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Abstract

A major question for climate studies is to quantify the role of turbulent eddy fluxes in
maintaining the observed atmospheric mean state. It has been argued that eddy fluxes
keep the mid-latitude atmosphere in a state that is marginally critical to the deepest
mode of baroclinic instability, which provides a powerful constraint on the response of
the atmosphere to changes in external forcing. A similar criterion does, however not
hold in the Southern Ocean, a region whose dynamics are otherwise very similar to
the mid-latitude atmosphere. This thesis resolves this apparent contradiction, using a
combination of theoretical considerations and eddy-resolving numerical simulations.

It is shown that the adjustment of the extra-tropical troposphere to states of
marginal criticality does not follow from a fundamental constraint, but is rather
the result of the particular parameters characterizing Earth's troposphere. Both
marginally critical and strongly supercritical zonal mean flows can be obtained in
planetary atmospheres if external parameters are varied. We argue that changes in
the equilibrated mean state over a wide range of simulations can better be understood
in terms of a balance between the diabatic forcing and the eddy driven overturning
circulation. Using a diffusive closure for the eddy flux of potential vorticity, we can
relate the eddy-driven overturning transport to properties of the mean flow, and
derive scaling relations for both the baroclinicity and vertical stratification of the
equilibrated state.
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Title: Breene M. Kerr Professor of Oceanography
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Chapter 1

Introduction

1.1 Background

The extra-tropical atmosphere, as well as large parts of the ocean, are filled with

turbulent motions on a variety of scales. The largest and most energetic eddies in the

atmosphere have scales in excess of 1000km, while the large eddies in the ocean are

typically on the order of 100km in size. These large-scale geostrophic eddies play a

critical role in the climate system, as they are a major contributor to the transport of

heat and other properties. In particular, almost all the atmospheric transport of heat

from the subtropical latitudes to the polar regions, is achieved by turbulent eddies

and waves.

Understanding the character of these eddy transports is crucial if we want to

understand the response of the planets climate, and in particular the equator-to-

pole temperature gradient, to changes in the external forcing, such as encountered

with past and future climate change. Heuristic arguments have been put forward

to predict the turbulent adjustment to changes in the external forcing, both for the

atmosphere and the ocean. Surprisingly the arguments put forward for the two fluids

are remarkably different, despite the dynamical similarities between the two fluids.

The goal of this thesis is to revisit the arguments developed for the atmosphere and

explore how generally they hold, and why they seem to break down in the ocean.

The nature of the turbulent fluxes in the atmosphere changes with the latitude
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under consideration. In the tropical troposphere, the saturated moist entropy is well

mixed in the vertical: this well homogenized state is marginally critical to convective

instability and turbulence acts to maintain the system in equilibrium. The implication

is that whatever the changes in external forcing, the turbulent fluxes will respond so

as to keep saturated moist entropy homogeneous.

The problem is more complex in the midlatitude atmosphere. Here the turbulent

eddies originate from baroclinic instabilities of the mid-latitude jets, and feed on the

available potential energy associated with the equator-to-pole temperature gradient.

Unlike convective instability, which primarily redistributes properties in the vertical,

baroclinic eddies redistribute entropy and momentum both in the horizontal and in

the vertical. There is no agreed upon theory on how the baroclinic flow equilibrates,

and this is the topic of this thesis. A common argument is that, in analogy to the

tropical problem, the turbulent eddy fluxes keep the mid-latitude atmosphere in a

state that is marginally critical to baroclinic instability. The prediction has some

observational support in the atmosphere (Stone, 1978), though the generality of the

argument has been challenged by some numerical studies (e.g. Panetta and Held, 1988;

Thuburn and Craig, 1997; Barry et al., 2000; Zurita-Gotor, 2008). Most puzzling is

the fact that the marginal criticality condition is not satisfied in the Southern Ocean,

even though this ocean is characterized by a reentrant baroclinically unstable current

and is dynamically very similar to the mid-latitude atmosphere. Yet, the failure of

the marginal criticality argument for the ocean has not received much attention.

The original argument for baroclinic adjustment, as advocated by Stone (1978),

is based on the condition for marginal criticality in the two layer quasi-geostrophic

(QG) model, which can be written as

fs
O H

where ( is the criticality parameter, H is the lower layer depth, s is the slope of the

interface, f is the Coriolis parameter and # = Byf. Condition (1.1) states that the QG

PV gradient in the lower layer vanishes due to a cancellation between the planetary
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vorticity gradient # and the "thickness" gradient L. If H is assumed to scale as

the tropopause height and s is the isentropic slope in the atmosphere, then condition

(1.1) predicts that in a marginally critical state isentropes leaving the surface in the

subtropics will reach the tropopause at about the pole, which is in general agreement

with the observed state of the atmosphere.

The theory of baroclinic adjustment is very appealing, but some limitations need

to be considered. First, any argument for adjustment to marginal criticality requires

that the time-scale of the turbulent equilibration is fast compared to the time-scale

over which the system is restored to an unstable state by the external forcing. The

thermal structure of the atmosphere is restored by radiation, which acts on a time-

scale on the order of tens of days. This is much longer than the time required by

convection to stabilize the stratification in the tropics, making convective adjustment

a very powerful constraint. Eddies in the extra-tropics, however, act on a time-scale

comparable to the radiative restoring, and do not satisfy the baroclinic adjustment

condition (e.g. Barry et al., 2000).

Second, the marginal criticality condition as formulated in Eq. (1.1) is specific to

the two-layer model and it is not clear to what extent it can be applied to continuously

stratified models. One obvious approach to generalize the two-layer model result to

the continuously stratified problem, is to make use of the fact that the two level QG

equations accurately describe the behavior of the barotropic and first baroclinic mode

of the continuously stratified system. The condition in Eq. (1.1) therefore implies

more generally a threshold for the stability of the deepest interior modes. However,

shallower modes, and in particular surface-intensified "Charney" modes, which are

thought to play an important role in Earth's atmosphere, may still be unstable, even

if (< 1.

Held (1978, 1982) proposed an alternative argument for the equilibration of the

extra-tropical atmosphere, based on the vertical extent of Charney modes in a con-

tinuously stratified QG model. The argument does not rely on the assumption that

the atmosphere is marginally critical, but arises from the vertically integrated zonal

momentum budget of a turbulent atmosphere. He notes that the zonal momentum
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budget constrains the eddy PV flux to extend vertically over the Charney depth

hCh = -. (1.2)

If the height of the tropopause is given by the vertical extent of these eddy fluxes, i.e.

H - hch, Eq. (1.2), directly implies a criticality parameter around one. In general,

however, the tropopause height is set by a more complex interplay between eddy fluxes

and the radiative restoring (Held, 1982). Eq. (1.2) then implies that significant eddy

fluxes are expected to extend over the entire depth of the troposphere if ( > 1, while

eddy fluxes are primarily confined to a shallow layer near the surface if ( < 1, which

may ultimately render eddy transports ineffective in this limit.

Held's result is akin to the relation between the criticality parameter and the

vertical structure of the eddy diffusivity pointed out by Green (1970). Using a diffusive

closure for the eddy fluxes of QG PV, the zonal momentum budget puts a constraint

on the vertical decay of the eddy diffusivity rather than the eddy flux itself. As shown

in Green (1970) the eddy diffusivity has to decay in the vertical over the depth of

the troposphere for any finite criticality parameter. For ( ~ 1 the eddy diffusivity

needs to decay from its surface value to about zero at the tropopause. For ( < 1 the

eddy diffusivity needs to decay over a depth scale much smaller than the tropopause

height, while only little vertical structure is required if > 1. This raises the question

of what determines the vertical structure of the eddy diffusivity, and whether it can

change to allow for changes in the criticality parameter.

Schneider (2004) argues that the result of Green (1970) is specific to the QG ap-

proximation, and a different result is obtained from the vertically integrated zonal

momentum budget in primitive equations. He integrates the isentropic zonal momen-

tum budget from the surface to the tropopause and uses a diffusive closure for the

eddy fluxes of PV and surface potential temperature. Unlike in the QG approxima-

tion, he finds that the vertically integrated zonal momentum budget can be closed

with a vertically constant eddy diffusivity. Moreover, he argues that this assump-

iGreen (1970) does not explicitly talk about the "criticality parameter", but introduces a param-
eter -y which is essentially the inverse of the criticality parameter as used in this thesis.
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tion directly implies that the criticality parameter needs to be close to one. The

adjustment of the extra-tropical atmosphere to states with ( ~ 1 is thus argued

to result directly from the vertically integrated zonal momentum budget, if eddies

mix PV at an approximately constant rate throughout the depth of the troposphere.

The difference between Schneider's (2004) result, and the one obtained using the QG

approximation, is argued to stem from an inadequate representation of isentropic

intersections with the surface in the QG equations. Notice, that Schneider's (2004)

result resembles the marginally criticality condition of Stone (1978), but it does not

require (or imply) marginal criticality to baroclinic instability of the full, continuously

stratified, primitive equation system.

Schneider's (2004) result seems to put a strong upper bound on the criticality

parameter. Supercritical flows are in general assumed to be associated with a strong

barotropization of the turbulent eddies (Rhines, 1979; Held and Larichev, 1996).

Should ( be larger than one, the turbulent eddies would be expected to be strongly

barotropic, implying that the eddy diffusivity is approximately constant in the verti-

cal. This results in a contradiction, because Schneider (2004) claims that ( ~ 1 if the

eddy diffusivity is depth independent. Schneider concludes that strongly supercriti-

cal states cannot be achieved in primitive equation systems (Schneider and Walker,

2006).

An important implication of the limitation of the criticality parameter ( to order

one is that turbulence in planetary atmospheres would be prevented from producing

a significant up-scale energy transfer. The latter relies upon a separation between

the deformation scale, at which turbulent eddies are generated through baroclinic

instability of the zonal flow, and the halting scale, which has to be larger than the

scale of the instability. Held and Larichev (1996), using the two-layer QG model, show

that such a scale separation is contingent on ( being larger than one. In agreement

with the observation that the criticality parameter is close to one, no significant

separation between the scale of the instability and the halting scale appears to exist

in Earth's atmosphere (e.g. Merlis and Schneider, 2009, and references therein).

The marginal criticality arguments reviewed above are quite general and may be
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expected to apply to baroclinic flows in atmospheres as well as in the ocean. The

Southern Ocean is a good test case, because it is characterized by an uninterrupted

circumpolar flow, the Antarctic Circumpolar Current (ACC) - ocean flows at other

latitudes are blocked laterally by continents resulting in a different equilibration prob-

lem. Analogous to the mid-latitude atmosphere, dynamic fluxes of entropy and mo-

mentum are here dominated by turbulent eddies arising from baroclinic instability of

the mean zonal current (e.g. Karsten and Marshall, 2002, and references therein). One

should therefore expect the arguments for baroclinic adjustment to hold in the ACC

region. However, observations and numerical models of the Southern Ocean show

that the ACC region is supercritical, with QG PV gradients much larger than /,

and also displays an up-scale energy transfer due to nonlinear eddy-eddy interactions

(Scott and Wang, 2005; Tulloch et al., 2011).

The goals for this thesis are to (1) resolve the apparent contradiction between

theories for the equilibration of the extra-tropical atmosphere and the observed equi-

libration of the Southern Ocean, (2) develop a more general understanding of how

turbulent eddies equilibrate an atmosphere, and (3) analyze in how far results ob-

tained from QG theory can be applied to primitive equation systems.

1.2 Outline

The main body of this thesis is composed of 5 chapters, the first 4 of which represent

separate papers that have either been published or are in preparation for publication.

Chapter 2 appeared in the Journal of Atmospheric Sciences (Jansen and Ferrari,

2012) and is here reproduced identically, save for cuts in the introduction2 . Chapter

3 is currently in revision for publication in the Journal of Atmospheric Sciences, and

chapters 4 and 5 are in preparation for submission. The topics of each chapter as well

as their connections are outlined in the following.

Chapter 2 uses the observed difference in the adjustment of the extra-tropical at-

mosphere and Southern Ocean as a motivation for a series of idealized simulations in

2The American Meteorological Society maintains the copyright for this chapter.
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which fluid properties are varied to span air-like and water-like characteristics. The

parameter that will be controlled is the thermal expansion coefficient, which deter-

mines the buoyancy contrast associated with a given temperature contrast. Tem-

perature contrasts between water masses in the ocean are comparable to those in

the atmosphere, but the associated buoyancy contrasts are much smaller due to the

much smaller thermal expansion coefficient of sea water. It will be shown that by

varying this parameter we can obtain mid-latitude atmosphere-like, marginally crit-

ical states, as well as significantly supercritical states, which resemble some of the

properties observed in the Southern Ocean.

The ability to obtain marginally critical as well as supercritical mean states, by

varying only the thermal expansion coefficient of the fluid, calls into question the

generality of theories which argue for baroclinic adjustment of the extra-tropical at-

mosphere to marginal criticality. Apart from being specific to the two layer model,

Stone's (1978) argument for baroclinic adjustment to marginal criticality is expected

to hold only as long as the time-scale over which eddies mix properties across the

baroclinic zone is much shorter than the time-scale of radiative restoring. This as-

sumption is already violated for typical atmospheric conditions, and becomes even

more inapplicable in simulations with small, ocean-like, thermal expansion coeffi-

cients, which cause much weaker eddy velocities. The breakdown of Stone's (1978)

result, for the simulations discussed in chapter 2 is thus not particularly surprising.

The theory of Schneider (2004), however, results from a fundamental constraint on

the zonal momentum budget and ought to hold for any choice of parameters.

The argument for the turbulent equilibration of atmospheres to states of marginal

criticality, brought forward by Schneider (2004), is reviewed in chapter 3. Schnei-

der's (2004) theory is based on the vertically integrated zonal momentum budget in

isentropic coordinates, closed with a diffusive closure for the eddy fluxes of PV and

surface potential temperature. The result obtained by Schneider (2004), however,

depends crucially on his definition of mean and eddy fluxes on isentropes which inter-

sect with the surface. It is argued that this definition is unphysical, and the applied

diffusive closure is not supported by numerical simulations. Instead, we argue for
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an alternative definition, first proposed by Koh and Plumb (2004). Following this

approach, it is shown that the zonal momentum budget cannot be closed with a ver-

tically constant eddy PV diffusivity, in agreement with results found using QG theory

(Green, 1970). Order one criticalities are obtained if the eddy diffusivity decays from

its surface value to about zero over the depth of the troposphere, which is likely to be

the case in Earth's atmosphere. Large criticality parameters, however, are possible if

the eddy diffusivity decays only weakly in the vertical, consistent with results from

QG models. This helps to explain the numerical studies discussed in chapter 2, as

well as other studies which have found supercritical mean states in primitive equation

models (Zurita-Gotor, 2008; Zurita-Gotor and Vallis, 2010).

The revised relation between the criticality parameter and the vertical structure

of the eddy diffusivity is tested against atmospheric re-analysis data and numerical

simulations in chapter 4. Analyis of re-anaysis data confirms the predicted vertical

decrease in the eddy diffusivity over the extra-tropical troposphere. The relation is

further supported quantitatively in a series of numerical simulations with varying

Coriolis parameter, f, and planetary vorticity gradient, 3. Changes in these parame-

ters prove to be an efficient way to obtain mean states with a wide range of criticality

parameters from ( ; 1 to ( >> 1. In agreement with the results of chapter 3, these

changes in the criticality parameter are associated with correspondingly large changes

in the vertical structure of the eddy diffusivity.

Chapters 2 through 4 show unambiguously that large-scale turbulence does not

generally adjust an atmosphere to states of marginal criticality. In chapter 5 we thus

return to the challenge of predicting how the atmospheric baroclinicity and stratifi-

cation adjusts in response to changes in the forcing or other external parameters. We

argue that changes in the criticality parameter can best be understood in terms of a

balance between the diabatic forcing and adiabatic eddy fluxes. Using the diffusive

closure for the eddy fluxes proposed by Held and Larichev (1996), one can derive a

predictive scaling argument for the criticality parameter. The derived scaling rela-

tion reproduces the numerical results discussed in chapters 2 and 4. Finally, we will

argue that the scaling relation can be extended to predict both the equator to pole

28



temperature gradient, and the bulk static stability.

In chapter 6 we return to a brief comparison between our results for the turbulent

equilibration of an atmosphere and the corresponding equilibration problem of the

Southern Ocean, which motivated this thesis. It will be shown that the fundamental

arguments applied in this thesis are similar to those that have been used in the

oceanographic literature. Chapter 7 summarizes the results of this thesis and provides

some concluding remarks.
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Chapter 2

Transition to Supercriticality in a

Primitive Equation System

2.1 Introduction

It has been argued that eddy fluxes keep the mid-latitude atmosphere in a state that

is marginally critical to baroclinic instability, which provides a powerful constraint

on the response of the atmosphere to changes in external forcing (e.g. Stone, 1978).

However, no comparable criterion appears to exist for the ocean. This is particularly

surprising for the Southern Ocean, a region whose dynamics are very similar to the

mid-latitude atmosphere, but observations and numerical models suggest that the

currents are supercritical. This chapter aims to test the generality of the idea of

adjustment to marginal criticality, making use of our knowledge of the difference

between the equilibration in the atmosphere and ocean.

When comparing ocean and atmospheric jets, two differences are most apparent.

First, the ocean is primarily driven mechanically by surface wind stresses, while the

atmosphere is a heat engine driven by differential heating throughout the troposphere

(e.g. Wunsch and Ferrari, 2004). Second, the two fluids have different properties (den-

sity, compressibility, ...). In this chapter we will focus on the second difference. All

simulations use an atmosphere-like thermal forcing. Nevertheless, it will show that

by varying only fluid properties it is possible to obtain atmosphere-like, marginally
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critical states, as well as more ocean-like, supercritical states. This shows that su-

percritical mean states can be obtained in thermally forced systems, if only external

parameters are varied, calling into question the generality of the theory of atmospheric

adjustment to marginal criticality.

We will consider an idealized, thermally forced, zonally-re-entrant, channel con-

figuration, using a Boussinesq fluid. Within the idealized framework of a Boussinesq

fluid, differences in the fluid properties between air and water are captured by the

very different thermal expansion coefficients. Motivated by the observed differences

between the atmosphere and ocean, we will therefore consider thermal expansion co-

efficients spanning from atmospheric (air) to oceanic (water) values. It will be shown

that eddies become ineffective at maintaining the system in a marginally critical state

in the more ocean-like limit of small thermal expansion coefficients.

The role of the thermal expansion coefficient in setting dynamical properties of

the system will be discussed in section 2.2. In section 2.3 we introduce a theoretical

framework for the eddy-equilibration of an idealized thermally forced Boussinesq sys-

tem, using primitive equations in isentropic coordinates. In section 2.4 we present a

series of numerical simulations using a diabatically forced, primitive equation model

in a channel configuration. It is shown that marginally critical as well as supercritical

states can be found simply by varying the thermal expansion coefficient. A summary

and discussion of the results is offered in section 2.5.

2.2 Representation and Implications of Fluid Prop-

erties in an Idealized Boussinesq Framework

We idealize the problem of turbulent adjustment by considering a Boussinesq fluid in

a thermally forced zonally re-entrant channel. This configuration maintains all the

physics that are essential to test the ideas discussed in the introduction, while omitting

some of the complicating factors found in real geophysical fluids. In particular, it

allows us to continuously vary fluid properties from atmospheric to oceanic values,
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without changing the dynamical equations.

Fluid differences enter the dynamical equations only via the equation of state,

which in the Boussinesq system becomes an equation for buoyancy. Consistent with

the Boussinesq approximation, buoyancy is assumed to depend linearly on potential

temperature only, i.e.

b = ga(0 - 0o), (2.1)

where 60 is some reference potential temperature and a = -1 is the thermal ex-p DO

pansion coefficient. Within the Boussinesq approximation, the differences between

air and water are thus captured by the thermal expansion coefficient a (the dynamics

depends only on gradients of buoyancy and are thus independent of the reference

potential temperature 0). For typical oceanic conditions the thermal expansion co-

efficient is about a ~ 1 - 3 x 10- 4 K- 1 . For a dry atmosphere, where the equation

of state is well approximated by the ideal gas law, on the other hand

a = = ~ 3.6 x 10- 3K- 1 , (2.2)

where the partial derivative is to be taken at constant pressure, and we assumed

a typical potential temperature 0 ~ 280 K. The thermal expansion coefficient of

air is thus about 10-40 times bigger than that of ocean water. Since planetary-scale

potential temperature contrasts are of similar order in the atmosphere and ocean (due

to the strong coupling between the two fluids), the much larger thermal expansion

coefficient causes buoyancy contrasts to be about 10-40 times larger in the atmosphere,

resulting into much stronger circulations.

One of the key differences between the mid-latitude atmosphere and the Southern

Ocean are the different deformation scales, which are largely set by the different

thermal expansion coefficients of the two fluids. Assuming that the stratification is

approximately constant in the vertical, and using the linear equation of state (2.1),

the deformation radius scales as

vvbH v/gav6H (2.3)
f f
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where Avb and AO denote the vertical buoyancy and potential temperature dif-

ferences and H is the depth of the troposphere or the thermocline. The vertical

temperature differences are of the same order as the horizontal ones, and they are of

the same order in the atmosphere and ocean. Hence the difference in the deformation

radii between the atmosphere and the ocean arise from two main parameters: the

large differences in the thermal expansion coefficients and the different depth scales.

a is about 10-40 times larger in the atmosphere than in the ocean, while H is - 10km

for the troposphere but only ~1km for the ocean's thermocline. Together these dif-

ferences account for the observation that the deformation scale of the atmosphere is

larger than that of the ocean by a factor of v100 - v400 10 - 20.

2.3 Macroturbulent Adjustment in an Isentropic

Framework

We introduce a theoretical framework to address the question of how macroturbu-

lence sets the equilibrated thermal structure of a thermally forced primitive equation

(PE) system. The discussion will be presented in the framework of the full primitive

equations expressed in isentropic coordinates. A simplified derivation based on the

QG approximation is given in appendix A. While the QG-based discussion has some

obvious shortcomings, it captures the essence of the results derived below. On a first

reading, one might therefore skip to appendix A and then proceed directly to the

numerical simulations discussed in section 2.4.

We will first discuss dynamical constraints on the zonal momentum balance in-

spired by the work of Koh and Plumb (2004) and Schneider (2004, 2005). Departing

from Schneider (2004), who integrates the zonal momentum budget over the whole

depth of the troposphere, we will integrate only to the top of the Surface Layer (SL),

i.e. that part of the atmosphere that includes all isentropes that intersect with the

surface at some longitude or time, as sketched in Fig. 2-1. (The reasons for this will

be discussed later.) In order to close the SL momentum budget we will derive an
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Figure 2-1: Sketch of the Surface Layer (SL). The undulating bottom surface of

the atmosphere shown in the longitude-potential temperature (x,6) plane. The SL

comprises all isentropes that intersect with the surface at some longitude and time.

additional constraint for the total meridional mass transport in the SL. Armed with

these two constraints, we will be able to relate the turbulently adjusted mean state to

the radiative forcing. For simplicity all arguments and simulations presented here as-

sume a Boussinesq fluid in a flat-bottomed re-entrant channel configuration. Notice,

however, that the same qualitative results are obtained for an ideal gas atmosphere

on a spherical planet.

2.3.1 Dynamical constraint: the zonal momentum balance

We start with the vertically integrated, temporal and zonal mean isentropic zonal

momentum balance discussed in Schneider (2005). For a Boussinesq fluid in a statis-

tically steady state in the limit of small Rossby numbers (appropriate for large scale

ocean and atmospheric flows), this can be approximated as

Ib _ b h___+SPf

hov~db ~ - _, F*g _
Kh-*db b jfi +hbJIY -db - vf b 24

fbm f P* * q) (2.4)

where v is the full meridional velocity and vg, is the meridional geostrophic velocity

at the surface, b is buoyancy, b, the surface buoyancy, bmin the minimum buoyancy

in the domain and bi a buoyancy level above the SL. hb = 'H(b - b,)Obz is the isen-

tropic thickness and z the height of the isentrope b. The thickness is multiplied by
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the Heaviside function so that it vanishes when isentropes intersect the ground. The

potentiaf vorticity is P = f, consistent with the small Rossby number assumptioni.
abZ'

J represents frictional forces. The overbar 0 denotes an isentropic zonal and tem-

poral average, 0* = hb(/hb is the thickness weighted zonal average, and U" denotes

a zonal and temporal average along the surface. Primes denote departures from the

zonal averages and hats departures from the thickness weighted averages.

Eq. (2.4) looks similar to its QG analogue: Eq. (2.A2) derived in appendix A by

averaging the zonal QG momentum budget. It states that the net volume transport

(or "residual transport") between the surface and the isentropic surface bi is driven by

the interior meridional PV flux P , and the surface geostrophic buoyancy flux, v 8 b' .

Hence QG theory can be used to qualitatively understand the momentum budget of

a baroclinic jet. There are, however, important quantitative differences between the

PE and QG budgets. In QG, the SL is infinitesimally thin and contributes only the

buoyancy flux, while the PV flux acts only in the interior. In PE, the SL spans up to

half of the troposphere in the real atmosphere (e.g. Schneider, 2004). In particular,

the surface buoyancy flux represents the eddy form drag generated by outcropping

isentropes in the SL.

In order to transform Eq. (2.4) into a constraint for the mean variables, we need

a closure for the eddy fluxes of PV and surface buoyancy. Mixing length arguments

(Rhines and Young., 1982), and numerical studies (e.g. Pavan and Held, 1996), suggest

that the eddy fluxes are down their mean gradients, such that

OP -DB P* , vb' = -Dybs" , (2.5)

with an eddy diffusivity D that, for simplicity, is here assumed constant in the vertical.

As discussed in Appendix B, all the key relationships derived below are recovered if

'In the following we are also neglecting the contribution of the mean-flow vorticity gradient to
the mean PV gradient. If the mean flow is primarily baroclinic, this is equivalent to assuming a
small Burger number for the mean flow, which is also appropriate for the large-scale flow in the
atmosphere and ocean. In the presence of strong barotropic jets, the vorticity gradient associated
with the mean jets can become more significant locally, but this contribution approximately vanishes
when averaging over the width of the entire baroclinic zone.

36



we allow for vertical variations in the eddy diffusivity, with D replaced by a bulk eddy

diffusivity which tends to be dominated by its near surface value. Ignoring frictional

forces, which are small in the free troposphere (Schneider, 2005), the isentropic mass

flux equation (2.4) becomes

hJ U*db ~ D _, db + _, _8 DOab 8
8 . (2.6)

bmi bt P Ph (b )

Using that P = f/ 9bz and hb = 7(b - b,)&bz, the thickness weighted average of

PV can be written as P*= hbP/h, ~ 7R(b - b)f/hEb = Hf/hb, where II = 'H (b - b,)

denotes the fraction of the isentrope that is above the surface2 . We can now rewrite

the first term on the R.H.S. of Eq. (2.6) as

bi h 8,P* n 
_ _ _, dKb- aBh+ - _, lU)db

bmi P bm f P
/3 f

= -z(bi) - 8uf(bi) - -* b,
f P (b8 )

~ ( - 8(b) - _* 8 . (2.7)
f P a(b) F

The approximation in the last step can be formalized by expanding variables around

b3, following a similar derivation for the surface buoyancy flux term sketched in Schnei-

der (2005, Eq. (11)). Using the relationship in Eq. (2.7), Eq. (2.6) can now be written

as

WQ(bi) ~~ D s(bi) - 1(bi) (2.8)

where s(bi) = By-,(bi) denotes the slope of the isentrope bi and IFQ(bi) =- f hU*db

is the isentropic overturning streamfunction (the subscript Q reminds that WQ is

related to the diabatic forcing Q, as discussed below).

Eq. (2.8) states that the net isentropic mass transport in the SL is proportional

2 Notice that we here use the PV definition used by Koh and Plumb (2004) or "convention II"
discussed by Schneider (2005). However, if it is assumed that the isentropic slope varies little over
the depth of the SL, "convention I" of Schneider (2005) yields a result very similar to Eq. (2.8)
except for an additional factor of 3/2 in front of the slope on the R.H.S.. Notice however that, as
will be discussed below, the differences do become crucial if the integration is taken over the whole
depth of the tropopause instead of over just the surface layer, as done in Schneider (2004).
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to the eddy diffusivity times an effective SL PV gradient, which is given by the sum

of the vertical integral of the planetary vorticity gradient and the isentropic slope at

the top of the SL. This effective SL PV gradient is similar to the PV gradient in the

bottom layer of a layered QG model, supporting the interpretation that the lower

layer of a two-layer QG model might be regarded as representative of the SL. The

effective PV gradient in this layer is generally dominated by the contribution of the

surface potential temperature gradient, appearing on all isentropes in the SL. Note,

however, that the vertical extent of the SL is not fixed (as in a layered QG model)

but can adjust e.g. to changes in the forcing.

Notice, that our approach differs from Schneider (2004), who stretched the integral

in (2.6) all the way to the tropopause, where WPQ(bt) = 0 by definition, and obtained

the condition that the criticality parameter has to be close to one. However, the result

obtained by integrating Eq. (2.6) all the way to the tropopause depends crucially on

assumptions for computing PV on isentropes below the surface (which Schneider

(2005) refers to as "conventions I and II"), and on the vertical structure of the eddy

diffusivity under the respective conventions. By integrating (2.6) only over the SL,

our result does not depend on these somewhat arbitrary "conventions" or on the exact

vertical structure of the eddy diffusivity.

In the limit of weak diabatic circulation, i.e. IIQ/D| < s(bi)|, the relation (2.8)

simplifies to a statement analogous to the marginal criticality condition of the two

layer QG model, with the layer depth given by the depth of the SL, i.e.

fs(b)~ 1 (2.9)
3i-bi )

Similar to the marginal criticality condition of the two layer QG model, Eq. (2.9)

states that the effective PV gradient integrated over the SL has to vanish. The SL thus

becomes the analogue to the lower layer in the two-layer QG model. The relevance

of this limit for typical atmospheric conditions will, however, be questioned in the

following section, where we will derive a scaling for the diabatic circulation IQ and

show that TQ/D is typically not small compared to s(bi).
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2.3.2 Thermodynamic constraint: isentropic mass budget

A relation between the isentropic mass transport and the diabatic forcing can be

derived from the time and zonal mean continuity equation in isentropic coordinates

8l(hbV) + b(hbQ) = 0, (2.10)

where Q = denotes the diabatic forcing. Eq. (2.10) can be integrated meridionally

and vertically to yield

TQ(y, bi) - hbv(y, b')db' = hQ(y', bi)dy', (2.11)

where we used that hb vanishes on sub-surface isentropes and thus hbQ(y, bmin) = 0

for all y. Here y, denotes the southernmost latitude where the isentrope bi intersects

with the surface, or the southern boundary of the channel if it does never intersect

the surface.

