VARIATIONAL DERIVATION OF MODAL-NODAL FINITE DIFFERENCE EQUATIONS IN SPATIAL REACTOR PHYSICS

by

PATRICK G. BAILEY

B.S., University of California at Berkeley (1967)

M.S., Massachusetts Institute of Technology (1969)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

July, 1972

Signature of	Author	uclear Engine	erffig, July 18, 1972
Certified by	¥'		Thesis Supervisor
Certified by	2	ć	Thesis Supervisor
Accepted by	Cł	nairman, Depa	rtmental Committee on Graduate Students
	Arc	hives	
	UCT I	IST. TECH	

BRARIES

VARIATIONAL DERIVATION OF MODAL-NODAL

FINITE DIFFERENCE EQUATIONS IN

SPATIAL REACTOR PHYSICS

by

PATRICK G. BAILEY

Submitted to the Department of Nuclear Engineering on July 18, 1972, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

A class of consistent coarse mesh modal-nodal approximation methods is presented for the solution of the spatial neutron flux in multigroup diffusion theory. The methods are consistent in that they are systematically derived as an extension of the finite element method by utilizing general modal-nodal variational techniques. Detailed subassembly solutions, found by imposing zero current boundary conditions over the surface of each subassembly, are modified by piecewise continuous Hermite polynomials of the finite element method and used directly in trial function forms. Methods using both linear and cubic Hermite basis functions are presented and discussed.

The proposed methods differ substantially from the finite element methods in which homogeneous nuclear constants, homogenized by flux weighting with detailed subassembly solutions, are used. However, both schemes become equivalent when the subassemblies themselves are homogeneous.

One-dimensional, two-group numerical calculations using representative PWR nuclear material constants and 18-cm subassemblies were performed using entire subassemblies as coarse mesh regions. The results indicate that the proposed methods can yield comparable if not superior criticality measurements, comparable regional power levels, and extremely accurate subassembly fine flux structure with little increase of computational effort in comparison with existing coarse mesh methods.

Thesis Supervisors: Allan F. Henry Kent F. Hansen

Titles: Professors of Nuclear Engineering

ACKNOWLEDGMENTS

I would like to express my deep appreciation and sincerest gratitude to Dr. Allan F. Henry whose advice and consultation have been of considerable help during the course of this work. Thanks must also be extended to Dr. Kent F. Hansen, who reviewed the final manuscript and provided many beneficial discussions and programming assistance.

It has also been a privilege to have known and worked with the late Dr. T. J. Thompson, whose untimely death was a great loss to the nation as well as to the department at M.I.T., and Dr. Elias P. Gyftopoulos. Their insistence on high standards of education and quality as well as clarity of expression will continue to remain with me always.

Fellowship support by the U.S. Atomic Energy Commission is also gratefully acknowledged. The work was performed under USAEC Contract AT (30-1) - 3903. All computations were performed on IBM 360/65 and 370/155 computers at the M.I.T. Information Processing Center.

Special appreciation is extended to my wife, Alice, whose patience and understanding have provided immeasurable support throughout the course of this work.

Finally, special thanks are expressed to Mrs. Mary Bosco, who has once again demonstrated her expert ability as a superb technical typist. . . . Until one is committed there is hesitancy, the chance to draw back, always ineffectiveness. Concerning all acts of initiative (and creation), there is one elementary truth, the ignorance of which kills countless ideas and splendid plans: that the moment one definitely commits oneself, then Providence moves too. All sorts of things occur to help one that would never otherwise have occurred. A whole stream of events issues from the decision, raising in one's favor all manner of unforeseen incidents and meetings and material assistance, which no man could have dreamt would have come his way. I have learned a deep respect for one of Goethe's couplets:

> Whatever you can do, or dream you can, begin it. Boldness has genius, power, and magic in it.

> > -W.H. Murray

Great importance attaches to the material comforts of life, and equanimity, unconcern, security are all sacrificed to them. The American lives even more for his goals, for the future, than the European. Life for him is always becoming, never being.

- Albert Einstein 1921

"When someone is seeking," said Siddhartha, "it happens quite easily that he only sees the thing that he is seeking; that he is unable to absorb anything, because he is only thinking of the thing he is seeking, because he has a goal, because he is obsessed with his goal. Seeking means: to have a goal; but finding means: to be free, to be receptive, to have no goal. You, O worthy one, are perhaps indeed a seeker, for in striving toward your goal, you do not see many things that are under your nose."

- Hermann Hesse

TABLE OF CONTENTS

Abstract		2
Acknowledg	ments	3
List of Fig	ures	7
List of Tab	oles	10
Chapter 1.	Introduction	11
1.1 Pr	reface	11
1.2 Th Th	ne Time-Independent, Multigroup Diffusion neory Equations	13
1.3 So	lution Methods	15
1.	3.1 Nodal Methods	16
1.	3.2 Modal Methods	19
1.	3.3 Modal-Nodal Methods	25
Chapter 2.	Variational Derivation of Finite Difference Approximations in Time-Independent Multigroup Diffusion Theory	27
2.1 Ca	alculus of Variations Applied to Diffusion Theory	28
2.2 Di	scontinuous Trial Functions	30
2.3 Th	e Finite Element Approximation Methods	34
2.	3.1 The Conventional Finite Difference Equations	35
2.	3.2 Multichannel Polynomial Synthesis	37
2.	3.3 The Linear Basis Function Approximation	46
2.	3.4 The Cubic Hermite Basis Function Approximation	47

Chapter 3 Development of a Consistent Coorse Mash	
Approximation Method	52
3.1 Formulation	52
3.2 The Proposed Linear Basis Function Approximations	54
3.3 The Proposed Cubic Hermite Basis Function Approximation	60
Chapter 4. Numerical Solution Techniques	65
4.1 Solution Methods and Matrix Properties	65
4.2 Calculational and Programming Techniques	77
Chapter 5. Numerical Results	84
5.1 Nuclear Constants and Subassembly Geometry	84
5.2 Subassembly Detailed Solutions and Homogenized Nuclear Constants	86
5.3 Case Studies and Results	95
5.3.1 Case 1	98
5.3.2 Case 2	113
5.3.3 Case 3	118
5.3.4 Case 4	124
Chapter 6. Conclusions and Recommendations	130
6.1 Characteristics of the Proposed Approximation Methods	130
6.2 Applicability and Limitations	132
6.3 Recommendations for Future Work	133
References	134
Biographical Note	138

Appendix	в.	Difference Equation Coefficients Resulting from Use of the Finite Element Approximation Methods	143
B.1	Coe Equ	efficients of the Conventional Finite Difference nations	143
В.2	Coe Equ	efficients of the Linear Finite Element Method nations	144
В.3	Coe Met	efficients of the Cubic Hermite Finite Element thod Equations	145
Appendix	с.	Difference Equation Coefficients Resulting from Use of the Proposed Approximation Methods	147
C.1	Coe Met	efficient-Integrands of the Proposed Approximation thod Equations Using Linear Basis Functions	148
C.2	Coe Met	efficient-Integrands of the Proposed Approximation thod Equations Using Cubic Hermite Basis Functions	150
Appendix	D.	Description of the Computer Programs	153
D.1	Des	scription of Program REF2G	153
D.2	Des	scription of Program LINEAR	158
D.3	Des	cription of Program CUBIC	163
D.4	Des	cription of Program ANALYZE	164
Appendix	Е.	Sample Input and Output Data Blocks for Programs REF2G, LINEAR, CUBIC, and ANALYZE (Included in only the first six copies)	2 168
E.1	REI	F2G	
E.2	LIN	EAR	
E.3	CUI	BIC	
E.4	ANA	ALYZE	
Appendix	F.	Source Listings of the Programs (Included in only the first six copies)	183
F.1	REI	F2G	184
F.2	LIN	EAR	242
F.3	CUI	BIC	287
F.4	ANA	ALYZE	350

LIST OF FIGURES

<u>No.</u>		
1.1	Illustration of One-Dimensional Multichannel Synthesis	23
1.2	Illustration of One-Dimensional Overlapping Multichannel Synthesis	23
2.1	Conventional Nodal Finite Difference Approximation Trial Function Forms	3 6
2.2	Matrix Form of the Conventional Finite Difference Equations	38
2.3	Basis Functions of Equations 2.23 for $N = 0, 1, 2, and 3$	43
2.4	Cubic B Spline $\Omega_k^B(z)$	45
2.5	Cubic Hermite Basis Functions $\Omega_k^{H_1}(z)$ and $\Omega_k^{H_2}(z)$	45
2.6	Matrix Form of the Linear Finite Element Method Approximation	48
2.7	Matrix Form of the Cubic Hermite Finite Element Method Approximation	51
4.1	Solution of $\mathbb{A}\underline{F} = \frac{1}{\lambda}\mathbb{B}\underline{F}$ Using the Fission Source Power	
	Iteration Method Without Fission Source Renormalization	66
4.2	Subassembly Notations and Detailed Solutions	7 9
5.1	Subassembly Configuration Geometries	87
5.2	Mesh Geometry in Half a Subassembly	88
5.3	Subassembly Detailed Flux Solutions for the One-Group Case	89
5.4	Subassembly Detailed Flux Solutions for the Two-Group Case	90
5.5	Subassembly Detailed Adjoint Flux Solutions for the Two-Group Case	91
5.6	Geometry of the Four Case Studies Composed of Types of Subassemblies	9 6

<u>No.</u>		
5.7	Case 1: One-Group Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions	99
5.8	Case 1: One-Group Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions	100
5.9	Case 1: Two-Group Fast Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions	101
5.10	Case 1: Two-Group Thermal Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions	102
5.11	Case 1: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions	103
5.12	Case 1: Two-Group Thermal Results Using Cubic Hermit Basis Function Approximations and 18-cm Coarse Mesh Regions	e 104
5.13	Case 1: Two-Group Fast Results Using Linear Basis Function Approximations and 9-cm Coarse Mesh Regions	105
5.14	Case 1: Two-Group Thermal Results Using Linear Basis Function Approximations and 9-cm Coarse Mesh Regions	106
5.15	Case 1: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 9-cm Coarse Mesh Regions	107
5.16	Case 1: Two-Group Thermal Results Using Cubic Hermite Basis Function Approximations and 9-cm Coarse Mesh Regions	108
5.17	Case 1: Two-Group Fast Results Using Cubic Hermite Finite Element Approximations and 18-cm Coarse Mesh Regions	111
5.18	Case 1: Two-Group Thermal Results Using Cubic Hermite Finite Element Approximations and 18-cm Coarse Mesh Regions	112
5.19	Case 2: Two-Group Fast Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions	114

Case 2: Two-Group Thermal Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions
Case 2: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions
Case 2: Two-Group Thermal Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions
Case 3: Two-Group Fast Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions
Case 3: Two-Group Thermal Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions
Case 3: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions
Case 3: Two-Group Thermal Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

5.27	Case 4: Two-Group Fast Results Using Linear	
	Basis Function Approximations and 18-cm Coarse	
	Mesh Regions	

5.28	Case 4: Two-Group Thermal Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions	126
5.29	Case 4: Two-Group Fast Results Using Cubic Hermite	

	Basis Function Approximations and 18-cm Coarse Mesh Regions	127
5.30	Case 4: Two-Group Thermal Results Using Cubic	

0.00	Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions	128
F.1	Structure of Program REF2G	185
F.2	Structure of Program LINEAR	243
F.3	Structure of Program CUBIC	288

F.4 Structure of Program ANALYZE 351

5.20

5.21

5.22

5.23

5.24

5.25

5.26

115

116

117

119

120

121

122

125

LIST OF TABLES

<u>No.</u>

3.1	Matrix Order N of the Proposed Linear Basis Function Approximations as a Function of the Imposed Boundary Conditions	59
5.1	Representative Two-Group, 18-cm, PWR Subassembly Regional Nuclear Constants	85
5.2	Representative One-Group,18-cm,PWR Subassembly Regional Nuclear Constants	85
5.3	Homogenized Subassembly One-Group Nuclear Constants	92
5.4	Homogenized Subassembly Two-Group Nuclear Constants	9 2
5.5	Test Results Using Three Consecutive Type A Subassemblies	94
5.6	Results of Case 1	109
5.7	Two-Group Results of Case 2	113
5.8	Results of Case 3	123
5.9	Results of Case 4	129
D.1	Sample Storage Requirements and Execution Times of the Programs for Two-Group Results	154

Chapter 1

INTRODUCTION

1.1 Preface

The large variety of approximation methods and techniques used in computational reactor analysis and simulation has caused the area of numerical reactor physics to become one of the most exciting areas in applied nuclear reactor physics today. The application of numerical analysis is most important in two phases of reactor design; feasibility studies and safety analysis. The primary consideration of the reactor physicist has been and must continue to be the <u>safety</u> of the reactor during and after any foreseeable nuclear accident. A realistic safety analysis can be obtained only if all the physical processes occuring within the reactor can be adequately described and related. Since all of these processes can be shown to be dependent upon the neutron density distribution throughout the reactor core, a detailed solution of the spatial neutron flux is vital.¹

The dynamic characteristics of a reactor strongly depend upon the spatial approximation and solution of the neutron flux. Approximation methods utilizing gross averaging of the flux near localized strong absorption and production regions, such as cruciform control rods or small water channels, can lead to inaccurate results. Large errors may result from the use of such methods in spatial kinetics problems such as depletion and xenon oscillation calculations. Much attention has therefore been focused upon approximation methods

11

which can obtain detailed spatial neutron flux distributions within large reactor cores.

The Boltzmann neutron transport equation² is considered to be a sufficiently detailed description of the physical processes occuring within a nuclear reactor, and naturally is most difficult to solve. The P-1 and diffusion theory approximations³ greatly simplify the transport equation into more tractable equations which have been found to approximate adequately the flux distributions for most large-core reactors such as PWR, BWR, and LMFBR core geometries. The advent of high speed digital computers has enabled wide-spread use of diffusion theory because of its simple mathematical form and straightforward numerical solution techniques inherent with its use.

The treatment of the spatial approximation in diffusion theory is the primary concern of this report. There is in existence an increasingly abundant variety of such approximation methods currently in use. Fine mesh methods,⁴ for example, can yield very accurate results through the use of extremely large numbers of unknowns. However, such methods may well exceed the storage capacity of present day computers, as well as being exceedingly costly. Coarse mesh methods and particularly synthesis techniques,⁵ on the other hand, have recently become attractive as the number of unknowns can be drastically reduced, although the accuracy of many of these methods is in doubt.

The purpose of this report is twofold: first, to present the general development of variational approximation methods used to derive

12

difference approximations to the neutron diffusion equation; and second, to extend this development in order to develop systematically a class of consistent coarse mesh approximation methods which can approximate accurately the detailed spatial neutron flux and can also be easily incorporated into present day computer codes. As this report will deal only with the spatial approximation, the inclusion of time dependence will be set aside for future study.

1.2 The Time-Independent, Multigroup Diffusion Theory Equations

The energy discretized multigroup P-1 approximation to the Boltzmann neutron transport equation excluding time dependence can be written in standard group notation for each energy group g as follows:³

$$\underline{j}_{g}(\mathbf{r}) + D_{g}(\mathbf{r}) \nabla \phi_{g}(\mathbf{r}) = 0$$
(1.1a)

$$\underline{\nabla} \cdot \underline{j}_{g}(\mathbf{r}) + \Sigma_{g}(\mathbf{r})\phi_{g}(\mathbf{r}) - \sum_{\substack{g'=1\\g'\neq g}}^{G} \Sigma_{gg'}(\mathbf{r})\phi_{g'}(\mathbf{r}) = \frac{1}{\lambda}\chi_{g}\sum_{\substack{g'=1\\g'\neq g}}^{G} \nu\Sigma_{fg'}(\mathbf{r})\phi_{g'}(\mathbf{r})$$
(1.1b)

where the group index g runs from the highest energy group, 1, to the lowest energy group, G. The symbols and notation used throughout this report are summarized in Appendix A. Equations 1.1 are the standard P-Hequations which relate the vector neutron current $\underline{j}_g(r)$ for each energy group g with the scalar neutron flux $\phi_g(r)$. The current may be eliminated via Fick's law, Eq. 1.1a, in order to obtain the multigroup diffusion equation:

$$-\underline{\nabla} \cdot D_{g}(\mathbf{r})\underline{\nabla}\phi_{g}(\mathbf{r}) + \Sigma_{g}(\mathbf{r})\phi_{g}(\mathbf{r}) - \sum_{\substack{g'=1\\g'\neq G}}^{G} \Sigma_{gg'}(\mathbf{r})\phi_{g'}(\mathbf{r}) = \frac{1}{\lambda}\chi_{g}\sum_{\substack{g'=1\\g'\neq G}}^{G} \nu\Sigma_{fg'}(\mathbf{r})\phi_{g'}(\mathbf{r})$$
(1.2)

Equation 1.2 can be written in operator matrix notation as

$$-\underline{\nabla} \cdot \mathbb{D}(\mathbf{r}) \underline{\nabla} \Phi(\mathbf{r}) + \left[\mathbb{M}(\mathbf{r}) - \mathbf{T}(\mathbf{r}) \right] \Phi(\mathbf{r}) = \frac{1}{\lambda} \mathbb{B}(\mathbf{r}) \Phi(\mathbf{r})$$
(1.3)

where \mathbb{D} , \mathbb{M} , \mathbb{T} , and \mathbb{B} are $G \times G$ group matrices defined by

$$D(r) = Diag[D_1(r) \dots D_g(r) \dots D_G(r)]$$
 (1.4a)

$$\mathbb{IM}(\mathbf{r}) = \operatorname{Diag}\left[\Sigma_{1}(\mathbf{r}) \dots \Sigma_{g}(\mathbf{r}) \dots \Sigma_{G}(\mathbf{r})\right]$$
(1.4b)

$$\mathbf{T}(\mathbf{r}) = \begin{bmatrix} 0 & -\Sigma_{12}(\mathbf{r}) & \cdots & -\Sigma_{1G}(\mathbf{r}) \\ -\Sigma_{21}(\mathbf{r}) & 0 & \cdots & -\Sigma_{2G}(\mathbf{r}) \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ -\Sigma_{G1}(\mathbf{r}) & -\Sigma_{G2}(\mathbf{r}) & \cdots & 0 \end{bmatrix}$$
(1.4c)

$$\mathbb{B}(\mathbf{r}) = \begin{pmatrix} \chi_1 \\ \cdot \\ \cdot \\ \cdot \\ \chi_G \end{pmatrix} \begin{bmatrix} \nu \Sigma_{f1}(\mathbf{r}) \dots \nu \Sigma_{fG}(\mathbf{r}) \end{bmatrix}$$
(1.4d)

and $\Phi(\mathbf{r})$ is the group flux vector

$$\Phi(\mathbf{r}) = \operatorname{Col}\left[\phi_{1}(\mathbf{r}) \dots \phi_{G}(\mathbf{r})\right]$$
(1.4e)

In problems where no upscattering is present, $\Sigma_{gg'}(r) = 0$ for g < g', and \mathbb{T} becomes $G \times G$ lower triangular.

It is also convenient to define the group current vector $\underline{J}(\mathbf{r})$

$$\underline{J}(\mathbf{r}) = \operatorname{Col}[\underline{j}_{1}(\mathbf{r}) \dots \underline{j}_{G}(\mathbf{r})]$$
(1.4f)

and the G \times G group absorption, scattering and production matrix $\Lambda(r)$

$$\mathbf{\Lambda}(\mathbf{r}) = \mathbf{I}\mathbf{M}(\mathbf{r}) - \mathbf{T}(\mathbf{r}) - \frac{1}{\lambda} \mathbf{I}\mathbf{B}(\mathbf{r})$$
(1.4g)

Equations 1.1 and 1.2 may then be written simply as

$$J(\mathbf{r}) + \mathbb{D}(\mathbf{r}) \nabla \Phi(\mathbf{r}) = 0 \tag{1.5a}$$

$$\nabla \cdot \mathbf{J}(\mathbf{r}) + \mathbf{\Lambda}(\mathbf{r}) \Phi(\mathbf{r}) = 0 \tag{1.5b}$$

 and

$$-\underline{\nabla}\cdot\mathbf{D}(\mathbf{r})\,\underline{\nabla}\Phi(\mathbf{r})+\mathbf{\Lambda}(\mathbf{r})\,\Phi(\mathbf{r})=0\tag{1.6}$$

respectively. These forms of the group diffusion equations will be used throughout this report. The boundary conditions on $\Phi(\mathbf{r})$ are of the homogeneous Neumann or Dirichlet type,⁶ while the normal component of the current $\underline{J}(\mathbf{r})$ is required to be continuous across all internal interfaces.

1.3 Solution Methods

All of the solution methods which can be employed in order to obtain approximate solutions to the time-dependent, multigroup diffusion equations may be conveniently classified as belonging in the area of either nodal analysis or modal analysis, or a combination of the two: modal-nodal analysis. The principal concept in each of these analyses is that the neutron flux, a continuous function of many variables, may be approximated as a set of unknown coefficients and/or functions of possibly fewer variables. The ultimate goals of such approximation methods are to produce easily solvable coupled equations which relate the unknowns to each approximation and yield results of acceptable accuracy at a low cost. Various commonly used methods and their drawbacks are discussed below.

1.3.1 Nodal Methods

Nodal methods involve the local approximation of an average flux at points called nodes, where each node represents a distinct region within the reactor in which the average flux is defined. An ordered set of nodes connected by a grid of mesh lines is then used to approximate the spatial flux behavior. The accuracy of such methods is generally governed by the internodal coupling or neutron current approximation inherent in each method.

A. Conventional Finite Difference Equations

The common finite difference equations used in diffusion theory can be derived using Taylor series expansion, variational techniques, or box integration methods about each spatial node.⁷ The second-order diffusion term at each node is replaced by threepoint difference equations relating consecutive nodes in each spatial direction. The resulting band-structured matrix equations exhibit many advantageous mathematical properties and can be solved with the use of simple solution algorithms.

The attractiveness of these difference equations is further enhanced by the fact that, for properly posed problems (including proper boundary conditions), the approximation can be shown to converge to the solution of the differential equation as the mesh size approaches zero. Also, the accuracy of the approximation can be shown to be in general of order $\theta(h)$,⁸ thus error estimates for the approximation are available. It is for these reasons that these equations are frequently invoked as "exact" solutions to diffusion equation problems. The main disadvantage, however, is that, as the number of nodes increases, the amount of labor and cost involved in order to obtain an accurate solution increases geometrically. A point of diminishing returns is then quickly reached where further accuracy is prohibitively expensive. Another disadvantage is that any known physical insight or *a priori* detailed flux behavior cannot be used with this approximation.

A formal derivation of the conventional difference equations is given in section 2.3 of Chapter 2.

B. Gross Coupling Models

In gross coupling or coarse mesh nodal techniques an attempt is made to decrease drastically the number of nodes needed for solution without significantly decreasing solution accuracy. Many such methods have been proposed by postulating various forms of neutronic coupling or communication interaction between nodes.

1. Phenomenological Model^{9,10,11}

From a physical viewpoint, the reactor can be divided into several distinct regions, each represented by a node located somewhere in that region. Equations of balance relating state variables of interest (average neutron flux, regional power, etc.) can then be written for each region and between region nodes. Internodal coupling is governed by a set of coefficients, say p_{ij} , which may account for the number of neutrons born in region i which appear in region j. A set of algebraic equations can then be written which describe the coupled core dynamics of the nodal interactions. The principal drawback of such methods lies in the definition of the interaction parameters p_{ij} . Although the describing equations of the phenomenological model can be directly formulated from diffusion theory,¹² the method of calculating the coefficients p_{ij} remains unclear. However, the physical simplicity of this model has made it very appealing in coupled kinetics methods development. Much of the work in this field is based on deriving approximations which reduce to this simple conceptual model.

2. Effective D/L Coupling¹³

These methods are very similar to finite difference approximations in that the structural forms of the resulting difference equations are identical. In order to compensate for the use of large internodal mesh spacing, the reactor constants, and the diffusion coefficients in particular, may be altered so that they correspond in an average sense to those obtained from a fine mesh calculation. ¹⁴ In this way it is hoped that the gross internodal coupling will be sufficiently improved to compensate for the large mesh spacings.

It has been shown that such methods can indeed improve internodal coupling for large mesh regions; however, the results are generally not satisfactory since the coupling constants are dependent in an unpredictable way on changes in the properties of the nodes.

3. Fission Source Coupling¹⁵

The assumption that the reactor flux can be separated into partial region fluxes due to nodal fission sources permits a consistent derivation of nodal coupled kinetics equations from multigroup diffusion theory. Fission modes can be found from detailed flux solutions which are then used to account for internodal coupling. This method gives reasonably accurate results for fast and thermal reactor transients, although the number of nodes necessary to achieve an accurate solution must increase as the form of the spatial flux becomes more detailed.

4. Multichannel Coupling¹⁶

By partitioning the reactor into regions called channels and allowing only adjacent channel-to-channel interactions, coupling coefficients p_{ij} can be found which represent the net leakage of neutrons from channel i into channel j in terms of the corresponding averaged channel fluxes. The coupling coefficients can be calculated using diffusion theory or variational techniques which yield the diffusion equations as stationary conditions. This model is appealing in that it can be shown to reduce to the conventional difference equations when a regular grid of small channel regions is used.

The above examples of gross coupling models are generally unsatisfactory because they require the use of average fluxes defined within large regions of the reactor. More acceptable results are obtained by utilizing known or *a priori* detailed spatial flux shapes in the regions in the approximation method.

1.3.2 Modal Methods¹⁷

Modal methods imply an extensive rather than local approximation to the spatial neutron flux. In general the flux is represented by a combination of known functions defined over the regions of interest

19

with unknown functions as mixing coefficients. Depending upon the approximation employed, relationships among these coefficients can be derived which are hopefully simpler to solve than the original equation.

A. Helmholtz Modes¹⁸

The diffusion equation for a completely homogeneous reactor formally has an infinite solution set of eigenvalues and corresponding orthogonal eigenfunctions, called Helmholtz modes, which satisfy the homogeneous boundary conditions. For the general case of a heterogeneous reactor, the spatially dependent flux can be approximated as a linear combination of these modes. The major difficulty with this approach is that a large number of modes is required in order to approximate the solution flux, and thus the appeal for this simplistic modal approach is quickly lost.

B. Lambda¹⁹ and Omega $Modes^{20}$

Although included in the class of modal approximations, these methods require the use of known spatial solutions for timedependent analysis. Lambda modes belong to the set of detailed flux solutions of the time-<u>independent</u> diffusion equations which correspond to different lambda eigenvalues.

A set of detailed flux solutions can also be found from the time-<u>dependent</u> diffusion equations by allowing the time-dependent flux to be separable and given in the form $e^{\omega t}$. The solutions of the resulting equations, called ω modes, correspond to different omega eigenvalues. Both of these methods have successfully been used in the transient analysis of coupled nodal kinetics.

C. <u>Synthesis Methods</u>^{5,21}

The use of synthesis techniques for the derivation of modal approximations is the most exciting and fastest growing area of reactor analysis methods development. This can be attributed to the fact that <u>all</u> diffusion theory approximation schemes, both modal and nodal, and those including time dependence, can be ultimately derived from one single variational principle. Each approximation scheme is therefore dependent solely upon the form of the trial functions used to represent the flux, current, and weighting functions (or adjoint functions) in the synthesis procedure. The outstanding advantage of the synthesis method is that knowledge of *a priori* detailed flux shapes or other physical insights can be incorporated directly into the approximation method.

1. Multichannel Synthesis 22

This method may be viewed as a modal extension of the multichannel gross coupling method. Assuming the flux to be separable in its variables (x,y,z), the number of unknowns can be reduced by specifying detailed flux shapes in any dimension. A common example assumes that in each channel, k, of the reactor the flux trial function, $U_k(x,y,z)$, can be expressed as the product of a known transverse flux, $\psi_k(x,y)$, with an unknown spatially dependent axial flux, $\rho_k(z)$, as:

$$U_{k}(x, y, z) = \rho_{k}(z) \psi_{k}(x, y)$$
(1.7)

The specification of the flux in two dimensions reduces the problem to an approximation involving only one dimension. If, however, the flux is approximated by a full spatial solution times an unknown constant,

$$U_{k}(x,y,z) = F_{k}\psi_{k}(x,y,z) \qquad (1.8)$$

the method reduces to an approximation similar to the multichannel nodal method. Figure 1.1 illustrates the resulting flux shape characteristics of such a method for the one-dimensional case.

The major disadvantage of these multichannel synthesis methods lies in the fact that in general the flux is discontinuous at channel interfaces. ^{23,24} Therefore the adjacent channel coupling currents, which then must be continuous across these interfaces,[†] are defined in terms of averaged channel fluxes. Although these methods can produce detailed flux distributions in each channel, their accuracy appears to be not much better than nodal multichannel methods because of the averaged gross neutronic coupling requirements inherent in these methods. ²⁵

2. Overlapping Multichannel Synthesis^{26,27}

The interchannel neutronic coupling can be improved by requiring that the flux trial functions be continuous across channel interfaces. This can be accomplished by modulating the known expansion functions, ψ_k , by piecewise continuous normalized polynomial functions, p_k , which are nonzero only within coupled channels

[†]Variational techniques used with diffusion theory in general do not allow the flux and current to be simultaneously discontinuous. Further clarification is given in section 2.2 of Chapter 2.

Figure 1.1. Illustration of One-Dimensional Multichannel Synthesis

Figure 1.2. Illustration of One-Dimensional Overlapping Multichannel Synthesis

of interest, providing the expansion functions are continuous over all channels for which the corresponding polynomial functions are nonzero. Such polynomials are required to be normalized to unity at the coupling interface and zero along the external boundary of the channels in order to preserve flux trial function continuity.

In one dimension represented by the continuous variable z and K mesh regions bounded by the nodes z_k where k = 1 to K+1, for example, the simple linear functions

$$p_{k}(z) = \begin{cases} \frac{z - z_{k-1}}{z_{k} - z_{k-1}} & z_{k-1} \leq z \leq z_{k} \\ \frac{z_{k+1} - z}{z_{k+1} - z_{k}} & z_{k} \leq z \leq z_{k+1} \\ 0 & \text{otherwise} \end{cases}$$
(1.9)

satisfy these conditions. The flux can then be approximated as

$$U(z) = \sum_{k=1}^{K} F_{k} p_{k}(z) \psi_{k}(z)$$
 (1.10)

where the set of F_k 's are the unknowns of the method. The resulting flux shape characteristics of this approximation are illustrated in Figure 1.2.

Approximations based on this synthesis method are dependent upon the class of overlapping polynomial functions used as well as the form of the current trial functions employed. The form of the current is extremely important in that it specifies the coupling interaction between regions and in this sense governs the usefulness and accuracy of the approximation. Work performed with this method to date has used current trial functions of a form similar to those of the flux trial function. Although the results of these investigations have been encouraging, such methods do not reduce to more simple known approximation methods. In addition, the band-structured matrix equations which arise from the use of such methods do not exhibit mathematical properties desired of such approximation schemes and may be difficult and costly to solve.

1.3.3 Modal-Nodal Methods

Approximation methods have also been developed in which the flux has a known extensive definition, or shape, and the unknowns are local flux values averaged in accordance with their corresponding extensive definition. Such modal-nodal methods retain all of the advantages of modal methods while generally reducing the number of unknowns and producing matrix equations which have desirable mathematical properties for numerical approximation and solution.

The finite element method is the best example of a modal-nodal approximation. Greater accuracy than that of conventional difference techniques can be obtained by allowing the flux in each region of interest to be represented as a polynomial which is continuous at region interfaces. The forms of the flux approximations and the resulting difference equations which arise from the use of the finite element method are described in detail in section 2.3 of Chapter 2. The purpose of this report is to present an original and consistent class of modal-nodal coarse mesh approximation methods which retain given or known detailed flux structure within the regions of interest, while providing detailed neutronic coupling between adjacent regions. These methods are consistent in that they are derived from a general variational principle and are a systematic extension of the finite element method as applied to diffusion theory reactor analysis.

For purposes of simplicity, the methods will be developed for the case of one-dimensional, time-dependent, multigroup diffusion theory, although it is expected that these methods can be extended to the general spatially dependent kinetics problem with relative ease.

The remainder of this report is organized as follows. Chapter 2 summarizes the use of variational principles and synthesis techniques in time-independent diffusion theory. The difference equations of the finite element methods applied in one dimension are derived using modal-nodal trial function forms in order to illustrate the use of these techniques. The forms of the proposed approximation methods are given in Chapter 3. The resulting finite difference equations are presented and boundary conditions discussed for approximation methods involving both linear and cubic Hermite basis functions. The numerical properties of the resulting matrix equations, as well as their numerical solution scheme, and useful programming techniques are discussed in Chapter 4. Chapter 5 presents results of the proposed methods for four representative one-dimensional PWR configurations, and compares the results with those of coarse mesh finite element methods. Finally, Chapter 6 presents conclusions and recommendations as well as comments concerning the possibility of extending the proposed methods to multidimensional geometries.

26

Chapter 2

VARIATIONAL DERIVATION OF FINITE DIFFERENCE APPROXIMATIONS IN TIME-INDEPENDENT MULTIGROUP DIFFUSION THEORY

The application of variational calculus to the describing equations of physical systems is perhaps the most general and powerful method of obtaining approximate solutions in mathematical physics. Variational methods seek to combine known "trial functions" into approximate solutions through the use of a variational functional which characterizes the equations of the system.

Essentially, variational methods consist of first finding a characteristic functional whose first-order variation when set to zero yields the describing equations of the system as its Euler equations. A class of trial functions, given in terms of known functions and unknown coefficients (or functions), is then chosen to approximate the solutions of the describing equations. These trial functions are then substituted into the variational functional, and its first variation is set to zero. Allowing arbitrary variations in all of the trial function unknowns results in a set of relationships among the unknowns. These relationships when solved then yield the "best" obtainable approximate solution within the space of trial functions given.

Variational methods can be thought of as a class of weighted residual methods since "weighting functions" appear in the functional and in the equations that result from setting the first variation of the functional to zero. The weighting functions are determined by the form of the functional itself; or equivalently, by the set of Euler equations selected to describe the system. In non-self adjoint problems, the adjoint equations are generally included in the set of Euler equations. The inclusion of corresponding "adjoint trial functions" in the functional results in adjoint weighting in the variation equations and allows greater approximation flexibility of the variational method.

2.1 Calculus of Variations Applied to Diffusion Theory

The time-independent multigroup diffusion equations as given by Eq. 1.3 can be written as

$$\mathbf{H} \Phi = \frac{1}{\lambda} \mathbf{B} \Phi \tag{2.1a}$$

where

$$\mathbf{H} = -\nabla \cdot \mathbf{D}\nabla + \mathbf{M} - \mathbf{T}$$
(2.1b)

Since the multigroup diffusion equations are not self-adjoint, it is convenient to introduce the adjoint diffusion equations

$$IH^{*}\Phi^{*} = \frac{1}{\lambda} IB^{*}\Phi^{*}$$
 (2.2a)

where \mathbb{H}^* and \mathbb{B}^* are the adjoint operators corresponding to \mathbb{H} and \mathbb{B} , respectively, and are defined as:³

$$\mathbb{H}^{*} = \mathbb{H}^{T} = -\underline{\nabla} \cdot \mathbb{D} \,\underline{\nabla} + \mathbb{M} - \mathbf{T}^{T}$$
(2.2b)

$$\mathbf{B}^* = \mathbf{B}^{\mathrm{T}} \tag{2.2c}$$

since \mathbb{D} and \mathbb{M} are diagonal. Φ^* is the group adjoint flux vector, or importance vector, which must obey the same boundary conditions as Φ .²⁸

The exact solutions $\Phi(\mathbf{r})$ and $\Phi^*(\mathbf{r})$ of the diffusion equations and the adjoint diffusion equations can be approximated by flux and adjoint flux trial functions denoted as U(r) and U^{*}(r) using a variational functional of the form

$$\mathcal{F}_{1}[U, U^{*}] = \frac{1}{\lambda} = \frac{\int_{R} U^{*} \mathrm{IHU} \, \mathrm{dr}}{\int_{R} U^{*} \mathrm{IBU} \, \mathrm{dr}}$$
(2.3)

where it is assumed that the group-theory flux trial function vectors U^* and U as well as the group current vectors $D\underline{\nabla}U^*$ and $D\underline{\nabla}U$ are everywhere continuous, and that U^* and U vanish outside the reactor region R. Allowing arbitrary trial function variations, denoted by δU^* and δU , making \mathcal{F}_1 stationary first with respect to U^* and then with respect to U results²⁹ in the following equations:

$$\int_{\mathbf{R}} \delta \mathbf{U}^{*T} \left[\mathbb{H}\mathbf{U} - \frac{1}{\lambda} \mathbb{B}\mathbf{U} \right] d\mathbf{r} = 0$$
(2.4a)

$$\int_{\mathbf{R}} \left[\mathbf{U}^{*T} \mathbf{H} - \frac{1}{\lambda} \mathbf{U}^{*T} \mathbf{B} \right] \delta \mathbf{U} \, d\mathbf{r} = 0$$
(2.4b)

The above equations, containing the desired Euler equations, are the equations upon which the approximation method is based.

A significant characteristic of this approximation form is the property of exact solution reproduction. Although general choices of the trial functions U and U^{*} result in approximate eigenvalues which may differ substantially from the exact solution eigenvalue, the exact solutions, when chosen within the given class of trial functions, are yielded as the result of the approximation along with the exact solution eigenvalue.

The nature of the above approximation depends solely upon the forms of the flux trial functions given. Each trial function can be defined in terms of unknown coefficients (or functions) and known functions. Independent variation of the unknown coefficients of the adjoint trial function in Eq. 2.4a will yield the "best" flux solution obtainable for that class of flux <u>and</u> adjoint flux trial functions given. The corresponding "best" adjoint flux solution can be found in an analogous manner using Eq. 2.4b. These techniques are illustrated in the next section.

Another functional incorporating the flux and adjoint flux diffusion equations can be defined as

$$\mathscr{F}_{2}[\mathbf{U}^{*},\mathbf{U}] = \int_{\mathbf{R}} \mathbf{U}^{*T} [\mathbf{H}\mathbf{U} - \frac{1}{\lambda} \mathbf{I}\mathbf{B}\mathbf{U}] d\mathbf{r}$$
(2.5)

Although the forms of the above functionals differ, it can be shown that both produce the same variation equations, Eqs. 2.4, when made stationary. The form of \mathcal{F}_2 and its first variation are much less complex than the form and first variation of \mathcal{F}_1 . For these reasons, functionals of the form of \mathcal{F}_2 will be used in this report.

2.2 Discontinuous Trial Functions

The addition of discontinuous flux trial functions into the class of allowable trial functions for use in diffusion theory variational methods greatly enhances and generalizes the versatility of such methods.²⁵ However, special provisions must be made in the approximation method itself in order that such trial functions can be properly used.^{23,24,30} In order to account for the discontinuities in the flux (and in general also the current) trial functions, it is necessary to include special terms specifying continuity conditions directly within the approximation method. This can be accomplished through the use of a variational functional whose Euler equations include the P-1 equations and continuity conditions for both flux and current. A general functional of this type which allows discontinuous flux, current, and adjoint trial functions can be derived from previous work^{30,31} and is given as follows:

$$\mathcal{F}[\mathbf{U}^{*},\mathbf{U},\underline{\mathbf{V}}^{*},\underline{\mathbf{V}},\alpha,\beta] = \int_{\mathbf{R}} \{\mathbf{U}^{*}\left[\underline{\nabla}\cdot\underline{\mathbf{V}}+\mathbf{A}\mathbf{U}\right]+\underline{\mathbf{V}}^{*}\left[\underline{\nabla}\mathbf{U}+\mathbf{D}^{-1}\underline{\mathbf{V}}\right]\}d\mathbf{r} + \int_{\Gamma}\hat{\mathbf{n}}\cdot\{\left[\mathbf{U}^{*}_{+}\alpha+\mathbf{U}^{*}_{-}(\mathbf{I}-\alpha)\right]\left(\underline{\mathbf{V}}_{+}-\underline{\mathbf{V}}_{-}\right) + \left[\underline{\mathbf{V}}^{*}_{+}\beta+\underline{\mathbf{V}}^{*}_{-}(\mathbf{I}-\beta)\right]\left(\mathbf{U}_{+}-\mathbf{U}_{-}\right)\}d\mathbf{s}$$
(2.6)

where U^* , U, \underline{V}^* , and \underline{V} are the group flux and group current approximations to Φ^* , Φ , \underline{J}^* , and \underline{J} , respectively, and where the first integral extends over the volume R of the reactor and the second extends over all interior surfaces Γ upon which discontinuities are defined. \hat{n} is the unit vector perpendicular to interior surfaces, and quantities evaluated on sides of surfaces toward which \hat{n} is pointing are denoted with the subscript (+). Quantities evaluated on sides of surfaces from which \hat{n} is pointing are denoted with the subscript (-). α and β are in general G × G undefined variable matrices, and I is in general a G × G unit matrix, which allow a general treatment of the discontinuities.

The restrictions generally imposed upon trial functions for use in functionals of this type are the following:

- 1. The trial functions must be piecewise continuous.
- 2. The trial functions U and \underline{V}^* as well as U^{*} and <u>V</u> are not allowed to be discontinuous at the same point.
- 3. The components of $U^T \underline{V}^*$ and $U^* \underline{V}^T$ normal to the exterior surface of the reactor must vanish.

Due to restriction 2, the general quantities α and β always cancel and are never used within these approximation methods.

The first variation of \mathscr{F} can be found in a straightforward manner, and can be simplified to the following form which indicates the desired P-1 and adjoint P-1 equations and the trial function continuity conditions as Euler equations:

$$\delta \mathscr{F} = \int_{\mathbf{R}} \left\{ \delta \mathbf{U}^{*^{T}} [\underline{\nabla} \cdot \underline{V} + \mathbf{\Lambda} \mathbf{U}] + \delta \underline{V}^{*^{T}} \cdot [\underline{\nabla} \mathbf{U} + \mathbf{D}^{-1} \underline{V}] \right. \\ \left. + \left[-\underline{\nabla} \mathbf{U}^{*^{T}} + \underline{V}^{*^{T}} \mathbf{D}^{-1} \right] \cdot \delta \underline{V} + \left[-\underline{\nabla} \cdot \underline{V}^{*^{T}} + \mathbf{U}^{*^{T}} \mathbf{\Lambda} \right] \delta \mathbf{U} \right\} d\mathbf{r} \\ \left. + \int_{\Gamma} \mathbf{\hat{n}} \cdot \left\{ \delta \mathbf{U}^{*^{T}} (\underline{V}_{+} - \underline{V}_{-}) + \delta \underline{V}^{*^{T}} (\mathbf{U}_{+} - \mathbf{U}_{-}) \right. \\ \left. + (\mathbf{U}_{-}^{*} - \mathbf{U}_{+}^{*})^{T} \delta \underline{V} + (\underline{V}_{-}^{*} - \underline{V}_{+}^{*}) \delta \mathbf{U} \right\} d\mathbf{s}$$

$$(2.7)$$

In most applications, only approximations to the flux and current solutions are desired. In such instances variations in only the adjoint trial functions need be taken. Setting the first variation of \mathcal{F} equal to zero under these conditions and imposing the above trial function restrictions results in the following variation equation for flux and current approximations:

$$\int_{\mathbf{R}} \left\{ \delta \mathbf{U}^{*^{T}} \left[\boldsymbol{\nabla} \cdot \boldsymbol{\Psi} + \boldsymbol{\Lambda} \mathbf{U} \right] + \delta \boldsymbol{\Psi}^{*^{T}} \cdot \left[\boldsymbol{\nabla} \mathbf{U} + \mathbf{D}^{-1} \boldsymbol{\Psi} \right] \right\} d\mathbf{r}$$
$$+ \int_{\Gamma} \mathbf{\hat{n}} \cdot \left\{ \delta \mathbf{U}^{*^{T}} (\boldsymbol{\Psi}_{+} - \boldsymbol{\Psi}_{-}) + \delta \boldsymbol{\Psi}^{*^{T}} (\mathbf{U}_{+} - \mathbf{U}_{-}) \right\} d\mathbf{s} = 0 \qquad (2.8)$$

The above approximation can also be expressed independently of adjoint trial functions. If the adjoint trial functions are defined as

$$U^* = U \tag{2.9a}$$

$$\underline{\mathbf{V}}^* = -\underline{\mathbf{V}} \tag{2.9b}$$

then Eq. 2.8 reduces to the Rayleigh-Ritz Galerkin method, a weighted residual method based upon flux weighting.

Regardless of the choice of weighting, the variation equations can be further simplified for those approximation methods which require the currents to obey explicitly Fick's laws:

$$\underline{\mathbf{V}} = -\mathbf{I} \mathbf{D} \, \underline{\nabla} \mathbf{U} \tag{2.10a}$$

$$\underline{\mathbf{V}}^* = + \mathbf{I} \mathbf{D} \, \underline{\nabla} \, \mathbf{U}^* \tag{2.10b}$$

Under these conditions the variation equations for discontinuous flux and discontinuous current trial functions reduce to

$$\int_{\mathbf{R}} \left\{ \delta \mathbf{U}^{*^{T}} \mathbf{\Lambda} \mathbf{U} - \delta \underline{\mathbf{V}}^{*^{T}} \cdot \mathbf{D}^{-1} \underline{\mathbf{V}} \right\} d\mathbf{r}$$
$$+ \int_{\Gamma} \mathbf{\hat{n}} \cdot \left\{ \left(\delta \mathbf{U}^{*}_{-} - \delta \mathbf{U}^{*}_{+} \right)^{T} \underline{\mathbf{V}} + \delta \underline{\mathbf{V}}^{*^{T}} \left(\mathbf{U}_{+} - \mathbf{U}_{-} \right) \right\} d\mathbf{s} = 0 \qquad (2.11)$$

If in addition the flux is required to be everywhere continuous, the variation equations reduce to the appealing forms

$$\int_{\mathbf{R}} \left\{ \delta \mathbf{U}^{*^{\mathrm{T}}} \mathbf{A} \mathbf{U} - \delta \underline{\mathbf{V}}^{*^{\mathrm{T}}} \cdot \mathbf{D}^{-1} \underline{\mathbf{V}} \right\} d\mathbf{r} = 0$$
 (2.12a)

or equivalently

$$\int_{\mathbf{R}} \left\{ \delta \mathbf{U}^{*T} \mathbf{A} \mathbf{U} + \left(\underline{\nabla} \, \delta \mathbf{U}^{*} \right)^{T} \cdot \mathbf{D} \left(\underline{\nabla} \, \mathbf{U} \right) \right\} d\mathbf{r} = 0 \qquad (2.12b)$$

Variation equations 2.11 and 2.12 are the approximation equations which are used with the finite element methods and the proposed approximation methods.

2.3 The Finite Element Approximation Methods 32,33

This section introduces the notation and techniques used in conjunction with the modal-nodal variational analysis of the finite element method approximations in one-dimensional multigroup diffusion theory. These fundamentals are presented in these simple approximations before applying them to the more general proposed approximation method in the next chapter.

The one-dimensional problem is defined by the continuous variable z and divided into K adjoining regions which are in general inhomogeneous. Each region k is bounded by nodes z_k and z_{k+1} and has width $h_k = z_{k+1} - z_k$. It is convenient to define the dimensionless variable x within each region k as

$$x = \frac{z - z_k}{h_k}$$
(2.13a)

so that region k can be described in terms of z as

$$z_k \le z \le z_k + h_k = z_{k+1}$$
 (2.13b)

or equivalently in terms of x as

$$0 \le x \le 1 \tag{2.13c}$$

for each of the regions k, k=1 to K. This notation will be used throughout this report.
2.3.1 The Conventional Finite Difference Equations

The conventional nodal flux-averaged, three-point, finite difference equations of one-dimensional diffusion theory can be derived from Eq. 2.8 using discontinuous flux and current multigroup column vector trial functions of the following form: 7,8 [†]

$$\begin{array}{c} U(z) = F_k \\ U^*(z) = F_k \\ V^*(z) = G_k \\ V^*(z) = G_k^* \end{array} \right\} \quad \begin{cases} z_{k-1} + \frac{1}{2}h_{k-1} \\ z_1 & \text{if } k = 1 \\ z_1 & \text{if } k = 1 \\ 0 & \text{otherwise} \\ \end{cases} < z < \begin{cases} z_k + \frac{1}{2}h_k \\ z_{K+1} & \text{if } k = K+1 \\ z_{K+1} & \text{if } k = 1 \\ z_{K} < z < z_{K} + h_{K} ; k = 1 \text{ to } K. \\ 0 & \text{otherwise} \\ \end{cases}$$

$$(2.14)$$

The forms of these trial functions are illustrated in Figure 2.1.

Inserting these trial functions into variation equation 2.8 results in the equation

$$\delta F_{1}^{*T} \left\{ \int_{0}^{\frac{1}{2}} \Lambda_{1} F_{1} h_{1} dx + G_{1} - G_{0} \right\}$$

$$+ \sum_{k=2}^{K} \delta F_{k}^{*T} \left\{ \int_{\frac{1}{2}}^{1} \Lambda_{k-1} F_{k} h_{k-1} dx + \int_{0}^{\frac{1}{2}} \Lambda_{k} F_{k} h_{k} dx + G_{k} - G_{k-1} \right\}$$

$$+ \delta F_{K+1}^{*T} \left\{ \int_{\frac{1}{2}}^{1} \Lambda_{K} F_{K+1} h_{k} dx + G_{K+1} - G_{K} \right\}$$

$$+ \sum_{k=1}^{K} \delta G_{k}^{*T} \left\{ \int_{0}^{1} \mathbb{D}_{k}^{-1} G_{k} h_{k} dx + F_{k+1} - F_{k} \right\} = 0 \qquad (2.15)$$

[†]Shifting the domain of definition of the trial functions results in other approximation schemes with equivalently averaged nuclear constants.³⁴

Figure 2.1. Conventional Nodal Finite Difference Approximation Trial Function Forms

Independent variation of all F_k^* and G_k^* then results in a system of 2K+1 equations and 2K+3 unknowns (including G_0 and G_{K+1}). The choice of boundary conditions supplies the missing equations. Zero flux boundary conditions can be imposed by setting $F_1 = F_{K+1} = 0$, which also requires $\delta F_1^* = \delta F_{K+1}^* = 0$ thereby eliminating G_0 and G_{K+1} , and results in a system of 2K-1 equations and 2K-1 unknowns. Symmetry boundary conditions can be imposed on the left by $G_0 = -G_1$ and on the right by $G_{K+1} = -G_K$, resulting in a system of 2K+1 equations and 2K+1 unknowns.

Elimination of all G_k , k=1 to K, results in the standard threepoint difference equations

$$b_1F_1 + c_1F_2 = 0$$
 (2.16a)

$$a_k F_{k-1} + b_k F_k + c_k F_{k+1} = 0$$
; k = 2 to K (2.16b)

$$a_{K+1}F_{K} + b_{K+1}F_{K+1} = 0$$
 (2.16c)

where Eqs. 2.16a and 2.16c are used for the cases of symmetry boundary conditions. The $G \times G$ matrix coefficients $\{a_k, b_k, c_k\}$ are of the form $A - \frac{1}{\lambda} B$ and are defined assuming homogeneous regional nuclear constants in section 1 of Appendix B. The matrix form of Eqs. 2.16 for the use of zero flux boundary conditions on the left and symmetry on the right is illustrated in Figure 2.2.

2.3.2 Multichannel Polynomial Synthesis

The one-dimensional neutron flux $\Phi_k(z)$ defined as nonzero only within each region k for each region (k=1 to K) can be approximated within each region as a polynomial of order N by the power series

Figure 2.2. Matrix Form of the Conventional Finite Difference Equations. Boundary conditions chosen are zero flux on the left and symmetry on the right.

$$a_k F_{k-1} + b_k F_k + c_k F_{k+1} = 0; k = 2 \text{ to } K$$

 $a_{K+1} F_K + b_{K+1} F_{K+1} = 0.$

where: $b_k = \beta_k - \frac{1}{\lambda} \epsilon_k$; k = 2 to K+1.

