared with traditional polymerases such as Taq or Pfu, it remains to be seen whether

this unique enzyme is a viable option.
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Figure 6.3: Summary of methods for coupling heavy and light chains
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4. Acrylimide-encapsulated in-cell RTPCR. This technique is similar to the in-cell RT-PCR, but

involves the additional step of encapsulating individual cells in polyacrylimide gels [119].

This will add an additional layer of protection from cross-contamination.

5. Emulsion PCR onto beads. As an alternative to SOE-PCR for cross-linking the heavy and

light chains, this approach attempts to capture the two chains by conventional PCR onto

beads [110]. Similarly to many next-generation library preparation schemes, each emul-

sion compartment aims to have a single cell and a single bead. The beads are coated with

two different primers: one for the heavy chain and one for the light chain. After breaking

the emulsion, the beads can be manipulated in a variety of ways. One method to increase

the specificity of the technique will be to cross-link the two chains on the beads using a

modified Cre-Lox system.

6. Emulsion RT-PCR with dropletfusion. This approach attempts to utilize methods that allow

us to fuse emulsion droplets in a controlled fashion. In this way, "bags" of enzymes can

be serially fused with the emulsion compartments to perform separate biochemical steps,
such as RT followed by PCR. However, this technology is still at the forefront of research

and represents an approach that is less likely to be fruitful. Still, it would allow us to use

robust and well characterized enzymes to separately perform RT and PCR.

These approaches hold significant potential due to the amount of collective experience avail-

able with both. There is a large body of work in optimizing RT-PCR reactions in situ for use

in clinical pathology (e.g., [120]). Regarding emulsions, multiple labs have invested significant

resources in performing droplet manipulation wizardry.

6.2 Library versus library experiments

Analogously to methods for linking heavy and light chains, here we would like to leverage a

similar approach to characterize antigen-antibody interactions in high-throughput. Current

technologies require selecting for new antibodies against a single antigen at a time [121]. A

typical experiment involves purifying and immobilizing some antigen of interest, and expos-

ing it to some type of protein display technology encoding a library of candidate antibody se-

quences (typically in scFv format). After multiple rounds of panning, washing, and amplifying,
a small number of clones are sequenced and carried through for further analysis. Alternatively,
an animal might be immunized to the antigen of interest to generate a polyclonal response.

Antigen-specific lymphocytes must then be harvested (to obtain the polyclonal response) and

screened to obtain high-affinity monoclonal antibodies [121]. Our proposed project aims at
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developing methods that will allow the selection of new antibodies against multiple antigens in

parallel or will allow for a "diagnostic" that can assay many antigens against many antibodies

simultaneously.

To achieve these goals, we are proposing to develop similar methods to those proposed for

coupling two chains of nucleic acids. Antibodies can be encoded in some protein display for-

mat (e.g., phage [122, 123], yeast [124-126], or ribosome display [127]) and antigens can also

be packaged with their coding information (e.g., peptide libraries in display format, or whole

virus particles). The two libraries are allowed to interact and selected for interacting complexes

only [27]. The coding chains of the interacting antigen and antibody are then physically cou-

pled using methods described for heavy/light chain linking. This should allow for the discovery

of antigen-specific antibodies for multiple antigens in parallel. Ultimately, this type of approach

could be scaled up to test huge antigen libraries against huge antigen libraries (e.g., entire human

proteome, or all known viral proteins).

One advantage is that our protocols for capturing full antibodies will have already formatted

the captured repertoires in an scFv format, allowing for easy expression using one of the protein

display technologies. Compared with many previous studies that generate random antibody

libraries, each antibody in our libraries were derived from a functioning, natural immune system.

In this way, we hope to capitalize on millions of years of evolution to provide us with efficient

antibody libraries that will allow us to quickly discover new functional antibodies.