By integrating (2.11) from y. to the northern boundary of the domain ymnax, we

can further show that in equilibrium the net heating along an isentrope has to vanish,

3
so that we can replace the diabatic heating in the SL by the diabatic cooling above3.

We thus have

/yVmax Y'TIQ(y, bi) J hbQ(y', bi)dy' = - hbQ(y', bi)dy' ~ - fhQ(y', bi)dy',

(2.12)

where yt(bi) denotes the latitude at which the isentrope bi intersects with the tropopause.

Eq. (2.12) is derived assuming that the net heating over a certain buoyancy class hbQ

is negligible above the tropopause, an assumption equivalent to assuming that the

isentropic mass transport is small above the tropopause, which is confirmed in the

simulations discussed below and in atmospheric analysis (e.g. Bartels et al., 1998, Fig.

1). If bi is chosen to be the buoyancy just above the SL, the relationship in (2.12)

3 Notice, that we here assumes an isentrope which intersects with the surface somewhere in the
domain. Since the stratification becomes very weak near the southern end of the domain in the

simulations discussed here, this holds true for almost all isentropes in the domain (see figure 2-5).
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implies that the overturning Io(bi) at the top of the SL is given by the integrated

cooling along the isentrope bi above the SL. This cooling must be balanced by a simi-

lar warming within the SL. WPQ is thus given by the total amount of heat transported

out of the SL and into the interior within the buoyancy class bi.

Eq. (2.12) can now be used to derive a scaling for the diabatic overturning stream-

function Wo. Let us assume that the diabatic forcing can be represented by a radiative

relaxation, that is Q ~ -(b - beq) /Tr with a restoring time scale r, to an equilibrium

buoyancy beq. This is indeed the form of radiative forcing used in the simulations de-

scribed below and in many idealized studies of the atmosphere (e.g. Held and Suarez,

1994; Schneider, 2004). Using (2.12) we can then argue that

Abey I4Q ~ q, (2.13)
-rrzb

where 1 is the meridional length of the isentrope bi, and Abeq denotes the variation

of the equilibrium buoyancy along the isentrope bi (see Fig. 2-2 for a sketch). The

relation (2.13) assumes that the radiative imbalance b - beq along each isentrope above

and below the top of the SL scales with the variation of the radiative equilibrium

buoyancy along the respective isentrope Abeq, and is derived in detail in Appendix

C. Note, that Abeq is not fixed, but depends on the mean state and in particular on

the isentropic slope. However, changes in Abeq are small across all the simulations

discussed in this paper.

2.3.3 Implications for the equilibrium state and criticality

The scaling for IQ can be used to show that the condition (2.9) (which can be

viewed as a generalization of the QG marginal criticality condition, with the layer

depth replaced by the depth of the SL) cannot be expected to hold generally. The

requirement for Eq. (2.9) to hold is that -QQ < 1, which with (2.13) becomes
Ds(bi)

'IQ Abeq 1 Abeq l2 /D
Ds(bi) Dr,8b Ayb 1r(
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Figure 2-2: Sketch of the diabatically driven overturning circulation IQ. The solid
and dotted black lines denote isentropes of the mean and radiative equilibrium states,
respectively, with b3 - bEq3 > b2  bEq2 > bi bEql - The shading indicates the
surface layer, which at latitude y yr extends up to the buoyancy b = bi(y1). Note
that the net heating and cooling integrated along the isentrope bi over the distance 1
(that is from its intersection with the surface to its intersection with the tropopause)
approximately vanishes (see section 2.3.2.3.2 ).

Here Ab ~ lb denotes the horizontal buoyancy difference over the meridional ex-

tent 1 of the isentrope bi (note that the y-derivative is here taken at constant z).

Generally Abeq > A L because Abeq _ Iybeq since the vertical tilt of the isentropes

adds a positive contribution to the buoyancy contrast along an isentrope (if the restor-

ing profile is statically unstable), and Aybeq > A L since the meridional temperature

gradient is generally weaker than the temperature gradient in radiative equilibrium.

The relation (2.14) thus implies that the diabatic term qJQ/D can be small only if

< 1, that is the time-scale of eddy-diffusion over the length of an isentrope,

12 /D, has to be short compared to the restoring time-scale Tr,. Equivalently, the time

scale over which eddy fluxes modify the mean state needs to be fast compared to the

time-scale of diabatic restoring. This is not true for typical atmospheric conditions

and for the numerical simulations discussed below.

In typical atmospheric conditions and in the simulations described below, the

diffusive time-scale is not small compared to the radiative restoring time scale. In

this case the effective SL PV gradient does not vanish, because s(bi) - Ofnz(bj) ~

q/Q/D > 0 for the common situation where net warming in the SL is compensated by
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net cooling above. This further implies that the net isentropic slope will generally be

steeper than predicted by the condition s(bi) - 3f z(bi) = 0 (see Eq. (2.9)).

Our simulations suggest that typically L! >> 1 and the leading order balance

in the momentum budget (2.8) is between the diabatic overturning and the eddy

diffusivity acting on the thickness gradient integrated over the SL,

s(bi) ~ . (2.15)

The relation (2.15) has important implications for the criticality parameter defined

as

fs ,(2.16)
OHt

which is the form used in most studies on extratropical adjustment (e.g. Zurita-

Gotor and Vallis, 2011, and references therein). Here Ht denotes the depth of the

tropopause and s represents a characteristic isentropic slope (whose exact definition

varies in different studies). Interpreting s as the isentropic slope at the top of the SL,

(2.15) predicts

( ~ (2.17)
OHt D'

where WQ here denotes the net mass transport over the SL, which is generally found

to be close to the total overturning transport (e.g. Held and Schneider, 1999). For

any given planet (I fixed), the criticality parameter thus depends on the relation

between the forcing (and the associated IQ), the eddy diffusivity, and the depth of

the troposphere. Baroclinic adjustment theories, which predict constant , would

demand that D scales as I/Ht. This is, however, not what we find in the numerical

experiments analyzed below.

A slightly more general form of (2.15) can be used to compare the equilibration in

atmosphere-like and ocean-like settings. If the mechanical surface stress in Eq. (2.4)

is retained, a the more general scaling for the isentropic slope is obtained

s(bi) - Ek(2.18)
D
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For the atmospheric case 'JEk << I', which leaves us with the relation (2.15). In

a nearly adiabatic oceanic channel, on the other hand, IQ << WPEk, which leaves

us with the scaling s(bi) ~ - k. A scaling similar to Eq. (2.18) is discussed in

Marshall and Radko (2003) for the isentropic slope at the bottom of the mixed layer

in the ACC.

2.4 Transition to Supercritical States in a Channel

Model

The arguments presented above are tested by analyzing numerical simulations that

explicitly resolve the macroturbulence whose effect on the mean-fields we are trying

to understand. As in the theoretical discussion above, we idealize the problem by

considering a Boussinesq fluid in a zonally re-entrant channel model.

2.4.1 Model setup

We use a hydrostatic, incompressible, cartesian coordinate configuration of the MIT

GCM (Marshall et al., 1997). The geometry is a zonally reentrant channel, 15,000

km long, bounded meridionally by side walls with free slip boundary conditions at

y=± 4500km, and vertically by a rigid lid at z=H=10.2kmn and a flat bottom at z=0,

with free slip and no-slip conditions, respectively. We employ a vertical viscosity of

Vz = 10-1 m 2 s 1 and a diffusive convective adjustment scheme with a diffusivity of

r"" = 102 m2 s'. No explicit horizontal diffusion of temperature or momentum is

used, but a 4th order Shapiro filter (Shapiro, 1970) is employed to remove small scale

grid noise. The vertical resolution is 400m in the interior but refines to 50m at the

surface, adding up to a total of 29 levels. The horizontal resolution for all experiments

is 50km.

While details of the simulations can be sensitive to the model resolution, the bulk

quantities which are of primary interest here are found to be robust. The strongest

resolution dependence is expected for the most supercritical simulations with the
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smallest deformation radii. A simulation with doubled horizontal resolution suggests

that the criticality parameter decreases slightly (on the order of 10%) in this limit4 .

A small decrease in the criticality parameter for increased horizontal resolution is

to be expected due to reduced dissipation of EKE by the numerical filter (see also

Appendix D), but does not affect our conclusions.

We use a fl-plane, where the Coriolis parameter increases linearly as

f = fo + fy, (2.19)

whith fo = 1 x 10- 4 s- 1 and # = 1.6 x 10"m- 1 s 1 for all simulations presented in the

chapter. With this choice the Coriolis parameter varies strongly but stays positive

throughout the domain. We use the linear equation of state given in Eq. (2.1) with

varying thermal expansion coefficients.

The simulations are forced through relaxation to an equilibrium temperature pro-

file which is chosen to mimic some of the key features of radiative forcing in the

atmosphere. The potential temperature in radiative equilibrium is specified as a

function of y and z as

z3 22
6 eq = 9 min + A2O ( ) + e ; A6,(y) (2.20)

with 6 min = 233K, Az6 = 180K and h = 4km. The meridional dependence of the

surface temperature is given as

Ar O + AO6 for y < -L

A0,(y) = A6so + I'O (1 - sin(7ry/(2Lc))) for - Le y Lc (2.21)

AGO8  for y > Le

where AGo= 10K, AY6 = 80K and Lc = 3500 km. The resulting equilibrium poten-

4 The simulation used for this sensitivity experiment is discussed in chapter 4 and uses f =
8 x 10-4s-1 and # = 0.8 x 10- 1 1m-'s- 1. This is the most supercritical simulation considered in this
thesis and has a similar deformation radius to the simulation with the smallest thermal expansion
coefficient discussed in this chapter. The criticality parameter in this simulation decreased by about
13% in response to a doubling of the horizontal resolution.
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Figure 2-3: Equilibrium potential temperature for thermal restoring in K. (CI: 10K)

tial temperature section is shown in Fig. 2-3. It is characterized by a baroclinic zone

with a width of 7000 kni and an equilibrium meridional surface temperature differ-

ence of 80 K. The equilibrium potential temperature vertical gradient is everywhere

convectively unstable near the surface, while a stable radiative-equilibrium stratifi-

cation is prescribed at higher altitudes to mimic the radiative effects of ozone in the

stratosphere. The relaxation time-scale is chosen as rit = 50 days in the interior,

but decreases to r, = 14 days at the surface as

r(z)-' = + (1 1 - -e(z/h.)2  (2.22)

with an e-folding scale h, = 400m.

All simulations are spun up until a quasi-steady state is reached and statistics are

calculated as an average over at least 400 days after the equilibration is reached.

2.4.2 Results

We ran 8 simulations with thermal expansion coefficients varying from a = 1.6 x

10- 4 K- 1 to a = 1.44 x 10- 2K- 1 , thus spanning almost two orders of magnitudes in a

and one order of magnitude in deformation radii. a is varied by a factor of two between

all "neighboring" simulations, except for the last simulation with a = 1.6 x 10-4K-1,

a value 30% smaller than the previous to last run with a = 2.25 x 10- 4K-'. Any
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Figure 2-4: Snapshots of surface potential temperature (in K) for the simulations
with a = 1.44 x 10- 2K-1 (left) and with a = 1.6 x 10- 4K- 1 (right)

further reduction of a would cause the deformation scale to be under-resolved in the

model. Notice also, that for the Boussinesq equations to be an accurate description

of a physical fluid we need density variations to be small, such that |p - Pol/Po =

a(6 - Oo) << 1, a constraint that determined the upper bound for the thermal

expansion coefficient a.

Fig. 2-4 shows surface temperature snapshots fron the simulations with the small-

est and largest thermal expansion coefficients, after the initial equilibration period.

Both snapshots show turbulent behavior, though arguably more wave-like in the large

a simulation. Also evident is a reduction of the typical eddy scale, which is similar

to the domain scale for the largest a but significantly smaller for the smallest a.

The equilibrated time- and zonal-mean states of four representative simulations

with a = 2.25 x 10- 4K 1, a = 9.0 x 10- 4K 1 , a = 3.6 x 10- 3 K- 1 and a = 1.44 x

10-2K-1 are shown in Fig. 2-5. For a > 3.6 x 10- 3K1, we find that isentropes have

moderate slopes, such that isentropes leaving the surface close to the southern end

of the domain reach the tropopause close to the northern boundary. The baroclinic

eddy kinetic energy is large over a major part of the domain and the zonal winds,

which have a large barotropic component, change from westerlies in the southern part

of the domain to easterlies in the north, thus implying a southward eddy flux of zonal

momentum. Simulations with a < 9 x 10- 4 K- 1, on the other hand show at least

one pronounced westerly jet in the interior domain, co-located with a maximum in

EKE. Analysis of the temporal evolution of the jets (not shown), reveals that they
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Figure 2-5: Time- and zonal-mean fields of potential temperature (thick grey lines),
EKE (thin black lines), zonal wind (shading - in m/s) and the tropopause height,
defined as the height at which LO 10- Km-1 (thick black line), for simulationsdz
with varying thermal expansion coefficients a (see graph titles). The contour interval
for isentropes is 10K. Contour intervals for EKE are, from top left to bottom right:
40 m 2 s- 2 , 20 m 2 s- 2 , 10 m 2 s- 2 , 3 m 2 s 2 .

are largely stationary with only weak meandering. The time-mean plots in Fig. 2-5

are therefore qualitatively similar to the structure at any instance. The EKE, as well

as the strength and the width of the jets, gets smaller as a is reduced. The reduction

of kinetic energy is expected because the available potential energy in the equilibrium

state decreases with a as APE ~ (b"2 )H/(b,) ~ ga(O"2)H/(2), where () denotes a

domain-wide horizontal average and ()" denotes deviations from that average.

A prominent steepening of the isentropes over the troposphere is observed for

small thermal expansion coefficients, a < 9 x 10- 4 K-1 , a clear indication of changes

in the criticality. This is confirmed if we compute the criticality parameter as

f8,5f = o ,(2.23)
i3AvO

where Avr = O(Ht) - 6, denotes a bulk stability based on the potential tempera-

ture difference between the tropopause (here defined as the height at which d -
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10- 2Km- 1) and the surface5. The horizontal temperature gradient &9y# in (2.23) is

evaluated as an average over the lower half of the troposphere. Definition (2.23) has

the advantage that it is not sensitive to the choice of a particular level at which we

evaluate the isentropic slope. The results presented here, however, do not qualita-

tively depend on the exact definition used for the criticality parameter.

Fig. 2-6 shows the criticality parameter calculated as an average over the baro-

clinic zone between y=-3500km and y=3500km, and locally at the latitude of the

maximum EKE. The domain averaged criticality parameter seems to approach a

value close to 1 for large thermal expansion coefficients, but increases steadily for

values smaller than the atmosphere-like expansion coefficient aA = 3.6 x 10- 3K-1 .

The criticality parameter at the latitude of maximum EKE also increases as a is

decreased, but shows a much more irregular behavior with a large jump in between

the simulations with a = 1.8 x 10- 3K- 1 and a = 9 x 10- 4K- 1. Comparison with

Fig. 2-5 shows that this jump coincides with the emergence of an interior westerly

jet which is co-located with the maximum EKE.

Held and Larichev (1996) argue that the criticality parameter can be related

to the ratio between the deformation scale, where EKE is produced by baroclinic

instability, and the Rhines scale, where a possible up-scale energy transfer is halted.

In a marginally critical state the two scales ought therefore to be similar, resulting in

no significant up-scale energy transfer. We calculated the deformation scale according

to

Ld = -j" (8)i/2dz (2.24)
f

(which is consistent with the WKB approximation for the first vertical eigenmode),

and the Rhines scale as
EKE1/ 4

L,3= 27r T (2.25)
,31/2

where EKET denotes the barotropic EKE. Fig. 2-7 shows the domain averaged

deformation and Rhines scales for all simulations. Consistent with what we found for

5 Isentropes here tend to flatten out in the Ekman layer in our simulations. Hence we use the
model temperature above this Ekman layer, at a height of about 300m, as the "surface" temperature.
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Figure 2-6: Supercriticality ( averaged over the domain between y=-3500km and

y=3500km (circles) and at the latitude of maximum EKE (crosses), as a function

of the thermal expansion coefficient a normalized by the atmosphere like value of

aA = 3.6 x 10-3 K- 1. The bold markers denote the simulation with an atmosphere-

like thermal expansion coefficient.

(, the two scales are similar only for the experiments with the largest values of a.

For smaller values of a, the deformation scale decreases much more rapidly than the

Rhines scale.

The argument above assumed that (1) baroclinic instability produces EKE near

the deformation scale and (2) energy is then transferred up to the Rhines scale. To

test both assumptions we (1) performed a linear instability analysis and (2) calculated

the eddy scale from the barotropic eddy kinetic energy spectrum.

Scales of baroclinic instability are calculated as in Smith (2007), based on the

meridional planetary QGPV gradient, averaged over the domain between y = -3500km

and y = 3500km. For all simulations the fastest growth rates are found for a deep

tropospheric eigenmode with a wavelength close to the deformation scale calculated

according to (2.24), as shown in Fig. 2-7.

The dominant eddy scales are estimated from the barotropic eddy kinetic energy

spectra, for the same region, using a Hanning window in the meridional direction to

avoid Gibbs phenomena due to non-periodic data. The eddy scale was then calculated
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Figure 2-7: Deformation scale (crosses), Rhines scale (squares), the scale of the fastest
growing wave (plusses) and the barotropic eddy scale (circles), as a function of the
normalized thermal expansion coefficient a/aA. All scales are based on averages over
the domain between y=-3500km and y=3500km. See text for details.

as the inverse centroid of the barotropic EKE spectrum as proposed by Schneider and

Liu (2009)
Sf(k2 2 )- 1/ 2 E(k. l)dkdl
f E(k, l)dkdl '

where E(k, 1) is the energy density as a function of the zonal and meridional wavenum-

bers. We find that the barotropic eddy scale is well approximated by the Rhines scale

(Fig. 2-7). The results therefore suggest that, as the thermal expansion coefficient is

reduced, eddies become ineffective in keeping the mean state at a criticality close to

one, and undergo an up-scale energy transfer from the instability scale to the Rhines

scale. This is confirmed by a detailed analysis of the spectral EKE budget presented

in Appendix D.

To compare the numerical results to the theory discussed earlier, and in particular

to the prediction of Eq.(2.17), we need estimates for the isentropic mass transport

WQ and the eddy diffusivity D. We calculated the total isentropic mass transport

by remapping the flow field into isentropic coordinates and integrating up to the
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buoyancy bi at which the mass transport hbv changes sign

biT =-f hbv(y, b')db'. (2.27)
b""in

We then calculated the mean isentropic mass transport over the baroclinic zone be-

tween y = -3500km and y = 3500km for all simulations. The eddy diffusivity is cal-

culated from the near-surface' flux-gradient relationship for buoyancy as D = - .

Again mean values over the baroclinic zone between y = -3500km and y = 3500km

are presented for all simulations.

The resulting mean overturning mass transport and eddy diffusivity estimates

are shown in Fig. 2-8. While both the isentropic mass transport and the eddy

diffusivity decrease as the thermal expansion coefficient is reduced, the eddy diffusivity

decreases much more rapidly: the eddy diffusivity varies by a factor of about 15

over the range of simulations, while the isentropic mass transport changes only by

about a factor of 3. In agreement with Eq. (2.15), this results in a steepening of the

isentropes. Qualitatively, we can therefore understand the steepening of the isentropes

as resulting from a reduction in the eddy diffusivity, which in turn is expected from

the reduction of the deformation scale and baroclinicity with the thermal expansion

coefficient a.

The steepening of the isentropes here translates directly to an increase in the criti-

cality parameter, since the latter varies much more than the height of the tropopause.

Noting that the "planetary scale" #/f is also constant in the simulations shown here,

the scaling for the criticality parameter is here dominated by changes in the isentropic

slope, i.e. ( is directly proportional IQ/D. As shown in Fig. 2-9 this is confirmed

well by the numerical simulations.

6 Due to the use of no-slip boundary conditions in the simulations discussed here, the actual eddy
flux vanishes at the surface, we therefore evaluated the flux-gradient relationship to calculate the

eddy diffusivity above the surface Ekman layer at 300m height. Note that the theoretical predictions
derived in section 2.3 assume a down-gradient flux for the geostrophic eddy flux of surface buoyancy

vg, b/, which is best approximated by the flux just above the Ekman layer.
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Figure 2-8: Isentropic mass transport T (plusses), and eddy diffusivity D esti-
mated from a near-surface buoyancy flux-gradient relationship (circles) and from the
barotropic eddy-velocity and -scale (squares), for varying thermal expansion coeffi-
cient. All quantities are normalized by their respective value in the simulations with
atmospheric thermal expansion coefficient aA = 3.6 x 10- 3K-' and averaged over the
domain between y=-3500km and y=3500km (see text).

2.4.3 Deriving a Scaling Relation for the Criticality Param-

eter

The scaling law for can be turned into a predictive theory for the mean state, if WIV

and D are expressed in terms of external parameters and the mean state itself. Mixing

length arguments (e.g. Pavan and Held, 1996) suggest that the eddy diffusivity can

be approximated by the product of the eddy scale and the barotropic eddy velocity,

that is

D~ LeEKEl/2  (2.28)

This scaling is shown to work in Fig. 2-8, and the eddy scale is well approximated

by the Rhines scale in our simulations Le ~ L3 (Fig. 2-7). If we use the scaling

L3 ~ (Ld proposed by Held and Larichev (1996), for fully developed QG turbulence,

we have

D LE 1K/E2 ~ L ~ 3 L3. (2.29)
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Figure 2-9: Supercriticality ( against the ratio of the isentropic mass transport and

the eddy diffusivity (I/D). The black line denotes a slope of 1. All quantities are

averaged over the baroclinic zone between y=-3500km and y=3500km (see text).

While the first relation in Eq. (2.29) holds over the whole range of simulations, some

caution must be used in applying Held and Larichev (1996)'s scaling relation, because

it is formally valid only for Ll > Ld, i.e. for strongly supercritical simulations. Fig.

2-10 shows that, despite the limited scale-separation, the simulations broadly support

the scaling in Eq. (2.29) as long as a < aA and ( > 1. The scaling relation, however,

breaks down for the marginally critical simulations with a > aA, which show much

weaker eddy diffusivities than predicted by Eq. (2.29). A scaling for the isentropic

mass transport WIQ was derived in section 2.3.2.3.3, Eq. (2.13), as TQ ~ g, where
a--bTr

AbEq denotes the variation of the equilibrium buoyancy along the isentrope bi, and 1

denotes the distance between the latitudes where the isentrope bi intersects with the

surface and the tropopause. Using that 1 ~ Ht and b ga(6 - 00) we find that

qjQ rAbEqHt AoEqHt (2.30)
ay br, 6 7,

The scaling for the mass transport (2.30) has no explicit dependence on the thermal

expansion coefficient, which is here varied much more strongly than any other mean-

53



state variable. This explains why changes in the total isentropic mass transport are in

general much smaller than changes in the eddy diffusivity, which does instead depend

explicitly on the thermal expansion coefficient via its dependence on the deformation

scale as per. Eq. (2.29). The weak variations in IQ are dominated by variations in

B9. and A 9 Eq. Fig. 2-10 shows the scaling (2.30), but considering only variations in

WQ due to changes in Bye. This captures the variations in TQ well for simulations

with a > 9 x 10-4K- 1 , for which the isentropic slope changes little. The simulations

with smaller a, however, show significantly weaker overturning circulations, which is

due to the reduction in AOEq as the isentropes steepen (see Fig. 2-3). As we will show

later, variations in AOEq are, however, negligible in the final scaling for the criticality

parameter, and can be ignored for present purposes. Notice also that the scaling

(2.30) further assumed that the diabatic forcing is given by the radiative relaxation.

An additional diabatic term arises from the convective adjustment scheme. This term

is generally small compared to the heating associated with the relaxation scheme in

our simulations.

We can now derive a scaling for the criticality parameter ( in the supercritical

regime in terms of mean state variables. Substituting (2.30) and (2.29) back into

(2.17) and rearranging terms yields

I ~ AE / d-/ (2.31)
,rr f aay# a)

where a = j denotes the dynamical planetary scale which, for our simulations (as

well as for earth's atmosphere) is comparable to the width of the baroclinic zone.

Eq. (2.31) predicts that variations in the criticality are dominated by variations in

the deformation scale Ld, which decreases strongly as a is decreased. As confirmed

by Fig. 2-11, we therefore find that the criticality parameter in the supercritical

limit is to a good approximation proportional to the -3/4th power of the deformation

scale. Since the reduction in the deformation scale is dominated by the reduction

in a, this qualitatively explains the observed increase in the criticality parameter as

a is reduced. Since ~ 0(1) and rf 0 O(102), we may further note, that theayO
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Figure 2-10: Eddy diffusivity D against the scaling in Eq. (2.29) (circles), and Isen-
tropic mass transport T, against the inverse horizontal temperature gradient (8-,6)1
(see Eq. 2.30). All quantities are averaged over the baroclinic zone between y=-
3500km and y=3500km and normalized by their respective values in the atmosphere-

like simulation with c = 3.6 x 10- 3 K 1 . The black line denotes a slope of 1.

pre-factor in Eq. (2.31) is on the order of ~OE) 1/4 0.2 - 0.4. Eq. (2.31)

thus suggests that supercritical states may only be expected if Ld/a < 1, which is in

general agreement with the results shown in Fig. 2-11.

The scaling (2.31) breaks down for simulations in which Ld/a becomes larger than

about 0.2 and the criticality approaches one. The dependence of the criticality pa-

rameter on the deformation scale then flattens out and seems to asymptote towards

a constant value close to one. This is in qualitative agreement with results from

previous studies (e.g. Schneider, 2004; Schneider and Walker, 2006), who find that

the criticality parameter of diabatically forced systems stays close to one over a wide

range of parameters and forcings. The flattening out of the scaling relation between

( and Ld/a is here associated dominantly with the breakdown of the diffusive scaling

law (2.29), which is not expected to hold in the marginal critical limit and predicts

much larger eddy diffusivities than observed in these simulations.

The saturation of the criticality parameter to one, for simulations where the Held
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Figure 2-11: Supercriticality ( against the normalized deformation scale Ld/a (see Eq.
2.31). The black line denotes a slope of -3/4 (Note that the axes are logarithmic). All
quantities are averaged over the baroclinic zone between y=-3500km and y=3500km.

and Larichev (1996) scaling relation breaks down, might seem to support traditional

ideas of baroclinic adjustment. These predict that eddy activity will decrease rapidly

once the criticality parameter gets close to one, because the system becomes neutral

to baroclinic instability, or unstable modes become shallow (e.g. Zurita-Gotor and

Lindzen, 2007), and references therein). Whether this reasoning is appropriate for

the simulations presented here is, however, not clear. Preliminary simulations suggest

that the breakdown of the Held and Larichev (1996) scaling for the eddy diffusivity is

here at least partially associated with an increasing role of bottom friction in this limit,

which might be via a direct influence of friction on the eddies themselves or indirectly

via the modification of the mean flow and a "barotropic governor" mechanism (James

and Gray, 1986). The important role that bottom friction can play in controlling the

eddy diffusivity has recently been discussed by Thompson and Young (2007). When

and how exactly the transition to marginally critical states occurs, however, is beyond

the scope of this study but will be the subject of future work.

It should also be noted that the eddy diffusivity scaling in (2.29) relies on the
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assumption that the eddy scale is proportional to the Rhines scale. However, our

qualitative argument that the criticality increases for small a holds as long as the

eddy diffusivity decreases as the thermal expansion coefficient is decreased. In the real

ocean and atmosphere, where other processes (such as bottom friction) can prevent

eddies from growing much beyond the deformation scale, Green (1970), Stone (1972)

and many other authors since have proposed different scalings for the diffusivity. Yet,

all these scaling share the property that the eddy diffusivity decreases as a is reduced.

Finally one might ask whether there is a limit to the validity of the proposed

scalings in the supercritical limit. One limitation comes from the assumption, implied

in the scalings above, that the heat transport is dominated by large scale eddies as

opposed to convection, and that the stratification is dominantly statically stable.

While this is true for all simulations discussed here, we do observe an increasing

role of convection as the thermal expansion coefficient is reduced and the criticality

increases, suggesting that there might be a limit where convective transports will

start to dominate. Whether such a limit is universal or specific to a certain set of

parameters and forcing, however, is an open question.

2.5 Summary and Discussion

We showed that states with marginally critical as well as supercritical states with

much steeper isentropic slopes can be obtained in a diabatically forced system, if the

thermal expansion coefficient is varied. Equilibrium states with criticality parame-

ters close to one (( ~ 1) are found for large thermal expansion coefficients, which

are associated with deformation scales on the same order as the planetary scale. Su-

percritical mean-states (( > 1) are obtained for small thermal expansion coefficients,

which are associated with deformation scales much smaller than the planetary scale.

As the thermal expansion coefficient is reduced, deformation-scale eddies become less

effective at stabilizing the mean-state, which causes an increase in the isentropic slope

and thus in the criticality parameter. The higher criticality parameter allows for a

more turbulent state with an up-scale energy transfer from the scale of the instabil-
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ity to the Rhines scale due to nonlinear eddy-eddy interactions. In summary, in the

marginally critical limit we find weakly nonlinear, deformation-scale eddies that are

efficient in modifying the mean state. For supercritical states, instead, eddies are less

efficient in modifying the mean state, but nonlinear eddy-eddy interactions become

more important.