38 8

$$U_{k}^{(N)}(z) = \sum_{i=0}^{N} a_{k,i} x^{i}$$
 (2.17)

where the distinction between z and x is understood since $0 \le x \le 1$ within each region k. Such approximations are not useful in diffusion theory because: (1) the resulting matrix equations relating the $a_{k,i}$'s contain full matrices similar to Hibert matrices which may be very difficult to solve; and (2) such matrices are almost always highly singular and may produce numerical instabilities in the solution method. These difficulties can be eliminated by employing polynomials in the trial functions in the following form:

$$U_{k}^{(N)}(z) \stackrel{i}{\neq} \sum_{i=0}^{N} p_{i}^{(N)}(x)F_{k+\frac{i}{N}}$$
(2.18)

where the $p_i^{(N)}(x)$ are polynomials in x of degree N. This form is convenient because for a particular selection of the $p_i^{(N)}(x)$ the unknowns F can be defined as the approximate flux solution evaluated at points $z_i + \frac{i}{N}$ within region k. For high order approximations, i > 0, the flux can be made continuous by imposing the following restrictions on $p_i^{(N)}(x)$:

$$p_{i}^{(N)}\left(\frac{\ell}{N}\right) = \begin{cases} 1 & \ell = i \\ 0 & \ell \neq i \end{cases} \text{ for } \ell = 0 \text{ to } N$$

$$(2.19)$$

The specific polynomial flux approximations of this form through degree N=3 are given below:

$$U_k^{(0)}(x) = F_k$$
 (2.20a)

$$U_k^{(1)}(x) = (1-x)F_k + xF_{k+1}$$
 (2.20b)

$$U_{k}^{(2)}(x) = (1 - 3x + 2x^{2})F_{k} + (4x - 4x^{2})F_{k + \frac{1}{2}} + (-x + 2x^{2})F_{k + 1} \qquad (2.20c)$$

$$U_{k}^{(3)}(x) = \left(1 - \frac{11}{2}x + 9x^{2} - \frac{9}{2}x^{3}\right)F_{k} + \left(9x - \frac{45}{2}x^{2} + \frac{27}{2}x^{3}\right)F_{k + \frac{1}{3}} + \left(-\frac{9}{2}x + 18x^{2} - \frac{27}{2}x^{3}\right)F_{k + \frac{2}{3}} + \left(x - \frac{9}{2}x^{2} + \frac{9}{2}x^{3}\right)F_{k + 1} \qquad (2.20d)$$

An immediate drawback of these approximations lies in the definitions of the corresponding current trial functions. Given a flux polynomial approximation of degree N, polynomial approximations for the current can be of order zero through N, and may even be of higher order than the flux approximation. Each set of chosen trial function pairs ultimately results in a characteristic complex band-structured matrix problem which may or may not have desirable numerical solution properties and is usually very difficult to solve.

Such problems can be eliminated by noting that the use of variational analysis attempts to force the current approximation to obey Fick's law. The obvious solution is direct use of Fick's law in the trial function forms

$$V_{k}(z) = -\mathbb{D}_{k}(z) \frac{d}{dz} U_{k}(z)$$
(2.21)

which results in simple band-structured matrix equations relating only flux unknowns. The use of current polynomial approximations of order N-1 as given in Eqs. 2.20 with flux approximations of order N, however, does not improve the situation.

The accuracy of these difference equations can be found first by eliminating all non-integer subscripted unknowns, then expanding the resulting three-point difference equations in a Taylor series about node k, and comparing results to the exact three-point difference solution known for the one-dimensional case. ^{7,35} By comparison of terms containing equal powers of h_k , it can be shown that the N=1 and N=2 polynomial approximations are accurate to order $\theta(h^2)$ while the N=3 approximation is accurate to order $\theta(h^3)$.

The approximation of a function by a polynomial of order N leads immediately to the concept of basis functions. The N+1 polynomial functions which multiply the N+1 unknowns in Eq. 2.18 form a basis for the approximation and can be called basis functions. The simplicity of basis functions becomes apparent in an error analysis of the approximation as follows. An approximate solution $U^{(N)}(z)$ of order N to the exact one-dimensional solution $\Phi(z)$ can be expressed as

$$U^{(N)}(z) = \sum_{k=1}^{K} \Phi(z_k) \Omega_k^{(N)}(z)$$
 (2.22a)

where $\Omega_k^{(N)}(z)$ is a basis function of order N <u>centered</u> <u>about</u> node z_k . By Taylor series expansion about any node, it can be shown³⁶ that <u>if</u> $\Omega_k(z)$ satisfies:

$$\sum_{k=1}^{K} z_{k}^{\alpha} \Omega_{k}^{(N)}(z) = \left(\frac{z}{h_{k}}\right)^{\alpha} \text{ for } |\alpha| \leq N \qquad (2.22b)$$

then $U^{(N)}(z)$ is an approximation to $\Phi(z)$ accurate to order $\theta(h_k^{N+1})$.

Basis functions found using Eqs. 2.22 are unique for each N and generally extend over surrounding regions. The forms of the basis functions for N \leq 3 are summarized below and illustrated in Figure 2.3. Since the following basis functions are symmetric, only the right half, $z \geq z_k$, is expressly given.

$$N = 0: \qquad \Omega_{k}^{(0)}(z) = \begin{cases} 1 & z_{k} \leq z < z_{k} + \frac{1}{2}h_{k} \\ 0 & \text{otherwise} \end{cases}$$
(2.23a)

N=1:
$$\Omega_{k}^{(1)}(z) = \begin{cases} (1-x) & z_{k} \leq z \leq z_{k+1} \\ 0 & \text{otherwise} \end{cases}$$
 (2.23b)

$$N = 2: \qquad \Omega_{k}^{(2)}(z) = \begin{cases} \frac{3}{4} - x^{2} & z_{k} \leq z \leq z_{k} + \frac{1}{2}h_{k} \\ \frac{1}{2}\left(\frac{3}{2} - x\right)^{2} & z_{k} + \frac{1}{2}h_{k} \leq z \leq z_{k+1} \\ \frac{1}{2}\left(\frac{1}{2} - x\right)^{2} & z_{k+1} \leq z \leq z_{k+1} + \frac{1}{2}h_{k+1} \\ 0 & \text{otherwise} \end{cases}$$
(2.23c)

$$N = 3: \qquad \Omega_{k}^{(3)}(z) = \begin{cases} \frac{1}{36} (30 - 54x^{2} + 28x^{3}) & z_{k} \leq z \leq z_{k+1} \\ \frac{1}{36} (4 - 24x + 30x^{2} - 11x^{3}) & z_{k+1} \leq z \leq z_{k+2} \\ \frac{1}{36} (-1 + 3x - 3x^{2} + x^{3}) & z_{k+2} \leq z \leq z_{k+3} \\ 0 & \text{otherwise} \end{cases}$$
(2.23d)

where $0 \le x \le 1$ within each region k in the above cases.

Use of these basis functions results in approximate solutions which are continuous for $N \ge 1$ and whose derivatives $dU^{(N)}(z)/dz$ through $d^{N-1}U^{(N)}(z)/dz^{N-1}$ are also continuous. In high order approximations in diffusion theory, it is advantageous to retain flux and current continuity and employ basis functions defined over two adjacent regions in order to produce three-point difference equations. This can be accomplished in the N=3 approximations with the cubic Hermite basis functions.

Figure 2.3. Basis Functions of Eqs. 2.23 for N = 0, 1, 2, and 3

The above cubic basis function $\Omega_k^{(3)}(z)$ can be constructed from a combination of either cubic B splines, $\Omega_k^B(z)$, or cubic Hermite polynomials, $\Omega_k^{H_1}(z)$ and $\Omega_k^{H_2}(z)$, as follows: ³⁷

$$\Omega_{k}^{(3)}(z) = -\frac{1}{6} \Omega_{k-1}^{B}(z) + \frac{4}{3} \Omega_{k}^{B}(z) - \frac{1}{6} \Omega_{k+1}^{B}(z)$$
(2.24)

where:

$$\Omega_{k}^{B}(z) = \frac{2}{3} \Omega_{k}^{H}(z) + \frac{1}{6} \Omega_{k+1}^{H}(z) - \frac{1}{2} \Omega_{k+1}^{H}(z)$$
(2.25)

The forms of these cubic B and Hermite polynomials are given below and illustrated in Figures 2.5 and 2.6. Again, only the right half of the functions are expressly given as Ω_k^B and $\Omega_k^{H_1}$ are symmetric, while $\Omega_k^{H_2}$ is antisymmetric.

$$\Omega_{k}^{B}(z) = \begin{cases} \frac{2}{3} - x^{2} + \frac{1}{2}x^{3} & z_{k} \leq z \leq z_{k+1} \\ \frac{1}{6}(1-x)^{3} & z_{k+1} \leq z \leq z_{k+2} \\ 0 & \text{otherwise} \end{cases}$$
(2.26)

$$\Omega_{k}^{H_{1}}(z) = \begin{cases} 1 - 3x^{2} + 2x^{3} & z_{k} \leq z \leq z_{k+1} \\ 0 & \text{otherwise} \end{cases}$$
(2.27a)

$$\Omega_{k}^{H_{2}}(z) = \begin{cases} x - 2x^{2} + x^{3} & z_{k} \leq z \leq z_{k+1} \\ 0 & \text{otherwise} \end{cases}$$
(2.27b)

where again $0 \le x \le 1$ in each region k.

The fact that the cubic Hermite polynomials form a basis for the cubic basis functions and extend over only two adjacent regions makes them very attractive for use in diffusion theory approximation methods.

Figure 2.4. Cubic B Spline $\Omega^{\rm B}_k(z)$ of Eq. 2.26

Figure 2.5. Cubic Hermite Basis Functions $\Omega_k^{H_1}(z)$ and $\Omega_k^{H_2}(z)$ of Eqs. 2.27

2.3.3 The Linear Basis Function Approximation

The group flux trial functions defined as nonzero within each region k can be expressed in modal-nodal form in terms of linear basis functions as

$$U_k(z) = (1-x)F_k + xF_{k+1}$$
 (2.28a)

$$U_{k}^{*}(z) = (1-x)F_{k}^{*} + xF_{k+1}^{*}$$
 (2.28b)

where F_k is the approximate group flux column vector at node z_k and $0 \le x \le 1$ with each region k. Although the flux trial functions are continuous, the current trial functions defined within each region by Eqs. 2.10 are not, and are given by

$$V_{k}(z) = \frac{1}{h_{k}} \mathbb{D}_{k}(x) [F_{k} - F_{k+1}]$$
(2.28c)
; k = 1 to K.
$$V_{k}^{*}(z) = \frac{1}{h_{k}} \mathbb{D}_{k}(x) [F_{k+1}^{*} - F_{k}^{*}]$$
(2.28d)

Insertion of these trial function forms into variation equation 2.12a results in the equation

$$\sum_{k=1}^{K} h_{k} \int_{0}^{1} \left\{ [(1-x)\delta F_{k}^{*} + x\delta F_{k+1}^{*}]^{T} \Lambda_{k}(x)[(1-x)F_{k} + xF_{k+1}] + [\delta F_{k}^{*} - \delta F_{k+1}^{*}]^{T} \frac{1}{h_{k}^{2}} \mathbb{D}_{k}(x)[F_{k} - F_{k+1}] \right\} dx = 0$$

$$(2.29)$$

Allowing arbitrary variations in all F_k^* results in a system of K+1 equations and K+1 unknowns which can be written as:

$$b_1 F_1 + c_1 F_2 = 0$$
 (2.30a)

$$a_k F_{k-1} + b_k F_k + c_k F_{k+1} = 0$$
; k = 2, K. (2.30b)

$$a_{K+1}F_{K} + b_{K+1}F_{K+1} = 0$$
 (2.30c)

where the $G \times G$ matrix coefficients $\{a_k, b_k, c_k\}$ are of the form $A - \frac{1}{\lambda} B$ and are defined assuming homogeneous regional nuclear constants in section 2 of Appendix B. Zero flux boundary conditions can be imposed by use of only Eq. 2.30b with $F_1 = F_{K+1} = 0$, while symmetry boundary conditions require the use of the other equations as well. The matrix form of these equations for the boundary conditions of zero flux on the left and symmetry on the right is given in Figure 2.6.

2.3.4 The Cubic Hermite Basis Function Approximation^{38,39}

The cubic Hermite polynomials can be incorporated into modalnodal flux trial functions which allow continuous flux and continuous current by defining the flux trial functions within each region k as $U_{k}(z) = (1-3x^{2}+2x^{3})F_{k} + (3x^{2}-2x^{3})F_{k+1} + (-x+2x^{2}-x^{3})\frac{\theta}{h_{k}}\mathbb{D}_{k}^{-1}(x)G_{k} + (x^{2}-x^{3})\frac{\theta}{h_{k}}\mathbb{D}_{k}^{-1}(x)G_{k+1} \qquad (2.31a)$ $U_{k}^{*}(z) = (1-3x^{2}+2x^{3})F_{k}^{*} + (3x^{2}-2x^{3})F_{k+1}^{*} + (-x+2x^{2}-x^{3})\frac{\theta}{h_{k}}\mathbb{D}_{k}^{-1}(x)G_{k}^{*} + (x^{2}-x^{3})\frac{\theta}{h_{k}}\mathbb{D}_{k}^{-1}(x)G_{k+1}^{*} \qquad (2.31b)$

where k = 1 to K.

 F_k is again the approximate group flux solution vector at node z_k , and G_k is proportional to the approximate group current solution vector at node z_k . Application of Fick's law defines the current trial functions for each k as

Figure 2.6. Matrix Form of the Linear Finite Element Method Approximation. Eqs. 2.35 for the case of zero flux on the left and symmetry boundary conditions on the right.

where:
$$a_k = \alpha_k - \frac{1}{\lambda} \delta_k$$

 $b_k = \beta_k - \frac{1}{\lambda} \epsilon_k$
 $c_k = \gamma_k - \frac{1}{\lambda} \zeta_k$ $\end{pmatrix}$ $k = 2 \text{ to } K+1.$

$$V_{k}(z) = \frac{1}{h_{k}} \mathbb{D}_{k}(x)(6x-6x^{2}) [F_{k+1}-F_{k}] + (1-4x+3x^{2})\theta G_{k} + (-2x+3x^{2})\theta G_{k+1}$$
(2.31c)

$$V_{k}^{*}(z) = \frac{1}{h_{k}} \mathbb{D}_{k}(x)(6x-6x^{2}) [F_{k}^{*}-F_{k+1}^{*}] + (-1+4x-3x^{2})\theta G_{k}^{*} + (2x-3x^{2})\theta G_{k+1}^{*}$$
(2.31d)

Continuity of flux and current are automatically guaranteed since

$$U_{k}(0) = U_{k-1}(h_{k-1}) = F_{k}$$

$$U_{k}^{*}(0) = U_{k-1}^{*}(h_{k-1}) = F_{k}^{*}$$

$$V_{k}(0) = V_{k-1}(h_{k-1}) = \theta G_{k}$$

$$V_{k}^{*}(0) = V_{k-1}^{*}(h_{k-1}) = -\theta G_{k}^{*\dagger}$$
(2.32)

The normalization constant θ is introduced in order to produce stiffness matrices having small condition numbers and can be chosen such that $\frac{\theta}{D_k(0)} \approx 1$.

Insertion of these trial function forms into variation equation 2.12a results in a lengthy equation which can be written as follows:

 $^{^\}dagger Such$ a choice of $^-G_k^*$ allows the matrix of coefficients to be positive definite. Cf., Chapter 4.

$$\begin{split} \delta F_{1}^{*T} &\{ b 1_{1} F_{1} + b 2_{1} G_{1} + c 1_{1} F_{2} + c 2_{1} G_{2} \} \\ \delta G_{1}^{*T} &\{ b 3_{1} F_{1} + b 4_{1} G_{1} + c 3_{1} F_{2} + c 4_{1} G_{2} \} \\ &+ \sum_{k=2}^{K} \delta F_{k}^{*T} &\{ a 1_{k} F_{k-1} + a 2_{k} G_{k-1} + b 1_{k} F_{k} + b 2_{k} G_{k} + c 1_{k} F_{k+1} + c 2_{k} G_{k+1} \} \\ &+ \sum_{k=2}^{K} \delta G_{k}^{*T} &\{ a 3_{k} F_{k-1} + a 4_{k} G_{k-1} + b 3_{k} F_{k} + b 4_{k} G_{k} + c 3_{k} F_{k+1} + c 4_{k} G_{k+1} \} \\ &\delta F_{K+1}^{*T} &\{ a 1_{K+1} F_{K} + a 2_{K+1} G_{K} + b 1_{K+1} F_{K+1} + b 2_{K+1} G_{K+1} \} \\ &\delta G_{K+1}^{*T} &\{ a 3_{K+1} F_{K} + a 4_{K+1} G_{K} + b 3_{K+1} F_{K+1} + b 4_{K+1} G_{K+1} \} = 0. \end{split}$$

$$(2.33)$$

where the $G \times G$ matrix coefficients $\{a1,\ldots,c4\}$ are of the form $A - \frac{1}{\lambda} B$ and are defined assuming homogeneous regional nuclear constants in section 3 of Appendix B.

The choice of either zero flux, $F_k = 0$ as well as $\delta F_k^* = 0$, or zero current, $G_k = 0$ as well as $\delta G_k^* = 0$, boundary conditions for k = 1 or K + 1 along with arbitrary variations of the remaining F_k^* and G_k^* results in a system of 2K equations and 2K unknowns. Figure 2.7 illustrates the matrix form of such a system for the case of zero flux on the left and zero current on the right boundary conditions.

The basis functions and approximation techniques presented in this section are applied to the proposed approximation methods in the next chapter. Also, various techniques for treating zero flux and symmetry boundary conditions are discussed. The matrix properties of the equations resulting from the above finite element approximations and their solution methods are discussed in Chapter 4.

Figure 2.7. Matrix Form of the Cubic Hermite Finite Element Method Approximation. Eqs. 2.39 for the case of zero flux on the left and symmetry boundary conditions on the right.

where:

$$\begin{array}{cccc}
an_{k} &= & \alpha n_{k} &- & \frac{1}{\lambda} & \delta n_{k} \\
bn_{k} &= & \beta n_{k} &- & \frac{1}{\lambda} & \epsilon n_{k} \\
cn_{k} &= & \gamma n_{k} &- & \frac{1}{\lambda} & \zeta n_{k}
\end{array}$$

$$\begin{array}{ccccc}
n &= & 1 & \text{to } 4; \\
and \\
k &= & 1 & \text{to } K+1.
\end{array}$$

51

Chapter 3

DEVELOPMENT OF A CONSISTENT COARSE MESH APPROXIMATION METHOD

3.1 Formulation

The finite element methods have been shown^{32,33} to approximate accurately flux solutions and criticality measurements of multigroup diffusion theory when applied to problems allowing homogeneous nuclear material within the mesh regions. Use of such homogeneous material, while simplifying the calculation of the matrix elements (since numerical integrations are not required), may result in limiting the region mesh sizes allowed unless some type of homogenization procedure is used. If the mesh spacing is chosen such that some or all mesh regions are heterogeneous, then direct application of the variational techniques given in Chapter 2 results in weight averaging the nuclear constants with products of the basis functions and their derivatives, as given by the approximation. Although such a procedure is a direct application of the finite element technique, the accuracy of such methods depends upon the placement of the mesh regions and may vary significantly as their placement is altered.

A more useful homogenization procedure which is commonly used in reactor diffusion theory analysis allows the nuclear material within each mesh region to be homogenized by flux weighting with an assumed flux shape determined *a priori* within that region in order (hopefully) to preserve reaction rates. In large reactors the core can be thought of as composed of a lattice of heterogeneous fuel subassemblies containing fuel, clad, coolant channels, and/or absorption control rods. Each subassembly can be divided into several distinct homogeneous regions whose few-group microcell macroscopic nuclear constants are found by multi-group energy-dependent calculations. ⁴⁰ Detailed subassembly solutions, $\psi_k(\mathbf{r})$, are then found for each subassembly k by assuming that the current on the boundary of the subassemblies is zero. Flux weighting the nuclear material in each subassembly with the corresponding detailed subassembly solution for each subassembly region then results in regional homogeneous nuclear constants $\langle \Sigma_k \rangle$ which may better approximate the physics of the region.

$$\langle \Sigma_{k} \rangle = \frac{\int_{k} \psi_{k}(\mathbf{r}) \Sigma_{k}(\mathbf{r}) d\mathbf{r}}{\int_{k} \psi_{k}(\mathbf{r}) d\mathbf{r}}$$
(3.1)

Proper use of detailed flux weighted constants can lead to accurate criticality measurements, but the detailed *a priori* fine flux structure within each region is lost since it appears only in cross-section homogenization and not in the approximation. Attempts to retain the fine flux structure have only recently been proposed in several multichannel synthesis approximations.^{27,41,42,43} Unfortunately, each of these approximations are approximations in themselves and do not reduce to desirable approximations if the detailed flux solutions are themselves constant, as would be the case in large homogeneous regions.

Just as the discontinuous multichannel synthesis approximation method can be shown to reduce to low order difference equations (of the type which could result using the finite element method with constant or flat basis functions) when constant trial functions are used, approximation methods are presented below which retain the given detailed flux structure and also reduce to the higher order finite element approximations. The use of linear or cubic Hermite basis functions in the approximation provides flux continuity and results in better approximation accuracy.

The approximations are presented and discussed for the case of one-dimensional, multigroup diffusion theory. Extension to higher dimensions remains a problem that will require some further study. The approximations which are the linear basis functions are considered in the next section, while the approximations using the cubic Hermite basis functions are considered in section 3.3.

3.2 <u>The Proposed Linear Basis Function Approximations</u>

The proposed approximation method utilizing linear basis functions and defined as nonzero within each mesh region k, k=1to K, is given by the following modal-nodal trial function forms:

$$U_{k}(z) = \psi_{k}(x) \left[\psi_{k}^{-1}(0)(1-x)F_{k} + \psi_{k}^{-1}(1)x F_{k+1} \right]$$
(3.2a)

$$U_{k}^{*}(z) = \psi_{k}^{*}(x) \left[\psi_{k}^{*-1}(0)(1-x)F_{k}^{*} + \psi_{k}^{*-1}(1)xF_{k+1}^{*} \right]$$
(3.2b)

$$V_{k}(z) = \eta_{k}(x) \left[\psi_{k}^{-1}(0)(1-x)F_{k} + \psi_{k}^{-1}(1)xF_{k+1} \right]$$

+ $\frac{1}{h_{k}} \mathbb{D}_{k}(x)\psi_{k}(x) \left[\psi_{k}^{-1}(0)F_{k} - \psi_{k}^{-1}(1)F_{k+1} \right]$ (3.2c)

54

$$V_{k}^{*}(z) = \eta_{k}^{*}(x) \left[\psi_{k}^{*^{-1}}(0)(1-x)F_{k}^{*} + \psi_{k}^{*^{-1}}(1)xF_{k+1}^{*} \right] + \frac{1}{h_{k}} \mathbb{D}_{k}(x)\psi_{k}^{*}(x) \left[\psi_{k}^{*^{-1}}(1)F_{k+1}^{*} - \psi_{k}^{*^{-1}}(0)F_{k}^{*} \right]$$
(3.2d)

where:

$$x = (z - z_k)/h_k$$
(3.2e)

and $0 \le x \le 1$, as $z_k \le z \le z_{k+1}$, for each region k = 1 to K.

 F_k is the unknown approximate group flux column vector at node z_k , and ψ_k , ψ_k^* , η_k , and η_k^* are G × G diagonal matrices composed of the detailed group flux $\psi_{g,k}(z)$ and group current $\eta_{g,k}(z)$ solutions, and their adjoints, defined as nonzero only within region k. Because of the variable transformation between z and x, $\psi_k(0)$ represents $\psi_k(z_k)$, and $\psi_k(1)$ represents $\psi_k(z_{k+1})$; neither of which, for the moment, is allowed to be zero for any region. The detailed current solutions are given from the detailed flux solutions by Fick's law as

$$\eta_{k}(z) = -ID_{k}(z) \frac{d\psi_{k}(z)}{dz}$$
(3.3a)

$$\eta_{\mathbf{k}}^{*}(\mathbf{z}) = +\mathbf{ID}_{\mathbf{k}}(\mathbf{z}) \quad \frac{\mathrm{d}\psi_{\mathbf{k}}^{*}(\mathbf{z})}{\mathrm{d}\mathbf{z}}$$
(3.3b)

As a result, the current trial functions are related to the flux trial functions by analogous expressions.

Continuity of the flux is imposed by the form of the trial functions since

$$U_{k}(0) = U_{k-1}(h_{k-1}) = F_{k}$$
 (3.4a)

$$U_{k}^{*}(0) = U_{k-1}^{*}(h_{k-1}) = F_{k}^{*}$$
 (3.4b)

The current trial functions, however, are discontinuous. It is evident

by comparison to Eqs. 2.28, that this approximation reduces to the linear basis function finite element method if the detailed flux solutions for each group are taken to be constant.

Insertion of these trial function forms in Eq. 2.12a results in the following variation equation:

$$\sum_{k=1}^{K} h_{k} \int_{0}^{1} \left\{ \psi_{k}^{*T}(x) \psi_{k}^{*T^{-1}}(0)(1-x) \delta F_{k}^{*T} \Lambda_{k}(x) U_{k}(x) + \psi_{k}^{*T}(x) \psi_{k}^{*T^{-1}}(1) x \delta F_{k+1}^{*T} \Lambda_{k}(x) U_{k}(x) + \left[\eta_{k}^{*T}(x) \psi_{k}^{*T^{-1}}(0)(1-x) - \frac{1}{h_{k}} \mathbb{D}_{k}(x) \psi_{k}^{*T}(x) \psi_{k}^{*T^{-1}}(0) \right] \delta F_{k}^{*T} \mathbb{D}_{k}^{-1}(x) V_{k}(x) + \left[\eta_{k}^{*T}(x) \psi_{k}^{*T^{-1}}(1) x + \frac{1}{h_{k}} \mathbb{D}_{k}(x) \psi_{k}^{*T}(x) \psi_{k}^{*T^{-1}}(1) \right] \delta F_{k+1}^{*T} \mathbb{D}_{k}^{-1}(x) V_{k}(x) + \left[\eta_{k}^{*T}(x) \psi_{k}^{*T^{-1}}(1) x + \frac{1}{h_{k}} \mathbb{D}_{k}(x) \psi_{k}^{*T}(x) \psi_{k}^{*T^{-1}}(1) \right] \delta F_{k+1}^{*T} \mathbb{D}_{k}^{-1}(x) V_{k}(x) \right] dx = 0$$

$$(3.5)$$

This equation can be written in the form

$$\delta F_{1}^{*T} [b_{1}F_{1}+c_{1}F_{2}]$$

$$+ \sum_{k=2}^{K} \delta F_{k}^{*T} [a_{k}F_{k-1}+b_{k}F_{k}+c_{k}F_{k+1}]$$

$$+ \delta F_{K+1}^{*T} [a_{K+1}F_{K}+b_{K+1}F_{K+1}] = 0$$
(3.6)

where the $G \times G$ matrix coefficients $\{a_k, b_k, c_k\}$ are integral quantities of the form A - $\frac{1}{\lambda}$ B and are defined in detail in section 1 of Appendix C.

External zero flux boundary conditions are easily imposed by setting $F_1 = F_{K+1} = 0$. This requires that F_1^* and F_{K+1}^* must then also be zero, which in turn requires the δF_1^* and δF_{K+1}^* coefficients in

Eqs. 3.5 and 3.6 to vanish. Allowing independent variations in the remaining F_k^* , k = 2 to K, results in a matrix problem of the form illustrated in Figure 2.6 which would contain K-1 equations and K-1 unknowns.

Zero current boundary equations are found using symmetry considerations. If, for example, a zero current or symmetry boundary condition is imposed on the right at z_{K+1} , then a "boundary condition equation" can be derived by assuming a pseudo-region k = K+1 of width h_K having mirror image properties of region K about z_{K+1} with corresponding symmetric flux and antisymmetric current properties of the detailed flux and current solutions. These properties in pseudo-region K+1 can be related to properties of region K as a function of x in each region as

$$\mathbb{D}_{K+1}(x) = \mathbb{D}_{K}(1-x)$$
 (3.7a)

$$\Lambda_{K+1}(x) = \Lambda_{K}(1-x) \tag{3.7b}$$

and

$$U_{K+1}(x) = U_{K}(1-x)$$
 (3.8a)

$$U_{K+1}^{*}(x) = U_{K}^{*}(1-x)$$
 (3.8b)

$$V_{K+1}(x) = -V_{K}(1-x)$$
 (3.8c)

$$V_{K+1}^{*}(x) = -V_{K}^{*}(1-x)$$
 (3.8d)

The addition of pseudo-region K+1 to the summation in Eq. 3.5 results in the calculation of coefficients a_{K+1} and b_{K+1} in Eq. 3.6. Detailed definitions of the G × G zero current coefficient matrices b_1 , c_1 , a_{K+1} , and b_{K+1} , all of which vanish for the case of zero flux boundary conditions, are also given in Appendix C.1. If symmetry is imposed on both sides of the problem, independent variations in F_k^* for k = 1 to K+1 result in a matrix problem of K+1 equations and K+1 unknowns of similar form as illustrated in Figure 2.6.

Other boundary conditions may be imposed on the approximation, including albedo and reflector boundary conditions, which specify the flux to current ratio at the boundaries. Such conditions will always lead to a variation equation of the form of Eq. 3.6, where in general the matrix coefficients a_2 , b_2 , b_K , and c_K as well as the boundary coefficients b_1 , c_1 , a_{K+1} , and b_{K+1} will have modified definitions.

A serious drawback of the approximation given by Eqs. 3.2 is that it does not allow the use of detailed flux solutions containing explicit zero flux boundary conditions. For this reason the exact solution, $\psi_k(z) = \Phi_k(z)$ for all k, is excluded from the class of admissible trial function forms. However, such detailed solutions can be allowed by modifying the trial function forms in the boundary regions. If a detailed solution $\psi_1(z)$ is given in the first region with the zero flux condition $\psi_1(z_1) = 0$, for example, the trial functions of Eqs. 3.2 could be modified for region k=1 as

$$U_{1}(z) = \psi_{1}(x)\psi_{1}^{-1}(1)F_{2}$$
(3.9a)

$$U_{1}^{*}(z) = \psi_{1}^{*}(x)\psi_{1}^{*-1}(1)F_{2}$$
(3.9b)

$$V_{1}(z) = \eta_{1}(x)\psi_{1}^{-1}(1)F_{2}$$
(3.9c)

$$V_{1}^{*}(z) = \eta_{1}^{*}(x)\psi_{1}^{*^{-1}}(1)F_{2}^{*}$$
(3.9d)

In this way, the imposed zero flux boundary condition is explicitly given by $\psi_1(z)$ rather than in the form of the trial function. Similar

trial functions can be given for an explicit zero flux boundary condition in the last region, k=K.

The use of these special trial functions in the boundary regions alters the definitions of the matrix coefficients b_2 and b_K as given in Eq. 3.6. Detailed definitions of these coefficients when these special trial functions are used are also included in Appendix C.

Regardless of the types of boundary conditions imposed, Eq. 3.6 results in an N \times N matrix problem of the form

$$\mathbf{A}\underline{\mathbf{F}} = \frac{1}{\lambda} \operatorname{IB}\underline{\mathbf{F}} \tag{3.10}$$

where \mathbb{A} and \mathbb{B} are independent of λ . The order N of the matrix equations is dependent upon the chosen boundary conditions, and is given for various choices in Table 3.1.

Table 3.1. Matrix Order N of the Proposed Linear Basis Function Approximations as a Function of the Imposed Boundary Conditions.

- 1 Explicit or Implicit Zero Flux
- 2 Symmetry

Boundary Condition Type		Matrix Order
on Left	on Right	Ν
1	1	G × (K-1)
1	2	G × K
2	1	GΧK
2	2	G X (K+1)

3.3 The Proposed Cubic Hermite Basis Function Approximation

The proposed modal-nodal approximation method utilizing the cubic Hermite polynomials

$$p_{1}(x) = 1 - 3x^{2} + 2x^{3}$$

$$p_{2}(x) = 3x^{2} - 2x^{3}$$

$$p_{3}(x) = -x + 2x^{2} - x^{3}$$

$$p_{4}(x) = x^{2} - x^{3}$$
(3.11)

and their negative derivatives

$$q_{1}(x) = 6x - 6x^{2}$$

$$q_{2}(x) = -6x + 6x^{2}$$

$$q_{3}(x) = 1 - 4x + 3x^{2}$$

$$q_{4}(x) = -2x + 3x^{2}$$
(3.12)

and defined as nonzero only within each mesh region k, is given by the below regional trial function forms. F_k and G_k are again the unknown group column approximate flux and current solutions at z_k respectively, and the remaining symbols have been previously defined. As in the cubic Hermite finite element method described in section 2.3.4 of Chapter 2, θ is an optional normalization parameter.

$$U_{k}(z) = \psi_{k}(x) \left[\psi_{k}^{-1}(0) p_{1}(x) F_{k} + \psi_{k}^{-1}(1) p_{2}(x) F_{k+1} + h_{k} \theta \mathbb{D}_{k}^{-1}(0) \psi_{k}^{-1}(0) p_{3}(x) G_{k} + h_{k} \theta \mathbb{D}_{k}^{-1}(1) \psi_{k}^{-1}(1) p_{4}(x) G_{k+1} \right]$$

$$(3.13a)$$

$$U_{k}^{*}(z) = \psi_{k}^{*}(x) \left[\psi_{k}^{*^{-1}}(0) p_{1}(x) F_{k}^{*} + \psi_{k}^{*^{-1}}(1) p_{2}(x) F_{k+1}^{*} + h_{k} \theta \mathbb{D}_{k}^{-1}(0) \psi_{k}^{*^{-1}}(0) p_{3}(x) G_{k}^{*} + h_{k} \theta \mathbb{D}_{k}^{-1}(1) \psi_{k}^{*^{-1}}(1) p_{4}(x) G_{k+1}^{*} \right]$$
(3.13b)

$$\nabla_{k}(z) = \eta_{k}(x) \left[\psi_{k}^{-1}(0) p_{1}(x) F_{k} + \psi_{k}^{-1}(1) p_{2}(x) F_{k+1} + h_{k} \theta \mathbb{D}_{k}^{-1}(0) \psi_{k}^{-1}(0) p_{3}(x) G_{k} + h_{k} \theta \mathbb{D}_{k}^{-1}(1) \psi_{k}^{-1}(1) p_{4}(x) G_{k+1} \right] \\
+ \mathbb{D}_{k}(x) \psi_{k}(x) \left[\frac{1}{h_{k}} \psi_{k}^{-1}(0) q_{1}(x) F_{k} + \frac{1}{h_{k}} \psi_{k}^{-1}(1) q_{2}(x) F_{k+1} + \theta \mathbb{D}_{k}^{-1}(0) \psi_{k}^{-1}(0) q_{3}(x) G_{k} + \theta \mathbb{D}_{k}^{-1}(1) \psi_{k}^{-1}(1) q_{4}(x) G_{k+1} \right]$$
(3.13c)

$$\nabla_{k}^{*}(z) = \eta_{k}^{*}(x) \left[\psi_{k}^{*^{-1}}(0) p_{1}(x) F_{k}^{*} + \psi_{k}^{*^{-1}}(1) p_{2}(x) F_{k+1}^{*} + h_{k} \theta D_{k}^{-1}(0) \psi_{k}^{*^{-1}}(0) p_{3}(x) G_{k}^{*} + h_{k} \theta D_{k}^{-1}(1) \psi_{k}^{*^{-1}}(1) p_{4}(x) G_{k+1}^{*} \right] \\
- D_{k}(x) \psi_{k}^{*}(x) \left[\frac{1}{h_{k}} \psi_{k}^{*^{-1}}(0) q_{1}(x) F_{k}^{*} + \frac{1}{h_{k}} \psi_{k}^{*^{-1}}(1) q_{2}(x) F_{k+1}^{*} + \theta D_{k}^{-1}(0) \psi_{k}^{*^{-1}}(0) q_{3}(x) G_{k}^{*} + \theta D_{k}^{-1}(1) \psi_{k}^{*^{-1}}(1) q_{4}(x) G_{k+1}^{*} \right]$$
(3.13d)

Again, for the moment, $\psi_k(0)$ and $\psi_k(1)$ and their adjoints are not allowed to be zero in any region.

The forms of these trial functions impose both flux and current continuity since:

$$U_k(z_k) = U_{k-1}(z_{k-1} + h_{k-1}) = F_k$$
 (3.14a)

$$U_{k}^{*}(z_{k}) = U_{k-1}^{*}(z_{k-1} + h_{k-1}) = F_{k}^{*}$$
 (3.14b)

$$V_k(z_k) = V_{k-1}(z_{k-1} + h_{k-1}) = G_k$$
 (3.14c)

$$V_{k}^{*}(z_{k}) = V_{k-1}^{*}(z_{k-1}+h_{k-1}) = -G_{k}^{*}$$
 (3.14d)

where it is assumed that at region mesh points the detailed current solutions are zero:

$$\eta_k(z_k) = \eta_k(z_k + h_k) = 0$$
 (3.15a)

$$\eta_{k}^{*}(z_{k}) = \eta_{k}^{*}(z_{k}+h_{k}) = 0$$
 (3.15b)

for all regions k=1 to K.

.

Also, by comparison to Eqs. 2.31, it is evident that this approximation reduces to the cubic Hermite finite element method when the ψ_k 's are constant, and the η_k 's are correspondingly zero.

The insertion of the above trial function forms into variation equation 2.12a results in a lengthy equation which can be simplified to the following form:

$$\delta F_{1}^{*T} [b1_{1}F_{1}+b2_{1}G_{1}+c1_{1}F_{2}+c2_{1}G_{2}]$$

$$+ \delta G_{1}^{*T} [b3_{1}F_{1}+b4_{1}G_{1}+c3_{1}F_{2}+c4_{1}G_{2}]$$

$$+ \sum_{k=2}^{K} \left\{ \delta F_{k}^{*T} [a1_{k}F_{k-1}+a2_{k}G_{k-1}+b1_{k}F_{k}+b2_{k}G_{k}+c1_{k}F_{k+1}+c2_{k}G_{k+1}]$$

$$+ \delta G_{k}^{*T} [a3_{k}F_{k-1}+a4_{k}G_{k-1}+b3_{k}F_{k}+b4_{k}G_{k}+c3_{k}F_{k+1}+c4_{k}G_{k+1}] \right\}$$

$$+ \delta F_{K+1}^{*T} [a1_{K+1}F_{K}+a2_{K+1}G_{K}+b1_{K+1}F_{K+1}+b2_{K+1}G_{K+1}]$$

$$+ \delta G_{K+1}^{*T} [a3_{K+1}F_{K}+a4_{K+1}G_{K}+b3_{K+1}F_{K+1}+b4_{K+1}G_{K+1}] = 0$$

$$(3.16)$$

where the detailed definitions of the twelve integral $G \times G$ matrix coefficients $\{a1_k, \ldots, c4_k\}$ of the form $A - \frac{1}{\lambda}B$ for all k are given in section 2 of Appendix C. Boundary conditions for either zero flux or symmetry are easily imposed by setting either F_k or G_k , respectively, to zero with k=1for the conditions on the left at z_1 or k=K+1 for conditions on the right at z_{K+1} . The corresponding variations for k=1 and k=K+1 then vanish. Allowing arbitrary variations in the remaining F_k^* and G_k^* in Eq. 3.16 results in a system of 2K G × G matrix equations relating 2K G column vector unknowns, as illustrated in Figure 2.7.

Explicit zero flux boundary conditions imposed by $\psi_1(z_1) = 0$ or $\psi_K(z_{K+1}) = 0$ can be incorporated into the approximation by modifying the trial function definitions in the boundary regions. The modified flux trial functions in the first region, for example, are

$$U_{1}(\mathbf{x}) = \psi_{1}(\mathbf{x}) [\psi_{1}^{-1}(1)F_{2} + h_{1}\theta \mathbb{D}_{1}^{-1}(0)\psi_{1}^{-1}(0)p_{3}(\mathbf{x})G_{1} + h_{1}\theta \mathbb{D}_{1}^{-1}(1)\psi_{1}^{-1}(1)p_{4}(\mathbf{x})G_{2}]$$

$$U_{1}^{*}(\mathbf{x}) = \psi_{1}^{*}(\mathbf{x}) [\psi_{1}^{*-1}(1)F_{2}^{*} + h_{1}\theta \mathbb{D}_{1}^{-1}(0)\psi_{1}^{*-1}(0)p_{3}(\mathbf{x})G_{1}^{*} + h_{1}\theta \mathbb{D}_{1}^{-1}(1)\psi_{1}^{*-1}(1)p_{4}(\mathbf{x})G_{2}^{*}]$$

(3.17)

where the current trial functions are again given by Fick's laws. Use of modified trial function forms of this type in the boundary regions results in 2K equations with different definitions of $c3_1$, $a2_2$, $b1_2$, $b2_2$, and $b3_2$ as well as $b1_K$, $b2_K$, $c2_K$, and $a3_{K+1}$, which are also included in Appendix C.

Other boundary condition restrictions may be imposed on this approximation, but the matrix form of the resulting difference equations will remain unchanged. Only the coefficients defined for k = 1, 2, K, and K+1 will in general be altered.

The matrix equations resulting from this approximation can always be written as

$$\mathbb{A} \underline{\mathbf{F}} = \frac{1}{\lambda} \mathbb{IB} \underline{\mathbf{F}}$$
(3.18)

where \mathbb{A} and \mathbb{B} are (G × 2K) by (G × 2K) matrices, independent of λ , and \underline{F} is the G × K column vector of unknowns containing both F_k and G_k column vectors for each k. The matrix properties and solution methods of the matrix equations derived in these proposed approximation methods are discussed in the next chapter.

,

Chapter 4 NUMERICAL SOLUTION TECHNIQUES

The matrix properties of the difference equations resulting from both the proposed approximations and the finite element methods in one dimension, as well as the solution schemes used to solve these equations, are summarized in the following section. Various calculational and programming techniques used in conjunction with these approximation methods and their solution schemes are presented and discussed in section 4.2.

4.1 Solution Methods and Matrix Properties

The matrix equations which result from the approximations given in this report are of the form

$$\mathbb{A}\underline{\mathbf{F}} = \frac{1}{\lambda} \mathbb{B}\underline{\mathbf{F}}$$
(4.1)

and are solved using the fission source power iteration method without fission source renormalization.^{7,44} The method of solution is illustrated schematically in Figure 4.1. Other definitions of the iteration eigenvalue $\lambda^{(i)}$ can be found elsewhere.⁴⁵

Figure 4.1 illustrates that an outer iteration solution scheme⁴⁶ is used, and that the geometry and nuclear properties of the reactor are not altered. Since the fission source is not normalized by the iteration eigenvalue during the iterations, $\lambda^{(i)}$ converges to the effective multiplication factor, k_{eff} , of the problem. Had fission source renormalization been included, by $\underline{S}^{(i)} = \mathbb{B}\underline{F}^{(i)}/\lambda^{(i-1)}$ for example, then $\lambda^{(i)}$

Guess
$$\underline{F}^{(1)} > 0$$

 $i = i + 1$ Outer Iteration
 $\underline{S}^{(i)} = \mathbb{B} \underline{F}^{(i)}$
 $\underline{\widetilde{F}}^{(i+1)} = \mathbb{A}^{-1} \underline{S}^{(i)}$ Matrix Inversion
 $\lambda^{(i)} = \frac{(1, \mathbb{B} \underline{\widetilde{F}}^{(i+1)})}{(1, \mathbb{B} \underline{F}^{(i)})}$
 $\underline{e}^{(i)} = \frac{1}{\lambda} \underline{\widetilde{F}}^{(i+1)} - \underline{F}^{(i)}$
 $\underline{F}^{(i+1)} = \underline{F}^{(i)} + \omega \underline{e}^{(i)}$
No $|\underline{e}^{(i)}| < \text{Tol. } \epsilon_1$
 $|\lambda^{(i)} - \lambda^{(i-1)}| < \text{Tol. } \epsilon_3$

i = 0

Convergence

Figure 4.1. Solution of $\mathbb{A} = \frac{1}{\lambda} \mathbb{B} = \frac{1}{\lambda} \mathbb{B}$ Using the Fission Source Power Iteration Method Without Fission Source Renormalization.

would converge to unity. The k_{eff} of the problem would then be simply the product of all of the iteration eigenvalues. 46,47,48

The matrix inversions required within the iteration scheme were performed directly. Although overrelaxation methods are usually employed only in iterative matrix inversion schemes (or inner iterations),⁴⁹ an overrelaxation parameter w, $1 \le w \le 2$, is available in the outer iteration in order to hasten the convergence of the solution vector.

The power method is very appealing to neutron diffusion flux calculations because it converges to the largest or fundamental eigenvalue $|\lambda_0| > |\lambda_i|$, $i \neq 0$, and the corresponding eigenvector \underline{F}_0 of the given matrix problem. The convergence rate is governed by the dominance ratio, defined as $\max_{i \neq 0} |\lambda_i| \langle \lambda_0|$, in such a way that smaller ratios result in faster convergence. Although the power method will always converge when λ_0 is positive and unique, specific matrix properties of \mathbb{A} and \mathbb{B} are sufficient but not always necessary to insure convergence to a positive k_{eff} and everywhere positive neutron flux approximation. 50

In many problems the order of \mathbf{A} may be quite large, and solution methods which require the direct inversion of \mathbf{A} may not be practical. For the purposes of this report, as in most multigroup calculational schemes, neutron up-scattering will not be permitted. The inversion of \mathbf{A} is then performed by successive group-iteration techniques.

The equations given in Eq. 4.1 have been defined as ordered first by spatial indexing followed by group indexing within each spatial index. It is convenient to reorder these equations so that they are ordered first by group indexing followed by spatial indexing within each group. After reordering, Eq. 4.1 can be written as

$$(\mathbb{I}_{+} + \mathbb{I}_{+}) \underline{F} = \mathbf{T} \underline{F} + \frac{1}{\lambda} \mathbb{I}_{+} \underline{F}$$
(4.2a)

where

$$\mathbf{A} = \mathbf{I} + \mathbf{M} - \mathbf{T} \tag{4.2b}$$

and: L, the stiffness matrix, results from leakage; IM, the mass matrix, results from absorption; T is the group-to-group scattering transfer matrix; and B is the fission source production matrix. Assuming K spatial unknowns in each of the G groups, L and M are $G \times K$ block diagonal matrices composed of G K×K matrices L_g and M_g of the form

$$\mathbb{L} = \operatorname{Diag}[\mathbb{L}_{1}, \dots, \mathbb{L}_{G}]$$
(4.3a)

$$\mathbb{IM} = \operatorname{Diag}[\mathbb{IM}_{1}, \dots, \mathbb{IM}_{G}]$$
(4.3b)

and \mathbf{T} and \mathbf{B} are in general full block matrices composed of $G^2 K \times K$ matrices $\mathbf{T}_{gg'}$ and $\mathbf{B}_{gg'}$, respectively. Since only downscattering is permitted, \mathbf{T} becomes lower block triangular; $\mathbf{T}_{gg'} = 0$ whenever $g' \ge g$. The matrix inversion, $\underline{\widetilde{F}}^{(i+1)} = \mathbf{A}^{-1} \underline{S}^{(i)}$, can then be solved for the GK unknowns

$$\underline{\widetilde{F}}^{(i+1)} = \operatorname{Col}\left[\underline{\widetilde{F}}_{1}^{(i+1)} \cdots \underline{\widetilde{F}}_{G}^{(i+1)}\right]$$
(4.4)

by solving successively the following system of group equations:

Do for
$$g = 1$$
 to G:

$$\underbrace{\underline{S}_{g}^{(i)}}_{g'=1} = \underbrace{\sum_{g'=1}^{G} (\mathbf{T}_{gg'} + \mathbf{B}_{gg'}) \underline{F}_{g'}^{(k)}}_{gg'}$$
where: $k = \begin{cases} i+1; g' < g \\ i ; g' \ge g \end{cases}$

$$\underbrace{\widetilde{F}_{g}^{(i+1)}}_{g} = (\mathbf{I}_{g} + \mathbf{M}_{g})^{-1} \underline{S}_{g}^{(i)}$$

$$(4.5)$$

where the updating of the group fission source by the iteration index k = i+1 for g' < g generally enables a faster rate of convergence of the outer iteration than k=i.

The desirable convergence properties of a positive eigenvalue and everywhere positive flux solution when using the above group iteration method depend upon the properties of the K×K spatial matrices for each group g: \mathbb{L}_{g} ; \mathbb{M}_{g} ; and $\mathbb{T}_{gg'}$, and $\mathbb{B}_{gg'}$, for g' = 1 to G. Using the Perron-Frohenius theorem, ⁵⁰ it can be shown that if $\mathbb{T}_{gg'}$ and $\mathbb{B}_{gg'}$ are all nonnegative for each group g and \mathbb{L}_{g} and \mathbb{M}_{g} are both Stieltjes or S-type matrices[†] for each group g, then the power method will converge to a positive eigenvalue, $\lambda_{o} > 0$, and a corresponding positive eigenvector, $\underline{F}_{o} > 0$. These matrix properties naturally depend upon the form of the spatial approximations employed and generally differ for different approximation schemes.

The conventional finite difference approximation has become popular because the spatial matrices which arise from its use exhibit these desirable properties regardless of the size of the mesh regions chosen. The spatial matrices resulting from the linear finite element method, however, are known to exhibit these properties only if the mesh size is restricted by

$$h_{k} \leq \max_{g=1 \text{ to } G} \left\{ \sqrt{6} \ell_{g,k} \right\}$$
(4.6)

where $\ell_{g,k}$ is the diffusion length, $\ell_{g,k}^2 = D_{g,k}/\Sigma_{g,k}$, for group g in mesh region k. The spatial matrices resulting from the cubic Hermite

[†]A Stieltjes matrix is a real, irreducible, positive definite matrix with nonpositive off-diagonal elements.

finite element method do not exhibit these "desirable" characteristics. Since the eigenvector \underline{F} contains current as well as flux unknowns, convergence to an all-positive solution vector is not desirable.

