
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-015 July 8, 2013

Dynamic Input/Output Automata: a
Formal and Compositional Model for
Dynamic Systems
Paul C. Attie and Nancy A. Lynch

Dynamic Input/Output Automata: a Formal and Compositional
Model for Dynamic Systems

Paul C. Attie

Department of Computer Science
American University of Beirut

paul.attie@aub.edu.lb

Nancy A. Lynch

MIT Computer Science and Artificial
Intelligence Laboratory
lynch@csail.mit.edu

June 24, 2013

Abstract

We present dynamic I/O automata (DIOA), a compositional model of dynamic systems,
based on I/O automata. In our model, automata can be created and destroyed dynamically, as
computation proceeds. In addition, an automaton can dynamically change its signature, that
is, the set of actions in which it can participate. This allows us to model mobility, by enforcing
the constraint that only automata at the same location may synchronize on common actions.

Our model features operators for parallel composition, action hiding, and action renaming. It
also features a notion of automaton creation, and a notion of trace inclusion from one dynamic
system to another, which can be used to prove that one system implements the other. Our
model is hierarchical: a dynamically changing system of interacting automata is itself modeled
as a single automaton that is “one level higher.” This can be repeated, so that an automaton
that represents such a dynamic system can itself be created and destroyed. We can thus model
the addition and removal of entire subsystems with a single action.

We establish fundamental compositionality results for DIOA: if one component is replaced
by another whose traces are a subset of the former, then the set of traces of the system as
a whole can only be reduced, and not increased, i.e., no new behaviors are added. That is,
parallel composition, action hiding, and action renaming, are all monotonic with respect to
trace inclusion. We also show that, under certain technical conditions, automaton creation
is monotonic with respect to trace inclusion: if a system creates automaton Ai instead of
(previously) creating automaton A′

i, and the traces of Ai are a subset of the traces of A′
i, then

the set of traces of the overall system is possibly reduced, but not increased. Our trace inclusion
results imply that trace equivalence is a congruence relation with respect to parallel composition,
action hiding, and action renaming.

Our trace inclusion results enable a design and refinement methodology based solely on the
notion of externally visible behavior, and which is therefore independent of specific methods
of establishing trace inclusion. It permits the refinement of components and subsystems in
isolation from the entire system, and provides more flexibility in refinement than a methodology
which is, for example, based on the monotonicity of forward simulation with respect to parallel
composition. In the latter, every automaton must be refined using forward simulation, whereas
in our framework different automata can be refined using different methods.

The DIOA model was defined to support the analysis of mobile agent systems, in a joint
project with researchers at Nippon Telegraph and Telephone. It can also be used for other
forms of dynamic systems, such as systems described by means of object-oriented programs,
and systems containing services with changing access permissions.

Contents

1 Introduction 2

2 Signature I/O Automata 4

2.1 Parallel Composition of Signature I/O Automata . 6

2.2 Action Hiding for Signature I/O Automata . 8

2.3 Action Renaming for Signature I/O Automata . 9

2.4 Example: mobile phones . 10

3 Compositional Reasoning for Signature I/O Automata 10

3.1 Execution Projection and Pasting for SIOA . 10

3.2 Trace Pasting for SIOA . 14

3.3 Trace Substitutivity for SIOA . 24

4 Trace substitutivity under Hiding and Renaming 29

4.1 Trace Equivalence as a Congruence . 30

5 Configurations and Configuration Automata 30

5.1 Parallel Composition of Configuration I/O Automata 34

5.2 Action Hiding for Configuration Automata . 38

5.3 Action Renaming for Configuration Automata . 40

5.4 Multi-level Configuration Automata . 41

5.5 Compositional Reasoning for Configuration Automata 41

5.5.1 Execution Projection and Pasting for Configuration Automata 41

5.5.2 Trace Pasting for Configuration Automata . 42

5.5.3 Trace Substitutivity and Equivalence for Configuration Automata 42

6 Creation Substitutivity for Configuration Automata 43

7 Modeling Dynamic Connection and Locations 51

8 Extended Example: A Travel Agent System 52

9 Related Work 57

10 Conclusions and Further Research 59

1

1 Introduction

Many modern distributed systems are dynamic: they involve changing sets of components, which are
created and destroyed as computation proceeds, and changing capabilities for existing components.
For example, programs written in object-oriented languages such as Java involve objects that create
new objects as needed, and create new references to existing objects. Mobile agent systems involve
agents that create and destroy other agents, travel to different network locations, and transfer
communication capabilities.

To describe and analyze such distributed systems rigorously, one needs an appropriate math-
ematical foundation: a state-machine-based framework that allows modeling of individual compo-
nents and their interactions and changes. The framework should admit standard modeling methods
such as parallel composition and levels of abstraction, and standard proof methods such as invari-
ants and simulation relations. As dynamic systems are even more complex than static distributed
systems, the development of practical techniques for specification and reasoning is imperative. For
static distributed systems and concurrent programs, compositional reasoning is proposed as a means
of reducing the proof burden: reason about small components and subsystems as much as possible,
and about the large global system as little as possible. For dynamic systems, compositional rea-
soning is a priori necessary, since the environment in which dynamic software components (e.g.,
software agents) operate is continuously changing. For example, given a software agent B, suppose
we then refine B to generate a new agent A, and we prove that A’s externally visible behaviors are
a subset of B’s. We would like to then conclude that replacing B by A, within any environment
does not introduce new, and possibly erroneous, behaviors.

One issue that arises in systems where components can be created dynamically is that of clones.
Suppose that a particular component is created twice, in succession. In general, this can result
in the creation of two (or more) indistinguishable copies of the component, known as clones. We
make the fundamental assumption in our model that this situation does not arise: components can
always be distinguished, for example, by a logical timestamp at the time of creation. This absence of
clones assumption does not preclude reasoning about situations in which an automaton A1 cannot
be distinguished from another automaton A2 by the other automata in the system. This could
occur, for example, due to a malicious host which “replicates” agents that visit it. We distinguish
between such replicas at the meta-theoretic level by assigning unique identifiers to each. These
identifiers are not available to the other automata in the system, which remain unable to tell A1

and A2 apart, for example in the sense of the “knowledge” [13] about A1 and A2 which the other
automata possess.

Static mathematical models like I/O automata [20] could be used to model dynamic systems,
with the addition of some extra structure (special Boolean flags) for modeling dynamic aspects.
For example, in [21], dynamically-created transactions were modeled as if they existed all along,
but were “awakened” upon execution of special create actions. However, dynamic behavior has by
now become so prevalent that it deserves to be modeled directly. The main challenge is to identify
a small, simple set of constructs that can be used as a basis for describing most interesting dynamic
systems.

In this paper, we present our proposal for such a model: the Dynamic I/O Automaton (DIOA)
model . Our basic idea is to extend I/O automata with the ability to change their signatures
dynamically, and to create other I/O automata. We then combine such extended automata into
global configurations. Our model provides:

2

1. parallel composition, action hiding, and action renaming operators;

2. the ability to dynamically change the signature of an automaton; that is, the set of actions
in which the automaton can participate;

3. the ability to create and destroy automata dynamically, as computation proceeds; and

4. a notion of externally visible behavior based on sets of traces.

Our notion of externally visible behavior provides a foundation for abstraction, and a notion of be-
havioral subtyping by means of trace inclusion. Dynamically changing signatures allow us to model
mobility, by enforcing the constraint that only automata at the same location may synchronize on
common actions.

Our model is hierarchical: a dynamically changing system of interacting automata is itself
modeled as a single automaton that is “one level higher.” This can be repeated, so that an
automaton that represents such a dynamic system can itself be created and destroyed. This allows
us to model the addition and removal of entire subsystems with a single action.

As in I/O automata [20, 19], there are three kinds of actions: input, output, and internal.
A trace of an execution results by removing all states and internal actions. We use the set of
traces of an automaton as our notion of external behavior. We show that parallel composition is
monotonic with respect to trace inclusion: if we have two systems A = A1 ‖ · · · ‖ Ai ‖ · · · ‖ An
and A′ = A1 ‖ · · · ‖ A′i ‖ · · · ‖ An consisting of n automata, executing in parallel, then if the traces
of Ai are a subset of the traces of A′i (which it “replaces”), then the traces of A are a subset of
the traces of A′. We also show that action hiding (convert output actions to internal actions) and
action renaming (change action names using an injective map) are monotonic with respect to trace
inclusion, and, finally, we show that, if we have a system X in which an automaton A is created,
and a system Y in which an automaton B is created “instead of A”, and if the traces of A are
a subset of the traces of B, then the traces of X will be a subset of the traces of Y , but only
under certain conditions. Specifically, in the system Y , the creation of automaton B at some point
must be correlated with the finite trace of Y up to that point. Otherwise, monotonicity of trace
inclusion can be violated by having the system X create the replacement A in more contexts than
those in which Y creates B, resulting in X possessing some traces which are not traces of Y . This
phenomenon appears to be inherent in situations where the creation of new automata can depend
upon global conditions (as in our model) and can be independent of the externally visible behavior
(trace). Our monotonicity results imply that trace equivalence is a congruence with respect to
parallel composition, action hiding, and action renaming.

Our results enable a refinement methodology for dynamic systems that is independent of
specific methods of establishing trace inclusion. Different automata in the system can be refined
using different methods, e.g., different simulation relations such as forward simulations or backward
simulations, or by using methods not based on simulation relations. This provides more flexibility
in refinement than a methodology which, for example, shows that forward simulation is monotonic
with respect to parallel composition, since in the latter every automaton must be refined using
forward simulation.

We defined the DIOA model initially to support the analysis of mobile agent systems, in a joint
project with researchers at Nippon Telephone and Telegraph. Creation and destruction of agents
are modeled directly within the DIOA model. Other important agent concepts such as changing
locations and capabilities are described in terms of changing signatures, using additional structure.

3

This paper is organized as follows. Section 2 presents signature I/O automata (SIOA), which
are I/O automata that also have the ability to change ther signature, and also defines a parallel
composition, action hiding, and action renaming operators for them. Section 3 shows that parallel
composition of SIOA is monotonic with respect to trace inclusion. Section 4 establishes that action
hiding and action renaming are monotonic with respect to trace inclusion. It also shows that
trace equivalence is a congruence with respect to parallel composition, action hiding, and action
renaming. Section 5 presents configuration automata (CA), which have the ability to dynamically
create SIOA as execution proceeds. Section 5 also extends the parallel composition, action hiding,
and action renaming operators to configuration automata, and shows that configuration automata
inherit the trace monotonicity results of SIOA. Section 6 shows that SIOA creation is monotonic
with respect to trace inclusion, under certain technical conditions. Section 7 discusses how mobility
and locations can be modeled in DIOA. Section 8 presents an example: an agent whose purpose is
to traverse a set of databases in search of a satisfactory airline flight, and to purchase such a flight
if it finds it. Section 9 discusses related work. Section 10 discusses further research and presents
our conclusions.

2 Signature I/O Automata

We introduce signature input-output automata (SIOA). We assume the existence of a set Autids of
unique SIOA identifiers, an underlying universal set Auts of SIOA, and a mapping aut : Autids 7→
Auts. aut(A) is the SIOA with identifier A. We use “the automaton A” to mean “the SIOA with
identifier A”. We use the letters A,B, possibly subscripted or primed, for SIOA identifiers.

The executable actions of an SIOA A are drawn from a signature sig(A)(s) = 〈in(A)(s),
out(A)(s), int(A)(s)〉, called the state signature, which is a function of the current state s. in(A)(s),
out(A)(s), int(A)(s) are pairwise disjoint sets of input, output, and internal actions, respectively.
We define ext(A)(s), the external signature of A in state s, to be ext(A)(s) = 〈in(A)(s), out(A)(s)〉.

For any signature component, generally, the ̂ operator yields the union of sets of actions
within the signature, e.g., ŝig(A)(s) = in(A)(s) ∪ out(A)(s) ∪ int(A)(s). Also define acts(A) =⋃
s∈states(A) ŝig(A)(s), that is acts(A) is the “universal” set of all actions that A could possibly

execute, in any state.

Definition 1 (SIOA) An SIOA aut(A) consists of the following components

1. A set states(A) of states.

2. A nonempty set start(A) ⊆ states(A) of start states.

3. A signature mapping sig(A) where for each s ∈ states(A), sig(A)(s) = 〈in(A)(s), out(A)(s), int(A)(s)〉,
where in(A)(s), out(A)(s), int(A)(s) are sets of actions.

4. A transition relation steps(A) ⊆ states(A)× acts(A)× states(A)

and satisfies the following constraints on those components:

1. ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s).

2. ∀s ∈ states(A) : ∀a ∈ in(A)(s), ∃s′ : (s, a, s′) ∈ steps(A)

4

3. ∀s ∈ states(A) : in(A)(s) ∩ out(A)(s) = in(A)(s) ∩ int(A)(s) = out(A)(s) ∩ int(A)(s) = ∅

Constraint 1 requires that any executed action be in the signature of the initial state of the
transition. Constraint 2 extends the input enabling requirement of I/O automata to SIOA. Con-
straint 3 requires that in any state, an action cannot be both an input and an output, etc. However,
the same action can be an input in one state and an output in another. This is in contrast to ordi-
nary I/O automata, where the signature of an automaton is fixed once and for all, and cannot vary
with the state. Thus, an action is either always an input, always an output, or always an internal.

If (s, a, s′) ∈ steps(A), we also write s a−→A s
′. For the sake of brevity, we write states(A)

instead of states(aut(A)), i.e., the components of an automaton are identified by applying the
appropriate selector function to the automaton identifier, rather than the automaton itself.

Definition 2 (Execution, trace of SIOA) An execution fragment α of an SIOA A is a nonempty
(finite or infinite) sequence s0a1s1a2 . . . of alternating states and actions such that (si−1, ai, si) ∈
steps(A) for each triple (si−1, ai, si) occurring in α. Also, α ends in a state if it is finite. An
execution of A is an execution fragment of A whose first state is in start(A). execs(A) denotes the
set of executions of SIOA A.

Given an execution fragment α = s0a1s1a2 . . . of A, the trace of α in A (denoted traceA(α)) is
the sequence that results from

1. remove all ai such that ai 6∈ êxt(A)(si−1), i.e., ai is an internal action of A in state si−1, and
then

2. replace each si by its external signature ext(A)(si), and then

3. replace each maximal block ext(A)(si), . . . , ext(A)(si+k) such that
(∀j : 0 ≤ j ≤ k : ext(A)(si+j) = ext(A)(si)) by ext(A)(si), i.e., replace each maximal
block of identical external signatures by a single representative. (Note: also applies to an
infinite suffix of identical signatures, i.e., k = ω.)

Thus, a trace is a sequence of external actions and external signatures that starts with an external
signature. Also, if the trace is finite, then it ends with an external signature. When the automaton
A is understood from context, we write simply trace(α). We need to indicate the automaton, since
it is possible for two automata to have the same executions, but difference traces, e.g., when one
results from the other by action hiding (see Section 2.2 below).

Traces are our notion of externally visible behavior. A trace β of an execution α exposes
the external actions along α, and the external signatures of states along α, except that repeated
identical external signatures along α do not show up in β. Thus, the external signature of the first
state of α, and then all subsequent changes to the external signature, are made visible in β. This
includes signature changes caused by internal actions, i.e., these signature changes are also made
visible. traces(A), the set of traces of an SIOA A, is the set {β | ∃α ∈ execs(A) : β = trace(α)}.

Notation. We write s
α−→A s

′ iff there exists an execution fragment α of A starting in s and
ending in s′. If a state s lies along some execution, then we say that s is reachable. Otherwise, s
is unreachable. The length |α| of a finite execution fragment α is the number of transitions along
α. The length of an infinite execution fragment is infinite (ω). If |α| = 0, then α consists of a

5

single state. When we write, for example, 0 ≤ i ≤ |α|, it is understood that when α is infinite, that
i = |α| does not arise, i.e., we consider only finite indices for states and actions along an execution.
If execution fragment α = s0a1s1a2 . . ., then for 0 ≤ i ≤ |α|, define α|i = s0a1s1a2 . . . aisi, and
for 0 ≤ i, j ≤ |α| ∧ j < i, define j |α|i = sjaj+1 . . . aisi. We define a concatenation operator _
for execution fragments as follows. If α′ = s0a1s1a2 . . . aisi is a finite execution fragment and
α′′ = t0b1t1b2 . . . is an execution fragment, then α′ _ α′′ is defined to be the execution fragment
s0a1s1a2 . . . ait0b1t1b2 . . . only when si = t0. If si 6= t0, then α′_α′′ is undefined.

Let [k : `] df== {i | k ≤ i ≤ `}. We use (Qi, r(i) : e(i)) to indicate quantification with quantifier
Q, bound variable i, range r(i), and quantified expression e(i). For compactness, we sometimes
give the bound variable and range as a subscript.

2.1 Parallel Composition of Signature I/O Automata

The operation of composing a finite number n of SIOA together gives the technical definition of
the idea of n SIOA executing concurrently. As with ordinary I/O automata, we require that the
signatures of the SIOA be compatible, in the usual sense that there are no common outputs, and
no internal action of one automaton is an action of another.

Definition 3 (Compatible signatures) Let S be a set of signatures. Then S is compatible iff,
for all sig ∈ S, sig′ ∈ S, where sig = 〈in, out, int〉, sig′ = 〈in′, out′, int′〉 and sig 6= sig′, we have:

1. (in ∪ out ∪ int) ∩ int′ = ∅, and

2. out ∩ out′ = ∅.

Since the signatures of SIOA vary with the state, we require compatibility for all possible
combinations of states of the automata being composed. Our definition is “conservative” in that
it requires compatibility for all combinations of states, not just those that are reachable in the
execution of the composed automaton. This results in significantly simpler and cleaner definitions,
and does not detract from the applicability of the theory.

Definition 4 (Compatible SIOA) Let A1, . . . , An, be SIOA. A1, . . . , An are compatible if and
only if for every 〈s1, . . . , sn〉 ∈ states(A1) × · · · × states(An), {sig(A1)(s1), . . . , sig(An)(sn)} is a
compatible set of signatures.

Notice that we here use si to mean the state of SIOA Ai, whereas we previously used si to
mean the i’th state along an execution. The intended usage will be clear from context. When we
require both usages, as in execution projection, we will use double subscripts, e.g., sj,i.

Definition 5 (Composition of Signatures) Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be
compatible signatures. Then we define their composition Σ × Σ′ = (in ∪ in′ − (out ∪ out′), out ∪
out′, int ∪ int′).

Signature composition is clearly commutative and associative. We therefore use
∏

for the n-ary
version of ×. As with I/O automata, SIOA synchronize on same-named actions. To devise a theory
that accommodates the hierarchical construction of systems, we ensure that the composition of n
SIOA is itself an SIOA.

6

Definition 6 (Composition of SIOA) Let A1, . . . , An, be compatible SIOA. Then A = A1 ‖
· · · ‖ An is the state-machine consisting of the following components:

1. A set of states states(A) = states(A1)× · · · × states(An)

2. A set of start states start(A) = start(A1)× · · · × start(An)

3. A signature mapping sig(A) as follows. For each s = 〈s1, . . . , sn〉 ∈ states(A), sig(A)(s) =
sig(A1)(s1)× · · · × sig(An)(sn)

4. A transition relation steps(A) ⊆ states(A) × acts(A) × states(A) which is the set of all
(〈s1, . . . , sn〉, a, 〈t1, . . . , tn〉) such that

(a) a ∈ ŝig(A1)(s1) ∪ . . . ∪ ŝig(An)(sn), and
(b) for all i ∈ [1 : n] : if a ∈ ŝig(Ai)(si), then (si, a, ti) ∈ steps(Ai), otherwise si = ti

If s = 〈s1, . . . , sn〉 ∈ states(A), then define s�Ai = si, for i ∈ [1 : n].

Since our goal is to deal with dynamic systems, we must define the composition of a variable
number of SIOA at some point. We do this below in Section 5, where we deal with creation and
destruction of SIOA. Roughly speaking, parallel composition is intended to model the composition
of a finite number of large systems, for example a local-area network together with all of the
attached hosts. Within each system however, an unbounded number of new components, for
example processes, threads, or software agents, can be created. Thus, at any time, there is a finite
but unbounded number of components in each system, and a finite, fixed, number of “top level”
systems.

Proposition 1 Let A1, . . . , An, be compatible SIOA. Then A = A1 ‖ · · · ‖ An is an SIOA.

Proof: We must show that A satisfies the constraints of Definition 1. We deal with each constraint
in turn.

Constraint 1: Let (s, a, s′) ∈ steps(A). Then, s can be written as 〈s1, . . . , sn〉. From Defini-
tion 6, clause 4, a ∈ ŝig(A1)(s1)∪ . . .∪ ŝig(An)(sn) From Definition 6, clause 3, ŝig(A1)(s1)∪ . . .∪
ŝig(An)(sn) = ŝig(A)(s). Hence a ∈ ŝig(A)(s).

Constraint 2: Let s ∈ states(A), a ∈ in(A)(s). Then, s can be written as 〈s1, . . . , sn〉. From
Definition 6, clause 3, a ∈ (

⋃
1≤i≤n in(Ai)(si))−out(A)(s). Hence, there exists ϕ ⊆ [1 :n] such that

∀i ∈ ϕ : a ∈ in(Ai)(si), and ∀i ∈ [1 :n]− ϕ : a 6∈ ŝig(Ai)(si). Since each Ai satisfies Constraint 2 of
Definition 1, we have:

∀i ∈ ϕ : ∃ti : (si, a, ti) ∈ steps(Ai)

By Definition 6, Clause 4,
∃t : (s, a, t) ∈ steps(A), where ∀i ∈ ϕ : t�i = ti, and ∀i ∈ [1 :n]− ϕ : t�i = si.

Hence Constraint 2 is satisfied.

Constraint 3: From Definitions 5 and 6, it follows that the sets of input and output actions of A
in any state are disjoint. Each Ai is an SIOA and so satisfies Constraint 3 of Definition 1. From
this and Definitions 3, 4, 5, and 6, it follows that the set of internal actions of A in any state
has no action in common with either the input actions or the output actions. Hence A satisfies
Constraint 3.

7

2.2 Action Hiding for Signature I/O Automata

The operation of action hiding allows us to convert output actions into internal actions, and is
useful in specifying the set of actions that are to be visible at the interface of a system.

Definition 7 (Action hiding for SIOA) Let A be an SIOA and Σ a set of actions. Then A \Σ
is the state-machine given by:

1. A set of states states(A \ Σ) = states(A)

2. A set of start states start(A \ Σ) = start(A)

3. A signature mapping sig(A) as follows. For each s ∈ states(A),
sig(A \ Σ)(s) = 〈in(A \ Σ)(s), out(A \ Σ)(s), int(A \ Σ)(s)〉, where

(a) out(A \ Σ)(s) = out(A)(s)− Σ

(b) in(A \ Σ)(s) = in(A)(s)

(c) int(A \ Σ)(s) = int(A)(s) ∪ (out(A)(s) ∩ Σ)

4. A transition relation steps(A \ Σ) = steps(A)

Proposition 2 Let A be an SIOA and Σ a set of actions. Then A \ Σ is an SIOA.

Proof: We must show that A \ Σ satisfies the constraints of Definition 1. We deal with each
constraint in turn.

Constraint 1: From Definition 7, we have, for any s ∈ states(A \ Σ): ŝig(A \ Σ)(s) = (out(A)(s)−
Σ)∪in(A)(s)∪(int(A)(s)∪(out(A)(s)∩Σ)) = ((out(A)(s)−Σ)∪(out(A)(s)∩Σ))∪in(A)(s)∪int(A)(s)
= out(A)(s) ∪ in(A)(s) ∪ int(A)(s) = ŝig(A)(s).