The results found in the limit of large thermal expansion coefficients resemble

those observed in the real atmosphere, which is close to marginal criticality and

dominated by weakly nonlinear eddies close to the deformation scale (e.g. O'Gorman

and Schneider, 2007, and references therein). The results found in the limit of small

thermal expansion coefficients, on the other hand, display some of the characteristics

found in the Southern Ocean, which is not in a state close to marginal criticality and

where nonlinear eddy-eddy interactions are believed to be important in setting the

observed eddy scale (e.g. Scott and Wang, 2005). One difference, however, is that in

the Southern Ocean the scale of the eddies is not generally set by the Rhines scale.

This is likely because the up-scale energy flux is arrested earlier by bottom drag and

or topography.

The variations in the criticality parameter over our simulations are dominated by

changes in the isentropic slope, which in turn are shown to be well captured by the

scaling

s ~ ,(2.32)
D

where WQ is the eddy-driven diabatic overturning circulation and D is the eddy dif-

fusivity. We showed that the diabatic overturning is to first order independent of the

thermal expansion coefficient. The scaling (2.32) therefore implies that the increase in

criticality parameter for small expansion coefficients can be understood as stemming

from a decrease in the eddy diffusivity as the deformation scale is reduced. In the

limit of small thermal expansion coefficients, in which deformation scales are much

smaller than the planetary scale, we can employ scalings for XQ and D to show that

the criticality parameter is to leading order proportional to the -3/4 power of the de-

formation scale. In the limit of large thermal expansion coefficients (and deformation
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scales on the same order as the planetary scale), the criticality parameter asymptotes

to a constant value close to unity. This latter limit is in agreement with previous

studies which suggested that the atmosphere maintains a criticality parameter close

to unity over a wide range of forcings and parameters, though the exact mechanisms

responsible for this result remain unclear and will be subject of a future study.

It is worth noting, that our results imply that supercritical, more strongly turbu-

lent states are found in the limit of weaker buoyancy contrast to which the system is

restored (since Ab = gaAO). These states are also characterized by an overall weaker

EKE. The non-dimensional ratio of the EKE to the square of the mean baroclinic

shear does, however, increase with the criticality, as predicted by QG studies (Held

and Larichev, 1996).

Our results are in qualitative agreement with recent work by Zurita-Gotor and

Vallis (2011), who also find that the criticality parameter exceeds one in the limit of

weak equilibrium horizontal temperature gradients, if the depth of the tropopause is

constrained by the radiative restoring profile, as in our simulations. Our results are

also consistent with results shown in Schneider and Walker (2006), if one compares

appropriate sets of simulations. In most of the simulations discussed in Schneider and

Walker (2006), the convective adjustment scheme restores to a finite stratification to

mimic the stabilizing effects of moisture. In these simulations the adjustment scheme

becomes active in the limit of small buoyancy gradients, and prevents the system

from reaching supercritical mean states - the system becomes sub-critical, once the

stratification is set by the convection scheme. However, the authors also perform a

series of simulations in which convective adjustment restores to a convectively neutral

profile, as in our simulations. In agreement with our results, these simulations suggest

equilibration to supercritical mean states in the limit of small buoyancy gradients.

An alternative perspective to equilibration of jets in the ocean and atmosphere is

provided by the theory of transient stable amplification and adjustment to a general-

ized marginally stable state (Farrell and Ioannou, 2009, and references therein). The

theory has so far been derived using the QG approximation and prescribes the vertical

stratification. This is a major limit for applying the theory to our work whose focus
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is on the changes in stratification and deformation radius. Moreover, the eddy-eddy

fluxes, which are crucial in setting the large-scale adjustment, are not predicted by

the theory. A test of the parameterizations used to close the problem, and a general-

ization of these ideas to primitive equation systems would be a welcome contribution

to the discussion.
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APPENDIX A

Deriving a Scaling for the Criticality in a

Quasi-Geostrophic Framework

The scalings for the overturning circulation, derived in Section 2.3 for the more gen-

eral primitive equations, can be recovered in a qualitative way using the continuously

stratified QG equations. We will first discuss dynamical constraints on the zonal mo-

mentum balance. In order to close the momentum budget we will then need a closure

for the eddy fluxes, and a constraint for the meridional overturning mass transport.

Armed with these two closures, we will be able to relate the turbulently adjusted

mean state to the applied forcing. For simplicity all arguments and simulations pre-

sented here will assume a QG Boussinesq fluid in a flat-bottomed re-entrant channel

configuration.

2.A.1 Dynamical constraint: the zonal momentum balance

We start from the zonal momentum balance, which in the QG transformed eulerian

mean (TEM) formulation can be written as

-fo*= v'q', (2.A1)

where U* = -82#* denotes the residual meridional velocity, with the residual stream-

function * - fJUdz' + vb' and the reference buoyancy profile bo. The QG PV is(9, bo

q = fo±y +(,+ foz 2bg, with (g the geostrophic relative vorticity. Frictional forces

have been ignored, because they are weak in the simulations used in this study. Zonal

averages are here taken at constant z. We can integrate (2.A1) from the surface (for
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simplicity here again assumed to be flat at z = 0) to some height z to get

fo@*(z) = z v'q'dz' + fo (0), (2.A2)
O (9z bo

where we used that V)*(0) = '(0).

Assuming a diffusive closure for the eddy fluxes of PV and surface buoyancy and

ignoring the contribution of relative vorticity to the PV, we find

/z #v B( B )

V*(z) D (+ f b dz' - D (). (2.A3)
0 f0 iozbo )(z bo

If z is chosen close to the surface so that we can assume that the eddy diffusivity is

approximately constant over the regarded layer, we get

*(Z) = D (s(z) - z (2.A4)

where s =- Eq. (2.A4) is the QG analog of Eq. (2.8) and shows that the

residual transport below any level z is proportional to the eddy diffusivity times the

effective PV gradient vertically integrated below z. The latter is given by the sum of

the vertical integral of the planetary vorticity gradient and the isentropic slope at the

top of the layer, and thus bears close resemblance to the PV gradient in the bottom

layer of a layered QG model.

If we choose z to be a small height just above the surface, the #-term in (2.A4)

can be neglected and we obtain a scaling for the isentropic slope near the surface,

(2.A5)
D

Substituting the expression (2.A5) for the slope into the definition of the supercriti-

cality, we find,

f3~ D (2.A6)

which is the QG analog of Eq. (2.17). For any given planet (1 fixed), the supercriti-
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cality ( thus depends on the relation between the residual overturning $'* (which, as

shown in the following section, can be related directly to the diabatic forcing), the

eddy diffusivity, and the depth of the troposphere.

2.A.2 Thermodynamic constraint: isentropic mass budget

Similar to our discussion in section 2.3b, we want to relate the residual overturning

streamfunction 0* to the diabatic forcing using the thermodynamic equation

83 = -BOy@*8bo + Q , (2.A7)

where Q = d is the diabatic forcing. In steady state, we can integrate (2.A7) hori-

zontally, to get /y Q Ym""
*dy'= - j 9rna dy' (2.A8)

Y & 82bo

where Ymin and Ymax denote the southern and northern boundaries, respectively, where

0* is assumed to vanish. Condition (2.A8) is the QG analog of Eq. (2.12); however

due to the assumption of horizontal isentropes, implicit in the QG equations, the

along-isentrope integration in (2.12) becomes a horizontal integration over the entire

width of the domain

We can now derive a scaling for the residual overturning streamfunction @/* based

on Eq. (2.A8). We will assume that the diabatic forcing can be represented by

bb
a radiative relaxation, that is Q = - eg with a restoring time scale r, and an

equilibrium buoyancy profile beq. This is the form of radiative forcing used in our

simulations and in many idealized studies of the atmosphere (e.g. Held and Suarez,

1994; Schneider, 2004). Using Eq. (2.A8) we then find

QL (b-beq)L*dbo ~ zbor (2.A9)

Here L denotes the width of the domain, which naturally replaces the length of

the isentrope (1) appearing in the isentropic coordinate scaling, consistent with the

assumption that the isentropic slope is weak compared to the aspect ratio, implied in
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the QG approximation. Eq. (2.A9) is the QG analog to the scaling in Eq. (2.13). In

the main paper, we further relate the thermal disequilibrium (b - beq) to the variation

of the equilibrium buoyancy along an isentrope, Abeq. This argument cannot readily

be transferred to the QG framework. However, we will discuss in chapter 4 how the

radiative disequilibrium can instead be related to the vertical stratification, if we use

the full (primitive equation) thermodynamic budget in physical coordinates.
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APPENDIX B

Implications of Vertical Structure in the Eddy

Diffusivity

If we are to allow for the eddy diffusivity to have some vertical structure, the closure

relationships for the eddy fluxes become

vP -D(b)8yP* v' b',s = -Dsavb8, 8 ,

where D, = D(b) . Note, that D can of course also have a y dependence, which is

not made explicit here since all relationships hold locally at any given y. Substituting

these closures in the vertically integrated momentum budget in Eq. (2.6) yields,

Ib, 
bi

hbiJ*db I
b " "J

D(b) hP*db + Dsab& s-P -P* (F8) Y (2.B2)

Following the same steps used to derive Eq. (2.7), we can write the first term on the

R.H.S. of (2.B2) as

Ibia D(b)h-bZL db
P f~ i D(b)( - 8,b + a)dbJ b -n P

-DSL b(hb - avhb)db + / D(b) f aUdb

f 8
SDSL (f ,(bj) - av-, (bj)'- D -P* -s 3 av FS, (2.133)

where we defined a bulk SL diffusivity,

DSL ' D(b)(h -a yhb)db
D f _ i __ db.

b"ho - avhb)fb a65
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The weighting factor in the definition of the bulk SL eddy diffusivity can be written as

h4- -- ,h= - - b z b- b z)zb8,, and is generally dominated by the

contribution of the (negative) surface buoyancy gradient over the SL (e.g Schneider,

2005). In practice DSL can therefore be expected to be well approximated by to the

surface diffusivity D,.
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APPENDIX C

A Scaling for the Diabatically Forced Overturning

We here derive a scaling for the diabatically forced overturning IQ (Eq.2.11), which

is set by the heating integrated along the lower part of an isentrope, which has to be

balanced by a similar cooling above,

Q j hQ(y', bi)dy' ~ - j hQ(y', bi)dy'. (2.C1)

Here y, and yt denote the southern- and northernmost latitude at which the isentrope

bi is above the surface and below the tropopause, at any time and longitude (or

alternatively the southern and northern boundaries of the domain). If, for simplicity,

we assume that the stratification between the surface and the tropopause changes

little along the isentrope bi, then we can approximate (2.C1) as

We ~Q(y', bi)dy' ~ -2 1 Q(y', bi)dy', (2.C2)
Ys

We now want to choose bi such that it separates the regions of heating (below)

and cooling (above), i.e. such that Q(y', bi) > 0 for y' < y and Q(y', bi) < 0 for y' > y

(choosing bi just above the SL generally fulfills this condition to a good approximation,

since diabatic heating is usually confined to the SL while cooling is found above). We

then find that

WQ ~l-8b I |Q(y', bi)Idy', (2.C3)
2 a,

Assuming a restoring condition such that Q = - (bi - beq)/IT,, where beq denotes the
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radiative equilibrium buoyancy and r, the restoring timescale, we get

XQ ~ 1&zb j T7-1|bEq - bidy' = 1Ta Jr 1 b Eq - (bEq) I dY', (2.C4)

where (Eq) = fY Tr 1 bEqdY / Trdy is the weighted mean equilibrium buoyancy

along the isentrope bi, and we again used that the net heating over the isentrope bi

vanishes. We thus find that the residual overturning mass flux scales as

q AbE (2.C5)
azbTr

where AbEq denotes the variation of the equilibrium buoyancy over the isentrope bi,

and I denotes the length of the isentrope between the surface and the tropopause.
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APPENDIX D

The Spectral EKE Budget

We showed in Fig. 2-7 that the separation between the scale of the eddies (which

scales with the Rhines scale) and the scale of the instability (which scales with the

deformation scale) increases as the thermal expansion coefficient is reduced. This

suggests that our simulations must display a substantial up-scale transfer of eddy

kinetic energy from the scale of the instability to the Rhines scale for small a. To

support this conclusion we compute the spectral eddy kinetic energy budget for the

two simulations with the largest and smallest thermal expansion coefficients. We

calculate the vertically integrated eddy kinetic energy budget in terms of horizontal

wavenumbers. The calculation is analog to Koshyk and Hamilton (2001), except

that, due to the cartesian geometry underlying our simulations, we use horizontal

wavenumbers instead of spherical harmonics. We further separate the EKE and KE

of the zonal mean flow, an important distinction for our purposes.

The spectral EKE budget can then be written as

OtEKEK TEE - TEM ± TPK - D, (2.D1)

where

EKEKI KH 2 I2) dz (2.D2)

denotes the EKE at the horizontal wavenumber K = v/k2 + 12, with () here denoting

a time mean,

TE H

69



denotes the spectral eddy-eddy energy transfer,

TU = Re [u'(u' -E)K ± V '(U V4U)K + uK *(U - Vu')K ' V' *(U -V(K2 dzTEM~~~0 HOR

(2.D4)

denotes the spectral kinetic energy transfer from the eddies to the mean flow,

TPK jH Re (WK*bK) (2.D5)

denotes the energy transfer from eddy available potential energy (APE) to eddy

kinetic energy, and

D = Re [u'K vzzu' + v zzK] dz + filter (2.D6)
0

denotes dissipation by the explicit vertical viscosity v and by the numerical filter

(Shapiro, 1970). Note that there is some contribution to the energy budget at any

given wavenumber by the Coriolis term, because f is not constant with latitude. This

term is, however, small in our simulations and is herein ignored.

Fig. 2-12 shows all the terms in the spectral EKE budget for the two simulations

with the largest and smallest thermal expansion coefficients a = 1.44 x 10 2 K 1

and a = 1.6 x 10 4 K 1 . In both experiments the transfer from eddy APE to EKE

peaks at the scale of instability as calculated from the QG instability analysis and

shown in Fig. 2-7. For the simulation with the largest thermal expansion coefficient

a = 1.44 x 10- 2K-', this instability scale coincides with the Rhines scale, and thereby

with the dominant barotropic eddy scale. The EKE produced at the scale of the

instability is therefore dominantly transferred into the mean flow or dissipated in

eddies of similar scales. No significant up-scale eddy-eddy transfer is observed, though

some energy is transferred to small scales where it is dissipated by the numerical filter.

For the simulation with the smallest thermal expansion coefficient a = 1.6 x 104K-',

the instability scale in significantly smaller (by about a factor of 6) than the Rhines

scale, which in turn coincides with the dominant barotropic eddy scale. The EKE at

this larger scale is maintained by an up-scale energy transfer from.the scale of the
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Figure 2-12: a) Spectral EKE budget for the simulation with a = 1.44 x 10-2K-4:
Eddy APE to EKE transfer (solid black), EKE transfer due to eddy-eddy interactions
(solid grey), mean KE to EKE transfer (dashed grey), and the explicit part of the
dissipation (dashed black). The kinetic energy transfer terms have been smoothed
by a five-point running mean. The thin dashed black line denotes the residual and
includes the dissipation due to the numerical filter, which becomes dominant near the
grid-scale. Notice, that the residual, which (next to the numerical filter) arises due
to limited statistics and inaccuracy in the calculation of the spectral transfer terms,
is small compared to the leading order terms at all relevant wavenumbers away from
the grid scale. The vertical black (lashed and solid lines denote the Rhines scale and
the scale of the instability, respectively, which are shown in figure 2-7 of the main
paper. b) As (a), but for the simulation with a = 1.6 x 10 4 K 1 .

instability to the Rhines scale. The transfer of kinetic energy from the eddies to the

mean flow, plays a smaller role in this simulation.

The results presented here support the conclusion presented in the main paper

that, while the simulations with large thermal expansion coefficients are marginally

critical and do not exhibit a significant up-scale transfer of EKE, the simulations

with the smallest thermal expansion coefficients show all aspects of a supercritical

state, including a significant up-scale energy transfer which is responsible for setting

the scale of the barotropic eddies. The up-scale energy transfer here spans about a

factor of six in wavenumber space, which is of similar order though likely somewhat

larger than found in the Southern Ocean (e.g Tulloch et al., 2011). Notice that, even

though up-scale energy fluxes due to nonlinear eddy-eddy interactions are important
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for the dynamics in these states, we do not find a clean "inertial range" over which

the energy flux is constant and unaffected by EKE production or dissipation. Such an

"inertial range", can be achieved only if the scale separation between the maximum

EKE production and dissipation (or transfer to the mean flow) spans several orders of

magnitude. Given our computational resources, we cannot run simulations spanning

such a wide range of scales, nor does such a limit appear to be relevant for the ocean

or the atmosphere.
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Chapter 3

The Criticality and the Vertical

Structure of the Eddy Diffusivity.

3.1 Introduction

Observations suggest that the time- and zonal-mean state of the extra-tropical atmo-

sphere adjusts itself such that isentropes leaving the surface in the sub-tropics reach

the tropopause near the pole, and thus ( = 'gs ~ 0(1), where ( is the criticality pa-

rameter, a ~ f/0 denotes the planetary radius, which in turn scales with the ratio of

the Coriolis parameter f and the planetary vorticity gradient 0, H denotes the height

of the tropopause, and s denotes the slope of the isentropes. While some numerical

studies suggested that the observed adjustment of the extra-tropical atmosphere to

O(1) criticalities holds over a wide range of forcings and parameters (e.g. Schneider

and Walker, 2006), the previous chapter has shown that more supercritical states can

also be obtained, if external parameters are changed sufficiently.

Various theories have been put forward to explain the observed equilibration of

the mid-latitude atmosphere to a state of marginal criticality. One line of arguments

is based on constraints arising from the zonal momentum budget. The vertically

integrated QG zonal momentum budget can be used to derive a balance condition

between the eddy fluxes of potential vorticity (PV) in the interior and the eddy

fluxes of potential temperature at the surface. Held (1978, 1982) used this constraint
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to argue that atmospheric mean states with ( ; 1 are obtained if eddy PV fluxes

decay in the vertical over the depth scale of the troposphere. Using a diffusive closure

for the eddy fluxes of PV and surface potential temperature, the QG momentum

budget gives a relation between the criticality parameter and the eddy diffusivity.

Most importantly the relation shows that the criticality parameter can be finite only

if the eddy diffusivity decreases in the vertical (Green, 1970).

Schneider (2004) argued that the results of Green (1970) and Held (1978, 1982)

apply only to QG systems, but are not recovered in primitive equations. He finds

that, unlike in QG, the zonal momentum budget in primitive equations can be closed

assuming that the eddy diffusivity for PV and surface potential temperature is con-

stant in the vertical throughout the whole depth of the troposphere. Moreover, the

choice of a vertically constant eddy diffusivity implies that ( ~ 1. A potential prob-

lem with this argument is that it is not clear whether the eddy diffusivity is vertically

constant in the real troposphere. While Schneider (2004) finds that the eddy diffusiv-

ity is approximately vertically constant throughout the troposphere in his idealized

simulations, a vertically decreasing eddy diffusivity is found in the more realistic sim-

ulation discussed in Plumb and Mahlman (1987). Moreover, Haynes and Shuckburgh

(2000) use reanalysis data to show that the eddy diffusivity decreases strongly with

height in the real troposphere, though they only discuss diffusivities above the 300 K

surface, to avoid isentropes which intersect with the surface. This paper thus aims to

re-examine the relation between the criticality parameter and the vertical structure

of the eddy diffusivity.

The result obtained by Schneider (2004) is shown to depend crucially upon how

eddy PV fluxes are computed along isentropes which intersect the surface. Koh and

Plumb (2004) take isentropic averages only over the part of the isentrope that is above

the surface. Schneider (2004), instead, uses a different approach, and introduces an

extended PV, whose average includes mathematically ill-defined contributions from

isentropes below the surface.

Schneider (2005) compares the two approaches, and concludes that the defini-

tion of Koh and Plumb (2004) is less useful, because the resulting near-surface PV
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gradients are often small and of varying sign (which makes an estimate of the eddy

diffusivity problematic). Idealized model results discussed here, instead, show that

the eddy fluxes computed with Koh and Plumb's (2004) approach, can be closed

diffusively. A down-gradient diffusive closure is also supported by theoretical argu-

ments based on analysis of the PV variance budget. A diffusive closure following the

approach proposed by Schneider (2004), on the other hand, generates inconsistent

results when applied to our simulations.

We therefore revisit Schneider's (2004) derivation for the relation between the

criticality parameter and the vertical structure of the eddy diffusivity, but using the

averaging approach advocated by Koh and Plumb (2004). Using this approach, we

can extend the QG results for the relation between the criticality parameter and

the eddy diffusivity to finite isentropic slopes. In particular, we show that the eddy

diffusivity decreases in the vertical for any finite criticality, consistent with results

obtained using QG scaling, but not with those of Schneider (2004). The revised

scaling relation further shows that criticality parameters much larger than one are

possible, if the eddy diffusivity decays only weakly in the vertical. This provides

theoretical support for the numerical studies discussed in chapter 2, as well as other

studies which have found supercritical mean states in primitive equation models (e.g.

Zurita-Gotor, 2008; Zurita-Gotor and Vallis, 2010).

This chapter is organized as follows: in section 3.2 we illustrate the constraint of

the momentum budget on the vertical structure of the eddy PV diffusivity, using a

simple QG model. In section 3.3, we discuss the two different approaches that have

been proposed to close the isentropic zonal momentum budget in primitive equations.

In section 3.4, we test the diffusive closures against idealized numerical simulations.

In section 3.5, we finally derive a revised condition for the criticality parameter from

the vertically integrated isentropic zonal momentum budget. The conclusions are

summarized in section 3.6.
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3.2 Eddy Diffusivity and Criticality in QG

This study discusses the relation between the criticality parameter and the vertical

structure of the eddy diffusivity in the troposphere. The problem is well understood

in models using the QG approximation. Schneider (2004), however, pointed out that

the relationship may be quite different in primitive equation systems, that allow for

steep isentropes which intersect with the surface. In the next few sections we will

revisit these arguments and show that the result of QG theory is recovered, if care is

taken in computing averages along isentropic surfaces. It therefore seems appropriate

to start with a review of the QG results, to set the stage for the rest of the paper.

We will illustrate the QG argument using the arguably simplest configuration: a

zonally re-entrant channel composed of 2 separate layers with different density. The

QG argument goes back to Green (1970), who discussed the constraint on the vertical

structure of the eddy diffusivity in the continuous coordinates case. A discussion of the

two-layer case was, to our knowledge, first given by Marshall (1981). The qualitative

result from the two-layer model, discussed here, is similar to the continuous QG case.

Ignoring frictional forces, the steady state zonal-mean zonal momentum budget in

the two layer QG model can be expressed in terms of a balance between the Coriolis

acceleration, acting on the mean flow, and the reynolds stress:

foui = Bynuv4, (3.1)

where i = 1, 2 is the model layer, the overbar denotes a time and zonal mean, and

primed quantities denote deviations thereof. Introducing a residual mean flow as

;* = U+ H-von, with hi and Hi denoting the in-situ and mean layer depths, re-

spectively, the momentum budget can be re-written as a balance between the Coriolis

acceleration, acting on the residual mean flow, and the eddy flux of PV (e.g. Vallis,

2006):

foi* = -v'q'. (3.2)

Here qj = #y + (i - foAL is the QG PV, where # is the planetary vorticity gradient,
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Q is the relative vorticity, and fo is the Coriolis parameter. Using a diffusive closure

for the eddy fluxes of PV, and ignoring the contribution of relative vorticity to the

mean PV gradient, we can approximate the residual flow in each layer as

f-1j-'qj = -f6-'Di89yqi ~P -Di( 1- '-) , (3.3)
fo Hi

where s = Bah= -- Byh 2 denotes the slope of the interface. The negative sign in

the last term on the R.H.S. of Eq. (3.3) holds for the lower layer (layer 1), where

the planetary vorticity and thickness contribution to the PV gradient have opposite

sign, while the positive sign holds for the upper layer (layer 2), where the planetary

vorticity and thickness contribution to the PV gradient have the same sign. Mass

conservation provides the additional constraint that

HU- = 22-0. (3.4)

Combining Eqns. (3.2) and (3.4) and using the closure in (3.3) yields

H10 H2/3
D1( H0- s) ~, -D2(' 2 +S) . (3.5)

This yields a relation between the vertical structure of the eddy diffusivity and the

criticality parameter as

~fs D
f~ -- D (3.6)

where H = H1 + H 2 denotes the total depth, D = (H 1 Di + H 2D 2)/H is the vertical

mean eddy PV diffusivity, and AD = D1 - D 2 is the difference in the diffusivities. Eq.

(3.6) states that the relative vertical variation of the eddy diffusivity scales inversely

with the criticality parameter. 0(1) criticality parameters are associated with vertical

variations in D on the same order of D itself, while strongly supercritical states are

associated with weak vertical variations in D.

'Notice, that the definition of the criticality parameter employed here differs somewhat from the
commonly used definition in the two-layer QG model, where the depth scale is generally defined
as the layer depth. For a two-layer model with unequally deep layers, the condition for baroclinic
instability depends on the depth of the lower layer.
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Eq. (3.6) also points towards the condition for baroclinic instability in the two

layer model. If we require that baroclinically unstable eddies flux PV down the mean

gradient in both layers, i.e. D1 , D2 > 0, Eq. (3.6) implies that ( > 9, which is

exactly the necessary criterion for baroclinic instability in this model. This result is

apparent if one considers that the condition for baroclinic instability is a reversal of

the PV gradients between the two layers. Since the PV flux in the two layers has to

balance, and therefore needs to have opposite sign, this is also the necessary condition

for a finite down-gradient flux of PV in both layers.

The result from the two layer QG model is qualitatively similar to what is obtained

in the continuously stratified QG problem. The latter has been discussed by Green

(1970). In section 3.5, we show that a result analogous to Eq. (3.6) can also derived

in primitive equations, if the troposphere is divided into two vertical layers. The

discussion of the full problem in primitive equations further yields insight about the

interpretation of the lower layer in the two layer model, whose depth can be chosen

somewhat arbitrarily in the two-layer QG problem, but nevertheless has important

implications for the dynamics.

3.3 The Isentropic Zonal Momentum Budget in

Primitive Equations

As discussed in Schneider (2004, 2005) and Koh and Plumb (2004), the vertically

integrated isentropic zonal momentum budget in primitive equations can be used to

relate the meridional mass transport in the troposphere to the eddy fluxes of PV

and surface potential temperature. Assuming that the net mass transport vanishes

upon integration over the depth of the troposphere, and that the eddy fluxes of PV

and surface potential temperature can be described in terms of mean state variables

through a closure, one can derive a condition for the criticality of the extra-tropical

atmosphere, analog to the QG argument described above. However, before discussing

the relation between the criticality parameter and the vertical structure of the eddy
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diffusivity in isentropic coordinates, we need an appropriate formulation of the isen-

tropic zonal-mean zonal momentum budget on isentropes which intersect with the

surface.

For simplicity, we will assume that both the large-scale mean and eddy flows

have a small Rossby number Ro, which is generally a good approximation in the

troposphere. Departing from the QG approximation, however, we do not make an

assumption for the smallness of the isentropic slope (e.g. Vallis, 2006). The latter

is inadequate for studies of the large scale atmospheric circulation, and crucial to

understand the differences between the QG results and those presented in Schneider

(2004).

For small Ro, the isentropic zonal momentum budget reduces to the geostrophic

wind relation

fv ~ (3.7)

where f is the planetary vorticity, v is the meridional velocity and M = cT+gz is the

Montgomery streamfunction (c, denotes the specific heat capacity of air at constant

pressure, T is temperature, g is the gravitational acceleration and z is height). The

partial zonal derivative 9, is taken at constant potential temperature 6. In addition to

terms which are higher order in Ro, we neglected the effect of diabatic and frictional

forcing in the momentum equation. The full budget is discussed in Schneider (2005)

and Koh and Plumb (2004), but the neglected terms are not relevant for the key

results presented here.

To derive an equation for the isentropic mass transport, we need to take zonal and

temporal averages of the momentum budget along isentropes. This raises the issue of

how to define these averages when isentropes intersect the surface. We can introduce

a normalized zonal and temporal integral along any isentrope (that may or may not

outcrop at some longitude or time) as in Koh and Plumb (2004)

f(, X, y, T L f(0, x, y, t)dxdt (3.8)
> (xY,t)
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where L is the width of the (zonally re-entrant) domain and the temporal integral is

taken over some time period T. For simplicity we use cartesian coordinates but the

generalization to spherical coordinates is straightforward. If f(6, x, y, t) is continually

extended to isentropes below the surface, the normalized integral may for convenience

be written as

fT(0, X, y, t) L ] (6 - 9,)f (6, x, y, t)dxdt = X(6 - 6)f(6, x, y, t), (3.9)

where the over-bar denotes the isentropic zonal and temporal mean, and X( - 0,)

is the Heaviside function, which guarantees that there are no contributions to the

integral from the sub-surface part of an isentrope.

Using the definition in (3.9), the normalized integral of the momentum budget in

(3.7) can be written as

1X(9 - 6)fv ~ R(6 - 68)89M. (3.10)

Equation (3.10) is the starting point to illustrate the two different approaches used by

Schneider (2004) and Koh and Plumb (2004) in re-writing the mean zonal momentum

budget in terms of mean and eddy fluxes of PV.

3.3.1 Two Formulations for Mean and Eddy Fluxes of PV

In order to derive an equation for the isentropic mass transport from the momentum

budget in (3.10), we want to express the Coriolis term on the L.H.S. of Eq. (3.10)

in terms of thickness weighted mean and eddy fluxes of PV. Upon division by the

mean PV, this yields an equation for the thickness weighted velocity, which can be

integrated in the vertical to yield the total isentropic mass transport.