The properties of the spatial matrices for each group g resulting from the proposed approximation methods can be found by generalizing the proposed trial function forms in each group as

$$U_{g}(z) = \sum_{k=1}^{K} \left[\frac{P_{g,k}^{-T}(x)F_{g,k} + P_{g,k}^{+T}F_{g,k+1}}{R_{g,k}^{-}} \right]$$
(4.7a)

$$U_{g}^{*}(z) = \sum_{k=1}^{K} \left[\underline{P}_{g,k}^{*}(x) \underline{F}_{g,k}^{*} + \underline{P}_{g,k}^{+} \underline{F}_{g,k+1}^{*} \right]$$
(4.7b)

where the $\underline{F}_{g,k}$ are in general column vectors of length N given by:

$$\frac{F}{g,k} = F_{g,k}$$
 (N = 1) (4.8a)

for the linear basis function approximations, and

$$\frac{F}{g,k} = \operatorname{Col}[F_{g,k}, G_{g,k}] \quad (N = 2)$$
(4.8b)

for the cubic Hermite basis function approximations. Similar definitions hold for the $\underline{F}_{g,k}^{*}$. The $\underline{P}_{g,k}^{\pm}(x)$ are column vectors of length N whose elements are functions of z (or x) defined as nonzero only within region k which provide the basis for the approximations. The definitions of the $\underline{P}_{g,k}^{\pm}(x)$ for the proposed approximations are given as follows:

N = 1; Linear Basis Functions:

$$\underline{P}_{g,k}^{-}(x) = (1-x)\psi_{g,k}^{-1}(0)\psi_{g,k}(x)$$
(4.9a)

$$\underline{P}_{g,k}^{+}(x) = x \psi_{g,k}^{-1}(1)\psi_{g,k}(x)$$
(4.9b)
N = 2; Cubic Hermite Basis Functions:

$$\underline{P}_{g,k}^{-}(x) = \operatorname{Col}[p_{1}(x)\psi_{g,k}^{-1}(0)\psi_{g,k}(x), h_{k}\theta p_{3}(x)D_{g,k}^{-1}(0)\psi_{g,k}^{-1}(0)\psi_{g,k}(x)]$$

$$(4.10a)$$

$$\underline{P}_{g,k}^{+}(x) = \operatorname{Col}[p_{2}(x)\psi_{g,k}^{-1}(1)\psi_{g,k}(x), h_{k}\theta p_{4}(x)D_{g,k}^{-1}(1)\psi_{g,k}^{-1}(1)\psi_{g,k}(x)]$$

$$(4.10b)$$

where $\psi_{g,k}(x)$ and $D_{g,k}(x)$ are the detailed flux solutions and diffusion coefficients of group g, the polynomials $p_1(x)$ through $p_4(x)$ are defined in Eqs. 3.11, and $0 \le x \le 1$ within each region k. Similar definitions hold for the $\underline{P}_{g,k}^{\pm *}(x)$.

Equations 4.7 can be written in matrix form as

$$U_{g}(z) = \mathbb{P}_{g}(x)\underline{F}_{g}$$
(4.11a)

$$U_{g}^{*}(z) = \mathbb{P}_{g}^{*}(x) \underline{F}_{g}^{*}$$
 (4.11b)

where:

$$\frac{F}{g} = Col(F_{g,1}, \dots, F_{g,K+1})$$
 (4.12a)

and $\mathrm{IP}_{g}(x)$ is the K by N(K+1) matrix defined by

 $\operatorname{IP}_g^*(x)$ is defined similarly. Insertion of these trial function forms into variation equation 2.12b for each group g results in

$$\delta \underline{F}_{g}^{*T} \int_{K} \left[\frac{\mathbf{P}_{g}^{*T}}{\mathbf{P}_{g}} \mathbf{D}_{g} \frac{\mathbf{P}_{g}}{\mathbf{P}_{g}} \mathbf{F}_{g} + \mathbf{P}_{g}^{*T} \sum_{g'=1}^{G} \mathbf{A}_{gg'} \mathbf{P}_{g'} \frac{\mathbf{F}_{g'}}{\mathbf{F}_{g'}} \right] dz = 0 \qquad (4.13)$$

where ${\rm I\!D}_g$ and ${\rm I\!A}_{gg'}$ are KXK diagonal matrices of the form

$$\mathbb{D}_{g} = \mathbb{D}_{g}(\mathbf{x}) = \operatorname{Diag}\left[\mathbb{D}_{g,1}(\mathbf{x}), \dots, \mathbb{D}_{g,K}(\mathbf{x})\right]$$
(4.14a)

and

$$\mathbf{\Lambda}_{gg'} = \mathbf{\Lambda}_{gg'}(\mathbf{x}) = \mathrm{Diag}[\Lambda_{gg',1}(\mathbf{x}), \dots, \Lambda_{gg',K}(\mathbf{x})]$$
(4.14b)

The quantity \dot{P}_{g} represents the derivative of $P_{g}(z)$ with respect to z, and the integration over K denotes integration over the entire range of z; $z_{1} \leq z \leq z_{K+1}$. $D_{g,k}$ and $\Lambda_{gg',k}$, $\Lambda_{gg',k} = \left(\Sigma_{tg} - \Sigma_{gg'} - \frac{1}{\lambda} \chi_{g} \nu \Sigma_{fg'} \right)_{in region k}$ (4.14c)

are the group material constants in mesh region k, and are usually dependent on x. $\Lambda_{gg'}$ can thus be conveniently expanded as

$$\boldsymbol{\Lambda}_{gg'} = \boldsymbol{\Lambda}_{g}^{A} - \boldsymbol{\Lambda}_{gg'}^{S} - \frac{1}{\lambda} \boldsymbol{\Lambda}_{gg'}^{F}$$
(4.14d)

Allowing arbitrary variations in each element of \underline{F}_{g}^{*} for each group g in Eq. 4.13 results in the matrix equations

$$(\mathbb{I}_{g} + \mathbb{I}_{g}) \underline{F}_{g} = \sum_{g'=1}^{G} \left(\mathbb{I}_{gg'} + \frac{1}{\lambda} \mathbb{B}_{gg'} \right) \underline{F}_{g'}; \quad g = 1 \text{ to } G \qquad (4.15)$$

as described in Eqs. 4.1 through 4.5, where:

$$\mathbb{L}_{g} = \int_{K} \overset{\cdot}{\mathbb{P}}_{g}^{*} \mathbb{D}_{g} \overset{\cdot}{\mathbb{P}}_{g} dz$$
(4.16a)

$$\mathbb{IM}_{g} = \int_{K} \mathbb{IP}_{g}^{*T} \mathbf{\Lambda}_{g}^{A} \mathbb{IP}_{g} dz$$
(4.16b)

$$T_{gg'} = \int_{K} \mathbb{P}_{g}^{*} \Lambda_{gg'}^{S} \mathbb{P}_{g'} dz \qquad (4.16c)$$

$$\mathbb{B}_{gg'} = \int_{K} \mathbb{P}_{g}^{*} \mathcal{A}_{gg'}^{F} \mathbb{P}_{g'} dz \qquad (4.16d)$$

These matrices are N(K+1) by N(K+1) block tridiagonal of similar form whose N×N submatrices are integrals of N×N dyads. The kth row of the product $\mathbf{A}_{gg'} \mathbf{\underline{F}}_{g'}$ is, for example:

$$\begin{bmatrix} \Lambda_{gg'} \underline{F}_{g'} \end{bmatrix}_{k} = \left\{ \int_{0}^{1} h_{k-1} \Lambda_{gg', k-1}(x) \underline{P}_{g, k-1}^{*}(x) \underline{P}_{g', k-1}^{T}(x) dx \right\} F_{g', k-1}$$

$$+ \left\{ \int_{0}^{1} h_{k-1} \Lambda_{gg', k-1}(x) \underline{P}_{g, k-1}^{*}(x) \underline{P}_{g', k-1}^{T}(x) dx \right\}$$

$$+ \int_{0}^{1} h_{k} \Lambda_{gg', k}(x) \underline{P}_{g, k}^{*}(x) \underline{P}_{g', k}^{T}(x) dx \right\} F_{g', k}$$

$$+ \left\{ \int_{0}^{1} h_{k} \Lambda_{gg', k}(x) \underline{P}_{g, k}^{*}(x) \underline{P}_{g', k}^{T}(x) dx \right\} F_{g', k+1} \quad (4.17)$$

These matrix relationships allow presentation of the following matrix properties.

<u>Theorem 1</u>: \mathbb{L}_{g} and \mathbb{M}_{g} are guaranteed to be positive definite whenever the detailed weighting functions $\psi_{g,k}^{*}(z)$ have a similar shape to that of the detailed flux solutions $\psi_{g,k}(z)$, as given by:

$$\psi_{g,k}^{*}(z) = C_{g,k} \psi_{g,k}(z)$$
 (4.18)

where $C_{g,k}$ is a positive constant for each energy group g and each region k.

<u>Proof</u>: Under these conditions, $\underline{P}_{g,k}^{*^{\pm}} = C_{g,k} \underline{P}_{g,k}^{\pm}$;

hence,

$$\mathbf{P}_{g}^{*} = \mathbf{C}_{g} \mathbf{P}_{g} \tag{4.19a}$$

where

$$\mathbb{C}_{g} = \text{Diag}(C_{g,1}, \dots, C_{g,K})$$
(4.19b)

First consider ${\rm I\!M}_g.$ Given any arbitrary constant nonzero vector \underline{q} ,

$$\underline{\mathbf{q}}^{\mathrm{T}} \mathbb{I} \mathbb{M}_{g} \underline{\mathbf{q}} = \int_{\mathrm{K}} (\mathbb{I} \mathbb{P}_{g} \underline{\mathbf{q}})^{\mathrm{T}} \mathbb{C}_{g}^{\mathrm{T}} \mathbb{M}_{g}^{\mathrm{A}} \mathbb{I} \mathbb{P}_{g} \underline{\mathbf{q}} \, \mathrm{dz}$$
(4.20)

and since \mathbb{C}_g and \mathbb{A}_g^A are both positive block diagonal matrices with diagonal submatrices, their product can be factored into

$$\mathbb{C}_{g}^{T}\Lambda_{g}^{A} = \left[\left(\mathbb{A}_{g}^{A}\mathbb{C}_{g}\right)^{\frac{1}{2}}\right]^{T}\left(\mathbb{C}_{g}\mathbb{A}_{g}^{A}\right)^{\frac{1}{2}}$$
(4.21)

Therefore,

$$\underline{\mathbf{q}}^{\mathrm{T}} \mathbb{I} \mathbb{M}_{g} \underline{\mathbf{q}} = \int_{\mathrm{K}} \left[\left(\mathbb{C}_{g} \mathbf{A}_{g}^{\mathrm{A}} \right)^{\frac{1}{2}} \mathbb{I} \mathbb{P}_{g} \underline{\mathbf{q}} \right]^{\mathrm{T}} \left[\left(\mathbb{C}_{g} \mathbf{A}_{g}^{\mathrm{A}} \right)^{\frac{1}{2}} \mathbb{I} \mathbb{P}_{g} \underline{\mathbf{q}} \right] \mathrm{dz} \qquad (4.22a)$$

$$= \int_{\mathbf{K}} \mathbf{R}^{\mathbf{T}} \mathbf{R} \, \mathrm{dz} \tag{4.22b}$$

which is always greater than zero for arbitrary nonzero <u>q</u>. Hence, by definition, \mathbb{IM}_{g} is positive definite. A similar proof holds for \mathbb{IL}_{g} using Eq. 4.16a.

The following corollaries immediately result.

<u>Corollary 1</u>: If Rayleigh-Ritz Galerkin weighting, $\underline{U}^* = \underline{U}$, is used in the approximation, then \mathbb{L}_g and \mathbb{M}_g are positive definite.

<u>Corollary 2</u>: \mathbb{L}_g and \mathbb{M}_g resulting from the finite element methods using linear and cubic Hermite basis functions are both positive definite.

<u>Corollary 3</u>: If \mathbb{L}_g and \mathbb{M}_g are positive definite, then so is the matrix $(\mathbb{I}_g + \mathbb{M}_g)$. These three matrices are then also symmetric.

It is also interesting to note the properties of \mathbb{L}_g and \mathbb{M}_g for cases of symmetry; that is, when the material properties and detailed flux solutions are symmetric about the center of each coarse mesh region k. Such symmetry occurs in regular repeating reactor geometries, and is denoted by:

$$D_{g,k}(x) = D_{g,k}(1-x)$$
 (4.23a)

and

$$\Lambda_{g,k}(x) = \Lambda_{g,k}(1-x)$$
(4.23b)

Hence,

$$\psi_{g,k}(x) = \psi_{g,k}(1-x)$$
 (4.23c)

and

$$\eta_{g,k}(x) = -\eta_{g,k}(1-x)$$
 (4.23d)

and similarly for the weighting fluxes and currents. Under such conditions, the $\underline{P}_{g,k}^+(x)$ and $\underline{P}_{g,k}^-(x)$ support functions can be found by inspection of Eqs. 4.9 and 4.10 to obey the following symmetries:

For N = 1:

$$P_{g,k}^{\mp}(x) = P_{g,k}^{\pm}(1-x)$$
 (4.24a)

$$\dot{P}_{g,k}^{\mp}(x) = -\dot{P}_{g,k}^{\pm}(1-x)$$
 (4.24b)

For N = 2:

$$\underline{\mathbf{P}}_{g,k}^{\mp}(\mathbf{x}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \underline{\mathbf{P}}_{g,k}^{\pm}(1-\mathbf{x})$$
(4.24c)

$$\dot{\mathbf{P}}_{g,k}^{\pm}(\mathbf{x}) = - \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \dot{\mathbf{P}}_{g,k}^{\pm}(1-\mathbf{x})$$
(4.24d)

where the following symmetries of the polynomials defined in Eqs. 3.11 have been used:

$$p_{1}(x) = p_{2}(1-x)$$

$$p_{3}(x) = -p_{4}(1-x)$$

$$q_{1}(x) = -q_{2}(1-x)$$

$$q_{3}(x) = q_{4}(1-x)$$
(4.25)

Similar identities with identical signs hold for the weighting quantities $\underline{P}_{g,k}^{\pm}(x)$.

<u>Theorem 2</u>: For cases of symmetry, as given above, the matrices \mathbb{L}_{g} , \mathbb{M}_{g} , $\mathbb{T}_{gg'}$, and \mathbb{B}_{gg} , are all symmetric regardless of the relation of $\psi_{g,k}^{*}(x)$ to $\psi_{g,k}(x)$.

<u>Proof</u>: Referring to Eq. 4.17, \mathbb{L}_{g} , for example, is symmetric only if

$$\int_{0}^{1} h_{k} D_{g,k}(x) \dot{\underline{P}}_{g,k}^{*}(x) \dot{\underline{P}}_{g,k}^{-T}(x) dx = \int_{0}^{1} h_{k} D_{g,k}(x) \dot{\underline{P}}_{g,k}^{-*}(x) \dot{\underline{P}}_{g,k}^{+T}(x) dx$$
(4.26)

This can be shown for any N by changing variables in one of the integrals from x to 1-x' and using the symmetry properties of Eqs. 4.23 and 4.24. Similar proofs hold for the other matrices.

It is unfortunate that the above symmetry conditions do not allow direct proof that L_g and M_g have positive diagonal elements and are also diagonally dominant (for at least one row) for arbitrary positive and symmetric detailed flux solutions. Under such conditions, L_g and M_g would then be positive definite, since they are block tridiagonal with nonzero diagonal elements and hence irreducible. Instead, these conditions can be used to obtain a set of algebraic equations which, for completely arbitrary detailed flux solutions, must be satisfied in order that L_g and M_g be positive definite.

The requirement that \mathbb{L}_g and \mathbb{M}_g be positive definite is useful only in the inversion of $(\mathbb{L}_g + \mathbb{M}_g)$. Although the inversion can always be performed using Gaussian elimination techniques, the property of positive definiteness allows the use of Cholesky's method, discussed in the next section, which is faster and requires less computer storage.

4.2 Calculational and Programming Techniques

Calculation of the one-dimensional subassembly detailed fluxes, currents, and adjoint solutions, as well as detailed "exact" or reference solutions, were performed using the program REF2G described in section 1 of Appendix D. Assuming subassembly k to be divided into N homogeneous intervals at nodes t_i and of width hs_i , the program uses fine mesh linear finite element approximations to calculate the detailed flux solutions for each group. Omitting group subscripts, the detailed flux solution for each group in subassembly k is represented by a set of N+1 points

$$\psi_{\mathbf{k}}(\mathbf{x}) = \{\psi_{\mathbf{k},i} : i = 1, N+1\}$$
 (4.27)

where $\psi_k(x)$ is linear between points. Detailed group current solutions $\eta_k(x)$ are represented by a set of N points

$$\eta_{k}(\mathbf{x}) = \{\eta_{k,i} : i = 1, N\}$$
 (4.28)

which are found from the converged flux solutions by Fick's law

$$\eta_{k,i} = \frac{1}{hs_i} D_{k,i} [\psi_{k,i} - \psi_{k,i+1}]; \quad i = 1, N$$
(4.29)

where $D_{k,i}$ is the diffusion constant homogeneous in interval i. $\eta_k(x)$ is of constant value, $\eta_{k,i}$, within each interval. The forms of these solutions are illustrated in Figure 4.2.

In order to approximate the symmetry boundary conditions imposed on the detailed subassembly flux solutions, small intervals hs_1 and hs_N are defined at the edges of each subassembly. The detailed current solutions can then be made to have zero boundary values by setting $\eta_{k,1}$ and $\eta_{k,N}$ to zero. However, since the currents in each interval are defined as inversely proportional to the mesh size, the calculated boundary currents using this scheme may not be small enough to be negligible.

Explicit zero current boundary conditions can be imposed on the detailed current solutions by transforming the above discontinuous current $\eta_k(x)$ into a continuous current solution $\tilde{\eta}_k(x)$ represented by a set of N+1 points

$$\widetilde{\eta}_{k}(\mathbf{x}) = \left\{ \widetilde{\eta}_{k,i} : i = 1 \text{ to } N+1 \right\}$$
(4.30)

where $\tilde{\eta}_k(x)$ is linear between points, as also illustrated in Figure 4.2. By seeking to minimize the mean square error between $\eta_k(x)$ and $\tilde{\eta}_k(x)$ within each interval i, variational techniques yield the following set of N-1 equations for each group:

 $0 \le x \le 1$; for each subassembly k; k = 1 to K.

$$y = \frac{1}{hs_i} (t - t_i)$$

 $0 \leq$ y \leq 1; for each interval i in subassembly k; i = 1 to N.

Figure 4.2. Subassembly Notations and Detailed Solutions

$$\left(\frac{1}{6} \operatorname{hs}_{i-1}\right) \tilde{\eta}_{k,i-1} + \frac{1}{3} \left(\operatorname{hs}_{i-1} + \operatorname{hs}_{i}\right) \tilde{\eta}_{k,i} + \left(\frac{1}{6} \operatorname{hs}_{i}\right) \tilde{\eta}_{k,i+1}$$

= $\left(\frac{1}{2} \operatorname{hs}_{i-1}\right) \eta_{k,i-1} + \left(\frac{1}{2} \operatorname{hs}_{i}\right) \eta_{k,i}; \quad i = 2 \text{ to } \mathbb{N}$ (4.31)

These equations, given the $\eta_{k,i}$ from Eq. 4.29, are easily solved for the $\tilde{\eta}_{k,i}$, i = 2 to N, where $\tilde{\eta}_{k,1}$ and $\tilde{\eta}_{k,N+1}$ are set to zero. Both forms of the detailed currents, $\eta_k(x)$ and $\tilde{\eta}_k(x)$, are allowed for use in the proposed approximation methods.

The proposed methods using linear and cubic Hermite basis functions have been programmed into computer codes LINEAR and CUBIC which are described respectively in sections 2 and 3 of Appendix D.

The matrix elements required for use in the approximation methods are integrals of products of subassembly detailed solutions and polynomial functions. These integrals are calculated, for each index k, from the basic integral unit

$$BIU_{k} = \int_{0}^{1} f_{k}(x)g_{k}(x)C_{k}(x) x^{n} h_{k} dx \qquad (4.32)$$

where the functions $f_k(x)$ and $g_k(x)$ represent flux and/or current solutions for same or different groups. These functions may be either constant within each interval

$$f_k(x) = \{f_{k,i} : i = 1 \text{ to } N\}$$
 (4.33)

or of linear form within each interval

$$f_k(x) = \{(1-y)f_{k,i} + yf_{k,i+1} : i = 1 \text{ to } N\}$$
 (4.34)

where $y = \frac{1}{hs_i}$ (t-t_i), as defined in Figure 4.2. $C_k(x)$ represents a

group nuclear constant which is homogeneous in each interval

$$C_{k}(x) = \{C_{k,i} : i = 1 \text{ to } N\}$$
 (4.35)

and n is a positive integer exponent in the range $0 \le n \le 6$. Since the following remarks concern only subassembly k, the index k is dropped for simplicity.

The basic integral unit can be broken into integrals over each interval by transforming variables from x to y. The result

$$BIU_{k} = \frac{1}{h_{k}^{n}} \sum_{i=1}^{N} hs_{i} \int_{0}^{1} f_{i}(y)g_{i}(y)C_{i}(t_{i}+hs_{i}y)^{n} dy$$
(4.36)

can be integrated analytically by expanding $(t_i + hs_i y)^n$ into a binomial series. The results of these integrations for any n depend only on the given forms of f(x) and g(x), and are summarized in Table 4.1.

The coarse mesh flux-weighting homogenization calculations were performed using the above basic integral unit with n = 0. In these calculations a linear form of f(x), representing the detailed subassembly flux solutions from REF2G, and a constant value of g(x) = 1 were used.

Once the elements of the matrices of the approximation methods have been formed, considerable computer storage can be saved by collapsing the sparse band-structured matrices into full matrix form using row index transformations. In this way, a N \times N tridiagonal matrix L resulting from the use of linear basis functions can be stored as the N \times 3 matrix L' by

$$(IL')_{ik} = (IL)_{ij}$$
 (4.37)

where k = j + 2 - i, and k values outside $1 \le k \le 3$ are omitted.

Table. 4.1. Calculation of the Basic Integral Unit in Subassembly k.

1. Constant f(x) and constant g(x) in each interval i:

$$BIU_{k} = \frac{1}{h_{k}^{n}} \sum_{i=1}^{N} \left\{ hs_{i}f_{i}g_{i}C_{i} \sum_{\ell=0}^{n} b_{\ell}^{n} t_{i}^{n-\ell} hs_{i}^{\ell} \frac{1}{(\ell+1)} \right\}$$

2. Linear f(x) and constant g(x) in each interval i:

$$\mathrm{BIU}_{k} = \frac{1}{\mathbf{h}_{k}^{n}} \sum_{i=1}^{N} \left\{ \mathrm{hs}_{i} \mathbf{g}_{i} \mathbf{C}_{i} \sum_{\ell=0}^{n} \mathbf{b}_{\ell}^{n} \mathbf{t}_{i}^{n-\ell} \mathrm{hs}_{i}^{\ell} \left[\frac{\mathbf{f}_{i}}{(\ell+1)(\ell+2)} + \frac{\mathbf{f}_{i+1}}{(\ell+2)} \right] \right\}$$

3. Linear f(x) and linear g(x) in each interval i:

$$BIU_{k} = \frac{1}{h_{k}^{n}} \sum_{i=1}^{N} \left\{ hs_{i}C_{i} \sum_{\ell=0}^{n} b_{\ell}^{n} t_{i}^{n-\ell} hs_{i}^{\ell} \left[\frac{2f_{i}g_{i}}{(\ell+1)(\ell+2)(\ell+3)} + \frac{f_{i}g_{i+1} + f_{i+1}g_{i}}{(\ell+2)(\ell+3)} + \frac{f_{i+1}g_{i+1}}{(\ell+3)} \right] \right\}$$

where

.

$$\mathbf{b}_{\boldsymbol{\ell}}^{\mathbf{n}} = \frac{\mathbf{n}!}{\boldsymbol{\ell}! (\mathbf{n}-\boldsymbol{\ell})!}$$

is the binomial series coefficient.

Similarly, a N×N matrix \mathbb{L} of half-band width equal to three, which results from the use of cubic Hermite basis functions, can be stored as the N×6 matrix \mathbb{L}' , as given above, where in this case:

$$k = j - i + 3 + \begin{cases} 1 & \text{for i odd} \\ 0 & \text{for i even} \end{cases}$$
(4.38)

and k values outside $1 \le k \le 6$ are omitted.

In those cases where the mass and stiffness matrices are both positive definite, Cholesky's method of matrix factorization,

$$\mathbf{L} = \mathbf{G} \mathbf{G}^{\mathrm{T}} \tag{4.39}$$

where L is positive definite and G is lower triangular, can be used to solve the matrix inversion for each group in the power method. The matrix elements $g_{ij} = (G)_{ij}$ are calculated from the elements $\ell_{ij} = (L)_{ij}$ by the following algorithm: ⁵¹

For each
$$j = 1$$
 to N:

$$g_{jj} = \left[\ell_{jj} - \sum_{k=1}^{j-1} g_{jk}^{2}\right]^{\frac{1}{2}}$$
(4.40)
For each $i = j+1$ to N:

$$g_{ij} = \left[\ell_{ij} - \sum_{k=1}^{j-1} g_{ik}g_{jk}\right]/g_{jj}$$

Similar algorithms of a more complex form are used in the computer codes in conjunction with the matrix collapsing schemes given above.

Chapter 5

NUMERICAL RESULTS

5.1 Nuclear Constants and Subassembly Geometry

The effectiveness and accuracy of the proposed approximation methods were examined using one-dimensional, one- and two-group reactor configurations composed of representative PWR fuel subassemblies. Four separate subassemblies with identical geometry but different number constants are considered. Each subassembly is represented as an 18-cm, homogeneous fuel region of low, medium, or high enrichment, surrounding a 1-cm centrally located absorption rod or water channel. Two-group regional nuclear constants used to represent such PWR subassembly geometries are given in Table 5.1,⁵² where all fission neutrons are assumed to be born in the fast group. These constants were collapsed into representative one-group constants using the standard infinite medium group reduction procedure for two groups:

$$\left\langle \Sigma \right\rangle_{1G} = \frac{1}{(1+\alpha)} \left(\Sigma_1 + \alpha \Sigma_2 \right)$$
 (5.1)

where Σ_1 and Σ_2 are macroscopic cross sections for the fast and thermal groups, respectively, and α is the infinite medium thermal to fast flux ratio.⁵³ The resulting one-group regional constants for the fuel and rod regions are given in Table 5.2, where the flux ratios of the three fuel regions have been averaged in order to collapse the absorption rod constants.

Region Material	Σ_{T}	$\nu\Sigma_{\mathbf{f}}$	D	Σ_{21}
Fuel A: Low w/o	.0259	.00485	1.396	.0179
	.0532	.0636	.388	
Fuel B: Medium w/o	.0260	.00553	1.397	.0172
	.0710	.102	. 389	
Fuel C: High w/o	.0261	.00659	1.399	.0168
	.0832	.129	.387	
Absorption Rod	.0452	0.0	1.0	0.0
	.959	0.0	1.0	
Water	.0383	0.0	1.63	.0380
	.0108	0.0	.275	

Table 5.1. Representative Two-Group, 18-cm, PWR Subassembly Regional Nuclear Constants. $\chi_1 = 1.0; \chi_2 = 0.0.$

Fast group constants appear first for each region material, followed by thermal group constants. Fission neutrons are assumed to be born in the fast group only.

Table 5.2.	Representative One-Group, 18-cm, F	PWR
	Subassembly Regional Nuclear Consta	ants.

Region Material	Σ_{T}	$\nu\Sigma_{\mathrm{f}}$	D
Fuel A: Low w/o	.0329	.0199	1.14
Fuel B: Medium w/o	.0348	.0244	1.20
Fuel C: High w/o	.0357	.0272	1.23
Absorption Rod	.235	0.0	1.0
Water	.0136	0.0	.414

Four subassembly configurations, labeled A through D, were used in the one- and two-group test configurations, and are illustrated in Figure 5.1. Subassemblies labeled A, B, and C contain homogeneous fuel of low, medium, and high enrichment, respectively, surrounding the 1-cm absorption rod while subassembly D contains low enriched homogeneous fuel surrounding a 1-cm water channel.

5.2 <u>Subassembly Detailed Solutions</u> and Homogenized Nuclear Constants

The detailed flux and current solutions for each subassembly were found using the computer code REF2G with symmetry boundary conditions and a 68-mesh region per subassembly geometry as indicated in Figure 5.2. The resulting one-group detailed flux solutions for each subassembly are shown in Figure 5.3. The resulting twogroup detailed flux and adjoint flux solutions for each subassembly are shown in Figures 5.4 and 5.5, respectively.

Homogeneous subassembly group constants for use in the finite element approximations were found by flux weighting the group cross sections in each subassembly by the corresponding subassembly detailed group flux solutions. The resulting homogenized one-group constants for each subassembly are given in Table 5.3, and the resulting homogenized two-group constants are given in Table 5.4. The results of homogenizing the diffusion coefficient as the transport cross section, $1/\langle 1/D \rangle$, as well as by direct homogenization, $\langle D \rangle$, are included in the tables. The results of both schemes were found to differ at most by only 2%. The directly homogenized diffusion coefficients, $\langle D \rangle$, were used in the finite element approximations.

Figure 5.1. Subassembly Configuration Geometries

Symmetric Partitioning:

1 (1/16 cm) + 1 (15/16) + 4 (1) + 2 (1/2) + 6 (1/4) + 4 (1/8) + 8 (1/16) + 8 (1/16)

Figure 5.2. Mesh Geometry in Half a Subassembly. Detailed flux and current solution calculations use this 68 intervals/subassembly geometry in each subassembly type.

Figure 5.3. Subassembly Detailed Flux Solutions for the One-Group Case

Subassembly	Type	А	(lower curve)
Subassembly	Type	В	
Subassembly	Type	С	
Subassembly	Type	D	(upper curve)

The fluxes are normalized by fast flux values so that the thermal fluxes appear in the lower portion of the figure.

Subassembly	Туре А	(lower curves)
Subassembly	Type B	
Subassembly	Type C	
Subassembly	Type D	(upper curves)

Figure 5.5. Subassembly Detailed Adjoint Flux Solutions for the Two-Group Case

Subassembly	Type	А	(lower curves)
Subassembly	Type	В	
Subassembly	Type	С	
Subassembly	Type	D	(upper curves)

Subassembly	$\langle \Sigma_{\rm T} \rangle$	$\langle \nu \Sigma_{\rm f} \rangle$	$\langle D \rangle$	$1/\langle 1/D \rangle$
А	.04149392	.01905379	1.134047	1.133253
В	.04341140	.02335046	1.191397	1.189765
С	.04431869	.02602374	1.220054	1.217887
D	.03184731	.01881458	1.100401	1.040479

Table 5.3. Homogenized Subassembly One-Group Nuclear Constants.

Table 5.4. Homogenized Subassembly Two-Group Nuclear Constants. $\chi_1 = 1.0; \quad \chi_2 = 0.0.$

Sub- assembl	$_{\rm y}$ $\langle \Sigma_{\rm T} \rangle$	$\left< \nu \Sigma_{\mathrm{f}} \right>$	$\langle D \rangle$	$\langle \Sigma_{21} \rangle$	$1/\langle$ $1/{ m D}$ $ angle$
А	.02688787	.004601752	1.379526	.01698379	1.371911
	.06812834	.06255182	.3980863		.3919533
В	.02698495	.005246314	1.379480	.01631765	1.37185
	.08647802	.1002221	.3996499		.3931874
С	.02708207	.006251160	1.379433	.01593619	1.371787
	.09893614	.1266822	.3980142		.391310
D	.02657213	.004587110	1.412467	.0189895	1.410790
	.05034835	.05932253	.3804001		.3775656

Fast group constants appear first for each subassembly, followed by thermal group constants.

Before applying the proposed approximation methods to complex reactor geometries, test runs were performed in order to evaluate the differences between using either flux or adjoint flux weighting, and using current solutions of either constant or linear form in each subassembly interval, as described in section 4.2. The test problem consisted of three consecutive Type A subassemblies with symmetry boundary conditions imposed on each end so that the converged eigenvalue λ (k_{off}) should be identical to that of the detailed flux solution of subassembly A. Entire subassemblies were chosen as the mesh regions so that the proposed synthesis methods should converge to flux values of unity, and current values of zero. The numerical results of these tests for the one- and two-group cases are summarized in Table 5.5. Although the choice of weighting function did not influence the results for either approximation, use of current solutions of the linear form enables better eigenvalue accuracy. In addition, the results when using currents of linear form converged to flux values of unity and current values of zero, as expected, while results using the constant current form produced errors of about 0.5% in the converged flux and 0.01% in the converged current at interior points. Although the difference in accuracy between the use of these different current forms is small, the small flux and current errors resulting from the use of the constant current form may lead to larger errors in larger and more complex problems. For the above reasons, the linear current form was used in the following case studies. Adjoint weighting was also used. Although the use of adjoint weighting has not been shown to guarantee the success of Cholesky's method in the numerical solution scheme, no difficulties with its use were ever encountered.

Synthesis Approximation	Weighting Function	Form of Currents	$\begin{array}{c} \text{Converged} \\ \lambda \end{array}$	% λ
	ONE GRO	DUP: λ _{Sub.A}	= 0.459194	
Linear	FLUX	Constant	.459363	036%
Linear	FLUX	Linear	.459254	013%
Cubic	FLUX	Constant	.459363	036%
Cubic	FLUX	Linear	.459254	013%

Table 5.5. Test Results Using Three Consecutive Type A Subassemblies. $\% \lambda = [(\lambda_{Sub. A} - \lambda_{Conv.})/\lambda_{Sub. A}] \times 100\%.$

TWO GROUPS: $\lambda_{Sub} = 0.751095$

		Sub. A		
Linear	FLUX	Linear	.751284	025%
Linear	ADJOINT	Constant	.7513818	038%
Linear	ADJOINT	Linear	.751284	025%
Cubic	FLUX	Linear	.751284	025%
Cubic	ADJOINT	Constant	.7513818	038%
Cubic	ADJOINT	Linear	.751284	025%

5.3 Case Studies and Results

Four one-dimensional reactor configurations, each made up of different combinations of types of subassemblies, are considered in the case studies below. One-group calculations were performed only for the first case, and two-group calculations were performed in all cases. Entire 18-cm subassemblies were used as coarse mesh regions in each case, while the effect of using half-subassembly mesh regions was also included in Case 1. The geometry and subassembly configurations of the case studies are shown in Figure 5.6.

Three separate approximation methods were used to calculate converged detailed flux solutions for comparison in each case. They are:

- The proposed approximation methods using heterogeneous nuclear constants and subassembly detailed flux solutions for coarse mesh solutions.
- 2. The finite element methods using subassembly homogenized nuclear constants for coarse mesh solutions.
- 3. The linear finite element method for fine mesh reference solutions.

Calculations of both the proposed approximation and the coarse mesh finite element method using linear basis functions were performed using program LINEAR, while the corresponding cubic Hermite basis function approximations were performed using program CUBIC. The fine mesh reference solutions were calculated using program REF2G, and the results of these approximations were compared and analyzed by program ANALYZE. Descriptions of these programs are given in Appendix D.

Figure 5.6. Geometry of the Four Case Studies Composed of Types of Subassemblies

The results of each case study are divided into the two approximation method categories as defined below.

- 1. The linear basis function approximation
 - A. Linear FEM:

(The linear finite element method using homogenized coarse mesh nuclear constants)

B. Linear Synth:

(The proposed approximation method using heterogeneous coarse mesh nuclear constants and detailed coarse mesh solutions)

- 2. The cubic Hermite basis function approximations
 - A. Cubic FEM
 - B. Cubic Synth

The results of the approximations in each category are compared to the reference solution by examining:

1. The converged eigenvalues λ (k_{eff}) and their percent normalized eigenvalue error,

$$\% \lambda = (\lambda_{\text{Ref}} - \lambda_{\text{Conv}}) / \lambda_{\text{Ref}} \times 100\%$$

- 2. Composite graphs of the converged detailed group flux solutions $U_g(z)$ normalized to equivalent power levels
- The fractional normalized power levels P(k) calculated for each 18-cm subassembly k by

$$P(k) = \frac{\int_{Sub. k} \sum_{g=1}^{G} \nu \Sigma_{fg}(z) U_{g}(z) dz}{\int_{A11 \text{ Subs.}} \sum_{g=1}^{G} \nu \Sigma_{fg}(z) U_{g}(z) dz}$$
(5.2)

and their percent normalized errors

$$\% P(k) = (P(k)_{Ref} - P(k)_{Conv}) / P(k)_{Ref} \times 100\%$$
 (5.3)

5.3.1. <u>Case 1</u>: Three different subassemblies of Types A, B, and C with symmetry boundary conditions.

The graphical results of the one-group approximation methods for this case are shown in Figures 5.7 and 5.8, while the results of the two-group approximation methods are presented in Figures 5.9 - 5.12. Only the coarse mesh boundaries are labeled in the figures, which indicates that entire 18-cm subassemblies were used as the coarse mesh regions. Two-group results using only half-subassemblies as the coarse mesh regions are shown in Figures 5.13 - 5.16. The reference solutions were calculated using 150-mesh regions, as defined by the symmetric partitioning

5(1 cm) + 4(.5 cm) + 4(.25 cm) + 4(.125 cm) + 8(.0625 cm)

in each of the three subassemblies. The converged approximation eigenvalues and fractional normalized subassembly power levels for the one- and two-group calculations are summarized in Table 5.6. The fractional powers, P(k), for each subassembly are listed in the reference solution column, while the percent errors, %P(k) are listed in the approximation columns.

Figure 5.7. Case 1: One-Group Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

	λ
•••••	.559045
	.556943
	.557154
	·····

. . .

Figure 5.8. Case 1: One-Group Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

Method		λ
Reference	••••	.559045
Cubic FEM		. 558647
Cubic Synth		.558761

Figure 5.9. Case 1: Two-Group Fast Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

Method		λ
Reference	· · · · · · · · · · · · ·	.917267
Linear FEM		.914489
Linear Synth		.915221

Figure 5.10. Case 1: Two-Group Thermal Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

Method		λ
Reference	• • • • • • • • • •	.917267
Linear FEM		.914489
Linear Synth		.915221

Figure 5.11. Case 1: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

Method		λ
Reference	· · · · · · · · · · ·	.917267
Cubic FEM		.916717
Cubic Synth		.917059

Figure 5.12. Case 1: Two-Group Thermal Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

Method		λ
Reference	•••••	.917267
Cubic FEM		.916717
Cubic Synth		.917059

Figure 5.13. Case 1: Two-Group Fast Results Using Linear Basis Function Approximations and 9-cm Coarse Mesh Regions

Method	λ
Reference	 .917267
Linear FEM	 .916356
Linear Synth	 .916427

Figure 5.14. Case 1: Two-Group Thermal Results Using Linear Basis Function Approximations and 9-cm Coarse Mesh Regions

Method		λ
Reference	· · · • • • · • • • •	.917267
Linear FEM		.916356
Linear Synth		.916427

Figure 5.15. Case 1: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 9-cm Coarse Mesh Regions

Method	λ
Reference	 .917267
Cubic FEM	 .916669
Cubic Synth	 .917294

Figure 5.16. Case 1: Two-Group Thermal Results Using Cubic Hermite Basis Function Approximations and 9-cm Coarse Mesh Regions

Method		λ
Reference	· · · • • • • • • · ·	.917267
Cubic FEM		.916669
Cubic Synth	<u></u>	.917294

Reference	Linear FEM	Linear Synth	Cubic FEM	Cubic Synth
		0	<u></u>	
ONE-0	GROUP RE	SULTS:		
. 559045	. 556943	. 557154	.558647	.558761
	.376%	.338%	.072%	.051%
.084	-12.1%	-11.9%	-3.07%	-2.44%
. 294	-4.29%	-3.93%	241%	434%
.622	+3.67%	+3.47%	+.528%	+.534%
TWO-	GROUP RE	ESULTS:		
.917267	.914489	.915221	.916717	.917059
	. 302%	.223%	.060%	.023%
.134	-6.93%	-5.63%	-1.43%	-1.13%
.315	-1.63%	-1.39%	072%	120%
. 549	+2.63%	+2.17%	+.391%	+.347%
Results Usi	ng Half-Su	bassembly	Mesh Reg	ions
.917267	.916356	.916427	.916669	.917294
	.093%	.092%	. 065%	. 003%
.134	-2.38%	-2.69%	-1.51%	461%
.315	475%	602%	063%	047%
.549	+.851%	-2,63%	-3.22%	+1.40%
	Reference ONE-0 . 559045 . 084 . 294 . 622 TWO- . 917267 . 134 . 315 . 549 Results Usi . 917267 . 134 . 315 . 549	ReferenceLinear FEMONE-GROUP RE.559045.556943 $$.376%.084 -12.1% .294 -4.29% .622 $+3.67\%$ TWO-GROUP RE.917267.914489 $$.302%.134 -6.93% .315 -1.63% .549 $+2.63\%$.917267.916356 $$.093%.134 -2.38% .315 475% .549 $+.851\%$	ReferenceLinear FEMLinear SynthONE-GROUP RESULTS:.559045.556943.559045.556943.559045.556943.559045.556943.557154376%.338%.084-12.1%.11.9%.294-4.29%.3.93%.622+3.67%+3.47%TWO-GROUP RESULTS:.917267.914489.917267.914489.917267.914489.915221302%.134-6.93%.549+2.63%+2.17%PResults Using Half-Subassembly.917267.916356.916427093%.092%.134-2.38%-2.69%.315475%.602%.549+.851%-2.63%	Reference Linear FEM Linear Synth Cubic FEM ONE-GROUP RESULTS: . .559045 .556943 .557154 .558647 .376% .338% .072% .084 -12.1% -11.9% -3.07% .294 -4.29% -3.93% 241% .622 +3.67% +3.47% +.528% TWO-GROUP RESULTS: . .917267 .914489 .915221 .916717 .302% .223% .060% . .134 -6.93% -5.63% -1.43% .315 -1.63% -1.39% 072% .549 +2.63% +2.17% +.391% PResults Using Half-Subassembly Mesh Reg .917267 .916356 .916427 .916669 .093% .092% .065% .134 -2.38% -2.69% -1.51% .315 475% 602% 063% .549 +.851% -2.63% -3.22%

Table 5.6. Results of Case 1.

It is apparent from these results that the proposed approximation methods, and in particular the method utilizing the cubic Hermite basis functions, approximate to a high degree of accuracy the detailed reference spatial flux. Comparison of the eigenvalue and fractional power results in Table 5.6 indicates that comparable if not superior measurements are obtained using the proposed methods in this case.

It is interesting to note the effects of employing the given subassembly heterogeneous nuclear constants rather than subassembly homogenized nuclear constants for use in the finite element method calculations. Under such conditions, the finite element method becomes identical to the proposed methods in which the heterogeneous nuclear constants and constant or flat subassembly solutions are used. Two-group calculations using the cubic Hermite approximation method were performed for Case 1 and are presented in Figures 5.17 and 5.18. This scheme was found to give very poor detailed flux results, converge to an eigenvalue 21% in error, and yield an average of 20% error in the fractional normalized power levels in each subassembly. This example clearly illustrates the necessity for the use of homogenized constants in the finite element method, or equivalently, the importance of the subassembly detailed solutions in the proposed approximations.

Figure 5.17. Case 1: Two-Group Fast Results Using Cubic Hermite Finite Element Approximations and 18-cm Coarse Mesh Regions

Method	λ
Reference	 .917267
Cubic FEM + Homogenized Consts.	 .916717
Cubic FEM + Detailed Consts.	 . 720422

Figure 5.18. Case 1: Two-Group Thermal Results Using Cubic Hermite Finite Element Approximations and 18-cm Coarse Mesh Regions

Method	λ
Reference	 .917267
Cubic FEM + Homogenized Consts.	 .916717
Cubic FEM + Detailed Consts.	 .720422

5.3.2. <u>Case 2</u>: Three different subassemblies of Types D, B, and C with symmetric boundary conditions.

The results of the two-group approximations for Case 2 are presented in Figures 5.19 - 5.22, where entire subassemblies were taken as the coarse mesh regions. The reference solutions were calculated using the same reference mesh geometry as in Case 1. The converged eigenvalues and fractional normalized power levels in each subassembly are summarized in Table 5.7. These results better illustrate the superiority of the cubic Hermite basis function approximations over the linear basis function approximations, and the superiority of the proposed approximations over the finite element method in all aspects.

Method	D	Linear	Linear	Cubic	Cubic
Results	Reierence	FEM	Synth	FEM	Synth
λ	.969986	.965260	.970236	.966816	.969578
% λ		. 487%	026%	.326%	.042%
P(1)	.381	+11.26%	+3.46%	+6.07%	+.643%
P(2)	. 296	-11.59%	-5.59%	-3.08%	157%
P(3)	.322	-2.66%	+1.03%	-4.34%	616%

Table 5.7. Two-Group Results of Case 2.

Figure 5.19. Case 2: Two-Group Fast Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

Method	λ
Reference	 .969986
Linear FEM	 .965260
Linear Synth	 .970236

Figure 5.20. Case 2: Two-Group Thermal Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

Method		λ
Reference	•••••	.969986
Linear FEM		.965260
Linear Synth		.970236

Figure 5.21. Case 2: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

Method		λ
Reference	· • • • • • • • • •	.969986
Cubic FEM		.966816
Cubic Synth		.969578

Figure 5.22. Case 2: Two-Group Thermal Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

Method	λ
Reference	 .969986
Cubic FEM	 .966816
Cubic Synth	 .969578

5.3.3. <u>Case 3</u>: Half-core reflected PWR composed of an 18-cm water reflector, the seven subassemblies C,C,C,A,A,A,D, and half of subassembly D. Zero flux boundary conditions are imposed outside the reflector, and symmetry is imposed in the center of the last D-type subassembly.

The Case 3 results of the two-group approximations using full 18-cm coarse mesh regions in all but the last 9-cm region are presented in Figures 5.23-5.26, and summarized in Table 5.8. The reference solutions were obtained using 198 mesh regions given by the symmetric partitioning

2(2 cm) + 2(1 cm) + 4(.5 cm) + 2(.25 cm) + 2(.25 cm)

in each of the subassemblies, and 18 (1 cm) regions in the reflector.

The use of many subassemblies containing absorption rods throughout the reactor, except in the center subassemblies where water channels are present, results in central peaked fluxes with large gradients and, by comparison, a relatively small thermal neutron peak in the reflector.

Both coarse mesh methods were found to overestimate the flux in the subassemblies near the reflector, and underestimate the flux in the central subassembly regions regardless of the type of basis function approximations used. The larger inaccuracies of the linear basis function methods can be in part attributed to the fact that these methods cannot approximate the peaked thermal flux in the reflector, and result in large flux values in the subassemblies nearest the reflector. The cubic Hermite basis function approximations, however, are better able to approximate both the thermal flux reflector peak and the complex

.

Figure 5.23. Case 3: Two-Group Fast Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

Figure 5.24. Case 3: Two-Group Thermal Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

Figure 5.25. Case 3: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

.

Figure 5.26. Case 3: Two-Group Thermal Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

Reference	Linear FEM	Linear Synth	Cubic FEM	Cubic Synth
.941640	.931429	.938561	.935873	.928020
	1.08%	.32%	.61%	1.44%
.01699	-461.%	-514.%	-37.4%	-85.1%
.02513	-192.%	-179.%	-32.8%	-98.6%
.02890	-149.%	-133.%	-26.0%	-79.6%
.0224	-50.2%	-36.9%	-13.5%	-31.5%
.04969	8.52%	8.24%	-2.78%	-7.63%
.1465	7.47%	13.7%	494%	. 259%
.4362	26.4%	22.9%	5.01%	8.40%
.2740	18.6%	20.1%	1.99%	13.1%
	Reference .941640 .01699 .02513 .02890 .0224 .04969 .1465 .4362 .2740	ReferenceLinear FEM.941640.931429 1.08% .01699-461.%.02513-192.%.02890-149.%.0224-50.2%.04969.8.52%.14657.47%.436226.4%.274018.6%	ReferenceLinear FEMLinear Synth.941640.931429.938561 $$ 1.08%.32%.01699 $-461.\%$ $-514.\%$.02513 $-192.\%$ $-179.\%$.02890 $-149.\%$ $-133.\%$.0224 -50.2% -36.9% .04969 8.52% 8.24% .1465 7.47% 13.7% .4362 26.4% 22.9% .2740 18.6% 20.1%	ReferenceLinear FEMLinear SynthCubic FEM.941640.931429.938561.935873 $$ 1.08%.32%.61%.01699 $-461.\%$ $-514.\%$ -37.4% .02513 $-192.\%$ $-179.\%$ -32.8% .02890 $-149.\%$ $-133.\%$ -26.0% .0224 -50.2% -36.9% -13.5% .04969 8.52% 8.24% -2.78% .1465 7.47% 13.7% 494% .4362 26.4% 22.9% 5.01% .2740 18.6% 20.1% 1.99%

Table 5.8. Results of Case 3.

neutron leakage across the core, and give better results. Table 5.8 indicates that the cubic Hermite basis function approximations better approximate the detailed reference solutions, and that results obtained using the cubic Hermite finite element method were for this case better than those obtained using either of the proposed approximations. The ability of these methods to approximate large thermal flux peaks in the reflector regions is considered in the next case.

5.3.4. Case 4: Half-core reflected PWR composed of an 18-cm water reflector, the seven subassemblies D,D,D,C,D,D,A, and half of subassembly Type A. Zero flux boundary conditions are imposed in the center of the last Type A subassembly.

The Case 4 geometry produces a large but detailed thermal flux in the half-core region and a large thermal peak in the reflector region, as seen from the results in Figures 5.27 - 5.30. The reference solutions were calculated using the reference mesh geometry as given in Case 3. The results of the approximations are summarized in Table 5.9.

The results show that the linear basis function approximations cannot approximate accurately the thermal flux reflector peak and result in large flux and fractional power errors in the subassemblies near the reflector. The cubic Hermite basis function approximations, on the other hand, are better able to approximate this thermal peak and result in much more accurate power levels, especially in the first subassembly region.

The Case 4 results typify the approximation accuracy of both the finite element method and the proposed approximation method. In general, the cubic Hermite basis function approximations are superior to the linear basis function approximations, and the proposed methods give comparable or superior results as compared to those obtained from the finite element method using the same class of basis functions. In this case, the proposed method using cubic Hermite basis functions was able to estimate the reference eigenvalue within 0.04%, closely approximate the detailed reference flux solution to within a few percent at all spatial points, and result in fractional normalized power levels in each subassembly with less than 5% error.

Figure 5.27. Case 4: Two-Group Fast Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

Figure 5.28. Case 4: Two-Group Thermal Results Using Linear Basis Function Approximations and 18-cm Coarse Mesh Regions

Figure 5.29. Case 4: Two-Group Fast Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

Figure 5.30. Case 4: Two-Group Thermal Results Using Cubic Hermite Basis Function Approximations and 18-cm Coarse Mesh Regions

Method	Reference	Linear	Linear	Cubic	Cubic Synth
Results		F 15 1VI		T, 171M	Synth
λ	.979108	.980618	.985849	.976896	.978689
% λ		15%	69%	. 22%	. 04%
P(1)	. 098	-23.4%	-21.4%	-13.3%	5.54%
P(2)	. 160	-1.53%	2.39%	893%	-1.08%
P(3)	.193	11.5%	7.11%	1.83%	-3.35%
P(4)	.211	-19.5%	-10.6%	-7.23%	-1.60%
P(5)	.168	17.4%	10.3%	3.86%	3.79%
P(6)	.118	10.6%	4.96%	5.97%	-1.01%
P(7)	.039	1.45%	3.44%	1.65%	3.25%
P(8)	.010	18.1%	11.8%	2.30%	-2.72%

Tabl	е 59	Results	of	Case	4.
Laur	C 0.0.	resurv	OT.	Cusc	- •

Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1. Characteristics of the Proposed Approximation Methods

The use of detailed subassembly flux solutions or other a priori flux shapes directly in the spatial shape or trial function form of flux approximations in reactor physics has resulted in many coarse mesh approximation schemes which are classified in the broad area of overlapping multichannel synthesis. The proposed approximation methods are similar to existing synthesis methods of this kind, but are unique in that they reduce to conventional and well understood approximation methods in regions where little or no spatial flux information is given, or in completely homogeneous regions. In contrast, the overlapping synthesis methods proposed to date do not. This characteristic is especially important in calculations involving homogeneous regions, of which reflector regions are a prime example.

The proposed approximations are very similar to coarse mesh finite element method approximations in which detailed flux behavior has been used to flux-weight the nuclear constants in each region. The methods are conceptually different and become equivalent only when all of the coarse mesh regions are homogeneous.

The matrix equations resulting from the use of the proposed methods are identical in form to those resulting from the finite element method utilizing similar basis functions. In addition, the matrix elements of the proposed methods are curiously different from those of the finite element methods using detailed flux-weighted nuclear constants. Although the spatial mass and stiffness matrices of the proposed methods for each group have been proven to be positive definite only for the case of Galerkin flux weighting, the use of adjoint weighting in all of the cases considered did not alter these properties. In addition, the proposed methods were found always to converge to a positive eigenvalue and to flux shapes which were everywhere positive.