Since A is an SIOA, we have ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s). From Definition 7,
steps(A \ Σ) = steps(A). Hence, ∀(s, a, s′) ∈ steps(A \ Σ) : a ∈ ŝig(A \ Σ)(s). Thus, Constraint 1
holds for A \ Σ.

Constraint 2: From Definition 7, states(A \ Σ) = states(A), steps(A \ Σ) = steps(A), and for all
s ∈ states(A \ Σ), in(A \ Σ)(s) = in(A)(s).

Since A is an SIOA, we have Constraint 2 for A:
∀s ∈ states(A),∀a ∈ in(A)(s), ∃s′ : (s, a, s′) ∈ steps(A).

Hence, we also have
∀s ∈ states(A \ Σ),∀a ∈ in(A \ Σ)(s), ∃s′ : (s, a, s′) ∈ steps(A \ Σ).

Hence Constraint 2 holds for A \ Σ.

Constraint 3: A is an SIOA and so satisfies Constraint 3 of Definition 1. Definition 7 states that,
in every state s, some actions are removed from the output action set and added to the internal
action set. Hence the sets of input, output, and internal actions remain disjoint. So A \ Σ also
satisfies Constraint 3.

8

2.3 Action Renaming for Signature I/O Automata

The operation of action renaming allows us to rename actions uniformly, that is, all occurrences
of an action name are replaced by another action name, and the mapping is also one-to-one, so
that different actions are not identified (mapped to the same action). This is useful in defining
“parameterized” systems, in which there are many instances of a “generic” component, all of
which have similar functionality. Examples of this include the servers in a client-server system, the
components of a distributed database system, and hosts in a network.

Definition 8 (Action renaming for SIOA) Let A be an SIOA and let ρ be an injective mapping
from actions to actions whose domain includes acts(A). Then ρ(A) is the state machine given by:

1. start(ρ(A)) = start(A)

2. states(ρ(A)) = states(A)

3. for each s ∈ states(A), sig(ρ(A))(s) = 〈in(ρ(A))(s), out(ρ(A))(s), int(ρ(A))(s)〉, where

(a) out(ρ(A))(s) = ρ(out(A)(s))

(b) in(ρ(A))(s) = ρ(in(A)(s))

(c) int(ρ(A))(s) = ρ(int(A)(s))

4. A transition relation steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)}

Here we write ρ(Σ) = {ρ(a) | a ∈ Σ}, i.e., we extend ρ to sets of actions element-wise.

Proposition 3 Let A be an SIOA and let ρ be an injective mapping from actions to actions whose
domain includes acts(A). Then, ρ(A) is an SIOA.

Proof: We must show that ρ(A) satisfies the constraints of Definition 1. We deal with each
constraint in turn.

Constraint 1: From Definition 8, we have, for any s ∈ states(ρ(A)): ŝig(ρ(A))(s) = out(ρ(A))(s)∪
in(ρ(A))(s) ∪ int(ρ(A))(s) = ρ(out(A)(s)) ∪ ρ(in(A)(s)) ∪ ρ(int(A)(s)) = ρ(ŝig(A)(s)).

Since A is an SIOA, we have ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s). From Definition 8,
steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)}

Hence, if (s, ρ(a), t) is an arbitrary element of steps(ρ(A)), then (s, a, t) ∈ steps(A), and
so a ∈ ŝig(A)(s). Hence ρ(a) ∈ ρ(ŝig(A)(s)). Since ρ(ŝig(A)(s)) = ŝig(ρ(A))(s), we conclude
ρ(a) ∈ ŝig(ρ(A))(s). Hence, ∀(s, ρ(a), s′) ∈ steps(ρ(A)) : ρ(a) ∈ ŝig(ρ(A))(s). Thus, Constraint 1
holds for ρ(A).

Constraint 2: From Definition 8, states(ρ(A)) = states(A), steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈
steps(A)}, and for all s ∈ states(ρ(A)), in(ρ(A))(s) = ρ(in(A)(s)).

Let s be any state of ρ(A), and let b ∈ in(ρ(A))(s). Then b = ρ(a) for some a ∈ in(A)(s). We
have (s, a, t) ∈ steps(A) for some t, by Constraint 2 for A. Hence (s, ρ(a), t) ∈ steps(ρ(A)). Hence
(s, b, t) ∈ steps(ρ(A)). Hence Constraint 2 holds for ρ(A).

Constraint 3: A is an SIOA and so satisfies Constraint 3 of Definition 1. From this and Definition 8
and the requirement that ρ be injective, it is easy to see that ρ(A) also satisfies Constraint 3.

9

2.4 Example: mobile phones

We illustrate SIOA using the mobile phone example from Milner [23, chapter 8]. There are four
SIOA:

1. Car : a car containing a mobile phone

2. Trans1 ,Trans2 : two transmitter stations

3. Control : a control station

Control , Trans1 , and Car are given in Figures 1, 2, and 3 respectively. Trans2 results by ap-
plying renaming to Trans1 , and changing the initial state appropriately, since initiallly Car is
communicating with Trans1 .

We use the usual I/O automata “precondition effect” pseudocode [19], augmented by additional
constructs to describe signature changes and SIOA creation, as follows. We use “state variables”
in, out , and int to denote the current sets of input, output, and internal actions in the SIOA
state signature. The Signature section of the pseudocode for each SIOA describes acts(A), i.e.,
the “universal” set of all actions that A could possibly execute, in any state. We partition this
description into the input, output, and internal components of the signature. We indicate the
signature components in every start state using an “initially” keyword at the end of the “Input,”
“Output,” and “Internal” sections, followed by the actions present in the signature of every start
state. This convention restricts all start states to have the same signature. We emphasize that this
is a restriction of the pseudocode only, and not of the underlying SIOA model. When a signature
component does not change, we replace the keyword “initially” by the keyword “constant” as a
convenient reminder of this.

At any time, Car is connected to either Trans1 or Trans2 . Normal conversation is conducted
using a talk action. Under direction of Control (via lose and gain actions) the transmitters transfer
Car between them, using switch actions. Upon receiving a lose input from Control , a transmitter
goes on to send a switch to Car , and also removes the talk and switch actions from its signature.
Upon receiving a switch from a transmitter, Car will remove the talk and switch actions for that
transmitter from its signature, and add the talk and switch actions for the other transmitter to its
signature.

3 Compositional Reasoning for Signature I/O Automata

To confirm that our model provides a reasonable notion of concurrent composition, which has
expected properties, and to enable compositional reasoning, we establish execution “projection”
and “pasting” results for compositions. We deal with both execution projection/pasting and with
trace pasting. The main goal is to establish that parallel composition is monotonic with respect to
trace inclusion: if an SIOA in a parallel composition is replaced by one with less traces, then the
overall composition cannot have more traces than before, i.e., no new behaviors are added.

3.1 Execution Projection and Pasting for SIOA

Given a parallel composition A = A1 ‖ · · · ‖ An of n SIOA, we define the projection of an alternating
sequence of states and actions of A onto one of the Ai, i ∈ [1 : n], in the usual way: the state

10

Control

Signature
Input:
∅
constant

Output:
lose1, gain1, lose2, gain2

constant
Internal:
∅
constant

State
assigned ∈ {1, 2}, transmitter that Car is assigned to, initially 1

transferring ∈ {true, false}, true iff in the middle of a transfer of Car from one transmitter to another, initially false

Actions
Output lose1
Pre: assigned = 1 ∧ ¬transferring
Eff: assigned ← 2;

transferring ← true

Output gain2
Pre: assigned = 1 ∧ transferring
Eff: transferring ← false

Output lose2
Pre: assigned = 2 ∧ ¬transferring
Eff: assigned ← 1;

transferring ← true

Output gain1
Pre: assigned = 1 ∧ transferring
Eff: transferring ← false

Figure 1: The Control SIOA

11

Trans1

Signature
Input:

lose1, gain1, talk1

initially: lose1, gain1, talk1

Output:
switch1 initially: switch1

Internal:
∅
constant

State
transferring ∈ {true, false}, true iff in the middle of a transfer of Car to the other controller

active ∈ {true, false}, true iff this transmitter is currently handling the Car , initially false

Actions
Input lose1
Eff: if active then

transferring ← true;
active ← false

Input gain1
Eff: in ← in ∪ {talk1};

out ← out ∪ {switch1};
active ← true

Output switch1

Pre: transferring
Eff: transferring ← false;

in ← in − {talk1};
out ← out − {switch1}

Input talk1

Eff: skip

Figure 2: The Trans1 SIOA

Car

Signature
Input:

switch1, switch2

initially: switch1

Output:
talk1, talkTwo initially: talk1

Internal:
∅
constant

State
transmitter ∈ {1, 2}, the identitiy of the transmitter that Car is currently connected to

Actions
Output talk1

Pre: transmitter = 1
Eff: skip

Input switch1

Eff: in ← in − {switch1} ∪ {switch2};
out ← out − {talk1} ∪ {talk2};

Output talk2

Pre: transmitter = 2
Eff: skip

Input switch2

Eff: in ← in − {switch2} ∪ {switch1};
out ← out − {talk2} ∪ {talk1};

Figure 3: The Car SIOA

12

components for all SIOA other than Ai are removed, and so are all actions in which Ai does not
participate.

Definition 9 (Execution projection for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA. Let α be a
sequence s0a1s1a2s2 . . . sj−1ajsj . . . where ∀j ≥ 0, sj = 〈sj,1, . . . , sj,n〉 ∈ states(A) and ∀j > 0, aj ∈
ŝig(A)(sj−1). Then, for i ∈ [1 : n], define α�Ai to be the sequence resulting from:

1. replacing each sj by its i’th component sj,i, and then

2. removing all ajsj,i such that aj 6∈ ŝig(Ai)(sj−1,i).

sj,i is the component of sj which gives the state of Ai. sig(Ai)(sj−1,i) is the signature of Ai
when in state sj−1,i. Thus, if aj 6∈ ŝig(Ai)(sj−1,i), then the action aj does not occur in the signature
sig(Ai)(sj−1,i), and Ai does not participate in the execution of aj . In this case, aj and the following
state are removed from the projection, since the idea behind execution projection is to retain only
the state of Ai, and only the actions which Ai participates in. Note that we do not require α to
actually be an execution of A, since this is unnecessary for the definition, and also facilitates the
statement of execution pasting below.

Our execution projection result states that the projection of an execution of a composed SIOA
A = A1 ‖ · · · ‖ An onto a component Ai, is an execution of Ai.

Theorem 4 (Execution projection for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA, and let
i ∈ [1 :n]. If α ∈ execs(A) then α�Ai ∈ execs(Ai) for all i ∈ [1 :n].

Proof: Let α = u0a1u1a2u2 . . . ∈ execs(A), and let s0 = u0�Ai. Then, by Definition 9, s0 ∈
start(Ai) and α�Ai = s0b1s1b2s2 . . . for some b1s1b2s2 . . ., where sj ∈ states(Ai) for j ≥ 1.

Consider an arbitrary step (sj−1, bj , sj) of α�Ai. Since bjsj was not removed in Clause 2 of
Definition 9, we have

(1) sj = uk�Ai for some k > 0 and such that ak ∈ ŝig(Ai)(uk−1�Ai)
(2) bj = ak, and
(3) sj−1 = u`�Ai for the smallest ` such that

` < k and ∀m : `+ 1 ≤ m < k : am 6∈ ŝig(Ai)(um−1�Ai)

From (3) and Definitions 6 and 9, u`�Ai = uk−1�Ai. Hence sj−1 = uk−1�Ai. From uk−1
ak−→A uk,

ak ∈ ŝig(Ai)(uk−1�Ai), and Definition 6, we have uk−1�Ai
ak−→Ai uk�Ai. Hence sj−1

bj−→Ai sj from
sj−1 = uk−1�Ai established above and (1), (2). Now sj−1, sj ∈ states(Ai), and so (sj−1, bj , sj) ∈
steps(Ai).

Since (sj−1, bj , sj) was arbitrarily chosen, we conclude that every step of α�Ai is a step of Ai.
Since the first state of α�Ai is s0, and s0 ∈ start(Ai), we have established that α�Ai is an execution
of Ai.

Execution pasting is, roughly, an “inverse” of projection. If α is an alternating sequence of
states and actions of a composed SIOA A = A1 ‖ · · · ‖ An such that (1) the projection of α onto
each Ai is an actual execution of Ai, and (2) every action of α not involving Ai does not change
the state of Ai, then α will be an actual execution of A. Condition (1) is the “inverse” of execution
projection. Condition (2) is a consistency condition which requires that Ai cannot “spuriously”
change its state when an action not in the current signature of Ai is executed.

13

Theorem 5 (Execution pasting for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA. Let α be a
sequence s0a1s1a2s2 . . . sj−1ajsj . . . where ∀j ≥ 0, sj = 〈sj,1, . . . , sj,n〉 ∈ states(A) and ∀j > 0, aj ∈
ŝig(A)(sj−1). Furthermore, suppose that, for all i ∈ [1 :n]:

1. α�Ai ∈ execs(Ai), and

2. ∀j > 0 : if aj 6∈ ŝig(Ai)(sj−1,i) then sj−1,i = sj,i.

Then, α ∈ execs(A).

Proof: We shall establish, by induction on j:
∀j ≥ 0 : α|j ∈ execs(A). (*)

From which we can conclude s0 ∈ start(A) and ∀j ≥ 0 : (sj−1, aj , sj) ∈ steps(A). Definition 2 then
implies the desired conclusion, α ∈ execs(A).

Base case: j = 0.
So α|j = s0. Now s0 = 〈s0,1, . . . , s0,n〉 by assumption. By Definition 9, s0,i is the first state of α�Ai,
for 1 ≤ i ≤ n. By clause 1, α�Ai ∈ execs(Ai), and so s0,i ∈ start(Ai), for 1 ≤ i ≤ n. Thus, by
Definition 6, s0 ∈ start(A).

Induction step: j > 0.
Assume the induction hypothesis:

α|j−1 ∈ execs(A) (ind. hyp.)

and establish α|j ∈ execs(A). By Definition 2, it is clearly sufficient to establish sj−1
aj−→A sj .

By assumption, aj ∈ ŝig(A)(sj−1). Let ϕ ⊆ [1 : n] be the unique set such that ∀i ∈ ϕ : aj ∈
ŝig(Ai)(sj−1�Ai) and ∀i ∈ [1 :n]− ϕ : aj 6∈ ŝig(Ai)(sj−1�Ai). Thus, by Definition 9:

∀i ∈ ϕ : (sj−1�Ai, aj , sj�Ai) lies along α�Ai.
Since ∀i ∈ [1 :n] : α�Ai ∈ execs(Ai) and Ai is an SIOA,

∀i ∈ ϕ : sj−1�Ai
aj−→Ai sj�Ai.

Also, by clause 2,
∀i ∈ [1 :n]− ϕ : sj−1�Ai = sj�Ai.

By Definition 6

〈sj−1�A1, . . . , sj−1�An〉 aj−→A 〈sj�A1, . . . , sj�An〉
Hence

sj−1
aj−→A sj .

From the induction hypothesis (α|j−1 ∈ execs(A)), sj−1
aj−→A sj , and Definition 2, we have α|j ∈

execs(A).

3.2 Trace Pasting for SIOA

We deal only with trace pasting, and not trace projection. Trace projection is not well-defined
since a trace of A = A1 ‖ · · · ‖ An does not contain information about the Ai, i ∈ [1 : n]. Since
the external signatures of each Ai vary, there is no way of determining, from a trace β, which Ai

14

participate in each action along β. Thus, the projection of β onto some Ai cannot be recovered
from β itself, but only from an execution α whose trace is β. Since there are in general, several such
executions, the projection of β onto Ai can be different, depending on which execution we select.
Hence, the projection of β onto Ai is not well-defined as a single trace. It could be defined as the
set β�Ai = {βi | (∃α ∈ execs(A) : trace(α) = β ∧ βi = trace(α�Ai))}, i.e., all traces of Ai that can
be generated by taking all executions α whose trace is β, projecting those executions onto Ai, and
then taking the trace. We do not pursue this avenue here.

We find it sufficient to deal only with trace pasting, since we are able to establish our main
result, trace substitutivity, which states that replacing an SIOA in a parallel composition by one
whose traces are a subset of the former’s, results in a parallel composition whose traces are a subset
of the original parallel composition’s. In other words, trace-containment is monotonic with respect
to parallel composition.

Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be signatures. We define Σ̂ = in ∪ out ∪ int,
and Σ ⊆ Σ′ to mean in ⊆ in′ and out ⊆ out′ and int ⊆ int′.

Definition 10 (Pretrace) A pretrace γ = γ(1)γ(2) . . . is a nonempty sequence such that

1. For all i ≥ 1, γ(i) is an external signature or an action

2. γ(1) is an external signature

3. No two successive elements of γ are actions

4. For all i > 1, if γ(i) is an action a, then γ(i − 1) is an external signature containing a
(a ∈ γ̂(i− 1))

5. If γ is finite, then it ends in an external signature

The notion of a pretrace is similar to that of a trace, but it permits “stuttering”: the (possibly
infinite) repetition of the same external signature. This simplifies the subsequent proofs, since it
allows us to “stretch” and “compress” pretraces corresponding to different SIOA so that they “line
up” nicely. Our definition of a pretrace does not depend on a particular SIOA, i.e, we have not
defined “a pretrace of an SIOA A,” but rather just a pretrace in general. We define “pretrace of
an SIOA A” below.

Definition 11 (Reduction of pretrace to a trace) Let γ be a pretrace. Then r(γ) is the result
of replacing all maximal blocks of identical external signatures in γ by a single representative. In
particular, if γ has an infinite suffix consisting of repetitions of an external signature, then that is
replaced by a single representative.

If γ = r(γ), then we say that γ is a trace. This defines a notion of trace in general, as opposed to
“trace of an SIOA A.” We now define stuttering-equivalence (≈) for pre-traces. Essentially, if one
pretrace can be obtained from another by adding and/or removing repeated external signatures,
then they are stuttering equivalent.

Definition 12 (≈) Let γ, γ′ be pretraces. Then γ ≈ γ′ iff r(γ) = r(γ′).

It is obvious that ≈ is an equivalence relation. Note that every trace is also a pretrace, but not
necessarily vice-versa, since repeated external signatures (stuttering) are disallowed in traces. The

15

length |γ| of a finite pretrace γ is the number of occurrences of external signatures and actions in γ.
The length of an infinite pretrace is ω. Let pretrace γ = γ(1)γ(2) Then for 1 ≤ i ≤ |γ|, define
γ|i = γ(1)γ(2) . . . γ(i). We define concatenation for pretraces as simply sequence concatenation,
and will usually use juxtaposition to denote pretrace concatenation, but will sometimes use the
_ operator for clarity. The concatenation of two pretraces is always a pretrace (note that this
is not true of traces, since concatenating two traces can result in a repeated external signature).
We use <,≤ for proper prefix, prefix, respectively, of a pretrace: γ < γ′ iff there exists a pretrace
γ′′ such that γ = γ′γ′′, and γ ≤ γ′ iff γ = γ′ or γ < γ′. If γ′ is a pretrace and γ < γ′, then γ
satisfies clauses 1–4 of Definition 10, but may not satisfy clause 5. For a finite sequence γ that does
satisfy clauses 1–4 of Definition 10, define the predicate ispretrace(γ) df== (last(γ) is an external
signature), where last(γ) is the last element of γ.

We now define a predicate zips(γ, γ1, . . . , γn) which takes n + 1 pretraces and holds when
γ is a possible result of “zipping” up γ1, . . . , γn, as would result when γ1, . . . , γn are pretraces of
compatible SIOA A1, . . . , An respectively, and γ is the corresponding pretrace of A = A1 ‖ · · · ‖ An.

Definition 13 (zip of pretraces) Let γ, γ1, . . . , γn be pretraces (n ≥ 1). The predicate
zips(γ, γ1, . . . , γn) holds iff

1. |γ| = |γ1| = · · · = |γn|
2. For all i > 1: if γ(i) is an action a, then there exists nonempty ϕi ⊆ [1 : n] such that

(a) ∀k ∈ ϕi : γk(i) = a

(b) ∀` ∈ [1 : n] − ϕi: γ`(i − 1) = γ`(i) = γ`(i + 1), γ`(i) is an external signature Γ`, and
a 6∈ Γ̂`

3. For all i > 0: if γ(i) is an external signature Γ, then for all j ∈ [1 : n], γj(i) is an external
signature Γj, and Γ =

∏
j∈[1:n] Γj.

4. For all i > 0, if γ(i − 1) and γ(i) are both external signatures, then there exists k ∈ [1 : n]
such that ∀` ∈ [1 : n]− k : γ`(i− 1) = γ`(i)

Clause 1 requires that γ, γ1, . . . , γn all have the same length, so that they “line up” nicely. Clause 2
requrires that external actions a appearing in γ are executed by a nonempty subset of the corre-
sponding SIOA, and that the γj corresponding to automata that do not execute a are unchanged
in the corresponding positions. Clause 3 requires that an external signature appearing in γ is the
product of the external signatures in the same position in all the γj , which moreover cannot have
an external action at that position. Clause 4 requires that, whenever there are two consecutive ex-
ternal signatures in γ, that this corresponds to the execution of an internal action by one particular
SIOA k, so that the γ` for all ` 6= k are unchanged in the corresponding positions.

Proposition 6 Let γ, γ1, . . . , γn all be pretraces (n ≥ 1). Suppose, zips(γ, γ1, . . . , γn). Then, for
all i such that 1 ≤ i ≤ |γ| and ispretrace(γ|i) (i.e., γ(i) is an external signature): (1) (∀j ∈ [1 :n] :
ispretrace(γj |i)) and (2) zips(γ|i, γ1|i, . . . , γn|i).

Proof: Immediate from Definition 13.

16

We use the zips predicate on pretraces together with the ≈ relation on pretraces to define a
“zipping” predicate for traces: the trace β is a possible result of “zipping up” the traces β1, . . . , βn
if there exist pretraces γ, γ1, . . . , γn that are stuttering-equivalent to β, β1, . . . , βn respectively, and
for which the zips predicate holds. The predicate so defined is named zip. Thus, zips is “zipping
with stuttering,” as applied to pretraces, and zip is “zipping without stuttering,” as applied to
traces.

Definition 14 (zip of traces) Let β, β1, . . . , βn be traces (n ≥ 1). The predicate
zip(β, β1, . . . , βn) holds iff there exist pretraces γ, γ1, . . . , γn such that γ ≈ β, (∀j ∈ [1 : n] : γj ≈ βj),
and zips(γ, γ1, . . . , γn).

Define pretraces(A) = {γ | ∃β ∈ traces(A) : β ≈ γ}. That is, pretraces(A) is the set of
pretraces which are stuttering-equivalent to some trace of A. An equivalent definition which is
sometimes more convenient is pretraces(A) = {γ | ∃α ∈ execs(A) : trace(α) ≈ γ}. We also define
pretraces∗(A) = {γ | γ ∈ pretraces(A) and γ is finite }.

Given γ ∈ pretraces(A), we define texecs(A)(γ) = {α | α ∈ execs(A) ∧ trace(α) ≈ γ}. In
other words, texecs(A)(γ) is the set of executions (possibly empty) of A whose trace is stuttering-
equivalent to γ. Also, execs∗(A)(γ) = {α | α ∈ execs∗(A) ∧ trace(α) ≈ γ}, i.e., the set of finite
executions (possibly empty) of A whose trace is stuttering-equivalent to γ.