Two different approaches have been proposed to separate the term -(6 - 0,)vf

into mean and eddy flux terms (see also Schneider, 2005). The approach used in Koh
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and Plumb (2004), can be written as

X(6 - 0)vf = (1 ( "O)Uvf

- ( - 0,)avP

= -(v*P + fp P) (3.11)

where we introduced the isentropic thickness, a = -g- 1 8op, and the planetary PV,

P . We further introduced a generalized thickness as po = X(O - 0,)a and

a generalized thickness weighted zonal average, () = o/(* = po()/76 (see also

Andrews, 1983; Juckes et al., 1994). Note, that U* is simply the thickness weighted

zonal average, taken over the above-surface part of the isentrope. Deviations from

this average are denoted by () (

Schneider (2004, 2005) instead chooses to define

- 98)vf (POlt(O - 6s)vf

= PoJ(O - Os)vPext

= V-( - 9s)vPext*

= (Vext*Pet* + extPext , (3.12)

and introduces an extended planetary PV, P_ = L (notice the generalized thickness,

po, in the denominator), and an extended velocity, vext = H(6 - 0,)v, defined to exist

on isentropes both above and below the surface. Notice, that the first step in (3.12) is

mathematically ill-defined, since it implies multiplying and dividing by zero whenever

the isentrope is inside the surface and po vanishes - it is here taken as a definition

for the ill-defined expression on the R.H.S. Furthermore, the extended PV, P'xt = ,

is infinite on isentropes inside the surface, and thus both the generalized thickness-

weighted average of Pext and iDextPext are ill defined. Schneider (2004) evaluates Pxt*
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as

PoPext'= f , (3.13)
Po/

i.e. the ratio of po in the numerator and po in the denominator of Eq. (3.13) is

assumed equal to one everywhere, including the part of isentropes below the surface,

where po = 0.

Schneider (2005) discusses the relative merits of the two formulations used in

Schneider (2004), and Koh and Plumb (2004). He argued that the two approaches

can be understood as arising from different evaluations of the ill-defined ratio in Eq.

(3.13). The formulation of Koh and Plumb (2004) is recovered if the term (Pi) is

assumed to vanish when isentropes are below the surface, while Schneider's (2004)

approach assumes that it is equal to f. Notice, however, that the approach of Koh

and Plumb (2004) can instead be derived without making any assumptions for quan-

tities on the sub-surface part of isentropes, as per Eq. (3.11). The problem is that by

introducing the generalized quantities Peet and vext, the extended PV approach re-

quires arbitrary assumptions down the line, to obtain well defined thickness weighted

averages.

Taking a different point of view, which we will adopt in the following, the sepa-

ration into mean and eddy terms in (3.12), together with the definition for the mean

extended PV in (3.13), may be regarded as a definition for the extended eddy PV

flux sext~ext . One could then regard (3.12) as a different choice as to how to separate

mean and eddy fluxes. The question is whether one can rationalize what the mean

and eddy flux terms physically represent in this case, as they are no longer defined

as the mean and eddy contributions from a Reynolds decomposition.

The physical meaning of the mean and eddy flux terms becomes particularly

important if we want to relate the eddy PV flux to the mean gradient through a

diffusive closure, in order to close the momentum budget in terms of mean state

variables. Tung (1986) offers support for a diffusive closure for the thickness weighted

isentropic eddy PV flux, using small amplitude theory. He does, however, not consider

isentropic outcrops, which are crucial for the discussion here. In Appendix A, we
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present a general justification for a diffusive closure for the interior eddy PV flux,

, based on the PV variance budget, that accounts for isentropic outcrops. We

were not able to derive a similar relation for the extended PV variance, since P2

is not well defined on outcropping isentropes. Schneider (2004, 2005) justifies his

closure showing that the extended eddy flux f9extPext is down the gradient of Pext*

in his numerical simulations, which suggests that he may proceed to use a diffusive

closure iextPext = -DyPext . However, we will argue below, that such a relationship

is not justified in general.

3.3.2 An Equation for the Meridional Mass Transport

In this section we will discuss how the isentropic zonal momentum budget can be

transformed into an equation for the meridional isentropic mass transport, following

the same approach outlined in Schneider (2004, 2005) and Koh and Plumb (2004).

Focussing on the role of isentropic outcrops, we will here analyze the mass transport

integrated over the surface layer (SL), which is defined as the layer including all

isentropes that intersect the surface at some longitude or time.

Schneider (2005) shows that the mass transport over the SL can be estimated by

dividing the zonal momentum equation (3.10) by P* and integrating vertically over

the SL. Substituting (3.11) into (3.10), to express the Coriolis term by a thickness

weighted mean and eddy flux of PV, dividing by P*, and integrating from the surface

to the top of the SL, one obtains an estimate for the transport in the SL,

Tov-u*d6 ~ -I" _ dO - _, _ .(3.14)
Ob ] PVd *-v6

P ()
(1) (2)

Here 6b is the minimum potential temperature over the domain and 9i is the potential

temperature at the top of the SL, the subscript s denotes surface quantities and ( f

denotes an average along the surface. The surface potential temperature flux term

on the R.H.S. of (3.14) represents the bottom form stress, which arises as the bound-

ary contribution from the Montgomery streamfunction term in Eq. (3.10) (see Koh
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and Plumb, 2004; Schneider, 2005). The derivation of this term is unambiguous and

therefore not repeated in detail here. Equation (3.14) states that the total merid-

ional mass transport between the surface and the isentropic surface 9i, is driven by

isentropic eddy PV fluxes, and the eddy flux of surface potential temperature.

The same equation can be derived using the extended PV approach used by Schnei-

der (2004), who finds that

extx 
- 8I PoV de d - __ '0 s (3.15)

os eb ext Pext (0s)

(1) (2)

The total mass transport - the term on the L.H.S. of Eqs. (3.14) and (3.15) - is

independent of the approach, but the separation between the contributions associated

with the eddy flux of PV, term (1), and the contribution associated with the eddy

flux of surface potential temperature, term (2), differs in the two approaches. This

can be seen by noting that Pext* () $ P*(F,). The pre-factor multiplying the eddy

flux of surface potential temperature, term (2), thus differs in the two approaches.

This difference is absorbed by a corresponding difference in the PV flux contribution,

term (1).

Using diffusive closures for the eddy fluxes of interior PV and surface potential

temperature, Eq. (3.14) becomes

I ei epoD8%P* f
pov*d- ] _, d9 + _ -) Dsoay9 (3.16)

ob onb P (9)

that is the SL mass transports is given by a contribution associated with the interior

PV gradient and a contribution associated with the surface potential temperature

gradient (describing the form drag on outcropping isentropes). Using instead a dif-

fusive closure for the eddy flux of extended PV, along with a closure for the surface

potential temperature flux, Eq. (3.15) becomes

obo xtext fet
VdO~ DetPext* d+ Pe * X8) Ds&Os. (3.17)
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One would now like to assume that the eddy diffusivity is a fundamental property

of the flow, and thus Dext = D ; D, near the surface. However, we will show that

the budget in Eq. (3.16) can be closed assuming that D ~ D, near the surface, but

Eq. (3.17) strongly overestimates the near-surface mass transport if we assume that

Dext , Ds.

3.4 Numerical Simulations

We proceed to test the arguments presented in the previous section, and in particular

the applicability of diffusive closures for the eddy PV fluxes in the two approaches,

in an idealized numerical simulation. The model is set up to limit boundary layer

effects that arise from explicit parameterization of boundary layer physics. While the

model setup might be a less realistic description of the real atmosphere, it helps to

focus exclusively on the dynamics which are the topic of the present paper, and keep

any additional physics as simple as possible.

3.4.1 Model Setup

The model and setup is similar to the simulations discussed in chapter 2. We use

a hydrostatic, Boussinesq 2 version of the MIT general circulation model (Marshall

et al., 1997), in a zonally reentrant 3-plane channel configuration. The channel is

15,000 km long, bounded meridionally by side walls at y=t 4500km, and vertically

by rigid lids at z=H=10.2km and z=0. Differing from the simulations discussed in

chapter 2 we use free slip boundary conditions on all boundaries to limit frictional

effects. Kinetic energy is removed by a linear Rayleigh drag with a constant drag

coefficient of r = (40days)- 1 acting over the whole domain. We use a linear equation

of state with a thermal expansion coefficient of a = 2.25 - 10 4 K-'. The thermal

expansion coefficient is smaller than that of air to obtain a better separation between

2Notice, that the theoretical discussions above are for the more general case of a compressible
fluid, in direct analogy to the derivations in Schneider (2004) and Koh and Plumb (2004). However,
as discussed in chapter 2, the same equations are obtained in the Boussinesq limit.
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Figure 3-1: Equilibrium potential temperature for thermal restoring in K. (CI: 5K)

the eddy and domain scale and to allow the model to set its criticality (see chapter

2).

The simulations are forced through relaxation to the equilibrium temperature

profile shown in Fig. 3-1, which is the radiative convective equilibrium solution of

the profile used in the simulations described in chapter 2. It is characterized by a

baroclinic zone 7000 km wide, across which the temperature drops by about 55 K.

The equilibrium stratification is neutral over the lower part of the domain, while a

statically stable equilibrium stratification is prescribed at higher altitudes to mimic

the stable radiative-equilibrium profile of the stratosphere. The relaxation time-scale

is constant over the domain at rit = 50 days.

The simulation is spun up until a quasi-steady state is reached. Isentropic diag-

nostics are calculated from 200 snapshots saved every ten days after the solution is

equilibrated.

3.4.2 Results

The equilibrated time- and zonal-mean state of the simulation is shown in Fig. 3-2.

Significant baroclinicity is found over most of the domain, with a jet centered around

y = -400km. The jet is associated with a maximum in baroclinicity, as well as

maxima in the barotropic westerly wind and eddy kinetic energy.

Fig. 3-3 shows the three terms that appear in the zonal momentum budget as per

Eq. (3.14). The integral is taken from the surface to the top of the SL, defined to
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Figure 3-2: Time- and zonal-mean fields of potential temperature (color shading - CI:
5 K), EKE (thin black lines - CI: 2 m2 s- 2 ), zonal wind (gray lines - CI: 1 ms 1 ), and
the tropopause height, defined as the height at which 4 = 10-2Km-' (thick blackdz-
line).

include all isentropes up to the 95% quantile of potential temperature values found at

the surface, along a latitude circle. The budget is shown only for the SL, because that's

where we expect differences in the averaging approaches (all approaches are equivalent

aloft, where there are no isentropes that intersect the surface). The continuos grey

lines show the total SL isentropic mass flux,

Fot = jio- v* d6 . (3.18)

The dotted black lines show the sum of the mass fluxes associated with the eddy PV

flux and the surface potential temperature flux. Using the averaging approach of Koh

and Plumb (2004), these are

FD- =- _,IdO and F-1,0 - , _ f (3.19)
VP* PS * Pk

The budget derived in Eq. (3.14) predicts that

Fot F,* + F11. (3.20)

Fig. 3-3 (a) shows that this relation is satisfied by the numerical simulation. We

find that most of the SL mass transport is associated with the surface contribution
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Figure 3-3: SL mass fluxes over the baroclinically forced zone. Shown is the total
mass transport integrated vertically over the SL, its contribution due to eddy PV
and surface potential temperature flux, as well as estimates of the respective fluxes
resulting from a diffusive closure using the surface eddy diffusivity (see legend). Figure
a) shows results using the interior PV approach for the separation of SL mass fluxes
into a contribution from the eddy PV flux and surface potential temperature fluxes,
and figure b) shows results using the extended PV approach. The SL is here defined as
including all isentropes up to the 95% quantile of the surface potential temperature.

FpVg, with a smaller (but significant) contribution from the interior eddy PV flux

component F,.
vbP

Alternatively we can separate the eddy mass flux components according to the

extended PV approach of Schneider (2004), given in Eq. 3.15,

Fto~ F2T + F , (3.21)

where

lb d and F - _ V' (3.22)
on Pext S Pext* (Os)

The extended eddy PV flux bextPext is defined as the residual between the total

PV flux vP* and the mean advection of the generalized PV vext*Pext*, as discussed
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in section 3.3.1. The mass flux budget in Eq. (3.21) is similarly confirmed by the

model simulations (Fig. 3-3b). Compared to the budget in Fig. 3-3 b, the total

mass transport has a larger contribution from the extended eddy PV flux term, and a

correspondingly smaller contribution from the eddy flux of surface potential temper-

ature. In fact it can be shown easily that F4 a -F-- by comparing Eqs. (3.19)

and (3.22), but realizing that

P (0) = - ~ - -- = -Pe(6t (I) , (3.23)
j570s ) 2 0(8) 2

because the mean surface potential temperature is well approximated by its median

value, hence 7(, - 0,) ~ 1. Since the total mass transport is independent of the

averaging approach, a similar but opposite difference exists between the eddy PV flux

contributions F- and F--.

We now test diffusive closures for the eddy fluxes of PV using the two approaches.

We calculate the eddy diffusivity from the surface potential temperature flux/gradient

relationship as3

D8 -v'6',/8,". (3.24)

Using this definition, the diffusive closures for the mass transport associated with the

surface eddy flux of potential temperature,

F ~6s -__ D,8yi, and Fx _ D* 8 X9, (3.25)

reproduce by construction the corresponding flux terms F, 0% and FT .

Schneider (2004) argues that a diffusive closure holds also for the eddy PV flux,

with the same eddy diffusivity D8 , as one ought to expect if eddies mix all tracers at

the same rate, and if this mixing rate varies little over the depth of the SL. This is

3 Notice, that the surface eddy diffusivity is here calculated using the actual surface potential
temperature flux. Following the full derivation shown in Schneider (2004, 2005), or Koh and Plumb
(2004), the surface term in Eqs. (3.14) and (3.15) should generally be described by the geostrophic
eddy flux of surface potential temperature. In the presented simulation, where the Rossby number
is small, and no enhanced surface drag is used, the difference between the full eddy flux and the
geostrophic eddy flux is negligible.
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tested by computing

FnfP joD y* dO and Fi,7 = p D yPeXt* dO. (3.26)
Pext *

For the interior PV approach, we find that the PV flux and therefore the full SL mass

transport is described reasonably well by the diffusive closure (Fig. 3-3a), suggest-

ing that the PV flux in the SL can be described as a diffusive flux, with an eddy

diffusivity similar to that for surface potential temperature. However, with the ex-

tended PV approach, we find that the eddy PV flux, and therefore the total SL mass

flux is considerably overestimated by the diffusive closure. Interestingly, the diffu-

sive approximation for the extended PV flux contribution F~g alone is a better

approximation of the total SL mass transport Ft, (Fig. 3-3b). This result can be

explained in terms of the different approaches taken to treat outcropping isentropes,

as discussed in the following.

3.4.3 Explaining the Results

The difference between the SL mass balance in the two approaches can be understood

by re-writing the extended PV flux and gradient, in terms of the interior PV contri-

butions, and contributions associated with fluxes and gradients of surface potential

temperature. Using again that F, I (F-, we can show that (see Appendix B for

a more detailed derivation):

F F + Fg , (3.27)

In the extended PV formulation of the mass budget (Eq. 3.21), about half of the

surface potential temperature flux contribution to the isentropic mass transport is

thus absorbed into the extended PV flux term.

However, the diffusive closure for the flux associated with the extended PV gra-

dient contains the contribution associated with the interior PV gradient, plus the

full contribution associated with the surface potential temperature gradient (see Ap-
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pendix B for a derivation):

F Felpl FDDOa (3.28)

If the interior eddy PV flux near the surface can be closed with a diffusivity similar

to that for surface potential temperature (as confirmed in our simulation), a similar

closure for the extended eddy PV flux thus automatically overestimates the flux.

Consistent with the numerical results shown in Fig. (3-3), a comparison of Eqs.

(3.28) and (3.20) suggests that the diffusive closure for the flux associated with the

extended PV, is by itself an approximation for the full SL mass transport.

Before returning to the implications of our findings for the criticality parameter,

we remark that the numerical results discussed here have been confirmed in a whole

suite of simulations, using a similar idealized setup but with differing parameters

and restoring profiles - the results hold as long as the system does not become

convective, in which case the transformation into isentropic coordinates fails. Results

from these simulations will be reported in the next two chapters, where we discuss

their implications for our understanding of the equilibration of the extra-tropical

troposphere.

Schneider (2005) argues that in his simulations a diffusive closure for the extended

eddy PV flux is better justified than for the eddy flux of interior PV, since the

gradients of the latter are generally weak and vary on small scales in the SL. While this

makes it impractical to estimate an eddy diffusivity from a flux-gradient relationship

for the interior PV, it does not necessarily mean that the integrated SL momentum

budget cannot be closed with a diffusive closure for the eddy flux of interior PV.

Instead, if the eddy flux of interior PV is similarly weak, the integrated momentum

budget can still be closed (and in fact becomes rather independent of the exact choice

for the interior PV diffusivity). We have looked at some example simulations which

are in this limit.

In cases where both the eddy flux and gradient of interior PV are very weak, the

extended eddy PV flux appears to be well defined and down-gradient, as both the flux
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and the gradient are dominated by the surface potential temperature contribution

(see Eqs. 3.27 and 3.28). This might explain why Schneider (2005) comes to the

conclusion that the extended PV approach is more suitable for a closure, based on

the empirical evidence that the extended PV gradient in the SL is typically large, and

accompanied by a down-gradient eddy flux. However, as discussed above, the mass

transport associated with the extended eddy PV flux in this case is over-estimated

by a factor of two, if it is closed with an eddy diffusivity similar to that of surface

potential temperature. This becomes crucial in the derivation of a relation between

the criticality parameter and the vertical structure of the eddy diffusivity, as will be

discussed in section 3.5.

For the extended eddy PV flux closure to correctly represent the SL mass budget,

a very weak interior PV gradient would still have to be associated with a strong eddy

flux of interior PV. This may have happened in some of the simulations analyzed by

Schneider (2005). However, we surmise that such situations may as well be explained

by non-conservative boundary layer effects, which can cause both interior PV and

surface potential temperature to behave little like conservative tracers. This problem,

however, cannot generally be salvaged by re-defining the zonal average; instead, a

simple diffusive closure may just no longer be appropriate in such a case. In chapter

4 we discuss a wider range of numerical simulations as well as observational data,

which provide further support for the closure advocated here.

3.5 The Integrated Momentum Budget and the

Criticality

Schneider (2004) derives a condition for the state of the extra-tropical atmosphere by

integrating the isentropic mass flux balance (3.14) to the top of the troposphere Ot.

He further makes a diffusive closure for both the extended eddy PV flux feitPet and

the surface potential temperature flux V<, with the same vertically constant eddy

diffusivity. We showed above that this is generally not expected to hold. Instead,
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we argued that a diffusive closure for the eddy flux of interior PV, as defined in Koh

and Plumb (2004), is better supported by our numerical simulations, and can be

justified by physical arguments. We will therefore repeat the derivation of Schneider

(2004), but using diffusive closures for the interior eddy PV fluxes vp and surface

potential temperature flux o. We find that, except in the limit case of infinite

supercriticality, the momentum balance cannot be satisfied with a vertically constant

eddy diffusivity, consistent with theories based on the QG approximation (Green,

1970). We then discuss how the revised momentum balance can be used to derive

a "criticality" condition, or more generally a scaling relation between the criticality

parameter and the vertical structure of the eddy diffusivity.

3.5.1 The Vertically Integrated Isentropic Momentum Bud-

get

If the integration in the mass balance equation (3.14) is taken out all the way up to

the tropopause, and it is assumed that the mass transport above the troposphere is

negligible, one gets

_,d6 - _v;6;. (3.29)
lOb P P (329

Assuming a diffusive closure for the eddy flux of PV and surface potential temperature

then yields

/ ;it7oDOyP* dO R,,_ DSOi9 . (3.30)
ob _P P* 0763), *

While we found in the previous section that D may be assumed similar to D, within

the SL, we now use Eq.(3.30) to show that D is expected to vary throughout the

depth of the entire troposphere, generally decreasing from D,.

The thickness weighted mean PV can be approximated as P* ~ =, and thus

ByP * + ByiI - _yTij. (3.31)
f H pAO
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Equation (3.30) then becomes

-~~~ ~~ D-- 0 yp 6- D 8Hd 9 (3.32)

The second term on the L.H.S. of Eq. (3.32) can be approximated as

- D ,HI dO = - 5 D 9 oH (0 - Os) dOf~t  = fD t 8,00, H - fOb II

Ds y U , (3.33)
H(98 )

which leaves us with

- D ( - aypo) dO 0. (3.34)

Equation (3.34) states that the diffusive flux associated with the planetary vorticity

gradient and the generalized thickness gradient has to integrate to zero over the depth

of the troposphere.

Comparison of Eq. (3.32) to Eq. (11) in Schneider (2004) shows that the first

integral on the L.H.S is similar in the two approaches, but Schneider (2004) does

not include the second integral on the L.H.S, which appears due to the factor H in

the definition of the thickness weighted mean PV. This term balances the surface

contribution on the R.H.S. of Eq. (3.32). Schneider (2004) therefore remains with

an additional surface potential temperature gradient contribution on the R.H.S. of

Eq. (3.34). This additional term allows him to balance the momentum budget with a

vertically constant eddy diffusivity. According to Eq. (3.34), however, this is generally

not possible. This can be seen by noting that the second term in the integral in Eq.

(3.34) approximately integrates to zero, if D is assumed vertically constant:

J Dypo dO = -Dg-1(Aop(9t ) - ay p-) Z 0 . (3.35)

As justified in Schneider (2004), we here assumed that both the isentropic "slope"
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at the tropopause By lop(t), and the surface pressure gradient,8, - are negligible.

The first term in the integral in Eq. (3.34), however, is positive definite. As in the

QG model, we thus find that the eddy diffusivity D can generally not be vertically

constant.

3.5.2 A Scaling Relation for the Criticality Parameter

Eq. (3.34) can be used to obtain a scaling relation between the criticality and the

vertical structure of the eddy diffusivity. As argued above, the momentum budget

cannot generally be satisfied if the eddy diffusivity is assumed vertically constant.

Instead, we expect the eddy diffusivity to be large near the surface and decay towards

the tropopause (Plumb and Mahlman, 1987; Haynes and Shuckburgh, 2000).

To derive a scaling argument for the vertical structure of the eddy diffusivity, we

separate the integral of the mass transport in Eq. (3.34) into two parts, above and

below some level 01(y), which yields

D1 P - po dO = -D2 0 ByPo d6, (3.36)

where we defined bulk diffusivities D1 and D 2 for the two layers, which formally can

be described as weighted vertical averages of the eddy diffusivity over the respective

layer. We further assume that the lower layer is chosen such that it includes the entire

"surface layer", which, at any given latitude, comprises all isentropes that intersect

with the surface at some time or longitude. We thus require that 'H(01 - 0,) = 1 at

all times and longitudes. Ignoring again contributions due to the isentropic "slope"

at the tropopause, Bylop(Ot), and the surface pressure gradient, By, .-, we then find

that

D1 0)fg-~ - By lop(61)) ~ - D2 (PA f MO+ Bv lop(1)). (3.37)

Equation (3.37) is the generalization of the two layer QG relation in Eq. (3.5), where

layer thicknesses have been replaced by the corresponding pressure ranges, and the
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isentropic slope becomes ylop ~ ap As in the QG problem, the mass fluxes

in the two layers can be written in terms of the PV diffusivity multiplied by the sum

of a contribution associated with the layer-integrated planetary vorticity gradient, #,
and a contribution associated with the thickness gradient in each layer, which in turn

is given by the isentropic slope at the interface.

As in the QG case, Eq. (3.37) can be used to derive a scaling relation for the

criticality parameter as

fs D( ~ ~ (3.38)i3H AD'(.8

where ( "- p( 1))D1 + (P(01) - p(Gt))D 2) /(;S - p(6t)) denotes the vertical

mean of the eddy diffusivity, AD = D1 - D2, s = Bo(61), and H _ -(B(0 1) (p-g -

P(9 t)). The scaling relation in Eq. (3.38) is analog to the two-layer QG result in Eq.

(3.6).

Notice, that we had to require that the lower layer shall include the entire surface

layer. Apart from that requirement, Eq. (3.38) can technically be derived for any

choice of the height of the layer interface. However, the bulk diffusivities D 1 and D2

represent poorly defined layer averages if the weighting factor, (po/f 3 - Bypo), takes

on large positive and negative values within a single layer. The sign of this factor is

given by the sign of the extended PV gradient, and is typically negative throughout

the SL, due to the dominant contribution associated with the isentropic outcrops.

An adequate choice of the layer interface is thus given by the first level above the SL

where the PV gradient becomes positive. Schneider (2005) finds that this is typically

just above the SL; in the simulation discussed here, the sign change occurs somewhat

higher than the top of the SL.

Relation (3.38) shows that vertical variations in the eddy diffusivity over the

troposphere may be small (compared to its mean value) only if > 1, which is

in agreement with the fact that eddies tend to be more barotropic in the limit of

large supercriticalities. If, on the other hand, the criticality is of order one, vertical

variations in the eddy diffusivity are expected to be on the same order as the eddy

diffusivity itself. This is in agreement with the numerical simulation discussed in
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Figure 3-4: Surface (solid) and upper-tropospheric (dashed) eddy diffusivity. The

surface eddy diffusivity is calculated form a flux-gradient relationship of surface po-

tential temperature as in Eq. (3.24). The upper tropospheric eddy diffusivity is

calculated as an effective bulk eddy diffusivity integrated from the first level above

the SL where the PV gradients becomes positive, 01, to the top of the troposphere as

DUr = f /f dO. Notice, that both quantities are independent of the

definition of PV fluxes and gradients on near-surface isentropes.

section 3.4. A rough estimate for the criticality in the simulation can be obtained

from Fig. 3-2. With a = = 6250 Km, we have a = Hs - 2, which is in qualitative

agreement with the observed upper tropospheric eddy diffusivity being approximately

50% smaller than the eddy diffusivity near the surface (see Fig 3-4). An extensive

series of numerical simulations supporting the scaling relation (3.38) will be discussed

in chapter 4.

The argument for the relationship between the criticality and the vertical struc-

ture of D is closely related to the analysis by Held (1978, 1982), who argues that the

criticality parameter needs to be close to one, if the depth of the tropopause is set by

the depth scale of the baroclinic eddies, and therefore equals the vertical scale over

which the eddy diffusivity decays. This is likely to be the case in the present atmo-

sphere and for a considerable range of parameters around the present state, which

would explain why the criticality of the atmosphere is 0(1), and is reported to be

rather insensitive to changes in the external forcing in numerical simulations (Schnei-

der, 2004; Schneider and Walker, 2006). However, the previous chapter has shown

97



that supercritical mean states are possible if one forces the system to be very different

from today's atmosphere. According to relation (3.38) such states are possible if the

eddy diffusivity decays only weakly over the depth of the troposphere. The scaling

relation in (3.38) by itself, is not a predictive theory for the criticality. Such a theory

would require an independent prediction for the vertical structure in D.

3.6 Conclusions

We used the isentropic zonal momentum budget of the troposphere, to derive a scaling

relation, which links the criticality parameter to the vertical structure of the eddy

diffusivity (Eq. 3.38). We found that the criticality parameter scales as the ratio of

the vertical decay of the eddy diffusivity over the depth of the troposphere, to the

vertical mean of the eddy diffusivity. Marginally critical states are expected if the eddy

diffusivity decays from its surface value to about zero in the upper troposphere, that is

if the relative vertical variations of the eddy diffusivity are 0(1). Supercritical states

are predicted if the eddy diffusivity varies only weakly in the vertical. Subcritical

states would require the eddy diffusivity to decrease rapidly over a scale much smaller

than the depth of the troposphere.

This result is in contrast to that of Schneider (2004), who argued that, in primitive

equations, marginally critical states are obtained with an eddy diffusivity that is

vertically constant throughout the whole depth of the troposphere, while strongly

supercritical states are impossible. The difference stems from the different approaches

taken to compute averages along isentropes in the surface layer. We use a closure

for the interior eddy PV flux as defined in Koh and Plumb (2004), which can be

justified by analysis of the PV variance budget and is supported by idealized numerical

simulations. Schneider (2004) instead uses a closure for an extended eddy PV flux,

which includes contributions from isentropes below the surface. We argue that this

closure over-represents the surface layer mass transport associated with the form drag

on outcropping isentropes.

With our approach, the relation between the criticality and the vertical structure
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of the eddy diffusivity is a direct extension of Green's (1970) result based on QG

theory. Differences from the QG results are only quantitative in nature, and arise

due to the finite isentropic slope and intersections of isentropes with the ground.

Schneider's (2004) result instead does not reduce to the QG result, even in the limit

of small isentropic slopes.

The revised scaling relationship has important implications for the macroturbulent

equilibration of an atmosphere. In particular, the criticality parameter is no longer

constrained to one. Both marginally critical and strongly supercritical states are

possible, if the magnitude and vertical structure of the eddy diffusivity can change.

Theories for the eddy diffusivity are therefore needed to predict the response of the

criticality parameter to changes in external parameters.

A number of additional effects important for the real atmosphere have been ig-

nored in this study. For example, complex boundary layer dynamics and moisture

both introduce sources and sinks of PV, raising questions about whether diffusive

closures for the eddy PV fluxes hold, especially near the surface. Our work should be

seen as a step in a hierarchy of studies. We extended results from QG theory to an

idealized primitive equation system. Next we will need to connect our scaling for the

extra-tropical adjustment to more realistic settings. This is left for future work.
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APPENDIX A

The PV Variance Budget and the Closure Problem

We want to relate the eddy PV flux to mean quantities in terms of a diffusive closure,

which assumes that eddy PV fluxes are directed down the mean PV gradient. In the

following we present justification for such a closure using the interior PV approach,

based on the PV variance budget.

An equation for the thickness weighted zonal mean PV

We start with the adiabatic potential vorticity equation in isentropic coordinates (e.g.