The numerical results indicate that the proposed methods are able to predict accurate criticality or k_{eff} measurements and regional power levels as well as to approximate the reference detailed flux shapes for each group with a high degree of accuracy. The results indicate that in general, use of the proposed methods results in superior criticality estimates over those obtained by the use of the finite element method with flux-weighted constants; this behavior was observed for each type of basis function approximation. Moreover, each of the proposed methods is in general vastly superior to its finite element method counterparts in approximating the actual detailed flux behavior and regional as well as total power levels.

Detailed flux behavior could be reintroduced into the results of the homogenized finite element methods by normalizing the detailed subassembly solutions in each coarse mesh region to match the power levels of the converged results in each region. The detailed solutions resulting from such a procedure would be discontinuous at the region boundaries and may, to some extent, exhibit the fine flux structure present in the results of the proposed methods. However, the results

are not expected to be as good as an approximation as those of the proposed methods, since the current coupling or diffusion approximation is not made until after the coarse mesh homogenization procedure.

6.2 Applicability and Limitations

Because the matrix forms of the equations which result from the use of the proposed methods are identical to those which result from the use of the finite element methods, the proposed approximations can be incorporated into existing finite element approximation schemes. Although additional integrations must be performed in the proposed methods, they can be reduced to sums of known products so that little additional computation time is required.

As in any coarse mesh approximation method, inaccurate results can occur when the coarse mesh region sizes chosen are too large. For a given region size, the accuracy of the results for any approximation scheme is unknown. The accuracy of the finite element methods is known to improve geometrically as the mesh size is decreased, resulting in a useful error criterion for the method. A disadvantage of the proposed methods is that no such error criterion has been developed. The inability to predict error estimates has always been a major drawback of synthesis techniques. However, the use of such methods, and use of the proposed methods, has been shown to be justified through proper physical insight and experience.

6.3. Recommendations for Future Work

Obviously the next step is the application of these proposed methods to two-dimensional diffusion problems. However, the onedimensional problem still contains areas which may deserve closer attention. One such area is the examination of the matrix properties of both the finite element method and the proposed approximation methods which are necessary in order to guarantee convergence to a positive eigenvalue and an everywhere positive flux solution. Another area is the development of error criteria for the proposed methods. The close similarity between the proposed methods and the finite element methods may allow an extension or generalization of characteristics which hitherto have belonged only to the finite element methods.

The usefulness of the proposed methods depends on their applicability and accuracy in two- and three-dimensional diffusion problems. Just as the finite element approximations can be derived in two- or three-dimensions using variational modal-nodal techniques, so can the proposed methods for multidimensional problems. The proposed trial functions could be defined as continuous at mesh nodes, but may in general be discontinuous along mesh line interfaces. In order that the flux and current trial functions not be allowed to be discontinuous at identical spatial points, the current trial functions would then have to be defined as continuous across these interfaces. The use of the proposed class of trial function forms in the two-dimensional problem will raise the challenge of extending the spatial overlapping synthesis methods of this type to multidimensional reactor problems.

REFERENCES

- 1. T. J. Thompson and J. G. Beckerley, <u>The Technology of</u> <u>Nuclear Reactor Safety</u>, Volume 1, M.I.T. Press (1964).
- 2. A. M. Weinberg and E. P. Wigner, <u>The Physical Theory of</u> Neutron Chain Reactors, University of Chicago Press (1958).
- 3. J. R. Lamarsh, <u>Introduction to Nuclear Reactor Theory</u>, Addison-Wesley (1966).
- 4. F. B. Hildebrand, <u>Finite Difference Equations and Simulations</u>, Prentice-Hall (1968).
- 5. S. Kaplan, "Synthesis Methods in Reactor Analysis," in Advances in Nuclear Science and Technology, Volume 3, Academic Press, 233 (1966).
- 6. P. M. Morse and H. Feshbach, <u>Methods of Theoretical</u> <u>Physics</u>, Chap. 6, McGraw-Hill (1953).
- 7. E. L. Wachspress, <u>Iterative Solution of Elliptic Systems and</u> <u>Applications to the Neutron Diffusion Equations of Reactor</u> <u>Physics</u>, Prentice-Hall (1966).
- 8. M. Clark, Jr. and K. F. Hansen, <u>Numerical Methods of</u> Reactor Analysis, Academic Press (1964).
- R. Avery, "Theory of Coupled Reactors," Proc. 2nd U. N. Intern. Conf. Peaceful Uses of Atomic Energy, Geneva, <u>12</u>, 182 (1958).
- 10. W. H. Köhler, "Summary of Derivations of Coupled Point Reactor Kinetics Equations," Proc. National Topical Meeting on Coupled Reactor Kinetics, Texas A and M Univ., 192 (1967).
- 11. M. W. Dyes and K. F. Hansen, "Approximate Methods for Analyzing Coupled Core Kinetics," WARD-35 (1968).
- 12. M. Komata, "On the Derivation of Avery's Coupled Reactor Kinetics Equations," Nucl. Sci. Eng., 38, 193 (1969).
- 13. J. B. Yasinsky and A. F. Henry, "Some Numerical Experiments Concerning Space-Time Reactor Kinetics Behavior," Nucl. Sci. Eng., <u>22</u>, 171 (1965).
- 14. P. T. Antonopoulos, "Large Mesh Model Development Study," Sc.D. Thesis, M.I.T., April, 1972.

- 15. M. G. Steveson, "Investigations on the Macroscopic Nodal Approach to Space-Dependent Nuclear Reactor Kinetics," Ph.D. Thesis, University of Texas at Austin (1968).
- 16. E. L. Wachspress, "Digital Computations of Space-Time Variations of Neutron Fluxes," KAPL-2090 (1960).
- 17. W. M. Stacey, Jr., <u>Modal Approximations: Theory and an</u> <u>Application to Reactor Physics</u>, Research Monograph No. 41, <u>M.I.T. Press (1967)</u>.
- 18. A. Foderaco and H. L. Garabedian, "Two-Group Reactor Kinetics," Nucl. Sci. Eng., <u>14</u>, 22 (1962).
- 19. D. R. Harris, S. Kaplan, and S. G. Marbolis, "Modal Analysis of Flux Tilt: Transients in a Nonuniform Reactor," Trans. Am. Nucl. Soc., <u>2</u> (2), 178 (1959).
- 20. A. F. Henry, "The Application of Inhour Modes to the Description of Nonseparable Reactor Transients," Nucl. Sci. Eng., <u>13</u>, 22 (1964).
- 21. E. L. Wachspress, "Variational Methods and Neutron Flux Synthesis," CONF-690401, 271 (1969).
- 22. E. L. Wachspress, R. D. Burgess, and S. Baron, "Multichannel Flux Synthesis," Nucl. Sci. Eng., <u>12</u>, 381 (1962).
- A. J. Buslik, "Interface Conditions for Few Group Neutron Diffusion Problems with Flux-Adjoint Weighted Constants," Nucl. Sci. Eng., <u>32</u>, 233 (1968).
- 24. W. B. Terney, "Interface Conditions for Discontinuous Flux Synthesis Methods," Nucl. Sci. Eng., 41, 303 (1970).
- 25. J. B. Yasinsky and S. Kaplan, "Synthesis of Three-Dimensional Flux Shapes Using Discontinuous Sets of Trial Functions," Nucl. Sci. Eng., <u>28</u>, 426 (1967).
- 26. J. B. Yasinsky and L. R. Foulke, "Improved Spatial Differencing for the Solution of Space-Time Problems Arising from the Movement of Reactor Materials," Nucl. Sci. Eng., <u>44</u>, 72 (1971).
- 27. W. M. Stacey, Jr., "Variational Flux Synthesis Methods for Multigroup Neutron Diffusion Theory," Nucl. Sci. Eng., <u>47</u>, 449 (1972).
- 28. M. Becker, <u>The Principles and Applications of Variational</u> Methods, Research Monograph No. 27, M.I.T. Press (1964).

- 29. A. F. Henry, "Variational Techniques as a Means of Deriving Approximation Methods," in M.I.T. Course 22.25 Notes, Advanced Reactor Physics, Chap. 15, p. 104 (Spring, 1969).
- 30. V. Luco and P. Lambropoulos, "Functionals for Discontinuous Trial Function Flux Synthesis," J. Nucl. Energy A/B, <u>24</u>, p. 551 (1970).
- 31. G. C. Pomraning, "A Variational Description of Dissipative Processes," J. of Nuclear Energy A/B, Vol. 20, p. 617 (1966).
- 32. C. M. Kang and K. F. Hansen, "Finite Element Methods for the Neutron Diffusion Equations," Trans. Am. Nucl. Soc., Vol. 14, No. 1, p. 199 (1971).
- 33. C. M. Kang and K. F. Hansen, "Finite Element Methods for Space-Time Reactor Analysis," Sc.D. Thesis, Dept. of Nucl. Eng., M.I.T., MITNE-135 (1971).
- 34. B. W. Roos and W. C. Sangren, "Some Aspects of the Use of Digital Computers in Nuclear Reactor Design," in <u>Advances</u> in Nuclear Science and Technology, Vol. 2, p. 303 (1964).
- 35. A. F. Henry, "Demonstration That Homogenized Constants for a Cell Depend on Properties of the Surrounding Medium," in M.I.T. Course 22.25 Notes, Advanced Reactor Physics, Chap. 12, p. 63 (Spring, 1969).
- 36. G. Strang, "The Finite Element Method and Approximation Theory," <u>Numerical Solution of Partial Differential</u> <u>Equations - II, SYNSPADE 1970</u>, Ed. B. Hubbard, p. 547, Academic Press (1971).
- 37. G. Fix and G. Strang, "Fourier Analysis of the Finite Element Method in Ritz-Galerkin Theory," Studies in Applied Math., <u>48</u>, 265 (1969).
- 38. G. Birkhoff, C. deBoor, B. Swartz, and B. Wendroff, "Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials," J. SIAM Numer. Anal., Vol. 3, No. 2, p. 188 (1966).
- 39. J. J. Goël, "Construction of Basic Functions for Numerical Utilization of Ritz's Method," Numer. Math., <u>12</u>, p. 435 (1968).
- 40. A. Radkowsky, Editor, <u>Naval Reactors Physics Handbook</u>, Vol. 1, Selected Basic Techniques, "Homogenization Techniques," Chap. 4.3, USAEC, p. 620 (1964).
- 41. R. E. Alcouffe and R. W. Albrecht, "A Generalization of the Finite Difference Approximation Method with an Application to Space-Time Nuclear Reactor Kinetics," Nucl. Sci. Eng., <u>39</u>, 1 (1970).

- 42. S. Nakamura, "A Variational Rebalancing Method for Linear Iterative Convergence Schemes of Neutron Diffusion and Transport Equations," Nucl. Sci. Eng., <u>39</u>, 278 (1970).
- 43. S. Nakamura, "Coarse Mesh Acceleration of Iterative Solution of Neutron Diffusion Equations," Nucl. Sci. Eng., <u>43</u>, 116 (1971).
- 44. A. Radkowsky, Editor, <u>Naval Reactors Physics Handbook</u>, Vol. 1, Selected Basic Techniques, "Reactor Physics Computations," Chap. 7.2, USAEC, p. 1414 (1964).
- 45. G. Bilodeau and L. A. Hageman, "A Survey of Numerical Methods in the Solution of Diffusion Problems," WAPD-TM-64, (July, 1957).
- 46. G. I. Bell and S. Glasstone, <u>Nuclear Reactor Theory</u>, Van Nostrand Reinhold Company (1960).
- 47. W. W. Little, Jr. and R. W. Hardie, "2 DB User's Manual Revision 1," BNWL-831 REV 1, UC-32: Mathematics and Computers, Battelle Memorial Institute, Pacific Northwest Laboratories, Richland, Washington (August, 1969).
- 48. L. A. Hageman, "Numerical Methods and Techniques Used in the Two-Dimensional Neutron-Diffusion Program PDQ-5," WAPD-TM-364, UC-32: Mathematics and Computers, Bettis Atomic Power Company, Pittsburg, Pennsylvania (February, 1963).
- 49. E. Isaacson and H. B. Keller, <u>Analysis of Numerical Methods</u>, Wiley (1966).
- 50. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall (1962).
- 51. G. Forsythe and C. B. Moler, <u>Computer Solution of Linear</u> <u>Algebraic Systems</u>, Prentice-Hall (1967).
- 52. L. A. Hageman and J. B. Yasinsky, "Comparison of Alternating-Direction Time-Differencing Methods with Other Implicit Methods for the Solution of the Neutron Group-Diffusion Equations," Nucl. Sci. Eng., <u>38</u>, p. 8 (1969).
- 53. A. Radkowsky, Editor, <u>Naval Reactors Physics Handbook</u>, Vol. 1, Selected Basic Techniques, "Few-Group Approximations," Chap. 2.8, USAEC, p. 197 (1964).
- 54. M.I.T. Information Processing Center, "Stromberg-Carlson 4020," Application Program Series, AP-36 Revision 2, November 30, 1971.

BIOGRAPHICAL NOTE

The author is a native Californian. Born in San Francisco August 19, 1945, he was raised in Orange, and upon graduation from Orange High School in 1963, he received the Bank of America Award in Mathematics and the Orange County Industrial Education Association Award in Electronics.

He then attended the University of California at Berkeley, and supported by special as well as Regents' Scholarship awards, graduated in 1967 from the School of Engineering with a Bachelor of Science degree in Physics. He was elected to Tau Beta Pi, Phi Beta Kappa, and received a four-year letter in varsity gymnastics.

The author then enrolled at the Massachusetts Institute of Technology. Supported by an Atomic Energy Commission Special Fellowship in Nuclear Engineering, he received the Master of Science degree from the Department of Nuclear Engineering in 1969.

As a research associate in the Space-Time Kinetics Project in the same department, the author completed this work and obtained the degree of Doctor of Philosophy in 1972.

While at M.I.T. the author was active in many organizations, most notable of which was the M.I.T. Rugby Football Club.

APPENDICES

.

Appendix A

TABLE OF SYMBOLS

g	Energy group index which runs from the highest to the lowest energy group as $g = 1$ to G.
$\phi_{g}(r)$	Scalar neutron flux in energy group g (neutrons/cm 2 · sec).
$\frac{J}{g}(r)$	Vector neutron current in energy group g (neutrons/cm $^2\cdot$ sec).
D _g (r)	Diffusion coefficient for neutrons in energy group g (cm).
$\Sigma_{g}(\mathbf{r})$	Macroscopic total removal cross section in energy group g (cm $^{-1}$).
$\nu \Sigma_{fg}(r)$	Macroscopic fission-production cross section in energy group g (cm $^{-1}$).
$\Sigma_{gg'}(r)$	Macroscopic transfer cross section from energy group g' to energy group g (cm ^{-1}).
χ _g	Fission spectrum yield in energy group g.
λ	The eigenvalue or criticality of the diffusion problem.
Φ(r), Φ [*] (r)	Scalar group flux column vector of length G and its adjoint.
$\underline{J}(r), \underline{J}^{*}(r)$	Vector group current column vector of length G and its adjoint.

- $\Lambda(r)$ G×G group material removal, scattering, and production matrix.
- $\mathbb{D}(\mathbf{r})$ G×G diagonal group diffusion coefficient matrix.
- U(r), U^{*}(r) Scalar group flux and weighting flux trial function column vectors of length G.
- $\underline{V}(\mathbf{r}), \underline{V}^{*}(\mathbf{r})$ Vector group current and weighting current trial function column vectors of length G.
 - k One-dimensional spatial index which runs from the leftmost first region to the rightmost K-th region, as k=1 to K.
 - z The one-dimensional axis variable divided into K regions such that each region k is bounded by nodes z_k and z_{k+1} .
 - x A dimensionless variable defined in each region k as $x = (z - z_k)/(z_{k+1} - z_k)$, such that $0 \le x \le 1$ as $z_k \le z \le z_{k+1}$.
 - F_k Approximate one-dimensional group flux solution at node z_k .
 - G_k Approximate one-dimensional group current solution at node z_k .
- $\psi_k(z), \psi_k^*(z)$ Detailed one-dimensional subassembly flux and weighting flux solutions in coarse mesh region k whose form is linear within each homogeneous subassembly interval.
- $\eta_k(z), \eta_k^*(z)$ Detailed one-dimensional subassembly current and weighting current solutions in coarse mesh region k whose form is <u>constant</u> within each homogeneous subassembly interval.

- ▲ Discretized matrix form of the G×G group diffusion, absorption, and scattering matrices.
- IB Discretized matrix form of the G×G group fission-production matrix.
- <u>F</u> The unknown approximate group flux solution vector which may contain group current unknowns.
- $% \lambda$ Normalized eigenvalue percent error: $% \lambda = (\lambda_{\text{Reference}} - \lambda_{\text{Method}}) / \lambda_{\text{Reference}} \times 100\%.$
- P(k) Fractional power produced in coarse mesh region k when the total power produced has been normalized to unity.
- % P(k) Normalized fractional power percent error: % P(k) = $[P(k)_{Reference} - P(k)_{Method}] / P(k)_{Reference} \times 100\%$.
Appendix B

DIFFERENCE EQUATION COEFFICIENTS RESULTING FROM USE OF THE FINITE ELEMENT APPROXIMATION METHODS

The G×G matrix coefficients resulting from the conventional finite difference approximation, the linear finite element approximation, and the cubic Hermite finite element approximation in onedimensional multigroup diffusion theory are defined below in sections B.1, B.2, and B.3, respectively. The coefficients are given in terms of assumed homogeneous regional nuclear constants through the use of the G×G group matrices \mathbb{D}_k and Λ_k , where $\Lambda_k = \mathbb{M}_k - \mathbb{T}_k - \frac{1}{\lambda} \mathbb{B}_k$, which are defined in Chapter 2 and are constant for each region k, where k = 1 to K.

More general definitions of these coefficients may be found from the coefficients resulting from the use of the proposed approximations, given in Appendix C, by requiring that $\psi_k(z)$ be constant and $\eta_k(z)$ be zero in each region k.

B.1. <u>Coefficients of the Conventional Finite Difference Equations</u> (as defined by Eqs. 2.16)

Interior Coefficients; k = 2 to K:

$$\begin{aligned} \mathbf{a}_{k} &= -\mathbf{D}_{k-1}/\mathbf{h}_{k-1} \\ \mathbf{b}_{k} &= \frac{1}{2}(\mathbf{A}_{k-1}\mathbf{h}_{k-1} + \mathbf{A}_{k}\mathbf{h}_{k}) + \mathbf{D}_{k-1}/\mathbf{h}_{k-1} + \mathbf{D}_{k}/\mathbf{h}_{k} \\ \mathbf{c}_{k} &= -\mathbf{D}_{k}/\mathbf{h}_{k} \end{aligned}$$

Symmetry Boundary Condition Coefficients:

$$b_{1} = \frac{1}{2} \mathbf{\Lambda}_{1} h_{1} + \mathbf{D}_{1} / h_{1}$$

$$c_{1} = -\mathbf{D}_{1} / h_{1}$$

$$a_{K+1} = -\mathbf{D}_{K} / h_{K}$$

$$b_{K+1} = \frac{1}{2} \mathbf{\Lambda}_{K} h_{K} + \mathbf{D}_{K} / h_{K}$$

B.2. <u>Coefficients of the Linear Finite Element Method Equations</u> (as defined by Eqs. 2.30)

Interior Coefficients; k = 2 to K:

$$a_{k} = \frac{1}{6} \Lambda_{k-1} h_{k-1} - \mathbb{D}_{k-1} / h_{k-1}$$

$$b_{k} = \frac{1}{3} [\Lambda_{k-1} h_{k-1} + \Lambda_{k} h_{k}] + \mathbb{D}_{k-1} / h_{k-1} + \mathbb{D}_{k} / h_{k}$$

$$c_{k} = \frac{1}{6} \Lambda_{k} h_{k} - \mathbb{D}_{k} / h_{k}$$

Symmetry Boundary Condition Coefficients:

$$b_{1} = \frac{1}{3} \mathbf{A}_{1} h_{1} + \mathbf{D}_{1} / h_{1}$$

$$c_{1} = \frac{1}{6} \mathbf{A}_{1} h_{1} - \mathbf{D}_{1} / h_{1}$$

$$a_{K+1} = \frac{1}{6} \mathbf{A}_{K} h_{K} - \mathbf{D}_{K} / h_{K}$$

$$b_{K+1} = \frac{1}{3} \mathbf{A}_{K} h_{K} + \mathbf{D}_{K} / h_{K}$$

B.3. <u>Coefficients of the Cubic Hermite Finite Element</u> <u>Method Equations</u> (as defined by Eq. 2.33)

Interior Coefficients; k=2 to K:

$$\begin{split} \mathbf{a1}_{\mathbf{k}} &= \frac{9}{70} \mathbf{A}_{\mathbf{k}-1} \mathbf{h}_{\mathbf{k}-1} - \frac{6}{5} \mathbf{D}_{\mathbf{k}-1} / \mathbf{h}_{\mathbf{k}-1} \\ \mathbf{a2}_{\mathbf{k}} &= \left(-\frac{13}{420} \mathbf{A}_{\mathbf{k}-1} \mathbf{h}_{\mathbf{k}-1}^2 \mathbf{D}_{\mathbf{k}-1}^{-1} + \frac{1}{10} \right) \theta \\ \mathbf{b1}_{\mathbf{k}} &= \frac{13}{35} \left(\mathbf{A}_{\mathbf{k}-1} \mathbf{h}_{\mathbf{k}-1} + \mathbf{A}_{\mathbf{k}} \mathbf{h}_{\mathbf{k}} \right) + \frac{6}{5} \left(\mathbf{D}_{\mathbf{k}-1} / \mathbf{h}_{\mathbf{k}-1} + \mathbf{D}_{\mathbf{k}} / \mathbf{h}_{\mathbf{k}} \right) \\ \mathbf{b2}_{\mathbf{k}} &= \frac{11}{210} \left(\mathbf{A}_{\mathbf{k}-1} \mathbf{h}_{\mathbf{k}-1}^2 \mathbf{D}_{\mathbf{k}-1}^{-1} - \mathbf{A}_{\mathbf{k}} \mathbf{h}_{\mathbf{k}}^2 \mathbf{D}_{\mathbf{k}}^{-1} \right) \theta \\ \mathbf{c1}_{\mathbf{k}} &= \frac{9}{70} \mathbf{A}_{\mathbf{k}} \mathbf{h}_{\mathbf{k}} - \frac{6}{5} \mathbf{D}_{\mathbf{k}} / \mathbf{h}_{\mathbf{k}} \\ \mathbf{c2}_{\mathbf{k}} &= \left(\frac{13}{420} \mathbf{A}_{\mathbf{k}} \mathbf{h}_{\mathbf{k}}^2 \mathbf{D}_{\mathbf{k}}^{-1} - \mathbf{A}_{\mathbf{k}} \mathbf{h}_{\mathbf{k}}^2 \mathbf{D}_{\mathbf{k}}^{-1} \right) \theta \\ \mathbf{a3}_{\mathbf{k}} &= \left(\frac{13}{420} \mathbf{A}_{\mathbf{k}} \mathbf{h}_{\mathbf{k}}^2 \mathbf{D}_{\mathbf{k}}^{-1} - \frac{1}{10} \right) \theta \\ \mathbf{a4}_{\mathbf{k}} &= \left(-\frac{11}{140} \mathbf{D}_{\mathbf{k}-1}^{-1} \mathbf{h}_{\mathbf{k}-1}^2 \mathbf{A}_{\mathbf{k}-1} - \frac{1}{10} \right) \theta \\ \mathbf{a4}_{\mathbf{k}} &= \left(-\frac{1}{140} \mathbf{D}_{\mathbf{k}-1}^{-1} \mathbf{h}_{\mathbf{k}-1}^2 \mathbf{A}_{\mathbf{k}-1} \mathbf{D}_{\mathbf{k}}^{-1} \mathbf{h}_{\mathbf{k}}^2 \mathbf{A}_{\mathbf{k}} \right) \theta \\ \mathbf{b4}_{\mathbf{k}} &= \left[\frac{1}{105} \left(\mathbf{D}_{\mathbf{k}-1}^{-1} \mathbf{h}_{\mathbf{k}-1}^3 \mathbf{A}_{\mathbf{k}-1} \mathbf{D}_{\mathbf{k}}^{-1} \mathbf{h}_{\mathbf{k}}^2 \mathbf{A}_{\mathbf{k}} \right) \theta \\ \mathbf{b4}_{\mathbf{k}} &= \left[\frac{1}{105} \left(\mathbf{D}_{\mathbf{k}-1}^{-1} \mathbf{h}_{\mathbf{k}-1}^3 \mathbf{A}_{\mathbf{k}-1} \mathbf{D}_{\mathbf{k}}^{-1} \mathbf{h}_{\mathbf{k}}^2 \mathbf{A}_{\mathbf{k}} \right) \theta \\ \mathbf{b4}_{\mathbf{k}} &= \left[\frac{1}{105} \left(\mathbf{D}_{\mathbf{k}-1}^{-1} \mathbf{h}_{\mathbf{k}-1}^3 \mathbf{A}_{\mathbf{k}-1} \mathbf{D}_{\mathbf{k}}^{-1} \right) \right] \theta^2 \\ \mathbf{c3}_{\mathbf{k}} &= \left(-\frac{13}{420} \mathbf{D}_{\mathbf{k}}^{-1} \mathbf{h}_{\mathbf{k}}^2 \mathbf{A}_{\mathbf{k}} + \frac{1}{10} \right) \theta \\ \mathbf{c4}_{\mathbf{k}} &= \left(-\frac{1}{140} \mathbf{D}_{\mathbf{k}}^{-1} \mathbf{h}_{\mathbf{k}}^3 \mathbf{A}_{\mathbf{k}} \mathbf{D}_{\mathbf{k}}^{-1} - \frac{1}{30} \mathbf{h}_{\mathbf{k}} \mathbf{D}_{\mathbf{k}}^{-1} \right) \theta^2 \\ \mathbf{c4}_{\mathbf{k}} &= \left(-\frac{1}{140} \mathbf{D}_{\mathbf{k}}^{-1} \mathbf{h}_{\mathbf{k}}^3 \mathbf{A}_{\mathbf{k}} \mathbf{D}_{\mathbf{k}}^{-1} - \frac{1}{30} \mathbf{h}_{\mathbf{k}} \mathbf{D}_{\mathbf{k}}^{-1} \right) \theta^2 \\ \end{array}$$

Zero Flux Boundary Condition Coefficients:

$$\begin{split} \mathbf{b}_{1} &= \left(\frac{1}{105} \ \mathbb{D}_{1}^{-1} \ \mathbf{h}_{1}^{3} \ \mathbb{A}_{1} \ \mathbb{D}_{1}^{-1} + \frac{2}{15} \ \mathbf{h}_{1} \ \mathbb{D}_{1}^{-1}\right) \theta^{2} \\ \mathbf{c}_{3} &= \left(-\frac{13}{420} \ \mathbb{D}_{1}^{-1} \ \mathbf{h}_{1}^{2} \ \mathbb{A}_{1} + \frac{1}{10}\right) \theta \\ \mathbf{c}_{4} &= \left(-\frac{1}{140} \ \mathbb{D}_{1}^{-1} \ \mathbf{h}_{1}^{3} \ \mathbb{A}_{1} \ \mathbb{D}_{1}^{-1} - \frac{1}{30} \ \mathbf{h}_{1} \ \mathbb{D}_{1}^{-1}\right) \theta^{2} \\ \mathbf{a}_{3} &= \left(\frac{13}{420} \ \mathbb{D}_{K}^{-1} \ \mathbf{h}_{K}^{2} \ \mathbb{A}_{K} - \frac{1}{10}\right) \theta \\ \mathbf{a}_{4} &= \left(-\frac{1}{140} \ \mathbb{D}_{K}^{-1} \ \mathbf{h}_{K}^{3} \ \mathbb{A}_{K} \ \mathbb{D}_{K}^{-1} - \frac{1}{30} \ \mathbf{h}_{K} \ \mathbb{D}_{K}^{-1}\right) \theta^{2} \\ \mathbf{b}_{4} &= \left(\frac{1}{105} \ \mathbb{D}_{K}^{-1} \ \mathbf{h}_{K}^{3} \ \mathbb{A}_{K} \ \mathbb{D}_{K}^{-1} + \frac{2}{15} \ \mathbf{h}_{K} \ \mathbb{D}_{K}^{-1}\right) \theta^{2} \end{split}$$

Symmetry Boundary Condition Coefficients:

$$\begin{split} \mathbf{b}\mathbf{1}_{1} &= \frac{13}{35} \mathbf{A}_{1} \mathbf{h}_{1} + \frac{6}{5} \, \mathbb{D}_{1} / \mathbf{h}_{1} \\ \mathbf{c}\mathbf{1}_{1} &= \frac{9}{70} \mathbf{A}_{1} \mathbf{h}_{1} - \frac{6}{5} \, \mathbb{D}_{1} / \mathbf{h}_{1} \\ \mathbf{c}\mathbf{2}_{1} &= \left(\frac{13}{420} \, \mathbf{A}_{1} \mathbf{h}_{1}^{2} \, \mathbb{D}_{1}^{-1} - \frac{1}{10}\right) \theta \\ \mathbf{a}\mathbf{1}_{\mathrm{K}+1} &= \frac{9}{70} \mathbf{A}_{\mathrm{K}} \mathbf{h}_{\mathrm{K}} - \frac{6}{5} \, \mathbb{D}_{\mathrm{K}} / \mathbf{h}_{\mathrm{K}} \\ \mathbf{a}\mathbf{2}_{\mathrm{K}+1} &= \left(-\frac{13}{420} \, \mathbf{A}_{\mathrm{K}} \mathbf{h}_{\mathrm{K}}^{2} \, \mathbb{D}_{\mathrm{K}}^{-1} + \frac{1}{10}\right) \theta \\ \mathbf{b}\mathbf{1}_{\mathrm{K}+1} &= \frac{13}{35} \mathbf{A}_{\mathrm{K}} \mathbf{h}_{\mathrm{K}} + \frac{6}{5} \, \mathbb{D}_{\mathrm{K}} / \mathbf{h}_{\mathrm{K}} \end{split}$$

Appendix C

DIFFERENCE EQUATION COEFFICIENTS RESULTING FROM USE OF THE PROPOSED APPROXIMATION METHODS

The $G \times G$ matrix coefficients resulting from the proposed approximation methods using (1) linear basis functions, and (2) cubic Hermite basis functions, in one-dimensional multigroup diffusion theory are defined below in sections C.1 and C.2, respectively.

The coefficients are given as integrands of functions of x where the integration of every coefficient-integrand over a region

Coefficient =
$$\int_{0}^{1} [Coefficient-Integrand(x)] dx$$

is understood.

In order to simplify the forms of the coefficient-integrands, it is convenient to define the following $G \times G$ matrices:

$$\begin{split} \mathbb{K}_{k}(\mathbf{x}) &= \psi_{k}^{*}^{T}(\mathbf{x}) \, \mathbf{\Lambda}_{k}(\mathbf{x}) \, \mathbf{h}_{k} \, \psi_{k}(\mathbf{x}) \\ \mathbb{L}_{k}(\mathbf{x}) &= \eta_{k}^{*}^{T}(\mathbf{x}) \, \mathbb{D}_{k}^{-1}(\mathbf{x}) \, \mathbf{h}_{k} \, \eta_{k}(\mathbf{x}) \\ \mathbb{P}_{k}(\mathbf{x}) &= \psi_{k}^{*}^{T}(\mathbf{x}) \, \eta_{k}(\mathbf{x}) \\ \mathbb{Q}_{k}(\mathbf{x}) &= \eta_{k}^{*}^{T}(\mathbf{x}) \, \psi_{k}(\mathbf{x}) \\ \mathbb{R}_{k}(\mathbf{x}) &= \frac{1}{h_{k}} \, \psi_{k}^{*}^{T}(\mathbf{x}) \, \mathbb{D}_{k}(\mathbf{x}) \, \psi_{k}(\mathbf{x}) \end{split}$$

for each region k. In each approximation below, two sets of polynomial functions $p_1(x) \dots p_{2N}(x)$ and $q_1(x) \dots q_{2N}(x)$ are given

which represent the basis functions of the approximation and their negative derivatives, where N = 1 for the linear basis function approximations and N = 2 for the cubic Hermite basis function approximations.

The G×G coefficient-integrands are then listed in terms of these matrices and polynomials by the G×G collapsed matrices $\mathbb{E}_k^{i,j}(x)$ defined as

$$\begin{split} \mathbb{E}_{k}^{i,j}(\mathbf{x}) &= p_{i}(\mathbf{x})p_{j}(\mathbf{x})\mathbb{K}_{k}(\mathbf{x}) - p_{i}(\mathbf{x})p_{j}(\mathbf{x})\mathbb{L}_{k}(\mathbf{x}) + q_{i}(\mathbf{x})p_{j}(\mathbf{x})\mathbb{P}_{k}(\mathbf{x}) \\ &- p_{i}(\mathbf{x})q_{j}(\mathbf{x})\mathbb{Q}_{k}(\mathbf{x}) + q_{i}(\mathbf{x})q_{j}(\mathbf{x})\mathbb{R}_{k}(\mathbf{x}) \end{split}$$

for given values of i and j for each region k, where k = 1 to K. It should be noted that $\mathbb{E}_{k}^{i,j}(x)$ is not symmetric about i and j; i.e.:

$$\mathbb{E}_k^{i,\,j}(\mathbf{x}) \neq \mathbb{E}_k^{j,\,i}(\mathbf{x}) \;, \quad \text{for } i \neq j \,.$$

C.1. <u>Coefficient-Integrands of the Proposed Approximation</u> <u>Method Equations Using Linear Basis Functions</u> (as defined by Eq. 3.6)

These coefficients are given in terms of the polynomial functions

$$p_1(x) = (1-x)$$

 $p_2(x) = x$
 $q_1(x) = 1$
 $q_2(x) = -1$

for use in the $\mathbb{E}_{k}^{i, j}(x)$ below.

Interior Coefficient-Integrands; k=2 to K:

$$a_{k}(x) = \psi_{k-1}^{+T}(1) \mathbb{E}_{k-1}^{2,1}(x) \psi_{k-1}^{-1}(0)$$

$$b_{k}(x) = \psi_{k-1}^{*T}(1) \mathbb{E}_{k-1}^{2,2}(x) \psi_{k-1}^{-1}(1) + \psi_{k}^{*T}(0) \mathbb{E}_{k}^{1,1}(x) \psi_{k}^{-1}(0)$$

$$c_{k}(x) = \psi_{k}^{*T}(0) \mathbb{E}_{k}^{1,2}(x) \psi_{k}^{-1}(1)$$

Symmetry Coefficient-Integrands:

$$b_{1}(x) = \psi_{1}^{+T}(0) \mathbb{E}_{1}^{1,1}(x) \psi_{1}^{-1}(0)$$

$$c_1(x) = c_k(x);$$
 where $k = 1$

$$a_{K+1}(x) = a_k(x);$$
 where $k = K+1$
 $b_{K+1}(x) = \psi_K^{*T}(1) \mathbb{E}_K^{2,2}(x) \psi_K^{-1}(1)$

Implied Zero Flux Boundary Condition Coefficient-Integrands (Corresponding with the modified trial functions of the type in Eqs. 3.9)

$$b_{2}(x) = \psi_{1}^{+T}(1) \left[\mathbb{K}_{1}(x) - \mathbb{L}_{1}(x) \right] \psi_{1}^{-1}(1) + \psi_{2}^{+T}(0) \mathbb{E}_{2}^{1,1}(x) \psi_{2}^{-1}(0)$$

$$b_{K}(x) = \psi_{K-1}^{+T}(1) \mathbb{E}_{K-1}^{2,2}(x) \psi_{K-1}^{-1}(1) + \psi_{K}^{+T}(0) \left[\mathbb{K}_{K} - \mathbb{L}_{K} \right] \psi_{K}^{-1}(0)$$

C.2. <u>Coefficient-Integrands of the Proposed Approximation Method</u> <u>Equations Using Cubic Hermite Basis Functions</u> (as defined in Eq. 3.16)

These coefficients are given in terms of the polynomials ${\rm p}_1({\rm x})$ through ${\rm p}_4({\rm x})$ and ${\rm q}_1({\rm x})$ through ${\rm q}_4({\rm x})$, previously defined in Eqs. 3.11 and 3.12, for use in the ${\rm E}_k^{i,\,j}({\rm x})$ below.

Interior Coefficient-Integrands; k = 2 to K:

$$\begin{split} \mathbf{a1}_{k}(\mathbf{x}) &= \psi_{k-1}^{*T}(1) \mathbf{E}_{k-1}^{2,1}(\mathbf{x}) \psi_{k-1}^{-1}(0) \\ \mathbf{a2}_{k}(\mathbf{x}) &= \psi_{k-1}^{*T}(1) \mathbf{E}_{k-1}^{2,3}(\mathbf{x}) \psi_{k-1}^{-1}(0) \mathbf{D}_{k-1}^{-1}(0) \theta \\ \mathbf{b1}_{k}(\mathbf{x}) &= \psi_{k-1}^{*T}(1) \mathbf{E}_{k-1}^{2,2}(\mathbf{x}) \psi_{k-1}^{-1}(1) + \psi_{k}^{*T}(0) \mathbf{E}_{k}^{1,1}(\mathbf{x}) \psi_{k}^{-1}(0) \\ \mathbf{b2}_{k}(\mathbf{x}) &= \psi_{k-1}^{*T}(1) \mathbf{E}_{k-1}^{2,4}(\mathbf{x}) \psi_{k-1}^{-1}(1) \mathbf{D}_{k-1}^{-1}(1) \theta \\ &\quad + \psi_{k}^{*T}(0) \mathbf{E}_{k}^{1,3}(\mathbf{x}) \psi_{k}^{-1}(0) \mathbf{D}_{k}^{-1}(0) \theta \\ \mathbf{c1}_{k}(\mathbf{x}) &= \psi_{k}^{*T}(0) \mathbf{E}_{k}^{1,2}(\mathbf{x}) \psi_{k}^{-1}(1) \mathbf{D}_{k}^{-1}(1) \theta \\ \mathbf{c2}_{k}(\mathbf{x}) &= \psi_{k}^{*T}(0) \mathbf{E}_{k}^{1,4}(\mathbf{x}) \psi_{k}^{-1}(1) \mathbf{D}_{k}^{-1}(1) \theta \\ \mathbf{a3}_{k}(\mathbf{x}) &= \psi_{k-1}^{*T}(1) \mathbf{D}_{k-1}^{-1}(1) \mathbf{E}_{k-1}^{4,3}(\mathbf{x}) \psi_{k-1}^{-1}(0) \theta \\ \mathbf{a4}_{k}(\mathbf{x}) &= \psi_{k-1}^{*T}(1) \mathbf{D}_{k-1}^{-1}(1) \mathbf{E}_{k-1}^{4,3}(\mathbf{x}) \psi_{k-1}^{-1}(0) \mathbf{D}_{k-1}^{-1}(0) \theta^{2} \end{split}$$

$$\begin{split} \mathbf{b}_{3_{k}}(\mathbf{x}) &= \psi_{k-1}^{*T}(1) \, \mathbb{D}_{k-1}^{-1}(1) \, \mathbb{E}_{k-1}^{4,\,2}(\mathbf{x}) \, \psi_{k-1}^{-1}(1) \, \theta \\ &\quad + \psi_{k}^{*T}(0) \, \mathbb{D}_{k}^{-1}(0) \, \mathbb{E}_{k}^{3,\,1}(\mathbf{x}) \, \psi_{k}^{-1}(0) \, \theta \\ \mathbf{b}_{k}(\mathbf{x}) &= \psi_{k-1}^{*T}(1) \, \mathbb{D}_{k-1}^{-1}(1) \, \mathbb{E}_{k-1}^{4,\,4}(\mathbf{x}) \, \psi_{k-1}^{-1}(1) \, \mathbb{D}_{k-1}^{-1}(1) \, \theta^{2} \\ &\quad + \psi_{k}^{*T}(0) \, \mathbb{D}_{k}^{-1}(0) \, \mathbb{E}_{k}^{3,\,3}(\mathbf{x}) \, \psi_{k}^{-1}(0) \, \mathbb{D}_{k}^{-1}(0) \, \theta^{2} \\ \mathbf{c}_{3_{k}}(\mathbf{x}) &= \psi_{k}^{*T}(0) \, \mathbb{D}_{k}^{-1}(0) \, \mathbb{E}_{k}^{3,\,2}(\mathbf{x}) \, \psi_{k}^{-1}(1) \, \theta \\ \mathbf{c}_{4_{k}}(\mathbf{x}) &= \psi_{k}^{*T}(0) \, \mathbb{D}_{k}^{-1}(0) \, \mathbb{E}_{k}^{3,\,4}(\mathbf{x}) \, \psi_{k}^{-1}(1) \, \mathbb{D}_{k}^{-1}(1) \, \theta^{2} \end{split}$$

Zero Flux Boundary Condition Coefficient-Integrands:

Symmetry Boundary Condition Coefficient-Integrands:

•

$$\begin{array}{l} \overset{-1}{\overset{\times}{_{1}}} \\ \text{b1}_{1}(\textbf{x}) = \psi_{1}^{*T}(0) \times \underset{1}{^{1}} \\ (1) \times \underset{1}{^{1}} \\ (1) \times \underset{1}{^{1}} \\ (1) \times \underset{1}{^{2}} \\ (1) \times \underset{1}{^{2$$

Implied Zero Flux Boundary Condition Coefficient-Integrands (corresponding with the modified trial functions of the type in Eq. 3.17):

$$c3_{1}(x) = c3_{k}(x); \text{ where } k = 1$$

$$a2_{2}(x) = a2_{k}(x); \text{ where } k = 2$$

$$b1_{2}(x) = b1_{k}(x); \text{ where } k = 2$$

$$b2_{2}(x) = b2_{k}(x); \text{ where } k = 2$$

$$b3_{2}(x) = b3_{k}(x); \text{ where } k = 2$$

$$dx = 0$$

$$dx = 0$$

$$\begin{array}{l} b_{1_{K}}(x) = b_{1_{k}}(x); \text{ where } k = K \\ b_{2_{K}}(x) = b_{2_{k}}(x); \text{ where } k = K \\ c_{2_{K}}(x) = c_{2_{k}}(x); \text{ where } k = K \\ b_{3_{K}}(x) = b_{3_{k}}(x); \text{ where } k = K \\ a_{3_{K+1}}(x) = a_{3_{k}}(x); \text{ where } k = K + 1 \end{array} \right\} \text{ and where } \begin{cases} p_{1}(x) = 1 \\ p_{2}(x) = 0 \\ q_{1}(x) = 0 \\ q_{2}(x) = 0 \\ q_{2}(x) = 0 \end{cases}$$

Appendix D

DESCRIPTION OF THE COMPUTER PROGRAMS

The computer programs REF2G, LINEAR, CUBIC, and ANALYZE are described respectively in the following four sections. The programs are written in FORTRAN IV, allow double precision calculations, and were used with the I.B.M. 360/65 and 370/155 FORTRAN G compilers at the M.I.T. Information Processing Center. Sample storage requirements and execution times of the programs are summarized in Table D.1.

The power method employed in the first three programs allows a maximum of 300 iterations to converge, and program execution continues after this limit. Initial group flux shapes are sinusoidal or flat, depending upon the boundary conditions chosen.

The input and output data of each program are divided into data blocks for ease of representation as described below.

D.1. Description of Program REF2G

REF2G finds the reference solutions of the one-dimensional, twogroup diffusion equations of each case study, or the detailed subassembly solutions of each subassembly, using the linear finite element approximation method. The program allows up to a total of two hundred homogeneous fine mesh regions and employs combinations of both zero flux and symmetry boundary conditions. Identical material regions can be automatically repeated with no additional input. Options for plotting graphically the history of the converging spatial flux as well as the converging eigenvalue are also available. In addition, the program allows the calculation of the adjoint flux and current solutions.

The approximate current solutions are linear within each mesh region and are calculated from the converged flux solutions using Eqs. 4.29 and 4.31. The converged flux and current solutions and the converged adjoint solutions can be punched out for future use as described below.

A. Reference Solution Input Block

Card Type 1: Format (20A4)

An Appropriate Problem Title

Card Type 2: Format (2I5, 3E10.3, 5I5)

KR Total number of homogeneous fine mesh regions. $\label{eq:KR} KR \leqslant 200.$

IBC Boundary Condition Option

- 1. Zero flux on both boundaries
- 2. Zero flux on the left, symmetry on the right
- 3. Symmetry on the left, zero flux on the right
- 4. Symmetry on both boundaries
- EPS1 Iteration tolerance to be met by differences between elements of successive iteration solution vectors:

$$\left| \operatorname{F}_{j}^{(i)} - \operatorname{F}_{j}^{(i-1)} \right| \leq \epsilon_{1}^{}$$
; for all j

EPS2 Iteration tolerance to be met by the mean square error between successive iteration solution vectors:

$$\left\{ \begin{smallmatrix} \Sigma \\ j \end{smallmatrix} \left[\begin{smallmatrix} \mathbf{F}_{j}^{(i)} - \mathbf{F}_{j}^{(i-1)} \end{smallmatrix} \right]^{2} \right\}^{\frac{1}{2}} < \epsilon_{2}$$

Table D.1. Sample Storage Requirements and Execution Times of the Programs for Two-Group Results. Obtained using the M.I.T. I.B.M. 360/155.

Storage Requirements in Bytes (without overlays):

REF2G:	260 K
LINEAR:	200 K
CUBIC:	250 K
ANALYZE:	205 K

C.P.U. Execution Times in Minutes:

REF2G:	Detailed Subassembly Solutions (68 regions) ^a :	.120	
	Case 1 Reference Solution (150 regions) ^b :	. 238	
	Case 4 Reference Solution (198 regions) ^b :	.644	
LINEAR:	Case 1 Synthesis (Homogenized ^C) Method (3 regions):	. 284	(.157)
	Case 4 Synthesis (Homogenized ^C) Method (9 regions):	. 296	(.209)
CUBIC:	Case 1 Synthesis (Homogenized ^C) Method (3 regions):	1.227	(.183)
	Case 4 Synthesis (Homogenized ^C) Method (9 regions):	1.464	(.328)
ANALYZE:	Case 1 Linear (Cubic Hermite) Basis Functions:	. 087	(.108)
	Case 4 Linear (Cubic Hermite) Basis Functions:	.122	(.139)

a. Including adjoint flux and current calculations.

b. Not including adjoint calculations.

c. Including . 126 minutes for calculation of the two-group homogenized constants.

EPS3 Iteration tolerance to be met by the difference between successive iteration eigenvalues:

 $|\lambda^{(i)} - \lambda^{(i-1)}| < \epsilon_3$

- IPLOT Allows printed graphical display of the converging flux solution:
 - 0 No display
 - 1 Plot only the resultant normalized flux
 - 2 Plot a normalized history of the converging flux
- JPLOT Allows printed graphical display of the history of the converging eigenvalue when JPLOT = 1.
- IPUNCH Allows punched output when IPUNCH = 1.
 - ISEE Allows printing of storage information:
 - 0 No information printed
 - 1 Input regional properties are printed
 - 2 Input regional properties as well as the Common/B5/ storage arrays and the Common/B3/ power method matrices are printed.
 - NOADJ Adjoint calculations are performed when NOADJ = 0, and bypassed if NOADJ = 1.

Card Type 3: Format (2512)

ITF(k) The consecutive type-number of each region from left to right as k = 1 to KR. Allows for repeating identical regions with no additional input.

Card Type 3 is repeated KR/25 times (rounded off to the next highest integer).

Card Type 4: Format (2F10.5)

CHI(1), CHI(2) The fission yields χ_1 and χ_2 for the fast and thermal groups, respectively.

* An Input Region Data Block:

Repeated for each different material region; $\max_{k} [ITF(k)]$ times.

Card Type 5: Format (I5)

k The consecutive mesh region number (counting from from left to right) for identification purposes.

Card Types 6,7: Format (3F10.5, 4E10.3, /, 30X, 3E10.3)

The geometry and nuclear constants for region k:

- z(1) Beginning spatial coordinate of region k (cm)
- z(2) Ending spatial coordinate of region k (cm)
- H Width of region k (cm)
- A(1) Fast-group macroscopic total cross section in region k (cm⁻¹)
- F(1) Fast-group macroscopic production cross section, $\nu \Sigma_{f}$, in region k (cm⁻¹)
- D(1) Fast-group diffusion coefficient in region k (cm)
 - S Fast-to-thermal macroscopic scattering cross section in region k (cm⁻¹)
- A(2) Thermal-group macroscopic total cross section in region k (cm⁻¹)
- F(2) Thermal-group macroscopic production cross section, $\nu \Sigma_{f}$, in region k (cm⁻¹)
- D(2) Thermal-group diffusion coefficient in region k (cm)

* End of an Input Region Data Block.

** Power Method Input Block: Optional

Card Type 8: Format (F10.5)

 $\omega \quad \mbox{Outer iteration overrelaxation parameter } 1 \leqslant \omega \leqslant 2. \label{eq:second} \\ \mbox{Default is } \omega = 1.25. \end{tabular}$

Card Type 9: Format (D25.14)

 $\lambda^{(0)}$ Initial eigenvalue guess. Default is $\lambda^{(0)} = 1.0$.

Card Type 10: Format (4E20.10)

((F(g,i), i = 1 to N), g = 1 to 2) Initial group flux solution guess without zero flux boundary values. Default is $\underline{F} = 1.0$.

** End of Power Method Input Block.

B. Reference Solution Output Block

When IPUNCH = 1, REF2G punches out the number of fine mesh regions, KR, under Format (I5) followed by the converged flux solutions $\psi(g,k)$ and corresponding current solutions $\tilde{\eta}(g,k)$ for each group g and spatial node k including boundary conditions. When adjoint calculations are included, the results are punched out under Format (4D20.10) as

$$((\psi(g,k), \tilde{\eta}(g,k), \psi^*(g,k), \tilde{\eta}^*(g,k), k=1 \text{ to } KR+1), g=1 \text{ to } 2)$$

where the notation denotes case reference solutions as well as detailed subassembly solutions. When the adjoint calculations have been bypassed, the results are punched out under Format (2D20.10) as

 $((\psi(g,k), \tilde{\eta}(g,k), k=1 \text{ to } KR+1), g=1 \text{ to } 2)$

A total of 2 KR + 3 cards are punched out.

D.2. Description of Program LINEAR

Program LINEAR forms and solves the difference equations resulting from the proposed approximation method using the <u>linear</u> basis functions. The program allows up to twenty-five coarse mesh regions, each of which is allowed to be broken into not more than one hundred homogeneous intervals. Combinations of both zero flux and symmetry boundary conditions as well as use of the modified trial function forms in the boundary regions are allowed. Spatial flux and eigenvalue iteration history plots are also available.

The program allows a choice of the type of weighting, Galerkin or adjoint, to be used in the approximation. Also, either form of the detailed subassembly current solutions $\eta_k(x)$ or $\tilde{\eta}_k(x)$ is allowed. In addition, identical coarse mesh regions with identical detailed subassembly solutions can be repeated implicitly.

LINEAR also calculates results of the linear finite element method when suitable input is used. Such results can be obtained by using homogenized coarse mesh region nuclear constants and defining the detailed group flux solutions to be constant and the detailed currents to be zero (or by setting ITC = 0).

Punched results using detailed subassembly solutions constitute a <u>Synthesis Method Output Block</u>, while punched output resulting from the reduction to the finite element method with homogenized regional constants constitutes a <u>Homogenized Method Output Block</u>.