Theorem 7 states that if a set of finite pretraces consisting of one γj ∈ pretraces(Aj) for each
j ∈ [1 : n], can be “zipped up” to generate a finite pretrace γ, then γ is a pretrace of A1 ‖ · · · ‖ An,
and furthermore, any set of executions corresponding to the γj can be pasted together to generate
an execution of A1 ‖ · · · ‖ An corresponding to γ. Theorem 7 is established by induction on the
length of γ, and the explicit use of executions corresponding to the pretraces γ, γ1, . . . , γn, is needed
to make the induction go through.

Theorem 7 (Finite-pretrace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let
A = A1 ‖ · · · ‖ An. Let γ be a finite pretrace. If, for all j ∈ [1 : n], a finite pretrace γj ∈
pretraces∗(Aj) can be chosen so that zips(γ, γ1, . . . , γn) holds, then

∀α1 ∈ execs∗(A1)(γ1), . . . ,∀αn ∈ execs∗(An)(γn),
∃α ∈ execs∗(A)(γ) : (∀j ∈ [1 :n] : α�Aj = αj)

Proof: Let γj ∈ pretraces∗(Aj) for j ∈ [1 : n] be the pretraces given by the antecedent of the
theorem. Also let γ be the finite pretrace such that zips(γ, γ1, . . . , γn). Hence execs∗(Aj)(γj) 6= ∅
for all j ∈ [1 : n]. Fix αj to be an arbitrary element of execs∗(Aj)(γj), for all j ∈ [1 : n]. The
theorem is established if we prove

∃α ∈ execs∗(A)(γ) : (∀j ∈ [1 :n] : α�Aj = αj). (*)

The proof is by induction on |γ|, the length of γ. We assume the induction hypothesis for all
prefixes of γ that are pretraces.

Base case: |γ| = 1. Hence γ consists of a single external signature Γ. For the rest of the base case,
let j range over [1 : n]. By zips(γ, γ1, . . . , γn) and Definition 13, we have that each γj consists of
a single external signature Γj , and Γ =

∏
j∈[1:n] Γj . Since γ1, . . . , γn contain no actions, α1, . . . , αn

must contain only internal actions (if any). Furthermore, all the states along αj , j ∈ [1 : n], must
have the same external signature, namely Γj .

17

By Definition 6, we can construct an execution α of A by first executing all the internal actions
in α1 (in the sequence in which they occur in α1), and then executing all the internal actions in
α2, etc. until we have executed all the actions of αn, in sequence. It immediately follows, by
Definition 9, that ∀j ∈ [1 : n] : α�Aj = αj . The external signature of every state along α is∏
j∈[1:n] Γj , i.e., Γ, since the external signature component contributed by each Aj is always Γj .

Hence, by Definition 2, trace(α) ≈ Γ. Thus, trace(α) ≈ γ. We have thus established trace(α) ≈ γ
and (

∧
j∈[1:n] α�Aj = αj). Hence (*) is established.

Induction step: |γ| > 1. There are two cases to consider, according to Definition 13.

Case 1: γ = γ′aΓ, γ′ is a pretrace, a is an action, and Γ is an external signature.
Hence, by Definition 13, we have

∃ϕ : ∅ 6= ϕ ∧ ϕ ⊆ [1 : n] ∧
(∀k ∈ ϕ : γk = γ′kaΓk ∧ a ∈ l̂ast(γ′k)) ∧
(∀` ∈ [1 : n]− ϕ : γ` = γ′`Γ`Γ` ∧ Γ` = last(γ′`) ∧ a 6∈ Γ̂`) ∧
zips(γ′, γ′1, . . . , γ′n) ∧
Γ = (

∏
k∈ϕ Γk)× (

∏
`∈[1:n]−ϕ Γ`). (a)

For the rest of this case, let j range over [1 : n], k range over ϕ, and ` range over [1 : n] − ϕ.
Figure 4 gives a diagram of the relevant executions, pretraces, and external signatures for this case.
Horizontal solid lines indicate executions and pretraces, and vertical dashed ones indicate the zips
relation. Bullets indicate particular states that are used in the proof.

In (a), we have that γ′j ∈ pretraces∗(Aj) for all j, since γ′j < γj and γj ∈ pretraces∗(Aj) for all
j, Since we also have γ′ < γ and zips(γ′, γ′1, . . . , γ′n), we can apply the inductive hypothesis for γ′

to obtain
∀α′1 ∈ execs∗(A1)(γ′1), . . . ,∀α′n ∈ execs∗(An)(γ′n) :

∃α′ ∈ execs∗(A)(γ′) : (∀j ∈ [1 :n] : α′�Aj = α′j) (b)

By assumption, αk ∈ execs∗(Ak)(γk). Hence, we can find a finite execution α′k, and finite execution
fragment α′′k such that αk = α′k _ (sk

a−→Ak
tk)_α′′k, where sk = last(α′k), ext(Ak)(tk) = Γk, and

tk = first(α′′k). Furthermore, α′k ∈ execs∗(Ak)(γ′k), since αk ∈ execs∗(Ak)(γk), γk = γ′kaΓk, and
ext(Ak)(tk) = Γk. Also, α′′k consists entirely of internal actions, and trace(α′′k) ≈ Γk, i.e., every
state along α′′k has external signature Γk.

By assumption, α` ∈ execs∗(A`)(γ`). For all `, let α′` = α`, and let s` = t` = last(α′`). Hence
α′` ∈ execs∗(A`)(γ′`), since γ′` ≈ γ` (from γ` = γ′`Γ`Γ` ∧ Γ` = last(γ′`) in (a)). Instantiating (b) for
these choices of α′k, α

′
`, we obtain, that some α′ exists such that:

(∀j ∈ [1 :n] : α′�Aj = α′j) ∧
α′ ∈ execs∗(A)(γ′) ∧
(∀k ∈ ϕ : (sk, a, tk) ∈ steps(Ak) ∧ ext(Ak)(tk) = Γk). (c)

By α′` ∈ execs∗(A`)(γ′`) and s` = last(α′`), we have ext(A`)(s`) = last(γ′). Hence, by (a), we have
ext(A`)(s`) = Γ`. Also, by (a), a 6∈ Γ̂`. Thus,

(∀` ∈ [1 :n]− ϕ : a 6∈ êxt(A`)(s`) ∧ ext(A`)(s`) = Γ`). (d)

Also, since A1, . . . , An are compatible SIOA, we have (∀` ∈ [1 : n] − ϕ : a 6∈ int(A`)(s`)). Hence
(∀` ∈ [1 : n] − ϕ : a 6∈ ŝig(A`)(s`)). Now let s = 〈s1, . . . , sn〉, and let t = 〈t1, . . . , tn〉. By (b) and
Definition 9, we have s = last(α′). By (b), (∀` ∈ [1 : n] − ϕ : a 6∈ int(A`)(s`)), and Definition 6,
we have (s, a, t) ∈ steps(A). Now let α′′ be a finite execution fragment of A constructed as follows.
Let t be the first state of α′′. Starting from t, execute in sequence first all the (internal) transitions

18

along αk1 , where k1 is some element of ϕ, and then all the (internal) transitions along αk2 , where k1

is another element of ϕ, etc. until all elements of ϕ have been exhausted. Since all the transitions
are internal, Definition 6 shows that α′′ is indeed an execution fragment of A. Furthermore, since no
external signatures change along any of the α′′k, it follows that the external signature does not change
along α′′, and hence must equal ext(A)(t) at all states along α′′. Hence trace(α′′) ≈ ext(A)(t).
Finally, by its construction, we have α′′�Ak = α′′k for all k.

Let α = α′_ (s a−→A t)_α′′. By the above, α is well defined, and is an execution of A.

We now have

ext(A)(t)
= (

∏
k ext(Ak)(tk))× (

∏
` ext(A`)(t`)) definition of t

= (
∏
k Γk)× (

∏
` ext(A`)(t`)) (c)

= (
∏
k Γk)× (

∏
` Γ`) (d)

= Γ (a)

Also,

trace(α)
≈ trace(α′)_a_ trace(α′′) definition of α
≈ trace(α′)_a_ ext(A)(t) trace(α′′) ≈ ext(A)(t)
≈ trace(α′)_a_ Γ ext(A)(t) = Γ established above
≈ γ′aΓ α′ ∈ execs∗(A)(γ′), hence trace(α′) ≈ γ′
≈ γ case condition

For all k ∈ ϕ,

α�Ak
= (α′�Ak)_ (sk

a−→Ak
tk)_ (α′′�Ak) Definition 9 and definition of α

= α′k_ (sk
a−→Ak

tk)_ (α′′�Ak) by (c), α′�Ak = α′k
= α′k_ (sk

a−→Ak
tk)_α′′k by the preceding remarks, α′′�Ak = α′′k

= αk by definition of α′k, α
′′
k: αk = α′k_ (sk

a−→Ak
tk)_α′′k

For all ` ∈ [1 : n]− ϕ,

α�A`
= α′�A` Definition 9 and definition of α
= α′` by (c), α′�A` = α′`
= α` by our choice of α′`, α` = α′`

We have just established α ∈ execs∗(A), α�j = αj for all j ∈ [1 : n], and trace(α) ≈ γ. Hence
(*) is established for case 1.

Case 2: γ = γ′Γ, γ′ is a pretrace, and Γ is an external signature.
Hence, by Definition 13, we have

19

∃k ∈ [1 : n] :
γk = γ′kΓk ∧ last(γ′k) is an external signature ∧
(∀` ∈ [1 :n]− k : γ` = γ′`Γ` ∧ last(γ′`) = Γ`) ∧
zips(γ′, γ′1, . . . , γ′n) ∧
Γ = Γk × (

∏
`∈[1:n]−k Γ`). (a)

For the rest of this case, let j range over [1 : n], and ` range over [1 : n]− k. In (a), we have that
γ′j ∈ pretraces∗(Aj) for all j, since γ′j < γj and γj ∈ pretraces∗(Aj) for all j. Since we also have
γ′ < γ and zips(γ′, γ′1, . . . , γ′n), we can apply the inductive hypothesis for γ′ to obtain

∀α′1 ∈ execs∗(A1)(γ′1), . . . ,∀α′n ∈ execs∗(An)(γ′n) :
∃α′ ∈ execs∗(A)(γ′) : (∀j ∈ [1 : n] : α′�Aj = α′j) (b)

By assumption, α` ∈ execs∗(A`)(γ`). For all `, let α′` = α`, and let s` = t` = last(α′`). Hence
α′` ∈ texecs(A`)(γ′`), since γ′` ≈ γ`.

We now have two subcases.

Subcase 2.1: Γk = last(γ′k).
Let α′k = αk. Since α′` = α` for all ` ∈ [1 : n]−k, we get α′j = αj for all j ∈ [1 : n]. Instantiating (b)
for these α′j , we have the existence of an α′ such that α′ ∈ execs∗(A)(γ′)∧(∀j ∈ [1 :n] : α′�Aj = α′j).
Now let α = α′. Hence trace(α) = trace(α′) ≈ γ′ since α′ ∈ execs∗(A)(γ′). Figure 5 gives a diagram
of the relevant executions, pretraces, and external signatures for this case.

By the case 2 assumption, γ′ is a pretrace, and so last(γ′) is an external signature. So, we
have

last(γ′)
= last(γ′k)× (

∏
` last(γ′`)) zips(γ′, γ′1, . . . , γ′n) and Definition 13

= last(γ′k)× (
∏
` Γ`) (a)

= Γk × (
∏
` Γ`) subcase assumption

= Γ (a)

By the case assumption, γ = γ′Γ. Hence γ ≈ γ′. So, trace(α) ≈ γ. We have just established
α ∈ execs(A), α�Aj = αj for all j ∈ [1 : n], and trace(α) ≈ γ. Hence (*) is established for subcase
2.1.

Subcase 2.2: Γk 6= last(γ′k).
In this case, we can find a finite execution α′k, and finite execution fragment α′′k such that αk =
α′k _ (sk

τ−→Ak
tk) _ α′′k, where sk = last(α′k), ext(Ak)(tk) = Γk, and tk = first(α′′k). Figure 6

gives a diagram of the relevant executions, pretraces, and external signatures for this case. The
transition sk

τ−→Ak
tk must exist, since the external signature of Ak changed along γk. Also, α′′k

consists entirely of internal actions, and trace(α′′k) ≈ Γk, i.e., every state along α′′k has external
signature Γk.

Hence αk = α′k _ (sk
τ−→Ak

tk) _ α′′k, where sk = last(α′k) and ext(Ak)(tk) = Γk and τ ∈
int(Ak)(sk).

Now let s = 〈s1, . . . , sn〉, and let t = 〈t1, . . . , tn〉. For all ` ∈ [1 :n]−k, let α′` = α`. Instantiating
(b) for α′k and the α′`, we have the existence of an α′ such that α′ ∈ execs∗(A)(γ′)∧ (∀` ∈ [1 :n]−k :
α′�A` = α′`) ∧ (α′�Ak = α′k). By (b) and Definition 9, we have s = last(α′). By Definition 6, we
have (s, τ, t) ∈ steps(A). Let α = α′_ (s τ−→A t) _α′′, where α′′ is the finite-execution fragment
of A with first state t, and whose transitions are exactly those of α′′k, with no other SIOA making

20

any transitions. Since all the transitions of α′′k are internal, Definition 6 shows that α′′ is indeed an
execution fragment of A. Furthermore, since the external signature does not change along α′′k, it
follows that the external signature does not change along α′′, and hence must equal ext(A)(t) at all
states along α′′. Hence trace(α′′) ≈ ext(A)(t). Finally, by its construction, we have α′′�Ak = α′′k.

By the above, α is well defined, and is an execution of A.

We now have

ext(A)(t)
= ext(Ak)(tk)× (

∏
` ext(A`)(t`)) definition of t

= Γk × (
∏
` ext(A`)(t`)) definition of tk

= Γk × (
∏
` Γ`) t` = last(α′`), (a)

= Γ (a)

And so,

trace(α)
≈ trace(α′)_ trace(α′′) definition of α
≈ trace(α′)_ ext(A)(t) trace(α′′) ≈ ext(A)(t)
≈ trace(α′)_ Γ ext(A)(t) = Γ established above
≈ γ′Γ α′ ∈ execs∗(A)(γ′), hence trace(α′) ≈ γ′
≈ γ case condition

For k,

α�Ak
= (α′�Ak)_ (sk

τ−→Ak
tk)_ (α′′�Ak) Definition 9 and definition of α

= α′k_ (sk
τ−→Ak

tk)_ (α′′�Ak) by (c), α′�Ak = α′k
= α′k_ (sk

τ−→Ak
tk)_α′′k by the preceding remarks, α′′�Ak = α′′k

= αk by definition of α′k, α
′′
k: αk = α′k_ (sk

τ−→Ak
tk)_α′′k

For all ` ∈ [1 : n]− k,

α�A`
= α′�A` Definition 9 and definition of α
= α′` by (c), α′�A` = α′`
= α` by our choice of α′`, α` = α′`

We have just established α ∈ execs∗(A), α�Aj = αj for all j ∈ [1 : n], and trace(α) ≈ γ. Hence
(*) is established for subcase 2.2. Hence Case 2 of the inductive step is established.

Since both cases of the inductive step have been established, the theorem follows.

We use Theorem 7 and the definition of zip (Definition 14) to establish a similar result for
traces.

Corollary 8 (Finite-trace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A =
A1 ‖ · · · ‖ An. Let β be a finite trace and assume that there exist β1, . . . , βn such that (1) (∀j ∈ [1 :
n] : βj ∈ traces∗(Aj)), and (2) zip(β, β1, . . . , βn). Then β ∈ traces∗(A).

21

α, γ
Γ

aα′, γ′

αk, γk
α′k, γ

′
k

α′`, γ
′
`

α`, γ` Γ`

sk a

t α′′

α′′ktk

s` = t`

Γk

s

Figure 4: Proof of Theorem 7: illustration of case one

α′, γ′
last(γ′)

αk, γk
α′k = αk, γ

′
k

α′` = α`, γ
′
`

Γ

Γk
Γk

Γ` Γ`
α`, γ`

α, γ

Figure 5: Proof of Theorem 7: illustration of subcase 2.1

Proof: By Definition 14, there exist finite pretraces γ, γ1, . . . , γn such that γ ≈ β, (
∧
j∈[1:n] γj ≈ βj),

and zips(γ, γ1, . . . , γn). By Theorem 7, ∃α ∈ execs∗(A) : trace(α) ≈ γ. Hence trace(α) ≈ β. Since
β is a trace, we obtain trace(α) = β. Since β is finite, β ∈ traces∗(A).

Theorem 9 extends theorem 7 to infinite pretraces. That is, if a set of pretraces γj of Aj , for all
j ∈ [1 : n], can be “zipped up” to generate a pretrace γ, then γ is a pretrace of A = A1 ‖ · · · ‖ An.
The proof uses the result of Theorem 7 to construct an infinite family of finite executions, each of
which is a prefix of the next, and such that the trace of each finite execution is stuttering-equivalent
to a prefix of γ. Taking the limit of these executions under the prefix ordering then yields an infinite
execution α of A whose trace is stuttering-equivalent to γ, as desired.

Theorem 9 (Pretrace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A =
A1 ‖ · · · ‖ An. Let γ be a pretrace. If, for all j ∈ [1 : n], γj ∈ pretraces(Aj) can be chosen so that
zips(γ, γ1, . . . , γn) holds, then ∃α ∈ execs(A) : trace(α) ≈ γ.

Proof: If γ is finite, then the result follows from Theorem 7. Hence assume that γ is infinite for
the remainder of the proof. By Proposition 6, we have

∀i, i > 0 ∧ ispretrace(γ|i) : (∀j ∈ [1 :n] : ispretrace(γj |i)) ∧ zips(γ|i, γ1|i, . . . , γn|i). (a)

22

α, γ τα′, γ′

αk, γk
α′k, γ

′
k

α′` = α`, γ
′
`

α`, γ`

Γk
τ

ΓkΓk

Γl

s

sk tk

α′′

α′′k

t

s` = t`

Γ

Figure 6: Proof of Theorem 7: illustration of subcase 2.2

Hence, by γj ∈ pretraces(Aj) and Definition 10, we have
∀i, i > 0 ∧ ispretrace(γ|i),∀j ∈ [1 :n] : γj |i ∈ pretraces(Aj) (b)

By (a,b) and Theorem 7, we have
∀i, i > 0 ∧ ispretrace(γ|i), ∃αi ∈ execs(A) : trace(αi) ≈ γ|i (c)

Now let i′, i′′ be such that i′ < i′′, ispretrace(γ|i′), ispretrace(γ|i′′), and there is no i′ < i < i′′ such
that ispretrace(γ|i). By Definition 10, we have that either γ|i′′ = (γ|i′)aΓ or γ|i′′ = (γ|i′)Γ, for some
action a and external signature Γ. We can show that there exist αi

′ ∈ execs(A), αi
′′ ∈ execs(A)

such that αi
′
< αi

′′
, trace(αi

′
) ≈ γ|i′ , trace(αi

′′
) ≈ γ|i′′ . This is established by the same argument

as used for the inductive step in the proof of Theorem 7. In essence, αi
′′

is obtained inductively as
an extension of αi

′
. We omit the (repetitive) details.

Let prefixes(γ) = {i | i > 0 ∧ ispretrace(γ|i)}. By (c), we have
there exists a set {αi | i ∈ prefixes(γ)} such that

∀i ∈ prefixes(γ) : αi ∈ execs(A) ∧ trace(αi) ≈ γ|i
∀i′, i′′ ∈ prefixes(γ), i′ < i′′ : αi′ ≤ αi′′ (d)

Now let α be the unique minimum sequence that satisfies ∀i ∈ prefixes(γ) : αi < α. α exists by
(d). Since every triple (s, a, s′) along α occurs in some αi, it must be a step of A. Hence α is an
execution of A.

We now show, by contradiction, that trace(α) ≈ γ. Suppose not, and let β = trace(α). Then
β 6= r(γ) by Definition 12. Since β and r(γ) are sequences, they must differ at some position.
Let i0 be the smallest number such that β(i0) 6= r(γ)(i0). Hence β|i0 6= r(γ)|i0 . Now the trace
of a prefix of α is a prefix of β, by Definition 2. Hence there can be no prefix of α whose trace
is r(γ)|i0 , i.e., ¬(∃i ≥ 0 : trace(α|i) = r(γ)|i0). Let i1 be such that r(γ|i1) = r(γ)|i0 . Hence
¬(∃i ≥ 0 : trace(α|i) = r(γ|i1)). And so ¬(∃i ≥ 0 : trace(α|i) ≈ γ|i1). But this contradicts (d), and
so we are done.

We use Theorem 9 and the definition of zip (Definition 14) to establish Corollary 10, which
extends corollary 8 to infinite traces. Corollary 10 gives our main trace pasting result, and is also
used to establish trace substitutivity, Theorem 17, below.

Corollary 10 (Trace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A = A1 ‖
· · · ‖ An. Let β be a trace and assume that there exist β1, . . . , βn such that (1) (∀j ∈ [1 :n] : βj ∈

23

traces(Aj)), and (2) zip(β, β1, . . . , βn). Then β ∈ traces(A).

Proof: By Definition 14, there exist pretraces γ, γ1, . . . , γn such that γ ≈ β,
∧
j∈[1:n] γj ≈ βj , and

zips(γ, γ1, . . . , γn). By Theorem 9, ∃α ∈ execs(A) : trace(α) ≈ γ. Hence trace(α) ≈ β. Since β is a
trace, we obtain trace(α) = β. Hence β ∈ traces(A).

3.3 Trace Substitutivity for SIOA

To establish trace substitutivity, we first need some preliminary technical results. These establish
that for an execution α of A = A1 ‖ · · · ‖ An and its projections α�A1, . . . , α�An, that there exist
corresponding (in the sense of being stuttering equivalent to the trace of) pretraces γ, γ1, . . . , γn
respectively which “zip up,” i.e., zips(γ, γ1, . . . , γn) holds. Our first proposition establishes this
result for finite executions.

Proposition 11 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any
finite execution of A. Then, there exist finite pretraces γ, γ1, . . . , γn such that (1) γ ≈ trace(α), and
(2) (∀j ∈ [1 :n] : γj ≈ trace(α�Aj)), and (3) zips(γ, γ1, . . . , γn).

Proof: By induction on |α|. For the rest of the proof, fix α to be an arbitrary finite execution of
A.

Base case: |α| = 0. Then α consists of a single state s. By Definition 6, we have ext(A)(s) =∏
j∈[1:n] ext(Aj)(s�Aj). Let γ consist of the single element ext(A)(s) and for all j ∈ [1 : n],

let γj consist of the single element ext(Aj)(s�Aj). Hence γ =
∏
j∈[1:n] γj . By Definition 13,

zips(γ, γ1, . . . , γn) holds.

Induction step: |α| > 0. There are two cases to consider, according to whether the last
transition of α is an external or internal action of A.

Case 1: α = α′at for some action a and state t, where a ∈ êxt(A)(last(α′)).
We apply the induction hypothesis to α′ to obtain

there exist pretraces γ′, γ′1, . . . , γ′n such that
γ′ ≈ trace(α′), (∀j ∈ [1 :n] : γ′j ≈ trace(α′�Aj)), and zips(γ′, γ′1, . . . , γ′n). (a)

Let s = last(α′), and for all j ∈ [1 :n], let sj = s�Aj , and tj = t�Aj . Let ϕ = {j | a ∈ êxt(Aj)(sj)}.
Let k range over ϕ and ` range over [1 : n]− ϕ. Hence,

∧
` a 6∈ ŝig(A`)(s`). Hence, by Definition 6,∧

` s` = t`.