Vallis, 2006)

DtP + u-VOP = -rP (3.A1)

where Vo denotes the horizontal nabla operator, with derivatives taken along isen-

tropes, and u denotes the horizontal velocity vector. Dissipation is here represented

by a simple linear Rayleigh sink term, but other dissipation mechanisms would lead

to qualitatively similar results, as long as they tend to reduce the PV variance (see

also Plumb, 1979). Taking the generalized thickness weighted isentropic average of

(3.A1), and re-arranging terms, yields

* PP 1 1
8tP- 8tpO+ 2 82tVO+ zVo(poii*P*)+-VooiiP--Vo(upo) -rP*. (3.A2)

PO Po Po Po

We can now use the (adiabatic) thickness equation

9tPo + Vo -(upo) = 0 , (3.A3)

which can be shown to hold similarly for the generalized thickness 4 po, to cancel the

4The conservation equation for the generalized thickness (3.A3) can be derived from the conser-
vation equations for thickness 0 to+ Vo.(uo) = 0 (e.g. Andrews et al., 1987) and the thermodynamic
equation for surface potential temperature 0 tO, + u-7V, = 0.
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second and the last terms on the L.H.S. of (3.A2). If we further use the isentropic

average of (3.A3) to rewrite the third term on the L.H.S. of (3.A2) as -Bey; =
PO

at Ao =- Vo -(V *), we arrive at
PPO

atP* + w*-VOP* + VVo-(poiP) = -r5*. (3.A4)
Po

An equation for PV variance

Subtracting Eq. (3.A4) from (3.A1), we obtain an equation for the PV perturbations

p = p - 5*,

8P =-u-VoP - i-VOP* + rzVo-(pofnP) - rP. (3.A5)

To derive a variance equation, we multiply both sides by pOP and average, which

after some algebra yields

10PP 1-PD~ 1 1 4

-8tpop2 _ _p28po -- V(pup2 )+ -p 2 Vo-(pou) -pofnP.VoP* -rpoP 2 (3.A6)
2 2 2 2

The thickness equation (3.A3) implies that the second term on the L.H.S. and the

second term on the R.H.S. cancel. For a zonally re-entrant channel, the budget

simplifies to

-8t(pj)P 2  - 8(povp2) _ 9Y8p* - rP 2  (3.A7)2 2 (.7

Note, that the triple correlation is included in the flux term (i.e. the first term on the

R.H.S.), which describes the flux of PV variance associated with the total meridional

velocity v = V* + . If the turbulence is sufficiently homogeneous, such that the

meridional advection of variance can be ignored, we find that in a statistically steady

state

iP BYP = -rP 2 . (3.A8)

Since the R.H.S. of (3.A8) is negative definite, the thickness weighted eddy PV flux

has to be down the thickness weighted mean gradient. If the turbulence is not homo-
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geneous, and the meridional advection of PV variance is a dominant contribution, a

local down-gradient closure is not defensible, though the eddy PV flux still needs to

be down-gradient in a domain-averaged sense.

102



APPENDIX B

Relations between the Interior and Extended PV

Fluxes and Gradients in the SL

We here want to show how the mass transport associated with the extended eddy

PV flux, can be written in terms of the mass transport associated with the eddy flux

of interior PV, plus roughly half of the mass transport associated with the surface

eddy potential temperature flux. The extended PV gradient, instead can be written

in terms of the interior PV gradient, plus a contribution associated with the full eddy

PV gradient.

The extended eddy PV flux contribution to the mass transport can be re-written

by subtracting Eq. (3.20) from (3.21), which yields

,f-"T* = F -- * + FW- F-e
1

F 2 F O (3.B1)

where for the last step we used that FR, ~ j F,;, because Pext*(6O) ~ 2P*(0,), as

shown in Eq. (3.23).

Using that5 Pet* = II-P*, where we defined H(O) =-H(6 - 0,), we find that the

estimated mass transport associated with the extended PV gradient, on the other

5Note, that e* ± while P = HI P,. -*
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hand, becomes

FL * = 0" ToDsayPe-t*
- ,yYx dO

fOb Pext

- bd - U -I1DoT d

i D ,yP* iOb P +fb

ffDs6(0 - Os)&y0s dO
P*

is poD8, P* f - 8fo 
dP + _ _D s 8 s

obp P 97)
= FDO, P.+ FDO,,#,-
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APPENDIX C

Comparison to "PV Sheet" Formulations

The extended PV, Pext defined by Schneider (2004) has similarities to the "PV-sheet"

formulation that is commonly used to avoid non-homogeneous boundary conditions in

QG dynamics (Bretherton, 1966). Extensions of this formulation to primitive equa-

tions have been proposed by Andrews (1983) and Schneider et al. (2003). The for-

mulation in Andrews (1983) uses an isentropic coordinate formulation and describes

isentropes which intersect with the surface as closing in an infinitesimal surface sheet.

The relation of the approaches discussed above, to such a PV sheet formulation will

be addressed here.

The total isentropic mass transport (i.e. the L.H.S. of Eq. 3.14), is unaltered

whether or not we assume that isentropes intersect the surface or close in an infinites-

imal sheet just above the surface, since the geostrophic velocity is continuous (and

thus finite) in this sheet and its thickness is by construction infinitesimal. Since the

explicit surface potential temperature flux contribution on the R.H.S. of Eq. (3.14)

vanishes if isentropes are assumed to close in an infinitesimal sheet above the surface,

this contribution has to be absorbed by the PV flux contribution. The isentropic

mass budget (3.14) then reduces to

OO*d6 ~ -] dO. (3.C1)

The thickness weighted average of PV in the PV sheet is well defined if we first

construct a scenario in which isentropes close in a finite sheet above the surface, in

which case = f/6, and then take the limit in which the thickness of this sheet

goes to zero, i.e. o = 0 on isentropes within the sheet. The thickness defined this

way thus becomes analog to the generalized thickness po = 'H(O - 0,) as defined

above (but with 0, now denoting the potential temperature just above the surface
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sheet). Consequentially, the thickness weighted PV becomes similar to the extended

PV defined above, since P* -+ f/ = PeIt

The eddy PV flux v^P ,however, does not reduce to the expression betPe , since

the geostrophic velocity is continuous in the surface sheet', while ve.t was defined to be

zero on the "sub-surface" part of the isentrope. This explains the difference between

the SL mass transport associated with the eddy flux iP in the PV sheet limit, which

by construction contains the full "surface" contribution, and the SL mass transport

associated with iextPext , which contains only about half of the surface contribution

(Eq. (3.27)).

If we use the diffusive closure for the PV flux in the PV sheet limit: f)P =

-DByP*, Eq. (3.C1) becomes

f* **poD8&P* -'WDO Pe *

O v ~ d 6- P> 01 Text dO . (3.C2)
ob onb o Fext*

Unlike in the extended PV approach used in Schneider (2004), Eq. (3.C2) together

with Eq. (3.B3), yields the same result as is obtained using a closure for the eddy

flux of interior PV and surface potential temperature.

6 Note that, since the pressure gradient in an infinitesimal surface sheet is similar to the surface
pressure, the geostrophic velocity would be continuous into the sheet but vary somewhat within

the sheet, due to the varying density. These variations are on the order of - = 0- , where
Ps

the index s here denotes values just above the surface sheet. Since the potential temperature 6 in
the surface sheet takes on all surface potential temperature values over the regarded domain, the
geostrophic velocities over the whole depth of the surface sheet can be assumed similar to the velocity
just above the sheet if -01 < 1, where AO, denotes the horizontal surface potential temperatureOs
variation over the domain. The geostrophic velocity in the surface sheet is exactly equal to the
geostrophic surface velocity if the Boussinesq approximation is valid.
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Chapter 4

The Vertical Structure of the Eddy

Diffusivity - Observations and

Numerical Results.

4.1 Introduction

It is commonly held that turbulent eddies equilibrate the extra-tropical atmosphere

by fluxing PV and surface potential temperature down their mean gradient. As

first shown by Green (1970), the structure of theses eddy fluxes is constrained by

the vertically integrated quasi-geostrophic (QG) zonal momentum budget. If the

eddy fluxes of PV and surface buoyancy can be expressed by a diffusive closure,

this constraint yields a relation between the equilibrated zonal mean state, and the

vertical structure of the eddy PV diffusivity over the depth of the troposphere. The

result suggests that, for any finite criticality parameter, , the eddy diffusivity needs to

decay in the vertical, over the depth of the troposphere. Marginally critical states (i.e.

( ~ 1), as observed in the Earth's extra-tropics, are obtained if the eddy diffusivity

decays from its surface value to about zero near the tropopause.

Schneider (2004) argued that the zonal momentum budget in full primitive equa-

tions returns a different relation than in QG. Unlike in QG, he finds that marginally
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critical states are obtained with an eddy diffusivity that is vertically constant through-

out the whole depth of the troposphere, while strongly supercritical states are argued

to be impossible (Schneider and Walker, 2006). The result of Schneider (2004), how-

ever, was questioned in the previous chapter, where we instead argued that primitive

equations and QG are equivalent, if isentropic averages are defined appropriately.

We derived a relation between the criticality parameter and the vertical structure

of the eddy diffusivity as

AD

where b denotes a vertical mean of the tropospheric eddy diffusivity of PV, and AD

denotes a bulk difference between the eddy diffusivities in the lower and upper tro-

posphere. Eq. (4.1) states that mean states close to marginal criticality (i.e. ( ~ 1)

require the eddy diffusivity to decay strongly over the depth of the troposphere.

Strongly supercritical states could instead have eddy diffusivities approximately con-

stant throughout the whole depth of the troposphere.

This chapter analyzes the vertical structure of the eddy PV diffusivity in the

troposphere. Since Earth's extra-tropics are in a state near marginal criticality, Eq.

(4.1) requires that the eddy diffusivity decays substantially over the depth of the

troposphere. This is confirmed by re-analysis data, which shows that the extra-

tropical eddy diffusivity of PV and surface potential temperature, decays from large

values near the surface, to almost zero near the tropopause.

To test the scaling relation in Eq. (4.1) more quantitatively, and to analyze its

general implications for the turbulent equilibration of a baroclinic flow, we further

analyze a series of idealized numerical simulations, with varying Coriolis parameters

f and planetary vorticity gradients f. The simulations quantitatively confirm the

proposed scaling relation between the criticality parameter and the vertical structure

of the eddy diffusivity. However, they also show that this relation does not pose an

obvious constraint on the possible values of the criticality parameter. We show that

the vertical structure of the eddy diffusivity does vary a lot for particular choices of

f and fi, thus allowing similarly large variations in the criticality parameter.
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This chapter is organized as follows. In section 4.2, we present an analysis of the

isentropic eddy diffusivities of PV from re-analysis data. In section 4.3, we discuss the

results of a series of numerical simulations, which exhibit strongly varying criticality

parameters. The results of the simulations are used to quantitatively test the relation

between the criticality parameter and the vertical structure of the eddy diffusivity in

Eq. (4.1). Some concluding remarks are presented in section 4.4.

4.2 Observations

In this section we analyze the vertical structure of the eddy diffusivity in the extra-

tropical atmosphere. Haynes and Shuckburgh (2000) estimated tropospheric and

lower stratospheric passive tracer diffusivities, using the effective diffusivity diagnos-

tic proposed by Nakamura (1996). Their results suggest that the extra-tropical eddy

diffusivity decays strongly between the 300K surface and the tropopause. This is in

qualitative agreement with the prediction of Eq. (4.1), which for Earth's atmosphere

predicts a strong overall decrease in the eddy diffusivity over the depth of the tropo-

sphere. Unfortunately, the analysis of Haynes and Shuckburgh (2000) does not extend

below the 300K surface, and thus misses a significant part of the extra-tropical lower

troposphere.

We here want to estimate the eddy diffusivity of PV and of surface potential

temperature directly from the ratio of the eddy flux to the mean gradient in the

ERA-40 reanalysis. The theoretical arguments for the relation between the vertical

structure of the eddy diffusivity and the criticality of the equilibrated mean state

generally assume that the eddy diffusivity of surface potential temperature is similar

to the PV diffusivity near the surface. This is to be expected if the eddy diffusivity

can be regarded as a fundamental property of the flow, which is independent of the

conserved tracer, and has been confirmed in numerical simulations in chapter 4. The

PV diffusivity in the upper troposphere, however, can be strongly different from the

near surface diffusivity, as will be shown below.

The thickness weighted mean PV, P*, and eddy PV flux, DP*, are calculated

109



as proposed by Koh and Plumb (2004). P = (f + ()/(g'Bop) is the isentropic

PV, where ( =Bv - &gu is the relative vorticity, with derivatives taken along 9

surfaces. U* po(/P denotes an isentropic time- and zonal-average, weighted by

the generalized thickness, po = -X(6 - 0,)g48ep, and () denotes deviations from

the generalized thickness weighted average. X(9 - 0,) is the Heaviside function, and

0, is the surface potential temperature. The Heaviside function in the definition of

the generalized thickness weighted average takes care that averages are taken only

over regions where the isentrope is above the ground.

A problem that arises when calculating isentropic diagnostics from atmospheric

data is the frequent occurrence of statically unstable stratification in the planetary

boundary layer. A dynamically meaningful coordinate transformation from pressure

coordinates into isentropic coordinates requires that O(p) be monotonic. To avoid this

problem, we here ignore the lowest 10 model levels1 of the re-analysis data, which

comprise about the lowest kilometer above the surface and contain virtually all oc-

currences of negative 896. Averages on isentropes which intersect with this boundary

layer are treated as discussed above, but with the surface potential temperature 0.

being replaced by the potential temperature at the top of this layer.

Figure 4-1 shows the thickness weighted isentropic eddy PV flux and gradient as

a function of latitude and 0, calculated from all-year averages over the period from

1982 to 2001. PV fluxes are mostly negative, while the PV gradient is mostly positive

throughout the troposphere and lower stratosphere, in agreement with the notion of

generally down-gradient eddy fluxes. While PV fluxes are down-gradient in a bulk

averaged sense, up-gradient PV fluxes are observed locally around the subtropical

jet (this has recently been observed also by Birner, personal communication). The

vertical structure of the PV gradients in the extra-tropical troposphere reveals low

values in the lower troposphere and maxima near the tropopause. The eddy fluxes,

on the other hand remain more constant throughout the troposphere, so that the

eddy diffusivity decreases towards the upper troposphere and tropopause region.

'The model uses a hybrid coordinate system. The pressure at the top of the 10th model level is
given as p = 3850.91 Pa+0.847375 x p,, where p, denotes the local surface pressure.

110



(a) p80 (b) pgP*
x 104ms* x104ms

360 360

I -0.5

340 3400.

27320 Z9s

300 300-

280 1Y280 -0.5

260 260-

-50 0 50 -50 0 50
Latitude Latitude

Figure 4-1: (a) Thickness weighted isentropic PV fluxes, po'b , from the ERA-40 re-
analysis (color shading). The grey contours denote zero PV flux. The black contours
show the zonal mean zonal wind. The white lines indicate the top of the surface layer
(here defined by the 95% quantile of potential temperature at the top of the boundary
layer) and the tropopause (defined by a lapse rate of dT/dz = 2K/km). (b) As (a),
but with the color shading showing the thickness weighted isentropic PV gradient,

The vertical decrease in the eddy diffusivity is confirmed by figure 4-2, which

shows the isentropic eddy PV diffusivity, calculated as

D = _, .(4.2)

We find large vertical variability in the eddy diffusivity over the depth of the tropopause,

with a strong overall vertical decrease between the surface layer and the tropopause,

in the extra-tropics. This is in agreement with the predictions of chapter 3.

For comparison, we also estimate the near-surface eddy diffusivity of potential

temperature, as

Ds = 8 , (4.3)

where U" denotes an average along the first model level above the boundary layer,

as defined above. The results shown in figure 4-2 support the notion that the extra-

tropical near-surface eddy diffusivity of potential temperature is of similar magnitude
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Figure 4-2: Estimate of the isentropic eddy PV and near surface potential temper-
ature diffussivities from ERA-40 reanalysis data. The near-surface eddy diffusivity
of potential temperature is represented by the bar at the bottom. The figure is cut
of below the 5% quantile of the near-surface potential temperature (defined as the
potential temperature at the top of the removed boundary layer) and the thin white
line shows the 95% quantile of the near-surface potential temperature. The thick
white line denotes an estimate of the tropopause (here calculated as the level where
the stratification reaches -2K/km). Notice that the colorbar is logarithmic, with the
normalization, Do = 3.24 x 105, chosen as in Haynes and Shuckburgh (2000). The
colorbar is saturated in the dark blue regions, over which the eddy diffusivity is small
and mostly negative.

as the PV diffusivity in the surface layer. Notice that the eddy PV diffusivity varies

significantly throughout the depth of the surface layer, and becomes poorly defined

towards its bottom (which comprises potential temperature values which are only

rarely found at the given latitude). The mean PV diffusivity over the surface layer,

however, agrees well with the near-surface eddy diffusivity of surface potential tem-

perature, everywhere outside of the tropics and latitudes with large topography (not

shown).

The results in figure 4-2 are qualitative similar to the effective diffusivities com-

puted by Haynes and Shuckburgh (2000), though there are also some notable differ-

ences. In particular, the eddy PV diffusivity calculated from the flux/gradient ratio

shows regions of weakly negative diffusivities associated with the PV flux reversals

near the subtropical jets. The effective diffusivity calculated by Haynes and Shuck-

burgh (2000) shows small values in the regions of the subtropical jets, but it is by
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definition always positive. Furthermore, the regions of vanishingly small eddy PV

diffusivities seem to extend further downwards into the troposphere than the effec-

tive diffusivity minima reported in Haynes and Shuckburgh (2000). Notice, that it

is the actual PV diffusivity, as calculated here, which is relevant for the theoretical

arguments discussed above. To what extent this is equivalent to Nakamura's (1996)

effective diffusivity remains unclear.

4.3 Numerical Simulations

We now test the scaling relation in Eq. (4.1) by analyzing a series of numerical

simulations with strongly varying criticality parameters. We use an idealized #-plane

channel configuration, which allows us to vary the Coriolis parameter f and the

planetary vorticity gradient # separately and without changing the size of the domain.

Notice, that on a spherical planet, f and , are related through the planetary scale.

However, it is the dynamical scale a = f/,, which goes into the definition of the

criticality parameter, ( ~ a/Hs, and thus determines the characteristics of the flow.

Exploring various combinations of f and fi, thus proves to be an efficient way to

greatly vary the criticality parameter of the equilibrated mean state, and thus test

the theoretical arguments discussed above.

4.3.1 Model Setup

The model and setup is similar to the one discussed in chapter 3: a zonally reentrant

f-plane channel, 15,000 km long, bounded meridionally by side walls at y=± 4500km,

and vertically by a rigid lid at z=H=10.2km and a flat bottom at z=0. Free slip

boundary conditions are used on all boundaries, and kinetic energy is removed by a

linear Rayleigh drag with a constant drag coefficient of r = (50days)- 1 throughout

the domain. We use a linear equation of state with a thermal expansion coefficient

of a = 3.6 - 10- 4 K- 1, i.e. b = ga(6 - Go), where b is buoyancy, 0o a reference

potential temperature, and g the acceleration of gravity. The thermal expansion

coefficient used here is larger than that in chapter 3 and was chosen to resemble the
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thermal expansion of air. The simulations are forced through relaxation to the same

equilibrium temperature profile used in chapter 3 (figure 3-1). The relaxation time-

scale is -r, = 14 days at the surface and decreases exponentially, with an e-folding

depth of 500 m, to an interior value of Tint = 50 days. The simulations are spun up

until a quasi-steady state is reached. Diagnostics are calculated over at least 500days

after equilibration is reached, which guarantees that the presented results are not

affected by stochastic variability.

The setup was chosen to provide an idealized testbed to test the discussed theory,

and avoids various possibly complicating effects, as for example compressibility and

the parameterization of boundary layer and convective processes. While these effects

can have a quantitative influence on the proposed relations, the qualitative results

presented here should carry over to more realistic setups. A detailed analysis of the

roles of these neglected processes should be the subject to future studies.

4.3.2 General Results

We performed a total of 11 simulations with Coriolis parameters fo = 1, 2, 4, 8 x 10-4s1

and planetary vorticity gradients # = 0.8,1.6, 3.2 x 10-"m-'s'. This allows for a

total of 12 possible combinations of fo and 1. Only the combination fo = 1 x 10-4S-,

13 = 3.2 x 10- 1 1m- 1s was omitted, since the resulting Coriolis parameter f = fo+3y

would change sign within the domain.

The first question to address is whether or not eddies maintain a marginally critical

equilibrium state, ( ~ 1, for all choices of f and 1. Before looking at all simulations,

we focus on two illustrative cases: one using parameters characteristic of Earth's mid-

latitudes: fo = 1 x 10-4s-1, 1 = 1.6 x 10- 1 1m-is, and one using a much faster

rotation rate, but less curvature: fo - 8 x 10-4s1, 1 = 0.8 x 10- 1 1m- 1s. Figure 4-3

shows snapshots of surface potential temperature as well as the equilibrated time- and

zonal-mean state for both simulations. In the simulations with Earth-like parameters,

eddies equilibrate the system in a way that qualitatively resembles the extra-tropical

atmosphere in many aspects. In particular, we find that the isentropic slope is such

that the criticality parameter is around 1, i.e. s ~ OH/fo. The simulation develops a

114



fo = 1 -10~4 s~1 , # = 1.6 -10~" m-'s-1 fo = 8 -10~ 4
S-

1 , # = 0.8. 10-1' m-s-4

4000 4000 280

3000 3000 275

2000 2000 270

, 1000 -- 1000 265

0 020

-1000 -1000 255

-2000 -200 250

-4000 -4000 240
2000 4000 6000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000

x [km] x [km]

10 10

9 9310
8 8 300

7 ------- 7 290
6 280

280

240

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 230

y [km] y [km]

Figure 4-3: Top: Snapshots of surface potential temperature from the simula-
tions with f = 1 x 10-4s-1 , #= 1 x 10--"n-s-- and f = 8 x 10-4s-1, 0 = 0.8 x
10--"m-s-1 . Bottom: Time- and zonal-mean cross-sections for the same two sim-
ulations. Colors show potential temperature, gray lines show the zonal wind (CI: 5
ms- 1 , and 2 ms 1 , for f = 1 x 10- 4s- 1, # = 1 x 10-"m-'s-', and f = 8 x 10- 4 s-, # =
0.8 x 10~-"m-s- 1 , respectively), and thin black lines show EKE (CI: 30m 2 s- 2 and
10m 2 s-2, respectively). The thick white lines denote the characteristic isentropic
slope expected if (= 1.
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Table 4.1: Criticality parameters for all performed simulations.

fo =1 x 10-4 fo =2x 10~4 fo = 4 x 10-4 fo = 8 x 10-4
# = 3.2 x 10-11 / 1.2 2.0 4.0
0 = 1.6 x 10~1 0.9 1.5 2.5 5.5
# = 0.8 x 1011 1.2 2.0 3.8 8.8

very pronounced westerly jet. As in the extra-tropical atmosphere, isentropic slopes

are enhanced in the center of the jet and are somewhat weaker outside.

The simulation with fo = 8 x 10- 4 s- 1, # = 0.8 x 10- 1 1 m-ls-1, instead, equilibrates

to a strongly supercritical mean state. Notice, that the dynamical planetary scale,

a = f/0, is here increased by a factor of 16 relative to the Earth-like case. A

marginally critical state would thus require either that the characteristic slope of

the isentropes be decreased by a factor of 16, or the tropopause height be increased

by a similar amount. As shown in figure 4-3, this is clearly not the case. While

the isentropic slope is somewhat reduced compared to the simulation with Earth-like

parameters, the reduction is much weaker than predicted by adjustment to marginal

criticality. The change in the average height of the troposphere is also negligible.

Criticality parameters for all simulations are estimated as,

_fo (8,6)( A --- (4.4)OH (0z6)'

where (()) denotes a horizontal average over the baroclinically forced region -3500 km < y < 3500km,

taken at the fixed level z = 2km (which roughly corresponds to the average height of

the layer interface used to calculate bulk diffusivities below). Due to the relatively

strong constraint put on the tropopause height by the restoring profile, variations in

the latter are negligible over the regarded set of simulations. For simplicity, we set

H = 7.5km in Eq. (4.4) for all simulations. The criticality parameters vary between

0.9 (for fo = 1 x 10-4s-1, / = 1.6 x 10-"m~1s- 1) and 8.8 (for fo = 8 x 10-4s-1,

/ = 0.8 x 10- 1 1 m~1 s- 1 ), and are summarized in table 4.1.

As discussed in chapters 1 and 2, the criticality parameter has important implica-
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tions for the characteristics of the turbulent flow. In particular, criticality parameters

larger than one are associated with strongly non-linear flows, which produce a signif-

icant up-scale energy transfer, resulting in eddies much larger than the scale of the

linearly most unstable mode (Held and Larichev, 1996). As discussed in Appendix B,

an analysis of the spectral energy budget confirms these properties for the simulations

presented in this study. The simulation with Earth-like rotational parameters reveals

only a small difference between the scale of the instability and the scale of the most

energetic eddies. However, this scale separation increases approximately linearly with

the criticality parameter, demonstrating the increasing role of nonlinear eddy-eddy

interactions.

4.3.3 The Criticality Parameter and the Vertical Structure

of the Eddy Diffusivity

Next we analyze the structure of the eddy diffusivity in our model simulations, with

the ultimate goal of testing the relation between the criticality parameter and the

vertical structure of the eddy diffusivity derived in chapter 3. We start by focusing

on the same two illustrative cases: the marginally critical Earth-like simulation, using

fo = 1 x 104s-1, # = 1.6 x 10- 1 1m-s- 1 , and the strongly supercritical simulation,

using fo = 8 x 10-4S- 1 , 3 = 0.8 x 10- 1 1 m-is-1.

Figure 4-4 shows the isentropic eddy PV fluxes and PV gradients as a function

of latitude and 0, for the two model simulations. In the upper troposphere, the PV

fluxes are mostly negative, while the PV gradients are mostly positive. Below, the PV

fluxes are generally weaker and mostly positive, while the PV gradients are mostly

negative2 . Overall the PV fluxes tend to be down the mean gradient, though the

spacial structure of the fluxes and gradients, particularly for the more Earth-like,

marginally critical simulation, with fo = 1 x 10-4s-1 and 3 = 1.6 x 10"m-1s-1,

2The weakly negative PV gradients in the lower troposphere are associated with a slight flattening
of the isentropes near the surface. The flattening of the near surface isentropes in the simulations,
which differs from Earth's atmosphere, could be avoided by a further reduction of the thermal
restoring time-scale near the surface. We here refrain from further reducing the near-surface restoring
time-scale to ensure that PV behaves approximately like a conserved quantity over the whole domain.
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Figure 4-4: Top: Thickness weighted eddy PV flux for the simulations with
f=1 x 104s-1, 1 x 10~"m-s-1 andf =8x 10-4 s,=0.8 x10m-s-.
Bottom: Corresponding PV gradient for the same two simulations. Grey lines mark
the zero contours of the PV fluxes and gradients. The black lines show the thickness
weighted zonal-mean wind H* (CI: 5 ms-1 , and 2 mns- 1, for f = 1 x 10-4 s-1 , fi=
1 x 10-"m~s-, and f 8 x 10-4 s-1 , 0.8 x 10-1m-is-i, respectively).

The white lines indicate the top of the surface layer (defined by the 95% quantile
of surface potential temperature), and the "tropopause", used as the top of the
upper layer. The "tropopause" is here defined such that it includes 85% of the
northward return flow at any given latitude. Notice that, for the simulation with
f = 1 x 10-4 s-1 , 43 = 1 x 10-u'm-is 1 , this "tropopause" is not very well defined in
the northern part of the domain, since the total mass transport is very low. The bulk
diffusivities shown in figures 4-5 and 4-6, however, are not very sensitive to the exact
choice for the top of the upper layer.
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Figure 4-5: Eddy diffusivities for the simulations with

f = 1 x 10- 4s-1 , 3 = 1 x 10- 1 m 1 s' (left), and f 8 x 10 4 s 1 , #3
0.8 x 10- 1 m-s- 1 (right). The solid lines show the bulk eddy diffusivity in
the lower troposphere and the dashed lines show the bulk eddy diffusivity in the
upper troposphere. For comparison, the dotted line shows the eddy diffusivity of
surface potential temperature. As found in chapter 4, the latter is overall similar
to the bulk diffusivity in the lower layer. All diffusivities have been smoothed by a
500km running mean.

shows some differences. Most markedly, this simulation reveals a locally very strong

PV gradient near the maximum of the zonal jet, which is not reflected by a similar

peak in the PV fluxes. This implies a very weak eddy diffusivity near the jet center, in

agreement with the notion that zonal jets can act as diffusivity barriers (e.g. Ferrari

and Nikurashin, 2010, and references therein).

The generally weak PV gradients in the lower troposphere make it difficult to

define a local diffusivity from a PV flux/gradient relationship. Nevertheless, we can

define bulk diffusivities for the lower and upper troposphere, which are calculated from

the vertically integrated eddy PV fluxes and gradients in each layer, as discussed in

Appendix A. Notice, that the bulk diffusivity for the lower troposphere here further

includes a contribution associated with the eddy flux and gradient of surface poten-

tial temperature, which is similar to the PV sheet contribution in continuous QG

(Bretherton, 1966).

Figure 4-5 shows the bulk eddy diffusivities in the upper and lower troposphere, for
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Figure 4-6: The ratio of the vertical mean of the eddy diffusivity to it's vertical
decrease, D/AD, against the criticality parameter, (. Each marker represents one
simulation. The black line denotes b/AD = 0.7(.

the Earth-like simulation with fo = 1 x 10- 4s- and 6 = 1.6 x 10-lm- 1s- 1 , as well as

for the most supercritical simulation with fo = 8 x 10- 4 s- 1, 3 = 0.8 x 10-m -is-i.

In agreement with the prediction of Eq. (4.1), we see that in the Earth-like case,

where ( ~ 1, the eddy diffusivity decreases strongly between the lower and upper

troposphere. For the simulation with fo = 8 x 10- 4 s-1 and 0 = 0.8 x 10-"m-is--1,

on the other hand, the eddy diffusivity in the lower and upper troposphere is quite

similar, in agreement with the criticality parameter being much larger than one.

We can test the prediction of the scaling law in Eq. (4.1) more quantitatively.

Figure 4-6 shows the ratio D/AD, calculated from horizontal averages3 of the bulk

diffusivities in each layer, against the criticality parameter (, for all simulations. The

results are in good agreement with the proposed scaling relation.

'As for the estimate of the criticality parameter, averages are taken over the baroclinically forced
region between -3500km < y < 3500km. To avoid large contributions from locations where the
PV gradient becomes very small, we here use harmonic averages of the eddy diffusivity. This yields
somewhat less noisy results than the use of arithmetic averages, but does not affect the overall
picture.
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4.4 Conclusions

We used re-analysis data to show that the eddy PV diffusivity in the extra-tropical

atmosphere decreases substantially over the depth of the troposphere. This decrease

is in qualitative agreement with the scaling argument proposed in chapter 3 (Eq. 4.1),

which suggests that mean states with 0(1) criticality parameters require a vertical

decrease of the eddy diffusivity of the same order as the diffusivity itself.