A. Homogenized or Synthesis Method Input Block

Undefined input parameters are identical to those previously defined in the REF2G input.

Card Type 1: Format (20A4)

An Appropriate Problem Title

Card Type 2: Format (215, 3E10.3, 615)

KR Total number of coarse mesh regions. $KR \leq 25$.

IBC	 1-4 As previously defined 5 Modified trial function (no tilting) in the first region, symmetry on the right 6 Zone flux on the left modified trial function
	in the last region
	7 Modified trial functions in both boundary regions
EPS1	
EPS2	
EPS3	
IPLOT	
JPLOT	
IPUNCH	
ISEE	
ITW	Type of approximation weighting desired: Flux (Galerkin) Adjoint
ITC	Form of the detailed current solutions in all sub- assemblies: 0 $\eta_k(x), \eta_k^*(x)$ as calculated by Fick's laws 1 $\tilde{\eta}_k(x), \tilde{\eta}_k^*(x)$ as given from REF2G output

Card Type 3: Format (25I2)

ITF(k) The consecutive type-number of each coarse mesh region from left to right as k=1 to KR. Allows for repeating identical subassemblies with no additional input.

Card Type 3 is repeated KR/25 times (rounded off to the next highest integer).

Card Type 4: Format (2F10.5)

CHI(1), CHI(2)

* An Input Subassembly Region Data Block: Repeated for each different coarse mesh region; max [ITF(k)] times.

Card Type 5: Format (215)

- k The consecutive coarse mesh region number (from left to right).
- N The number of homogeneous intervals in subassembly k. $N \leq 100$.
- Card Types 6,7: Format (3F10.5, 4E10.3, /, 30X, 3E10.3)

The subassembly geometry and nuclear constants within each interval corresponding to the detailed subassembly solutions.

Repeated for each interval as i = 1 to N:

- z(i) Beginning spatial coordinate of interval i (cm)
- z(i+1) Ending spatial coordinate of interval i (cm)
 - H(i) Width of interval i (cm)
- A(1,i) Fast-group macroscopic total cross section in interval i (cm⁻¹)
- F(1,i) Fast-group macroscopic production cross section, $\nu \Sigma_{f}$, in interval i (cm⁻¹)
- D(1,i) Fast-group diffusion coefficient in interval i (cm)
 - S(i) Fast-to-thermal macroscopic scattering cross section in interval i (cm^{-1})
- A(2,i) Thermal-group macroscopic total cross section in interval i (cm⁻¹)
- F(2,i) Thermal-group macroscopic production cross section, $\nu \Sigma_{\rm f}$, in interval i (cm⁻¹)
- D(2,i) Thermal-group diffusion coefficient in interval i (cm)

Card Type 8: Format (4D20.10)

The detailed subassembly solutions.

 $((\psi(g,k), \tilde{\eta}(g,k), \psi^*(g,k), \tilde{\eta}^*(g,k), k = 1 \text{ to } KR + 1), g = 1 \text{ to } 2)$ A subassembly's Reference Solution Output Block without the first card.

* END of an Input Subassembly Region Data Block.

** Expected Solution Input Block: Optional

Card Type 9: Format (D25.14)

 λ_{REF} Expected eigenvalue solution. Default is $\lambda_{\text{REF}} = 1.0$. <u>Card Type 10</u>: Format (4E20.10) ((F(i,g),i=1to N),g=1to 2) Expected group flux solution without zero flux boundary values. Default is F = 1.0.

** END of the Expected Solution Input Block.

*** Power Method Input Block: Optional

As previously defined in the REF2G input.

*** END of the Power Method Input Block.

B. Homogenized or Synthesis Method Output Block

When IPUNCH = 1, LINEAR punches out the total number of coarse mesh regions, KR, under Format (I5) followed by the resultant flux solutions including boundary conditions. The flux solutions are punched out under Format (2E20.7) as

(F(1,k), F(2,k), k=1 to KR+1)

These cards represent either a Homogenized or Synthesis Method Output Block, depending upon the type and form of input data used.

D.3 Description of Program CUBIC

Program CUBIC forms and solves the difference equations resulting from the proposed approximation method using the <u>cubic Hermite</u> basis functions. The program is very similar in form to program LINEAR and uses similar input.

A. Homogenized or Synthesis Method Input Block

The input to CUBIC is identical to that of LINEAR except for the following:

1. The boundary condition options are restricted by $1 \leq IBC \leq 4$.

2. The normalization constant θ can be included on Card Type 4 after CHI(2) under Format (3F10.5). Default is $\theta = 1.0$.

3. Both the expected group solutions and the initial group solutions of the Expected Solution and Power Method Input Blocks, respectively, are of the form ((F(g,i), i=1 to N), g=1 to 2) without either zero flux or zero current (or symmetry) boundary conditions. The solution vector is made up of alternating flux and current values as described in section 3.3 of Chapter 3. Default values are flux values of unity and current values of zero.

B. Homogenized or Synthesis Method Output Block

When IPUNCH = 1, CUBIC punches out the total number of coarse mesh regions, KR, under Format (I5) followed by the resultant flux and current solutions including boundary conditions. The solutions are punched out under Format (4E20.7) as

$$(F(1,k), F(2,k), G(1,k), G(2,k), k = 1 \text{ to } KR + 1)$$

where F(g,k) represents the flux, and G(g,k) the current solution of group g at node k.

As in the case of LINEAR, these KR+2 output cards represent either a Synthesis or Homogenized Method Output Block, depending upon the type and form of input data used.

D.4 Description of Program ANALYZE

ANALYZE compares the results of the reference solution, homogenized finite element method, and the proposed synthesis method for each case study where either linear or cubic Hermite basis functions have been used in the latter methods. For each of these three methods, the program first forms the complete detailed flux solution and then normalizes the flux distributions for each method such that their total power levels are unity. The fractional (normalized) power levels produced in each coarse mesh region are then calculated, compared, and listed. Finally, the detailed group fluxes of each method are plotted graphically relative to one another using the Stromberg-Carlson Computer Recorder, SC-4020, facility at M.I.T.⁵⁴ The graphic results for each group are normalized by the largest group-flux value such that the equivalent total power levels are preserved.

A. ANALYZE Input

The input to ANALYZE is read from five device units: 1,2,3,11, 12,13, and 5. Input and output data of the reference and approximation programs are read from the former six units while the standard input unit, 5, is reserved for SC-4020 plotting information.

The input is described by "Header Cards" and previously defined Input and Output Blocks. Header cards consist of one or more cards defined as follows:

Header Card 1: Format (415)

- Method Indicates the type of basis function approximation:
 - 1 Linear
 - 2 Cubic Hermite
 - NK Total number of coarse mesh regions involved.
 - NR Total number of fine mesh regions involved. NR = NK except for reference solution calculations.
 - NAP Number of additional points to be plotted within each coarse mesh region. Used with the homogenized finite element method calculations. NAP < 0 denotes that the additional points are to be used in the first region (reflector) only.
- <u>Header Card 2</u>: For use in device unit 3 input when $NR \neq NK$. Format (1615).
- NRNK(k) The number of fine mesh regions which make up each coarse mesh region k, as k = 1 to NK.

The program is dimensioned to accept up to 200 fine mesh regions (or intervals) per coarse mesh region, up to 25 coarse mesh regions, and up to a grand total of 1000 fine mesh regions in each case study.

The form of the ANALYZE input is given as follows:

Input Data for Unit 1:

Header Cards

Input Data for Unit 2:

Header Cards

Synthesis Method Input Block

Input Data for Unit 3:

Header Cards

Reference Solution Input Block

Input Data for Unit 11:

Homogenized Method Output Block

Input Data for Unit 12:

Synthesis Method Output Block

Input Data for Unit 13:

Reference Solution Output Block

Input Data for Unit 5:

No SC-4020 plots are generated if this data is omitted.

Card 1: Format (20A4)

An appropriate title written above each plotted graph.

- Card 2: Format (2F10.5)
- XINCH Total width of the graph in inches including labels (limited to 7.45").
- YINCH Total height of the graph in inches including labels (limited to 7.45").
- Card 3: Format (I10, F10.5)
- NCELL Total number of coarse mesh regions. NCELL ≤ 25 . (NCELL ≤ 0 indicates that the last region is of width $\frac{1}{2}$ WCELL.)
- WCELL Width of each coarse mesh region in cm.
- Card 4: Optional. Format (I10, 7F10.5)
 - NLL Number of vertical light lines to be added to the plotted graphs. NLL \leq 100.
 - XL(i) Spatial location (cm) of the light lines; i = 1 to 7.
- <u>Card 5</u>: Format (8F10.5)
 - XL(i) As above when NLL > 7.

Appendix E

SAMPLE INPUT AND OUTPUT DATA BLOCKS FOR PROGRAMS REF2G, LINEAR, CUBIC, AND ANALYZE

(Included in only the first six copies of this report.)

E.1. REF2G SAMPLE INPUT AND OUTPUT DATA BLOCKS

SAMPLE REF23 REFERENCE SOLUTION INPUT BLOCK:

CASE 1 STUDY: THREE DIFFERENT SUBASSEMBLIES. 150 FINE MESH REFERENCE SOLUTION. 1.E-5 1.E-5 1.E-8 1 1 1 0 1 150 4 5 5 5 5 5 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 1 6 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 91010101010101010 10101010101010 9 9 9 9 8 8 8 8 7 7 7 6 6 6 6 6 1111111111121212121313131314141414151515151515151515 151515151515151514141414131313131212121212111111111 1.0 0.0 1 1 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 1.0 1.0 0.0 5.32 D-2 6.36 D-2 3.88 D-1 6 1 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 0.0 0.5 0.5 5.32 D-2 6.36 D-2 3.88 D-1 10 1 0.25 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 0.25 0.0 5.32 D-2 6.36 D-2 3.88 D-1 14 1 0.125 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 0.125 0.0 5.32 D-2 6.36 D-2 3.88 D-1 18 1 4.52 D-2 0.0 D 0 1.0 D 0 0.0 D 0 0.0625 0.0625 0.0 9.59 D-1 0.0 D 0 1.0 D 0 51 1 2.60 D-2 5.53 D-3 1.397 D 0 1.72 D-2 0.0 1.0 1.0 7.10 D-2 1.02 D-1 3.89 D-1 56 1 0.5 2.60 D-2 5.53 D-3 1.397 D 0 1.72 D-2 0.0 0.5 7.10 D-2 1.02 D-1 3.89 D-1

60	1							
0.0	-	0.25	0.25	2.60	D-2 5.53	D-3 1.	397 D 0 1	•72 D−2
				7.10	D-2 1.02	D-1 3.	.89 D-1	
64	1							
0.0		0.125	0.125	2.60	D-2 5.53	D-3 1.	.397 D O 1	•72 D-2
				7.10	D-2 1.02	D-1 3.	89 D-1	
68	1							
0.0		0.0625	0.0625	4.52	D-2 0.0	D 0 1.	• D O O	•0 D O
				9.59	D-1 0.0	D 0 1.	•0 D O	
101	1							
0.0		1.0	1.0	2.61	D-2 6.59	D-3 1	.399 D O 1	•68 D-2
		,		8.32	D-2 1.29	D-1 3.	.87 D-1	
106	1							
0.0		0.5	0.5	2.61	D-2 6.59	D-3 1	.399 D O I	•68 D-2
				8.32	0-2 1.29	D-1 3.	.87 0-1	
110	1							
0.0		0.25	0.25	2.61	D-2 6.59	0-31.	• 399 D O I	•68 D-2
11/				8.32	0-2 1.29	0-1 3.	.87 D-1	
114	T	0 106	0 125	2 (1	0 2 4 50	0.21	200 0 0 1	49 D-2
0.0		0.125	0.125	2.01	$D = 2 0 \cdot 39$		97 D-1	•00 D-2
110	1			0.52	0-2 1.29	0-1 3.	• • • • • • • •	
110	T	0 04 25	0 0625	4 52	D-2 0 0	יהח	0 0 0 0	
0.0		0+0020	0.0023	970 JZ	D = 2 0.0			•• ••
				フ・ンフ	D-T 0+0			

•

PAGE 170

•

SAMPLE REF2G SUBASSEMBLY SOLUTION INPUT BLOCK:

CELL A TWO GROJP CELL SOLUTION: FUEL A + CRUCIFORM ROD. TWO GROUP CONSTANTS. 68 1.E-8 0 1.E-8 1.E-8 1 1 0 4 1 7888888888888888888888877777777 6 6 6 6 5 5 5 5 5 5 4 4 3 3 3 3 2 1 1.0 0.0 1 1 0.0 0.0525 0.0625 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 5.32 D-2 6.36 D-2 3.88 D-1 2 1 0.0 0.9375 0.9375 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 5.32 D-2 6.36 D-2 3.88 D-1 3 1 0.0 1.0 1.0 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 5.32 D-2 6.36 D-2 3.88 D-1 7 0.0 0.5 0.5 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 5.32 D-2 6.36 D-2 3.88 D-1 9 1 0.25 0.0 0.25 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 5.32 D-2 6.36 D-2 3.88 D-1 15 1 0.0 0.125 0.125 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 5.32 D-2 6.36 D-2 3.88 D-1 19 1 0.0 0.0625 2.59 D-2 4.85 D-3 1.396 D 0 1.79 D-2 0.0625 5.32 D-2 6.36 D-2 3.88 D-1 27 1 0.0 0.0525 0.0625 4.52 D-2 0.0 D 0 1.0 D O O.O D 0 9.59 D-1 0.0 D 0 1.0 D 0

SAMPLE REF2G REFERENCE SOLUTION OUTPUT BLOCK (SAMPLE SUBASSEMBLY SOLUTION):

68				
	0.10000000 01	0.0 D 0	0.6840883D 00	0.0 D 0
	0.99999060 00	0.2062319D-02	0.6840819D 00	-0.1410808D-02
	0.9976040D 00	0.63514340-02	0.6824493D 00	-0.4344942D-02
	63 ADDITIONAL F	AST GROUP DATA CARDS		
	0.99760400 00	-0.6351434D-02	0.6824493D 00	0.4344942D-02
	0.99999060 00	-0.2062319D-02	0.6840819D 00	0.1410808D-02
	0.10000000 01	0.0 D 0	0.6840883D 00	0.0 D 0
	0.30901450 00	0.0 D 0	0.1000000D 01	0.0 D 0
	0.30900720 00	0.44843120-03	0.9999762D 00	-0.1451165D-02
	0.3071103D 00	0.1418028D-02	0.9938377D 00	-0.45888710-02
	63 ADDITIONAL TH	HERMAL GROUP DATA CARDS		
	0.30711030 00	-0.1418028D-02	0.9938377D 00	0.4588871D-02
	0.30900720 00	-0.4484312D-03	0.9999762D 00	0.1451165D-02
	0.3090145D 00	0.0 D 0	0.1000000D 01	0.0 D 0

PAGE 172

.

E.2. LINEAR SAMPLE INPUT AND OUTPUT DATA BLOCKS

SAMPLE LINEAR D	CUBIC	HOMOGENIZED	METHOD	INPUT	BLOCK:
-----------------	-------	-------------	--------	-------	--------

CASE 1 STUDY: THREE	DIFFERENT SUE	BASSEMBLIES.	HOMOGENIZED	FINITE ELEMENT	r method
3 4 1.E-5	1.E-5	1.E-8 1	1 1	0 1 1	
123					
1.0 0.0					
1 1					
0.0 18.0	18.0 .268	3878D-1.4601	750-2.1379520	1.169837D-1	
	.681	1283D-1.6255	L8D-1.398086D	0	
1.0 0 0	0.0	00	1.0 D	0 0.	0 D O
1.0 D 0	0.0) D O	1.0 D	0 0.	0 D O
1.0 0 0	0.0	0 0 0	1.0 D	0 0.	.0 D O
1.0 D 0	0.0	000	1.0 D	0 0.	.0 D O
2 1	• •				
0.0 18.0	18.0 .269	9849D-1.52463	31D-2.137948D	1.163176D-1	
	.864	780D-1.10022	2D 0.399649D	0	
1.0 D 0	0.0	D 0 C	1.0 D	0 0	0 D 0
1.0 D 0	0.() D 0	1.0 D	0 0.	0 D O
1.0 D 0	0.0	D D O	1.0 D	0 0.	•0 D O
	0.0	D D O	1.0 D	0 0.	0 D O
3 1					
0.0 18.0	18.0 .27	08200-1.6251	L6D-2.137943D	1.159361D-1	
	.989	9361D-1.1266	32D 0.398014D	0	
	0.1	0 D 0	1.0 D	0 0	.0 D O
	0.1		1.0 D	0 0	•0 D O
	0.0		1.0 D	0 0	•0 D O
	0.1	n n n	1.0 D	0 0	0 D 0

SAMPLE LINEAR METHOD OUTPUT BLOCK:

.

3

0.2444087D	00	0.6758041D-01
0.40608550	00	0.9039887D-01
0.78380670	00	0.1339626D 00
0.100000D	01	0.1563839D 00

E.3. CUBIC SAMPLE INPUT AND OUTPUT DATA BLOCKS

SAMPLE LINEAR D	R CUBIC	PROPOSED	SYNTHESIS	METHOD	INPUT BL	DCK:	
CASE 1 STUDY: 3 4	THREE DI 1.E-5	IFFERENT	SUBASSEMBL 1.E-8	IES. SU	IBASSEMBL' 1 1	Y SY O	NTHESIS. 1 1
123							
1.0 0.0							
1 68							
0.0	06250	0.06250	0.259E-01	0.485E-0	0.140E	01	0.179E-01
			0.532E-01	0.636E-0	0.388E	00	
0.06250 1.	00000	0.93750	0.259E-01	0.485E-0	0.140E	01	0.179E-01
			0.532E-01	0.636E-0	0.388E	00	
64 ADDITI	DNAL CAI	RD PAIRS	DF TYPE A	SUBASSEM	BLY INTE	R V AL	MATERIAL INPUT
17 00000 17	92750	0 02750	0 2595-01	0.4855-0	02 0.140F	01	0.179E-01
11.00000 11.	33130	0.75150	0.5325-01	0.6365-0	1 0.388E	00	
17 02750 19	00000	0 06250	0.2595-01	0.485E-0	12 0.140E	01	0 - 1.79E - 01
11.93130 - 10.	00000	0.00230	0.532E-01	0.636E-0	01 0.388E	00	
0 100000	an ai	0 0			68408830	00	0-0 D 0
0.100000		0.0	622100-02		68408190	00	-0.14108080-02
0.999990	00 00	0.6	3514340-02	0.	6824493D	00	-0.4344942D-02
0.0000		0.0.			002,1750	•••	
63 ADDITI	ONAL FA	ST GROUP	DATA CARDS	5			
0,997604	0D 00	-0.6	351434D-02	0.	6824493D	00	0.4344942D-02
0,999990	6) 00	-0.20	62319D - 02	0.	6840819D	00	0.1410808D-02
0.100000	00 01	0.0	DO	0.	6840883D	00	0.0 D 0
0.309014	50 00	0.0	D 0	0.	.1000000D	01	0.0 D 0
0.309007	20 00	0.44	484312D-03	0.	9999762D	00	-0.1451165D-02
0.307110	3D 00	0.14	418028D-02	0.	9938377D	00	-0.45888710-02
63 ADDITI	ONAL TH	ERMAL GR	DUP DATA C	ARDS			

0.99383770 00 0.4588871D-020.30711030 00 -0.1418028D-02 0.1451165D-02 1 0.30900720 00 -0.4484312D-030.9999762D 00 0.30901450 00 D 0 0.10000000010.0 D 0 0.0 68 2 0.0 0.06250 0.260E-01 0.553E-02 0.140E 01 0.172E-01 0.06250 0.710E-01 0.102E 00 0.389E 00 0.93750 0.260E-01 0.553E-02 0.140E 01 0.172E-01 0.06250 1.00000 0.710E-01 0.102E 00 0.389E 00 64 ADDITIONAL CARD PAIRS OF TYPE B SUBASSEMBLY INTERVAL MATERIAL INPUT 17.00000 17.93750 0.93750 0.260E-01 0.553E-02 0.140E 01 0.172E-01 0.710E-01 0.102E 00 0.389E 00 17.93750 18.00000 0.06250 0.260E-01 0.553E-02 0.140E 01 0.172E-01 0.710E-01 0.102E 00 0.389E 00 0.1000000 01 0.0 D 0 0.65791580 00 0.0 D 0 0.1938698D-02 0.6579100D 00 -0.1275500D-02 0.99999120 00 0.9977474D 00 0.5978934D-02 0.6564338D 00 -0.3933635D-02 63 ADDITIONAL FAST GROUP DATA CARDS -0.59789340-02 0.65643380 00 0.3933635D-020.99774742 00 -0.19386980-02 0.99999120 00 0.6579100D 00 0.1275500D - 02D 0 0.1000000 01 D 0 0.6579158D 00 0.0 0.0 0.22944880 00 D 0 0.10000000 01 0.0 D 0 0.0 0.2294442D 00 0.2792649D-03 0.9999801D 00 -0.12171120-02 0.22826300 00 0.88680160-03 0.9948319D 00 -0.3864921D-02 63 ADDITIONAL THERMAL GROUP DATA CARDS 0.22826300 00 -0.8868016D-03 0.9948319D 00 0.3864921D-02 0.1217112D-02-0.27926490-030.99998010 00 0.22944423 00 0.22944880.00 0.0 D 0 0.1000000 01 0.0 D 0 3 68 0.06250 0.06250 0.261E-01 0.659E-02 0.140E 01 0.168E-01 0.0

0.832E-01 0.129E 00 0.387E 00 0.93750 0.261E-01 0.659E-02 0.140E 01 0.168E-01 0.06250 1.00000 0.832E-01 0.129E 00 0.387E 00 64 ADDITIONAL CARD PAIRS OF TYPE C SUBASSEMBLY INTERVAL MATERIAL INPUT 0.93750 0.261E-01 0.659E-02 0.140E 01 0.168E-01 17.00000 17.93750 0.832E-01 0.129E 00 0.387E 00 0.06250 0.261E-01 0.659E-02 0.140E 01 0.168E-01 17.93750 18.00000 0.832E-01 0.129E 00 0.387E 00 D O0.6615058D 00 0.0 0.1000000 01 0.0 D 0 -0.1215781D-02 0.1837899D - 020.6615002D 00 0.99999150 00 0.6600944D 00 -0.3752725D-02 0.5673004D-02 0.99786650 00 63 ADDITIONAL FAST GROUP DATA CARDS 0.3752725D-02-0.5673004D-02 0.6600944D 00 0.99786650 00 -0.1837899D-02 0.6615002D 00 0.1215781D-020.99999160 00 0.0 D 0 0.0 D 0 0.6615058D 00 0.10000000 01 D 0 0.1000000D 01 0.0 D 0 0.19377960 00 0.0 -0.1074364D-02 0.19377620 00 0.2081898D-03 0.9999824D 00 0.9954074D 00 -0.3420356D-02 0.19288973 00 0.66279530-03 63 ADDITIONAL THERMAL GROUP DATA CARDS 0.3420356D-02 -0.66279530-03 0.9954074D 00 0.19288970 00 0,9999824D 00 0.1074364D - 02-0.2081898D-03 0.1937752D 00 D 0 0.0 D 0 0.1000000D 01 0.19377960 00 0.0

٠

SAMPLE CUBIC METHOD OUTPUT BLOCK:

3

0.2503191D 00	0.0	0.7648905D-01	0.0
0.40354800 00	-0.2202874D-01	0.10629320 00	0.5636188D-03
0.7785649) 00	-0.27310310-01	0.1642353D 00	0.35792100-03
0.10000000 01	0.0	0.1946404D 00	0.0
E.4. ANALYZE SAMPLE INPUT AND OUTPUT

```
SAMPLE ANALYZE INPUT (CASE 1 CUBIC METHODS RESULTS):
//G.FT01F001 DD *
  2 3 3 35
CASE 1 HOMOGENIZED LINEAR FINITE ELEMENT METHOD INPUT BLOCK
     .
/*
//G.FT02F001 DD *
   2 3 3 0
CASE 1 LINEAR SYNTHESIS METHOD INPUT BLOCK
     .
/*
//G.FT03F001 DD *
   1 3 150
                0
  50 50 50
CASE 1 REFERENCE SOLUTION INPUT BLOCK
     ٠
/*
//G.FT11F001 DD *
CASE 1 HOMOGENIZED LINEAR FINITE ELEMENT METHOD OUTPUT BLOCK
     • .
     .
/*
```

//G.FT12F001 DD * CASE 1 LINEAR SYNTHESIS METHOD OUTPUT BLOCK ٠ ۰ /* //G.FT13F001 DD * CASE 1 REFERENCE SOLUTION OUTPUT BLOCK ٠ ٠ /* //G.SYSIN DD * TWO GROUP CASE 1 CUBIC RESULTS. 6.0 6.0 3 18.0 6 8.5 9.5 26.5 27.5 44.5 45.5 /*

ANALYZE PRINTED OUTPUT: Case 1 with Linear Basis Functions. RESULTS OF THE INTEGRATED POWER IN EACH OF THE 3 REGIONS: CALCULATED POWER LEVELS, AND NUMBER OF SUBREGIONS PER REGION: REGION: HOMOGENIZED RESULTS: SYNTHESIZED RESULTS: REFERENCE RESULTS: 1 0.1158776E 00 1 68 0.1086056E 00 50 0.1024175E 00 2 1 0.2585564E 00 0.2447225E 00 68 50 0.2404295E 00 3 1 0.4313925E 00 68 0.4112111E 00 50 0.4187305E 00 TOTALS: 3 0.8058265E 00 204 0.7645392E 00 150 0.7615775E 00 FRACTIONAL POWER LEVELS: REGION: HOMOGENEOUS RESULTS: SYNTHESIZED RESULTS: REFERENCE RESULTS: 1 0.1437997E 00 0.1420537E 00 0.1344807E 00 2 0.3208586E 00 0.3200914E 00 0.3156993E 00 3 0.5353416E 00 0.5378548E 00 0.5498199E 00 TOTALS: 0.9999999E 00 0.9999999E 00 0.9999999F 00 FRACTIONAL POWER NORMALIZED PERCENT ERRORS: REGION: (REF-HOMD)/REF % (REF-SYNTH)/REF % (SYNTN-HOMO)/SYNTH % -0.6929624E 01 -0.56312528 01 -0.1229154E 01 -0.1634251E 01 -0.1391243E 01 -0.2396725E 00 0.2633273E 01 0.2176184E 01 0.4672581E 00

ANALYZE PRINTED OUTPUT: Case 1 with Linear Basis Functions.

EXECUTING GENERAL ANALYSIS AND FLUX PLOTTING PROGRAM:	
TITLE OF PLOTTING RUN IS: THREE DIFFERENT SUBASSEMBLYS PROBLEM.	1
REACTOR GEOMETRY PARAMETERS:	46.000
NCELL = 3	
WCELL = 18.00000	
XMIN = 0.0	1.1.1.1
XMAX = 54.00000	
YMIN = 0.0	
YMAX = 1.00000	1.1.1223
NLL = 6	
(XL(I), I=1, NLL) =	
8.50000 9.50000 26.50000 27.50000 44.50000 45.50000	and a second sec

•

Appendix F

SOURCE LISTINGS OF THE PROGRAMS

FORTRAN source listings of programs REF2G, LINEAR, CUBIC, and ANALYZE are listed in only the first six copies of this report in the following four sections.

A figure of a subroutine overlay structure precedes each listing in order to indicate the construction of each program.

F.1. SOURCE LISTING of Program REF2G

Figure F.1. Structure of Program REF2G.

r	DDOCDAM REE2C:	REF20001
c c	TWO GRAND DETAILED REFERENCE AND SUBASSEMBLY SOLUTION PROGRAM.	REF20002
r r	THO ORDER DETRIEED REPERENCE AND DEDRICEL DEEDE	REF20003
	CALL TIMING(II)	REF20004
		REF20005
	CALL TIMING(12)	REF20006
	CALL DOWER	REF20007
	CALL FUNCIAL	REF20008
	CALL TINIADTION CALL TINIADTION	REF20009
	CALL CURI CALL TINING (IA)	REF20010
		REF20011
	CALL DUTEDI	REF20012
	CALL TIMINOTION CALL TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TITI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TITI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TITI TIMINOTI TIMINOTI TIMINOTI TITI TIMINOTI TIMINOTI TIMINOTI TITI TIMINOTI TIMINOTI TIMINOTI TIMINOTI TI	REF20013
	CALL TIMING(16)	REF20014
		REF20015
	CALL TIMING(17)	REF20016
		REF20017
	CALL TIMING(18)	REF20018
C	TIMING EXECUTION	REF20019
•	WRITE (6.30)	REF20020
	30 FORMAT (1H1, TIMING PROGRAM EXECUTION: ",/)	REF20021
	J = I 2 - I 1	REF20022
	WRITE(6.701) J	REF20023
	J=13-12	REF20024
	WRITE (6,702) J	REF20025
	J=I4-I3	REF20026
	WRITE (6,703) J	REF20027
	J = I5 - I4	REF20028
	WRITE (6,704) J	REF20029
	J=16-15	REF20030
	WRITE (6,705) J	REF20031
	J=17-16	REF20032
	WRITE (6,706) J	REF20033
	J=18-17	REF20034
	WRITE(6,707) J	REF20035
7	'OI FORMAT (1H ,' SYNTH HAS TAKEN',16,' /100 SECONDS.')	REF20036
		PAGE 186

702 FORMAT (1H , POWER HAS TAKEN', 16, "	/100 SECONDS.") REF20037
703 FORMAT (1H , CURT HAS TAKEN', 16,	/100 SECONDS.") REF20038
704 FORMAT (1H , DUTPUT HAS TAKEN', 15,	* /100 SECONDS.*) REF20039
705 FORMAT (1H , POWER7 HAS TAKEN', 16,	* /100 SECONDS.*) REF20040
706 FORMAT (1H , CURT7 HAS TAKEN', 16,	/100 SECONDS.") REF20041
707 FORMAT (1H , * DUTPUT7 HAS TAKEN*, 15	,' /100 SECONDS.') REF20042
CALL TIMING(120)	REF20043
J=I 20-I 1	REF20044
WRITE(6,720) J	REF20045
720 FORMAT (1HD, THIS RUN HAS TAKEN', I	6, 100 SECONDS TO RUN.) REF20046
STOP	REF20047
END	REF20048

CHRDOUTINE SYNTH	SYNT0001
C I INFAR FINITE ELEMENT METHOD:	SYNT0002
C * * * * * * * * * * * * * * * * * * *	* SYNT0003
C ADJOINT QUANTITIES OF VARIBLES ARE DENOTED BY 7 RATHER THAN *-	SYNT0004
C THUS: PHI7 (RATHER THAN PHI*) IS THE ADJOINT OF PHI. ETC.	SYNT0005
$IMDITCIT REAL + R (\Delta - H_K - 7)$	SYNT0006
COMMON /B1/ IBC. IPLOT. IPLOT. IPUNCH. ISEE. NOADJ	SYNT0007
COMMON /RO/ KP. NN	SYNT0008
$\begin{array}{c} \text{COMMON} & 7027 \\ \text{KAJAW} \\ \text{COMMON} & 7027 \\ \text{KAJAW} \\ \text{COMMON} & 7027 \\ \text{KAJAW} \\ \text{KAJAW} \\ \text{COMMON} & 7027 \\ \text{KAJAW} \\ \text{KAJAW} \\ \text{KAJAW} \\ \text{COMMON} & 7027 \\ \text{KAJAW} \\ \text{KAJAW}$	SYNT0009
(OMMON /B5/ KA0(2,200), KA1(2,200), KA2(2,200), KB0(2,200),	SYNT0010
$v = kB_1(2, 200) + kB_2(2, 200) + (A0(2, 200) + (A1(2, 200) + (A2(2, 200)))$	SYNT0011
$x = sp_{1}(2, 2) + (sp_{1}(2, 2)) + (s$	SYNT0012
x = 0(2, 200), 01(2, 200), 8(2, 200), P0(2, 200), P07(2, 200), PH(2, 200),	SYNT0013
v = PH712, 2001, A112, 2001, B112, 2001, C112, 2001, AF(2, 200), BF(2, 200),	SYNT0014
x = (E(2, 200), AT(200), BT(200), CT(200).	SYNT0015
x = B(0/2), C(0/2), BEO(2), CEO(2), BTO(2),	SYNT 0016
\mathbf{x} (IO(2),	SYNT0017
χ ALK(2), BLK(2), AFK(2), BFK(2), ATK(2),	SYNT0018
X BIK(2)	SYNT 0019
COMMON /B7/ HH(200).DD(2.200)	SYNT0020
COMMON /CHIE/ CHI(2).	SYNT0021
COMMON / BH/ X(2). H(1)	SYNT 0022
COMMON /ER/ EPS1.EPS3	SYNT0023
DIMENSION PHI(2.2).PHI7(2.2).CUR(2.2).CUR7(2.2).	SYNT0024
$x = A(2,1) \cdot F(2,1) \cdot D(2,1) \cdot S(2,1) \cdot DI(2,1) \cdot XU(2,2)$	SYNT0025
DIMENSION ITE(200). $KTE(200)$	SYNT0026
REAL TITLE(20)	SYNT0027
INTEGER KR.K.KS.KS1.KRO.NN	SYNT0028
INTEGER NUMITE. KTE.NOADJ	SYNT0029
READ (5.200) TITLE	SYNT0030
200 FORMAT (2044)	SYNT0031
WRITE (6.201) TITLE	SYNT0032
201 FORMAT (1H1,20A4,//)	SYNT0033
C READ IN THE NUMBER OF REGION TRIAL FUNCTIONS AND TYPE OF B.C.S.	SYNT0034
C AS WELL AS THE TOLERANCES AND THE OUTPUT TYPES DESIRED.	SYNT 0035
READ (5.1) KR. IBC. EPS1. EPS2. EPS3. IPLOT, JPLOT, IPUNCH, ISEE, NOADJ	SYNT0036
	PAGE 188

1 FORMAT (215,3010.3,515)	SYNT0037
C READ IN THE TYPE-NUMBER OF EACH TF REGIO	N: SYNT0038
READ (5,100) (ITF(I),I=1,KR)	SYNT0039
100 FORMAT (2512)	SYNT0040
C READ IN THE FISSION YIELD FOR EACH GROUP	SYNT0041
READ (5,101) CHI(1), CHI(2)	SYNT0042
101 FORMAT (2F10.5)	SYNT0043
KRO=KR-1	SYNT0044
WRITE (6,2) KR, IBC	SYNT0045
2 FORMAT ("OVARIATIONAL SYNTHESIS PROGRAM #2G	(200):',5X,'USING ',I3, SYNT0046
X • SUBREACTOR REGIONS, OR TRIAL FUNCTIONS	•',/, SYNT0047
X • OBOUNDRY CONDITION NUMBER (IBC) IS •, I1	,'.',//, SYNT0048
X • OMATERIAL PROPERTIES AND TRIAL FUNCTION	S FOR EACH SUBREGION FO SYNT0049
XLLOW: ",/,	SYNT0050
X • UMATERIAL PROPERTIES ARE HOMOGENEOUS IN	THE INDICATED REGIONS. SYNT0051
X*,,/,	SYNT0052
X OFLUX TRIAL FUNCTIONS ARE LINEAR IN EAC	H SEGMENT OF THE SUBREG SYNT0053
XIONS.º,/,	SYNT0054
X • OCURRENT TRIAL FUNCTIONS ARE FLAT IN EA	CH OF THE ', SYNT0055
X 'SUBREGIONS.')	SYNT0056
WRITE (6,20) EPS1,EPS2,EPS3,IPLOT,JPLOT,IPU	NCH, ISEE, NOADJ SYNT0057
20 FORMAT (//, 'OTOLERANCES TO POWER ARE : EPS	1 = *, 1PD10.3, /, SYNT0058
X 28X, *EPS2 = *, 1PD10.3, /, 28X, *EPS3 = *, 1P	D10.3,/, SYNT0059
X ! ODUTPUT PARAMETERS TO POWER ARE: IPLOT	= *,I1,/, SYNT0060
X = 34X, "JPLOT = ", I1, /, 34X, "IPUNCH = ", I1, /	, SYNTOO61
$X = 34X_{2} + ISEE = +_{2}II_{2}/_{2}$	SYNT0062
X = 34X, *NOADJ = *, I1, *.*	SYNT0063
WRITE (6,22) CHI(1), CHI(2)	SYNT0064
22 FORMAT (/, OFISSION YIELDS ARE: CHI(1) = ,	F10.5,/, SYNT0065
X 22X, *CHI(2) =*, F10.5)	SYNT 0066
IF ((KR.LE.2).AND.(IBC.EQ.1)) CALL ERROR(1	,KR) SYN10067
IF (KR.GT.200) CALL ERROR(2,KR)	SYNT0068
IF (EPSI.LT.1.0E-16) CALL ERROR(6,1)	SYNT0069
IF (EPS2.LT.1.0E-16) CALL ERROR(6,2)	SYNT CO70
IF (EPS3.LT.1.0E-16) CALL ERROR(6,3)	SYNT0071
IF ((IBC.LT.1).OR.(IBC.GT.4)) CALL ERROR(7	,IBC) SYNTOO72
	PAGE 189

С		DUMMY NORMAL VECTOR: XU = UNITY. (FOR THE INTEGRATION FUNCTIONS.)	SYNT0073
-		DO 21 IG=1,2	SYNT0074
		DO 21 II=1,2	SYNT0075
	21	XU(1G,II)=1.0	SYNT 0076
C		SET FLUXES TO UNITY FOR SYNTH 2G:	SYNTO077
		DO 25 I3=1,2	SYNT0078
		DO 25 II=1,2	SYNT 0079
		PHI(IG,II)=1.0	SYNT0080
	25	PH17(IG,II)=1.0	SYNT0081
С		COUNTER OF THE NUMBER OF TYPE-NUMBERS OF EACH TF REGION:	SYNT0082
-		NUMITF=1	SYNT0083
		WRITE (6.9)	SYNT0084
	9	FORMAT (*1*)	SYNT0085
C		BEGIN TO READ IN THE TF REGION DATA AND FILL THE ARRAYS,	SYNT0086
C		DEPENDING ON THE TYPE-NUMBER OF EACH TF REGION.	SYNT0087
		DO 50 I=1,KR	SYNT0088
		IF (ITF(I).EQ.NUMITF) GO TO 110	SYNT0089
С		FILL THE ARRAYS FROM OLD TF REGION TYPES:	SYNT0090
		J=ITF(I)	SYNT0091
		CALL REPEAT(I,KTF(J))	SYNT0092
		GO TO 50	SYNT0093
С		READ IN THE TF REGION'S DATA FOR NEW TF REGION TYPE-NUMBERS:	SYNT 0094
	110	NUMITE=NUMITE+1	SYNT0095
		KTF(NUMITF-1)=I	SYNT0096
С		READ THE SUBREGION NUMBER AND THE NUMBER OF REGIONS IN THE SUBREGION	SYNT0097
		READ (5,1) K	SYNT0098
		KS=1	SYNT0099
		IF (KS.GT.100) CALL ERROR(3,I)	SYNT 0100
		KS1=KS+1	SYNT0101
C		CHECK FOR IMPROPER SEQUENCING OF INPUT DATA:	SYNT0102
		IF (I.NE.K) CALL ERROR(4,1)	SYNT0103
С		READ IN THE GEOMETRY AND THE MATERIAL PROPERTIES OF THIS REGION:	SYNT0104
		READ (5,3) (X(J),X(J+1),H(J),A(1,J),F(1,J),D(1,J),S(1,J),	SYNT0105
		X A(2,J),F(2,J),D(2,J),J=1,KS)	SYNT0106
	3	FORMAT (3F10.5,4E10.3,/,30X,3E10.3)	SYNT0107
С		WRITING OUT THE INPUT (INFORMATION:	SYNT0108
			PAGE 190

	IE (ISEE.EQ.0) GO TO 14	SYNT0109
	WRITE (6,10) K.KR.KS.(J.X(J),X(J+1),H(J),A(1,J),F(1,J),D(1,J),	SYNT0110
	$X = S(1,J) \cdot A(2,J) \cdot F(2,J) \cdot D(2,J) \cdot J = 1 \cdot KS$	SYNTO111
	10 FORMAT (OINPUT MATERIAL PROPERTIES FOR SUBREGION NUMBER , 13,	SYNT0112
	X • DF THE • I3.• USED.• //.	SYNT0113
	X 5X. THIS SUBREGION IS DIVIDED INTO .13. HOMOGENEOUS SEGMENTS	SYNT0114
	XAS FOLLOWS: •.//.	SYNTO115
	X 5X. FAST GROUP CONSTANTS APPEAR FIRST: 1.//.	SYNT0116
	X ! REGION # . 5X. INTERNAL BOUNDARIES . 13X. WIDTH . 3X.	SYNTO117
	X ABSORB, CX (1/CM) + 3X + FISSION CX (1/CM) + 6X + DIFFUSION (CM) +	SYNT0118
	X 4X. SCATT. CX (1/CM) ./.	SYNT0119
	x 5x. • I • . 1 1 x. • x(I) • . 9x. • x(I+1) • . 1 1 x. • H(I) • . 1 3 X. • A(IG.I) • . 1 3 X.	SYNT0120
	X *F(IG.I)*+13X+*D(IG.I)*+14X+*S(1+I)*+//+	SYNT0121
	X (16.3F15.4.4D20.8./.51X.3D20.8))	SYNT0122
C	END OF THE IN-OUT SECTION.	SYNT0123
-	14 CONTINUE	SYNT0124
С	DEFINING MISC. ARRAYS FOR THE INTEGRATION FUNCTIONS:	SYNTO125
С	LEGNTH OF THE SUBREGION: HT	SYNT0126
	HT=X(KS1)-X(1)	SYNT0127
	HH(K)=HT	SYNT0128
	DD(1,K) = D(1,1)	SYNT0129
	DD(2,K)=D(2,1)	SYNTO130
С	INVERSE OF D ARRAYS:	SYNT0131
	DO 13 J=1,KS	SYNT0132
	DI(1,J)=1-/D(1,J)	SYNTO133
	13 $DI(2,J)=1./D(2,J)$	SYNT0134
C	FORMATION OF THE INTEGRATION FUNCTIONS:	SYNT0135
	CALL BHSET(KS)	SYNT0136
С	DO FOR ALL ENERGY GROUPS:	SYNT0137
	DO 50 IG=1,2	SYNTO138
	KAO(IG,K)=GIFO(IG,PHI7,PHI,A,KS)	SYNT0139
	KA1(IG,K)=GIF1(IG,PHI7,PHI,A,KS)	SYNT0140
	KA2(IG,K)=GIF2(IG,PHI7,PHI,A,KS)	SYNT0141
	KBO(IG,K)=GIFO(IG,PHI7,PHI,F,KS)	SYNT0142
	KB1(IG,K)=GIF1(IG,PHI7,PHI,F,KS)	SYNT0143
	KB2(IG,K)=GIF2(IG,PHI7,PHI,F,KS)	SYNT0144
		PAGE 191

	R(IG,K)=GIFO(IG,PHI7,PHI,D,KS)/(HT*HT)	SYNT0145
С	NO SCATTERING IN THE LOWEST GROUP:	SYNT0146
	IF (IG.EQ.2) GO TO 50	SYNT0147
	SRO(IG,K) = GIFO(IG,PHI7,PHI,S,KS)	SYNT0148
	SR1(IG,K)=GIF1(IG,PHI7,PHI,S,KS)	SYNT0149
	SR2(IG,K) = GIF2(IG, PHI7, PHI, S,KS)	SYNTO150
	50 CONTINUE	SYNT0151
	NUMITE=NUMITE-1	SYNT0152
	WRITE (6.51) NUMITE	SYNTO153
	51 FORMAT (ITHERE ARE ONLY . 13. DIFFERENT TRIAL FUNCTION REGIONS.)	SYNT0154
	WRITE (6.52) (I.IFF(I).I=1.KR)	SYNT0155
	52 FORMAT (/. 'OTABLE OF THE TRIAL FUNCTION REGION TYPES: ',//,	SYNTO156
	X 3X, 'TF REGION', 4X, 'REGION TYPE-NUMBER', //,	SYNT0157
	X = (17, 12X, 17)	SYNT0158
С	DETERMINATION OF THE B.C. OPTION PARAMETERS:	SYNT0159
Ċ	NN IS THE MM AND FF MATRIX BLOCK SIZE.	SYNTO160
	IF (IBC.EQ.1) NN=KR-1	SYNTO161
	IF ((IBC.EQ.2).OR.(IBC.EQ.3)) NN=KR	SYNTO162
	IF (IBC.EQ.4) NN=KR+1	SYNT0163
С	FORMATION OF THE COEFFICIENT VECTORS:	SYNTO164
С	THE INTERIOR COEFFS:	SYNT0165
	DO 60 IG=1,2	SYNTO166
	DO 60 K=2,KR	SYNTO167
	J=K-1	SYNT0168
	AL(IG,K)=KA1(IG,J)-KA2(IG,J)-R(IG,J)	SYNT0169
	BL(IG,K)=KA2(IG,J)+R(IG,J)+KAO(IG,K)-2.*KA1(IG,K)+KA2(IG,K)	SYNT0170
	X +R(IG,K)	SYNTO171
	CL(IG,K)=KAl(IG,K)-KA2(IG,K)-R(IG,K)	SYNT0172
	AF(IG,K)=KB1(IG,J)-KB2(IG,J)	SYNT0173
	BF(IG,K)=KB2(IG,J)+KB0(IG,K)-2.*KB1(IG,K)+KB2(IG,K)	SYNT0174
	CF(IG,K)=KB1(IG,K)-KB2(IG,K)	SYNT0175
	AT(K)=SR1(1,J)-SR2(1,J)	SYNT0176
	BT(K)=SR2(1,J)+SRO(1,K)-2.*SR1(1,K)+SR2(1,K)	SYNTO177
	CT(K)=SR1(1,K)-SR2(1,K)	SYNT0178
	60 CONTINUE	SYNT0179
С	THE ZERD FLUX COEFFS:	SYNTO180
		PAGE 192

,

		DO 61 IG=1,2	SYNTO181
		BLO(IG)=KAO(IG,1)-2.*KA1(IG,1)+KA2(IG,1)+R(IG,1)	SYNT0182
		BF0(IG)=KB0(IG,1)-2.*KB1(IG,1)+KB2(IG,1)	SYNTO183
		CLO(IG)=KA1(IG,1)-KA2(IG,1)-R(IG,1)	SYNTO184
	61	CFO(IG)=KB1(IG,1)-KB2(IG,1)	SYNTO185
		BTO(1)=SRO(1,1)-2.*SR1(1,1)+SR2(1,1)	SYNTO186
		CTO(1)=SR1(1,1)-SR2(1,1)	SYNTO187
C		THE ZERO CURRENT COEFFS:	SYNTO188
		K=KR	SYNT0189
		DO 62 IG=1,2	SYNT0190
		ALK(IG)=KA1(IG,K)-KA2(IG,K)-R(IG,K)	SYNT 0191
		BLK(IG) = KA2(IG, K) + R(IG, K)	SYNT0192
		AFK(IG)=KB1(IG,K)-KB2(IG,K)	SYNTO193
	62	BFK(IG)=KB2(IG,K)	SYNT0194
		ATK(1)=SR1(1,K)-SR2(1,K)	SYNT0195
		BTK(1)=SR2(1,K)	SYNT0196
C		ZERD MATRICES:	SYNT0197
		L1(1,1)=0.	SYNTO198
		L2(1,1)=0.	SYNT0199
		F1(1,1)=0.	SYNT0200
		F2(1,1)=0.	SYNTO201
		T(1,1)=0.	SYNT0202
		L1(NN,3)=0.	SYNT0203
		L2(NN,3)=0.	SYNT0204
		F1(NN,3)=0.	SYNTO205
		F2(NN,3)=0.	SYNT0206
		T (NN, 3)=0.	SYNT0207
С		FILL ALL THE MATRICES FOR POWER:	SYNT0208
		J=1	SYNTO209
C		DETERMINE THE LEFT BOUNDARY CONDITIONS:	SYNT0210
		IF (IBC.LT.3) GO TO 67	SYNT0211
		L1(J,2)=BL0(1)	SYNT0212
		L2(J,2)=BL0(2)	SYNT0213
		F1(J,2)=BF0(1)	SYNT0214
		F2(J,2)=BF0(2)	SYNT0215
		T(J,2)=BTO(1)	SYNT0216
			PAGE 193

		(1(1, 3)=(1)(1))	SYNTO217
		1211. 3) = 01012	SYNTO218
		F1(1, 3)=CF0(1)	SYNT0219
		F2(1, 3)=CF0(2)	SYNTO220
		T(1, 3) = CTO(1)	SYNTO221
		J=.1+1	SYNT0222
C		FOR ALL THE INTERIOR EQUATIONS:	SYNT0223
•	67	DO TO K=2.KR	SYNT0224
	•••	$IE (J_{1}EV_{1}), GU TO 69$	SYNTO225
		(1, 1) = A((1, K))	SYNT0226
		$12(1, 1) \neq \Delta 1(2, K)$	SYNTO227
		F1(J, 1) = AF(1,K)	SYNT0228
		F2(J, 1) = AF(2, K)	SYNT0229
		T(J, 1) = AT(K)	SYNTO230
	69	L1(J.2)=BL(1.K)	SYNT0231
		L2(J,2)=BL(2,K)	SYNTO232
		F1(J,2)=BF(1,K)	SYNT0233
		F2(J,2)=BF(2,K)	SYNTO234
		T(J,2)=BT(K)	SYNT0235
		L1(J, 3)=CL(1,K)	SYNT0236
		L2(J, 3) = CL(2, K)	SYNT0237
		F1(J, 3)=CF(1,K)	SYNT0238
		F2(J, 3)=CF(2,K)	SYNT0239
		T(J, 3)=CT(K)	SYNT 0240
		1+1=	SYNT0241
	70	CONTINUE	SYNT0242
C		DETERMINE THE RIGHT BOUNDARY CONDITIONS:	SYNT0243
		IF ((IBC.EQ.1).OR.(IBC.EQ.3)) GO TO 80	SYNT0244
		L1(J, 1)=ALK(1)	SYNT0245
		L2(J, 1) = ALK(2)	SYNT0246
		F1(J, 1) = AFK(1)	SYNT0247
		F2(J, 1)=AFK(2)	SYNT0248
		T(J, 1) = ATK(1)	SYNT0249
		L1(J,2)=BLK(1)	SYNT0250
		L2(J,2)=BLK(2)	SYNT0251
		F1(J,2)=BFK(1)	SYNT0252
			PAGE 194

•

	$F_2(J_2) = BFK(2)$	SYNT0253
	T(J,2)=BTK(1)	SYNT0254
	80 CONTINUE	SYNT0255
С	PRINTS DUT THE SYNTH K ARRAYS, AND THE MATRICES GIVEN TO POWER	SYNT0256
С	FOR ISEE = 2.	SYNT 0257
	IF (ISEE.EQ.2) CALL PRIOUT	SYNT0258
	RETURN	SYNT0259
	END	SYNT 0260
	END	SYN10260

		SUBROUTINE ERROR (I)	ERR00001
C.		ANNOUNCES INPUT ERRORS AND TERMINATES PROGRAM EXECUTION:	ERR00002
Ŭ		GO TO (1.2.3.4.5.6.7.8.9).I	ERR00003
	1	WRITE (6.101)	ERR00004
	•	60 TO 10	ERR00005
	2	WRITE (6.102) J	ERRO0006
	-	GO TO 10	ERR00007
	3	WRITE (6.103)	ERR00008
			ERR00009
	4	WRITE (6.104) J	ERR00010
			ERR00011
	5	WRITE (6.105) J	ERR00012
			ERR00013
	6	WRITE (6.106) J	ERR00014
	Ŭ	GO TO 10	ERR00015
	7	CONTINUE	ERR00016
	8	CONTINUE	ERR00017
	9	CONTINUE	ERR00018
	10	WRITE (6,110)	ERR00019
	101	FORMAT ("IMUST HAVE > 2 SUBREGIONS FOR ZERO FLUX B.C.S. INVALID.")	ERR00020
	102	FORMAT ("INUMBER OF SUBREGIONS =", I3," > 25. INVALID.")	ERR00021
	103	FORMAT ('ISUBREGION NUMBER', I3, ' HAS > 25 SECTIONS. INVALID.')	ERR00022
	104	FORMAT ('11NPUT ERROR IN REGION SEQUENCING AT REGION', 15, '.')	ERR00023
	105	FORMAT (*1Z(I) = 0. IN REGION I =*, I3, *. INVALID.*)	ERR00024
	106	FORMAT ('ITHE TOLERANCE: EPS', II, ' IS < 1.0E-16. INVALID.')	ERR00025
	107	FORMAT ('IBOUNDRY CONDITION OPTION =', I2, ' < 1 OR > 4. INVALID.')	ERR00026
	110	FORMAT (1HO, PROBLEM TERMINATED.")	ERR00027
		CALL EXIT	ERR00028
		RETURN	ERR00029
		END	ERR00030

	SUBROUTINE REPEAT(K,L)	REPE0001
C	SETS THE /B5/ ARRAYS (K) EQUAL TO PAST STORED ARRAYS (L):	REPE0002
	IMPLICIT REAL*8 (A-Z)	REPE0003
	COMMON /B5/ KAU(2,200),KAL(2,200),KA2(2,200),KBO(2,200),	REPE0004
	X KB1(2,200),KB2(2,200),LA0(2,200),LA1(2,200),LA2(2,200),	REPE0005
	X SR0(2,230), SR1(2,200), SR2(2,200), P(2,200), P1(2,200),	REPE0006
	X Q(2,200),Q1(2,200),R(2,200),P0(2,200),P07(2,200),PH(2,200),	REPE0007
	X PH7(2,200)	REPE0008
	COMMON /B7/ HH(200),DD(2,200)	REPE0009
	INTEGER K,L,G	REPE0010
	$DO \ 10 \ G=1.2$	REPE0011
	KAO(G.K)=KAO(G.L)	REPE0012
	KA1(G,K)=KA1(G,L)	REPE0013
	$KA2(G \cdot K) = KA2(G \cdot L)$	REPE0014
	KBO(G,K)=KBO(G,L)	REPE0015
	KB1(G,K)=KB1(G,L)	REPE0016
	KB2(G,K)=KB2(G,L)	REPE0017
	LAO(G,K)=LAO(G,L)	REPE0018
	LA1(G,K)=LA1(G,L)	REPE0019
	LA2(G,K)=LA2(G,L)	REPE0020
	IF (G.EQ.2) GO TO 5	REPE0021
	SRO(G,K)=SRO(G,L)	REPE0022
	SR1(G,K)=SR1(G,L)	REPE0023
	SR2(G,K)=SR2(G,L)	REPE0024
5	5 CONTINUE	REPE0025
	P(G,K)=P(G,L)	REPE0026
	P1(G,K) = P1(G,L)	REPE0027
	Q(G,K)=Q(G,L)	REPE0028
	Q1(G,K) = Q1(G,L)	REPE0029
	R(G,K)=R(G,L)	REPE0030
	PO(G,K)=PO(G,L)	REPE0031
	P07(G,K)=P07(G,L)	REPE0032
	PH(G,K)=PH(G,L)	REPE0033
	PH7(G,K)=PH7(G,L)	REPE0034
10) CONTINUE	REPE0035
	HH(K)=HH(L)	REPE0036
		DACE 107

DD(1,K)=DD(1,L) DD(2,K)=DD(2,L) RETURN END

.