By Definition 9, for all k, we have α�Ak = (α′�Ak)atk. Hence trace(α�Ak) = trace(α′�Ak) _
a _ ext(Ak)(tk). For all k, we have γ′k ≈ trace(α′�Ak) by (a). Let γk = γ′k _ a _ ext(Ak)(tk).
Hence γk ≈ trace(α�Ak).

By Definition 9, for all `, we have α�A` = α′�A`. Hence trace(α�`) = trace(α′�`). Let γ` =
γ′`_ ext(A`)(s`)_ ext(A`)(s`). By (a), we have γ′` ≈ trace(α′�A`) for all `. From s = last(α′), we
get last(γ′`) = ext(A`)(last(α′�`)) = ext(A`)(s`). Hence γ` ≈ γ′`. Hence γ` ≈ γ′` ≈ trace(α′�A`) =
trace(α�A`). Thus, γ` ≈ trace(α�A`).

Let γ = γ′_ a_ ext(A)(t). Now trace(α) = trace(α′at) = trace(α′) _ a_ ext(A)(t). From
(a), γ′ ≈ trace(α′). Hence γ = γ′ _ a_ ext(A)(t) ≈ trace(α′) _ a_ ext(A)(t) = trace(α). So,
γ ≈ trace(α).

24

From the previous three paragraphs, we have
γ ≈ trace(α) ∧∧j∈[1:n] γj ≈ trace(α�Aj). (b)

We now establish zips(γ, γ1, . . . , γn). We show that all clauses of Definition 13 are satisfied for
γ, γ1, . . . , γn. By (a), zips(γ′, γ′1, . . . , γ′n). We will use this repeatedly below.

By zips(γ′, γ′1, . . . , γ′n), we have |γ′| = |γ′1| = · · · = |γ′n|. By construction |γ| = |γ′|+ 2, and for
all j ∈ [1 : n], |γj | = |γ′j |+ 2. Hence |γ| = |γ1| = · · · = |γn|. So clause 1 is satisfied.

By definition of `, we have
∧
` a 6∈ ext(A`)(s`). By construction, the last three elements of γ`

(for all `) are all ext(A`)(s`). By this and zips(γ′, γ′1, . . . , γ′n), we conclude that clause 2 is satisfied.

By Definition 6, we have ext(A)(t) =
∏
j∈[1:n] ext(Aj)(tj). By construction, we have last(γ) =

ext(A)(t),
∧
k last(γk) = ext(Ak)(tk), and

∧
` last(γ`) = ext(A`)(s`). From

∧
` s` = t` (estab-

lished above), we get
∧
` last(γ`) = ext(A`)(t`). Hence last(γ) =

∏
j∈[1:n] last(γj). By this and

zips(γ′, γ′1, . . . , γ′n), we conclude that clause 3 is satisfied.

By zips(γ′, γ′1, . . . , γ′n) and the construction of γ, γ1, . . . , γn (specifically, that a is an external
action), we conclude that clause 4 is satisfied.

Hence, we have established zips(γ, γ1, . . . , γn). Together with (b), this establishes the inductive
step in this case.

Case 2: α = α′at for some action a and state t, where a ∈ int(A)(last(α′)).
We can apply the induction hypothesis to α′ to obtain

there exist pretraces γ′, γ′1, . . . , γ′n such that
γ′ ≈ trace(α′), (∀j ∈ [1 :n] : γ′j ≈ trace(α′�Aj)), and zips(γ′, γ′1, . . . , γ′n). (a)

Let s = last(α′), and for all j ∈ [1 :n], let sj = s�Aj , and tj = t�Aj . Since a is an internal action
of A, it is executed by exactly one of the A1, . . . , An. Thus, there is some k ∈ [1 : n] such that
a ∈ int(Ak)(sk), and for all ` ∈ [1 : n]− k, a 6∈ ŝig(A`)(s`). Let ` range over [1 : n]− k for the rest
of this case. Hence

∧
` s` = t`, by Definition 6.

By Definition 9, we have α�Ak = (α′�Ak)atk. Hence trace(α�Ak) = trace(α′�Ak)_ext(Ak)(tk).
We have γ′k ≈ trace(α′�Ak) by (a). Let γk = γ′k_ ext(Ak)(tk). Hence γk ≈ trace(α�Ak).

By Definition 9, for all `, we have α�A` = α′�A`. Hence trace(α�`) = trace(α′�`). Let γ` =
γ′` _ ext(A`)(s`). By (a), γ′` ≈ trace(α′�A`) for all `. From s = last(α′), we get last(γ′`) =
ext(A`)(last(α′�`)) = ext(A`)(s`). Hence γ` ≈ γ′`. Hence γ` ≈ γ′` ≈ trace(α′�A`) = trace(α�A`).
Thus, γ` ≈ trace(α�A`).

Let γ = γ′ _ ext(A)(t). Now trace(α) = trace(α′at) = trace(α′) _ ext(A)(t). From (a),
γ′ ≈ trace(α′). Hence γ = γ′_ ext(A)(t) ≈ trace(α′)_ ext(A)(t) = trace(α). So, γ ≈ trace(α).

From the previous three paragraphs, we have
γ ≈ trace(α) ∧∧j∈[1:n] γj ≈ trace(α�Aj). (b)

We now establish zips(γ, γ1, . . . , γn). We show that all clauses of Definition 13 are satisfied for
γ, γ1, . . . , γn. By (a), zips(γ′, γ′1, . . . , γ′n). We will use this repeatedly below.

By zips(γ′, γ′1, . . . , γ′n), we have |γ′| = |γ′1| = · · · = |γ′n|. By construction |γ| = |γ′|+ 1, and for
all j ∈ [1 : n], |γj | = |γ′j |+ 1. Hence |γ| = |γ1| = · · · = |γn|. So clause 1 is satisfied.

By zips(γ′, γ′1, . . . , γ′n) and the construction of γ, γ1, . . . , γn (specifically, that a is an internal
action), we conclude that clause 2 is satisfied.

25

By Definition 6, we have ext(A)(t) =
∏
j∈[1:n] ext(Aj)(tj). By construction, we have last(γ) =

ext(A)(t), last(γk) = ext(Ak)(tk), and
∧
` last(γ`) = ext(A`)(s`). From

∧
` s` = t` (established

above), we get
∧
` last(γ`) = ext(A`)(t`). Hence last(γ) =

∏
j∈[1:n] last(γj). By this and

zips(γ′, γ′1, . . . , γ′n), we conclude that clause 3 is satisfied.

By construction, the last two elements of γ` (for all `) are both ext(A`)(s`). By this and
zips(γ′, γ′1, . . . , γ′n), we conclude that clause 4 is satisfied.

Hence, we have established zips(γ, γ1, . . . , γn). Together with (b), this establishes the inductive
step in this case.

Having established both possible cases, we conclude that the inductive step holds.

Proposition 12 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let β be any
finite trace of A. Then, there exist β1, . . . , βn such that (1) (∀j ∈ [1 :n] : βj ∈ traces∗(Aj)), and (2)
zip(β, β1, . . . , βn).

Proof: Since β ∈ traces∗(A), there exists α ∈ execs∗(A) such that trace(α) = β. Applying
Proposition 11 to α, we have that there exist finite pretraces γ, γ1, . . . , γn such that γ ≈ trace(α),
(∀j ∈ [1 :n] : γj ≈ trace(α�Aj)), and zips(γ, γ1, . . . , γn).

For all j ∈ [1 : n], let βj = trace(α�Aj). By Theorem 4, α�Aj ∈ execs(Aj). Hence α�Aj ∈
execs∗(Aj) since α is finite. Hence βj ∈ traces∗(Aj). Thus, (1) is established.

From γj ≈ trace(α�Aj) and βj = trace(α�Aj), we have βj ≈ γj , for all j ∈ [1 : n]. From
γ ≈ trace(α) and β = trace(α), we have γ ≈ β. Hence, by Definition 14 and zips(γ, γ1, . . . , γn), we
conclude zip(β, β1, . . . , βn). Hence (2) is established.

Theorem 13 (Finite-trace Substitutivity for SIOA) Let A1, . . . , An be compatible SIOA, and
let A = A1 ‖ · · · ‖ An. For some k ∈ [1 :n], let A1, . . . , Ak−1, A

′
k, Ak+1, . . . , An be compatible SIOA,

and let A′ = A1 ‖ · · · ‖ Ak−1 ‖ A′k ‖ Ak+1 ‖ · · · ‖ An. Assume also that traces∗(Ak) ⊆ traces∗(A′k).
Then traces∗(A) ⊆ traces∗(A′).

Proof: Let β be an arbitrary finite trace of A. Then, by Proposition 12, there exist β1, . . . , βn
such that zip(β, β1, . . . , βn), and (∀j ∈ [1 : n] : βj ∈ traces∗(Aj)). By assumption, traces∗(Ak) ⊆
traces∗(A′k). Hence βk ∈ traces∗(A′k). Thus, we have βk ∈ traces∗(A′k), (∀` ∈ [1 : n] − k : β` ∈
traces∗(A`)), and zip(β, β1, . . . , βn). Hence, by Corollary 8, β ∈ traces∗(A′). Since β was chosen
arbitrarily, we have traces∗(A) ⊆ traces∗(A′).

To extend Theorem 13 to infinite traces, we start with Proposition 14, which extends the
result of Proposition 11 to the (infinite set of) finite prefixes of an infinite execution. That is,
for every finite prefix α|i of an infinite execution α of A = A1 ‖ · · · ‖ An, and its projections
(α|i)�A1, . . . , (α|i)�An, there exist corresponding (in the sense of being stuttering equivalent to the
trace of) pretraces γi and γi1, . . . , γ

i
n respectively which “zip up,” i.e., zips(γi, γi1, . . . , γ

i
n) holds.

Furthermore, the pretraces γi−1, γi−1
1 , . . . , γi−1

n corresponding to α|i−1, (α|i−1)�A1, . . . , (α|i−1)�An,
respectively are prefixes of the pretraces γi, γi1, . . . , γ

i
n, respectively.

Proposition 14 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any exe-
cution of A. Then, there exists a countably infinite set of tuples of finite pretraces
{〈γi, γi1, . . . , γin〉 | 0 ≤ i ≤ |α| ∧ i 6= ω} such that:

26

1. ∀i, 0 ≤ i ≤ |α| ∧ i 6= ω : γi ≈ trace(α|i) ∧ (
∧
j∈[1:n] γ

i
j ≈ trace((α|i)�Aj))

2. ∀i, 0 ≤ i ≤ |α| ∧ i 6= ω : zips(γi, γi1, . . . , γ
i
n)

3. ∀i, 0 < i ≤ |α| ∧ i 6= ω : γi−1 < γi ∧ (
∧
j∈[1:n] γ

i−1
j < γij)

Proof: By induction on i.

Base case: i = 0. Then, α|0 consists of a single state s. The proof then parallels the base case of
the proof of Proposition 11. We omit the repetitive details.

Induction step: i > 0. Assume the inductive hypothesis for 0 ≤ i < m, and establish it for i = m.
By the inductive hypothesis, we obtain

there exists a set of tuples of finite pretraces {〈γi, γi1, . . . , γin〉 | 0 ≤ i < m} such that:

1. ∀i, 0 ≤ i < m : γi ≈ trace(α|i) ∧ (
∧
j∈[1:n] γ

i
j ≈ trace((α|i)�Aj))

2. ∀i, 0 ≤ i < m : zips(γi, γi1, . . . , γ
i
n)

3. ∀i, 0 < i < m : γi−1 < γi ∧ (
∧
j∈[1:n] γ

i−1
j < γij)

(a)

We now establish the inductive hypothesis for i = m, that is:

there exists a tuple of pretraces 〈γm, γm1 , . . . , γmn 〉 such that

1. γm ≈ trace(α|m) ∧ (
∧
j∈[1:n] γ

m
j ≈ trace((α|m)�Aj)),

2. zips(γm, γm1 , . . . , γ
m
n), and

3. γm−1 < γm ∧ (
∧
j∈[1:n] γ

m−1
j < γmj).

(*)

There are two cases.

Case 1: α|m = (α|m−1)at for some action a and state t, where a ∈ êxt(A)(last(α|m−1)).

Case 2: α|m = (α|m−1)at for some action a and state t, where a ∈ int(A)(last(α|m−1)).

To establish Clauses 1 and 2 of (*), the proofs for these cases proceed in exactly the same way as
the proofs for cases 1 and 2 in the proof of Proposition 11, with α|m−1 playing the role of α′, and
α|m playing the role of α.

To establish Clause 3 of (*), we note that, in both cases 1 and 2 in the proof of Proposition 11,
γ, γ1, . . . , γn are constructed as extensions of γ′, γ′1, . . . , γ′n, respectively. Our proof here proceeds
in exactly the same way, with γm−1, γm−1

1 , . . . , γm−1
n playing the role of γ′, γ′1, . . . , γ′n, respectively,

and γm, γm1 , . . . , γ
m
n playing the role of γ, γ1, . . . , γn, respectively. We omit the details.

Note that we include i 6= ω in the range of i to emphasize that, for infinite executions α, the
range 0 ≤ i ≤ |α| does not include i = ω.

Proposition 15 establishes the result of Proposition 11 for infinite executions. The proof uses
Proposition 14 and constructs the required pretraces γ, γ1, . . . , γn by taking the limit under the
prefix ordering of the γi, γi1, . . . , γ

i
n given in Proposition 14, as i tends to ω.

27

Proposition 15 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any
execution of A. Then, there exist pretraces γ, γ1, . . . , γn such that (1) γ ≈ trace(α), (2) (∀j ∈ [1 :
n] : γj ≈ trace(α�Aj)), and (3) zips(γ, γ1, . . . , γn).

Proof: If α is finite, then the result follows from Proposition 11. Hence, assume that α is infinite
in the rest of the proof. By Proposition 14, we have

there exists a countably infinite set of tuples of finite pretraces {〈γi, γi1, . . . , γin〉 | 0 ≤ i}
such that:

1. ∀i, 0 ≤ i : γi ≈ trace(α|i) ∧ (
∧
j∈[1:n] γ

i
j ≈ trace((α|i)�Aj))

2. ∀i, 0 ≤ i : zips(γi, γi1, . . . , γ
i
n)

3. ∀i, 0 < i : γi−1 < γi ∧ (
∧
j∈[1:n] γ

i−1
j < γij)

(a)

Since the set of tuples {〈γi, γi1, . . . , γin〉 | 0 ≤ i} is countably infinite, and γi−1 is a proper prefix of
γi for all i > 0, we can define γ to be the unique sequence such that ∀i, 0 ≤ i : γi < γ. Likewise,
for all j ∈ [1 : n], we can define γj to be the unique sequence such that ∀i, 0 ≤ i : γij < γj . From
clause 2 of (a) and Definition 13, we conclude zips(γ, γ1, . . . , γn).

We now show, by contradiction, that trace(α) ≈ γ. Suppose not, and let β = trace(α). Then
β 6= r(γ) by Definition 12. Since β and r(γ) are sequences, they must differ at some position.
Let i0 be the smallest number such that β(i0) 6= r(γ)(i0). Hence β|i0 6= r(γ)|i0 . Now the trace
of a prefix of α is a prefix of β, by Definition 2. Hence there can be no prefix of α whose trace
is r(γ)|i0 , i.e., ¬(∃i ≥ 0 : trace(α|i) = r(γ)|i0). Let i1 be such that r(γ|i1) = r(γ)|i0 . Hence
¬(∃i ≥ 0 : trace(α|i) = r(γ|i1)). And so ¬(∃i ≥ 0 : trace(α|i) ≈ γ|i1). But this contradicts (a),
and so we are done. In a similar manner, we show γj ≈ trace(α�Aj)) for all j ∈ [1 :n]. Hence, the
proposition is established.

Proposition 16 “lifts” the result of Proposition 15 from executions to traces; it shows that if
β is a trace of A = A1 ‖ · · · ‖ An then there exist traces β1, . . . , βn of A1, . . . , An respectively
which zip up to β, that is zip(β, β1, . . . , βn) holds. The proof is a straightforward application of
Proposition 15.

Proposition 16 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let β be an
arbitrary element of traces(A). Then, there exist β1, . . . , βn such that (1) for all j ∈ [1 : n] : βj ∈
traces(Aj), and (2) zip(β, β1, . . . , βn).

Proof: Since β ∈ traces(A), there exists α ∈ execs(A) such that trace(α) = β. Applying
Proposition 15 to α, we have that there exist pretraces γ, γ1, . . . , γn such that γ ≈ trace(α),
(
∧
j ∈ [1 : n] : γj ≈ trace(α�Aj)), and zips(γ, γ1, . . . , γn).

For all j ∈ [1 : n], let βj = trace(α�Aj). By Theorem 4, α�Aj ∈ execs(Aj). Hence βj ∈
traces(Aj). Thus, (1) is established.

From γj ≈ trace(α�Aj) and βj = trace(α�Aj), we have βj ≈ γj , for all j ∈ [1 : n]. From
γ ≈ trace(α) and β = trace(α), we have γ ≈ β. Hence, by Definition 14 and zips(γ, γ1, . . . , γn), we
conclude zip(β, β1, . . . , βn). Hence (2) is established.

28

Theorem 17 gives one of our main results: trace substitutivity. This states that, in a compo-
sition of n SIOA, if one of the SIOA is replaced by another whose traces are a subset of those of
the SIOA that was replaced, then this cannot increase the set of traces of the entire composition.

Theorem 17 (Trace Substitutivity for SIOA) Let A1, . . . , An be compatible SIOA, and let
A = A1 ‖ · · · ‖ An. For some k ∈ [1 : n], let A1, . . . , Ak−1, A

′
k, Ak+1, . . . , An be compatible SIOA,

and let A′ = A1 ‖ · · · ‖ Ak−1 ‖ A′k ‖ Ak+1 ‖ · · · ‖ An. Assume also that traces(Ak) ⊆ traces(A′k).
Then traces(A) ⊆ traces(A′).

Proof: Let β be an arbitrary trace of A. Then, by Proposition 16, there exist β1, . . . , βn such that
zip(β, β1, . . . , βn), and (∀j ∈ [1 : n] : βj ∈ traces(Aj)). By assumption, traces(Ak) ⊆ traces(A′k).
Hence βk ∈ traces(A′k). Thus, we have βk ∈ traces(A′k), (∀` ∈ [1 : n] − k : β` ∈ traces(A`)), and
zip(β, β1, . . . , βn). Hence, by Corollary 10, β ∈ traces(A′). Since β was chosen arbitrarily, we have
traces(A) ⊆ traces(A′).

4 Trace substitutivity under Hiding and Renaming

We now proceed to show that action hiding and renaming are monotonic with respect to trace
inclusion.

Theorem 18 (Trace Substitutivity for SIOA w.r.t Action Hiding) Let A,A′ be SIOA such
that traces(A) ⊆ traces(A′). Let Σ a set of actions. Then traces(A \ Σ) ⊆ traces(A′ \ Σ).

Proof: From traces(A) ⊆ traces(A′), we have
∀α ∈ execs(A) : ∃α′ ∈ execs(A′) : traceA(α) = traceA(α′).

By Definition 7, start(A \ Σ) = start(A) and steps(A \ Σ) = steps(A), and so execs(A) = execs(A \ Σ).
Likewise execs(A′) = execs(A′ \ Σ). Hence

∀α ∈ execs(A \ Σ) : ∃α′ ∈ execs(A′ \ Σ) : traceA(α) = traceA′(α′).

Choose arbitrarily α ∈ execs(A \ Σ) and α′ ∈ execs(A′ \ Σ) such that traceA(α) = traceA′(α′). Let
β = traceA(α) = traceA′(α′). Let β \Σ be the trace obtained from β by removing all actions in Σ,
and then replacing each maximal block of identical external signatures by a single representative.
From Defintion 2, we see that β \ Σ = traceA\Σ(α) = traceA′\Σ(α′). Since α, α′ were chosen arbi-
trarily, we have

∀α ∈ execs(A \ Σ) : ∃α′ ∈ execs(A′ \ Σ) : traceA\Σ(α) = traceA′\Σ(α′).

This implies traces(A \ Σ) ⊆ traces(A′ \ Σ), and we are done.

Theorem 19 (Trace Substitutivity for SIOA w.r.t Action Renaming) Let A,A′ be SIOA
such that traces(A) ⊆ traces(A′). Let ρ be an injective mapping from actions to actions whose
domain includes acts(A). Then traces(ρ(A)) ⊆ traces(ρ(A′)).

Proof: For α ∈ execs(A), define ρ(α) to result from α by replacing each action a along α by ρ(a).
Since ρ is an injective mapping from actions to actions, its extension to executions is also injective.
For β ∈ traces(A), define ρ(β) to result from β by replacing each action a along β by ρ(a), and

29

each external signature Γ along β by ρ(Γ), where ρ(Γ) results from Γ by replacing each action a
by ρ(a). Since ρ is an injective mapping from actions to actions, its extension to executions and
traces is also injective. We also extend ρ to the set of executions and traces of A element-wise:
ρ(execs(A)) = {ρ(α) : α ∈ execs(A)}, ρ(traces(A)) = {ρ(β) : β ∈ traces(A)}.

By Definition 8, start(ρ(A)) = start(A), and steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)}.
Hence

execs(ρ(A)) = ρ(execs(A)) and traces(ρ(A)) = ρ(traces(A)).

From traces(A) ⊆ traces(A′), we have ρ(traces(A)) ⊆ ρ(traces(A′)), since ρ is monotonic with
respect to a set of traces. Hence traces(ρ(A)) ⊆ traces(ρ(A′)), and we are done.

4.1 Trace Equivalence as a Congruence

SIOA A and A′ are trace equivalent iff traces(A) = traces(A′). A straightforward corollary of
our monotonicity results is that trace equivalence is a congruence relation with respect to parallel
composition, action hiding, and action renaming.

Theorem 20 (Trace equivalence is a congruence) Let A1, . . . , An be compatible SIOA, and
let A = A1 ‖ · · · ‖ An. For some k ∈ [1 :n], let A1, . . . , Ak−1, A

′
k, Ak+1, . . . , An be compatible SIOA,

and let A′ = A1 ‖ · · · ‖ Ak−1 ‖ A′k ‖ Ak+1 ‖ · · · ‖ An.

1. If traces(Ak) = traces(A′k), then traces(A) = traces(A′).

2. If traces(Ak) = traces(A′k), then traces(Ak \ Σ) = traces(A′k \ Σ).

3. If traces(Ak) = traces(A′k), then traces(ρ(Ak)) = traces(ρ(A′k)).

Proof: Clauses 1,2, and 3 follow from Theorems 17, 18, and 19 respectively, by application with
respect to both directions of trace inclusion.

5 Configurations and Configuration Automata

Suppose that a is an action of SIOA A whose execution has the side-effect of creating another SIOA
B. To model this, we keep track of the set of “alive” SIOA, i.e., those that have been created but
not destroyed (we consider the automata that are initially present to be “created at time zero”).
Thus, we require a transition relation over sets of SIOA. We also keep track of the current global
state, i.e., the tuple of local states of every SIOA that is alive. Thus, we replace the notion of
global state with the notion of “configuration,” i.e., the set A of alive SIOA, and a mapping S with
domain A such that S(A) is the current local state of A, for each SIOA A ∈ A.