The scaling relation, which connects the criticality parameter to the vertical struc-

ture of the eddy diffusivity, is further supported quantitatively by a series of numerical

simulations, using an idealized primitive equation model. Marginally critical mean

states are associated with an eddy diffusivity that strongly decays in the vertical over

the depth of the troposphere, while strongly supercritical mean states can have an

eddy diffusivity that stays almost constant over the full depth of the troposphere.

Our results further show that the criticality parameter is not constrained to be

0(1) in a turbulently equilibrated primitive equation system. Instead, numerical

simulations, with varying Coriolis parameters f and planetary vorticity gradients #,

equilibrate into states with a wide range of criticality parameters, spanning about an

order of magnitude. The vertical structure of the eddy diffusivity adjusts accordingly,

and it is unclear in how far the latter may be predicted without prior knowledge

of the criticality parameter of the equilibrated state. In the next chapter, we will

instead argue that the criticality parameter can be predicted using an argument for

the magnitude of the eddy diffusivity in the lower troposphere, which is more easily

predicted than its vertical structure.

In agreement with 2-layer quasi-geostrophic turbulence theory (Held and Larichev,

1996), the changes in the criticality parameter are associated with strong changes in

the non-linear flow characteristics. States with criticality parameters close to one are

associated with only weakly non-linear flows, where the dominant eddy scale is close

to the scale of the most linearly unstable mode. Strongly supercritical states in turn

are associated with highly nonlinear flows, which exhibit eddies much larger than the

scale of the instability, maintained by an inverse energy cascade. This is in agreement
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with the results of chapter 2, where we first showed support for the applicability of

this theory to multi-level primitive equation models.
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APPENDIX A

The Vertical Structure of the Eddy Diffusivity in

Primitive Equations

In chapter 3 we showed that the primitive equation isentropic zonal momentum budget

can be used to derive a relation between the vertical structure of the eddy diffusivity

and the criticality parameter. For the purpose of deriving a scaling relation, the

troposphere is divided into two layers, separated by a potential temperature 0 = 01,

which may be a function of latitude. The level separating these two layers is assumed

to be above the surface layer, which, at any given latitude, is defined to include

all isentropes which intersect with the surface at some time or longitude. We thus

have that 7H(6 1 - 6) = 1, where 0, is the surface potential temperature and R the

Heaviside function.

It is useful to introduce the bulk diffusivities D1 and D 2 , for each layer, defined

as the ratio between a weighted integral of the eddy flux of PV and the weighted

integral of the PV gradient. For the upper layer, D 2 is defined as

D2 = d6 d, (4.A1)

where 6, denotes the potential temperature at the tropopause. The lower layer dif-

fusivity, D1 , includes an additional contribution from the eddy flux and gradient of

surface potential temperature, and can be written as

D L OP 1+ 6=0 fv'9 dO BPyaYT* + 6 -#) d , (4.A2)

where 6min denotes the minimum potential temperature in the domain, 0 denotes

the zonal average along the surface, and ()' indicates deviations thereof. The surface
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contribution in the lower layer is analog to the "surface PV sheet", which can be

used to treat inhomogeneous boundary conditions in a continuously stratified QG

model (Bretherton, 1966). Notice, however, that this surface contribution affects all

isentropes within the SL.

With these definitions, we derived a scaling relation for the criticality parameter

as
fs D

(~-H D (4.A3)#H AD'

Here AD = D1 - D2 is the difference in the eddy diffusivity between the two layers,

and b denotes the vertical mean of the eddy diffusivity, which for a Boussinesq fluid

(as used in the discussed simulations) becomes b = (-(6 1)D 1 + (z(6 ) - -(6 1))D 2) /H,
where H = z(Ot) and we assumed a flat bottom at z = 0. The scaling relation in

Eq. (4.A3) is a direct generalization of the QG results discussed by Green (1970) and

Marshall (1981).

Notice, that apart from the requirement that the lower layer shall include the

entire surface layer, Eq. (4.A3) can technically be derived for any choice of the

layer interface 61. However, the bulk diffusivities D1 and D2 are poorly defined layer

averages if the generalized PV gradient (defined to include the contribution from the

surface potential temperature gradient) takes on large positive and negative values

within a single layer. As proposed in chapter 3, we thus here define the layer interface

as the first isentropic level above the surface layer (for practical purposes defined as

the layer where 1(6 - 0,) < 0.95) where the PV gradient becomes positive. This level

typically separates layers of equatorward mass transport from layers of poleward mass

transport. The top of the upper layer, 6O, is here defined such that it includes 85%

of the northward return flow at any given latitude. This threshold was chosen to

give rough agreement with the average height of the tropopause as found from a

stratification condition. The general results presented in this paper, however, do not

depend on the exact choice of this threshold.

Finally, it should be noted that, consistent with the theoretical arguments, the PV

in the numerical simulations is approximated by the planetary PV, P = f /(g-18op).
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One exemption to this is the inclusion of the curvature of the barotropic mean flow in

the calculation of the PV gradient (i.e. we use an effective planetary vorticity gradient

#3* = 3 + Byisi). While the latter has little influence on the domain wide averages,

it can have a significant effect locally in simulations which develop a strong jet.

All additional neglected contributions to the full PV flux and gradient are generally

smaller.
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APPENDIX B

Turbulent flow Characteristics

The criticality parameter is related to characteristics of the turbulent flow itself.

Held and Larichev (1996) argue that the flow field in marginally critical mean states

is expected to be dominated by weakly non-linear eddies with a scale close to that of

the fastest growing linearly unstable mode (which in turn is on the same order as the

Rossby radius of deformation). Large criticality parameters, on the other hand, are

expected to be associated with strongly turbulent flows. The dominant eddy scale

in the turbulent flow regime scales with the Rhines scale LR, which in turn becomes

much larger than the scale of the most unstable mode, by a factor which is on the

same order as the criticality parameter. While eddy kinetic energy (EKE) is still

produced near the Rossby radius of deformation, non-linear eddy-eddy interactions

produce an up-scale energy transfer to the Rhines scale.

The relation between the criticality parameter and the characteristics of the

turbulent flow can be tested by analysis of the spectral EKE budget. We again

want to focus on the simulation with Earth-like parameters (fo = 1 x 10-4s-1,

, = 1.6 x 10- 1 m-'s- 1), as well as the most supercritical simulation (fo = 8 x 10 4 s- 1,

#3 = 0.8 x 10- 1 1 m-'s- 1). Figure 2 shows the spectral conversion of eddy available

potential energy to eddy kinetic energy (EKE), as well as the spectral dissipation

of EKE, for both cases. The eddy energy conversion rate is calculated from the

cospectrum between the eddy vertical velocity and potential temperature, as

TPK = -a) (4.B1)

where a is the thermal expansion coefficient, () denotes the horizontal fourier trans-

form of the respective variable, and ()* denotes the complex conjugate. Due to the use

of a constant linear drag, the eddy kinetic energy dissipation is simply proportional
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to the eddy kinetic energy itself, and can be calculated as

D = -R '2 + l2) , (4.32)

where denotes the absolute value. In both cases, spectral energy transfer rates are

calculated in 2 dimensional spectral space at each vertical level, and are afterwards

integrated in the vertical, and along circles of constant total horizontal wavenumber.

We also computed the scale of the fastest growing baroclinically unstable mode

and the Rhines scale. The wavelength of the most unstable mode is calculated solving

the QG linear stability analysis, as in Smith (2007), based on the meridional planetary

QGPV gradient, averaged over the baroclinically forced region between -3500km <

y < 3500km. The Rhines wavelength is calculated as

L = 2rEKEt1/4#-1 /2 , (4.B3)

where EKEt denotes the barotropic EKE.

The spectral EKE budgets, together with the scales of the most unstable mode and

the Rhines scales, for the two simulations, are shown in figure 4-7. In both simulations,

the transfer from availalable potential energy to EKE peaks near the wavelength of

the most unstable mode as calculated from the QG instability analysis. For the

simulation with Earth like parameters, this instability scale is on the same order as

the Rhines scale and the dominant barotropic eddy scale. Only a small up-scale

energy transfer is observed. This is in agreement with the expected characteristics

for a flow near marginal criticality. For the strongly supercritical simulation with

fo = 8 x 10-4s-1 and # = 0.8 x 10-"m-is 1 , the transfer from availalable potential

energy to EKE again peaks near the wavelength of the most unstable mode. The

latter, however, is now more than an order of magnitude smaller than the Rhines

scale, which in turn again coincides with the dominant barotropic eddy scale. The

EKE (and associated dissipation) at this much larger scale must be maintained by a

strong up-scale energy flux due to eddy-eddy interactions.

The different characteristics of the turbulent flow are also evident in the different
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Figure 4-7: Spectral EKE production and dissipation for the simulations with

f = 1 X 10-4S-1, # = 1 X 10-1im-Is-1 (left), and f - 8 X 10-4S-1, # = 0.8 x

10-"m-'s-1 (right). Shown is the eddy APE to EKE transfer (dashed), and the
EKE dissipation (solid), which is here directly proportional to the EKE itself (due to
the use of a linear drag). The vertical dashed and solid lines denote estimates of the
wavelength of the most unstable mode and the Rhines scale, respectively (see text).
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slopes of the EKE spectra in figure 4-7. The EKE spectrum in the Earth-like simula-

tion falls off as ~ k- 3 at scales smaller than the dominant eddy scale, as observed in

the atmosphere (e.g. Boer and Shepherd, 1983). The EKE in the strongly supercrit-

ical simulations, instead, falls of less steeply, with a slope close to k 5/3 , which is the

slope predicted by QG turbulence theory for the inverse energy cascade range (e.g.

Rhines, 1979).
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Chapter 5

Equilibration of the Thermal

Structure by Adiabatic Eddy

Fluxes

5.1 Introduction

In this chapter we return to the problem of predicting how large-scale turbulent eddy

fluxes equilibrate the mean state of an atmosphere. As discussed previously, one line

of arguments, about how eddy fluxes set the atmospheric mean state, is based on

the assumption that the extra-tropical atmosphere always adjusts to O(1) criticality

parameters. This notion has been supported by a series of numerical simulations

presented in Schneider (2004) and Schneider and Walker (2006), which show that the

atmospheric mean state consistently equilibrates in such a way that ( ~ 1, for a wide

range of forcings and parameters.

In chapters 2 and 4 we have, however, found that this is not generally the case. In

chapter 2 we obtained criticality parameters between 1 and 4 in an idealized primi-

tive equation system, in which the thermal expansion coefficient was varied to obtain

properties resembling Earth's extra-tropical atmosphere as well as properties resem-

bling more closely the Southern Ocean. In chapter 4 we obtained a range of criticality
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parameters covering a full order of magnitude, by changing the Coriolis parameter,

f, and the planetary vorticity gradient f, in a similar numerical model.

In chapters 3 and 4 we have argued why the theoretical argument for adjustment to

marginal criticality, proposed by Schneider (2004), is not generally expected to hold.

We revised Schneider's arguments to derive a scaling relation between the criticality

parameter and the vertical structure of the eddy diffusivity. The latter, however,

does not pose an obvious constraint for the criticality parameter, since it was shown

that the vertical structure of the eddy diffusivity can change strongly in response

to changes in external parameters. Any constraint for the criticality parameter thus

requires an understanding of how turbulent fluxes depend on changes in the external

parameters, as well as changes in the equilibrated mean state itself.

We will here follow an argument first made by Held (2007), to derive a scaling

relation for the criticality parameter, from the balance between the radiative forcing

and the adiabatic eddy fluxes, similar to the relation derived in chapter 2. This scaling

relation predicts the weak dependence of ( to changes in the radiative restoring,

observed in previous studies. However, it also shows that the criticality parameter

can change strongly in response to changes in other external parameters, such as the

planetary size and rotation rate. The scaling relation is confirmed by the series of

numerical simulations with varying f and 0, first discussed in chapter 4 .

The scaling relation for the criticality parameter is then extended to obtain a

constraint for both the meridional temperature gradient and the static stability. The

criticality parameter is directly related to the isentropic slope, which in turn gives

the ratio of the meridional temperature gradient to the static stability, ~ a/H s

aOO/(HB92). A condition for both the meridional temperature gradient and static

stability can then be derived from the thermodynamic budget; if eddy heat fluxes are

approximately adiabatic, the net heating along any isentrope must to vanish. This

provides an additional constraint on the position of the isentropes, which can be used

to derive a scaling relation for the meridional temperature gradient and static stability,

given the criticality parameter and radiative equilibrium temperature profile.

This paper is organized as follows: in section 5.2, we discuss the setup and some
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basic results from the numerical simulations. In section 5.3 we discuss scaling laws for

the criticality parameter, and test them against the numerical simulations. In section

5.4, we derive and test an argument to retrieve both the horizontal temperature

gradient and vertical stratification. A discussion of the results and their implications,

is given in section 5.5.

5.2 Numerical Simulations

The numerical simulations discussed primarily in this chapter are the ones described

in chapter 4. The model domain is a zonally-reentrant, #-plane channel. The f-plane

configuration, where the Coriolis parameter is given as f = fo + fy, allows us to easily

vary f and # separately and without changing the size of the domain. As shown in

chapter 4, this proves to be an efficient way to greatly vary the criticality parameter

of the equilibrated mean state.

Radiative forcing is represented through relaxation to the equilibrium temperature

profile shown in figure 3-1. The relaxation time-scale is -r, 14 days at the surface

and decreases exponentially, with an e-folding depth of 500 m, to an interior value

of rit = 50 days. Free slip boundary conditions are used on all boundaries, and

kinetic energy is removed by a linear Rayleigh drag with a constant drag coefficient

of r = (50days)- 1 throughout the domain. For further details about the model the

reader is referred to chapter 4.

The series includes 11 simulations, using Coriolis parameters fo = (1, 2,4, 8) X 10-4

s-1, and planetary vorticity gradients f = (0.8, 1.6, 3.2) x 10-11 m-'s- 1 . As discussed

in chapter 4 the simulations equilibrate to a wide range of criticality parameters. A

criticality parameter close to one is obtained for parameters characteristic for Earth's

mid-latitudes: fo = 1x 104s-1, #0 = 1.6 x 10~"m-s- 1, while the criticality parameter

increases by an order of magnitude for the largest Coriolis parameter and weakest

curvature: fo = 8 x 10~4s-1 and fi = 0.8 x 10- 1 m-_s 1 .

In chapter 2 we showed that an alternative way to obtain supercritical states is

to decrease the thermal expansion coefficient from atmosphere-like values to ocean-
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like values. A set of simulations with varying thermal expansion coefficients, a:,

was described in chapter 2, and will also be used in this chapter. There are some

differences between the simulations of chapter 2 and those of chapter 4 discussed

above. Most notably, the radiative equilibrium profile is statically unstable in the

lower troposphere, and frictional drag acts only in a viscous surface Ekman layer

(see chapter 2 for more details). However, none of these differences is crucial for the

arguments discussed below.

5.3 Scaling Arguments for the Criticality Param-

eter

The simulations described above showed that strongly supercritical states can be

achieved in primitive equation models, in particular if the Coriolis parameter, f, and

planetary vorticity gradient Q are varied independently. This seems to contradict

previous numerical studies which found that ( < 1 over a wide range of parameters

(Schneider, 2004; Schneider and Walker, 2006). It is therefore necessary to revisit

scaling arguments for the criticality parameter, in order to understand how it depends

on external parameters, and in particular on f and ,6.

In this section we derive a scaling argument for the criticality parameter, similar to

that proposed in chapter 2. Instead of using isentropic coordinates, as in chapter 2, we

present a derivation in cartesian coordinates, which largely follows the arguments by

Held (2007), and Zurita-Gotor and Vallis (2009, 2010). The principle idea is that the

isentropic slope, and thus the criticality parameter, is set through a balance between

the radiative forcing and the eddy heat flux. In combination with a diffusive scaling

argument for the magnitude of the eddy fluxes, this constrains the equilibrated mean

state.

All arguments are presented for a Boussinesq fluid with a linear equation of state,

as used in the numerical simulations. Eddy fluxes and gradients of buoyancy in this

case are linearly proportional to eddy fluxes and gradients of potential temperature:
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v'b7 = ga v'0', and Vb = ga VO, where overbars denote time- and zonal-averages,

and primes denote deviations thereof. While all equations are expressed in terms of

buoyancy, for better readability, we will use the term heat fluxes interchangeably for

buoyancy fluxes in the discussions. All results can be easily generalized to an ideal

gas, if the height coordinate is replaced by pressure.

5.3.1 Relating the criticality parameter to the eddy diffusiv-

ity

The zonal momentum budget, and thermodynamic equation, are now used to de-

rive a relation between the criticality parameter, the radiative forcing, and the eddy

diffusivity. Using the QG approximation, and ignoring frictional forces, the zonal

momentum budget can be written as

ft = -v'q, (5.1)

where Ut = i9zt is the residual meridional velocity, with ti = fL Udz' - v'b'/bz

denoting the residual overturning streamfunction, and q ~ f + ( + foaz(b/box) is

the QG PV, with bo, denoting the background stratification, and ( = -By

the relative vorticity. Using a down-gradient closure for the eddy flux of PV, i.e.

vV = -D.4, and neglecting the relative vorticity contribution to the PV gradient,

which is a reasonable approximation on the planetary scale, we find that

Ut P D(#/f - zs) , (5.2)

where s = 8,b/8ab denotes the isentropic slope. For strongly supercritical mean

states, where the contribution of the first term on the R.H.S. of Eq. (5.2) can be

neglected, and the eddy diffusivity can be approximated as vertically constant (see

chapter 3), integration of Eq. (5.2) yields that

Ti ~ :, D s . (5.3)
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Eq. (5.3) is commonly used to parameterize the eddy driven overturning circu-

lation in ocean models (Gent and McWilliams, 1990). It is typically motivated in

terms of a closure for the horizontal eddy buoyancy flux v'b' = -D8,b. Using this

closure, Eq. (5.3) can be derived without any assumption for the supercriticality of

the mean state. This derivation is also used in Held (2007) and Zurita-Gotor and

Vallis (2009, 2010). We here use a derivation based on a diffusive closure for the

eddy PV flux, since eddy buoyancy fluxes are typically primarily along isentropes,

i.e. "skew", rather than down-gradient. Indeed, the closure in Eq. (5.3), together

with the assumption that the eddy buoyancy flux is directed along isentropes, implies

that the vertical eddy heat flux is up-gradient, since uW = sv'b = -Ds,b = Ds 2
2zb.

The interpretation of D as a buoyancy "diffusivity" is therefore inappropriate. For

marginally critical mean states, where the planetary vorticity gradient 3 modifies

the PV gradient significantly, and the PV diffusivity has strong vertical structure,

the physical motivation of Eq. (5.3) thus remains less clear. The empirical results

presented below, however, support the use of (5.3) even in this limit.

Assuming that the eddy fluxes are primarily adiabatic, the time- and zonal-mean

buoyancy budget can be approximated as

J (4, t) -b, (5.4)

where J(A, B) = BYAazB - OzAoBB denotes the Jacobian in the y-z plane, and 6

denotes the diabatic (radiative) forcing (e.g. Plumb and Ferrari, 2005, and references

therein). Notice that we are not using the QG approximation for the thermodynamic

budget here. As discussed in chapter 2, the planetary scale atmospheric dynamics

are well described by the QG approximation, but the thermodynamic budget cannot

be described adequately using the QG equations, which imply zero net vertical heat

transport across any given level.

Eq. (5.4) shows that advection by the residual overturning circulation has to

balance the radiative forcing. Choosing some level zi, such that it separates levels

of net warming (below) and net cooling (above), the heat transport across this level
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needs to balance the cooling above this level. Integrating horizontally, we find that

TI(yi, zi)L8,L ~ Q HL , (5.5)

where T*(yi, zi) denotes the maximum residual overturning transport across the level

zi. Layb denotes the buoyancy difference between the upwelling and downwelling

branches of the eddy-driven overturning circulation, Q = - f f dy dz de-

notes the average radiative cooling in the upper troposphere, and H = zt - zi is the

depth scale of the upper troposphere. In practice, cooling typically dominates over

more than half of the troposphere, and we may, for scaling purposes, assume that

H is on the same order as the total depth of the troposphere. We notice, however,

that this assumption could be problematic when considering the response to changes

in the vertical structure of the radiative forcing, in which case the vertical extent of

the levels of net warming and cooling may change independently from the tropopause

height.

Combining Eqs. (5.3) and (5.5) yields

QHs QH (5.6)8 D8boyb

A scaling for the average radiative cooling, Q, is derived by assuming that the

radiative forcing can be described as a restoring to a radiative equilibrium buoyancy,

beq, over a time-scale T, b (b - beq)/r. We then find that

Q (zb- zbeq)H (5.7)

A particularly intuitive result is obtained if the thermal forcing can be approxi-

mated as a restoring towards a statically neutral state, i.e. if 2beq = 0. In this case,

combining Eqs. (5.6) and (5.7) yields

s H (5.8)
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Equation (5.8) states that the length of an isentrope, from the surface to the tropopause,

lisen ~ s_1H, scales with the length scale ldify ' ViD, which denotes the distance

over which diffusive fluxes homogenize a tracer over the time-scale given by the ra-

diative restoring r.

Equation (5.8) can easily be transformed into a scaling relation for the criticality

parameter. Using that ~ s a/H, where a = f/#, we obtain that

~ .(5.9)

The criticality parameter thus is given simply by the ratio of the dynamical planetary

scale, a ~ f/0, to the diffusive length scale, ldig ~ vfTD.

5.3.2 Comparison to Numerical Results

Before proceeding to relate the eddy diffusivity, D, to the mean state itself, we test

the scaling relation in Eq. (5.9) against numerical simulations. We estimate criticality

parameters for all performed simulations as in chapter 4:

fo/ (yb (5.10)
H (azb)

where () denotes a horizontal average, taken over the baroclinically forced region

between -3500 km < y < 3500km, at the fixed level z = 2km. Variations in the

tropopause height are negligible across our simulations, because the height is largely

set by the restoring profile, and we can set H = 7km for all simulations. The criticality

parameter varies by about an order of magnitude over the simulations, ranging from

about ( ~ 1 for the simulation with Earth-like rotational parameters, fo = 1 x

10-4s-1, # = 1.6 x 10-"m-s-1 , to about ( ~ 10 for the simulation with fo =

8 x 10- 4 s~1, f - 0.8 x 10"m-s-.

Eddy diffusivities are estimated from a flux-gradient relationship of surface buoy-

ancy (skew fluxes vanish at the surface, and the potential temperature diffusivity is
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Figure 5-1: Criticality parameter, (, against the scaling in Eq. (5.9), for simula-

tions with various combinations of Coriolis parameters f = 1, 2,4,8 x 10-4s- 1 and

planetary vorticity gradients # = 0.8,1.6,3.2 x 10-11m- 1s-1. The black line shows

(= 0.5a/ r(D). ( is calculated as in Eq. (5.10), and (D) is calculated as in

Eq. (5.11), and averaged over the width of the baroclinically forced region, between

-3500km< y <3500km.

expected to most closely represent the PV diffusivity):

v'b'
D= - b (5.11)

The overbar denotes a time- and zonal-average, and primed quantities denote devia-

tions from this average. The index s here denotes quantities evaluated at the lowest

model level.

The scaling relation in Eq. (5.9) is tested in figure 5-1. We find that it successfully

reproduces the domain-averaged criticality parameter of the equilibrated mean state

over the whole range of simulations. Notice, that the scaling relation in Eq. (5.9)

depends on evaluation of the eddy diffusivity, D. A closed scaling relation for the

equilibrated mean state, requires that D is expressed in terms of the mean state and

external parameters. This is done next by using an argument for the eddy dynamics

(in addition to their thermodynamics).
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5.3.3 A Scaling Relation For the Criticality Parameter

An expression for the eddy diffusivity that has proven useful in previous studies (e.g.

Zurita-Gotor and Vallis, 2010; Jansen and Ferrari, 2012), was proposed by Held and

Larichev (1996). They argued that in steady state, the conversion of mean available

potential energy to eddy available potential energy is balanced by a flux of kinetic

energy towards larger scale. Assuming that the eddy mixing length scales with the

Rhines scale, LO ~ V/l, where V denotes a characteristic barotropic eddy velocity,

Held and Larichev (1996) derive that

D ~ LpV ~ O(SL , (5.12)

where Ld ~ (Oa )H/f, denotes the Rossby radius of deformation. The argument

was derived assuming > 1, but reduces to traditional arguments based on linear

instability theory in the marginally critical limit. It was also empirically shown to

hold for simulations with 0(1) criticality parameters1 (Held and Larichev, 1996).

Interestingly, the scaling for D in Eq. (5.12) does not depend on the Coriolis

parameter f. While the criticality parameter is proportional to the Coriolis parameter

f, the deformation radius is proportional to f-. The eddy diffusivity D is thus not

directly dependent on changes in f. Together with Eq. (5.8) this implies that the

isentropic slope, rather than the criticality parameter, is insensitive to changes in f.
This is indeed in general agreement with the numerical results discussed in chapter

(4).

Inserting Eq. (5.12) into Eq. (5.9) yields a scaling for the criticality parameter,

(f~r) L5  . (5.13)

'Notice, that other scaling arguments for the eddy diffusivity could be derived, for example by
equating the conversion of mean to eddy available potential energy, to the frictional dissipation of
EKE. Such a scaling argument would yield results qualitatively similar to the ones presented here.
With the numerical simulations discussed in this study, it is hard to distinguish which of these
arguments is more appropriate. In general, the most appropriate scaling argument for the eddy
diffusivity may depend on the exact situation considered (see also Thompson and Young, 2007).
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Eq. (5.13) is a specialized version of the scaling relation in Eq. (2.31) of chapter 2,

for the case in which restoring acts to a statically neutral mean state. The derivation

of Eq. (2.31) in chapter 2 assumed that the upper-level radiative cooling scales as

Q T7r%6 e,. Due to the neutral restoring profile assumed here, we instead know

that (in a domain averaged sense) Q ~ r71 86H. Equation (5.9) is thus recovered

by replacing AOeq in Eq. (2.31) with HZO. Eq. (5.13) tells us that the criticality

parameter decreases as the normalized deformation scale, Ld/a, increases. In addition,

the criticality parameter is weakly dependent on the normalized restoring timescale,

Tr/ f.

Eq. (5.13) gives us an estimate for the criticality parameter within a constant 0(1)

factor. Inserting typical values for Earth's atmosphere suggests that this constant

factor is just somewhat larger than one. With a restoring timescale on the order of

50 days, i.e. -r, 4 x 106 s, and f ~ 104 s-1, we obtain (fr,)-1/5 ~ 0.3. The

deformation scale Ld on Earth is smaller than the planetary radius, a, by about a

factor of 3 to 6, which yields (Ld/a)-3 /5 ~ 2 - 3. With a constant factor between 1 and

2, the scaling relation in Eq. (5.13) thus yields the observed criticality parameter of

about 1 for Earth's extra-tropics. In how far the scaling relation in Eq. (5.13) is truly

valid for Earth's extra-tropical atmosphere, however, remains unclear. Notice that

a strict derivation of Eq. (5.13) required us to assume large criticality parameters,

as well as to ignore several processes, in particular those associated with moisture,

which may be important in the equilibration of Earth's extra-tropical troposphere.

The relation in Eq. (5.13) further tells us that 0(1) criticality parameters may be

expected in most dry numerical simulations of atmospheres on a sphere. Since the first

factor in Eq. (5.13) appears with a power of 1/5, one order of magnitude variation

in this factor would require variations in the planetary rotation rate or radiative

restoring timescale by 5 orders of magnitude, which is outside the range typically

explored in simulations of planetary atmospheres. Variations in the deformation scale

are possible, but in practice are limited by numerical constraints: The deformation

scale must be significantly smaller than the scale of the planet, and well resolved by

the numerical grid scale. With a typical horizontal resolution of 10, this allows for
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at most one order of magnitude in variations of Ld/a, thus allowing for variations in

( only up to about a factor of 4. This is about the range of criticality parameters

obtained in chapter 2.

In a fl-plane channel model, as used for this study, strongly supercritical states are

obtained more easily, since the dynamical planetary scale a f/fl can be increased

without increasing the size of the domain. This allows us to readily set up simulations

with Ld/a << 1. Notice, however, that we do not decrease a below the width of the

channel to avoid changes in the sign of f that would introduce equatorial dynamics

effects which are not of interest here. If the deformation scale is required to be smaller

than the domain size, we are thus still restricted to Ld/a < 1. Criticality parameters

much smaller than one can thus only be obtained if Tr, is many orders of magnitude

larger than the pendulum day, 47r/f.

5.3.4 Comparison to Numerical Results

Figure 5-1 shows that the criticality parameter, , as estimated from the whole set

of numerical simulations, follows the scaling relation in Eq. (5.13). Variations in (

are due dominantly to the changes in the normalized deformation scale Ld/a. As f
is increased, the deformation scale is reduced, while the dynamical planetary scale

a = f/f is increased. The ratio between the two scales thus decreases strongly as

f is increased. A reduction of the planetary vorticity gradient 3 further reduces the

normalized deformation scale, by increasing a.

To isolate the dependence of the criticality parameter on the externally prescribed

parameters f and #, it is instructive to re-write Eq. (5.13) as

( r2 H 68ab 3-1/10 . (5.14)fl3/5*

As indicated above, is linearly dependent on f (while the isentropic slope itself

is independent on f). This is a direct consequence of the eddy diffusivity being

independent of f, according to the scaling in Eq. (5.12). In the simulations discussed

here, the pre-factor, (rrH 68zb 3)- 1/10, in Eq. (5.14) varies much less than f and f.
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Figure 5-2: Criticality parameter, , against the estimate from the scaling in Eq.

(5.13), for simulations with various combinations of Coriolis parameters f and plan-

etary vorticity gradients 3 (plusses). Circles indicate the estimated variations in (

due to only the direct dependence on f and 0 (see Eq. 5.14). In both cases, the

proportionality constant was chosen to match the data.
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Consistently, figure 5-1, shows that the criticality parameter scales to leading order

as ( oc f#- 3/ 5 .