•

REPE0037 REPE0038 REPE0039 REPE0040

SUBROUTINE BHSET(K)	BHSE0001
FIRST OF 4 ANALYTICAL INTEGRATION ROUTINES.	BHSE0002
IMPLICIT REAL*8 (A-H,L-Z)	BHSE0003
COMMON /BH/ X(2),H(1),H2(1),H3(1),H4(1),H5(1)	BHSE0004
DO 1 I=1,K	BHSE0005
H2(I)=X(I+1)**2-X(I)**2	BHSE0006
H3(I)=X(I+1)**3-X(I)**3	BHSE0007
H4(I)=X(I+1)**4-X(I)**4	BHSE0008
H5(I)=X(I+1)**5-X(I)**5	BHSE0009
1 CONTINUE	BHSE0010
RETURN	BHSE0011
END	BHSE0012
	SUBROUTINE BHSET(K) FIRST DF 4 ANALYTICAL INTEGRATION ROUTINES. IMPLICIT REAL*8 (A-H,L-Z) COMMON /BH/ X(2),H(1),H2(1),H3(1),H4(1),H5(1) DO 1 I=1,K H2(I)=X(I+1)**2-X(I)**2 H3(I)=X(I+1)**3-X(I)**3 H4(I)=X(I+1)**4-X(I)**4 H5(I)=X(I+1)**5-X(I)**5 1 CONTINUE RETURN END

DOUBLE PRECISION FUNCTION GIFO(IG,Y,Z,C,K)	GIF00001
IMPLICIT REAL*8 (A-H,L-Z)	GIF00002
COMMON /BH/ X(2),H(1),H2(1),H3(1),H4(1),H5(1)	GIF00003
DIMENSION $Y(2,2)$, $Z(2,2)$, $C(2,1)$	GIF00004
SUM = 0.0	GIF00005
$DO = 1 = 1 \cdot K$	GIF00006
SUM=C(IG.I)*(Y(IG.I)*Z(IG.I)*H(I)+H(I)*(Z(IG,I)*	GIF00007
x = (Y(IG, I+1) - Y(IG, I)) + Y(IG, I) + (Z(IG, I+1) - Z(IG, I)))/2.	GIF00008
x +H(I)*(Y(IG,I+1)-Y(IG,I))*(Z(IG,I+1)-Z(IG,I))/3.) + SUM	GIF00009
I CONTINUE	GI F00010
GIEO = SIIM	GIF00011
RETURN	GIF00012
END	GIF00013

2

DOUBLE PRECISION FUNCTION GIF1(IG,Y,Z,C,K)	GIF10001
IMPLICIT REAL*8 (A-H.L-Z)	GIF10002
COMMON /BH/ X(2),H(1),H2(1),H3(1),H4(1),H5(1)	GIF10003
DIMENSION Y(2,2), Z(2,2), C(2,1)	GIF10004
SUM = 0.0	GIF10005
DO 1 I = 1.K	GIF10006
SUM=C(IG.I)*((H2(I)/2X(1)*H(I))*Y(IG.I)*Z(IG.I)	GIF10007
X + (Z(IG,I)*(Y(IG,I+1)-Y(IG,I))+Y(IG,I)*	GIF10008
X (7(IG, I+1)-7(IG, I)))*(1, /H(I))*(H3(I)/3,-H2(I)*(X(I)+X(1))/2.	GIF10009
X + X(1) + X(1) + H(1) + (Y(1G, 1+1) - Y(1G, 1)) + (Z(1G, 1+1) - Z(1G, 1))	GIF10010
X *(H4(I)/4H3(I)*(2.*X(I)+X(1))/3.+H2(I)*(X(I)*X(I)+2.*X(I)	GIF10011
X +X(1))/2X(1)+X(I)+X(I)+H(I))/(H(I)+H(I))) + SUM	GIF10012
1 CONTINUE	GIF10013
GIF1 = SUM/(X(K+1)-X(1))	GIF10014
RETURN	GIF10015
END	GIF10016

GIF20001
GIF20002
GIF20003
GIF20004
GIF20005
GIF20006
)*X(1)*H(I)) GIF20007
(IG,I+1) GIF20008
*(X(1)*X(1) GIF20009
2)) GIF20010
GIF20011
)+X(I)*X(I)) GIF20012
GIF20013
GIF20014
GIF20015
GIF20016
GI F20017
GIF20018

	30 FORMAT ('1 G',4X,'I',14X,'P(G,I)',13X,'P1(G,I)',14X,'Q(G,I)',	PRT00036
	WRITE (6,30)	PRT00035
С	P, Q, AND R ARRAYS:	PRT00034
	25 FURMAT (215,3D20.7)	PRT00033
	WRITE (6,25) (G,I,LAO(G,I),LA1(G,I),LA2(G,I),I=1,KR)	PRT00032
	WRITE (6,12)	PRT00031
	G=2	PRT00030
	$X \qquad SR2(G,I), I=L, KR)$	PRT00029
	WRITE (6,15) (G,I,LAO(G,I),LA1(G,I),LA2(G,I),SRO(G,I),SR1(G,I),	PRT00028
	WRITE (6,12)	PR T0 00 27
	G=1	PRT00026
	X *LA2(G,I)*,12X,*SR0(G,I)*,12X,*SR1(G,I)*,12X,*SR2(G,I)*)	PRT00025
	20 FORMAT (*1 G*,4X,*I*,12X,*LAO(G,I)*,12X,*LA1(G,I)*,12X,	PR TO 0024
	WRITE (6,20)	PRT00023
C	LA AND SR ARRAYS:	PRT00022
	15 FORMAT (215,6D20.7)	PRT00021
	12 FORMAT (" ")	PRT00020
	$X \qquad KB2(G,I), I=L, KR)$	PR T0 00 1 9
	11 WRITE (6,15) (G,I,KAO(G,I),KA1(G,I),KA2(G,I),KBO(G,I),KB1(G,I),	PRT00018
	WRITE (6,12)	PRT00017
	DO 11 G=1,2	PRT00016
	X *KA2(G,I)*,12X,*KB0(G,I)*,12X,*KB1(G,I)*,12X,*KB2(G,I)*)	PRT00015
	10 FORMAT (*1G*,4X,*I*,12X,*KA0(G,I)*,12X,*KA1(G,I)*,12X,	PRT00014
·	WRITE (6,10)	PRT00013
C	KA AND KB ARRAYS:	PRT00012
	INTEGER KR. G. N	PR T00011
	X 9H712.2003	PRT00010
	x = 012,2001,0112,2001,0102,2001,0102,2001,0102,2001,0102,2001,0102,2001,0102,2001,0102,0001,0102,0001,0000,0000,0000,0000,0000,0000,0000,0000	PRTODOO
	$\mathbf{x} = \left\{ \mathbf{x} \in \{1, 2, 2, 0, 0\}, \{2, 2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{2, 2, 0, 0\}, \{3, 0, 0$	PRIDADA
	X = KB1(2, 200) + KB2(2, 200) + LA0(2, 200) + LA1(2, 200) + LA2(2, 200	PRT00007
	COMMON /B5/ KAAI2.200).KAI(2.200).KA2/2.200).KB0/2.200).	PRIODOG
	COMMON /B2/ 11/201 21 12/201.21. E1/201.31. E2/201.31. T(201.3)	PRT00005
	IMPLICIE KEALTO IATTINTZE Common 1027 vd. N	PRICOUCS PPTOACA
L	PRINTS DUI THE /BJ/ AKKAIS AND THE MATRICES GIVEN TO POWER.	PR100002
~	SUBRUUTINE PRIVUT	
	CHOROLTING DRIDUT	0010001

	x 13x. (0)(G.1)(.14x. (G.1))	PRT00037
	D0 31 G=1.2	PRT00038
	WRITE (6.12)	PRT00039
	31 WRITE (6.35) (3.1.P(G.I).P1(G.I).Q(G.I).Q1(G.I).R(G.I).I=1.KR)	PRT00040
	35 EORMAT (215.5020.7)	PRT00041
c	PO AND PH ARRAYS:	PRT00042
~	WRITE (6.40)	PRT00043
	40 FORMAT (1) G.4X. 11.13X. PO(G.I) .12X. PO7(G.I) .13X. PH(G.I)	• PRT00044
	Y = 12Y. (DH7/G.1)	PR T00045
	nn 41 c=1.2	PRT00046
	UDITE (6.12)	PRT00047
	41 WRITE (6.45) (G.I.PO(G.I.).PO7(G.I.).PH(G.I.).PH7(G.I.).I=1.KR)	PRT00048
	45 ED2NAT (215,4020,7)	PRT00049
c	PRINT OUT THE /B3/ MATRICES:	PR T00050
Č	WRITE (6.50)	PRT00051
	50 FORMAT ("IMATRIX L1:"./)	PRT00052
	WRITE $(6.55) ((L1(I \cdot J) \cdot J = 1 \cdot 3) \cdot I = 1 \cdot N)$	PR T0 0053
	55 FORMAT (3E12.3.7X.3E12.3.7X.3E12.3)	PRT00054
	WRITE (6,60)	PRT00055
	60 FORMAT ('INATRIX L2:',/)	PRT00056
	WRITE $(6,55) = ((L2(I,J), J=1, 3), I=1, N)$	PRT00057
	WRITE (6,70)	PRT00058
	70 FORMAT ('IMATRIX F1:',/)	PRT00059
	WRITE $(6,55)$ ((F1(I,J),J=1,3),I=1,N)	PRT00060
	WRITE (6,80)	PRT00061
	80 FORMAT ('INATRIX F2:',/)	PRT00062
	WRITE (6,55) (($F2(I,J),J=1,3$), $I=1,N$)	PRT00063
	WRITE (6,90)	PRT00064
	90 FORMAT (IMATRIX T: ,/)	PRT00065
	WRITE (6,55) ((T(I,J),J=1,3),I=1,N)	PR T00066
	RETURN	PRT00067
	END	PRT00068

	SUBROUTINE POWER	POW 0001
C	SOLVES THE 2*N MULTIGROUP EQUATIONS: /M*PHI = (1/LANDA)*F*PHI	POW 0002
C	BY THE FISSION SOURCE POWER METHOD	POW 0003
C	USING SIMULTANEOUS OVERRELAXATION.	POW 0004
C	WHERE: M AND F ARE DOUBLE PRECISION 2N BY 2N BLOCK MATRICES;	POW 0005
C	AND: PHI IS THE 2N FLUX (FAST AND THERMAL) VECTOR.	POW 0006
С	L1*PHI1 = CHI1*(F1*PHI1 + F2*PHI2)	POW 0007
C	-T*PHI1 + L2*PHI2 = CHI2*(F1*PHI1 + F2*PHI2)	POW 0008
C	METHOD FOLLOWS WACHPRESS, PAGE 83. SOLUTION BY GROUP ITERATION.	POW 0009
	IMPLICIT REAL*8 (A-H,L-Z)	POW 0010
	COMMUN /B1/ IBC, IPLOT, JPLOT, IPUNCH, ISEE	POW 0011
	COMMON /B2/ KR, N	POW 0012
	COMMON /B3/ L1(201,3), L2(201,3), F1(201,3), F2(201,3), T(201,3)	POW 0013
	COMMON /B4/ PHI(2,201), PSI(2,201), LAMDA, ICOUT	POW 0014
	COMMON /B5/ S(201), ERROR(2,201), Z(201)	POW 0015
	COMMUN /86/ TE1(2,5),TE2(2,5),TE3(5),IN(5)	POW 0016
	COMMON /B7/ HH(200)	POW 0017
	COMMON /CHIF/ CHI(2)	POW 0018
	COMMON /ER/ EPS1, EPS2, EPS3	POW 0019
	COMMON /T/ I1,I4	POW 0020
	COMMON /FSTR/ PHISTR(2,201,6)	POW 0021
	COMMON /ESTR/ LAMSTR(300), EFSTR(2,300), EFMSTR(2,300), ERLAM(300)	POW 0022
	COMMON /READ5/ R5	POW 0023
	DIMENSION PSI1(201), PSI2(201), SQ(2), DPHI(2), ERRMAX(2)	POW 0024
	INTEGER	POW 0025
	R5=1.	POW 0026
C	DEFAULT OPTIONS FOR POWER PARAMETERS:	POW 0027
	ALPHA=1.25	POW 0028
	LAMDA=1.0	POW 0029
	HX=0.0	POW 0030
	DO 505 I=1,KR	POW 0031
505	HX=HX+HH(I)	POW 0032
	DO 555 IG=1,2	POW 0033
	IF (IBC.NE.4) GO TO 551	POW 0034
	DO 550 I=1,N	POW 0035
550	PHI(IG, I)=1.0	POW 0036
		PAGE 205

		60 TO 555	POW 0037
	551	X=3.1415926/HX	POW 0038
		$IF (IBC_NE_1) = X = X/2.0$	POW 0039
		SUM1=0.0	POW 0040
		DO 552 K=1.KR	POW 0041
		SUM1 = SUM1 + HH(K)	POW 0042
	552	PHI(IG.K)=DSIN(SUM1*X)	POW 0043
	555	CONTINUE	POW 0044
C.		READ IN: OVERRELAXATION PARAMETERS ; ALPHA (OUTER ITERATION)	POW 0045
č		INITIAL GUESS AT EIGENVALUE; LAMDA	POW 0046
Ĉ		INITIAL NORMALIZED FLUX ; PHI(1-N)	POW 0047
-		READ (5,506, END=510) ALPHA	POW 0048
		READ (5,502, END=510) LAMDA	POW 0049
		READ (5,503) (PHI(1,I),I=1,N)	POW 0050
		READ (5,503) (PHI(2,I),I=1,N)	POW 0051
	506	FORMAT (F10.5)	POW 0052
	502	FORMAT (E25.14)	POW 0053
	503	FORMAT ((4E20.10))	POW 0054
		GO TO 511	POW 0055
	510	R5=0.	POW 0056
	511	CONTINUE	POW 0057
С		STORING FOR PRINTING THE MULTIGROUP FLUX SHAPE.	PDW 0058
		DO 11 IG=1,2	POW 0059
		DO 10 I=1,N	POW 0060
	10	PHISTR(IG,I,2)=PHI(IG,I)	PUW 0061
С		FILL RUNNING COORD IN PHISTR	PUW 0062
		KR1=KR+1	PUW 0003
		DO 11 I=1, KR1	
~	11	PHISTR(IG, I, I)=DFLUAT(I)	PUW 0005
C		IK IS THE FLUX PLUTTING COUNTER.	
~		IK=1	PUW 0007
U		SIUKES THE TTERATION NUMBER FUR FLUX MISTURY FLUTTING.	0000 NOS
c		INLIJEU STODES TENDODADV ERRORS EOR ELLIV HISTORY DIOTTING*	
L		SIUKES LEMPUKAKT EKKUKS PUK PLUA HIJIUNI PLUTTING+ Teili 11-0	POW 0071
		18111117V+ T81/2 1)=()	PON 0072
			PAGE 206

	TE2(1,1)=0.	POW 0073
	TE2(2,1)=0.	POW 0074
	TE3(1)=0.0	POW 0075
С	EIGENVALUE OF THE PREVIOUS ITERATION:	POW 0076
	LAMB4=LAMDA	POW 0077
С	THE MAXIMUM NUMBER OF ALLOWED ITERATIONS: ICMAX	POW 0078
	ICMAX=300	POW 0079
С	PRINT OUT THE POWER METHOD PARAMETER INFORMATION:	POW 0080
	WRITE (6,700) ICMAX,ALPHA,LAMDA,(PHI(1,I),I=1,N)	POW 0081
	WRITE (6,701) (PHI(2,1),I=1,N)	POW 0082
	700 FORMAT ("1EXECUTING MULTIGROUP FISSION SOURCE POWER ITERATION METH	POW 0083
	XOD.",///,	POW 0084
	X 5X, MAXIMUM NUMBER OF ALLOWABLE ITERATIONS: 1,/,	POW 0085
	X = 10X, *1CMAX = *, 14, ///,	POW 0086
	X 5X, OUTER ITERATION RELAXATION PARAMETER: ',/,	POW 0087
	X 10X, "ALPHA = ", F7.3,//,	POW 0088
	X 5X, INITIAL GUESS AT EIGENVALUE: ",/,	POW 0089
	$X = 10X_{y} LAMBDA = *_{y} E22_{*}14_{y}//_{y}$	POW 0090
	X 5X, INITIAL GUESS AT THE GROUP FLUX SHAPE CONNECTION POINTS: ,	POW 0091
	X //,8X,"FAST GROUP:",/,	POW 0092
	X 10X, F(K) **S =*,4E25.14,/,(18X,4E25.14))	POW 0093
	701 FORMAT (*0*,7X, *THERMAL GROUP:*,/,	POW 0094
	X 10X, *F(K) ** S = *, 4E25.14, /, (18X, 4E25.14))	POW 0095
С	BEGIN ITERATION LOOP.	POW 0096
_	ICOUT=0	POW 0097
С	ICOUT IS THE OUTER ITERATION COUNTER.	POW 0098
	20 ICOUT=ICOUT+1	POW 0099
_	IF (ICOUT.GT.ICMAX) GO TO 100	POW 0100
С	FORM THE ITERATION SOURCE VECTOR, S; AND ITS L-2 NORM, SUMI:	POW 0101
	SUM1=0.	POW 0102
•	DO 15 I=1,N	POW 0103
	S(1)=0.	POW 0104
	10=1	POW 0105
		POW 0106
	IF (I = EQ = I) = IQ = Z	PUW 0107
	1F {1.EQ.N} = 11=2	PUW_0108
		PAGE 207

		$DO 14 J = I0 \cdot I1$	POW	0109
		K=I-2+J	POW	0110
	14	S(I)=S(I)+F1(I,J)*PHI(1,K)+F2(I,J)*PHI(2,K)	POW	0111
	15	SUM1 = SUM1 + S(I) * *2	POW	0112
		SUM1=DSORT(SUM1)	POW	0113
		SUM1 = SUM1 * (CHI(1) + CHI(2))	POW	0114
C		SOLVE FOR THE NEW GROUP FLUX VECTORS: PSI:	POW	0115
č		FAST GROUP: SOURCE VECTOR:	POW	0116
•		$DO 25 I = 1 \cdot N$	POW	0117
	25	7(1) = CHI(1) * S(1)	POW	0118
C		FAST FLUX:	POW	0119
Ŭ		CALL SOLV3D(N+L1+PSI1+Z)	POW	0120
C		THERMAL GROUP; SOURCE VECTOR:	POW	0121
-		DO 27 I=1.N	POW	0122
		Z(1)=0.	POW	0123
		IO=1	POW	0124
		I1=3	POW	0125
		IF (I.EQ.1) : IO=2	POW	0126
		IF (I.EQ.N) I1=2	POW	0127
		DO 26 J=10,I1	POW	0128
		K=I-2+J	POW	0129
	26	Z(I)=Z(I)+T(I,J)*PSI1(K)	POW	0130
	27	Z(I)=Z(I)+CHI(2)*S(I)	POW	0131
C		THERMAL FLUX:	POW	0132
		CALL SOLV3D(N,L2,PSI2,Z)	POW	0133
C		FORM NEW SOURCE VECTOR FROM THE NEW UNNORMALIZED FLUXES; PSI:	POW	0134
		SUM2=0.	POW	0135
		DO 29 I=1,N	POW	0136
		S(I)=0.	POW	0137
		I 0=1	POW	0138
		I1=3	POW	0139
		IF (I.EQ.1) IO=2	POW	0140
		IF (I.EQ.N) I1=2	POW	0141
		DO 28 J=I0,I1	POW	0142
		K=I-2+J	POW	0143
	28	S(I)=S(I)+F1(I,J)*PSI1(K)+F2(I,J)*PSI2(K)	POW	0144
			PAGE 20	8

	29	SUM2=SUM2+S(I)**2	POW 0145
		SUM2=DSORT(SUM2)	POW 0146
		SUM2=SUM2*(CHI(1)+CHI(2))	POW 0147
C		CALCULATION OF THE EIGENVALUE:	POW 0148
-		LAMDA=SUM2/SUM1	POW 0149
		LAMSTR(ICOUT)=_AMDA	POW 0150
		ERRLAM=DABS (LAM DA-LAMB4)	POW 0151
C		PUT PSI1 AND PSI2 INTO BIGGER PSI:	POW 0152
-		DO 30 I=1.N	POW 0153
		PSI(1,1) = PSII(1)	POW 0154
	30	PSI(2,I)=PSI2(I)	POW 0155
С		POINT BY POINT SIMULTANEOUS RELAXATION FLUX ITERATION:	POW 0156
		X=ALPHA	POW 0157
C		DO NOT RELAX DURING THE FIRST THREE ITERATIONS:	POW 0158
		IF (ICOUT.LE.3) X=1.0	POW 0159
С		CALCULATE THE NEW GROUP FLUX ITERATES AND GROUP ERRORS:	POW 0160
		DO 40 IG=1,2	POW 0161
		SQ(IG)=0.	POW 0162
		DO 40 I=1,N	POW 0163
		ERROR(IG, I)=PSI(IG, I)/LAMDA-PHI(IG, I)	POW 0164
		SQ(IG) = SQ(IG) + ERROR(IG, I) + 2	POW 0165
		PHI(IG,I)=PHI(IG,I) + X*ERROR(IG,I)	POW 0166
C		AND FOR PLOTTING PURPOSES:	POW 0167
		PSI(IG,I)=PHI(IG,I)	POW 0168
	40	CONTINUE	POW 0169
		DO 34 1G=1,2	POW 0170
	34	SQ(IG)=DSQRT(SQ(IG))	POW 0171
C		NORMALIZE PSI:	POW 0172
С		NORMALIZES BOTH ARRAY GROUPS TO 1.0:	POW 0173
		CALL NORM2(PSI,N)	POW 0174
		DO 36 IG=1,2	POW 0175
С		ERRMAX(IG) = THE MAX ERROR BETWEEN THE GROUP ITERATION FLUXES:	POW 0176
		ERRMAX(IG)=ERROR(IG,1)	POW 0177
		DO 36 I=2, N	POW 0178
		IF (DABS(ERROR(IG,I)).GT.ERRMAX(IG)) ERRMAX(IG)=DABS(ERROR(IG,I))	POW 0179
	36	CONTINUE	POW 0180
			PAGE 209

•

		IF (IPLOT.NE.2) GO TO 45	POW 0181
C		THE FOLLOWING IS FOR NICELY PLOTTING THE GROUP FLUX HISTORY.	POW 0182
-		DO 41 IG=1.2	POW 0183
		$00 41 I = 1 \cdot N$	POW 0184
	41	ERROR(IG,I) = PSI(IG,I)	POW 0185
C	• *	FREAR NOW CONTAINS THE NEW NORMALIZED FLUX ITERATE PHI.	POW 0186
v			POW 0187
		$I \in (I K_{+} E Q_{+} Q)$ $J K = 5$	POW 0188
		00.42 IG=1.2	POW 0189
		DO 42 I=1.N	POW 0190
		IE (DABS(ERROR(IG.I)-PHISTR(IG.I.JK+1))-GE.0.01) GO TO 43	POW 0191
	42	CONTINUE	POW 0192
C	16	FLUX HAS NOT CHANGED ENOUGH FOR PLOTTING.	POW 0193
Ŭ		GO TO 45	POW 0194
C.		SAVE THE NORMALIZED FLUX FOR PLOTTING:	POW 0195
-	43	1K=IK+1	POW 0196
	••	IN(IK)=ICOUT	POW 0197
		TE3(IK)=ERRLAM	POW 0198
		DO 44 IG=1,2	POW 0199
		TE1(IG,IK)=ERRMAX(IG)	POW 0200
		TE2(IG, IK)=SQ(IG)	POW 0201
		DO 44 I=1,N	POW 0202
	44	PHISTR(IG,I,IK+1)=ERROR(IG,I)	POW 0203
		IF (IK.NE.5) GO TO 45	POW 0204
С		PLOT THE LAST FIVE SAVED FLUXES:	POW 0205
		CALL PHIPLT(5)	POW 0206
		I K=0	POW 0207
	45	CONTINUE	POW 0208
С		ERROR CRITERIA FOR ACCEPTANCE OF CONVERGENCE.	POW 0209
		IFLAG1=0	POW 0210
		IFLAG2=0	POW 0211
		IFLAG3=0	POW 0212
С		STORE THE ERRORS FOR COMPARISON:	POW 0213
С		ERROR BETWEEN ITERATION EIGENVALUES:	POW 0214
		ERLAM(ICOUT)=ERRLAM	POW 0215
		DO 46 IG=1,2	POW 0216
			PAGE 210

C		MAXIMUM ERROR BETWEEN ITERATION FLUXES:	POW 0217
		EFSTR(IG,ICOUT)=ERRMAX(IG)	POW 0218
С		MEAN SQUARE ERROR BETWEEN ITERATION FLUXES:	POW 0219
		EFMSTR(IG,ICOUT)=SQ(IG)	POW 0220
	46	CONTINUE	POW 0221
		IF ((ERRMAX(1).LT.EPS1).AND.(ERRMAX(2).LT.EPS1)) IFLAG1=1	POW 0222
		IF ((SQ(1).LT.EPS2).AND.(SQ(2).LT.EPS2)) IFLAG2=1	POW 0223
		IF (ERRLAM.LT.EPS3) IFLAG3=1	POW 0224
		IFLAG4=IFLAG1*IFLAG2*IFLAG3	POW 0225
		IF (IFLAG4.EQ.1) GO TO 50	POW 0226
С		OTHERWISE CONTINUE THE ITERATION.	POW 0227
		LAMB4=LAMDA	POW 0228
		GO TO 20	POW 0229
	50	CONTINUE	POW 0230
С		CONVERGENCE ACCOMPLISHED.	POW 0231
С		NORMALIZE THE CONVERGED FLUX VECTOR:	POW 0232
		CALL NORMAL(PHI,N)	POW 0233
С		PLOT ANY LEFT OVER FLUX HISTORY PLOTS:	POW 0234
		IF ((IPLDT.EQ.2).AND.(IK.NE.O)) CALL PHIPLT(IK)	POW 0235
C		BOUNDRY CONDITION INSERTIONS.	POW 0236
		IER=0	POW 0237
С		IER ALLOWS B.C. INSERTIONS FOR YES AND NO CONVERGENCE:	POW 0238
	55	IF (IBC.EQ.4) GO TO 90	POW 0239
		IF (IBC.NE.3) GO TO 60	POW 0240
		PHI(1,KR+1)=0.	POW 0241
		PHI(2,KR+1)=0.	POW 0242
		GO TO 90	POW 0243
	60	DO 70 I=1.N	POW 0244
		J=N+1-I	POW 0245
		PHI(1, J+1) = PHI(1, J)	POW 0246
	70	PHI(2, J+1) = PHI(2, J)	POW 0247
		PHI(1,1)=0.	POW 0248
		PHI(2,1)=0.	POW 0249
		IF (IBC.NE.1) GO TO 90	POW 0250
		PHI(1+KR+1)=0.	POW 0251
		PHI(2,KR+1)=0.	POW 0252
			PAGE 211

	90	IF (IER.EQ.1) GO TO 102	POW	0253
		RETURN	POW	0254
С		NO CONVERGENCE ACCOMPLISHED:	POW	0255
	100	CONTINUE	POW	0256
С		NORMALIZE THE UNCONVERGED FLUX:	POW	0257
		CALL NORMAL (PHI, N)	POW	0258
		ICOUT=ICOUT-1	POW	0259
		WRITE (6,101) ICOUT	POW	0260
	101	FORMAT (1H1, POWER METHOD DID NOT CONVERGE FOR THIS CASE AFTER',	POW	0261
	2	X I4, ITERATIONS. ////IX, 'EXECUTION TERMINATED ')	POW	0262
		IER=1	POW	0263
		GO TO 55	POW	0264
	102	CONTINUE	POW	0265
С		FOR PRINTING OUT THE EIGENVALUE HISTORY AND THE FINAL FLUX SHAPE:	POW	0266
		IF (IPLOT.EQ.0) IPLOT=1	POW	0267
		IF (JPLOT.EQ.O) JPLOT=1	POW	0268
		RETURN	POW	0269
		END	POW	0270

.

	SUBROUTINE CURT	CUR	0001
C	SOLVES FOR THE CURRENT FROM THE INPUT H(K)'S AND D(K)'S	CUR	0002
č	USING F(K) S FROM POWER:	CUR	0003
Č	CURRENT IS LINEAR (LEAST SQUARES - VARIATIONAL) AND PUT INTO ARRAY	C. CUR	0004
•	IMPLICIT REAL*8 (A-H.O-Z)	CUR	0005
	COMMON /B2/.KR	CUR	0006
	COMMON /B4/ F(2.201). C(2.201)	CUR	0007
	COMMON /B5/ T(201.3), S1(201), S2(201), C1(201), C2(201)	CUR	0008
	COMMON /B7/ H(200) • D(2.200)	CUR	0009
C	FROM THE MATRIX PROBLEM FOR LINEAR FIT OF STEP DATA:	CUR	0010
•	M=KR	CUR	0011
	N=KR+1	CUR	0012
	T(1,1)=0.	CUR	0013
	T(N, 3) = 0.	CUR	0014
	T(1,2)=H(1)/3.	CUR	0015
	T(1,3)=H(1)/6.	CUR	0016
	T(N, 1) = H(M)/6.	CUR	0017
	T(N,2)=H(M)/3.	CUR	0018
	S1(1)=D(1,1)*(F(1,1)-F(1,2))/2.	CUR	0019
	S2(1)=D(2,1)*(F(2,1)-F(2,2))/2.	CUR	0020
	S1(N)=D(1,M)*(F(1,M)-F(1,M+1))/2.	CUR	0021
	S2(N)=D(2,M)*(F(2,M)-F(2,M+1))/2.	CUR	0022
	DO 20 I=2,M	CUR	0023
	J=I-1	CUR	0024
	T(I, 1)=H(J)/6.	CUR	0025
	T(I,2)=(H(J)+H(I))/3.	CUR	0026
	T(I, 3)=H(I)/6.	CUR	0027
	S1(I)=(D(1,J)*(F(1,J)-F(1,I)+D(1,I)*(F(1,I)-F(1,I+1)))/2.	CUR	0028
	S2(I)=(D(2,J)*(F(2,J)-F(2,I))+D(2,I)*(F(2,I)-F(2,I+1)))/2.	CUR	0029
20) CONTINUE	CUR	0030
	CALL SOLV3D(N,T,C1,S1)	CUR	0031
	CALL SOLV3D(N,T,C2,S2)	CUR	0032
	DO 30 I=1,N	CUR	0033
	C(1,I)=C1(I)	CUR	0034
30	C(2,I)=C2(I)	CUR	0035
	RETURN	CUR	0036
		PAGE 21	.3

CUR 0037

.

.
	SUBROUTINE OUTPUT	OUT 0001
С	PRINTS THE RESULTS OF THE METHOD.	OUT 0002
	IMPLICIT REAL*8 (A-H,L-Z)	DUT 0003
	COMMON /B1/ IBC, IPLOT, JPLUT, IPUNCH, ISEE, NOADJ	OUT 0004
	COMMON / B2/ KR, N	OUT 0005
	COMMON /B4/ PHI(2,201), CUR(2,201), LAMDA, ICOUT	DUT 0006
	COMMON /ER/ EPS1,EPS2,EPS3	OUT 0007
	COMMON /ESTR/ LAMSTR(300),EFSTR(2,300),EFMSTR(2,300),ERLAM(300)	DUT 0008
	INTEGER N, NOADJ	OUT 0009
	KRO=KR-1	OUT 0010
	KR1=KR+1	OUT 0011
	WRITE (6,1)	OUT 0012
	1 FORMAT ("IRESULTS OF THE MULTIGROUP METHOD:")	OUT 0013
	WRITE (6,10) ICOUT	OUT 0014
	10 FORMAT (//, PROBLEM TERMINATED AFTER*, 15,	OUT 0015
	X • DUTER (POWER) ITERATIONS TO: •)	OUT 0016
	WRITE (6,20) LAMDA	OUT 0017
	20 FORMAT (/,10X, LAMDA = *,1PE21.14)	DUT 0018
C	PRINT OUT EIGENVALUES.	OUT 0019
	CALL PLOT	OUT 0020
	WRITE (6,30)	OUT 0021
	30 FORMAT ("IRESULTS AFTER PROBLEM TERMINATION:",/,	OUT 0022
	X 'ONUMBER',9X, THERMAL FLUX',4X, THERMAL CURRENT',12X,	OUT 0023
	X FAST FLUX, 7X, FAST CURRENT, /)	OUT 0024
	WRITE (6,50) (K,PHI(2,K),CUR(2,K),PHI(1,K),CUR(1,K),K=1,KR1)	OUT 0025
	50 FORMAT (17,1PE21.7,0PE19.7,1PE21.7,0PE19.7)	DUT 0026
С	PRINT OUT THE STORED ITERATION ERRORS:	OUT 0027
	WRITE (6,110) EPS1, (EFSTR(2,I), I=1, ICOUT)	OUT 0028
	WRITE (6,111) EPS1, (EFSTR(1,I), I=1, ICOUT)	OUT 0029
	WRITE (6,112) EPS2, (EFMSIR(2,1), I=1, ICOUT)	OUT 0030
	WRITE (6,113) EPS3, (EFMSTR(1,I),I=1,ICOUT)	OUT 0031
	WRITE (6,114) EPS3, (ERLAM(1),I=1,ICOUT)	OUT 0032
	110 FORMAT ("IMAXINUM ERRORS BETWEEN THE THERMAL FLUX ITERATIONS:",	OUT 0033
	X 25X, TOLERANCE USED = ', 1PE12.4, //, (1P5E20.5))	OUT 0034
	111 FORMAT ("IMAXIMUM ERRORS BETWEEN THE FAST FLUX ITERATIONS:",	OUT 0035
	X = 25X, TOLERANCE USED = ', 1PE12.4, //, (1P5E20.5))	OUT 0036
		PAGE 215

112 FORMAT ("IMEAN SQUARE ERROR BETWEEN THE THERMAL FLUX ITERATIONS:",	OUT 0037
X 18X, TOLERANCE USED = ", 1PE12.4,//, (1P5E20.5))	OUT 0038
113 FORMAT ("IMEAN SQUARE ERROR BETWEEN THE FAST FLUX ITERATIONS:",	OUT 0039
X 18X, TULERANCE USED = ", 1PE12.4, //, (1P5E20.5))	OUT 0040
114 FORMAT ("IERROR BETWEEN THE ITERATION EIGENVALUES:",	OUT 0041
X 28X, TULERANCE USED = ', 1PE12.4, //, (1P5E20.5))	OUT 0042
IF (NOADJ.EQ.O) RETURN	OUT 0043
C OTHERWISE ADJOINT CALCULATIONS ARE NOT EXECUTED:	OUT 0044
WRITE (6,120)	OUT 0045
120 FORMAT ("IADJOINT CALCULATIONS HAVE BEEN BYPASSED.",//,	OUT 0046
X PROGRAM TERMINATED.")	OUT 0047
C IPUNCH = 1 PUNCHES OUT THE FAST FLUX FOR SYNTH 1G INPUTS:	OUT 0048
IF (IPUNCH.EQ.1) WRITE (7,124) KR	OUT 0049
IF (IPUNCH.EQ.1) WRITE (7,125) (PHI(1,I),CUR(1,I),I=1,KR1)	OUT 0050
IF (IPUNCH.EQ.1) WRITE (7,125) (PHI(2,I),CUR(2,I),I=1,KR1)	OUT 0051
124 FORMAT (15)	OUT 0052
125 FORMAT (2020.10)	OUT 0053
CALL EXIT	OUT 0054
RETURN	OUT 0055
C	OUT 0056
END	OUT 0057

	SUBROUTINE PLOT	PLT 0001
C	PLOTS OUT THE EIGENVALUE HISTORY AS A TABLE AND A GRAPH,	PLT 0002
С	AS WELL AS PLOTTING OUT THE FINAL MULTIGROUP FLUX SHAPES.	PLT 0003
	IMPLICIT REAL*8 (A-H,L-Z)	PLT 0004
	COMMON /B1/ IBC, IPLOT, JPLOT, IPUNCH	PLT 0005
	COMMON /B2/ KR	PLT 0006
	COMMON / B4/ PHI(2,201), PSI(2,201), LAMDA, ICOUT	PLT 0007
	COMMON /B5/ B(300,2)	PLT 0008
	COMMON /ESTR/ LAMSTR(300)	PLT 0009
	DIMENSION C(201,3)	PLT 0010
C	IN URDER TO SAVE SOME SPACE:	PLT 0011
-	EQUIVALENCE (B(1),C(1))	PLT 0012
	INTEGER ND	PLT 0013
	ND=201	PLT 0014
	WRITE (6,1) (LAMSTR(I), I=1, ICOUT)	PLT 0015
	1 FORMAT ("OTABLE OF EIGENVALUES DURING THE POWER ITERATION:",	PLT 0016
	X //,(1P5E25.14))	PLT 0017
	IF (JPLOT.EQ.0) GO TO 20	PLT 0018
	DO 10 I=1,ICOUT	<u>PLT 0019</u>
	B(I,1) = I	PLT 0020
	10 B(I,2)=LAMSTR(I)	PLT 0021
	CALL PRTPLT(1,B,ICOUT,2,ICOUT,0,300,2,1)	PLT 0022
	WRITE (6,11)	PLT 0023
	11 FORMAT ("OPLOT OF THE EIGENVALUE HISTORY THROUGH THE ITERATIONS.")	PLT 0024
	20 IF (IPLJT-EQ-0) RETURN	PLT 0025
	KR1=KR+1	PLT 0026
	DO 30 I=1,KR1	PLT 0027
	C(1,1)=1	PLT 0028
	C(I,2)=PHI(1,I)	PLT 0029
	30 C(1,3)=PHI(2,1)	PLT 0030
	CALL PRTPLT(2,C,KR1,3,KR1,0,ND,3,2)	PLT 0031
	WRITE (6,31)	PLT 0032
	31 FORMAT ("OFINAL CONVERGED CONNECTING FLUX POINTS; F(K).",//,	PLT 0033
	X 5X, FAST FLUX: .',/,5X, THERMAL FLUX: -')	PLT 0034
	RETURN	PLT 0035
	END	PLT 0036
		PAGE 217

	SUBROUTINE POWER7	POW70001
C	*** ADJDINT PROBLEM ***	P0W70002
C	SOLVES THE 2*N MULTIGROUP ADJOINT ECUATIONS:	P0W70003
Ċ	M*PHI = (1/LAMDA)*F*PHI	P0W70004
Č	BY THE FISSION SOURCE POWER METHOD	POW7 0005
Č	USING SIMULTANEOUS OVERRELAXATION.	P0W70006
Č	WHERE: M AND F ARE DOUBLE PRECISION 2N BY 2N BLOCK MATRICES;	P0W70007
C	AND: PHI IS THE 2N ADJOINT (FAST AND THERMAL) VECTOR.	POW70008
č	L1*PHI1 - T*PHI2 = CHI1*F1*PHI1 + CHI2*F1*PHI2	P0W70009
Ċ.	$L_{2*PHI2} = CHI_{1*F2*PHI1} + CHI_{2*F2*PHI2}$	POW70010
•	IMPLICIT REAL *8 (A-H.L-Z)	POW70011
	COMMON /B1/ IBC. IPLOT. JPLOT. IPUNCH. ISEE	P0W70012
	COMMON /B2/ KR, N	POW70013
	COMMON /B3/ L1(201,3), L2(201,3), F1(201,3), F2(201,3), T(201,3)	POW70014
	COMMON /B47/ PHI(2,201), PSI(2,201), LAMDA, ICOUT	POW70015
	COMMON /85/ S(201), ERROR(2,201), Z(201)	POW70016
	COMMON /B6/ TE1(2,5), TE2(2,5), TE3(5), IN(5)	POW70017
	COMMON / B7/ HH(200)	POW70018
	COMMON /CHIF/ CHI(2)	POW70019
	COMMON /ER/ EPS1, EPS2, EPS3	POW70020
	COMMON /T/ I1,I4	P0W70021
	COMMON /FSTR/ PHISTR(2,201,6)	P0W70022
	COMMON /ESTR/ LAMSTR(300), EFSTR(2,300), EFMSTR(2,300), ERLAM(300)	P0W70023
	COMMON /READ5/ R5	POW70024
	DIMENSION PSI1(201), PSI2(201), SQ(2), DPHI(2), ERRMAX(2)	POW70025
	INTEGER N	POW70026
C	DEFAULT OPTIONS FOR POWER PARAMETERS:	POW70027
	ALPHA=1.25	POW70028
	LAMDA=1.0	P0W70029
	HX=0.0	POW70030
	DO 505 1=1,KR	POW70031
505	HX=HX+HH(I)	POW70032
	DO 555 IG=1,2	POW70033
	IF (IBC.NE.4) GO TO 551	P0W70034
	DO 550 I=1,N	P0W70035
550	PHI(IG,I)=1.0	P0W70036
		PAGE 218

		GO TO 555	POW70037
	551	X=3.1415926/HX	P0W70038
		IF (IBC.NE.1) X=X/2.0	POW70039
		SUM1=0.0	P0W70040
		DO 552 K=1,KR	P0W70041
		SUM1=SUM1+HH(K)	P0W70042
	552	PHI(IG,K)=DSIN(SUM1*X)	P0W70043
	555	CONTINUE	P0W70044
		IF (R5.EQ.0.) GO TO 510	P0W70045
С		READ IN: OVERRELAXATION PARAMETERS ; ALPHA (OUTER ITERATION)	P0W70046
С		INITIAL GUESS AT EIGENVALUE; LAMDA	P0W70047
C		INITIAL NORMALIZED FLUX ; PHI(1-N)	POW70048
		READ (5,506,END=510) ALPHA	P0W70049
		READ (5,502,END=510) LAMDA	POW70050
		READ (5,503) (PHI(1,1),I=1,N)	POW70051
		READ (5,503) (PHI(2,I),I=1,N)	P0W70052
	506	FORMAT (F10.5)	POW70053
	502	FORMAT (E25.14)	POW70054
	503	FORMAT ((4E20.10))	POW70055
	510	CONTINUE	POW70056
С		STORING FOR PRINTING THE MULTIGROUP FLUX SHAPE.	POW70057
		DO 11 IG=1,2	POW70058
		DO 10 I=1,N	POW70059
	10	PHISTR(IG,1,2)=PHI(IG,I)	POW70060
С		FILL RUNNING COORD IN PHISTR	POW70061
		KR1=KR+1	P0W70062
		DO 11 I=1,KR1	POW70063
	11	PHISTR(IG,I,1)=DFLOAT(I)	POW70064
С		IK IS THE FLUX PLOTTING COUNTER.	POW70065
		IK=1	POW70066
С		STORES THE ITERATION NUMBER FOR FLUX HISTORY PLOTTING:	P0W70067
		IN(1)=0	P0W70068
С		STORES TEMPORARY ERRORS FOR FLUX HISTORY PLOTTING:	POW70069
		TE1(1,1)=0.	PUW70070
		TE1(2,1)=0.	POW70071
		TE2(1,1)=0.	PUW/00/2
			PAGE 219

	TE2(2,1)=0.	P0W70073
	TE3(1)=0.0	POW70074
(EIGENVALUE OF THE PREVIOUS ITERATION:	POW70075
	LAMB4=LAMDA	POW70076
(THE MAXIMUM NUMBER OF ALLOWED ITERATIONS: ICMAX	P0W70077
	ICMAX=300	POW70078
(PRINT OUT THE POWER METHOD PARAMETER INFORMATION:	POW70079
	WRITE (6,700) ICMAX,ALPHA,LAMDA,(PHI(1,I),I=1,N)	POW70080
	WRITE (6,701) (PHI(2,I),I=1,N)	POW70081
	700 FORMAT ("1EXECUTING MUTIGROUP ADJOINT FISSION SOURCE POWER ITERATI	POW70082
	XON METHOD	POW70083
	X 5X, MAXIMUM NUMBER OF ALLOWABLE ITERATIONS: 1/7	POW70084
	$X = 10X_{2} \cdot ICMAX = \frac{1}{2}I4_{2}//2$	POW70085
	X 5X, OUTER ITERATION RELAXATION PARAMETER: 1,/,	POW7C086
	$X = 10X_{*} + ALPHA = +, F7.3_{*}//_{*}$	POW70087
	X 5X, INITIAL GUESS AT ADJOINT EIGENVALUE: 1,/,	POW70088
	$X = 10X_{*} LAMBDA = *_{*} E22_{*} \frac{14}{7}$	POW70089
	X 5X, INITIAL GUESS AT THE GROUP FLUX SHAPE CONNECTION POINTS: ,	POW70090
	X //,8X, 'FAST ADJOINT GROUP:',/,	POW70091
	X 10X, F(K) S = 4E25.14, /, (18X, 4E25.14))	POW70092
	701 FORMAT ("O", 7X, "THERMAL ADJOINT GROUP:",/,	POW70093
	X 10X, *F(K) ** S =*,4E25.14,/,(18X,4E25.14))	POW70094
(BEGIN ITERATION LOOP.	POW70095
	ICOUT=0	POW70096
(C ICOUT IS THE DUTER ITERATION COUNTER.	POW70097
	20 ICOUT=ICOUT+1	POW70098
	IF (ICOUT.GT.ICMAX) GO TO 100	POW70099
(FORM THE GROUP TOTAL SOURCE S, AND ITS L-2 NORM SUM1:	POW70100
. (AND THE THERMAL ADJOINT SOURCE VECTOR Z:	POW70101
	SUM1=0.	POW70102
	DO 15 I=1,N	POW70103
× .	Z(I) = 0.	POW70104
	S(I)=0.	POW70105
	I 0=1	POW70106
	I1=3	POW70107
	IF (I.EQ.1) IO=2	POW70108
		PAGE 220

		IF (I.EQ.N) I1=2	POW70109
		DO 14 J=I0,I1	POW70110
		K=I-2+J	POW70111
		Z(I)=Z(I)+F2(I,J)*(CHI(1)*PHI(1,K)+CHI(2)*PHI(2,K))	POW70112
	14	S(I)=S(I)+F1(I,J)*(CHI(1)*PHI(1,K)+CHI(2)*PHI(2,K))	POW70113
		S(I)=S(I)+Z(I)	POW70114
	15	SUM1=SUM1+S(I)**2	POW70115
		SUM1=DSQRT(SUM1)	POW70116
С		SOLVE FOR THE NEW GROUP ADJOINT FLUX VECTORS; PSI:	POW70117
С		THERMAL ADJUINT FLUX:	POW70118
		CALL SOLV3D(N,L2,PSI2,Z)	POW70119
С		FAST ADJDINT GROUP; SOURCE VECTOR:	POW70120
		DO 27 I=1,N	POW70121
		S(I)=0.	POW70122
		Ζ(Ι)=0.	POW70123
		I 0=1	POW70124
		11=3	POW70125
		IF (I.EQ.1) IO=2	POW70126
		$IF (I \cdot EQ \cdot N) = II = 2$	POW70127
		DO 26 J=10,11	POW70128
		K=I-2+J	POW70129
		S(I)=S(I)+CHI(1)*F1(I,J)*PHI(1,K)+CHI(2)*F1(I,J)*PSI2(K)	POW70130
	26	2(I)=2(I)+T(I,J)*PSI2(K)	POW70131
	27	Z(I)=Z(I)+S(I)	POW70132
С		FAST ADJOINT FLUX:	POW70133
		CALL SULV3D(N,L1,PSI1,Z)	POW70134
C		FORM NEW GROUP TOTAL SOURCE S FROM PSI'S, AND ITS L-2 NORM SUM2:	POW70135
		SUM2=0.	POW70136
		DO 29 I=1,N	POW70137
		S(I)=0.	POW70138
		I 0=1	POW70139
		I1=3	P0W70140
		IF (I.EQ.1) IO=2	POW70141
		IF (I.EQ.N) I1=2	POW70142
		DO 28 J=I0,I1	POW70143
		K=I-2+J	POW70144
			PAGE 221