A configuration contains within it a set of SIOA, each of which embodies a transition relation.
Thus, the possible transitions out of a configuration cannot be given arbitrarily, as when defining
a transition relation over “unstructured” states. Rather, these transitions should be “intrinsically”
determined by the SIOA in the configuration. Below we define the intrinsic transitions between
configurations, and then define a “configuration automaton” as an SIOA whose transition relation
respects these intrinsic transitions. Configuration automata are our principal semantic objects.

30

Definition 15 (Configuration, Compatible configuration) A configuration is a pair 〈A,S〉
where

• A is a finite set of signature I/O automaton identifiers, and

• S maps each A ∈ A to an s ∈ states(A).

A configuration 〈A,S〉 is compatible iff, for all A ∈ A, B ∈ A, A 6= B:

1. ŝig(A)(S(A)) ∩ int(B)(S(B)) = ∅, and

2. out(A)(S(A)) ∩ out(B)(S(B)) = ∅.

The compatibility condition is the usual I/O automaton compatibility condition [20], applied
to a configuration. If C = 〈A,S〉 is a configuration, then we use (A, s) ∈ C as shorthand for
A ∈ A ∧ S(A) = s, and we also qualify A and S with the notation C.A, C.S, where needed.

A configuration is a “flat” structure in that it consists of a set of SIOA (identifier, local-state)
pairs, with no grouping information. Such grouping could arise, for example, by the composition
of subsystems into larger subsystems. This grouping will be reflected in the states of configuration
automata, rather than the configurations themselves, which are not states, but are the semantic
denotations of states. We defined a configuration to be a set of SIOA identifiers together with
a mapping from identifiers to SIOA states. Hence, every SIOA is uniquely distinguished by its
identifier. Thus our formalism does not a priori admit the existence of clones, as discussed in the
introduction.

Definition 16 (Intrinsic attributes of a configuration) Let C = 〈A,S〉 be a compatible con-
figuration. Then we define

• auts(C) = A
• map(C) = S
• out(C) =

⋃
A∈A out(A)(S(A))

• in(C) = (
⋃
A∈A in(A)(S(A)))− out(C)

• int(C) =
⋃
A∈A int(A)(S(A))

• ext(C) = 〈in(C), out(C)〉
• sig(C) = 〈in(C), out(C), int(C)〉

We call sig(C) the intrinsic signature of C, since it is determined solely by C. Define
reduce(C) = 〈A′,S�A′〉, where A′ = {A | A ∈ A and ŝig(A)(S(A)) 6= ∅}. C is a reduced con-
figuration iff C = reduce(C).

A consequence of this definition is that an empty configuration cannot execute any transitions.
Also, we do not define transitions from a non-compatible configuration. Thus, the initial configura-
tion of a transition is guaranteed to be compatible. However, the final configuration of a transition
may not be compatible. This may arise, for example, when two SIOA are involved in executing

31

an action a, and their signatures in their final local states may contain output actions in common.
Another possibility is when a new SIOA is created, and its signature in its initial state violates the
compatibility condition (Definition 15) with respect to an already existing SIOA.

We now define the intrinsic transitions a=⇒ϕ that can be taken from a given configuration
〈A,S〉. Our definition is parametrized by a set ϕ of SIOA identifiers which represents SIOA which
are to be “created” by the execution of the transition. This set is not determined by the transition
itself, but rather by the configuration automaton which has 〈A,S〉 as the semantic denotation of
one of its states. Thus, it has to be supplied to the definition as a parameter.

Definition 17 (Intrinsic transition, a=⇒ϕ) Let 〈A,S〉, 〈A′,S ′〉 be arbitrary reduced compati-
ble configurations, and let ϕ ⊆ Autids. Then 〈A,S〉 a=⇒ϕ 〈A′,S ′〉 iff there exists a compatible
configuration 〈A′′,S ′′〉 such that

1. a ∈ ŝig(〈A,S〉)
2. A′′ = A ∪ ϕ,

3. for all A ∈ A′′ −A : S ′′(A) ∈ start(A),

4. for all A ∈ A: if a ∈ ŝig(A)(S(A)) then S(A) a−→A S ′′(A), otherwise S(A) = S ′′(A),

5. 〈A′,S ′〉 = reduce(〈A′′,S ′′〉)

All the SIOA with identifiers in ϕ−A (= A′′−A) are “created” in some start state (Clause 3).
The SIOA identifiers in ϕ ∩ A have no effect, since the SIOA with these identifiers are already
alive. We apply the reduce operator to the intermediate configuration 〈A′′,S ′′〉 to obtain the final
configuration 〈A′,S ′〉 resulting from the transition. This removes all SIOA which have an empty
signature, and is our mechanism for destroying SIOA. An SIOA with an empty signature cannot
execute any transition, and so cannot change its state. Thus it will remain forever in its current
state, and will be unable to interact with any other SIOA. Thus, an SIOA “self-destructs” by
moving to a state with an empty signature. This is the only mechanism for SIOA destruction. In
particular, we do not permit one SIOA to destroy another, although an SIOA can certainly send a
“please destroy yourself” request to another SIOA.

Definition 18 (Configuration Automaton) A configuration automaton X consists of the fol-
lowing components

1. A signature I/O automaton sioa(X).
For brevity, we define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) =
sig(sioa(X)), steps(X) = steps(sioa(X)), and likewise for all other (sub)components and
attributes of sioa(X).

2. A configuration mapping config(X) with domain states(X) and such that config(X)(x) is a
reduced compatible configuration for all x ∈ states(X)

3. For each x ∈ states(X), a mapping created(X)(x) with domain ŝig(X)(x) and such that
created(X)(x)(a) ⊆ Autids for all a ∈ ŝig(X)(x).

and satisfies the following constraints

32

1. If x ∈ start(X) and (A, s) ∈ config(X)(x), then s ∈ start(A)

2. If (x, a, y) ∈ steps(X) then config(X)(x) a=⇒ϕ config(X)(y), where ϕ = created(X)(x)(a).

3. If x ∈ states(X) and config(X)(x) a=⇒ϕD for some action a, ϕ = created(X)(x)(a), and
reduced compatible configuration D, then ∃y ∈ states(X) : config(X)(y) = D and (x, a, y) ∈
steps(X)

4. For all x ∈ states(X)

(a) out(X)(x) ⊆ out(config(X)(x))

(b) in(X)(x) = in(config(X)(x))

(c) int(X)(x) ⊇ int(config(X)(x))

(d) out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x))

The above constraints are needed to properly reflect the connection between the behavior of
a configuration automaton and the configurations in each state. Constraint 1 requires that con-
figurations corresponding to start states of X must map their constituent SIOA to start states.
Constraint 2 admits as transitions of X only transitions that can be generated as intrinsic tran-
sitions of the corresponding configurations. Constraint 3 requires that all the intrinsic transitions
a=⇒ϕ that a configuration is capable of must be represented in X: all the successor configurations

generated by such transitions must be represented in the states and transitions of X. Constraint 4
states that the signature of a state x of X must be the same as the signature of its corresponding
configuration config(X)(x), except for the possible effects of hiding operators, so that some outputs
of config(X)(x) may be internal actions of X in state x.

These constraints represent a significant difference with the basic I/O automaton model: there,
states are either “atomic” entities, or tuples of tuples of . . . of atomic entities. Thus, states, in and
of themselves, embody no information about their possible successor states. That information is
given by the transition relation, and there are no constraints on the transition relation itself: any
set of triples (state, action, state) which respects the input enabling requirement can be a transition
relation.

Since an SIOA that is created “within” a configuration automaton always remains within
that automaton, we see that configuration automata serve as a natural encapsulation boundary
for component creation. Even if an SIOA migrates and changes its location, it always remains a
part of the same configuration automaton. Migration and location are not primitive notions in our
model, in contrast with, for example, the Ambient calculus [7], but are built on top of configuration
automata and variable signatures, see Section 7 below.

In the sequel, we write config(X)(x) a=⇒X,x config(X)(y) as an abbreviation for
“config(X)(x) a=⇒ϕ config(X)(y) where ϕ = created(X)(x)(a).”

Definition 19 Let X be a configuration automaton. For each x ∈ states(X), define the abbrevia-
tions auts(X)(x) = auts(config(X)(x)) and map(X)(x) = map(config(X)(x)).

Definition 20 (Execution, trace of configuration automaton) A configuration automaton X
inherits the notions of execution fragment and execution from sioa(X). Thus, α is an execution
fragment (execution) of X iff it is an execution fragment (execution) of sioa(X). execs(X) de-
notes the set of executions of configuration automaton X. X also inherits the notion of trace from

33

sioa(X). Thus, β is a trace of x iff it is a trace of sioa(X). traces(X) denotes the set of traces of
configuration automaton X.

5.1 Parallel Composition of Configuration I/O Automata

We now deal with the composition of configuration automata.

Definition 21 (Union of configurations) Let C1 = 〈A1,S1〉 and C2 = 〈A2,S2〉 be configura-
tions such that A1 ∩ A2 = ∅. Then, the union of C1 and C2, denoted C1 ∪ C2, is the configuration
C = 〈A,S〉 where A = A1 ∪ A2, and S agrees with S1 on A1, and with S2 on A2.

It is clear that configuration union is commutative and associative. Hence, we will freely use
the n-ary notation C1 ∪ · · · ∪ Cn (for any n ≥ 1) whenever

∧
i,j∈[1:n],i 6=j auts(Ci) ∩ auts(Cj) = ∅.

Definition 22 (Compatible configuration automata) Let X1, . . . , Xn, be configuration automata.
X1, . . . , Xn are compatible iff, for every 〈x1, . . . , xn〉 ∈ states(X1)× · · · × states(Xn),

1. ∀i, j ∈ [1 : n], i 6= j: auts(config(Xi)(xi)) ∩ auts(config(Xj)(xj)) = ∅.
2. config(X1)(x1) ∪ · · · ∪ config(Xn)(xn) is a reduced compatible configuration.

3. {sig(X1)(x1), . . . , sig(Xn)(xn)} is a set of compatible signatures

4. ∀i, j ∈ [1 :n], i 6= j : ∀a ∈ ŝig(Xi)(xi)∩ŝig(Xj)(xj) : created(Xi)(xi)(a)∩created(Xj)(xj)(a) =
∅

Definition 23 (Composition of configuration automata) Let X1, . . . , Xn, be compatible con-
figuration automata. Then X = X1 ‖ · · · ‖ Xn is the state machine consisting of the following
components:

1. sioa(X) = sioa(X1) ‖ · · · ‖ sioa(Xn)

2. A configuration mapping config(X) given as follows. For each x = 〈x1, . . . , xn〉 ∈ states(X),
config(X)(x) = config(X1)(x1) ∪ · · · ∪ config(Xn)(xn).

3. For each x = 〈x1, . . . , xn〉 ∈ states(X), a mapping created(X)(x) with domain ŝig(X)(x) and
given as follows. For each a ∈ ŝig(X)(x), created(X)(x)(a) =

⋃
a∈csig(Xi)(xi),i∈[1:n]

created(Xi)(xi)(a).

As in Definition 18, we define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) =
sig(sioa(X)), steps(X) = steps(sioa(X)), and likewise for all other (sub)components and attributes
of sioa(X).

Proposition 21 Let X1, . . . , Xn, be compatible configuration automata. Then X = X1 ‖ · · · ‖ Xn

is a configuration automaton.

Proof: We must show that X satisfies the constraints of Definition 18. Since X1, . . . , Xn are
configuration automata, they already satisfy the constraints. The argument for each constraint

34

then uses this together with Definition 23 to show that X itself satisfies the constraint. The details
are as follows, for each constraint in turn.

Constraint 1. Let x ∈ start(X) and (A, s) ∈ config(X)(x). Then, x = 〈x1, . . . , xn〉 where xi ∈
start(Xi) for 1 ≤ i ≤ n. By Definition 23, config(X)(x) = config(X1)(x1) ∪ · · · ∪ config(Xn)(xn).
Hence (A, s) ∈ config(Xj)(xj) for some j ∈ [1 : n]. Also, xj ∈ start(Xj). Since Xj is a configuration
automaton, we apply Constraint 1 to Xj to conclude s ∈ start(A). Hence, Constraint 1 holds for
X.

Constraint 2. Let (x, a, y) be an arbitrary element of steps(X). We will establish
config(X)(x) a=⇒X,x config(X)(y).

For brevity, let Ai = sioa(Xi) for i ∈ [1 : n]. Now (x, a, y) ∈ steps(X). So (x, a, y) ∈
steps(sioa(X)) by Definition 23. Also by Definition 23, sioa(X) = sioa(X1) ‖ · · · ‖ sioa(Xn) =
A1 ‖ · · · ‖ An. So, (x, a, y) ∈ steps(A1 ‖ · · · ‖ An). Since x, y ∈ states(A1 ‖ · · · ‖ An), we can
write x, y as 〈x1, . . . , xn〉, 〈y1, . . . , yn〉 respectively, where xi, yi ∈ states(Ai) for i ∈ [1 : n]. From
Definition 6, there exists a nonempty ϕ ⊆ [1 : n] such that

(
∧
i∈ϕ a ∈ ŝig(Ai)(xi) ∧ (xi, a, yi) ∈ steps(Ai)) ∧ (

∧
i∈[1:n]−ϕ a 6∈ ŝig(Ai)(xi) ∧ xi = yi) (a)

Each Xi, i ∈ [1 : n], is a configuration automaton. Hence, by (a) and constraint 2 applied to each
Xi, i ∈ ϕ, ∧

i∈ϕ
(
config(Xi)(xi)

a=⇒Xi,xi config(Xi)(yi)
)
. (b)

Also by (a), ∧
i∈[1:n]−ϕ

(
config(Xi)(xi) = config(Xi)(yi)

)
. (c)

Since X1, . . . , Xn are compatible, we have, by Definition 22, that config(X1)(x1) ∪ · · · ∪
config(Xn)(xn) and config(X1)(y1) ∪ · · · ∪ config(Xn)(yn) are both reduced compatible configu-
rations.

By Definition 23, created(X)(x)(a) =
⋃
a∈csig(Xi)(xi),i∈[1:n]

created(Xi)(xi)(a). By this, (a,b,c),
and Definition 17, we obtain(⋃

i∈[1:n] config(Xi)(xi)
) a=⇒X,x

(⋃
i∈[1:n] config(Xi)(yi)

)
. (d)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi) and config(X)(y) =

⋃
i∈[1:n] config(Xi)(yi).

Hence
config(X)(x) a=⇒X,x config(X)(y),

and we are done.

Constraint 3. Let x be an arbitrary state in states(X) and D an arbitrary reduced compati-
ble configuration such that config(X)(x) a=⇒X,xD. We must show ∃y ∈ states(X) : (x, a, y) ∈
steps(X) and config(X)(y) = D.

We can write x as 〈x1, . . . , xn〉 where xi ∈ states(Xi) for i ∈ [1 : n].

Since X1, . . . , Xn are compatible, we have, by Definition 22, that auts(config(Xi)(xi)) ∩
auts(config(Xj)(xj)) = ∅ forall i, j ∈ [1 : n], i 6= j, (thus, all SIOA in these configurations are
unique) and that config(X1)(x1)∪· · ·∪config(Xn)(xn) is a reduced compatible configuration. Also,
from Definition 23, config(X)(x) =

⋃
i∈[1:n] config(Xi)(xi). Hence from config(X)(x) a=⇒X,xD,(⋃

i∈[1:n] config(Xi)(xi)
) a=⇒X,xD. (a)

35

Hence, from Definition 17, there exists a nonempty ϕ ⊆ [1 : n] such that(∧
i∈ϕ a ∈ ŝig(Xi)(xi)

) ∧ (∧i∈[1:n]−ϕ a 6∈ ŝig(Xi)(xi)
)

(b)

We now define Di, 1 ≤ i ≤ n, as follows.
For i ∈ [1 : n]− ϕ, Di = config(Xi)(xi).
For i ∈ ϕ, Di = 〈DAi,map(D)�DAi〉, where

DAi = {A : A ∈ D and [A ∈ auts(config(Xi)(xi)) or A ∈ created(Xi)(xi)(a)]}.
Hence, by definition of Di, Definition 17, (a), and the compatibility of X1, . . . , Xn, we have∧

i∈ϕ(config(Xi)(xi)
a=⇒Xi,xi Di) (c)

Now each Xi, i ∈ [1 : n], is a configuration automaton. Hence, from (c) and constraint 3 applied
to Xi, i ∈ ϕ, ∧

i∈ϕ, ∃yi ∈ states(Xi) : config(Xi)(yi) = Di and (xi, a, yi) ∈ steps(Xi) (d)

Let y = 〈y1, . . . , yn〉 where, for i ∈ ϕ, yi is given by (d), and for i ∈ [1 : n]−ϕ, yi = xi. Hence,
for i ∈ [1 : n], yi ∈ states(Xi). Since X1, . . . , Xn are compatible configuration automata, we get,
by Definitions 18 and 22,

auts(config(Xi)(yi)) ∩ auts(config(Xj)(yj)) = ∅ for all i, j ∈ [1 : n], i 6= j, and
config(X1)(y1) ∪ · · · ∪ config(Xn)(yn) is a reduced compatible configuration. (e)

Thus, in particular, all SIOA in the configurations config(X1)(y1), . . . , config(Xn)(yn) are unique.
From (d), for i ∈ ϕ, config(Xi)(yi) = Di. By definition of Di, for i ∈ [1 : n]−ϕ, config(Xi)(xi) = Di.
By definition of yi, for i ∈ [1 : n] − ϕ, yi = xi. Hence, for i ∈ [1 : n] − ϕ, config(Xi)(yi) = Di.
Combining these, we get ∧

i∈[1:n] config(Xi)(yi) = Di (f)

From the definition of Di and Definition 17, we have that D = D1∪· · ·∪Dn. Also, by Definition 23,
config(X)(y) =

⋃
i∈[1:n] config(Xi)(yi). By this, (f), and D = D1 ∪ · · · ∪Dn,

config(X)(y) = D. (g)

By definition of yi, for i ∈ [1 : n]− ϕ, yi = xi. By (d), for i ∈ ϕ, (xi, a, yi) ∈ steps(Xi). From these
and (b), we get ∧

i∈ϕ a ∈ ŝig(Xi)(xi) ∧ (xi, a, yi) ∈ steps(Xi)∧
i∈[1:n]−ϕ a 6∈ ŝig(Xi)(xi) ∧ yi = xi.

From this, x = 〈x1, . . . , xn〉, y = 〈y1, . . . , yn〉, and Definitions 6 and 23, we conclude (x, a, y) ∈
steps(X). From this and (g), we have

(x, a, y) ∈ steps(X) and config(X)(y) = D,

and we are done.

Constraint 4. We treat each subconstraint in turn.

Constraint 4a: out(X)(x) ⊆ out(config(X)(x)).
By Definitions 6 and 23,

out(X)(x) =
⋃
i∈[1:n] out(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4a. Hence∧
i∈[1:n] out(Xi)(xi) ⊆ out(config(Xi)(xi)).

36

Taking the unions of both sides, over all i ∈ [1 : n], we obtain(⋃
i∈[1:n] out(Xi)(xi)

) ⊆ (⋃i∈[1:n] out(config(Xi)(xi))
)
. (b)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi). By assumption, X1, . . . , Xn, are compati-

ble configuration automata. Hence, by Definition 22,
⋃
i∈[1:n] config(Xi)(xi) is a reduced compatible

configuration. So, from Definition 16, we obtain
out(config(X)(x)) =

⋃
i∈[1:n] out(config(Xi)(xi)). (c)

From (a,b,c), we obtain out(X)(x) =
⋃
i∈[1:n] out(Xi)(xi) ⊆ (

⋃
i∈[1:n] out(config(Xi)(xi))) =

out(config(X)(x)), as desired.

Constraint 4b: in(X)(x) = in(config(X)(x)). By Definitions 6 and 23,
in(X)(x) = (

⋃
i∈[1:n] in(Xi)(xi))− (

⋃
i∈[1:n] out(Xi)(xi)). (a)

Since the Xi are configuration automata, they all satisfy constraints 4a and 4b. Hence∧
i∈[1:n] in(Xi)(xi) = in(config(Xi)(xi)),∧
i∈[1:n] out(Xi)(xi) ⊆ out(config(Xi)(xi)). (b)

Since the Xi are configuration automata, they all satisfy constraint 4d. Hence∧
i∈[1:n] out(Xi)(xi) ∪ int(Xi)(xi) = out(config(Xi)(xi)) ∪ int(config(Xi)(xi)). (c)

And so, ∧
i∈[1:n] out(config(Xi)(xi)) ⊆ out(Xi)(xi) ∪ int(Xi)(xi). (d)

Since out(Xi)(xi) ∩ int(Xi)(xi) = ∅ for all i ∈ [1 : n], by the partitioning of actions into input,
output, and internal, we have, by (b,d)∧

i∈[1:n] out(Xi)(xi) = out(config(Xi)(xi))− int(Xi)(xi). (e)

Taking the unions of both sides, over all i ∈ [1 : n], in (b) and (e), we obtain(⋃
i∈[1:n] in(Xi)(xi)

)
=
(⋃

i∈[1:n] in(config(Xi)(xi))
)
,(⋃

i∈[1:n] out(Xi)(xi)
)

=
(⋃

i∈[1:n] out(config(Xi)(xi))− int(Xi)(xi)
)
. (f)

From (a,f), we obtain
in(X)(x) =

(⋃
i∈[1:n] in(config(Xi)(xi))

)− (⋃i∈[1:n] out(config(Xi)(xi))− int(Xi)(xi)
)
. (g)

From (c), ∧
i∈[1:n] int(Xi)(xi) ⊆ out(config(Xi)(xi)) ∪ int(config(Xi)(xi)). (h)

Now (out(config(Xi)(xi)) ∪ int(config(Xi)(xi))) ∩ in(config(Xi)(xi)) = ∅, for all i ∈ [1 : n], by the
partitioning of actions into input, output, and internal. Hence, by (h),∧

i∈[1:n] int(Xi)(xi) ∩ in(config(Xi)(xi)) = ∅. (i)

From (b,i), and the compatibility of X1, . . . , Xn, we get(⋃
i∈[1:n] int(Xi)(xi)

) ∩ (⋃i∈[1:n] in(config(Xi)(xi))
)

= ∅. (j)

From (g,j)
in(X)(x) =

(⋃
i∈[1:n] in(config(Xi)(xi))

)− (⋃i∈[1:n] out(config(Xi)(xi))
)
. (k)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi). By assumption, X1, . . . , Xn, are compati-

ble configuration automata. Hence, by Definition 22,
⋃
i∈[1:n] config(Xi)(xi) is a reduced compatible

configuration. So, from Definition 16, we obtain
in(config(X)(x)) =

(⋃
i∈[1:n] in(config(Xi)(xi))

)− (⋃i∈[1:n] out(config(Xi)(xi))
)
. (l)

37

Finally, from (k,l), we obtain in(X)(x) =
(⋃

i∈[1:n] in(config(Xi)(xi))
)−(⋃i∈[1:n] out(config(Xi)(xi))

)
= in(config(X)(x)), as desired.

Constraint 4c: int(X)(x) ⊇ int(config(X)(x)).
By Definitions 6 and 23,

int(X)(x) =
⋃
i∈[1:n] int(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4c. Hence∧
i∈[1:n] int(Xi)(xi) ⊇ int(config(Xi)(xi)).