Notice that changes in the Coriolis parameter, f, strongly affect the characteris-

tics of the flow, even though they only weakly modify the eddy diffusivity and the

thermal mean state. The reason is that as f increases, the deformation scale decreases

strongly. The Rhines scale, and with it the dominant eddy scale, however, remains

approximately constant. In agreement with the increasing criticality parameter, we

thus observe an increase in the inverse energy cascade range, between the deformation

scale and the Rhines scale (Held and Larichev, 1996). This change in the turbulent

flow characteristics of the simulations was discussed in chapter 4.

5.3.5 Implications for the Sensitivity to Changes in Thermal

Forcing

We have shown that the criticality parameter can take on a wide range of values, if

external parameters are varied. However, previous studies have found a weak depen-

dence of the criticality parameter to changes in the forcing. In particular, Schneider

(2004) and Schneider and Walker (2006) report large cancellations between changes

in the bulk static stability, H(O,9), and changes in the the re-scaled horizontal tem-

perature gradient, a(ay6), over series of simulations with strongly varying radiative

equilibrium equator-to-pole temperature gradients. While both the re-scaled temper-

ature gradient and bulk stability changed strongly over the range of simulations, the

criticality parameter, which is given by the ratio of these two quantities, stayed close

to one over the entire range of simulations.

A qualitatively similar result is found in the simulations in chapter 2. The sim-

ulations used a Boussinesq fluid with a linear equation of state b = a(6 - 00), and

strongly varying thermal expansion coefficient, a. Since the radiative equilibrium po-

tential temperature was held constant throughout all the simulations, changes in the

thermal expansion coefficient directly translate into similar changes in the radiative

equilibrium buoyancy contrasts (both vertical and horizontal).
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Figure 5-3: Bulk static stability, Asb, against the re-scaled horizontal buoyancy gra-

dient, fo/#o8b, for the simulations in Jansen and Ferrari (2012), with varying thermal

expansion coefficients. The solid line indicates A b = a(&9b). The dashed line denotes

Avb oc (a(8Qb))10/ 7

Figure 5-3 shows the re-scaled horizontal buoyancy gradient a(&yb) against the

bulk static stability Avb = H(82b) for the series of simulations discussed in chapter

2. Averages are taken as discussed in section 5.3.2. We observe a large cancellation

between changes in the horizontal buoyancy gradient and the bulk static stability,

leading to only moderate changes in the criticality parameter. While the criticality

parameter changed significantly, by about a factor of 4, this needs to be contrasted

to changes in the buoyancy gradients by about two orders of magnitude.

The result in figure 5-3 can be understood in terms of the scaling relation in Eq.

(5.14). Noting that f, # and r, were held constant and changes in the tropopause

height, H, are negligible compared to those in the buoyancy gradient and static

stability, the expression in Eq. (5.14) gives a relationship between Avb and a(Dyb).

Using that ( a(Byb)/Avb, and Ld c Arb-1 /2 , rearrangement of Eq. (5.14) yields

A b oc (a(8b))10/7 . (5.15)

The relation in Eq. (5.15) was first derived by Held (2007). It states that any
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Figure 5-4: As figure 5-3, but for the series of simulations with varying rotational
parameters f and #.

change in the horizontal buoyancy gradient is expected to be associated with a similar,

but somewhat larger, change in the bulk static stability. Figure (5-3) shows that

the relation in Eq. (5.15) successfully predicts the relation between the bulk static

stability and the meridional buoyancy gradient in the simulations of chapter 2. A

more detailed discussion of the dependence of the criticality parameter to changes in

the forcing, for a wide variety of thermal forcing characteristics, is given by Zurita-

Gotor and Vallis (2010).

Notice, however, that the result in Eq. (5.15) holds only if the parameter varied is

the radiative equilibrium buoyancy contrast. The strong cancellation between changes

in the re-scaled meridional buoyancy gradient and bulk static stability, and thus

the weak sensitivity of the criticality parameter, does not hold for other parameter

variations. Figure 5-4 shows that there is no cancellation between changes in the

bulk static stability and the re-scaled horizontal buoyancy gradient2 for the series of

simulations with varying f and 0. While the re-scaled horizontal buoyancy gradient

2 Notice, that in this series of simulations the variation in the re-scaled horizontal buoyancy
gradient, a(Byb), is dominated by the changes in a = f/f. The relation between the bulk static
stability, Arb, and the horizontal buoyancy gradient itself, (&,b), in this case also does not reveal
any cancellation between the two quantities (not shown).
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varies by about an order of magnitude, the bulk static stability is rather insensitive

to changes in f and 0. We will return to this result in the next section.

5.3.6 The Role of Frictional Drag

The scaling arguments discussed in this section employ Held and Larichev's (1996)

scaling relation for the eddy diffusivity. This relation relies on the implicit assumption

that the frictional drag acting on the eddies is small, with the majority of the kinetic

energy being dissipated in the mean flow. Thompson and Young (2007) recently

questioned this assumption, showing that frictional drag can strongly effect the eddy

diffusivity. Thompson and Young (2007) analyze a series of numerical simulations

using a two-layer QG model with linear drag in the lower layer. They find that

the scaling relation proposed by Held and Larichev (1996)3 provides a reasonable

fit to their simulations only in the limit of large criticality parameters and weak

frictional drag. The break-down of the scaling relation in the marginally critical

limit is to be expected, since the character of the instability in the two-layer model

changes dramatically near marginal criticality. The role of the frictional drag at high

criticalities, however, deserves further attention.

As discussed in Thompson and Young (2007), the damping effect of the frictional

drag on the eddies can be characterized by the ratio between the inverse Eady growth

rate, Ld/U, and the frictional damping time-scale rfric. They find that frictional drag

strongly modifies the Held and Larichev (1996) scaling relation in the supercritical

regime if (Ld/U)/ric > 0.5, where U is the baroclinic mean shear velocity, Ld is the

4
deformation scale, and r is the frictional damping timescale for a barotropic mode

3Thompson and Young (2007) compare their results to the scaling relation of Lapeyre and Held

(2003), which attempts to generalize the results of Held and Larichev (1996) to the marginally

critical limit in the two-layer model. Due to the large difference between the behavior of the two-

layer model and our continuously stratified model near marginal criticality, we here focus on the

strongly supercritical limit, where the scaling relation in Lapeyre and Held (2003) reduces to the

one in Held and Larichev (1996).
4Notice that the definition of the deformation scale used in this thesis differs by a factor of 27r

from the definition used in Thompson and Young (2007). In addition, U here denotes the total

shear velocity between the upper and lower troposphere, which corresponds to about twice the shear

velocity defined in Thompson and Young (2007), where U is defined as half the velocity jump at the

layer interface.
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To compare our simulations with the study by Thompson and Young (2007), we

need to estimate the ratio (Ld/U)/f, c. In the parameter regime characteristic for

Earth's atmosphere, we find shear velocities and deformation scales of U ; 10 m/s and

Ld ; 2000 km. The frictional damping time-scale in the simulations described in this

chapter is prescribed directly as rfic = 50 days-1 . This yields (Ld/U)/Tfric ; 0.05,

which is one order of magnitude smaller than the value at which frictional drag became

leading order in Thompson and Young (2007). The Eady growth rate does not depend

on f and 3 and therefore its value does not vary much across the simulations presented

in this chapter and is about 2-4 days. Since the frictional damping time-scale is

held constant at 50 days, this suggests that all simulations are in a regime where

frictional drag has little effect on the eddies. The simulations discussed in chapter

2 with varying thermal expansion coefficient show somewhat larger variations in the

Eady growth rate, but it does not exceed ;5 days. Frictional dissipation in these

simulations is given by a laminar Ekman layer, with a viscosity of vz = 10-'m 2 s 4 .

The frictional damping time-scale for a barotropic flow in this case can be computed as

rfric P H 3 Ek/vz, where H is the depth scale of the flow (here H = 10 km) and 6Ek

(2vz/f) 1/2 is the depth of the Ekman layer. For the parameters used in the simulations

described in chapter 2 this yields 7fric P 50 days-. The ratio (Ld/U)/rfric thus

remains well within the regime where Thompson and Young (2007) find reasonable

agreement with the scaling relation of Held and Larichev (1996).

The limit of strong frictional drag discussed by Thompson and Young (2007) thus

is not relevant to the simulations in this study, nor does it seem likely to apply to

Earth's atmosphere. Nevertheless it is important to note that the scaling relations

derived in this chapter hold only in the limit of small friction and are likely to break

down in the presence of strong friction. In practice this is probably relevant for eddies

in the ocean, where the inverse EKE cascade is understood to be strongly modified

by frictional drag. We will return to this issue in chapter 6, where we discuss the

relevance of our results to the Southern Ocean.

Finally it should be noted that in the limit of very weak frictional drag, the energy

level in the barotropic mean flow can grow so much that the mean shear can strongly
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affect the eddies via a mechanism similar to the "barotropic governor" discussed

by James and Gray (1986). This is likely to explain at least part of the observed

deviation from the Held and Larichev (1996) scaling in the marginally critical limit

of the simulations discussed in chapter 2.

5.4 The Meridional Temperature Gradient and Strat-

ification

Much of the work in this and previous studies (e.g. Zurita-Gotor, 2008; Zurita-Gotor

and Vallis, 2010) has been focussed on the criticality parameter, which provides a

constraint for the relation between the meridional temperature gradient and the bulk

static stability. However, for practical purposes, we want to predict not just the crit-

icality parameter, but both the static stability and meridional temperature gradient.

In this section, we will argue that the scaling laws discussed above can be extended

to predict both quantities independently. The argument is based on the assumption

that eddies primarily redistribute heat only along isentropes, and that the radiative

equilibrium solution is known. The total radiative heating and cooling along any isen-

trope then has to vanish. Knowledge of the criticality parameter, and thus the slope

of the isentropes, then constrains also their positioning in the domain and thereby

the full thermal structure.

5.4.1 Theory

We here derive constraints for the horizontal buoyancy gradient and bulk stability.

As in section 5.3, we want to assume that eddy fluxes are adiabatic, such that the

heat transport can be expressed in terms of a residual overturning circulation V. The

vertical heat transport by this residual overturning circulation has to compensate the

imbalance in the radiative forcing between the lower and upper troposphere. If the

radiative forcing can be written in terms of a restoring condition, we can insert Eq.
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(5.7) into Eq.(5.5), which yields

(azL - azbe ) H 2 L
YIf(yi, zi)Ahb (Ob ' -~ (5.16)

where AJh denotes the horizontal buoyancy contrast between the upwelling and down-

welling branches of the eddy-driven overturning circulation, which is assumed to scale

with the meridional gradient times the width of the baroclinic zone, Ah ~ -L9Vb.

The same argument can be made for the horizontal heat transport across the

latitude y1, which is found to scale as

Wt(yi, zi)Ab (ll - ,beq)L2 H (5.17)

where we defined a bulk static stability, Amb, as the vertical buoyancy contrast be-

tween the upper (poleward) and lower (equatorward) branch of the residual overturn-

ing circulation, which is assumed to scale with the vertical stratification times the

tropopause height, ALb H8zb.

Combining Eqs. (5.16) and (5.17) yields:

-yb(yb - Bybeq)L 2 ~D zb(z -b beq)H 2 . (5.18)

Notice that Eqs. (5.16) and (5.17) are scaling relations, which hold up to approxi-

mately constant 0(1) factors. Accordingly, Eq. (5.18) may in general be assumed to

hold only to within a constant 0(1) factor. Instead of explicitly including a pre-factor

in Eq. (5.18), we here absorbed the latter into the length scale, L, which is assumed

to scale with the width of the baroclinic zone up to an 0(1) factor. Empirically, we

will show below that that this factor is close to one.

As in section 5.3, we make the simplifying assumption that the forcing can be

approximated by a restoring acting towards an equilibrium buoyancy profile which

is statically neutral in the troposphere, i.e. &zbeq = 0. This assumption simplifies

the algebra, but it can easily be relaxed. The full case, allowing for non-zero eabeq is

discussed in Appendix A.
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Re-arrangement of Eq. (5.18) then yields

h heq, (5.19)Ah 1 + s-2

where Ahbeq = -Lybeq denotes the horizontal buoyancy contrast in radiative equi-

librium, and s = Ahb/Arb ~ s L/H denotes the isentropic slope, normalized by the

aspect ratio of the baroclinic domain. Eq. (5.19) shows that the horizontal buoyancy

contrast Ahb can be expressed as a function of its radiative equilibrium value and

the normalized isentropic slope. The normalized isentropic slope, in turn, is directly

related to the criticality parameter as A ~ (L/a. For a spherical planet, where L ~ a,

s in fact scales directly with the criticality parameter. In our numerical simulations

where the "planetary scale", a, is varied independently of the width of the baroclinic

zone, L, the normalized slope and the criticality parameter can be different. However,

knowledge of the criticality parameter implies knowledge of the normalized isentropic

slope, and vice versa.

Eq. (5.19) can also be used to infer the bulk static stability, which follows by

dividing both sides of the equation by s:

A, ~ b (5.20)

The bulk static stability, like the horizontal buoyancy contrast, can be expressed in

terms of the radiative equilibrium horizontal buoyancy contrasts and the normalized

isentropic slope.

It is worthwhile to consider the behavior of the horizontal buoyancy contrast and

bulk stability in some special cases. In the limit of steep isentropic slopes, s > 1, we

find that Ahb o Ahbeq. Changes in the eddy diffusivity in this limit would thus modify

the isentropic slope (or criticality) primarily via changes in the stratification, which

to leading order becomes A,6 ~ sAhbeq. As shown in the Appendix, this result is not

altered by the existence of a vertical gradient in the radiative equilibrium profile.

Possibly more relevant for the equilibration of the extra-tropical atmosphere is the

behavior around 8 ~ 1. Eq. (5.20) suggests that the normalized bulk static stability,
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Figure 5-5: Horizontal buoyancy contrast, Ahb (plusses), and bulk stability Avb (cir-
cles), normalized by the radiative equilibrium horizontal buoyancy contrast Abeq, as a
function of the normalized isentropic slope s, for the series of simulations with varying
rotational parameters f and #. The grey lines show the theoretical predictions using
Eqs. (5.19) and (5.20), for the normalized horizontal buoyancy contrast (solid), and
for the bulk stability (dashed). As discussed in the text, the reference scale for the
width of the baroclinic zone was chosen as L = 8000km, to best match the numerical
results.

Avb/Ahbeq, has a maximum at s. ~ 1, and will thus be weakly sensitive to changes

in the isentropic slope. This implies that a change in the eddy diffusivity, for a fixed

radiative equilibrium buoyancy contrast, Ahbeq, is expected to modify the isentropic

slope primarily via changes in the horizontal buoyancy gradient, keeping the bulk

stability roughly constant. Equivalently, changes in the equilibrium buoyancy con-

trast, Ahbeq, are expected to cause a directly proportional change in the bulk stability,

keeping Avb/Ahbeq roughly constant. As shown in the Appendix, the addition of a

vertical gradient in the radiative equilibrium buoyancy contrast modifies this result

only quantitatively, by shifting the exact position of the maximum in Avb/Abeq.

5.4.2 Comparison to Numerical Results

In the following subsection, we test the predictions of the scaling relations in Eqs.

(5.19) and (5.20) against numerical simulations. Figure 5-5 shows the normalized

horizontal buoyancy contrast, Ahb/Ahbeq, and bulk stability Avb/Ahbeq, as a func-
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tion of the normalized isentropic slope s, for the simulations with varying f and /3,

discussed above. The average bulk stability, Asb = H(Dzb), and horizontal buoyancy

gradient, (a.6), are calculated as described in section 5.3.2. As discussed above, a

degree of freedom exists for the exact choice of the length scale, L, which is used in

the computation of the horizontal buoyancy contrast Ahb = L(8b). A good fit to

the numerical simulations is obtained by choosing L= 8000km. This is somewhat

larger than the with of the baroclinically forced region (7000km wide), but somewhat

smaller than the full width of the domain (9000km wide).

We see that the scaling relations in Eqs. (5.19) and (5.20) predict well the varia-

tions in the horizontal buoyancy contrast and bulk stability, associated with changes

in the isentropic slope. In particular we find that changes in the slope are here associ-

ated mostly with changes in the horizontal buoyancy contrast, while the bulk stability

stays relatively constant. This is in agreement with Eq (5.20), which predicts that

the bulk stability has a maximum at a normalized slope A = 1. Since s here varies

only between about 0.7 and 1.6, the bulk stability stays close to this maximum value.

While the simulations with varying rotational parameters f and 3 exhibit a large

range of criticality parameters (spanning about one order of magnitude), these varia-

tions are dominantly associated with changes in the "planetary scale", a = f/0. The

simulations cover only a much smaller range of normalized isentropic slopes (span-

ning about a factor of 2). To explore the behavior for a larger range of isentropic

slopes, we can return to the simulations of chapter 2, where changes in the criticality

parameter are achieved by variations in the thermal expansion coefficients. Since a

is held constant in these simulations, changes in the criticality parameter translate

directly into similar changes in the normalized isentropic slope, s ~ CL/a.

Figure 5-6 shows the normalized horizontal buoyancy contrast, Ahb/Ahbeq, and

bulk stability Ab/Ahbeq, as a function of the normalized isentropic slope 8^, for the

simulations in chapter 2. Notice, that these simulations use a restoring condition to a

buoyancy profile which is statically unstable, a generalization which we did not include

in the derivation of Eqs. (5.19) and (5.20). Nevertheless, we see that the simulations

qualitatively follow the scalings derived above. In particular, we observe the decrease
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Figure 5-6: As in figure 5-5, but for the simulations in chapter 2, with varying thermal
expansion coefficients. The grey lines show the theoretical predictions using Eqs.
(5.19) and (5.20), which do not consider thermal restoring to a statically unstable
radiative equilibrium state. The black lines show the predictions using Eqs. (5.A1)
and (5.A2), with Abeq/Ahbeq =-0.3 (see Appendix A).

of the bulk stability for large normalized slopes, as the horizontal buoyancy contrast

asymptotes its radiative equilibrium value. To quantitatively reproduce the results

in these simulations we need to include the negative stratification of the radiative

equilibrium profile. This is discussed in Appendix A.

5.4.3 Predicting the Normalized Isentropic Slope from Ex-

ternal Parameters

In section 5.3 we derived a scaling relation expressing the criticality parameter in

terms of the normalized radiative rstoring timescale rf and the normalized defor-

mation radius Ld/a. While this represents a closed relation for the mean state, it

does not yet give us a fully predictive scaling for the criticality parameter in terms of

only external parameter, since Ld oc O/b is itself a mean state variable, determined

by the turbulent equilibration. For simulations with varying rotational parameters,

f and fi, it was found that changes in the static stability are negligible, such that

the full scaling relation for the criticality parameter can to first order be reduced to

its dependence on the externally prescribed parameters f and 3. However, the weak
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variation in the static stability for the considered set of simulations was itself a result

of the numerical simulations and was predicted only by the additional scaling relation

for the bulk static stability discussed in this section.

Combining the scaling relations for the crtiticality parameter in section 5.3 with

the one for the bulk static stability discussed in this section, we can derive a fully

closed expression for the criticality parameter or isentropic slope in terms of external

parameters. This scaling relation is best written in terms of an equation for the

normalized isentropic slope s, which can be expressed as a function of only one non-

dimensional parameter. As mentioned above, the criticality parameter can then be

easily obtained, using that ( ~ sa/L. If the equation for the normailzed isentropic

slope is plugged into the relations in Eqs. (5.19) and (5.20), we further obtain direct

predictors for the meridional buoyancy gradient and static stability.

For simplicity we will again assume radiative restoring to a statically neutral

buoyancy profile. The full case for radiative restoring to statically stable or unstable

profiles is derived in Appendix 5.5. Eq. (5.13) can be used to obtain a scaling relation

for the isentropic slope as

S L fr1/5 (vbH -3/10

a f 2a 2  (5.21)

Substituting Eq. (5.20) for Acb in Eq. (5.21) and rearranging terms yields

s(A + s-1)-3/10 - , (5.22)

where -y is a non-dimensional parameter which can be expressed as

L 1 bH _ 3/10 L_2/
7 = c-(f,)-3/10 c / ,/ (5.23)
a ( f 2 a 2  r1/5Ahb /H3/10

with c an 0(1) constant (found to be ~ 0.9 in our simulations).

Eq. (5.22) implies that s = f(y), where the function f is obtained by inversion of

Eq. (5.22). f (7) is linear near A = 1 and converges towards f(y) ~Y10/ 7 for s > 1

and f(-y) ~ -10/13 for s < 1. Together with Eqs. (5.19) and (5.20), this suggests
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Figure 5-7: The normalized isentropic slope, sagainst the non-dimensional parameter

-y (Eq. 5.23). Plusses denote results from the series of numerical simulations with
varying f and #, and circles show results from the simulations of chapter 2, with
varying thermal expansion coefficient, a. The constant factor in the definition of -/
was set to c = 0.9 for all simulations. The solid line shows the theoretical prediction
of Eq. (5.22) (i.e. assuming Asb = 0), as appropriate for the series of simulations
with varying f and 0, while the dashed line denotes the theoretical predictions of Eq.
(5.B2) with Avbeq/Ahbeq =--0.3, as appropriate for the series of simulations with

varying thermal expansion coefficient, a. The dotted line shows a linear slope for
reference. (Note that the axes are logarithmic.)

that changes in the the thermal mean state of the system are entirely determined by

changes in the parameter -/ in Eq. (5.23).

The relation in Eq. (5.22) is tested in figure 5-7. Notice, that -Y is independent

of the Coriolis parameter, f, suggesting that the isentropic slope is approximately

independent of f. Figure 5-7 supports that s indeed varies only very little with the

Coriolis parameter, considering that the latter is here varied by a factor of 8. Never-

theless there are some variations in A with changing f, which are not predicted by the

scaling relation. These changes are small compared to the changes in the criticality

parameter shown in figure 5-2 (which all else being equal is linearly proportional to

f), but become more evident when focussing on the isentropic slope. The response of
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s to changes in 3 is in overall agreement with the weak sensitivity predicted by the

scaling.

To more adequately predict the isentropic slope in the simulations discussed in

chapter 2 with varying thermal expansion coefficient, we need to take into account

the effect of the radiative restoring to a statically unstable state. As discussed in Ap-

pendix 5.5, the normalized isentropic slope 9 is then determined by a family of func-

tions depending on -y, as well as the ratio between the radiative equilibrium horizontal

buoyancy contrast and bulk static stability: Avbeq/Ahbeq. For Abeq/Ahbeq --+ 0 we

return to the result in Eq. (5.22). Once the effect of negative Aebeq is taken into ac-

count, the proposed scaling relation adequately predicts the isentropic slope in all our

simulations (Figure 5-7). Notice that consideration of the statically unstable restoring

profile affects the scaling only quantitatively but not qualitatively. For moderately

unstable restoring profiles, the simplified relation in Eq. (5.22) thus provides a good

qualitative model for the steepening of the isentropic slope with y.

5.5 Conclusions

We showed that the equilibration of an idealized primitive equation model can be un-

derstood in terms of a scaling relation derived from a balance between the radiative

forcing and the adiabatic eddy fluxes. The scaling relation predicts the weak depen-

dence of ( to changes in the radiative restoring that has been observed in previous

studies, but also shows that the criticality parameter can change strongly in response

to changes in other external parameters, such as the planetary size or rotation rate.

This result is confirmed by a series of numerical simulations in a primitive equa-

tion, beta-plane, channel model, with varying Coriolis parameters, f, and planetary

vorticity gradients, 0.

To the extent that the idealized dry system considered here can be used to make

inferences about Earth's atmosphere, our results suggest that changes in the criticality

parameter in response to changes in the radiative forcing, as expected in past and

future climate change, are likely to be small. However, if other parameters are varied,
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or if the forcing is varied strongly enough, the criticality parameter can become much

larger than one. The assumption that large scale turbulence generally equilibrates

planetary atmospheres to states of marginally criticality, does not hold.

Finally, the criticality parameter (which implies a constraint on the isentropic

slope) was used to predict both the bulk stability and the horizontal buoyancy gradi-

ent. We derived a scaling relation for both the equator-to-pole temperature gradient

and bulk stability as a function of the isentropic slope and the radiative temperature

gradient (and stratification). We found that both are to first order proportional to

the radiative equilibrium horizontal temperature gradient. In addition, the horizontal

temperature gradient increases towards its radiative equilibrium value with increasing

isentropic slopes. The bulk stability instead is only weakly sensitive to the isentropic

slope, for slopes typically found in Earth's atmosphere. It is thus almost directly

proportional to the radiative equilibrium equator-to-pole temperature gradient.

Our results have interesting implications for our understanding of planetary cli-

mates, as well as past climate changes. They push our understanding of climate sen-

sitivity beyond the 0-dimensional picture of the global mean temperature response

to global mean changes in the forcing. For instance, we find that a change in the

radiative equilibrium equator-to-pole temperature gradient is associated with a pro-

portional change in the bulk stability. The bulk stability in turn has a strong effect

on the surface temperature, as it relates the latter to the temperature at the effec-

tive emission level. Yet, energy balance models discussed in the existing literature

typically assume a constant static stability (e.g. Huybers and Tziperman, 2008; Rose

and Marshall, 2009). Our results will hopefully motivate a more thorough consid-

eration of the possible role of changes in the static stability for the dynamics and

thermodynamics of the atmosphere.

158



APPENDIX A

The Meridional Buoyancy Gradient and Bulk

Stability in the Presence of Finite Avbeq

We here want to generalize the results for the horizontal buoyancy contrast and bulk

stabilty in Eqs. (5.19) and (5.20), to account for a radiative restoring, which acts

towards a stratification that is not statically neutral, i.e. Avbeq H(Dzbeq) f 0. The

arguably most realistic representation of the real atmosphere is given by a radiative

restoring to a statically unstable state, i.e. Avbeq < 0. The case where Avbeq > 0, is

primarily of theoretical interest, since it allows us to recover the QG limit, in which

the stratification converges to that prescribed by the restoring condition (see also

Zurita-Gotor and Vallis, 2010).

Re-arrangement of Eq. (5.18), generally yields that

1 + ;41 -

Ah~ Abeq 1 + -2 (5.A1)

where we defined seq Ahbeg/A beq. Using that AvL = s- 1Ah, we directly find that

1 + sAqis-1L Aeq§-T~ hbeq . + , . (5.A2)A q S+ s-1

As in Eqs. (5.19) and (5.20), we find that both, the horizontal buoyancy contrast

and the bulk stability, can be expressed as a function of the radiative equilibrium

buoyancy profile and the normalized isentropic slope. However, both, the horizontal

buoyancy contrast and the stratification of the radiative equilibrium profile, now

influence the resulting mean state.

As in the simplified Eqs. (5.19) and (5.20), the normalized horizontal buoyancy

contrast approaches its radiative equilibrium value, i.e. Ah e Ahbeq, in the limit

that s > 1. Any further increase in the isentropic slope in this limit is accomplished
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primarily by a further reduction of the normalized stratification, Avb/Ahbeq. Also as

for Eqs. (5.19) and (5.20), the normalized stratification, Avb/Ahbeq, has a maximum

at an 0(1) normalized isentropic slope, as long as Is;'l < 1 (i.e. IAvbeq| < |Ahbeq|.

The exact location of this maximum depends on the exact value of seq. For a radiative

restoring acting to a statically unstable profile, i.e. seq < 0 , the maximum in the

normalized stratification, Avb/Ahbeq, is shifted to larger values of '. The effect of

adding a moderate radiative destabilization, Abeq =-0.3 Ahbeq, is shown in figure

5-6.

Notice, that Eq. (5.A2) would predict a negative stratification if 9 < -s-'. In the

case of restoring to a statically unstable mean state, Eq. (5.A2), thus does not have

a physical solution for normalized isentropic slopes weaker than - In the limit

of very effective eddy mixing, the isentropic slope may thus not be expected to go

to zero. Instead the mean state is expected to equilibrate such that 9 = -seq, with

both AAb, Ahb -+ 0. This result can also be obtained directly from Eq. (5.18), taking

the limit where |a8bl < |8ybeql and |82bI < |8zbeg . In how far the scaling argument

in Eq. (5.A2) holds in such a limit, is however yet to be tested. It is also possible

that a system in this limit equilibrates to a state which is strongly inhomogeneous

over the domain, such that "characteristic" isentropic slopes, buoyancy gradients,

and stratifications, as defined here, become meaningless, and the presented scaling

arguments break down. Further, it may be questioned in how far the assumption of

"adiabatic" eddy fluxes is appropriate in such a limit5 .

The QG limit is retained if the isentropic slope is weak, i.e. S^ < 1, and the

restoring acts to a statically stable state, in which 0 < seq ;< 1. In this limit, Eq

(5.A2) reduces to A b = Avbeq, and changes in the isentropic slope are solely due

to changes in the meridional buoyancy gradient. Notice, however, that this limit is

likely to be of little relevance for the real atmosphere. 6

5 Notice that, even if eddies are adiabatic in the sense that b'Q' = 0, the assumption implied here
that b/v3 = s requires that the advection of buoyancy variance (primarily associated with the
triple correlation term in the variance budget) is negligible (e.g. Cerovecki et al., 2009, and references
therein).

6One possible way to argue that this limit could become relevant for the atmosphere, is to consider
latent heat release as an external forcing in a warm, moist, climate. One might argue that the latent
heat release due to moist convection here acts as a restoring to a dry statically stable state. In
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Notice that the radiative restoring profile used in the simulations of chapter 2

cannot trivially be characterized by a single equilibrium stratification Ozbeq, as the

latter varies strongly (and even changes sign) over the depth of the troposphere.

For figure 5-6, we chose Abeq = .3 Ahbeq, which produces a good fit to the data,

and subjectively represents an adequate linear fit to the horizontal mean restoring

profile. The horizontal radiative equilibrium potential temperature contrast AhOeq --

a- 1 Ahbeq was chosen similar to the simulations with varying f and 3, which is an

obvious choice, as they share the same radiative convective equilibrium solution.

how far dry dynamics are at all relevant in such a case, and in how far latent heat release can be

reasonably thought of as an external diabatic forcing, however, remains questionable. .
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APPENDIX B

Predicting the Normalized Isentropic Slope in the

Presence of Finite Avbeq

We here want to generalize the scaling relation for the normalized isentropic slope in

Eq. (5.13), to account for a radiative restoring, which acts towards a stratification

that is not statically neutral. Following the same arguments as presented in section

5.3, but keeping Ozbeq # 0, we obtain a generalized version of Eq. (5.13) as

1 - 1/5 -3/5
9,~,:b d) . (5. B1)

f -, a

Using that ~ a/Ls , Ld (ArbH)i/ 2 /f, and substituting Eq. 5.A2 for the static

stability, we obtain after some re-arrangements that

s + g--1 - -3/10 s9eg + s-1/5- (.2
1+e sA- eq - A

where -y is defined as in Eq. (5.23) above, and s,= Ahbeq/Abeq, as in Appendix

5.5.