	28	S(I)=S(I)+(F1(I,J)+F2(I,J))*(CHI(1)*PSI1(K)+CHI(2)*PSI2(K))	POW70145
	29	SUM2=SUM2+S(1)**2	POW70146
		SUM2=DSQRT(SUM2)	POW70147
C		CALCULATION OF THE EIGENVALUE:	POW70148
		LAMDA=SUM2/SUM1	POW70149
		LAMSTR(ICDUT)=LAMDA	POW70150
		ERRLAM=DABS(LAMDA-LAMB4)	POW70151
С.		PUT PSI1 AND PSI2 INTO BIGGER PSI:	POW70152
		DO 30 I=1,N	POW70153
		PSI(1,I)=PSI1(I)	POW70154
	30	PSI(2,1)=PSI2(1)	POW70155
C		POINT BY POINT SIMULTANEOUS RELAXATION FLUX ITERATION:	POW70156
		X=ALPHA	POW70157
С		DO NOT RELAX DURING THE FIRST THREE ITERATIONS:	POW70158
		IF (ICOUT.LE.3) X=1.0	POW70159
С		CALCULATE THE NEW GROUP FLUX ITERATES AND GROUP ERRORS:	POW70160
		DO 40 IG=1,2	POW70161
		SQ(IG)=0.	POW70162
		DO 40 I=1,N	POW70163
		ERROR(IG,I)=PSI(IG,I)/LAMDA-PHI(IG,I)	POW70164
		SQ(IG)=SQ(IG)+ERROR(IG,I)**2	POW70165
		PHI(IG,I)≠PHI(IG,I) + X*ERROR(IG,I)	POW70166
C		AND FOR PLOTTING PURPOSES:	POW70167
		PSI(IG,I)=PHI(IG,I)	POW70168
	40	CONTINUE	POW70169
		DO 34 IG=1,2	POW70170
	34	SQ(IG)=DSQRT(SQ(IG))	POW70171
С		NORMALIZE PSI:	POW70172
C		NORMALIZES BOTH ARRAY GROUPS TO 1.0:	POW70173
		CALL NORM2(PSI,N)	POW70174
		DO 36 IG=1,2	POW70175
С		ERRMAX(IG) = THE MAX ERROR BETWEEN THE GROUP ITERATION FLUXES:	POW70176
		ERRMAX(IG)=ERROR(IG,1)	POW70177
		DO 36 I=2,N	POW70178
		IF (DABS(ERROR(IG,I)).GT.ERRMAX(IG)) ERRMAX(IG)=DABS(ERROR(IG,I))	POW70179
	36	CONTINUE	POW70180
			PAGE 222

		IF (IPLOT.NE.2) GO TO 45	POW70181
С		THE FOLLOWING IS FOR NIGELY PLOTTING THE GROUP FLUX HISTORY.	P0W70182
		DO 41 IG=1,2	POW70183
		DO 41 $I=1,N$	POW70184
	41	ERRUR(IG,I)=PSI(IG,I)	POW70185
C		ERROR NOW CONTAINS THE NEW NORMALIZED FLUX ITERATE PHI.	POW70186
		JK=IK	POW70187
		IF (IK.EQ.O) JK=5	POW70188
		DO 42 IG=1,2	POW70189
		DO 42 $I=1,N$	POW70190
		IF (DABS(ERROR(IG,I)-PHISTR(IG,I,JK+1)).GE.0.01) GO TO 43	POW70191
	42	CONTINUE	POW70192
С		FLUX HAS NOT CHANGED ENOUGH FOR PLOTTING.	POW70193
		GO TO 45	POW70194
С		SAVE THE NORMALIZED FLUX FOR PLOTTING:	POW70195
	43	IK=IK+1	POW70196
		IN(IK)=ICOUT	POW70197
		TE3(IK)=ERRLAM	POW70198
		DO 44 IG=1,2	POW70199
		TE1(IG,IK)=ERRMAX(IG)	POW70200
		TE2(IG,IK)=SQ(IG)	P0W70201
		DO 44 I=1,N	P0W70202
	44	PHISTR(IG,I,IK+1)=ERROR(IG,I)	POW70203
		IF (IK.NE.5) GO TO 45	P0W70204
C		PLOT THE LAST FIVE SAVED FLUXES:	POW70205
		CALL PHIPLT(5)	P0W70206
		IK=0	POW70207
	45	CONTINUE	POW70208
С		ERROR CRITERIA FOR ACCEPTANCE OF CONVERGENCE.	POW70209
		IFLAG1=0	POW70210
		IFLAG2=0	POW70211
		IFLAG3=0	POW70212
С		STORE THE ERRORS FOR COMPARISON:	POW70213
С		ERROR BETWEEN ITERATION EIGENVALUES:	POW70214
		ERLAM(ICOUT)=ERRLAM	POW70215
		DO 46 IG=1,2	P0W70216
			PAGE 223

C		MAXIMUM ERROR BETWEEN ITERATION FLUXES:	POW70217
		EFSTR(IG,ICOUT)=ERRMAX(IG)	PUW70218
С		MEAN SQUARE ERROR BETWEEN ITERATION FLUXES:	PUW/0219
		EFMSTR(IG,ICOUT)=SQ(IG)	POW70220
	46	CONTINUE	POW70221
		IF ((ERRMAX(1).LT.EPS1).AND.(ERRMAX(2).LT.EPS1)) IFLAG1=1	POW70222
		IF ((SQ(1).LT.EPS2).AND.(SQ(2).LT.EPS2)) IFLAG2=1	POW70223
		IF (ERRLAM.LT.EPS3) IFLAG3=1	POW70224
		IFLAG4=IFLAG1*IFLAG2*IFLAG3	POW70225
		IF (IFLAG4.EQ.1) GO TO 50	POW70226
С		OTHERWISE CONTINUE THE ITERATION.	POW70227
		LAMB4=LAMDA	POW70228
		GO TO 20	POW70229
	50	CONTINUE	POW70230
С		CONVERGENCE ACCOMPLISHED.	POW70231
Č		NORMALIZE THE CONVERGED FLUX VECTOR:	POW70232
•		CALL NORMAL (PHI .N)	P0W70233
C.		PLOT ANY LEFT OVER FLUX HISTORY PLOTS:	P0W70234
-		IF ((IPLDT.EQ.2).AND.(IK.NE.O)) CALL PHIPLT(IK)	P0W70235
C		BOUNDRY CONDITION INSERTIONS.	POW70236
Ŭ		IFR=0	P0W70237
C		IER ALLIWS B.C. INSERTIONS FOR YES AND NO CONVERGENCE:	POW70238
•	55	IF (IBC = F(-4)) = GO = TO = 90	P0W70239
		IF (IBC-NE-3) GO TO 60	PDW70240
		PHI(1.KR+1)=0.	POW70241
		PHI(2.KR+1)=0.	P0W70242
		GO TO 90	P0W70243
	60	DO 70 = 1.N	POW70244
	•••		P0W70245
		DHI(1, i+1) = PHI(1, i)	P0W70246
	70	PHI(2, 1+1) = PHI(2, 1)	P0W70247
	10		PDW70248
			P0W70249
		TE (TBC.NE.1) GO TO 90	POW70250
		DHT(1,KR+1)=().	P0W70251
		CHITTING TL-AA	POW70252
			PAGE 224

	90 IF (IER.EQ.1) GO TO 102	POW70253
	RETURN	POW70254
C	NO CONVERGENCE ACCOMPLISHED:	POW70255
	100 CONTINUE	POW70256
С	NORMALIZE THE UNCONVERGED FLUX:	POW70257
	CALL NORMAL (PHI,N)	POW70258
	ICOUT=ICOUT-1	POW70259
	WRITE (6,101) ICOUT	POW70260
	101 FORMAT (1H1, POWER METHOD DID NOT CONVERGE FOR THIS CASE AFTER',	POW70261
	X I4, ITERATIONS. ',//, 1X, 'EXECUTION TERMINATED ')	POW70262
	IER=1	POW70263
	GO TO 55	POW70264
	102 CONTINUE	POW70265
С	FOR PRINTING OUT THE EIGENVALUE HISTORY AND THE FINAL FLUX SHAPE:	POW70266
	IF (IPLOT.EQ.0) IPLOT=1	POW70267
	IF (JPLOT.EQ.0) JPLOT=1	POW70268
	RETURN	POW70269
	END	POW70270

		PAGE 226
	RETURN	CUR70036
30	C(2, I) = -C2(I)	CUR70035
	C(1, I) = -C1(I)	CUR70034
	DD 30 I=1,N	CUR70033
	CALL SULV3D(N,T,C2,S2)	CUR70032
	CALL SULV3D(N,T,C1,S1)	CUR70031
20	CONTINUE	CUR70030
	S2(I)=(D(2,J)*(F(2,J)-F(2,I))+D(2,I)*(F(2,I)-F(2,I+L)))/2.	CUR70029
	S1(I)=(D(1,J)*(F(1,J)-F(1,I))+D(1,I)*(F(1,I)-F(1,I+1)))/2.	CUR70028
	T(I, 3) = H(I)/6.	CUR70027
	T(I,2) = (H(J) + H(I))/3.	CUR70026
	T(I, 1)=H(J)/6.	CUR70025
	J=I-1	CUR70024
	DO 20 I=2,M	CUR70023
	S2(N)=D(2,M)*(F(2,M)-F(2,M+1))/2.	CUR70022
	S1(N)=D(1,M)*(F(1,M)-F(1,M+1))/2.	CUR70021
	S2(1)=D(2,1)*(F(2,1)-F(2,2))/2.	CUR70020
	S1(1)=D(1,1)*(F(1,1)-F(1,2))/2.	CUR70019
	T(N,2)=H(M)/3.	CUR70018
	T(N, 1)=H(M)/6.	CUR70017
	T(1,3)=H(1)/6.	CUR70016
	T(1,2)=H(1)/3.	CUR70015
	T(N,3)=0.	CUR70014
	T(1,1)=0.	CUR70013
	N=KR+1	CUR70012
	M=KR	CUR70011
C	FROM THE MATRIX PROBLEM FOR LINEAR FIT OF STEP DATA:	CUR70010
	COMMON /B7/ H(200), D(2,200)	CUR70009
	COMMON /B5/ T(201,3), S1(201), S2(201), C1(201), C2(201)	CUR70008
	COMMON /B47/ F(2,201), C(2,201)	CUR70007
	COMMON /B2/ KR	CUR70006
	IMPLICIT REAL*8 (A-H,O-Z)	CUR70005
C	CURRENT IS LINEAR (LEAST SQUARES - VARIATIONAL) AND PUT INTO ARRAY (C. CUR70004
C	USING F(K)'S FROM POWER7:	CUR70003
C	SOLVES FOR THE ADJOINT CURRENT FROM THE INPUT H(K)'S AND D(K)'S	CUR70002
	SUBROUTINE CURT7	CUR70001

CUR70037

PAGE 227

END

2

	SUBROUTINE OUTPT7	OUT70001
С	PRINTS THE RESULTS OF THE ADJOINT METHOD:	0U T7 0002
	IMPLICIT REAL*8 (A-H,L-Z)	DUT70003
	COMMON /B1/ IBC, IPLOT, JPLOT, IPUNCH	OUT70004
	COMMON /B2/ KR, N	OUT70005
	COMMON /B47/ PHI(2,201), CUR(2,201), LAMDA, ICOUT	OUT70006
	COMMON /ER/ EPS1, EPS2, EPS3	0UT70007
	COMMON /ESTR/ LAMSTR(300), EFSTR(2,300), EFMSTR(2,300), ERLAM(300)	0UT70008
	INTEGER N	OUT70009
	KRO=KR-1	OUT70010
	KR1=KR+1	OUT70011
	WRITE (6,1)	OUT70012
	1 FORMAT ("IRESULTS OF THE MULTIGROUP ADJOINT METHOD:")	OUT70013
	WRITE (6,10) ICOUT	OUT70014
	10 FORMAT (//, PROBLEM TERMINATED AFTER', 15,	OUT70015
	X • OUTER (POWER) ITERATIONS TO: •)	OUT70016
	WRITE (6,20) LAMDA	OUT70017
	20 FORMAT (/,10X, ADJOINT LAMBDA = ',1PE21.14)	OUT70018
С	PRINT DUT EIGENVALUES.	OUT70019
	CALL PLOT7	00170020
	WRITE (6,30)	00170021
	30 FORMAT ("IRESULTS AFTER PROBLEM TERMINATION:",/,	00170022
	X 5X, "ADJOINTS:",/,	OUT70023
	X • ONUMBER•,9X,•THERMAL FLUX•,4X,•THERMAL CURRENT•,12X,	00170024
	X *FAST FLUX*,7X,*FAST CURRENT*,/)	OUT 70025
	WRITE (6,50) (K, PHI(2,K),CUR(2,K),PHI(1,K),CUR(1,K),K=1,KR1)	00170026
	50 FORMAT (17,1PE21.7,0PE19.7,1PE21.7,0PE19.7)	00170027
С	PRINT OUT THE STORED ITERATION ERRORS:	00170028
	WRITE (6,110) EPS1, (EFSTR(2,1), I=1, ICOUT)	00170029
	WRITE (6,111) EPS1, (EFSTR(1,I), I=1, ICOUT)	00170030
	WRITE (6,112) EPS2, (EFMSTR(2,I), I=1, ICOUT)	00170031
	WRITE (6,113) EPS3, (EFMSTR(1,1), I=1, ICOUT)	00170032
	WRITE (6,114) EPS3, (ERLAM(I), I=1, ICOUT)	00170033
	110 FORMAT ("IMAXIMUM ERRORS BETWEEN THE THERMAL FLUX ITERATIONS:",	00179034
	X = 25X, TULERANCE USED = ', 1PE12.4, //, (1P5E20.5))	00170035
	111 FORMAT ("IMAXIMUM ERRORS BETWEEN THE FAST FLUX ITERATIONS:",	
		PAGE ZZØ

.

X 25X, TOLERANCE USED = ', 1PE12.4, //, (1P5E20.5))	OUT70037
112 FORMAT ("IMEAN SQUARE ERROR BETWEEN THE THERMAL FLUX ITERATIONS:",	OUT70038
X 18X, TULERANCE USED = ', 1PE12.4,//, (1P5E20.5))	OUT70039
113 FORMAT ("IMEAN SQUARE ERROR BETWEEN THE FAST FLUX ITERATIONS:",	OUT70040
X 18X, TOLERANCE USED = ', 1PE12.4, //, (1P5E20.5))	OUT70041
114 FORMAT ("LERROR BETWEEN THE ITERATION EIGENVALUES:",	OUT70042
X 28X, TOLERANCE USED = ', 1PE12.4, //, (1P5E20.5))	OUT70043
C CHECK FUR CALL TO PUNCH:	OUT70044
IF (IPUNCH.EQ.1) CALL PUNCH	OUT 70045
RETURN	OUT70046
END	OUT70047

	SUBROUTINE PLOT7	PL170001
C	PLUTS DUT THE EIGENVALUE HISTORY AS A TABLE AND A GRAPH,	PLT70002
Ċ	AS WELL AS PLOTTING OUT THE FINAL MULTIGROUP FLUX SHAPES.	PLT70003
č	FOR THE ADJOINTS:	PLT70004
•	IMPLICIT REAL*8 (A-H.L-Z)	PL170005
	COMMON /B1/ IBC. IPLOT. JPLOT. IPUNCH	PLT70006
	COMMON /B2/ KR	PLT70007
•	COMMON / B47/ PHI(2,201), CUR(2,201), LAMDA, ICOUT	PLT70008
	COMMON /85/.8(300.2)	PLT70009
	COMMON /ESTR/ LAMSTR(300)	PL170010
	DIMENSION C(201-3)	PLT70011
C	IN ORDER TO SAVE SOME SPACE:	PLT70012
-	EQUIVALENCE (B(1),C(1))	PLT70013
	INTEGER ND	PLT70014
	ND=201	PLT70015
	WRITE (6,1) (LAMSTR(I),I=1,ICOUT)	PLT70016
	1 FORMAT (OTABLE OF EIGENVALUES DURING THE POWER ITERATION: ,	PLT70017
	X //,(1P5E25.14))	PLT70018
C		PLT70019
	IF (JPLUT.EQ.0) GO TO 20	PLT70020
	DO 10 I=1,ICOUT	PL T70021
	B(1,1)=1	PLT70022
	10 B(I,2)=LAMSTR(I)	PLT70023
	CALL PRTPLT(1,B,ICOUT,2,ICOUT,0,300,2,1)	PLT70024
	WRITE (6,11)	PLT70025
	11 FORMAT ("OPLOT OF THE EIGENVALUE HISTORY THROUGH THE ITERATIONS.")	PLT70026
	20 IF (IPLJT.EQ.O) RETURN	PLT70027
	KR1=KR+1	PLT70028
	DO 30 I=1,KR1	PLT70029
	C(I,1)=I	PLT70030
	C(I,2)=PHI(1,I)	PLT70031
	30 C(I,3)=PHI(2,I)	PLT70032
	CALL PRTPLT(2,C,KR1,3,KR1,0,ND,3,2)	PLT70033
	WRITE (6,31)	PLT70034
	31 FORMAT ("OFINAL CONVERGED CONNECTING FLUX POINTS; F(K).",//,	PLT70035
	X 5X, FAST FLUX: .',/,5X, THERMAL FLUX: -')	PLT70036
	·	PAGE 230

RETURN END PLT70037 PLT70038

```
SOLV0001
      SUBROUTINE SULV3D(N,A,X,Y)
      SOLVES THE N DUUBLE PRECISION MATRIX EQUATIONS: A*X = Y,
                                                                                    SOLV0002
С
                                                                                    SOLV0003
      FOR X - GIVEN THE N BY N TRIDIAGONAL MATRIX A
С
                                                                                    SOLV0004
      AND THE SOURCE VECTOR Y.
С
         METHOD IS FORWARD ELIMINATION FOLLOWED BY BACKWARD SUBSTITUTION.
                                                                                    SOLV0005
С
                                                                                    SOLV0006
С
         CF - WACHPRESS, PAGE 23.
                                                                                    SOLV0007
      REAL*8 A, X, Y, H, P, D
      DIMENSION A(201,3), X(201), Y(201), H(201), P(201)
                                                                                    SOLV0008
                                                                                    SOLV0009
      IF (A(1,2).EQ.0.0) GO TO 10
                                                                                    SOLV0010
      H(1) = -A(1,3)/A(1,2)
                                                                                    SGLV0011
      P(1)=Y(1)/A(1,2)
                                                                                    SOLV0012
      DO 1 M=2.N
                                                                                    SOLV0013
      D=A(M,2)+A(M, 1)+H(M-1)
                                                                                    SOLV0014
      IF (D.EQ.0.0) GO TO 20
      P(M) = (Y(M) - A(M, 1) + P(M-1)) / D
                                                                                    SOLV0015
                                                                                    SOLV0016
      IF (M.EQ.N) GO TO 1
                                                                                    SOLV0017
      H(M) = -A(M, 3)/D
                                                                                    SOLV0018
    1 CONTINUE
                                                                                    SOLV0019
      X(N) = P(N)
                                                                                    SOLV0020
      DO 2 I=2,N
                                                                                    SOLV0021
      M=N+1-I
                                                                                    SOLV0022
    2 X(M) = P(M) + H(M) * X(M+1)
                                                                                    SOLV0023
      RETURN
         IN CASE OF ANY IMPENDING ZERO DIVISORS:
                                                                                    S0LV0024
C.
                                                                                    SOLV0025
   10 WRITE (6.11)
                                                                                    SOLV0026
   11 FORMAT ("OFIRST ELEMENT OF A, A(1,1), IS ZERO.",/,
         5X, BETTER FIX IT BOSS. *)
                                                                                    SOLV0027
     X
      GO TO 30
                                                                                    SOLV0028
                                                                                    SOLV0029
   20 WRITE (6,21) M
   21 FORMAT (!OZERO DIVISOR ENCOUNTERED IN EQUATION M = ', I3, '.',/,
                                                                                    SOLV0030
                                                                                    SOLV0031
         5X, BETTER FIX IT BOSS. )
     X
   30 WRITE (6,31)
                                                                                    SOLV0032
                                                                                    SOLV0033
   31 FORMAT ("DEXECUTION TERMINATED.")
                                                                                    SOLV0034
      CALL EXIT
                                                                                    SOLV0035
      RETURN
                                                                                    SOLV0036
      END
                                                                                PAGE 232
```

	SUBROUTINE NORMAL(PHI,N)	NORLOOO1
C	NORMALIZES THE GROUP FLUXES TO ONE. NOT BOTH GROUPS.	NORL 0002
	REAL*8 PHI(2,201), A	NORLOOO3
	A=DABS(PHI(1,1))	NORL0004
	DO 1 IG=1,2	NORL0005
	DO 1 I=1,N	NORLOOO6
	IF (DABS(PHI(IG,I)).GT.A) A=DABS(PHI(IG,I))	NORLOOO7
]	1 CONTINUE	NORL 0008
•	DO 2 IG=1,2	NORL0009
	DO 2 I=1, N	NORL0010
	2 PHI(IG,I)=PHI(IG,I)/A	NORLO011
	RETURN	NORL 0012
	END	NORL0013

	SUBROUTINE NORM2(PSI,N)	NOR20001
C	NORMALIZES BOTH ENERGY GROUPS OF PSI TO 1.0.	NOR20002
	REAL*8 PSI(2,201), A(2)	NOR20003
	DO 1 IG=1,2	NOR20004
	A(IG) = DABS(PSI(IG, 1))	NOR20005
	DO 1 I=1.N	NOR20006
	IF (DABS(PSI(IG,I)).GT.A(IG)) A(IG)=DABS(PSI(IG,I))	NOR20007
	1 CONTINUE	NOR20008
	DO 2 IG=1.2	NOR20009
	DO 2 I=1.N	NOR20010
	$2 PSI(IG \cdot I) = PSI(IG \cdot I) / A(IG)$	NOR20011
	RETURN	NOR20012
	END	NOR20013

	SUBROUTINE PHIPLT(L)	PH1P0001
С	PLOTS THE GROUP FLUX HISTORY, WITH UP TO 5 GROUP FLUXES PER PLOT.	PHIP0002
C	FAST AND THERMAL GROUP FLUXES ARE PLOTTED SEPERATELY.	PHIP0003
С	L IS THE NUMBER OF FLUXES TO BE PLOTTED.	PHIP0004
С	L IS BETWEEN 1 AND 5.	PHIP0005
-	IMPLICIT REAL*8 (A-H,O-Z)	PH1P0006
	COMMON /B1/ IBC	PH1P0007
	COMMON /B2/ KR,N	PHIP0008
	COMMON /B5/ S(201), A(201,6), B(201,6)	PHIP0009
	COMMON /86/ TE1(2,5),TE2(2,5),TE3(5),IN(5)	PHIP0010
	COMMON /ER/ EPS1, EPS2, EPS3	PHIP0011
	COMMON /FSTR/ PHISTR(2,201,6)	PHIP0012
	DIMENSION SYMBOL(5)	PHIP0013
	INTEGER SYMBOL / ,	PHIP0014
	ND=201	PHIP0015
	KR1=KR+1	PHIP0016
С	SET UP B.C. CONDITIONS	PHIP0017
	IF (IBC.EQ.4) GO TO 5	PHIP0018
	IF (IBC.EQ.3): GO TO 3	PHIP0019
	DO 2 IG=1,2	PHIP0020
	DO 2 K=1,L	PHIP0021
	DO 1 I=1,N	PHIP0022
	J=N+1-I	PHIP0023
	1 PHISTR(IG,J+1,K+1)=PHISTR(IG,J,K+1)	PHIP0024
	2 PHISTR(IG,1,K+1)=0.	PHIP0025
	3 IF (IBC.EQ.2) GO TO 5	PHIP0026
	DO 4 IG=1,2	PHIP0027
	DO 4 K=1,L	PHIP0028
	4 PHISTR(IG,KR1,K+1)=0.	PHIP0029
	5. CONTINUE	PHIP0030
С	FLUXES IN PHISTR HAVE BEEN NORMALIZED IN POWER.	PHIP0031
C	PUT THE FAST FLUX IN A, AND THE THERMAL FLUX IN B:	PHIP0032
	L1=L+1	PHIP0033
	DO 10 K=1,L1	PHIP0034
	DO 10 I=1,KR1	PHIP0035
	A(I,K)=PHISTR(1,I,K)	PHIP 0036
		PAGE 235

.

	10 BIL.K)=PHISTR(2.I.K)	PHIP0037
C	PLOT THE L FAST FLUX SHAPES ON ONE GRAPH:	PHIP0038
Ŭ	CALL PRTPLT(0.A.KR1.L1.KR1.0.ND.6.2)	PHIP0039
	WRITE (6.20)	PHIP0040
	20 EORNAT (/. OFAST FLUX ITERATION HISTORY PLOT /)	PHIP0041
	WRITE (6.30)	PHIP0042
	20 EDRMAT (PHIP0043
	Y TOKEN TOKEN TO A SYMBOL TO SALE THERATION NUMBER: 1.7X. FRROR CRITERIA.	PHIP0044
	Y 11X FERRORI, 13X TOLERANCET)	PHIP0045
	DO 35 I=1.1	PHIP0046
	35 WRITE (6.40) SYMBOL(I), IN(I), TE1(), I), EPS1, TE2(1,I), EPS2,	PHIP0047
	$Y = TF3(T)_FDS3$	PHIP0048
	40 EDRMAT (/.12X.A1.15X.T3.16X.*FLUX*.14X.1PD15.5.5X.1PD15.5./.	PHIP0049
	x = 47x, MEAN SQ, ELUX, 5X, 1PD15, 5, 5X, 1PD15, 5, /.	PHIP0050
	x = 47x, FIGENVALUE, 8X, 1PD15, 5, 5X, 1PD15, 5)	PHIP0051
C		PHIP0052
č	PLOT THE L THERMAL FLUX SHAPES ON THE OTHER GRAPH:	PHIP0053
v	$(AII - PRTPITIO_B \cdot KR1 \cdot I \cdot KR1 \cdot O \cdot ND \cdot 6 \cdot 2)$	PHIP 0054
	WRITE (6.50)	PHIP0055
	50 FORMAT (/. OTHERMAL FLUX ITERATION PLOT. './)	PHIP0056
	WRITE (6.30)	PHIP0057
	D0.55 I=1.1	PHIP0058
	55 WRITE (6.40) SYMBOL(I).IN(I).TE1(2.1).EPS1.TE2(2.1).EPS2.	PHIP0059
	X TE3(I).EPS3	PHIP0060
	RETURN	PHIP0061
	END	PHIP0062

4

•

	SUBROUTINE PRTPLT(NO, B, N, M, NL, NS, KX, JX, ISP)	PR TP 0001
C**	***MODIFIED VERSION FROM THAT OF SSP OR ANY OTHER SOURCE *****	PRTP0002
C	CONVERTS DOUBLE PRECISION B ARRAY TO REAL*4.	PRTP0003
C	PLDT SEVERAL CROSS-VARIABLES VERSUS A BASE VARIABLE	PRTP0004
C	ND - CHART NUMBER (3 DIGITS MAXIMUM)	PRTP0005
C	B - MATRIX OF DATA TO BE PLOTTED. FIRST COLUMN REPRESENTS	PR TP 0006
C	BASE VARIABLE AND SUCCESSIVE COLUMNS ARE THE CROSS-	PR TP 0007
C	VARIABLES (MAXIMUM IS 9).	PRTP0008
C	N - NUMBER OF ROWS IN MATRIX B	PRTP0009
C	M - NUMBER OF COLUMNS IN MATRIX B (EQUAL TO THE TOTAL	PRTP0010
C	NUMBER OF VARIABLES). MAXIMUM IS 10.	PRTP0011
C	NL - NUMBER OF LINES IN THE PLOT. IF O IS SPECIFIED, 50	PR TP 00 12
C	LINES ARE USED. THE NUMBER OF LINES MUST BE EQUAL TO	PRTP0013
С	OR GREATER THAN N	PR TP 0014
C	(USUALLY USE NL=N, AND ISP FOR SPACING.)	PR TP 0015
C	NS - CODE FOR SORTING THE BASE VARIABLE DATA IN ASCENDING	PRTP0016
С	ORDER	PRTP0017
С	O SORTING IS NOT NECESSARY (ALREADY IN ASCENDING	PRTP0018
C	ORDER).	PR 1P 0019
C	1 SORTING IS NECESSARY.	PR TP 00 20
C	KX- DIMENSION OF B MATRIX FROM DIMENSION STATEMENT.	PRTP0021
С	IT MUST BE OF THE FORM B(KX,JX)	PRTP0022
С	JX- DIMENSION OF B MATRIX FROM DIMENSION STATEMENT.	PRTP0023
C	IT MUST BE OF THE FORM B(KX,JX)	PRTP0024
С	ISP- CODE FOR SPACING LINES WHILE PLOTTING:	PRTP0025
C	1 SINGLE SPACE	PRTP0026
C	2 DOUBLE SPACE	PRTP0027
С	3 TRIPLE SPACE	PR TP 0028
C	•••ETC•	PRTP0029
	REAL*8 B	PR TP 0030
	DIMENSIUN DUT(101), YPR(11), IANG(9), A(1500), B(KX, JX)	PRTP0031
	INTEGER IDUM/#1*/,IANG/*.*;*-*,*+*,*#*,***,*A*,*B*,*C*,*D*/	PRTP0032
	INTEGER OUT	PRTP0033
	I=1	PRTP0034
	DO 39 J=1,M	PRTP0035
	DO 39 K=1,N	PRTP0036
		PAGE 237

	$A(\mathbf{I}) = B(\mathbf{K}_{-1})$	PRTP0037
		PRTP0038
20		PRTP0039
	1 EORMAT(1H1.60X.7H CHART .13.//)	PR TP 0040
	$2 = CRMAT(1H_{2} = 1)_{2} = 4.5 \times 101(1)$	PRTP0041
	3 FORMAT(1H)	PRTP0042
	$7 \text{ FORMAT(1H_{1})} + + + + + + + + + + + + + + + + + + $	PR IP0043
	1 + + + + + + +	PRTP0044
	8 EDRMAT(1H .9X.11E10.4)	PRTP0045
		PRTP0046
	IE(NS) = 16 - 16 - 10	PRTP0047
C	SORT BASE VARIABLE DATA IN ASCENDING ORDER	PR TP 0048
Ŭ	10 DO 15 I=1.N	PR TP 0049
	$DO 14 J=I \cdot N$	PRTP0050
	IF(A(1)-A(J)) 14. 14. 11	PR TP 0051
	11 L=I-N	PRTP0052
	LL=J-N	PRTP0053
	DO 12 K=1,M	PRTP0054
	L=L+N	PRTP 0055
	LL=LL+N	PRTP0056
	F=A(L)	PRTP0057
	A(L) = A(LL)	PRTP0058
	12 A(LL)=F	PR TP 0059
	14 CONTINUE	PRTP0060
	15 CONTINUE	PRTP0061
С	TEST NLL	PRTP0062
	16 IF(NLL) 20, 18, 20	PRTP 0063
	18 NLL=50	PRTP0064
С	PRINT TITLE	PRTP 0065
	20 WRITE(6,1)ND	PRTP0066
С	DEVELOP BLANK AND DIGITS FOR PRINTING	PRTP0067
	BLANK=0	PRTP0068
C	FIND SCALE FOR BASE VARIABLE	PRTP0069
	XSCAL=(A(N)-A(1))/(FLOAT(NLL-1))	PRTP0070
C	FIND SCALE FOR CROSS-VARIABLES	PRTP0071
	YMIN=1.0E75	PR 190072
		PAGE 238

		YMAX=-1.0E75	PRTP0073
		M1=N+1	PR TP 0074
		M2=M*N	PR TP 0075
		DO 40 J=N1, M2	PRTP0076
		IF (A(J).GT.YMAX) YMAX=A(J)	PR TP 0077
		IF (A(J).LT.YMIN) YMIN=A(J)	PRTP0078
	40	CONTINUE	PRTP0079
		YSCAL = (YMAX - YMIN)/100.0	PRTP0080
С		CHECK TO SEE IF THE SPREAD IN Y IS TOO SMALL FOR PLOTTING:	PRTP0081
-		IF (YSCAL.EQ.0.0) GD TO 100	PRTP0082
C		OTHERWISE, A DIVIDE CHECK WILL OCCUR AFTER STATEMENT 56.	PRTP0083
Č		FIND BASE VARIABLE PRINT POSITION	PRTP0084
-		XB=A(1)	PRTP0085
		L=1	PRTP0086
		MY=M-1	PRTP0087
		IT=ISP-1	PRTP0088
		DO 80 I=1,NLL	PRTP0089
		F=I-1	PR TP 0090
		XPR=XB+F*XSCAL	PRTP0091
		IF(A(L)-XPR-XSCAL*0.5) 50,50,70	PRTP0092
С		FIND CRUSS-VARIABLES	PRTP0093
	50	DO 55 IX=1,101	PRTP0094
	55	OUT(IX)=BLANK	PRTP0095
	57	CONTINUE	PRTP 0096
		DO 60 $J=1, MY$	PRTP0097
	56	LL=L+J*N	PRTP0098
		JP=((A(LL)-YMIN)/YSCAL)+1.0	PRTP0099
		OUT (JP)=IANG(J)	PRTP0100
	60	CONTINUE	PRTP0101
С		PRINT LINE AND CLEAR, OR SKIP	PRTP0102
		IF(L.EQ.N) GD TO 61	PRTP0103
		L=L+1	PRTP0104
		IF(A(L)-XPR-XSCAL*0.5) 57,57,61	PRTP0105
	61	CONTINUE	PRTP0106
		WRITE(6,2)XPR,(OUT(IZ),IZ=1,101)	PRTP0107
		IF (IT.EQ.0) GO TO 65	PRTP0108
			PAGE 239

	DO 64 IV=1.IT	PRTP0109
64	WRITE (6.3)	PRTP0110
- 65		PRTP0111
70	WRITE(6.3)	PRTP0112
80	CONTINUE	PRTP0113
- 00	DDINT CONCEVADIARIES NUMBERS	PRTP0114
C	UDITELS.7)	PRTP0115
		PRTP0116
		PRTP0117
0.0	UU YU NN=1,7 MDD/WN+11_MDD/WN1/VSCAL+10_0	PRTPOILS
90	YPRIKN+IJ=YPRIKNJ+YSCAL+IV•U	
	YPR(11)=YMAX	
	WRITE(6,8)(YPR(IP),IP=1,11)	PRIPUIZU
	RETURN	PRIPUIZI
100	WRITE (6,101)	PRTP0122
101	FORMAT LIONO PLOT IS GENERATED BECAUSE THE SPREAD IN THE Y VARIBLE	PRTP0123
101	X IS TOO SMALL	PR TP 0124
	Y 5Y. LEVECHTION CONTINUING.")	PRTP0125
		PRTP0126
		PRTP0127

•

		SUBROUTINE PUNCH	PNCH0001
С		PUNCHES THE FLUX AND CURRENT AND ADJOINTS OUT AFTER CONVERGENCE.	PNCH0002
C		CALLED BY IPUNCH=1.	PNCH0003
		IMPLICIT REAL*8 (A-H,O-Z)	PNCH0004
		COMMON /B2/ KR	PNCH0005
		COMMON /84/ F(2,201), C(2,201)	PNCH0006
		COMMON /B47/ F7(2,201), C7(2,201)	PNCH0007
		WRITE (7,1) KR	PNCH0008
	1	FORMAT (15)	PNCH0009
		N=KR+1	PN CH0010
С		PUNCH OUT THE FAST FLUX:	PNCH0011
		WRITE (7,10) (F(1,J),C(1,J),F7(1,J),C7(1,J),J=1,N)	PNCH0012
С		PUNCH DUT THE THERMAL FLUX:	PNCH0013
		WRITE (7,10) (F{2,J),C(2,J),F7(2,J),C7(2,J),J=1,N)	PNCH0014
	10	FORMAT (4E20.7)	PNCH0015
		RETURN	PNCH0016
		END	PNCH0017

PAGE 241

F.2. SOURCE LISTING of Program LINEAR

•

Figure F.2. Structure of Program LINEAR.

C	PROGRAM LINEAR:	LINEDOOL
č	TWO GROUP PROPOSED METHOD USING LINEAR BASIS FUNCTIONS.	LINE0002
-	CALL TIMING(II)	LINE0003
	CALL SYNTH	LINE0004
	CALL TINING(14)	LINE0005
	CALL POWER	LINE0006
	CALL TIMING(16)	LINE0007
	CALL TIMING(17)	LINE0008
		LINE0009
	CALL DUPOT	L INE0010
c	TIMING EVECHTION	LINE0011
L	UDITE (6.30)	LINE0012
20	FORMAT (1H1. TIMING PROGRAM EXECUTION: "./)	LINE0013
50	I-IA-II	LINE0014
	J-17-11 HD1TE/6.7011 1	LINE0015
		LINE0016
	$J = 10^{-14}$	LINE0017
	I-17-16	LINE0018
	WRITE(6,706) 1	LINE0019
	1=18-17	LINE0020
	URITE(6.707) J	LINE0021
701	FORMAT (1H . + SYNTH HAS TAKEN . 16. / /100 SECONDS.)	LINE0022
704	EODWAT (1H . POWER HAS TAKEN', T6. / /100 SECONDS.)	LINE0023
706	EDRMAT (1H . CHRENT HAS TAKEN', 15. / 100 SECONDS.)	LINE0024
707	FORMAT (1H .+ OUTPUT HAS TAKEN . 15. 1 / 100 SECONDS. 1)	LINE0025
101	CALL TIMING (120)	LINE0026
		LINE0027
	UDITE(6.720)	LINE0028
720	EDDWAT (1HO. THIS PHN HAS TAKEN! IG. / /100 SECONDS TO RUN.!)	LINE0029
120	CTOD	LINE0030
		LINE0031
	END	

		SUBROUTINE SYNTH		SYNT0001
С		PROPOSED LINEAR SYNTHESIS METH	HOD:	SYNT0002
С	* *	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* SYNT0003
С		ADJOINT QUANTITIES OF VARIBLE	S ARE DENOTED BY 7 RATHER THAN *.	SYNT0004
С		THUS: PHI7 (RATHER THAN PHI*) IS THE ADJOINT OF PHI. ETC.	SYNT 0005
		IMPLICIT REAL*8 (A-H,K-Z)		SYNT0006
		COMMON /B1/ IBC, IPLOT, JPLOT, IPUNG	CH, ISEE	SYNT0007
		COMMON /B2/ KR, NN		SYNT0008
		COMMON /B3/ L1(26,26),L2(26,26),	F1(26,26),F2(26,26),	SYNT0009
		F3(26,26),F4(26,26),	T(26,26)	SYNT0010
		COMMON /B5/ KA0(2,25), KA1(2,25)	,KA2(2,25),KB0(2,25),KB1(2,25),	SYNT0011
		KB 2(2,25), LAO(2,25)	LA1(2,25),LA2(2,25),SRO(1,25),	SYNT0012
		SR1(1,25),SR2(1,25)	,KCO(1,25),KC1(1,25),KC2(1,25),	SYNT0013
		KDO(1,25),KD1(1,25)	,KD2(1,25),	SYNT0014
		P(2,25),P1(2,25),Q(2	2,25),	SYNT0015
		Q1(2,25),R(2,25),PO	(2,25),P07(2,25),PH(2,25),	SYNT0016
		K PH7(2,25),AL(2,25),I	BL(2,25),CL(2,25),AF(4,25),	SYNT0017
	X BF(4,25),CF(4,25),AT(25),BT(25),CT(25),			SYNT0018
	X ALK(2), BLK(2), AFK(4), BFK(4), ATK(2),			SYNT0019
	X BTK(2),BLO(2),CLO(2),BFO(4),CFO(4),BTO(2),CTO(2),			SYNT0020
		X CO(2), CH(2) COMMON /CHIF/ CHI(2) COMMON /XAXIS/ HX, HR(25)		
COMMON /BH/ X(101), H(101)				SYNT0024
		COMMON /ER/ EPS1, EPS2, EPS3		
		DIMENSION PHI(2,101), PHI7(2,101)	,CUR(2,101),CUR7(2,101),	SYNT0026
		X A(2,100),F(2,100),D(2,	100),S(2,100),DI(2,100),	SYNT0027
		X XU(2,100)		SYNT0028
		DIMENSION V(2),V1(2),V2(2),V3(2)		SYNT0029
		DIMENSION ITF(25), KTF(25)		SYNT0030
С		IN ORDER TO SAVE SPACE:		SYNT0031
		EQUIVALENCE (PHI(1),L1(1)),	(PHI7(1),L1(301)),	SYNT0032
		K (CUR(1),L2(1)),	(CUR7(1), L2(301)),	SYNT0033
		K (XU(1),F1(1)),	(A(1),F1(301)),	SYNT 0034
		X (F(1),F2(1)),	(D(1),F2(301)),	SYNT0035
		x (S(1),T(1)),	(DI(1),T(301))	SYNT 0036
				PAGE 245

			SYNT0037
		TNTEGED KD.K.KS.KS1.KRO.NN.NUMITE.KTE	SYNT0038
		DEAD (5.200) TITLE	SYNT0039
	200		SYNT0040
	200	HDITE 14 2011 TITIE	SYNT0041
	201	HRIE 101201/ 111CC	SYNT0042
c	201	DEAD IN THE NUMBER OF REGION TRIAL FUNCTIONS AND TYPE OF B.C.S.	SYNT0043
C C		AC HEAL AS THE TOLEDANCES AND THE DITDUT TYPES DESIRED:	SYNT0044
L		AS WELL AS THE TOLERANCES AND THE OUTFOR THEES DESIRED.	SYNT0045
		$\begin{array}{c} KEAU \{D_1I\} KK_1ID_1EPS1_1EPS2_1EPS2_1EPS3_1IEU_1JFU_1U_1U_1U_1U_2U_1\mathsf$	SYNT0046
	1	FURMAN (215,5010.5,015)	SYNT0047
_		IF (IBU-EQ-3) IBU=2 DEAD IN THE TYPE MUMBED OF EACH TE RECION:	• SYNT0048
C		READ IN THE TYPE-NUMBER OF EACH IF REGION.	SYNT 0049
		REAU (5,100) (1) F(1),1=1,KK)	SYNT0050
_	100	FURMAL (2012)	SYNT0051
C		READ IN THE FISSION TELEDS FOR EACH GROUP.	SYNT0052
		READ (5,101) CHI(1), CHI(2)	SYNT0053
	101	FURMAI (2F10-5)	SYNT0054
		KRU=KK-1 HDITE (/ DA KR IDC) ISEE ITH ITC	SYNT0055
	~	WRITE (0,2) KK, IDU, ISEE, ITH, ITU	SYNT0056
	2	FURMAL ("UUNE DIMENSIONAL ING GROUP LINEAR SINTHESIS FROMAND 477	SYNT0057
		$X = 5X_1 \cdot \text{NUMBER UP CONSTRAINT REGIONS} = 12.77$	SYNT 0058
		X 5X, BUUNDARY CUNDITION NUMBER: IDC - 912779	SYNT0059
		$X = 5X_{1}$ AMUUNI UF UUTPUI REQUESTED: ISEE = $1/2$	SYNT0060
		$X = 5X_{1}$ (TYPE OF WEIGHTING FUNCTIONS: ITW = $\frac{1}{12}$ //	SYNT0061
		X 5X, 14PE OF CURRENT FUNCTIONS: ITC - 1127//1	SYNT0062
		X 5X, REGIUNAL INPUT MATERIAL PROPERTIES AND FLOX SHAPES FOLLOW F	SYNT0063
		$X = \frac{1}{5}X_{3}$ [1] 15EE > 0; $\frac{1}{7}/\frac{1}{7}$	SYNT0064
		X 5X, FLUX SHAPES ARE LINEAR IN EACH INDICATED SUBREGION.	SYNT0065
		IF (110.EQ.0) WRITE (0,10)	SYNTOO66
		IF (ITC.EQ.1) WRITE (0,17)	STATO067
	16	FORMAT (5X, CURRENTS ARE CUNSIANT IN EACH INDICATED SUBRECION.	STATUUUU SAAD TAV
	17	FORMAL (5X, CURRENTS ARE LINEAK IN EACH INDICATED SUBREGIUN.")	OANTINYS
		IF (ITW.EQ.0) WRITE (6,110)	SYNT0070
		IF (IIW.EQ.1) WRITE (5,117)	STAT 0010
	116	FORMAT (/, 5X, WEIGHTING FLUX = FLUX; ', /, 5X, WEIGHTING CURRENT = -	STHUUTL SVNT0072
		XCURRENT. 1	DACE 246
			FAGE 240

	117 FORMAT (/,5X, WEIGHTING FLUX = ADJOINT FLUX; ',/,5X, WEIGHTING CURR	SYNT0073
	XENT = ADJOINT CURRENT.")	SYNT0074
	WRITE (6,20) EPS1,EPS2,EPS3,IPLOT,JPLOT,IPUNCH	SYNT0075
	20 FORMAT (//, UTULERANCES TO POWER ARE : EPS1 = ',1PD10.3,/,	SYNT0076
	X 28X, *EPS2 = *, 1PD10.3, /, 28X, *EPS3 = *, 1PD10.3, /,	SYNTO077
	X ! ODUTPUT PARAMETERS TO POWER ARE: IPLOT = ! ,I1,/,	SYNT0078
	$X = 34X_1 + JPLOT = +, I1_1 + 34X_1 + IPUNCH = +, I1$	SYNT0079
	WRITE (6,22) CHI(1), CHI(2)	SYNT0080
	22 FORMAT (/, + OFISSION YIELDS ARE: CHI(1) = +, F10.5, /,	SYNT0081
	X 22X, 'CHI(2) =', F10.5)	SYNT0082
	IF ((KR.LE.2).AND.(IBC.EQ.1)) CALL ERROR(1,KR)	SYNT0083
	IF (KR.GT.25) CALL ERROR(2,KR)	SYNT0084
	IF (EPS1.LT.1.0E-16) CALL ERROR(6,1)	SYNT0085
	IF (EPS2.LT.1.0 E-16) CALL ERROR(6,2)	SYNT0086
	IF (EPS3.LT.1.DE-16) CALL ERROR(6,3)	SYNTOC87
	IF ((IBC.LT.1).OR.(IBC.GT.7)) CALL ERROR(7,IBC)	SYNT0088
	C DUMMY NORMAL VECTOR XU = UNITY. (FOR THE INTEGRATION FUNCTIONS)	SYNT0089
	DO 21 IG=1,2	SYNT0090
	DO 21 II=1,100	SYNT0091
	21 XU(IG,II)=1.0	SYNT0092
	ITCO=2	SYNT0093
	ITC1=2	SYNT 0094
	IF (ITC.EQ.1) GO TO 23	SYNT0095
	ITCO=0	SYNT 0096
	ITC1=1	SYNT 0097
	C COUNTER OF THE NUMBER OF TYPE-NUMBERS OF EACH TF REGION:	SYNT CO98
	23 NUMITE=1	SYNT0099
	HX=0.0	SYNT0100
	C BEGIN TO READ IN THE TF REGION DATA AND FILL THE ARRAYS,	SYNT0101
	C DEPENDING ON THE TYPE-NUMBER OF EACH T/F REGION.	SYNT 0102
	DO 50 I=1,KR	SYNT0103
	IF (ITF(I).EQ.NUMITF) GO TO 110	SYNT0104
,	C FILL THE ARRAYS FROM OLD TF REGION TYPES:	SYNT 0105
	J=ITF(I)	SYNT0106
	CALL REPEAT(I,KTF(J))	SYNT0107
	GO TU 50	SYNT0108
		DACE 247

C	110	READ IN THE TE REGION'S DATA FOR NEW TE REGION TYPE-NUMBERS:	SYNTO109
	110	NUMITE NUMITE 1)-I	STNIULLU
ſ		DEAD THE SHADECTON NUMBED AND THE NUMBED OF DECTONS IN THE SUBDECTOR	STNTOILL
C		DEAD (5.1) V VC	STRICTL2
		TE IVE OF LOON CALL EDDODIO IN	STATUIIS SVNTA114
c		CHECK EAD INDDODED SEAHENCING OF INDUT DATA+	STATULIA SVNTALLS
L		TE (T NE K) CALLEDODIA IN	STATULLS
c		IF (I.NEAK) - UALL EKKUK(4)I) DEAD IN THE COMMETRY AND THE MATERIAL DOORDTIES.	STNIULIO SVNTOL17
L		KEAU IN THE GEUMETRY AND THE MATERIAL PROPERTIES:	STNIULLI SVNTALIO
		KEAU (393) (X(J);X(J+1);H(J);A(1;J);F(1;J);U(1;J);S(1;J);	STINIULIO
		$A(2,J)_{j}F(2,J)_{j}U(2,J)_{j}J=1_{j}KSJ$	STNIULLY
~	3	$FUKMAI = \{3F1U, 5, 4U1U, 3, 7, 3UX, 3U1U, 3\}$	STNIUIZU SYNTO121
L		KEAD IN THE REGIUNAL GRUUP TRIAL FUNCTIONS:	STNIUIZI
			STNIULZZ
		$\begin{array}{c} REAU \{5, 4\} \{PHI \mid 1, \mathbf{J}\}_{f} UK \{1, \mathbf{J}\}_{f} PHI \mid \{1, \mathbf{J}\}_{f} UK \{1, \mathbf{J}\}_{f} J = 1, KS1 \} \\ REAU \{5, 4\} \{PHI \mid 1, \mathbf{J}\}_{f} UK \{1, \mathbf{L}\}_{K} UK $	STNIU123
		$KEAU = \{ J_{J} \neq J_{J} \in UK \{ Z_{J} \} = UK \{ Z \}$	STNIU124
	4	FURMAI (14020.7)	STNIU125
~		THE LINELO IN GUILING FROM THE CIVEN FUNCTIONS.	STNIUI20
L		FURM WEIGHTING FUNCTIONS FROM THE GIVEN FUNCTIONS:	STNIULZI SYNTOLOO
			STNIUL28
		DU IIY JEIgKSI	STNTU129
	110	PHI/(IG,JJ=PHI(IG,J)	STNIULSU
	119	LUR(IG,J)=-LUR(IG,J)	STNIU131
~	120		SYNIU132
C		FURM THE REGIUN CUNSTANT CURRENTS:	SYNTU133
		$DU \ 7 \ 1G=1,2$	SYN10134
			SYNIU135
	-	UR(16, J) = -D(16, J) + (-PHI(16, J) + PHI(16, J + I))/H(J)	SYNIUL36
	6	CUR7(1G,J)=+D(1G,J)*(-PH17(1G,J)+PH17(1G,J+1))/H(J)	SYNIOL37
		CUR(IG,KSI)=0.0	SYNIOL38
_	7	CUR7(IG,KS1)=0.0	SYNF0139
С	-	WRITING OUT THE INPUT INFORMATION:	SYNT0140
	5	IF (ISEE.EQ.0) GO TO 14	SYNT0141
		WRIIE (6,10) K, KR, KS, (J, X(J), X(J+1), H(J), A(1, J), F(1, J), D(1, J),	SYNTO142
		X = S(1, J), A(2, J), F(2, J), D(2, J), J=1, KS)	SYNT0143
	10	FORMAT ('IINPUT MATERIAL PROPERTIES FOR REGION NUMBER ', I3,	SYNT0144
			PAGE 248