Taking the unions of both sides, over all i ∈ [1 : n], we obtain(⋃
i∈[1:n] int(Xi)(xi)

) ⊇ (⋃i∈[1:n] int(config(Xi)(xi))
)
. (b)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi). By assumption, X1, . . . , Xn, are compati-

ble configuration automata. Hence, by Definition 22,
⋃
i∈[1:n] config(Xi)(xi) is a reduced compatible

configuration. So, from Definition 16, we obtain
int(config(X)(x)) =

⋃
i∈[1:n] int(config(Xi)(xi)). (c)

From (a,b,c), we obtain int(X)(x) =
⋃
i∈[1:n] int(Xi)(xi) ⊇ (

⋃
i∈[1:n] int(config(Xi)(xi))) =

int(config(X)(x)), as desired.

Constraint 4d: out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x)).
By Definitions 6 and 23,

out(X)(x) =
⋃
i∈[1:n] out(Xi)(xi),

int(X)(x) =
⋃
i∈[1:n] int(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4d. Hence∧
i∈[1:n](out(Xi)(xi) ∪ int(Xi)(xi)) = (out(config(Xi)(xi)) ∪ int(config(Xi)(xi))).

Taking the unions of both sides, over all i ∈ [1 : n], we obtain
(
⋃
i∈[1:n] out(Xi)(xi) ∪ int(Xi)(xi)) = (

⋃
i∈[1:n] out(config(Xi)(xi)) ∪ int(config(Xi)(xi))). (b)

By Definition 23, config(X)(x) =
⋃
i∈[1:n] config(Xi)(xi). By assumption, X1, . . . , Xn, are compati-

ble configuration automata. Hence, by Definition 22,
⋃
i∈[1:n] config(Xi)(xi) is a reduced compatible

configuration. So, from Definition 16, we obtain
out(config(X)(x)) =

⋃
i∈[1:n] out(config(Xi)(xi)),

int(config(X)(x)) =
⋃
i∈[1:n] int(config(Xi)(xi)). (c)

From (a,b,c), we obtain (out(X)(x) ∪ int(X)(x)) = (
⋃
i∈[1:n] out(Xi)(xi) ∪ int(Xi)(xi)) =

(
⋃
i∈[1:n] out(config(Xi)(xi))∪ int(config(Xi)(xi))) = out(config(X)(x))∪ int(config(X)(x)), as de-

sired.

Since we have established that X satisfies all the constraints, the proof is done.

5.2 Action Hiding for Configuration Automata

Definition 24 (Action hiding for configuration automata) Let X be a configuration automa-
ton and Σ a set of actions. Then X \Σ is the state machine consisting of the following components:

1. A signature I/O automaton sioa(X \ Σ) = sioa(X) \ Σ

38

2. A configuration mapping config(X \ Σ) = config(X)

3. For each x ∈ states(X \ Σ), a mapping created(X \ Σ)(x) = created(X)(x)

As in Definition 18, we define states(X \ Σ) = states(sioa(X \ Σ)), start(X \ Σ) = start(sioa(X \ Σ)),
sig(X \ Σ) = sig(sioa(X \ Σ)), steps(X \ Σ) = steps(sioa(X \ Σ)), and likewise for all other com-
ponents and attributes of sioa(X).

Proposition 22 Let X be a configuration automaton and Σ a set of actions. Then X \ Σ is a
configuration automaton.

Proof: We must show that X\Σ satisfies the constraints of Definition 18. Since X is a configuration
automaton, constraints 1, 2, and 3 hold for X. From Definitions 7 and 24, we see that the only
components of X and X \Σ that differ are the signature and its various subsets. Now constraints 1,
2, and 3 do not involve the signature. Hence, they also hold for X \ Σ.

We deal with each subconstraint of Constraint 4 in turn.

Constraint 4a: out(X \ Σ)(x) ⊆ out(config(X \ Σ)(x)).
By Definition 24, out(X \ Σ)(x) = out(sioa(X \ Σ))(x) = out(sioa(X) \ Σ)(x). By Definition 7,
out(sioa(X) \ Σ)(x) = out(sioa(X))(x)−Σ. By Definition 18, which is applicable since X is a con-
figuration automaton, out(sioa(X))(x) = out(X)(x). Hence, out(sioa(X))(x)−Σ = out(X)(x)−Σ.
Putting the above equalities together, we obtain

out(X \ Σ)(x) = out(X)(x)− Σ. (a)

Since X is a configuration automaton, it satisfies constraint 4a. Hence
out(X)(x) ⊆ out(config(X)(x)). (b)

By Definition 24, config(X \ Σ) = config(X). Hence,
out(config(X)(x)) = out(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain out(X \ Σ)(x) ⊆ out(X)(x) ⊆ out(config(X)(x)) = out(config(X \ Σ)(x)),
as desired.

Constraint 4b: in(X \ Σ)(x) = in(config(X \ Σ)(x)).
By Definition 24, in(X \ Σ)(x) = in(sioa(X \ Σ))(x) = in(sioa(X) \ Σ)(x). By Definition 7,
in(sioa(X) \ Σ)(x) = in(sioa(X))(x). By Definition 18, which is applicable since X is a configura-
tion automaton, in(sioa(X))(x) = in(X)(x). Putting the above equalities together, we obtain

in(X \ Σ)(x) = in(X)(x). (a)

Since X is a configuration automaton, it satisfies constraint 4b. Hence
in(X)(x) = in(config(X)(x)). (b)

By Definition 24, config(X \ Σ) = config(X). Hence,
in(config(X)(x)) = in(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain in(X \ Σ)(x) = in(X)(x) = in(config(X)(x)) = in(config(X \ Σ)(x)), as
desired.

Constraint 4c: int(X \ Σ)(x) ⊇ int(config(X \ Σ)(x)).
By Definition 24, int(X \ Σ)(x) = int(sioa(X \ Σ))(x) = int(sioa(X) \ Σ)(x). By Definition 7,

39

int(sioa(X) \ Σ)(x) = int(sioa(X))(x) ∪ (out(sioa(X))(x) ∩ Σ). By Definition 18, which is appli-
cable since X is a configuration automaton, int(sioa(X))(x) = int(X)(x) and out(sioa(X))(x) =
out(X)(x). Hence, int(sioa(X) \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ). Putting the above equali-
ties together, we obtain

int(X \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ). (a)

Since X is a configuration automaton, it satisfies constraint 4c. Hence
int(X)(x) ⊇ int(config(X)(x)). (b)

By Definition 24, config(X \ Σ) = config(X). Hence,
int(config(X)(x)) = int(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain int(X \ Σ)(x) ⊇ int(X)(x) ⊇ int(config(X)(x)) = int(config(X \ Σ)(x)),
as desired.

Constraint 4d: out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)).
In the proofs for Constraints 4a and 4c above, we established (the equations marked “(a)”)

out(X \ Σ)(x) = out(X)(x)− Σ,
int(X \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ).

Now (out(X)(x)− Σ) ∪ (out(X)(x) ∩ Σ) = out(X)(x), and so
out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out(X)(x) ∪ int(X)(x). (a)

Since X is a configuration automaton, it satisfies constraint 4d. Hence
out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x)). (b)

By Definition 24, config(X \ Σ) = config(X). Hence,
out(config(X)(x)) ∪ int(config(X)(x)) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain out(X \ Σ)(x)∪int(X \ Σ)(x) = out(X)(x)∪int(X)(x) = out(config(X)(x))∪
int(config(X)(x)) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)), as desired.

Since we have established that X satisfies all the constraints, the proof is done.

5.3 Action Renaming for Configuration Automata

Definition 25 Let C = 〈A,S〉 be a compatible configuration and let ρ be an injective mapping
from actions to actions whose domain includes

⋃
A∈A acts(A). Then we define ρ(C) = 〈ρ(A), ρ(S)〉

where ρ(A) = {ρ(A) | A ∈ A}, and ρ(S)(ρ(A)) = S(A) for all A ∈ A.

Definition 26 (Action renaming for configuration automata) Let X be a configuration au-
tomaton and let ρ be an injective mapping from actions to actions whose domain includes⋃
C∈states(X) ŝig(X)(C). Then ρ(X) consists of the following components:

1. A signature I/O automaton sioa(ρ(X)) = ρ(sioa(X))

2. A configuration mapping config(ρ(X)) with domain states(ρ(X)) (= states(X)) and such that
config(ρ(X))(x) = ρ(config(X)(x)).

3. For each x ∈ states(ρ(X)), a mapping created(ρ(X))(x) with domain ŝig(ρ(X))(x) and such
that created(ρ(X))(x)(ρ(a)) = {ρ(A) | A ∈ created(X)(x)(a)} for all a ∈ ŝig(X)(x).

40

Proposition 23 Let X be a configuration automaton and let ρ be an injective mapping from actions
to actions whose domain includes

⋃
C∈states(X) ŝig(X)(C). Then ρ(X) is a configuration automaton.

Proof: We must show that ρ(X) satisfies the constraints of Definition 18. Since X is a configuration
automaton, constraints 1, 2, and 3 hold for X. From Definitions 8 and 26, we see that the states of
ρ(X) and the configurations in config(ρ(X))(x) are unchanged by applying ρ, with the exception
of the signatures of the configurations. Hence constraint 1 also holds for ρ(X).

Constraints 2, and 3 hold since ρ is injective, so we can simply replace a by ρ(a) uniformly in
the transition relation of both ρ(X) and the configurations in config(ρ(X))(x). The constraints for
ρ(X) then follow from the corresponding ones for X.

From Definitions 25 and 26, we have out(config(ρ(X))(x)) = ρ(out(config(X)(x))) and
out(ρ(X))(x) = ρ(out(X)(x)). Since constraint 4a holds for X, we have out(X)(x) ⊆
out(config(X)(x)). Hence ρ(out(X)(x)) ⊆ ρ(out(config(X)(x))). We thus conclude out(ρ(X))(x) ⊆
out(config(ρ(X))(x)). Hence constraint 4a holds for ρ(X).

The other subconstraints of constraint 4 can be established in a similar manner.

5.4 Multi-level Configuration Automata

Since a configuration automaton is an SIOA, it is possible for a configuration automaton to create
another configuration automaton. This leads to a notion of “multi-level,” or “nested” configuration
automata. The nesting structure is well-founded, that is, the binary relation “X is created by Y ’
is well-founded in all global states.

This ability to nest entire configuration automata makes our model flexible. For example,
administrative domains can be modeled in a natural and straightforward manner. It may also
be possible to emulate the motion of ambients in the ambient calculus [7]. If two configuration
automata X,Y are such that neither is “included” in the other, then X can “move into” Y by first
destroying itself, and then having Y re-create X. This however would require some bookeeping
to re-create X in the same state it was in before it destroyed itself. Development of these ideas,
including the precise notion of “is included in,” is a topic for a subsequent paper.

5.5 Compositional Reasoning for Configuration Automata

We now establish compositionality results for configuration automata analogous to those established
previously for SIOA. The notions of execution and trace of a configuration automaton X depend
solely on the SIOA component sioa(X). Furthermore, the SIOA component of a composition of
configuration automata depends only on the SIOA components of the individual configuration au-
tomata (see Definition 23). It follows that the results of Sections 3 and 4 carry over for configuration
automata with no modification. We restate them for configuration automata solely for the sake of
completeness.

5.5.1 Execution Projection and Pasting for Configuration Automata

Definition 27 (Execution projection for configuration automata) Let X = X1 ‖ · · · ‖ Xn

be a configuration automaton. Let α be a sequence x0a1x1a2x2 . . . xj−1ajxj . . . where ∀j ≥ 0, xj =

41

〈xj,1, . . . , xj,n〉 ∈ states(X) and ∀j > 0, aj ∈ ŝig(X)(xj−1). For i ∈ [1 : n], Define α�Xi to be the
sequence resulting from:

1. replacing each xj by its i’th component xj,i, and then

2. removing all ajxj,i such that aj 6∈ ŝig(Xi)(xj−1,i).

Our execution projection result states that the projection of an execution (of a composed
configuration automaton X = X1 ‖ · · · ‖ Xn) onto a component Xi, is an execution of Xi.

Theorem 24 (Execution projection for configuration automata) Let X = X1 ‖ · · · ‖ Xn

be a configuration automaton. If α ∈ execs(X) then α�Xi ∈ execs(Xi) for all i ∈ [1 :n].

Our execution pasting result requires that a candidate execution α of a composed automaton
X = X1 ‖ · · · ‖ Xn must project onto an actual execution of every component Xi, and also that
every action of α not involving Xi does not change the configuration of Xi. In this case, α will be
an actual execution of X.

Theorem 25 (Execution pasting for configuration automata) Let X = X1 ‖ · · · ‖ Xn be
a configuration automaton. Let α be a sequence x0a1x1a2x2 . . . xj−1ajxj . . . where ∀j ≥ 0, xj =
〈xj,1, . . . , xj,n〉 ∈ states(X) and ∀j > 0, aj ∈ ŝig(X)(xj−1). Furthermore, suppose that, for all
i ∈ [1 :n]:

1. α�Xi ∈ execs(Xi), and

2. ∀j > 0 : if aj 6∈ ŝig(Xi)(xj−1,i) then xj−1,i = xj,i.

Then, α ∈ execs(X).

5.5.2 Trace Pasting for Configuration Automata

Corollary 26 (Trace pasting for configuration automata) Let X1, . . . , Xn be compatible con-
figuration automata, and let X = X1 ‖ · · · ‖ Xn. Let β be a trace and assume that there ex-
ist β1, . . . , βn such that (1) (∀j ∈ [1 : n] : βj ∈ traces(Xj)), and (2) zip(β, β1, . . . , βn). Then
β ∈ traces(X).

The definition of zip(β, β1, . . . , βn) remains unchanged for configuration automata, since it does
not refer to the internal structure of automata, only to external actions and external signatures.

5.5.3 Trace Substitutivity and Equivalence for Configuration Automata

Theorem 27 (Trace substitutivity for configuration automata) Let X1, . . . , Xn be compat-
ible configuration automata, and let X = X1 ‖ · · · ‖ Xn. For some k ∈ [1 : n],
let X1, . . . , Xk−1, X

′
k, Xk+1, . . . , Xn be compatible configuration automata, and let X ′ = X1 ‖

· · · ‖ Xk−1 ‖ X ′k ‖ Xk+1 ‖ · · · ‖ Xn. Assume also that traces(Xk) ⊆ traces(X ′k). Then
traces(X) ⊆ traces(X ′).

42

Theorem 28 (Trace Substitutivity for Configuration Automata w.r.t Action Hiding) Let
X,X ′ be configuration automata such that traces(X) ⊆ traces(X ′). Let Σ a set of actions. Then
traces(X \ Σ) ⊆ traces(X ′ \ Σ).

Theorem 29 (Trace Substitutivity for Configuration Automata w.r.t Action Renaming)
Let X,X ′ be configuration automata such that traces(X) ⊆ traces(X ′). Let ρ be an injective map-
ping from actions to actions whose domain includes acts(X). Then traces(ρ(X)) ⊆ traces(ρ(X ′)).

Theorem 30 (Trace equivalence is a congruence) Let X1, . . . , Xn be compatible configuration
automata, and let X = X1 ‖ · · · ‖ Xn. For some k ∈ [1 :n], let X1, . . . , Xk−1, X

′
k, Xk+1, . . . , Xn be

compatible configuration automata, and let X ′ = X1 ‖ · · · ‖ Xk−1 ‖ X ′k ‖ Xk+1 ‖ · · · ‖ Xn.

1. If traces(Xk) = traces(X ′k), then traces(X) = traces(X ′).

2. If traces(Xk) = traces(X ′k), then traces(Xk \ Σ) = traces(X ′k \ Σ).

3. If traces(Xk) = traces(X ′k), then traces(ρ(Xk)) = traces(ρ(X ′k)).

6 Creation Substitutivity for Configuration Automata

We now show that trace inclusion is monotonic with respect to process creation, under certain
conditions. Our intention is that, if a configuration automaton Y creates an SIOA B when executing
some particular actions in some particular states, then, if configuration automaton X results from
modifying Y by making it create an SIOA A instead, and if traces(A) ⊆ traces(B), then we can
prove traces(X) ⊆ traces(Y).

Definition 28 ([B/A],�AB) Let ϕ ⊆ Autids, and A,B be SIOA identifiers. Then we define
ϕ[B/A] = (ϕ− {A}) ∪ {B} if A ∈ ϕ, and ϕ[B/A] = ϕ if A 6∈ ϕ.

Let C,D be configurations. We define C �AB D iff (1) auts(D) = auts(C)[B/A] and (2)
for every A′ ∈ auts(C) − {A}: map(D)(A′) = map(C)(A′) and (3) ext(A)(s) = ext(B)(t) where
s = map(C)(A), t = map(D)(B).

That is, in �AB-corresponding configurations, the SIOA other than A,B must be the same,
and must be in the same state. A and B must have the same external signature.

To obtain monotonicity, the start configurations of Y must include a configuration corre-
sponding to every configuration of X, i.e., ∀x ∈ start(X),∃y ∈ start(Y) : auts(config(Y)(y)) =
auts(config(X)(x))[B/A]. Together with traces(A) ⊆ traces(B), we might expect to be able to
establish traces(X) ⊆ traces(Y). However, suppose that X has an execution α in which A is
created exactly once, terminates some time after it is created, and after A’s termination, X ex-
ecutes an input action a. Let βA be the trace that A generates during the execution of α by
X. Since traces(A) ⊆ traces(B), we can construct (by induction) using conditions 1, 2, and 3
of Definition 18, a corresponding execution α′ of Y , up to the point where A terminates. Since
traces(A) ⊆ traces(B), we have βA ∈ traces(B). Define B as follows. B emulates A faithfully up
to but not including the point at which A terminates (i.e., self-destructs). Then, B sets it external
signature to empty but keeps some internal actions enabled. This allows B to export an empty
signature, and so we have βA ∈ traces(B) (recall that traces(B) is the set of finite and infinite traces

43

of B). After executing an internal action, B permanently enters a state in which it’s signature has
action a as an output, but a is never actually enabled. Thus, no trace of Y from this point onwards
can contain action a. Hence, trace(α) cannot be a trace of Y , and so traces(X) 6⊆ traces(Y), since
trace(α) ∈ traces(X). This example is a consequence of the fact that an SIOA can prevent an action
a from occurring, if a is an output action of the SIOA which is not currently enabled, and shows
that we also need to relate the traces of A that lead to termination with those of B that lead to
termination.

If α is a finite execution of an SIOA A which ends in a state with an empty signature, and
β = trace(α), then β is a terminating trace of A. ttraces(A) is the set of all terminating traces
of A. We therefore add ttraces(A) ⊆ ttraces(B) to our set of antecedents. This however, is still
insufficient, since we have so far only required that X create A “whenever” Y creates B. We have
not prevented X from creating A in more situations than those in which Y creates B. This can
cause traces(X) 6⊆ traces(Y), as the following example shows.

Example 1 Let A,B,C be the SIOA and X,Y be the configuration automata given in Figure 7, as
indicated by the automaton name followed by “::”. Each node represents a state and each directed
edge represents a transition, and is labeled with the name of the action executed. All the automata
have a single initial state. A,B,C, have start state s0, t0, u0 respectively. All the states of X,Y ,
except the terminating states, are labeled with their corresponding configurations. The start states
of X,Y are the states with configuration {(C, u0)}.

By inspection, ∀x ∈ start(X),∃y ∈ start(Y) : config(Y)(y) = config(X)(x)[B/A], traces(A) ⊆
traces(B), and ttraces(A) ⊆ ttraces(B). Also by inspection, traces(X) = {λ, c, ca, cda, cad} and
traces(Y) = {λ, c, ca, cb, cd}, and so traces(X) 6⊆ traces(Y). (λ denotes the empty trace). This
is because X creates A along the transition which is generated by the (u0, c, u2) transition of B
(according to constraint 3 of Definition 18), whereas Y does not.

We now impose a restriction which precludes scenarios such as in Example 1.

Definition 29 (Creation deterministic configuration automaton) We say that configuration
automaton X is creation-deterministic iff the following holds. Let β ∈ traces∗(X), |β| > 0, and
let α, α′ ∈ execs∗(X) be such that trace(α) = trace(α′) = β. Let a be the last external action
along α, and let x be the state along α preceding a, i.e., the state from which a is executed. Like-
wise define a′, x′ w.r.t. α′. Then created(X)(x)(a) = created(X)(x′)(a′). In other words, if two
finite executions of X have the same trace, then their last external actions result in the creation
of the same SIOA. In this case, we define created(X)(β) = created(X)(x)(a). We also require
created(X)(x)(a) = ∅ when a ∈ int(X)(x), i.e., that internal actions do not create any SIOA.

An immediate consequence for two finite executions of X that have the same trace is that all
external actions along them will create the same SIOA.

Now, in addition to the three requirements discussed in Example 1, we require that the configu-
ration automata X,Y be creation-deterministic, and that on the last external actions of executions
with the same trace, X and Y create the same SIOA, except that Y may create B where X creates
A. We give results for finite trace inclusion and trace inclusion.

If α′ = u0b1u1b2u2 · · · is an execution of some configuration automaton, then define trace(α′, j, k)
to be trace(bj · · · bk) if j ≤ k, and to be λ (the empty sequence) if j > k.

44

a

d
a

d

a

c

c

s1
t1

t2

a

b

d

c

c

u1

u2 u3

u0

d

c

c

a

b

a

A :: t0 C ::

X :: {(C, u0)}

{(C, u1), (A, s0)}

{(C, u2), (A, s0)}

B ::

Y :: {(C, u0)}

{(C, u1), (B, t0)}

{(C, u2)}

s0

Figure 7: The Automata in Example 1

Definition 30 (��, projection of configuration automaton onto a contained SIOA) Let α =
x0a1x1 . . . be an execution fragment of X. Then α��A results by:

1. removing each xiai+1 such that A 6∈ auts(X)(xi), then

2. removing each xiai+1 such that ai+1 6∈ ŝig(A)(map(config(X)(xi))(A)), then

3. replacing each xi by map(config(X)(xi))(A)

We remark that α��A is in general, a sequence of several (possibly an infinite number of) executions
of A all of which are terminating except the last. That is, α��A = α1, . . . , αk where (∀j, 1 ≤ j < k :
αj ∈ texecs(A)) ∧ αk ∈ execs(A).

Definition 31 (�) Let α1, . . . , αk and δ1, . . . , δ` be sequences of executions of some SIOA. Then
(α1, . . . , αk)� (δ1, . . . , δ`) iff k ≤ ` ∧ (∀j, 1 ≤ j < k : αj = δj) ∧ αk ≤ δk.

It follows from Definition 30 that α′ ≤ α implies α′��A � α��A, where α′, α are executions of
some configuration automaton.

Definition 32 (RAB) Let α, π be executions of X,Y respectively. Then αRAB π iff there exists a
nondecreasing mapping m : {0, . . . , |α|} 7→ {0, . . . , |π|} such that:

1. m(0) = 0

2. for all j ∈ {0, . . . , |π|}, there exists i ∈ {0, . . . , |α|} such that m(i) ≥ j

45

3. ∀i, 0 < i ≤ |α| ∧ i 6= ω : traceY (m(i-1)|π|m(i)) = traceX(i-1 |α|i)
4. ∀i, 0 < i ≤ |α| ∧ i 6= ω : traceB((m(i-1)|π|m(i))��B) = traceA((i-1 |α|i)��A)

5. ∀i, 0 < i ≤ |α| ∧ i 6= ω : config(X)(xi) �AB config(Y)(ym(i))

Proposition 31 Let α, π be executions of X,Y respectively. If αRAB π, then traceX(α) = traceY (π).

Proof: For finite execution, by induction on the length of α, using Clause 3 to establish the
inductive step.

For infinite executions, apply the finite case for each prefix, and then take the limit with respect
to prefix ordering.