While the full equation in (5.B2) appears daunting, it should be noted that for a

fixed restoring profile (and thus fixed seq) Eq. (5.B2), just like its simplified counter-

part in Eq. (5.13), implies that s = g(-y), where the function g is given by inverting

Eq. (5.B2). Since g depends on seq as a parameter, it might generally be understood

as denoting a family of functions g(Y; seg). For Avbeq = 0, i.e. seq = oo, we find that

g(y; oo) = f(y), where f(y) is defined as in section 5.4.3.
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Chapter 6

Applications to the Southern

Ocean

6.1 Introduction

This thesis was motivated in parts by a comparison between the macroturbulent equi-

libration of the extra-tropical atmosphere and the Southern Ocean. While arguments

brought forward for the extra-tropical atmosphere suggest that a baroclinic flow is

expected to equilibrate to states near marginal criticality for a wide range of param-

eters, the Southern Ocean is generally understood to be considerably supercritical.

One goal of this thesis was to resolve this apparent contradiction. In chapter 2 we

showed that a thermally forced (and thus more atmosphere-like) baroclinic flow can

equilibrate to states near marginal criticality as well as to supercritical states if only

parameters describing properties of the fluid are varied. This called into question the

validity of arguments for equilibration to marginal criticality, even in an atmosphere-

like, thermally forced setting. The following chapters 3 through 5 therefore focussed

on revising the arguments that have been brought forward for the extra-tropical at-

mosphere.

By showing that the arguments for equilibration to marginal criticality, brought

forward in the atmospheric literature, are not generally valid (even in an atmosphere-

like thermally forced setting), we were able to resolve the above mentioned contradic-
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tion without further exploration of the equilibration process in an oceanic channel.

Nevertheless it seems appropriate to briefly return to the oceanic problem here and

analyze whether the arguments discussed in chapters 2 through 5 may be used to

make inferences about the Southern Ocean.

Apart from parametric differences, which have been addressed in chapter 2, the

most obvious difference between the more atmospheric models considered here and

the Antarctic Circumpolar Current (ACC) in the Southern Ocean are given by the

different forcing and boundary conditions. While the baroclinic flows discussed here

are driven by differential radiative heating throughout the troposphere, diabatic forc-

ing in the Ocean acts only at the surface boundary, and the flow is driven primarily

by surface wind stress (e.g. Wunsch and Ferrari, 2004). Once we take account of this

difference, the scaling arguments discussed in chapters 2 through 5 can be general-

ized for the problem of the equilibration of an oceanic channel. The largest remaining

uncertainty in our understanding of the equilibration of the Southern Ocean will be

argued to be the role of bottom topography in modifying the characteristics of the

geostrophic turbulence.

In section 6.2 we will discuss how the scaling arguments for the equilibration of

the criticality parameter and isentropic slope, discussed in chapters 2 and 5, can

be modified to apply for a wind-driven oceanic channel. It will be shown that the

corresponding diffusive scaling relation for the oceanic channel is known and has

been discussed in the oceanographic literature. In section 6.2 we will discuss how the

constraint for the vertical structure of the eddy diffusivity, discussed in chapters 3

and 4, can be applied to an oceanic channel.

6.2 Scaling Arguments for the Southern Ocean Mean

State

The scaling relations for the turbulent equilibration of an atmosphere, discussed in

chapters 2 and 5, are based on a balance between the diabatic forcing and the eddy
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driven residual overturning circulation. Appropriate for the large-scale atmospheric

circulation, we assumed that the mechanical forcing is weak. This is not the case

for the Southern Ocean, whose circulation can be understood as being driven by

the surface wind stress (e.g. Johnson and Bryden, 1989). Including a surface zonal

wind stress ,T, the zonal momentum budget integrated over the surface layer can be

written as

Ds ~z t + , (6.1)
f

The isentropic slope s is here evaluated at the bottom of the surface layer, and D can

be interpreted as a bulk eddy diffusivity in the surface layer. For vanishing wind stress,

Eq. (6.1) reduces to Eq. (5.3), which provides a relation between the eddy driven

mass transport, Ds, and the residual circulation, @t, which in turn can be related to

the radiative forcing (see chapter 2 and 5). Eq. (6.1) is derived in Marshall and Radko

(2003), using residual mean theory in z-coordinates, and assuming a diffusive closure

for the horizontal component of the buoyancy flux. Using the formalism discussed in

chapter 2, it can similarly be derived from the isentropic momentum budget with a

diffusive closure for the isentropic eddy PV flux and the surface eddy buoyancy flux.

In the Southern Ocean the diabatic forcing approximately vanishes below the

surface, implying that the residual overturning circulation must be weak. The first

order balance in Eq. (6.1) must be between the mass transport associated with the

eddy flux, Ds, and the transport induced by the wind stress, F/f. This allows us

to derive a relation between the isentropic slope, the eddy diffusivity, and the forcing

(which is here given by the wind stress):

s D* (6.2)
fD'

The relation in Eq. (6.2) has been discussed in the oceanographic literature (e.g.

Marshall and Radko, 2003; Kuo et al., 2005). It tells us that the isentropic slope is

set by a balance between the wind stress, which acts to steepen the isentropic slope,

and diffusive eddy fluxes, which act to flatten the isentropes. As for the atmospheric
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problem, we can obtain a closed expression for the oceanic mean state if the eddy

diffusivity can be related to external parameters and the mean state itself.

For the simulations discussed in this thesis, the eddy diffusivity was well approxi-

mated by the scaling relation proposed by Held and Larichev (1996). The derivation

of this relation assumes an inverse kinetic energy cascade in the barotropic mode, with

an inertial range extending from the deformation scale to the Rhines scale. In the

Southern Ocean, it is commonly assumed that the inverse energy cascade is strongly

modified by topographic scattering and bottom friction (Rhines, 1979; Thompson

and Young, 2007). Both can modify the up-scale energy flux in the inverse cascade,

and bottom friction can cause energy to be dissipated before reaching the Rhines

scale. Additionally, Smith and Vallis (2002) argue that barotropization is signifi-

cantly suppressed for strongly surface-intensified stratifications, as typically found in

the ocean. The scaling relation for the eddy diffusivity proposed by Held and Larichev

(1996) may thus not provide a good predictor for the eddy diffusivity in the Southern

Ocean. The discussion about how to best parameterize eddy fluxes in the ocean is

still ongoing. Observational data and numerical studies point to the result that the

eddy diffusivity increases with the wind stress such that the isentropic slope is rather

insensitive to changes in the latter (e.g. B6ning et al., 2008; Farneti et al., 2010).

This bears some qualitative resemblance to the result found for the atmosphere that

the isentropic slope is weakly sensitive to changes in the forcing due to strong eddy

compensation.

Eq. (6.2) could be transformed into a condition for the criticality parameter, as

done for the atmosphere in chapters 2 and 5. However, the criticality parameter is of

only limited interest in the Southern Ocean. In particular, flow characteristics and

the range of the inverse energy cascade are related to the criticality parameter only as

long as we may assume an inertial range extending to the Rhines scale. As mentioned

above, the inverse cascade in the Southern Ocean is instead strongly modified by

topographic scattering and bottom friction, which can prevent the inertial range from

reaching the Rhines scale. The oceanographic literature has thus commonly paid more

attention to the isentropic slope itself, rather than the criticality parameter.
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Eq. (6.2) is sometimes used to obtain a scaling relation for the depth of the ther-

mocline (e.g. Marshall and Radko, 2003). The thermodynamic constraint requires

that all isentropes intersect with the surface, since there is no diabatic forcing be-

low the surface. Significant stratification is therefore only found on isentropes that

intersect with the surface somewhere in the domain. These isentropes make up the

stratified thermocline, which vanishes (or is poorly defined) on the cold side of the

Antarctic Circumpolar Current (ACC) and increases in depth over the width of the

ACC, following the slope of the isentropes. On the equatorward side of the ACC the

thermocline depth, hTc, scales with the width of the ACC, L, times the slope of the

isentropes: hTc ~ sL.

6.3 The Vertical Structure of the Eddy Diffusivity

In chapters 3 and 4 we discussed a constraint for the vertical structure of the eddy

diffusivity, and its relation to the criticality parameter. These arguments can be

generalized for the oceanic case. The major differences from the atmospheric problem

are (1) the existence of isentropic outcrops on both the bottom and top boundaries,

(2) the importance of wind- and frictional-stress at the top and bottom boundaries,

and (3) the importance of bottom topography, which exerts a zonal form drag. In

the following, we will argue that (1) and (2) can be included easily in the framework

developed in this thesis, while (3) deserves further attention.

In keeping with the approximations made throughout this thesis, we want to start

by considering a flat-bottomed channel (that is we are deferring the discussion of

topographic effects). While this is not realistic for the Southern Ocean, it is an illu-

minating simplification for theoretical purposes, and it is also a common configuration

in idealized numerical studies of the ACC. As discussed in the Appendix, we can then

derive a constraint for the vertical structure of the eddy diffusivity in an oceanic

channel as

D (hb/ - f&8hb) db~ 7" - 2. (6.3)

Here bmai and bmax are the minimum and maximum buoyancy over the domain,
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hb = - (b - bf) (b, - b)abz is the generalized isentropic thickness, which vanishes

on isentropes below the seafloor (b < bf) or above the surface (b > b,), r_ is the

zonal stress, (8 denotes an average along the surface, and (.) denotes an average

along the seafloor. Notice, that the argument of the integral in Eq. (6.3) represents a

generalized planetary PV gradient. Due to the Heaviside functions in the definition

of the generalized thickness, hb, the generalized PV gradient has additional 6-function

contributions from the isentropic outcrops, which are analogous to the PV sheets in

the QG approximation (Bretherton, 1966).

From the Eulerian zonal momentum budget it follows that the surface wind stress

needs to be approximately balanced by the frictional bottom stress, i.e. F5I' ~ ".

Any mismatch between the two would have to be balanced by horizontal momentum

flux convergence which is typically much smaller (e.g. Johnson and Bryden, 1989;

Stevens and Ivchenko, 1997, and references therein). The R.H.S. of Eq. (6.3) then

vanishes and we are left with the same result as discussed for the atmosphere in

chapter 3. The contribution of the planetary vorticity gradient, f, to the generalized

PV gradient has been shown to be small over much of the ACC, particularly in

the upper ocean (Abernathey et al., 2010), which suggests that the flow is strongly

supercritical'. To the extend that this holds true for the vertically integrated budget,

Eq (6.3) implies that the momentum budget can be satisfied with an eddy diffusivity

that is approximately constant in the vertical, as has been commonly used in ocean

models. This is directly analogous to the strongly supercritical limit discussed in

chapters 3 and 4. Recent analysis of ocean models, however, suggests that the eddy

diffusivity does vary in the vertical and peaks near a critical level where the PV

gradient changes sign (Abernathey, 2012, personal communication). The constraint

in Eq. (6.3), however, still has to be fulfilled. Notice, that Eq. (6.3) does not imply

that the eddy diffusivity cannot have any vertical structure. It only states that the

'This can be seen by noting that ( ~ (fs/H)/3 ~ fe9s/#O, where we assume that the slope of the
isentropes varies over the depth scale H. There is some arbitrariness on what depth scale should be
used when estimating the criticality parameter in the Southern Ocean. When the interest is on the
supercriticality to baroclinic instability, ( ~ fzs/,8 is an appropriate choice, since the requirement
for stability is a cancellation of the thickness gradient contribution fazs by the planetary vorticity
gradient 3.
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eddy diffusivity and the generalized PV gradient cannot be correlated in the vertical.

To the extent that the contribution of the planetary vorticity gradient, 3, is not

negligible in the vertically integrated budget, Eq. (6.3) suggests that the eddy diffu-

sivity needs to be larger at levels where the generalized PV gradient is negative. If the

generalized PV gradient changes monotonically from negative values at the bottom

to positive values near the surface, this implies that the eddy diffusivity has to be

larger in the deep ocean than near the surface. This result is directly analog to the

atmospheric case, discussed in chapters 2 and 3. The same scaling relation between

the vertical structure of the eddy diffusivity and the criticality parameter can be de-

rived if the ocean is divided into two vertical layers, separated by the level where the

PV gradient changes sign. The criticality parameter, which determines the vertical

decay of the eddy diffusivity, would here have to be defined as ( ~ fs/(3H), with

H the full depth of the domain and s the isentropic slope at the level where the PV

gradient changes sign (which is typically near the level of steepest isentropic slope).

Notice, that the criticality parameter so defined is only -2-3 for the Southern Ocean,

indicating that the contribution of # to the PV gradient is indeed not completely

negligible when considering the momentum budget integrated over the full depth of

the channel.

We now want to address the more realistic case where the momentum budget

is influenced by the presence of bottom topography. The isentropic zonal momen-

tum budget used to derive Eq. (6.3) holds similarly in the presence of topography.

However, the contribution associated with isentropic outcrops is proportional to the

geostrophic eddy buoyancy flux averaged zonally along the now undulated seafloor.

That is the average in f is to be taken following the bottom topography (andg

primed quantities denote deviations from this average). In the derivation of Eq. (6.3)

we used a diffusive closure for the geostrophic eddy buoyancy flux at the seafloor

(with a diffusivity assumed to be similar to the PV diffusivity in the deep ocean).

Whether such a closure can be justified in the presence of topography is questionable,

for reasons that will be discussed in the following.

The contribution from the geostrophic eddy buoyancy flux at the seafloor can
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be understood as a generalized bottom form drag in isentropic coordinates. For

small topography, it can be approximated as the sum of a contribution associated

with undulations of the isentropes, corresponding to the buoyancy flux at a fixed z-

level, and a contribution associated with undulations of the seafloor, representing the
--7~f 5F 7 ----z

bottom form drag in z-coordinates: v b' z + g zb' , where (-) denotes an

average at constant height (just above the topography), and 77 denotes the topographic

elevation. Since the bottom form drag contribution is not obviously connected to the

rate of eddy mixing, or the meridional buoyancy gradient, it is unclear in how far a

diffusive closure for the full geostrophic eddy buoyancy flux at the seafloor can be

justified in the presence of significant topography. A diffusive closure for the eddy

buoyancy flux at fixed z-level, however, is similarly unjustified, since the flow above

the topography is not expected to be purely horizontal. Instead, any closure for the

momentum budget near the seafloor requires careful consideration of the flow near

the undulating bottom boundary, which is beyond the scope of this thesis.

The eddy buoyancy flux at the seafloor is a major component of the vertically inte-

grated isentropic momentum budget, with the bottom form drag contribution, fv i",

typically canceling the surface wind stress in the presence of significant topography

(Johnson and Bryden, 1989; Stevens and Ivchenko, 1997). Much progress has been

made recently to extend theories of the ACC beyond the highly idealized picture of

an isolated flat-bottomed zonal channel. For example, Ito and Marshall (2008) and

Nikurashin and Vallis (2011) developed theories of the deep ocean thermal structure

and overturning circulation which account for the interaction between the circum-

polar channel and the rest of the ocean; and LaCasce and Isachsen (2010) revisited

the role of continents and topography impinging on the channel in the framework

of linear equivalent barotropic theories. Yet, our theoretical understanding of how

eddy fluxes, and thus the zonal momentum budget, can be closed near the bottom

topography is still underdeveloped.
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6.4 Conclusions

We showed that the arguments discussed in chapters 2 through 5 can be generalized

for the problem of the equilibration of a wind-driven oceanic channel, if we take

account of the different boundary conditions and in particular the strong momentum

flux at the ocean's surface imposed by the wind stress. The scaling arguments for the

equilibration of the criticality parameter and isentropic slope, discussed in chapters 2

and 5, were modified to apply for a wind-driven oceanic channel by adding the surface

wind stress forcing while making use of the fact that the oceanic interior is essentially

adiabatic. The resulting relation between the isentropic slope and the surface wind

stress and eddy diffusivity is known and confirmed in the oceanographic literature

(e.g. Marshall and Radko, 2003; Kuo et al., 2005). To obtain a closed expression

for the oceanic mean state, one would need to relate the eddy diffusivity to external

parameters and the mean state itself. How this is best done in an oceanographic

setting, where bottom friction and topography are likely to be important in shaping

the characteristics of the turbulence, is a question that is widely debated in the

oceanographic community and shall not be addressed here.

We further discussed how the constraint for the vertical structure of the eddy

diffusivity, discussed in chapters 3 and 4, can be applied to an oceanic channel. For a

flat-bottomed wind-driven channel we were able to derive the same integral constraint

for the vertical structure of the eddy diffusivity as discussed for the atmosphere in

chapter 3. While this has relevance for many idealized modeling studies, the zonal

momentum budget in the real Southern Ocean is understood to be strongly influenced

by the presence of bottom form drag, associated with the large bottom topography.

The vertically integrated momentum budget in the presence of bottom topography

involves a contribution associated with intersections of isentropes with the topogra-

phy. It remains unclear whether the latter can be related to the mean state and/or

the surface wind stress.

Notice, that the purpose of this chapter is to provide only a general overview

about how the arguments presented in this thesis may be applied to make inferences
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about the turbulent equilibration of the Southern Ocean. A detailed discussion of the

Southern Ocean equilibration problem, as well as a test of the presented arguments

against numerical simulations and/or observations, is beyond the scope of this thesis

but provides possible directions for future work.
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APPENDIX

Isentropic Mass Flux Balance in the Presence of

Stresses at the Boundaries

We here want to derive a constraint for the vertical structure of the eddy diffusivity in

the presence of momentum fluxes at the upper and lower boundary. As in chapter 2,

we start from the isentropic zonal momentum balance in a zonally re-entrant channel,

which can be transformed into an equation for the mass transport upon division by

the mean isentropic PV. Vertically integrated from the bottom to the top boundary,

the equation can be written as

I ax _ b a x hO K - *ff
hb U*db f , db + b (6.A1)

Jbmin Jb., P P(b 8 ) g P(bf)

Here bmin and bmax are the minimum and maximum buoyancy over the domain,

hb = 1(b - bf)H(bs - b)&bz is the generalized isentropic thickness, which vanishes

on isentropes below the seafloor (b < bf) or above the surface (b > b,), the overbar

denotes an isentropic average, (* = hb(-)/h is the thickness weighted average,

denotes an average along the surface, and ( denotes an average along the seafloor.

Other quantities are defined as in chapter 2. Eq. (6.A1) is analog to Eq. (2.4), except

that it has contributions due to isentropic outcrops on both the bottom and top

boundaries. As before these contributions are written in terms of an eddy buoyancy

flux.

We now want to rewrite the contributions from the mechanical forcing, which we

assume to be confined to two shallow Ekman layers at the top and bottom boundaries.

We need to consider two contributions of the mechanical forcing in (6.A1). The first

obvious contribution comes from the forcing term -hbJ7* in the integral on the R.H.S..

Additionally, the eddy PV flux hviP contains a contribution due to the Ekman
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transport hbiP = hbEk + hbP , where we defined 6 = v - VEk, as the part of

the velocity not associated with the Ekman transport, but with the macroturbulence

(for small Rossby numbers this is simply the geostrophic part of the velocity). If we

want to use a diffusive closure for the Eddy PV flux, it is only the contribution from

the macroturbulence, hbP , that we can hope to close this way.

Using that hbJ) = F"X(b, - b)1(b - bf)= -fvEk, with the zonal force per unit

mass FX, we can write

hbmax bEkP + hbJ* bax bVEk ~ EkJbl * db b - db (6.A2)

jbmazhbvEk(P 
- *) - fvEkdb (6.A3)

bmax vEk f - hbv k* -- fdb (6.A4)

- a hbvEkdb (6.A5)
Jbmin

- Fxdz (6.A6)
f -H

(6.A7)f f

where Tx is the zonal momentum flux trough the top and bottom boundaries (positive

downwards on both boundaries). Plugging this back into (6.A1) and using that the

total meridional mass transport has to vanish, we find that

Ibmax hbf3P f f 5 7" rx
-, db+ _-* 8 - - vgb' - . (6.A8)

ibmin P(b) P(b) f f

Using a diffusive closure for the eddy flux of PV and the eddy buoyancy fluxes at

the top and bottom boundaries, the L.H.S can be re-written as discussed in chapter

2, to yield

D ( -b3 - foy hb) db ; F" - T. (6.A9)
bminan

Notice, that the argument in the integral in Eq. 6.A9 denotes a generalized planetary
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PV gradient, which contains a contribution associated with the planetary vortic-

ity gradient 3, as well the generalized thickness gradient Byhb. The latter includes

contributions from the buoyancy gradients at the boundaries, corresponding to the

buoyancy flux terms Eq. (6.A8) . This can be seen by noting that the gradient of the

generalized thickness, hb = H(b - bf)1(b, - b)8bz, includes gradients of the Heaviside

functions, which in turn yield the buoyancy gradients at the top and bottom bound-

aries. As in chapter 2, we have ignored contributions of the relative vorticity to the

PV gradient in deriving Eq. (6.A9).
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Chapter 7

Summary and Conclusion

7.1 Summary

This thesis has analyzed the turbulent equilibration of an atmosphere, using theo-

retical arguments and idealized numerical simulations. Contrary to the suggestion

of some previous studies (Stone, 1978; Schneider, 2004), we have shown that eddies

do not generally equilibrate atmospheres to states of marginal criticality. Instead,

any theory for the turbulent equilibration requires an understanding of how turbu-

lent fluxes depend on the external parameters, as well as the equilibrated mean state

itself.

Chapter 2 was motivated by the observed difference in the criticality of the extra-

tropical atmosphere and Southern Ocean. The mean state of the extra-tropical at-

mosphere is believed to be near marginal criticality to baroclinic instability, with

eddy-eddy interactions playing a minor role. The Southern Ocean instead is under-

stood to be considerably supercritical, and eddy-eddy interactions may play a sig-

nificant role in shaping the turbulent flow statistics and ultimately setting the mean

state. We performed a series of numerical simulations, in a thermally forced zonally

re-entrant channel model, varying the thermal expansion coefficient of the fluid from

atmosphere-like values to ocean-like values. It was shown that this suffices to obtain

atmosphere-like, marginally critical mean states, as well as significantly supercritical

states, which resemble some of the properties observed in the Southern Ocean.
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We further derived a scaling argument for the criticality parameter of the equi-

librated mean state, which explains most of the variations found in the numerical

simulations. The scaling relation suggests that the transition to supercritical mean

states can be explained in terms of a reduction of the deformation radius in the limit

of small, ocean-like, expansion coefficients. This ultimately renders eddies ineffective

in maintaining a marginally critical state in the limit of small thermal expansion

coefficients.

The results in chapter 2 are at odds with the theory of Schneider (2004), which

advocates adjustment to marginal criticality as a general feature of turbulently equi-

librated atmospheres. Schneider (2004) argued that marginally critical states arise as

a consequence of the eddy diffusivity of PV being vertically constant. Strongly super-

critical states would require an eddy diffusivity that increases strongly with height,

which in turn is inconsistent with the expectation that eddies become essentially

barotropic in the strongly supercritical limit (e.g. Held and Larichev, 1996).

In chapter 3 we showed that the result of Schneider (2004) appears to arise as

a consequence his definition of an extended mean and eddy PV flux on isentropes

that intersect the surface. Yet, the physical meaning of this extended eddy PV flux

is unclear, and the assumed closure is not supported by numerical simulations. We

thus revised Schneider's (2004) derivation, using the isentropic mean and eddy PV

flux definitions proposed by Koh and Plumb (2004), which arise from averaging the

conventional PV flux over only the above-surface part of each isentrope. A diffusive

closure for the eddy PV flux under this definition is supported by an analysis of

the PV variance budget, as well as idealized numerical simulations. Following this

approach, it was shown that order one criticalities are obtained if the eddy diffusivity

decays from its surface value to about zero over the depth of the troposphere, which is

likely to be the case in Earth's atmosphere. Large criticality parameters, however, are

possible if the eddy diffusivity decays only weakly in the vertical, consistent with the

notion that eddies become essentially barotropic in this limit. The revised relation

between the criticality parameter and the vertical structure of the eddy diffusivity is

also in agreement with previous results based on the QG approximation (e.g. Green,
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1970), which Schneider (2004, 2005) deemed inappropriate to describe the effects of

large-scale turbulence in the atmosphere.

In chapter 4, the derived scaling relation between the criticality parameter and

the vertical structure of the eddy diffusivity was confirmed in atmospheric re-analysis,

as well as in a series of numerical simulations. The performed numerical simulations

used a widely varying Coriolis parameter, f, and planetary vorticity gradient, #,

which proved to be an efficient way to obtain mean states with a wide range of

criticality parameters. In agreement with the scaling relation proposed in chapter

3, simulations with marginally critical mean states were found to be associated with

an eddy diffusivity which decreases strongly over the depth of the troposphere, while

strongly supercritical mean states were found to be associated with an eddy diffusivity

which is approximately constant over the entire troposphere.

While putting to rest the often stated belief that the criticality parameter cannot

be much larger than one, the revised relation between the criticality parameter and

the vertical structure of the eddy diffusivity does not provide a predictive theory for

the equilibrated thermal mean state. Instead our results imply that any prediction

of the equilibrated state requires a theory for what sets the eddy diffusivity.

In chapter 5 we thus returned to the challenge of predicting changes in the equili-

brated mean state in response to changes in the forcing or other external parameters.

We argued that changes in the criticality parameter are best understood in terms of

a balance between the diabatic forcing and the eddy driven overturning circulation,

as first discussed in chapter 2. Unlike the relation derived in chapter 3 we are here

not concerned with the vertical structure of the eddy diffusivity, but require a scaling

argument only for the magnitude of the bulk diffusivity in the lower troposphere. For

the simulations discussed in this thesis the lower tropospheric eddy diffusivity follows

the scaling relation of Held and Larichev (1996), which is based on the strength of the

atmospheric energy cycle. Using this closure for the eddy diffusivity, one can derive a

scaling relation for the criticality parameter, which reproduces the numerical results

of chapter 2 (where we varied the thermal expansion coefficient), as well as the large

variations in the criticality parameter found in the simulations of chapter 4 (where
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we varied f and #).

The scaling arguments discussed in chapters 2 and 5, are also in qualitative agree-

ment with previous numerical results, which showed weak dependence of the criticality

parameter to changes in the external forcing (e.g. Schneider, 2004). It supports the

notion that changes in the criticality parameter in response to moderate changes in

the thermal forcing, as might be expected in past and future climate change, are likely

to be small. The criticality parameter can, however, change strongly if the forcing is

changed enough, or other parameters (such as the planets size and/or rotation rate)

are varied. The assumption that atmospheres on other planets, or other fluid systems

(such as the ocean), always equilibrate to states of marginal criticality is thus not

generally justified.

Finally, we showed in chapter 5 that both the equator to pole temperature gradient

and the bulk static stability are constrained by the thermodynamic budget, once the

criticality parameter is known. For the idealized dry simulations discussed in this

thesis, we were thus able to explain, and predict, the response of both the meridional

temperature gradient, and bulk stability, to changes in the forcing and other external

parameters.

In chapter 6 we offered a brief comparison between our results for the turbulent

equilibration of an atmosphere, and the corresponding equilibration problem of the

Southern Ocean, which was part of the motivation for this thesis. It was shown that

the arguments discussed in chapters 2 through 5 can be generalized for the problem of

the equilibration of a wind-driven oceanic channel, if we take account of the different

boundary conditions and in particular the strong momentum flux at the ocean's

surface imposed by the wind stress. The resulting relation between the isentropic

slope, surface wind stress and eddy diffusivity has been known and confirmed in the

oceanographic literature (e.g. Marshall and Radko, 2003; Kuo et al., 2005). The

largest uncertainty in our understanding of the equilibration of the Southern Ocean

was argued to be the role of bottom topography in modifying the characteristics of

the geostrophic turbulence.
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7.2 Concluding Remarks

This thesis resolved an apparent contradiction in our understanding of atmospheric

and oceanic equilibration by large scale turbulence. In contrast with previous atmo-

spheric literature, but in agreement with our understanding of the Southern Ocean, it

was shown that atmospheres do not generally equilibrate to states of marginal critical-

ity. Instead, any argument for the turbulent equilibration requires an understanding

of the dependence of eddy fluxes on the mean state.

The results discussed in this thesis extend much of our understanding from quasi-

geostrophic models to primitive equation systems. Using the isentropic zonal momen-

tum budget, we derived constraints for the equilibrated mean state, and its relation

to the magnitude and vertical structure of the eddy diffusivity. The results represent

direct generalizations of quasi-geostrophic theory. Our simulations further confirmed

the relations between the criticality parameter and the characteristics of the turbu-

lent flow, originally proposed for the two-layer quasi-geostrophic model by Held and

Larichev (1996). In particular we showed that increasing criticality parameters allow

for an increasing inverse energy cascade, between the deformation scale (where most

of the eddy kinetic energy is produced from conversion of available potential energy)

to the Rhines scale (where the inverse kinetic energy cascade is halted).

We thus provide an important step in a hierarchy of models required to generate a

fundamental understanding of how atmospheres equilibrate. To fully appreciate the

key processes in Earth's extra-tropical atmosphere, or other planetary atmospheres,

new models will need to be added to the hierarchy. These will need to address

the role of processes that have been left out here for the sake of simplicity. For

example, the influence of the planets spherical geometry, where the eddy-mediated

extra-tropics are connected to the tropical Hadley-cell regime. The effect of applying

a realistic radiative forcing, as opposed to the idealized thermal restoring considered

here. The impact of the myriad of processes encountered in the atmospheric boundary

layer. And, maybe most importantly for Earth's atmosphere, the role of moisture and

convection. While some progress has already been made on all of these issues in the
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existing literature, they still provide ample opportunities for future work.
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