More concretely, our primary approach for capturing antigen-antibody (Ag-Ab) interactions

involves placing single Ag-Ab complexes into individual emulsion compartments. In order to

properly display antibodies and antigens, there are several choices for each: phage, yeast, or

ribosome display, and whole viral particles (in the case of viral antigens). Ribosome display offers

the largest potential libraries and is fully in vitro. Phage display is the oldest method and provides

large library sizes. Yeast display offers the smallest library sizes, but is particularly appropriate

for antigen libraries as it can carry larger payloads and has glycosylation machinery [128]. Use

of whole virus particles provides access to the most realistic antigens but has a potentially large

genome. It is important to note that because we are cloning naturally expressed repertoires, we

expect that the maximum library size of all of these technologies will be sufficient to capture

the diversity of sequences in any practical blood samples or antigen sets. Phage-Ab against

yeast-Ag has already shown promising results for a general approach to library-against-library

selections [27]. The yeast is well suited to larger protein fragments, the two systems can replicate

independently, and there are already protocols published. We also believe that ribosome-Ab

against ribosome-Ag hold significant potential, as this system is entirely in vitro. This allow us to

attempt coupling methods that do not depend on emulsions.

Phage-based systems appear to be more geared toward emulsion-based methods for cap-
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turing interacting antibodies and antigens. Possibly after several rounds of affinity selection,
phage-Ab-yeast-Ag duplexes can be "double-purified" using magnetic sorting or FACS to elim-

inate non-interacting particles [27, 28]. These duplexes can then be placed into individual

emulsion compartments where some type of cross-linking PCR reaction will physically asso-

ciate the Ag and Ab coding sequence. These cross-linked species can then be prepared for

next-generation sequencing and the interactions determined by analyzing the sequencing data.

In the case that the Ag used is whole virus particles, the genome sequence can be relatively large.

However, if the library of viruses is relatively small, it is sufficient to find a unique "barcode" to

identify the specific strain of virus.

For the fully in vitro ribosome display system, in addition to the emulsion based protocol,
there are possibilities for non-emulsion methods. For example, proximity ligation assay [129]

offer an opportunity to capture unique tags on both Ag and Ab libraries. These tags can be

engineered to supply enough information to obtain the full corresponding sequences.

6.3 Analyzing HTS fitness experiments: an experiment

in crowdsourcing

We realized that the experimental approach used in PhIP-seq was becoming applicable in many

other contexts. At its core, the goal is to find a small subset of a large population that exhibits

some sort of significant fitness advantage in relation to a particular assay. In the case of PhIP-seq,
the library is every protein-coding peptide and the fitness is binding affinity to autoantibodies;

in other cases, it may be a small RNA library with the fitness being growth rate or viral resis-

tance. We decided to approach the problem more generally, and to attempt to develop the best

statistical methodology that is both accurate, and efficient.

We developed a general model for this type of experimetal design, and encoded it as a proba-

bilistic graphical model (Figure 6.4). We believe this particular type of model is common thanks

to developments in HTS, but there do not exist adequate statistical methods for it. In addition

to inferring a hidden underlying "fitness" value for each member of the population, the model

allows for the observation of multiple time points in the selection experiment.

We implemented a Gibbs sampler to perform inference on this model; however, as this

method does not scale well to very large populations, we initiated a collaboration with Harvard

Catalyst to solve the problem through TopCoder. This is a platform for running algorithm

competitions for client-contributed problems. Using our PGM, we generated many instances

of the problem using multiple underlying fitness distributions and sampling depths (Figure 6.5).
We developed a scoring model that optimizes for correctly determing the library members with
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Figure 6.4: Bayesian network for fitness estimation. The only observed variables are the count

vectors Xi, which are assumed to be multinomially distributed with probability vector O6. These
vectors are Dirichlet distributed with information derived from the previous observed counts

along with the underlying fitness values w, which are the values we are ultimately interested in.

the most extreme fitness values. (Effectively, this ranks the most promising library members for

laboratory follow-up.)

We recently received the results of the competition, and are currently analyzing the different

algorithms that were submitted.
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different distributions, and determine the quality of solutions using our Gibbs sampling method.
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