Lemma 32 Let X,Y be creation-deterministic configuration automata and A,B be SIOA. If

1. B has a single start state

2. ∀x ∈ start(X),∃y ∈ start(Y) : config(X)(x) �AB config(Y)(y)

3. traces∗(A) ⊆ traces∗(B)

4. ttraces(A) ⊆ ttraces(B)

5. ∀β ∈ traces∗(X) ∩ traces∗(Y) : created(Y)(β) = created(X)(β)[B/A]

then
∀α ∈ execs∗(X) ∃π ∈ execs∗(Y) : αRAB π.

Proof: Fix α = x0a1x1a2x2 . . . x`a`+1x`+1 to be an arbitrary finite execution of X. Let α��A =
α1
A, . . . , α

m
A for some m ≥ 0, and where (∀j, 1 ≤ j < m : αjA ∈ texecs(A)) and αmA ∈ execs∗(A). By

Clauses 3 and 4, each such αjA has at least one corresponding execution αjB which has the same trace.
Thus there exist executions π1

B, . . . , π
m
B of B such that (∀j, 0 < j ≤ m : traceA(αjA) = traceB(πjB)),

(∀j, 1 ≤ j < m : αjB ∈ texecs(B)) and αmB ∈ execs∗(B). For the rest of the proof, fix these
π1
B, . . . , π

m
B . We now establish (*):

For every prefix α′ of α, there exists a π′ such that

1. π′ is a finite execution of Y ,

2. α′RAB π′, and

3. π′��B � (π1
B, . . . , π

m
B).

(*)

The proof is by induction on the length of α′.

We construct a “corresponding” finite execution π of Y and a mapping m : {0, . . . , |α|} 7→
{0, . . . , |π|} which satisfy Definition 32. Our construction of π is by induction on the length of α.

46

Base case: α′ = x0. Then π′ = y0 such that y0 ∈ start(Y) and config(X)(x0) �AB config(Y)(y0).
y0 exists by Clause 2. π′ is a finite (zero-length) execution of Y , since y0 ∈ start(Y). We now
establish α′RAB π′, i.e., Definition 32. Let m(0) = 0. Then clause 1 holds. Also clause 2 holds
since α′, π′ both have length 0. Clauses 3 and 4 hold vacuously, since all the relevant traces are the
empty sequence. Clause 5 holds since config(X)(x0) �AB config(Y)(y0) and m(0) = 0.

Finally, π′��B is the (unique) start state of B, by Definition 30, and clause 1. Hence π′��B �
(π1
B, . . . , π

m
B).

Induction step: α′ = α′′ _ (xiai+1xi+1) where α′′ = x0a1x1a2x2 . . . xi−1aixi. The induction hy-
pothesis is as follows:

There exists a π′′ such that

1. π′′ is a finite execution of Y ,

2. α′′RAB π′′, and

3. π′′��B � (π1
B, . . . , π

m
B).

(ind hyp)

We now extend π′′ to some π′ such that α′RAB π′. Let Ci = config(X)(xi), Ci+1 = config(X)(xi+1).
By Constraint 2 of Definition 18, Ci

ai+1=⇒ϕCi+1 where ϕ = created(X)(xi)ai+1. Also ϕ =
created(X)(xi)(ai+1) = created(X)(β), where β = trace(α′′), since X is creation-deterministic.

Let π′′ = y0b1y1b2y2 . . . yj−1ajyj , and let Dj = config(Y)(yj). By α′′RAB π′′ and Definition 32,
j = m(i) and Ci�ABDj . The induction step will construct a sequence of intrinsic transitions, start-
ing from Dj , which match Ci

ai+1=⇒ϕCi+1. Constraint 3 of Definition 18 then ensures the existence
of corresponding transitions in steps(Y), which give the extension of π′′ to π′.

We proceed by cases on ai+1.

Case 1: A is not alive in xi, i.e., A 6∈ auts(Ci).

Then B 6∈ auts(Dj) since Ci �AB Dj . Hence there exists a configuration Dj+1 such that
Dj

ai+1=⇒ϕDj+1 and Ci+1 �AB Dj+1, where ϕ = created(Y)(ai+1). This is because all the SIOA
A′ ∈ auts(Ci) that participate in ai+1 are the same as the SIOA in A′ ∈ auts(Dj) that participate
in ai+1, by Definition 28. Thus these A′ can execute exactly the same transitions in both cases,
and end up in the same states.

SinceX is creation-deterministic, created(X)(xi)(ai+1) = created(X)(β) where β = traceX(α′′).
By Proposition 31, traceY (π′′) = traceX(α′′). Since Y is creation-deterministic, we have
created(Y)(yj)(ai+1) = created(Y)(β). Now, by Clause 5, created(Y)(β) = created(X)(β)[B/A].
Hence the same SIOA are created in both cases, except that A (if created by X) will have cor-
responding to it B created by Y . So, there exists an intrinsic transition Dj

ai+1=⇒ϕDj+1 that
will create the new SIOA in the same initial state that they have in Ci+1, and with A,B (if
they exist) having the same external signatures. By Constraint 3 of Definition 18, there ex-
ists (yj , ai+1, yj+1) ∈ steps(Y) with config(Y)(yj+1) = Dj+1. So let m(i + 1) = j + 1, and
π′ = π′′_ (yjai+1yj+1). Hence π′ is a finite execution of Y .

We have α′′RAB π′′ by (ind hyp). Extend the mapping m given by Definition 32 so that
m(|α′|) = |π′|. Then α′RAB π′ with this extended m since α′, π′ extend α′′, π′′ respectively by
a single transition which executes ai+1 in both cases. In particular, traceY ((yj , ai+1, yj+1)) =

47

traceX((xi, ai+1, xi+1)) since the transitions correspond, and traceB((yj , ai+1, yj+1)��B) =
traceA((xi, ai+1, xi+1)��A), since the projections are, in both cases, empty.

Also π′��B = π′′��B by construction, and so π′��B � (π1
B, . . . , π

m
B) since π′′��B � (π1

B, . . . , π
m
B)

by (ind hyp).

Hence the induction step is established for case 1.

Case 2: A is alive in xi and A is not a participant of ai+1, i.e., A ∈ auts(Ci) ∧ ai+1 6∈ acts(A)(s)
where s = map(Ci)(A).

Then B ∈ auts(Dj) since Ci�ABDj . In this case, let t = map(Dj)(B). Since ai+1 6∈ acts(A)(s),
we have ai+1 6∈ êxt(A)(s). Hence ai+1 6∈ êxt(B)(t) by Definition 28 and Ci �AB Dj . Also ai+1 6∈
int(B)(t) by compatibility constraints, since ai+1 is in the signature of some A′ ∈ auts(Ci), and so
will also be in the signature of the same A′ ∈ auts(Dj) by Definition 28. Hence ai+1 6∈ acts(B)(t).

Hence there exists a configuration Dj+1 such that Dj
ai+1=⇒ϕDj+1 and Ci+1 �AB Dj+1, where

ϕ = created(Y)(ai+1). This is because all the SIOA A′ ∈ auts(Ci) that participate in ai+1 are the
same as the SIOA in A′ ∈ auts(Dj) that participate in ai+1, by Definition 28. Thus these A′ can
execute exactly the same transitions in both cases, and end up in the same states.

SinceX is creation-deterministic, created(X)(xi)(ai+1) = created(X)(β) where β = traceX(α′′).
By Proposition 31, traceY (π′′) = traceX(α′′). Since Y is creation-deterministic, we have
created(Y)(yj)(ai+1) = created(Y)(β). Now, by Clause 5, created(Y)(β) = created(X)(β)[B/A].
Hence the same SIOA are created in both cases. So, there exists an intrinsic transition Dj

ai+1=⇒ϕDj+1

that will create the new SIOA in the same initial state that they have in Ci+1.

By Constraint 3 of Definition 18, there exists (yj , ai+1, yj+1) ∈ steps(Y) with config(Y)(yj+1) =
Dj+1. So let m(i+ 1) = j + 1, and π′ = π′′_ (yjai+1yj+1). Hence π′ is a finite execution of Y .

We have α′′RAB π′′ by (ind hyp). Extend the mapping m given by Definition 32 so that
m(|α′|) = |π′|. Then α′RAB π′ since α′, π′ extend α′′, π′′ respectively by a single transition which
executes ai+1 in both cases. In particular, traceY ((yj , ai+1, yj+1)) = traceX((xi, ai+1, xi+1)) since
the transitions correspond, and traceB((yj , ai+1, yj+1)��B) = traceA((xi, ai+1, xi+1)��A), since the
projections are, in both cases, the external signature of B,A in Dj , Ci respectively, and these are
equal. The external signature of A does not change from xi to xi+1, since A does not participate
in ai+1. Likewise the external signature of B does not change from yi to yi+1. Hence all clauses in
Definition 32 are satisfied, and so α′RAB π′.

Also π′��B = π′′��B by construction, and so π′��B � (π1
B, . . . , π

m
B) since π′′��B � (π1

B, . . . , π
m
B)

by (ind hyp).

Hence the induction step is established for case 2.

Case 3: ai+1 is an internal action of A in xi, i.e., A ∈ auts(Ci)∧ai+1 ∈ int(A)(s) where s = map(Ci).

By compatibility, ai+1 is not an action of any SIOA in Ci other than A. Hence ai+1 is not an
action of any SIOA in Dj other than B, since these are the same SIOA as in Ci, and they are in
the same states in both configurations.

We have α′′��A� (α1
A, . . . , α

m
A). Let s be the last state of the last execution in the sequence of

executions α′′��A. Since A participates in ai+1, it follows that there is a transition s
ai+1−→A s

′ along
(α1

A, . . . , α
m
A). Let t be the last state of the last execution in the sequence of executions π′′��B.

By π′′��B � (π1
B, . . . , π

m
B), and Clauses 3 and 4, it follows that there is an execution fragment δB

48

(consisting solely of internal actions of B) along π1
B, . . . , π

m
B that starts in t and has the same trace

as s
ai+1−→A s

′, i.e., traceB(δB) = traceA((sai+1s
′)).

Construct the sequence of configurations, starting in Dj , resulting from this execution frag-
ment, with the SIOA in Dj other than B not making any transitions. Then construct the corre-
sponding execution fragment δ of Y , which exists by Constraint 3 of Definition 18, and which starts
in yj (the last state of π′′). Since all actions are internal, and X,Y are both creation-deterministic,
no new SIOA are created in any transition of δ, or along xi

ai+1−→X xi+1, the transition that extends
α′′ to α′.

We have α′′RAB π′′ by (ind hyp). Extend the mapping m given by Definition 32 so that
m(i + 1) = m(i) + |δ|, and extend π′′ with δ to obtain π′. By this construction, all clauses of
Definition 32 hold for α′, π′, and so α′RAB π′.

Also π′′��B � (π1
B, . . . , π

m
B) by (ind hyp). π′ is obtained by extending π′′ by δB, which is

an execution fragment along π1
B, . . . , π

m
B that starts in t, the last state of π′′��B. It follows by

Definition 31 that π′��B � (π1
B, . . . , π

m
B).

Hence the induction step is established for case 3.

Case 4: ai+1 is an external action of A in xi, i.e., A ∈ auts(Ci) ∧ ai+1 ∈ êxt(A)(s) where s =
map(Ci).

Let s be the last state of the last execution in the sequence of executions α′′��A. Since A
participates in ai+1, it follows that there is a transition s

ai+1−→A s
′ along (α1

A, . . . , α
m
A). Let tj be

the state of B in Dj (recall that Dj is the configuration of yj , the last state of π′′). Then, by
π′′��B � (π1

B, . . . , π
m
B) and clauses 3 and 4, there exists an execution fragment δB of B, starting in

tj , and consisting entirely of internal actions of B except for the last action, which is ai+1. Also
this execution fragment lies along π′′��B. Furthermore, traceB(δB) = traceA((sai+1s

′)).

δB can be applied starting from Dj , to generate a sequence of intrinsic transitions. Hence there
exist Dj , Dj+1, . . . , Dj+`, where ` = |δB|, such that Dj+k

τk=⇒∅Dj+k+1 for all k ∈ [0 : ` − 2], where
τk is the executed internal action of B. Also, Dj+`−1

ai+1=⇒ϕDj+` for some ϕ.

By Constraint 3 of Definition 18, for all k ∈ [1 : `], we have yj+k
τk−→Y yj+k+1. Also

yj+`−1
ai+1−→Y yj+`. Let π′ be π′′ followed by these transitions, i.e.,

π′ = y0b1y1b2y2 . . . yj−1ajyjτ0yj+1 · · · yj+`−2τ`−2yj+`−1ai+1yj+`. Now ϕ = created(Y)(yj+`−1)(ai+1)
= created(Y)(β), where β = trace(y0b1y1b2y2 . . . yj−1ajyjτ0yj+1 · · · yj+`−2τ`−2yj+`−1). By construc-
tion, and in particular, traceB(δB) = traceA((sai+1s

′)), we have
trace(y0b1y1b2y2 . . . yj−1ajyjτ0yj+1 · · · yj+`−2τ`−2yj+`−1) = trace(α′′). So, by Clause 5 and creation-
determinism of X,Y , we have created(Y)(yj+`−1)(ai+1) = created(X)(xi)(ai+1)[B/A] =
created(X)(xi)(ai+1), since A,B are already alive. Since the τ0, . . . , τ`−2 actions are internal and
so do not create any new SIOA, we have that Ci+1 �AB Dj+`, since A,B end up in states with the
same external signatures, and all other SIOA (if involved in ai+1) end up in the same state in both
Ci+1 and Dj+`.

We have α′′RAB π′′ by (ind hyp). Extend the mapping m given by Definition 32 so that
m(i+ 1) = m(i) + `, and let π′ be as given above. By this construction, all clauses of Definition 32
hold for α′, π′, and so α′RAB π′.

Also π′′��B � (π1
B, . . . , π

m
B) by (ind hyp). π′ is obtained by extending π′′ by δB, which is

an execution fragment along π1
B, . . . , π

m
B that starts in tj , the last state of π′′��B. It follows by

49

Definition 31 that π′��B � (π1
B, . . . , π

m
B).

Hence the induction step is established for case 4.

Having established the induction step in all cases, we conclude that (*) holds. Since α′ is any
prefix of α, we can instantiate α′ to α, which gives us that there exists π such that αRAB π, and
we are done.

Theorem 33 (Monotonicity of finite-trace inclusion w.r.t. SIOA creation) Let X,Y be
creation-deterministic configuration automata and A,B be SIOA. If

1. B has a single start state

2. ∀x ∈ start(X),∃y ∈ start(Y) : config(X)(x) �AB config(Y)(y)

3. traces∗(A) ⊆ traces∗(B)

4. ttraces(A) ⊆ ttraces(B)

5. ∀β ∈ traces∗(X) ∩ traces∗(Y) : created(Y)(β) = created(X)(β)[B/A]

then
traces∗(X) ⊆ traces∗(Y).

Proof: Immediate from Lemma 32 and Proposition 31.

Theorem 34 (Monotonicity of trace inclusion w.r.t. SIOA creation) Let X,Y be creation-
deterministic configuration automata and A,B be SIOA. If

1. B has a single start state

2. ∀x ∈ start(X),∃y ∈ start(Y) : config(Y)(y) = config(X)(x)[B/A]

3. traces(A) ⊆ traces(B)

4. ttraces(A) ⊆ ttraces(B)

5. ∀β ∈ traces(X) ∩ traces(Y) : created(Y)(β) = created(X)(β)[B/A]

then
traces(X) ⊆ traces(Y).

Proof: Let α = x0a1x1a2x2 . . . be an arbitrary execution of X. We show that there exists a
“corresponding” execution π of Y such that αRAB π. Proposition 31 then implies trace(α) =
trace(α′), which yields the desired traces(X) ⊆ traces(Y).

If α is finite, then the result follows from Lemma 32. So, we assume that α is infinite. Let α1

be an arbitrary prefix of α. Then, by Lemma 32 there exists a finite execution π1 of Y such that
α1RAB π1. Likewise, if α1 < α2 and α2 < α then there exists a finite execution π2 of Y such that
α2RAB π2. Furthermore, we can show that π1 < π2 since π2 can be chosen to be an extension of
π1, as the proof of Lemma 32 constructs π1 and then π2 by induction on their length.

50

Since α is infinite, there exists an infinite set {αi | i ≥ 0} of finite executions of X such that
∀i ≥ 0 : αi < αi+1∧αi < α. Repeating the above argument for arbitrary i ≥ 0, we obtain that there
exists an infinite set {πi | i ≥ 0} of finite executions of Y such that ∀i ≥ 0 : πi < πi+1 ∧ αiRAB πi.
Now let π be the unique infinite execution of Y that satisfies ∀i ≥ 0 : πi < π. Then, by Definition 32,
αRAB π, and so π is the required execution of Y .

Corollary 35 (Trace equivalence w.r.t. SIOA creation) Let X,Y be creation-deterministic
configuration automata and A,B be SIOA. If

1. B has a single start state

2. ∀x ∈ start(X),∃y ∈ start(Y) : config(Y)(y) = config(X)(x)[B/A]

3. traces(A) = traces(B)

4. ttraces(A) = ttraces(B)

5. ∀β ∈ traces(X) ∩ traces(Y) : created(Y)(β) = created(X)(β)[B/A]

then
traces(X) = traces(Y).

Proof: Immediate by applying Theorem 34 in both directions of trace containment.

In Section 8 below, we present an example of a flight ticket purchase system. A client submits
requests to buy an airline ticket to a client agent. The client agent creates a request agent for
each request. The request agent searches through a set of appropriate databases where the request
might be satisfied. Upon booking a suitable flight, the request agent returns confirmation to the
client agent and self-destructs. A typical safety property is that if a flight booking is returned to
a client, then the price of the flight is not greater than the maximum price specified by the client.
The request agent in this example searches through databases in any order. Suppose we replace it
by a more refined agent that searches through databases according to some rules or heuristics, so
that it looks first at the databases more likely to have a suitable flight. Then, Theorem 33 tells us
that this refined system has all of the safety properties which the original system has.

7 Modeling Dynamic Connection and Locations

We stated in the introduction that we model both the dynamic creation/moving of connections, and
the mobility of agents, by using dynamically changing external interfaces. The guiding principle
here, adapted from [23], is that an agent should only interact directly with either (1) another co-
located agent, or (2) a channel one of whose ends is co-located with the agent. Thus, we restrict
interaction according to the current locations of the agents.

We adopt a logical notion of location: a location is simply a value drawn from the domain
of “all locations.” To codify our guiding principle, we partition the set of SIOA into two subsets,
namely the set of agent SIOA, and the set of channel SIOA. Agent SIOA have a single location,
and represent agents, and channel SIOA have two locations, namely their current endpoints. We
assume that all configurations are compatible, and codify the guiding principle as follows: for any

51

configuration, the following conditions all hold, (1) two agent SIOA have a common external action
only if they have the same location, (2) an agent SIOA and a channel SIOA have a common external
action only if one of the channel endpoints has the same location as the agent SIOA, and (3) two
channel SIOA have no common external actions.

8 Extended Example: A Travel Agent System

Our example is a simple flight ticket purchase system. A client requests to buy an airline ticket.
The client gives some “flight information,” f , e.g., route and acceptable times for departure, arrival
etc., and specifies a maximum price f .mp they can pay. f contains all the client information,
including mp, as well as an identifier that is unique across all client requests. The request goes to
a static (always existing) “client agent,” who then creates a special “request agent” dedicated to
the particular request. That request agent then visits a (fixed) set of databases where the request
might be satisfied. If the request agent finds a satisfactory flight in one of the databases, i.e., a
flight that conforms to f and has price ≤ mp, then it purchases some such flight, and returns a
flight descriptor fd giving the flight, and the price paid (fd .p) to the client agent, who returns it to
the client. The request agent then terminates. The agents in the system are:

1. ClientAgt , who receives all requests from the client,

2. ReqAgt(f), responsible for handling request f , and

3. DBAgtd, d ∈ D, the agent (i.e., front-end) for database d, where D is the set of all databases
in the system.

We augment the pseudocode used in the mobile phone example by identifying SIOA using a
“type name” followed by some parameters. This is only a notational convenience, and is not part
of our model.

Figure 8 presents a specification automaton, which is a single SIOA that specifies the set of
correct traces. Figures 9 and 10 then give the client agent and request agents of an implementation
(the database agents provide a straightforward query/response functionality, and are omitted for
lack of space). When writing sets of actions, we make the convention that all free variables are
universally quantified over their domains, so, e.g., {informd(f ,flts), confd(fd , ok?)} within action
selectd(f) below really denotes {informd(f ,flts), confd(fd , ok?) | fd ∈ F ,flts ⊆ F , ok? ∈ Bool}.

In the implementation, we enforce locality constraints by modifying the signature of ReqAgt(f)
so that it can only query a database d if it is currently at location d (we use the database names
for their locations). We allow ReqAgt(f) to communicate with ClientAgt regardless of its location.
A further refinement would insert a suitable channel between ReqAgt(f) and ClientAgt for this
communication (one end of which would move along with ReqAgt(f)), or would move ReqAgt(f)
back to the location of ClientAgt .

We now give the client agent and request agents of the implementation. The initial configura-
tion consists solely of the client agent ClientAgt .

ClientAgt receives requests from a client (not portrayed), via the request input action. ClientAgt
accumulates these requests in reqs, and creates a request agent ReqAgt(f) for each one, via the out-
put action create. This is indicated by the pseudocode “creates SIOA ReqAgt(f)”. Upon receiving
a response from the request agent, via input action req-agent-response, the client agent adds the

52

Specification: Spec

Signature
Input:

request(f), where f ∈ F
informd(f , flts), where d ∈ D, f ∈ F , and flts ⊆ F
confd(f , fd , ok?), where d ∈ D, f , fd ∈ F , and ok? ∈ Bool
selectd(f), where d ∈ D and f ∈ F
adjustsig(f), where f ∈ F
initially: {request(f) : f ∈ F} ∪ {selectd(f) : d ∈ D, f ∈ F}

Output:
queryd(f), where d ∈ D and f ∈ F
buyd(f , flts), where d ∈ D, f ∈ F , and flts ⊆ F
response(f , fd , ok?), where f , fd ∈ F and ok? ∈ Bool
initially: {response(f , fd , ok?) : f , fd ∈ F , ok? ∈ Bool}

Internal:
∅
constant

State
statusf ∈ {notsubmitted, submitted, computed, replied}, status of request f , initially notsubmitted

transf ,d ∈ Bool , true iff the system is currently interacting with database d on behalf of request f , initially false

okfltsf ,d ⊆ F , set of acceptable flights that has been found so far, initially empty

resps ⊆ F × F × Bool , responses that have been calculated but not yet sent to client, initially empty

xf ,d ∈ N , bound on the number of times database d is queried on behalf of request f before a negative reply is returned to
the client, initially any natural number greater than zero

Actions
Input request(f)
Eff: statusf ← submitted

Input selectd(f)
Eff: in ←

(in ∪ {informd(f ,flts), confd(fd , ok?)}) −
{informd′ (f ,flts), confd′ (fd , ok?) : d′ 6= d};

out ←
(out ∪ {queryd(f), buyd(f , fd)}) −
{queryd′ (f), buyd′ (f , fd) : d′ 6= d}

Output queryd(f)
Pre: statusf = submitted ∧ xf ,d > 0
Eff: xf ,d ← xf ,d − 1;

transf ,d ← true

Input informd(f ,flts)
Eff: okfltsf ,d ← okfltsf ,d ∪

{fd : fd ∈ flts ∧ fd .p ≤ f .mp}

Output buyd(f ,flts)
Pre: statusf = submitted ∧

flts = okfltsf ,d 6= ∅ ∧ transf ,d

Eff: skip

Input confd(f , fd , ok?)
Eff: transf ,d ← false;

if ok? then
resps ← resps ∪ {〈f , fd , true〉};
statusf ← computed

else
if ∀d : xf ,d = 0 then

resps ← resps ∪ {〈f ,⊥, false〉};
statusf ← computed

else
skip

Output response(f , fd , ok?)
Pre: 〈f , fd , ok?〉 ∈ resps ∧ statusf = computed
Eff: statusf ← replied

Input adjustsig(f)
Eff: in ← in−

{informd(f ,flts), confd(f , fd , ok?)};
out ← out−

{queryd(f), buyd(f , fd)}

Figure 8: The specification automaton

53

Client Agent: ClientAgt

Signature
Input:

request(f), where f ∈ F
req-agent-response(f , fd , ok?), where f , fd ∈ F , and ok? ∈ Bool
constant

Output:
response(f , fd , ok?), where f , fd ∈ F and ok? ∈ Bool
create(ClientAgt , ReqAgt(f)), where f ∈ F
constant

Internal:
∅
constant

State
reqs ⊆ F , outstanding requests, initially empty

created ⊆ F , outstanding requests for whom a request agent has been created, but the response has not yet been returned to
the client, initially empty

resps ⊆ F × F × Bool , responses not yet returned to client, initially empty

Actions
Input request(f)
Eff: reqs ← reqs ∪ {〈f 〉}

Output create(ClientAgt ,ReqAgt(f))
Pre: f ∈ reqs ∧ f 6∈ created
Eff: created ← created ∪ {f };

creates SIOA ReqAgt(f)

Input req-agent-response(f , fd , ok?)
Eff: resps ← resps ∪ {〈f , fd , ok?〉};

done ← done ∪ {f }

Output response(f , fd , ok?)
Pre: 〈f , fd , ok?〉 ∈ resps
Eff: resps ← resps − {〈f , fd , ok?〉}

Figure 9: The client agent

54

response to the set resps, and subsequently communicates the response to the client via the response
output action. It also removes all record of the request at this point.

ReqAgt(f) handles the single request f , and then terminates itself. ReqAgt(f) has initial
location c (the location of ClientAgt) traverses the databases in the system, querying each database
d using queryd(f). Database d returns a set of flights that match the schedule information in f .
Upon receiving this (informd(f ,flts)), ReqAgt(f) searches for a suitably cheap flight (the ∃fd ∈ flts :
fd .p ≤ f .mp condition in informd(f ,flts)). If such a flight exists, then ReqAgt(f) attempts to buy
it (buyd(f ,flts) and confd(f , fd , ok?)). If successful, then ReqAgt(f) returns a positive response to
ClientAgt and terminates. ReqAgt(f) queries each database at most once, and attempts to buy a
ticket from each database at most once. ReqAgt(f) can return a negative response if it has queried
each database once and failed to buy a ticket.

The implementation refines the specification (provided that all actions except request(f) and
response(f , fd , ok?) are hidden) since the implementation queries each database exactly once before
returning a negative response, whereas the specification queries each database some finite number
of times before doing so. Thus, the traces of the implementation are a subset of the traces of
the specification. If the specification were replaced by the implementation within the context of
a specification for a larger system, (e.g., also involving specifications for other services such as
hotel and rental car booking), then we could apply Theorem 17 to infer that the traces of the
resulting system are a subset of the traces of the initial system. Thus, we can in turn replace each
specification by its implementation, and have trace-containment guaranteed.

Now suppose that we replace ReqAgt(f) by another agent ReqAgt ′(f) whose behavior is more
constrained in that ReqAgt ′(f) does not move arbitrarily from one database d to another d′, but
selects the destination d′ according to a heuristic function next() that attempts to maximize the
probability of finding a suitable flight. In other words, the precondition of movef (d, d′) action
is changed from location = d ∧ d′ ∈ D− remaining ∧ status = unknown to location = d ∧ d′ ∈
D−remaining ∧ status = unknown ∧ d′ = next(). This change implies that traces(ReqAgt ′(f)) ⊆
traces(ReqAgt(f)) and ttraces(ReqAgt ′(f)) ⊆ ttraces(ReqAgt(f)), since the behaviors of ReqAgt ′(f)
are more constrained than ReqAgt(f).

Let CA be the configuration automaton that is “generated” by ClientAgt and all the ReqAgt(f),
i.e., the configuration automaton whose initial states correspond to the initial states of ClientAgt ,
and whose transitions are those generated by the intrinsic transitions of the configurations consisting
of ClientAgt and all created ReqAgt(f). Let CA′ be similar, except that ReqAgt ′(f) is created instead
of ReqAgt(f)

From the “initially” statements in the I/O automaton pseudocode in Figure 10, we see that
ReqAgt(f) has a single initial state, and so Clause 1 of Theorem 34 is satisfied. Since the initial
states of CA and CA′ correspond, Clause 2 of Theorem 34 is satisfied. Since the SIOA created by
create(ClientAgt ,ReqAgt(f)) does not depend on the previous execution up to this point, we see that
both configuration automaton are creation-deterministic, and that Clause 5 of Theorem 34 is satis-
fied. Since traces(ReqAgt ′(f)) ⊆ traces(ReqAgt(f)) and ttraces(ReqAgt ′(f)) ⊆ ttraces(ReqAgt(f)),
we have that Clause 3 and Clause 4 are satsified. Hence we can apply Theorem 34 to conclude
traces(CA′) ⊆ traces(CA).

This example illustrates one way of satisfying the creation determinism requirement, as well as
Clause 5 of Theorem 34: any action which creates an SIOA will create the same SIOA. regardless
of the previous execution history up to the current state.

55

Request Agent: ReqAgt(f) where f ∈ F

Signature
Input:

informd(f , flts), where d ∈ D and flts ⊆ F
confd(f , fd , ok?), where d ∈ D, fd ∈ F , and ok? ∈ Bool
terminate(ReqAgt(f))
initially: {movef (c, d), where d ∈ D}

Output:
queryd(f), where d ∈ D
buyd(f , flts), where d ∈ D and flts ⊆ F
req-agent-response(f , fd , ok?), where fd ∈ F and ok? ∈ Bool
initially: ∅

Internal:
movef (c, d), where d ∈ D
movef (d, d′), where d, d′ ∈ D and d 6= d′

constant

State
location ∈ c ∪ D, location of the request agent, initially c, the location of ClientAgt

status ∈ {purchased, failed, unknown}, status of request f , initially notsubmitted

transd ∈ Bool , true iff ReqAgt(f) is currently interacting with database d (on behalf of request f), initially false

D−remaining ⊆ D, databases that have not yet been queried, initially the list of all databases D

tkt ∈ F , the flight ticket that ReqAgt(f) purchases on behalf of the client, initially ⊥

okfltsd ⊆ F , set of acceptable flights that ReqAgt(f) has found so far, initially empty

queriedd, boolean flag, true when database d has been queried, initially false.

orderedd, boolean flag, true when a purchase order for a ticket has been submitted to database d, initially false.

Actions
Internal movef (c, d)
Pre: location = c
Eff: location ← d;

transd ← true;
D−remaining← D−remaining − {d};
in ← {informd(f ,flts), confd(f , fd , ok?)};
out ← {queryd(f), buyd(f , fd),

req-agent-response(f , fd , ok?)};

Output queryd(f)
Pre: location = d ∧ d ∈ D−remaining ∧ ¬queriedd
Eff: queriedd ← true;

Input informd(f ,flts)
Eff: okfltsd ← okfltsd ∪

{fd : fd ∈ flts ∧ fd .p ≤ f .mp};
if okfltsd = ∅ then

transd ← false;

Output buyd(f ,flts)
Pre: location = d ∧ flts = okfltsd 6= ∅ ∧

tkt = ⊥ ∧ transd ∧ ¬orderedd

Eff: orderedd ← true

Input confd(f , fd , ok?)
Eff: transd ← false;

if ok? then
tkt ← fd ;
status ← purchased

else
if D−remaining = ∅ then

status ← failed

Internal movef (d, d′)
Pre: location = d ∧ d′ ∈ D−remaining ∧ status = unknown
Eff: location ← d′;

in ← {informd′ (f ,flts), confd′ (f , fd , ok?)};
out ← {queryd′ (f), buyd′ (f , fd),

req-agent-response(f , fd , ok?)};

Output req-agent-response(f , fd , ok?)
Pre: (status = purchased ∧ fd = tkt 6= ⊥ ∧ ok?) ∨

(status = failed ∧ fd = ⊥ ∧ ¬ok?)
Eff: in ← ∅;

out ← ∅;
int ← ∅

Figure 10: The request agent

56

9 Related Work

Formalisms for the modeling of dynamic systems can generally be classified as being based on
process algebras or on automata/state transition systems.

The π-calculus [23] is a process algebra that includes the ability to modify the channels between
processes: channels are referred to by names, and a name y can be sent along a known channel to
a recipient, which then acquires the ability to use the channel named by y. The π-calculus adopts
the viewpoint that mobility of processes is modelled by changing the links that a process can use to
communicate, to quote from [23, page 78]: “the location of a process in a virtual space of processes
is determined by the links which it has to other processes; in other words, your neighbors are those
you can talk to.” Process creation is given in the π-calculus by the ! operator: the process !P can
create an unlimited number of copies of P . We can emulate this feature by having a configuration
automaton which can create an unlimited number of copies of an SIOA.

The asynchronous π-calculus [14] is an asynchronous version of the π-calculus where receipt
of a name along a channel occurs after it is sent, rather than synchronously, as in the original
π-calculus. The higher-order π-calculus allows sending processes themselves as messages along
channels [24]. In terms of how mobility is modeled, DIOA is therefore similar to the π-calculus in
that we also model mobility in terms of signature change.

The distributed join-calculus [11] extends the π-calculus with notions of explicit location,
failure, and failure detection. Locations are hierarchical, and are modelled as trees. Locations
reside at a physical site and can move atomically to another physical site, taking their entire
subtree of locations with them. A failed location is tagged by a marker. All sublocations of a failed
location are also failed.

The Distributed π-calculus Dπ [27] is another extension of the π-calculus that deals with
distribution issues. Dπ provides tree-structures locations, and each basic process (thread) is located
at some location. Channels are also located, and a process can send a value on a channel only if
it is at the same location as the channel. Channel and locations also have permissions associated
with them, and which constrain their use. These constraints are enforced by a type system.

The ambient calculus [7] takes as primitive notions agents, which execute actions, and ambients.
An ambient is a “space” which agents can enter, leave, and open. Ambients may be nested, and are
mobile. A process in the ambient calculus is either an agent or an ambient. The ambient calculus
is intended to model, e.g., administrative domains in the world-wide web.

The above process algebras have a formal syntax for process expressions, and a fixed set of
reaction rules, which give the possible reductions between expressions. Reasoning about behaviour
is carried out using notions of equivalence and congruence: observational equivalence, weak and
strong bisimulation, barbed bisimulation, etc.

DIOA makes a different choice of primitive notion, it chooses actions and automata as primitive,
and does not include channels and their transmission as primitive. Our approach is also different
in that it is primarily a (set-theoretic) mathematical model, rather than a formal language and
calculus. We expect that notions such as channel and location will be built upon the basic model
using additional layers (as we do for modeling mobility in terms of signature change). Also, we
ignore issues (e.g., syntax) that are important when designing a programming language. Note that
the “precondition effect” notation used in the travel agent example is informal, and used only for
exposition. Reasoning about behaviour is carried out using trace substitutivity: the monotonicity
of parallel composition, action hiding, action renaming, and SIOA creation (subject to technical

57

conditions) with respect to trace inclusion. A consequence of our results is that trace equivalence
is a congruence with respect to parallel composition, action hiding, and action renaming.

One key difference between DIOA and process algebras is that most behavioral equivalence
notions for process algebras are based on simulation relations, and so entail examining the state
transition structure of the two systems being compared. DIOA on the other hand uses trace
substitutivity and trace equivalence, which are based only on the externally visible behavior. In
practice one would use simulations relations to establish trace inclusion, so this difference may not
matter so much, but it does provide room for methods of establishing trace inclusion apart from
simulation relations.

Bigraphs [25] were introduced by Milner as a model for ubiquitous computing systems con-
taining large numbers of mobile agents, and are founded on two main notions: placing and linking
[25, prologue]. A bigraph over a given set of nodes V consists of two independent (and indepen-
dently modifiable) components: a place graph, which is a forest over V , and a link graph, which
is a hypergraph over V . The place graph models location: nodes in a place graph are similar to
ambients, and can move inside other nodes, and out of nodes that are ancestors in the place graph.
The link graph models connectivity: hyperedges in the link graph represent connectivity. Unlike
the process algebras discussed above, bigraphs do not come with a fixed set of reaction rules, and
their behavioral theory is given with respect to a set of unspecified reaction rules [15].

A rough analogy can be drawn between the structure of Bigraphs and DIOA: the place graph
is analogous to the nesting of a configuration automata inside the configuration automaton which
created it, and the hyperedges of the link graph are analogous to actions, which can have several
SIOA as participants. The input enabling condition destroys this analogy to some extent, but we
note that we did not use input enabling to derive any of our results, and it can possibly be dispensed
with. Detailed investigation of the relation between Bigraphs and DIOA is a topic for future work.

Among state-based formalisms for dynamic models, we mention Dynamic BIP and Dynamic
Reactive Modules. Dynamic Reactive Modules [10] are a dynamic extension of reactive modules [1].
New modules can be created as instances of module class definitions, using a new command, as in
object-oriented languages. The new command returns a reference to the newly created instance,
which can be stored in a reference variable, and passed to other module instances as a paramenter,
upon their creation. A module instance that has a reference to another module instance can then
read the other modules externally visible variables. The semantics of dynamic reactive modules
are given by dynamic discrete systems [10], which extend fair discrete systems [16] to model the
creation of module instances.

BIP [4] is a framework for constructing systems by superposing three layers of modeling:
behavior, interaction, and priority (hence BIP). An atomic component is a labeled transition system
extended with ports, which label its transitions. A (multiparty) interaction is a synchronous event
which involves a fixed set of participating atomic components. Syntactically, an interaction is
specified as a set of ports, with at most one port from each atomic component. Execution of a
multiparty interaction involves the synchronous execution of a transition labeled by the relevant
port in each participating component. BIP provides both syntax and semantics, and has been
implemented in the BIP execution Engine [5]. Dynamic BIP, or Dy-BIP, [6] extends BIP by
allowing the set of interactions to change dynamically with the current global state. The possible
interactions in a state are computed as maximal solutions of constraints. Dy-BIP does not include
the dynamic creation and destruction of component instances. This is for simplicity, and is not
a fundamental limitation. Dy-BIP is thus similar to our SIOA, whose signatures are functions of
their state. However Dy-BIP provides a syntax for writing interaction constraints, and these have

58

been implemented in the BIP execution Engine.

In summary, our model is based on the I/O automaton model [20], which has been successfully
applied to the design of many difficult distributed algorithms, including ones for resource allocation
[19, 28], distributed data services [8], group communication services [9], distributed shared memory
[22, 18], and reliable multicast [17]. In our model, all processes have unique identifiers, and the
notion of a subsystem is well defined. Subsystems can be built up hierarchically. Together with
our results regarding the monotonicity of trace inclusion, this provides a semantic foundation for
compositional reasoning. In contrast, process calculi tend to use a more syntactic approach, by
showing that some notion of simulation or bisimulation is preserved by the operators that are used
to define the syntax of processes (e.g., parallel composition, choice, action prefixing).

10 Conclusions and Further Research

We presented a model, DIOA, of dynamic computation based on I/O automata. The features of
dynamic computation that DIOA expresses directly are (1) modification of communication and
synchronization capabilities, i.e., SIOA signature change, and (2) creation of new components, i.e.,
configuration automata and configuration mappings. Other aspects of dynamic computation, such
as location and migration, are modeled indirectly using the above-mentioned features.

For SIOA, we established standard results of (1) monotonicity of trace inclusion (trace substitu-
tivity), and (2) trace equivalence as a congruence, both with respect to the operations of concurrent
composition, action hiding, and action renaming. For configuration automata and the operation
of SIOA creation, we gave an example showing that trace inclusion is not always monotonic with
respect to SIOA creation. This is in contrast to most process algebras, where the simulation rela-
tion used is shown to be a congruence with respect to process creation. This somewhat surprising
result stems from our use of trace inclusion and trace equivalence for relating different systems.
Trace inclusion and trace equivalence abstract away from the internal branching structure of the
transition system, and this accounts for the violation of trace inclusion monotonicity. We then
presented some technical assumptions under which trace inclusion is monotonic with respect to
SIOA creation. In addition to trace inclusion, we need to also assume inclusion of terminating
traces (traces of terminating executions), along with restrictions on when the substituted SIOA
can be created.

Our model provides a very general framework for modeling process creation: creation of an
SIOA A is a function of the state of the “containing” configuration automaton, i.e., the global state
of the “encapsulated system” which creates A. This generality was useful in enabling us to define
a connection between SIOA creation and external behavior that yielded Theorems 33 and 34.

For future work, the most pressing concern is to devise a notion of forward simulation for
DIOA, and to show that it implies trace inclusion. Clearly, the state correspondence must match
not only the outgoing transitions, but also the external signatures in the corresponding states.

We intend to investigate the relationship between DIOA and π-calculus, and to look into
embedding the π-calculus into DIOA. This should provide insight into the implications of the choice
of primitive notion; automata and actions for DIOA versus names and channels for π-calculus. The
work of [26], which provides a process-algebraic view of I/O automata, could be a starting point
for this investigation. We note that the use of unique SIOA identifiers is crucial to our model:
it enables the definition of the execution projection operator, and the establishment of execution
projection/pasting and trace pasting results. This then yields our trace substitutivity result. The

59

π-calculus does not have such identifiers, and so the only compositionality results in the π-calculus
are with respect to simulation, rather than trace inclusion. Since simulation is incomplete with
respect to trace inclusion, our compositionality result has somewhat wider scope than that of the
π-calculus. When the traces of A are included in those of B, but there is no simulation from A
to B, our approach will allow B to be replaced by A, and we can automatically conclude that
correctness is preserved, i.e., no new behaviors are introduced in the overall system.

We will explore the use of DIOA as a semantic model for object-oriented programming. Since
we can express dynamic aspects of OOP, such as the creation of objects, directly, we feel this is a
promising direction. Embedding a model of objects into DIOA would provide a foundation for the
verification and refinement of OO programs.

Agent systems should be able to operate in a dynamic environment, with processor failures,
unreliable channels, and timing uncertainties. Thus, we need to extend our model to deal with
fault-tolerance and timing.

Pure liveness properties are given by a set of live traces. A live trace is the trace of a live
execution, and a live execution is one which meets a specified liveness condition [3, 12]. Refinement
with respect to liveness properties is dealt with by inclusion relations amongst the sets of live traces
only. In [3], a method is given for establishing live trace inclusion, by using a notion of forward
simulation that is sensitive to liveness properties. Extending this method to SIOA will enable the
refinement and verification of liveness properties of dynamic systems.

References

[1] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

[2] P. C. Attie. Liveness-preserving simulation relations. In 18th Annual ACM Symposium on the
Principles of Distributed Computing, pages 63 – 72, May 1999.

[3] Paul C. Attie. On the refinement of liveness properties of distributed systems. Formal Methods
in System Design, 39(1):1–46, 2011. Preliminary version appears as [2].

[4] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-
Hung Nguyen, and Joseph Sifakis. Rigorous component-based system design using the bip
framework. IEEE Software, 28(3):41–48, 2011.

[5] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and Joseph Sifakis. A
framework for automated distributed implementation of component-based models. Distributed
Computing, 25(5):383–409, 2012.

[6] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. Modeling dynamic ar-
chitectures using dy-bip. In Thomas Gschwind, Flavio De Paoli, Volker Gruhn, and Matthias
Book, editors, Software Composition, volume 7306 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2012.

[7] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

60

[8] A. Fekete, D. Gupta, V. Luchangco, N. A. Lynch, and A. Shvartsman. Eventually-serializable
data service. Theoretical Computer Science, 220(1):113–156, jun 1999. Special Issue on Dis-
tributed Algorithms.

[9] A. Fekete, N. A. Lynch, and A. Shvartsman. Specifying and using a partitionable group
communication service. ACM Transactions on Computer Systems, 19(2):171–216, May 2001.

[10] J. Fisher, T.A. Henzinger, D. Nickovic, A.V. Singh, N. Piterman, and M.Y. Vardi. Dynamic
reactive modules. In 22nd International Conference on Concurrency Theory, Lecture Notes in
Computer Science. Springer-Verlag, 2011.

[11] Cedric Fournet, Georges Gonthier, Jean-Jacques Levy, Luc Maranget, and Didier Remy. A
calculus of mobile agents. In Proceedings of the 7th International Conference on Concurrency
Theory (CONCUR’96), Springer-Verlag, LNCS 1119, pages 406–421, Aug. 1996.

[12] R. Gawlick, R. Segala, J.F. Sogaard-Andersen, and N.A. Lynch. Liveness in timed and untimed
systems. iandc, 141(2):119–171, Mar. 1998.

[13] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, 1990.

[14] Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP, pages
133–147. Springer-Verlag, 1991.

[15] Ole Høgh Jensen and Robin Milner. Bigraphs and transitions. In Alex Aiken and Greg
Morrisett, editors, POPL, pages 38–49. ACM, 2003.

[16] Yonit Kesten and Amir Pnueli. Verification by augmented finitary abstraction. Inf. Comput.,
163(1):203–243, 2000.

[17] C. Livadas and N. A. Lynch. A formal venture into reliable multicast territory. In Moshe
Y. Vardi Doron Peled, editor, Formal Techniques for Networked and Distributed Systems -
FORTE 2002 (Proceedings of the 22nd IFIP WG 6.1 International Conference), volume 2529
of Lecture Notes in Computer Science, pages 146–161, Houston, Texas, USA, November 2002.
Springer. Also, full version in Technical Memo MIT-LCS-TR-868, MIT Laboratory for Com-
puter Science, Cambridge, MA, November 2002.

[18] Victor Luchangco. Memory Consistency Models for High Performance Distributed Comput-
ing. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, September 2001.

[19] N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, San Francisco, California, USA,
1996.

[20] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. Technical Re-
port CWI-Quarterly, 2(3):219–246, Centrum voor Wiskunde en Informatica, Amsterdam, The
Netherlands, Sept. 1989.

[21] Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Transactions. Morgan
Kaufmann, 1994.

61

[22] Nancy Lynch and Alex Shvartsman. RAMBO: A reconfigurable atomic memory service for
dynamic networks. In D. Malkhi, editor, Distributed Computing (Proceedings of the 16th
International Symposium on DIStributed Computing (DISC)), volume 2508 of Lecture Notes
in Computer Science, pages 173–190, Toulouse, France, October 2002. Springer-Verlag. Also,
Technical Report MIT-LCS-TR-856.

[23] R. Milner. Communicating and mobile systems: the π-calculus. Addison-Wesley, Reading,
Mass., 1999.

[24] Robin Milner. The polyadic pi-calculus: a tutorial. Technical report, Logic and Algebra of
Specification, 1991.

[25] Robin Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
2009.

[26] R. De Nicola and R. Segala. A process algebraic view of I/O automata. Theoretical Computer
Science, 138:391–423, mar 1995.

[27] J. Riely and M. Hennessy. A typed language for distributed mobile processes. In Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1998.

[28] J. Welch and N. A. Lynch. A modular Drinking Philosophers algorithm. Distributed Comput-
ing, 6(4):233–244, jul 1993.

62