	X ', OF THE ', I3, ' USED.', //,	SYNT0145
	X 5X, THIS REGION IS DIVIDED INTO ', I3, ' HOMOGENEOUS SUBREGIONS A	SYNT0146
	XS FOLLOWS: 1,//,	SYNTO147
	X 5X, 'FAST GROUP CONSTANTS APPEAR FIRST:',//,	SYNT0148
	X * SUBREGION #*,5X, 'INTERNAL BOUNDARIES', 10X, 'WIDTH', 3X,	SYNT0149
	X • TOTAL CX (1/CM), 3X, *FISSION CX (1/CM), 6X, *DIFFUSION (CM)*,	SYNT0150
	X 4X, SCATT.CX (1/CM), /,	SYNT0151
	X 5X, "I", 11X, "X(I)", 9X, "X(I+1)", 11X, "H(I)", 13X, "A(IG,I)", 13X,	SYNT0152
	X *F(IG,I)*,13X,*D(IG,I)*,14X,*S(1,I)*,//,	SYNT0153
	X (16,3F15.4,4D20.8,/,51X,3D20.8))	SYNT0154
C		SYNT0155
	DO 15 IG=1,2	SYNT0156
	15 WRITE (6,11) IG,K,KR,(J,X(J),PHI(IG,J),CUR(IG,J),PHI7(IG,J),	SYNT0157
	X = CUR7(IG,J), J=1, KS1)	SYNT0158
	11 FORMAT ("IINPUT TRIAL FUNCTIONS FOR GROUP", 12, " FOR REGION", 13,	SYNT0159
	X • OUT OF THE •, I3, • USED: •,//,	SYNT0160
	X • INDEX, 5X, COORD, 16X, FLUX, 13X, CURRENT, 8X, WEIGHT FLUX,	SYNTO161
	X 5X, WEIGHT CURRENT //, (16, F10.5, 4D20.7))	SYNT0162
	14 CONTINUE	SYNTO163
С	END OF THE IN-OUT SECTION:	SYNT0164
С	DEFINING MISC. ARRAYS FOR THE INTEGRATION FUNCTIONS:	SYNT0165
C	LEGNTH OF THE SUBREGION: HT	SYNT0166
	HT = X(KS1) - X(1)	SYNT0167
	HR(K)=HT	SYNT0168
	HX=HX+HR(K)	SYNTO169
С	INVERSE OF THE D ARRAYS:	SYNT0170
	DO 13 J=1,KS	SYNTO171
	$DI(1, J) = 1 \cdot / D(1, J)$	SYNTO172
	13 $DI(2,J)=1./D(2,J)$	SYNTO173
С	FORMATION OF THE INTEGRATION FUNCTIONS:	SYNTO174
	CALL BHSET(KS)	SYNIUL75
С	DO FOR ALL ENERGY GROUPS:	SYNTO176
	DO 50 IG=1,2	SYNIULII
	KAOLIG, KJ=GIFLO, IG, PHI7, IG, A, PHI, KS, Z)	SYNIU178
	KA1(1G,K)=GIF(1,IG,PHI7,IG,A,PH1,KS,2)	SYN10179
	KA2(16,K)=G1F(2,I6,PH17,16,A,PH1,KS,2)	SYNIU180
		PAGE 249

	$KBO(IG,K) = GIE(0 \cdot IG \cdot PHI7 \cdot IG \cdot F \cdot PHI \cdot KS \cdot 2)$	SYNTO181
	KB1(IG, K)=GIF(1, IG, PHI7, IG, F, PHI, KS, 2)	SYNTO182
	KB2(IG, K) = GIF(2, IG, PHI7, IG, F, PHI, KS, 2)	SYNT0183
	LAO(IG,K)=GIF(0,IG,CUR7,IG,DI,CUR,KS,ITCO)	SYNTO184
	LA1(IG.K)=GIF(1.IG.CUR7.IG.DI.CUR,KS,ITCO)	SYNT0185
	(A2(IG,K)=GIF(2,IG,CUR7,IG,DI,CUR,KS,ITCO))	SYNTO186
	P(IG.K) = GIF(0.IG.PHI7.IG.XU,CUR,KS,ITC1)/HT	SYNTO187
	P1(IG.K) = GIF(1.IG.PHI7.IG.XU.CUR.KS.ITC1)/HT	SYNT0188
	Q(IG.K) = GIF(D.IG.PHI.IG.XU.CUR7.KS.ITC1)/HT	SYNTO189
	Q1(IG.K) = GIF(1, IG, PHI, IG, XU, CUR7, KS, ITC1)/HT	SYNTO190
	R(IG,K) = GIF(0, IG, PHI7, IG, D, PHI, KS, 2) / HT * 2	SYNT0191
	STORE THE TERMINAL POINTS FOR LATER USE:	SYNT0192
	PO(IG.K)=PHI(IG.1)	SYNT0193
	PO7(IG, K) = PHI7(IG, 1)	SYNT0194
	PH(IG,K)=PHI(IG,KS1)	SYNT0195
	PH7(IG,K)=PHI7(IG,KS1)	SYNT0196
	IF (K.EQ.1) CO(IG)=CUR(IG,1)	SYNTO197
	IF (NUMITE-1.EQ.ITF(KR).AND.ITC.EQ.C) CH(IG)=CUR(IG.KS)	SYNT0198
	IF (NUMITE-1.EQ.ITF(KR).AND.ITC.EQ.1) CH(IG)=CUR(IG,KS1)	SYNT 0199
	FOR THE OFF DIAGONAL MATRIX ELEMENTS:	SYNT0200
	IF (IG.EQ.2) GO TO 50	SYNT0201
	SRO(IG,K)=GIF(0,2,PHI7,1,S,PHI,KS,2)	SYNT0202
	SR1(IG,K)=GIF(1,2,PHI7,1,S,PHI,KS,2)	SYNT0203
	SR2(IG,K)=GIF(2,2,PHI7,1,S,PHI,KS,2)	SYNT0204
	KCO(IG,K)=GIF(0,1,PHI7,2,F,PHI,KS,2)	SYNT0205
	KC1(IG,K)=GIF(1,1,PHI7,2,F,PHI,KS,2)	SYNT0206
	KC2(IG,K)=GIF(2,1,PHI7,2,F,PHI,KS,2)	SYNT0207
	KDO(IG,K)=GIF(0,2,PHI7,1,F,PHI,KS,2)	SYNT0208
	KD1(IG,K)=GIF(1,2,PHI7,1,F,PHI,KS,2)	SYNT0209
	KD2(IG,K)=GIF(2,2,PHI7,1,F,PHI,KS,2)	SYNT0210
50	CONTINUE	SYNT0211
	NUMITF=NUMITF-1	SYNT0212
	WRITE (6,51) NUMITE	SYNT0213
51	FORMAT ("ITHERE ARE ONLY", I3, " DIFFERENT TRIAL FUNCTION REGIONS.")	SYNT0214
	WRITE (6,52) (1, ITF(I), I=1, KR)	SYNT0215
52	FORMAT (/, OTABLE OF THE TRIAL FUNCTION NUMBER TYPES: ,//,	SYNT0216
		PAGE 250

С

C
	X 3X, TF REGION, 4X, REGION TYPE-NUMBER, ///,	SYNTO217
	X (17,12X,17))	SYNTO218
C	PRINTS DUT THE /B5/ ARRAYS:	SYNT0219
	IF (ISEE.GE.2) CALL PRTOUT(1)	SYNT0220
С	NN IS THE MATRIX BLOCK SIZE:	SYNTO221
	NN=KR	SYNT0222
	IF (IBC.EQ.1.OR.IBC.GE.6) NN=KR-1	SYNT0223
	IF (IBC.EQ.4) NN=KR+1	SYNT0224
С	FORMATION OF THE COEFFICIENT VECTORS:	SYNT 0225
C	THE INTERIOR COEFFICIENTS:	SYNT0226
	IX=2	SYNT0227
	I Y=KR	SYNT0228
	IF (IBC.EQ.5.OR.IBC.EQ.7) IX=3	SYNT0229
	IF (IBC.EQ.1.DR.IBC.GE.6) IY=KR-1	SYNT0230
	DO 60 IG=1,2	SYNT0231
	DO 60 K=IX,IY	SYNT0232
	J=K-1	SYNT0233
	V(IG)=1./(PH7(IG,J)*PO(IG,J))	SYNT0234
	V1(IG)=1./(PH7(IG,J)*PH(IG,J))	SYNT0235
	V2(IG)=1./(PO7(IG,K)*PO(IG,K))	SYNT0236
	V3(IG)=1./(P07(IG,K)*PH(IG,K))	SYNTO237
	AL(IG,K)=(KA1(IG,J)-KA2(IG,J)-R(IG,J)+LA2(IG,J)-LA1(IG,J)	SYNT0238
	X -Q1(IG,J)+P1(IG,J)-P(IG,J))*V(IG)	SYNT0239
	BL(IG,K)=(KA2(IG,J)-LA2(IG,J)+Q1(IG,J)-P1(IG,J)+R(IG,J))*V1(I	G) SYNT0240
	X + (KAU(IG,K)-2.*KA1(IG,K)+KA2(IG,K)-LAO(IG,K)+2.*LA1(IG,K)	SYNT0241
	X -LA2(IG,K)+Q1(IG,K)-Q(IG,K)+P(IG,K)-P1(IG,K)+R(IG,K))*V2(I	G) SYNT0242
	CL(IG,K) = (KA1(IG,K) - KA2(IG,K) - R(IG,K) + LA2(IG,K) - LA1(IG,K) + Q(I)	G,K) SYNT0243
	X = Q1(IG,K) + P1(IG,K)) + V3(IG)	SYNT0244
	AF(IG,K)=(KB1(IG,J)-KB2(IG,J))*V(IG)	SYNT0245
	BF(IG,K)=KB2(IG,J)*V1(IG)+(KB0(IG,K)-2.*KB1(IG,K)+KB2(IG,K))	SYNT0246
	X *V2(IG)	SYNTO247
	CF(IG,K)=(KB1(IG,K)-KB2(IG,K))*V3(IG)	SYNT0248
	IF (IG.EQ.2) GO TO 60	SYNT0249
	AT(K)=(SR1(1,J)-SR2(1,J))/(PH7(2,J)*PO(1,J))	SYNT0250
	AF(3,K)=(KC1(I3,J)-KC2(IG,J))/(PH7(1,J)*PO(2,J))	SYNT0251
	AF(4,K)=(KD1(IG,J)-KD2(IG,J))/(PH7(2,J)*PO(1,J))	SYNT0252
		PAGE 251

		CVNTO252
	BT(K)=SR2(1,J)/(PH7(2,J)*PH(1,J))	STN10293
	X + (SRO(1,K) + 2.*SRI(1,K) + SR2(1,K))/(PO7(2,K)*PO(1,K))	STNIU254
	BF(3,K)=KC2(IG,J)/(PH7(1,J)*PH(2,J))	SYNIU255
	X + (KCO(IG,K)-2.*KC1(IG,K)+KC2(IG,K))/(PO7(1,K)*PO(2,K))	SYNIU256
	BF(4,K)=KD2(IG,J)/(PH7(2,J)*PH(1,J))	SYN10257
	X + (KDO(IG,K)-2.*KD1(IG,K)+KD2(IG,K))/(PO7(2,K)*PO(1,K))	SYNT0258
	CT(K)=(SR1(1,K)→SR2(1,K))/(PO7(2,K)*PH(1,K))	SYNT0259
	CF(3,K)=(KC1(1Ġ,K)-KC2(IG,K))/(P07(1,K)*PH(2,K))	SYNT0260
	CF(4,K)=(KD1(IG,K)-KD2(IG,K))/(P07(2,K)*PH(1,K))	SYNT0261
	60 CONTINUE	SYNTO262
С	THE ZERD FLUX COEFFS:	SYNT0263
C	NONE NEEDED AS $F(1,1)$ AND $F(2,1)$ BOTH = 0.0.	SYNT0264
-	IF (IBC.EQ.1) GO TO 64	SYNT0265
С		SYNT0266
-	IF (.NOT.(IBC.EQ.5.OR.IBC.EQ.7)) GO TO 66	SYNTO267
С	ZERO FLUX COEFFICIENTS FOR NO TILTING ON THE LEFT:	SYNT0268
	DO 61 IG=1.2	SYNT 0269
	V(IG)=1./(PH7(IG,1)*PH(IG,1))	SYNTO270
	V1(IG)=1./(P07(IG,2)*P0(IG,2))	SYNT 0271
	V2(IG)=1./(P07(IG,2)*PH(IG,2))	SYNT0272
	BLO(IG)=(KAO(IG,1)-LAO(IG,1))*V(IG)+(KAO(IG,2)-2.*KA1(IG,2)	SYNT0273
	X +KA2(IG,2)-LAO(IG,2)+2.*LA1(IG,2)-LA2(IG,2)+P(IG,2)-P1(IG,2)	SYNT0274
	X = Q(IG, 2) + QI(IG, 2) + R(IG, 2) + VI(IG)	SYNTO275
	CLO(IG) = (KA1(IG, 2) - KA2(IG, 2) + LA2(IG, 2) - LA1(IG, 2) + P1(IG, 2)	SYNT0276
	x + O(1G, 2) - O(1G, 2) - R(1G, 2) + V2(1G)	SYNT0277
	BFO(IG)=KBO(IG,1)*V(IG)+(KBO(IG,2)-2.*KB1(IG,2)+KB2(IG,2))*V1(IG)	SYNT0278
	$61 \ CFO(IG) = (KB1(IG,2) \rightarrow KB2(IG,2)) * V2(IG)$	SYNT 0279
	BTO(1) = SRO(1,1) / (PH7(2,1) * PH(1,1))	SYNT0280
	x +(SRD(1,2)+2.*SR1(1,2)+SR2(1,2))/(P07(2,2)*P0(1,2))	SYNT0281
	BFO(3) = KCO(1,1)/(PH7(1,1)*PH(2,1))	SYNT0282
	x + (KCO(1,2)-2.*KC1(1,2)+KC2(1,2))/(PO7(1,2)*PO(2,2))	SYNT0283
	BEO(4) = KOO(1, 1) / (PH7(2, 1) * PH(1, 1))	SYNT0284
	x + (KDQ(1,2)-2,*KD1(1,2)+KD2(1,2))/(P07(2,2)*P0(1,2))	SYNT0285
	CTO(1) = (SR1(1,2) - SR2(1,2)) / (PO7(2,2) + PH(1,2))	SYNT0286
	CFO(3) = (KC1(1,2) - KC2(1,2)) / (P07(1,2) * PH(2,2))	SYNT0287
	CFO(4) = (KD1(1,2) - KD2(1,2)) / (PO7(2,2) + PH(1,2))	SYNT 0288
		PAGE 252

	66 IF (IBC.LE.5) GO TO 69	SYNT0289
С	FOR THE LAST REGION TO BE NOT TILTED:	SYNT0290
	K=KR-1	SYNT0291
	DO 67 IG=1,2	SYNT0292
	V(IG)=1./(PH7(IG,K)*PO(IG,K))	SYNT0293
	V1(IG)=1./(P07(IG.KR)*P0(IG.KR))	SYNT0294
	V2(IG)=1./(PH7(IG,K)*PH(IG,K))	SYNT0295
	AL(IG,KR) = (KAIIIG,K) - KA2(IG,K) - LAI(IG,K) + LA2(IG,K) - P(IG,K)	SYNT0296
	X + P1(IG,K) - Q1(IG,K) - R(IG,K)) * V(IG)	SYNT0297
	BL(IG,KR) = (KAO(IG,KR) - LAO(IG,KR)) * V1(IG) + (KA2(IG,K) - LA2(IG,K))	SYNT0298
	X = P1(IG,K)+Q1(IG,K)+R(IG,K))*V2(IG)	SYNT0299
	AF(IG,KR) = (KB1(IG,K) - KB2(IG,K)) * V(IG)	SYNT 0300
	BF(IG,KR)=KBO(IG,KR)*V1(IG)+KB2(IG,K)*V2(IG)	SYNT0301
	IF (IG.EQ.2) GO TO 67	SYNT0302
	AT(KR)=(SR1(IG,K)-SR2(IG,K))/(PH7(2,K)*PO(1,K))	SYNT0303
	AF(3,KR)=(KC1(IG,K)-KC2(IG,K))/(PH7(1,K)*PO(2,K))	SYNT0304
	AF{4,KR}=(KD1(1G,K)-KD2(1G,K))/(PH7(2,K)*PO(1,K))	SYNT0305
	BT(KR)=SRO(IG,KR)/(P07(2,KR)*P0(1,KR))	SYNT0306
	X +SR2(IG,K)/(PH7(2,K)*PH(1,K))	SYNTO307
	BF(3,KR)=KCO(IĠ,KR)/(PO7(1,KR)*PO(2,KR))	SYNT0308
	X +KC2(IG,K)/(PH7(1,K)*PH(2,K))	SYNT0309
	BF(4,KR)=KDO(IĠ,KR)/(PO7(2,KR)*PO(1,KR))	SYNT0310
	X +KD2(IG,K)/(PH7(2,K)*PH(1,K))	SYNTO311
	67 CONTINUE	SYNT0312
	GO TO 64	SYNT0313
С	THE ZERO CURRENT COEFFS:	SYNT0314
	69 K=KR	SYNT0315
	DO 62 IG=1,2	SYNT0316
	V(IG)=1./(PH7(IG,K)*PO(IG,K))	SYNT0317
	V1(IG)=1./(PH7(IG,K)*PH(IG,K))	SYNT0318
	ALK(IG)=(KA1(IG,K)-KA2(IG,K)-R(IG,K)+P1(IG,K)-P(IG,K)+LA2(IG,K)	SYNT0319
	X -LA1(IG,K)+Q1(IG,K))*V(IG)	SYNT0320
	BLK(IG)=(KA2(IG,K)+R(IG,K)-P1(IG,K)-LA2(IG,K)+Q1(IG,K))*V1(IG)	SYNT0321
	X +CH(IG)/PH(IG,KR)	SYNT0322
	AFK(IG)=(KB1(IG,K)-KB2(IG,K))*V(IG)	SYNT0323
	62 BFK(IG)=KB2(IG,K)*V1(IG)	SYNT0324
		PAGE 253

		CVNTODDE
	ATK(1)=(SR1(1,K)-SR2(1,K))/(PH7(2,K)*PO(1,K))	STNIU325
	AFK(3)=(KC1(1,K)-KC2(1,K))/(PH7(1,K)*PO(2,K))	STNI U326
	AFK(4)=(KD1(1,K)-KD2(1,K))/(PH7(2,K)*PO(1,K))	SYNTU327
	BTK(1)=SR2(1,K)/(PH7(2,K)*PH(1,K))	SYNTU328
	BFK(3)=KC2(1,K)/(PH7(1,K)*PH(2,K))	SYNT0329
	BFK(4)=KD2(1,K)/(PH7(2,K)*PH(1,K))	SYNT0330
	IF (IBC.NE.4) GO TO 64	SYNT0331
С	ZERU CURRENT ON THE LEFT COEFFS:	SYNT0332
	K=1	SYNT0333
	DO 63 IG=1,2	SYNT0334
	V2(IG)=1./(P07(IG,K)*P0(IG,K))	SYNT0335
	$V_3(IG) = 1./(P07(IG.K)*PH(IG.K))$	SYNT0336
	BLO(IG) =	SYNT0337
	X + (KAO(IG,K)-2.*KA1(IG,K)+KA2(IG,K)-LAO(IG,K)+2.*LA1(IG,K)	SYNT0338
	x = -LA2(IG,K) + Q1(IG,K) - Q(IG,K) + P(IG,K) - P1(IG,K) + R(IG,K)) + V2(IG)	SYNT 0339
	X = -CO(1G)/PO(1G.1)	SYNT0340
	CLO(IG) = (KA1(IG,K) - KA2(IG,K) - R(IG,K) + LA2(IG,K) - LA1(IG,K) + Q(IG,K)	SYNT0341
	X = -Q1(IG,K) + P1(IG,K) + V3(IG)	SYNT0342
	BFO(IG) = V2(IG) * (KBO(IG, K) - 2.*KB1(IG, K) + KB2(IG, K))	SYNT0343
	63 $CFO(IG) = (KB1(IG \cdot K) - KB2(IG \cdot K)) * V3(IG)$	SYNT0344
	BTO(1) = (SRO(1,K) - 2, *SR1(1,K) + SR2(1,K)) / (PO7(2,K) * PO(1,K))	SYNT0345
	BFO(3) = (KCO(1,K) - 2, *KCI(1,K) + KC2(1,K)) / (PO7(1,K) * PO(2,K))	SYNT0346
	BFO(4) = (KDO(1,K) - 2, *KDI(1,K) + KD2(1,K)) / (PO7(2,K) * PO(1,K))	SYNT0347
	CTO(1) = (SR1(1,K) - SR2(1,K)) / (PO7(2,K) + PH(1,K))	SYNT0348
	CFO(3) = (KC1(1,K) - KC2(1,K)) / (PO7(1,K) + PH(2,K))	SYNT 0349
	CFO(4) = (KD1(1+K) - KD2(1+K)) / (PO7(2+K) + PH(1+K))	SYNT0350
C	7FRO MATRICES:	SYNT0351
Ŭ	64 DO 65 I=1.NN	SYNT0352
	DD 65 I=1.NN	SYNT0353
	11(1, 4)=0.0	SYNT0354
	1211.11=0.0	SYNT0355
	$E_{1} = 0.0$	SYNT0356
		SYNT0357
	$F_2(I_1, I) = 0$ ()	SYNT0358
	$F_{4}(I_{1})=0.0$	SYNT0359
		SYNT0360
		PAGE 254

.

С	FILLING THE MATRICES FOR POWER:			SYNT0361
C	DETERMINE THE LEFT BC:			SYNT0362
				SYN10363
	IF (IBC.LE.2.UK.IBC.EQ.6) GU IU /5			SYNIU364
	L1(J, 1) = BLO(1)			SYNT0365
	L2(J, I) = BLO(2)			SYNT0366
	F1(J, 1) = BFO(1)			SYN10367
	F2(J, 1) = BF0(2)			SYNT0368
	F3(J,1)=BF0(3))	SYNT0369
	F4(J,1)=BFO(4)		1	SYNT0370
	T(J, 1) = BTO(1)			SYNT0371
	L1(J,2)=CLO(1)			SYNT0372
	L2(J,2)=CLO(2)			SYNT0373
	$F1(J_{2})=CFO(1)$			SYNT0374
	F2(J,2)=CF0(2)			SYNT0375
	F3(J,2)=CF0(3)			SYNT0376
	F4(J,2)=CF0(4)			SYNT0377
	T(J,2) = CTO(1)			SYNT0378
	J=J+1			SYNT0379
С	FOR ALL INTERNAL EQUATIONS:			SYNT0380
	75 DO 70 K=IX,IY			SYNT0381
	IF (J.EQ.1) GO TO 76			SYNT0382
	L1(J,J-1)=AL(1,K)			SYNT0383
	L2(J, J-1) = AL(2, K)			SYNT0384
	F1(J, J-1) = AF(1, K)	\sim		SYNT0385
	F2(J,J-1)=AF(2,K)			SYNT0386
	F3(J,J-1)=AF(3,K)			SYNT0387
	$F4(J_{J}-1)=AF(4,K)$			SYNT0388
	T(J,J-1) = AT(K)			SYNT 0389
	76 $L1(J,J)=BL(1,K)$			SYNT0390
	L1(J, J+1) = CL(1, K)			SYNT0391
	L2(J,J) = BL(2,K)			SYNT0392
	L2(J, J+1) = CL(2, K)			SYNT0393
	F1(J,J)=BF(1,K)			SYNT0394
	F1(J, J+1) = CF(1, K)			SYNT0395
	F2(J,J)=BF(2,K)			SYNT0396
				PAGE 255

	52(1, 1+1) = (5(2, K))	SYNT0397
	F3(1,1)=BF(3,K)	SYNT0398
	F3(1, 1+1)=(F(3,K)	SYNT0399
	F3(3)3T1-C1(3)N1	SYNT0400
	F44J1J7-DE471N7 - E471 - 1413-CE74 - V)	SYNT0401
	F4(J)J+11=0F(4)N)	SYNT0402
		SYNT0403
		SYNT0404
		SYNT0405
7	O CUNITNUE	SYNTOAOA
	IF (IBC.EQ.1.UR.IBC.EQ.5) GU IU 500	STR10400
C	FOR THE LAST EQUATION: (K=NN):	
	K=NN	00+01/11C 00407/1/22
	L1(K, K-1)=ALK(1)	STN10407 STN10407
	L1(K , K) = BLK(1)	STN10410 SVN10411
	L2(K, K-1) = ALK(2)	
	L2(K, K) = BLK(2)	STNIUTZ
	$F1(K_{,K}-1)=AFK(1)$	STNIU413 SVNTOA14
	F1(K , K) = BFK(1)	
	F2(K, K-1) = AFK(2)	STNIU415
	F2(K ,K)=BFK(2)	STN1U416
	F3(K,K-1)=AFK(3)	SYNIU417
	F3(K,K)=BFK(3)	SYNIU418
	F4(K,K-1)=AFK(4)	SYNT0419
	F4(K,K)=BFK(4)	SYNT0420
	T(K + K - 1) = ATK(1)	SYNT0421
	$T(K \cdot K) = BTK(1)$	SYNT0422
50	DO CONTINUE	SYNT 0423
c	PRINTS OUT THE /B3/ MATRICES:	SYNTO424
~	TE (ISEE.GE.2) CALL PRIOUT(2)	SYNT0425
	RETURN	SYNT0426
	FND	SYNT0427

	SUBROUTINE ERROR(I,J)	ERR00001
C	ANNOUNCES INPUT ERRORS AND TERMINATES PROGRAM EXECUTION:	ERR00002
	GO TO (1,2,3,4,5,6,7,8,9),I	ERRO0003
1	WRITE (6,101)	ERRO0004
	GO TO 10	ERR00005
2	2 WRITE (6,102) J	ERRO0006
	GO TO 10	ERR00007
3	B WRITE (6,103) J	ERR00008
	GO TO 10	ERR00009
4	WRITE (6,104) J	ERR00010
	GO TO 10	ERR00011
5	5 WRITE (6,105) J	ERR00012
	GO TO 10	ERR00013
E	5 WRITE (6,106) J	ERR00014
	GO TO 10	ERR00015
7	CONTINUE	ERRO0016
8	B CONTINUE	ERR00017
ç	CONTINUE	ERR00018
10) WRITE (6,110)	ERR00019
101	L FORMAT ("IMUST HAVE > 2 SUBREGIONS FOR ZERO FLUX B.C.S. INVALID.")	ERR00020
102	2 FORMAT ('INUMBER OF SUBREGIONS =',I3,' > 25. INVALID.')	ERRO0021
103	B FORMAT ("ISUBREGION NUMBER", I3, " HAS > 25 SECTIONS. INVALID.")	ERR00022
104	FORMAT ("IINPUT ERROR IN REGION SEQUENCING AT REGION", 15, ".")	ERRO0023
105	5 FORMAT ("1Z(I) = 0. IN REGION I =",I3,". INVALID.")	ERR00024
106	5 FORMAT ("1THE TOLERANCE: EPS", I1, IS < 1.0E-16. INVALID.")	ERR00025
107	FORMAT ("IBDUNDRY CONDITION OPTION =",12," < 1 OR > 7. INVALID.")	ERR00026
110) FORMAT (1H0, PROBLEM TERMINATED.)	ERR00027
	CALL EXIT	ERR00028
	RETURN	ER R0 0 0 2 9
	END	ERR00030

.

PAGE 257

.

SUBRO	NITINE RÉPEAT(K.I)	REPE0001
SETS	THE /B5/ ARRAYS (K) EQUAL TO PAST STORED ARRAYS (L):	REPE0002
TMPI 1	CIT RFAL*8 (A-Z)	REPE0003
COMM	N /B5/ KA0(2.25).KA1(2.25).KA2(2.25),KB0(2.25),KB1(2.25),	REPE0004
X	KB2(2,25),LAU(2,25),LA1(2,25),LA2(2,25),SRO(1,25),	REPE0005
X	SR1(1,25),SR2(1,25),KC0(1,25),KC1(1,25),KC2(1,25),	REPE0006
x	KDO(1,25),KD1(1,25),KD2(1,25),	REPE0007
x	P(2,25),P1(2,25),Q(2,25),	REPE0008
X	D1(2.25), R(2.25), PO(2.25), PO7(2.25), PH(2.25),	REPE0009
X	PH7(2.25)	REPE0010
COMMO	IN /XAXIS/ HX.HR(25)	REPE0011
INTEG	SER K.L.G	REPE0012
HR (K)	=HR(L)	REPE0013
HX=H)	(+HR(K)	REPEO014
DO 10	G=1,2	REPE0015
KAOLO	$G_{r}(K) = KAO(G_{r}L)$	REPEOO16
KA1(($G_{r}(K) = KA1(G_{r}L)$	REPEO017
KA210	G_{K} = KA2(G, L)	REPE0018
KBOLO	G_{K} (G_{K}) = KBO(G_{K} L)	REPE0019
KB1((G,K)=KB1(G,L)	REPE0020
KB2((G,K)=KB2(G,L)	REPE0021
LAOLO	$G_{F}(K) = LAO(G_{F}L)$	REPE0022
LA1((S,K)=LA1(G,L)	REPE0023
LA210	G,K)=LA2(G,L)	REPE0024
1F ((G.EQ.2) 0 GÓ TO 5	REPE0025
SROLI	G,K = SRO(G,L)	REPE0026
SR1(0	G,K)=SR1(G,L)	REPE0027
SR2((G,K)=SR2(G,L)	REPE0028
KCOL	G,K)=KCO(G,L)	REPE0029
KC1((G,K)=KC1(G,L)	REPE0030
KC211	G,K)=KC2(G,L)	REPE0031
KDOL	G,K)=KDO(G,L)	REPE0032
KD1((G,K)=KD1(G,L)	REPE0033
KD2()	G,K)=KD2(G,L)	REPE0034
5 CONT	INUE	REPE0035
P(G,I	<pre></pre>	REPE0036
		PAGE 258

С

P1(G,K)=P1(G,L)	REPE0037
Q(G,K)=Q(G,L)	REPE0038
Q1(G,K)=Q1(G,L)	REPE0039
R(G,K)=R(G,L)	REPEOO40
PO(G,K)=PO(G,L)	REPE0041
P07(G,K) = P07(G,L)	REPE0042
PH(G,K)=PH(G,L)	REPE0043
PH7(G,K)=PH7(G,L)	REPE0044
10 CONTINUE	REPE0045
RETURN	REPE0046
END	REPE0047

.

	SUBROUTINE BHSET(K)	BHSE0001
C	SETS UP THE /BH/ ARRAYS FOR GIF:	BHSE0002
	IMPLICIT REAL*8 (A-H,L-Z)	BHSE0003
	COMMON /BH/ X(101), H(101), Z(101)	BHSE0004
	DO 1 I=1,K	BHSE0005
1	Z(I) = X(I) - X(I)	BHSE0006
	RETURN	BHSE0007
	END	BHSE0008

.

	DOUBLE PRECISION FUNCTION GIF(N,G1,F,G2,C,G,K,ITC)	GIF 0001
C	INTEGRATES: F(G1,J)*C(G2,J)*G(G2,J) * (Z/H)**N	GIF 0002
C	UVER ALL K SUBREGIUNS J	
C	WHERE Z RUNS FRUM O TU X(K+1)-X(1) IN THIS REGIUN.	GIF 0004
C	WHERE THE FORM OF F AND G IN REGION J IS GIVEN BY IIC:	GIF 0005
C	ITC = 0: F AND G ARE BOTH CONSTANT.	GIF 0006
C	ITC = 1: F IS LINEAR AND G IS CONSTANT.	GIF 0007
C	ITC = 2: F AND G ARE BOTH LINEAR.	GIF 0008
	IMPLICIT REAL*8 (A-H,O-Z)	GIF 0009
	COMMON /BH/ X(101),H(101),Z(101)	GIF 0010
	DIMENSION F(2,101),G(2,101),C(2,100)	GIF 0011
	INTEGER G1,G2	GIF 0012
	N1=N+1	GIF 0013
	SUMJ=0.0D0	GIF 0014
	IF (ITC.EQ.0) GO TO 40	GIF 0015
	IF (ITC.EQ.1) GO TO 20	GIF 0016
C	LINEAR F AND G IN REGIONS J:	GIF 0017
	DO 10 J=1,K	GIF 0018
	A=F(G1, J)*G(G2, J)	GIF 0019
	B=F(G1,J)*G(G2,J+1)+F(G1,J+1)*G(G2,J)	GIF 0020
	D=F(G1, J+1)*G(G2, J+1)	GIF 0021
	SUML=0.0D0	GIF 0022
	DO 5 I=1, N1	GIF 0023
	L=I-1	GIF 0024
	M=N-L	GIF 0025
	IF (H(J).EQ.0.0.AND.L.EQ.0) GO TO 1	GIF 0026
	EH=H(J) **L	GIF 0027
	GO TO 2	GIF 0028
	1 EH=1.0	GIF 0029
	2 IF (Z(J) EQ.Q.Q.AND M.EQ.Q) GQ TQ 3	GIF 0030
	EZ=Z(J) **M	GIF 0031
	GO TO 4	GIF 0032
	3 E7=1-0	GIF 0033
	4 SUML + EACT(N) / (EACT(M) * EACT(1)) * EH * E7*	GIF 0034
	$X = (2.00 \times 4/0E) 2 AT((1+3) \times (1+2) \times (1+1)) + B/0E1 2 AT((1+3) \times (1+2))$	GIF 0035
	X = +D/DE(DAT(1+3))	GIF 0036
		DACE 241

	5 CONTINUE	GIF 0037
	SUMJ=SUMJ+H(J)*C(G2,J)*SUML	GIF 0038
	10 CONTINUE	GIF 0039
	GO TO 100	GIF 0040
С	LINEAR F AND CONSTANT G IN REGIONS J:	GIF 0041
	20 DO 30 J=1,K	GIF 0042
	SUML=0.0D0	GIF 0043
	DO 25 I=1,N1	GIF 0044
	L=I-1	GIF 0045
	M=N-L	GIF 0046
	IF (H(J).EQ.O.O.AND.L.EQ.O) GO TO 21	GIF 0047
	EH=H(J)**L	GIF 0048
	GO TO 22	GIF 0049
	21 EH=1.0	GIF 0050
	22 IF (Z(J).EQ.0.0.AND.M.EQ.0) GO TO 23	GIF 0051
	EZ=Z(J)**M	GIF 0052
	GO TO 24	GIF 0053
	23 EZ=1.0	GIF 0054
	24 SUML=SUML+FACT(N)/(FACT(M)*FACT(L))*EH*EZ*	GIF 0055
	X (F(G1,J)/DFLOAT((L+1)*(L+2))+F(G1,J+1)/DFLOAT(L+2))	GIF 0056
	25 CONTINUE	GIF 0057
	SUMJ=SUMJ+H(J)*C(G2,J)*G(G2,J)*SUML	GIF 0058
	30 CONTINUE	GIF 0059
	GO TO 100	GIF 0060
С	CONSTANT F AND G IN REGIONS J:	GIF 0061
•	40 DO 50 J=1,K	GIF 0062
	SUML=0.0D0	GIF 0063
	DO 55 I=1,N1	GIF 0064
	L=I-1	GIF 0065
	M=N-L	GIF 0066
	IF (H(J).EQ.O.O.AND.L.EQ.O) GO TO 51	GIF 0067
	EH=H(J)**L	GIF 0068
	GO TO 52	GIF 0069
	51 EH=1.0	GIF 0070
	52 IF (Z(J).EQ.0.0.AND.M.EQ.0) GO TO 53	GIF 0071
	EZ=Z(J)**M	GIF 0072
		PAGE 262

	GO TO 54	GIF 0073
53	EZ=1.0	GIF 0074
54	SUML=SUML+FACT(N)/(FACT(M)*FACT(L))*EH*EZ*	GIF 0075
	X (1./DFLOAT(L+1))	GIF 0076
55	CONTINUE	GIF 0077
	SUMJ=SUMJ+H(J)*F(G1,J)*C(G2,J)*G(G2,J)*SUML	GIF 0078
50	CONTINUE	GIF 0079
100	GIF=SUMJ/(X(K+1)-X(1))**N	GIF 0080
	RETURN	GIF 0081
	END	GIF 0082

DOUBLE PRECISION FUNCTION FACT(N)	FACT0001
C COMPUTES N FACTORIAL:	FACT0002
EACT=1.000	FACT0003
TE (N.I.E.1) RETHRN	FACT0004
DO = I = I = 2.N	FACT0005
	FACT0006
DETIDN	FACT0007
	FACT0008

SUBROUTINE PRTOUT(IP)	PRT00001
C IP = 1: PRINTS OUT THE /B5/ ARRAYS.	PRT00002
C IP = 2: PRINTS OUT THE /B3/ MATRICES GIVE	N TO POWER. PRT00003
IMPLICIT REAL*8 (A-H,K-Z)	PRT00004
COMMUN /B2/ KR, N	PRT00005
COMMON /B3/ L1(26,26),L2(26,26),F1(26,26),F4(26,26), PRT00006
X F2(26,26),F3(26,26),T(26,26)	PRT00007
COMMON /B5/ KAO(2,25),KA1(2,25),KA2(2,25),KB	0(2,25),KB1(2,25), PRT00008
X KB2(2,25),LA0(2,25),LA1(2,25),LA	2(2,25), SRO(1,25), PRT00009
X SR1(1,25),SR2(1,25),KC0(1,25),KC	1(1,25),KC2(1,25), PRT00010
X KDO(1,25),KD1(1,25),KD2(1,25),	PRT00011
X P(2,25),P1(2,25),Q(2,25),	PRTO0012
X Q1(2,25), R(2,25), PO(2,25), PO	7(2,25),PH(2,25), PRT00013
X PH7(2,25)	PRTOOO14
COMMON /XAXIS/ HX,HR(25)	PR T00015
INTEGER KR, G, N	PRT00016
GO TO (1001,1002),IP	PRTOOO17
C KA AND KB ARRAYS:	PRT00018
1001 WRITE (6,10)	PRT00019
10 FORMAT ("1G",4X,"I",12X,"KAO(G,I)",12X,"KA	1(G,I)',12X, PRT00020
X *KA2(G,I)*,12X,*KB0(G,I)*,12X,*KB1(G,I)*,1	2X, 'KB2(G, I)') PRT00021
DO 11 $G=1,2$	PRTO0022
WRITE (6,12)	PRT00023
11 WRITE (6,15):(G,I,KAO(G,I);KA1(G,I),KA2(G,I),	KBO(G,I),KB1(G,I), PRT00024
X KB2(G,I),I=1,KR)	PRT00025
12 FORMAT (• •)	PRTO0026
15 FORMAT (215,6D20.7)	PRT00027
C KC AND KD ARRAYS:	PRT00028
WRITE (6,16)	PRTD0029
16 FORMAT (*1 G*,4X,*I*,12X,*KCO(G,I)*,12X,*KC	1(G,I)',12X, PRT00030
X *KC2(G,I)*,12X,*KD0(G,I)*,12X,*KD1(G,I)*,1	2X, 'KD2(G,I)') PRT00031
G=1	PRT00032
WRITE (6,12)	PRT00033
17 WRITE (6,15) (G,1,KCO(G,1),KC1(G,1),KC2(G,1),	KDO(G,I),KD1(G,I), PRT00034
X KD2(G,I),I=1,KR)	PR T0 0035
C LA AND SR ARRAYS:	PRT00036
	PAGE 265

 \langle

	WRITE (6,20)	PRT00037
20	FORMAT ("1G",4X,"I",12X,"LAO(G,1)",12X,"LA1(G,1)",12X,	PK100038
X	('LA2(G,1)',12X,'SRO(G,1)',12X,'SR1(G,1)',12X,'SR2(G,1)')	PR100039
	G=1	PR100040
	WRITE (6,12)	PR100041
	WRITE (6,15) (G,I,LAO(G,I),LA1(G,I),LA2(G,I),SRO(G,I),SRI(G,I),	PR100042
X	(SR2(G,I),I=1,KR)	PR100043
	G=2	PR100044
	WRITE (6,12)	PR100045
	WRITE (6,25) (G,I,LAO(G,I),LA1(G,I),LA2(G,I),I=1,KR)	PRIU0046
25	FORMAT (215,3D20.7)	PRT00047
C	P, Q, AND R ARRAYS:	PRT00048
	WRITE (6,30)	PRT00049
30	FORMAT ('1 G',4X,'I',14X,'P(G,I)',13X,'P1(G,I)',14X,'Q(G,I)',	PR100050
>	K 13X, "Q1(G,I)", 14X, "R(G,I)")	PRT00051
	DO 31 G=1,2	PR T00052
	WRITE (6,12)	PRT00053
31	WRITE (6,35) (G,I,P(G,I),P1(G,I),Q(G,I),Q1(G,I),R(G,I),I=1,KR)	PRT00054
35	FORMAT (215,5D20.7)	PRT00055
С	PO, PH, AND HR ARRAYS:	PR TO 0056
	WRITE (6,40)	PR 100057
40	FORMAT ('1 G',4X,'I',13X,'PO(G,I)',12X,'PO7(G,I)',13X,'PH(G,I)',	PRT00058
)	12X, "PH7(G,I)", 15X, "HR(I)")	PRT00059
	DO 41 G=1,2	PRT00060
	WRITE (6,12)	PRT00061
41	WRITE (6,45) (G,I,PO(G,I),PO7(G,I),PH(G,I),PH7(G,I),HR(I),I=1,KR)	PRT00062
45	FORMAT (215,5D20.7)	PRT00063
	GO TO 100	PRT00064
C /	PRINT OUT THE /B3/ MATRICES:	PR T00065
1002	WRITE (6,50)	PRT00066
50	FORMAT ("IMATRIX L1:",/)	PRT00067
	DO 51 I=1,N	PRT00068
51	WRITE (6,55) (L1(I,J),J=1,N)	PRT00069
55	FORMAT (10D12.3,/,(2X,10D12.3))	PRT00070
	WRITE (6,60)	PRT00071
60	FORMAT ('IMATRIX L2: ',/)	PRT00072
- •		PAGE 266

	DO 61 I=1,N	PRT00073
61	WRITE (6,55) (L2(I,J),J=1,N)	PRT00074
	WRITE (6,70)	PRT00075
70	FORMAT ("IMATRIX F1:",/)	PRT00076
	DO 71 I=1,N	PRT00077
71	WRITE (6,55) (F1(I,J),J=1,N)	PR100078
	WRITE (6,80)	PRTO0079
80	FORMAT ("IMATRIX F2:",/)	PRT00080
	DO 81 I=1,N	PRT00081
81	WRITE (6,55) (F2(I,J),J=1,N)	PRTOO082
	WRITE (6.82)	PRT00083
82	FORMAT ('IMATRIX F3:',/)	PRT00084
	DO 83 I=1,N	PRT00085
83	WRITE (6,55) (F3(I,J),J=1,N)	PR 100086
	WRITE (6,84)	PRTO0087
84	FORMAT ("IMARTIX F4:",/)	PRTOOO88
	DO 85 I=1,N	PRT00089
85	WRITE (6,55) (F4(I,J),J=1,N)	PRT00090
	WRITE (6,90)	PR T00091
90	FORMAT ('IMATRIX T:',/)	PRT00092
	DO 91 I=1,N	PRT00093
91	WRITE (6,55) (T(I,J),J=1,N)	PR 100094
100	RETURN	PRTOCO95
	END	PRTD0096

À

```
POWE0001
 SUBROUTINE POWER.
 SOLVES THE 2*N MULTIGROUP EQUATIONS: M*PHI = (1/LAMDA)*F*PHI
                                                                              POWE0002
                                                                              POWE0003
 BY THE FISSION SOURCE POWER METHOD
                                                                              POWE0004
 USING SIMULTANEOUS OVERRELAXATION.
    WHERE: M AND F ARE DOUBLE PRECISION 2N BY 2N BLOCK MATRICES:
                                                                              POWE0005
             PHI IS THE 2N FLUX (FAST AND THERMAL) VECTOR.
                                                                              POWE0006
    AND:
                                                                              POWE0007
              L1*PHI1 = CHI1*(F1*PHI1 + F2*PHI2)
    -T*PHI1 + L2*PHI2 = CHI2*(F3*PHI1 + F4*PHI2)
                                                                              POWE0008
    METHOD FOLLOWS WACHPRESS, PAGE 83. SOLUTION BY GROUP ITERATION.
                                                                              POWE0009
                                                                              POWE0010
 IMPLICIT REAL*8 (A-H,L-Z)
                                                                              POWE0011
 COMMON /B1/ IBC. IPLOT, JPLOT, IPUNCH, ISEE
                                                                              POWE0012
 COMMON /B2/ KR, N
                                                                              POWE0013
 COMMON /B3/ L1(26,26),L2(26,26),F1(26,26),F4(26,26),
                                                                              POWE0014
              F2(26,26),F3(26,26),T(26,26)
X
                                                                              POWE0015
 COMMON / B4/ PHI(2,26), PSI(2,26), LAMDA, ICOUT
                                                                              POWE0016
 COMMON /B5/ S126), ERROR(2,26), Z126)
                                                                              POWE0017
 COMMON /B6/ TE1(2,5), TE2(2,5), TE3(5), IN(5)
                                                                              POWE 0018
 COMMON /CHIF/ CHI(2)
                                                                              POWE0019
 COMMON /XAXIS/ HX.HR(25)
                                                                              POWE0020
 COMMON /ER/ EPS1, EPS2, EPS3
                                                                              POWE0021
 COMMON /FSTR/ PHISTR(2,26,6)
 COMMON /ESTR/ LAMSTR(300), EFSTR(2,300), EFMSTR(2,300), ERLAM(300)
                                                                              POWE0022
 COMMON /TRUE/ TRULAM, TRUPHI(2,26), PHICON(2,300), LAMCON(300), IFT
                                                                              POWE0023
 DIMENSION PSI1(26), PSI2(26), SQ(2), DPHI(2), ERRMAX(2)
                                                                              POWE0024
                                                                              POWE0025
  INTEGER N
    DEFAULT OPTIONS FOR THE TRUE EIGENVALUE AND FLUXES:
                                                                              POWE0026
                                                                              POWE0027
  TRULAM=1.0
                                                                              POWE0028
  DO 5 IG=1,2
                                                                              POWE0029
  DO 5 I=1.N
                                                                              POWE0030
5 TRUPHI(IG.I)=1.0
                                                                              POWE0031
     DEFAULT OPTIONS FOR POWER PARAMETERS:
                                                                              POWE0032
  ALPHA=1.25
                                                                              POWE0033
 LAMDA=1.0
                                                                              POWE0034
 DO 555 IG=1.2
                                                                              POWE0035
  IF (IBC.NE.4) GO TO 551
                                                                               POWE 0036
  DO 550 I=1.N
                                                                           PAGE 268
```

С

С

С

С

С

С

С

С

С

С

	EEA		00450027
	220	PRIVIO 555	
			PUWEUU30
	221	X=3.1415926/HX	PUWE0039
		$IF (IBC \cdot NE \cdot I) = X = X/2 \cdot 0$	POWE0040
		SUM1=0.0	POWE0041
		DO 552 K=1,KR	POWE0042
		SUM1=SUM1+HR(K)	POWE0043
	552	PHI(IG,K)=DSIN(SUM1*X)	POWE0044
	555	CONTINUE	POWE0045
С		READ IN THE TRUE (EXPECTED) EIGENVALUE AND FLUX VECTOR (MINUS O BC'S): POWE0046
		IFT=0	POWE0047
		READ (5.500, END=501) TRULAM. (TRUPHI(1.1).I=1.N)	POWE0048
		READ $(5.503 \cdot END = 501)$ (TRUPHI(2.1).I=1.N)	POWE 0049
		IFT=1	POWE0050
	500	EARMAT (E25,14,/,(4E20,10))	POWE0051
C.		READ IN: OVERRELAXATION PARAMETERS : ALPHA (OUTER ITERATION)	POWE0052
č		INITIAL GUESS AT ELGENVALUE: LAMDA	POWE0053
č		INITIAL NORMALIZED FLUX : PHI(1-N)	POWE0054
Ŭ	501	READ (5.506 \cdot END=510) ALPHA	POWE0055
		$READ (5.502 \cdot END=510) LANDA$	POWE0056
		READ (5.503) (PHI(1.1), I=1.N)	POWE0057
		READ $(5,503)$ (PHI(2,1), I=1,N)	POWE0058
	506	ENRMAT (E10.5)	POWE0059
	502	EORMAT (E25.14)	POWE0060
	503	EORMAT ([4E20.10])	POWEDO61
	510		POWEOO62
r	710	STADING EAD DOINTING THE MULTICOCUD FLUY SHADE	
C		DB 11 IG=1.2	POWEDO64
	10	DUIV 1-19N DUISTRATE I 21-04IATE IN	PUWEUU03
r	10	$\mathbf{F} = \mathbf{F} + $	
C		FILL KUNNING CUURD IN PHISIK	POWEUUOP
			PUWEUUOO
		DUIL IFIINKI. Duictriic I alerricatio	PUWEUU09
~	11	PRISIK(IS;1;1)=UPLUAI(I)	PUWEUU/U
L		IN IS THE FLUX PLUTIING COUNTER.	PUWEU071
		1K=1	PUWEUU/2
			PAGE 209

•

c	STORES THE ITERATION NUMBER FOR FLUX HISTORY PLOTTING:	POWE0073
č	IN(1)=0	POWE0074
C	STORES TEMPORARY ERRORS FOR FLUX HISTORY PLOTTING:	POWE0075
Ť	TF1(1,1)=0.	POWE0076
	TF1(2.1)=0.	POWE0077
	TE2(1,1)=0	POWE0078
	TF2(2,1)=0	POWE0079
	TF3(1)=0.0	POWE0080
C	FIGENVALUE OF THE PREVIOUS ITERATION:	POWE0081
v		POWE0082
r	THE MAXIMUM NUMBER OF ALLOWED ITERATIONS: ICMAX	POWE0083
v	ICMAX=300	POWE0084
C	PRINT OUT THE POWER METHOD PARAMETER INFORMATION:	POWE0085
v	WRITE (6.700) ICMAX. ALPHA.L AMDA. (PHI(1.I). I=1.N)	POWE0086
	WRITE (6.701) (PHI(2.1) $I = 1 $ N)	POWE0087
	700 FORMAT ("LEXECUTING MULTIGROUP FISSION SOURCE POWER ITERATION METH	POWE0088
		POWE0089
	X 5X. MAXIMUM NUMBER OF ALLOWABLE ITERATIONS: 1/1	POWE0090
	$X = 10X \cdot ICMAX = * \cdot I4 \cdot /// \cdot$	POWE0091
	X 5X. OUTER ITERATION RELAXATION PARAMETER: 1/1	POWE0092
	$x = 10x \cdot 10 \text{ PHA} = 1 \cdot \text{F7} \cdot 3 \cdot \frac{1}{3}$	POWE0093
	X 5X. INITIAL GUESS AT EIGENVALUE: 1/,	POWE0094
	$X = 10X \cdot LAMBDA = \cdot E22 \cdot 14 \cdot 1/2$	POWE0095
	X 5X. INITIAL GUESS AT THE GROUP FLUX SHAPE CONNECTION POINTS: ,	POWE0096
	X //.8X. FAST GROUP: //	POWE0097
	$X = 10X \cdot F(K) \cdot S = \cdot 4E25 \cdot 14 \cdot (18X \cdot 4E25 \cdot 14)$	POWE0098
	701 FORMAT (0. 7X. THERMAL GROUP: ,/,	POWE 0099
	$X = 10X \cdot F(K) \cdot S = \cdot 4E25 \cdot 14 \cdot (18X \cdot 4E25 \cdot 14)$	POWE0100
С	BEGIN ITERATION LOOP.	POWE0101
Ŭ		POWE0102
С	IGOUT IS THE OUTER ITERATION COUNTER.	POWE0103
Ŭ	20 ICOUT=ICOUT+1	POWE0104
	IF (ICOUT.GT.ICMAX) GO TO 100	POWE0105
С	SOLVE FOR THE NEW GROUP FLUX VECTORS: PSI:	POWE0106
č	FAST GROUP: SOURCE VECTOR:	POWE0107
-	DO 25 I=1.N	POWE0108
		PAGE 270

		S(I) = 0	DOMENTOO
		DO 24 I=1.N	
	24	S(T) = S(T) + F(T, 1)	
	25	$S(1) = CH1(1) \times S(1)$	
ſ	25		
C		EAJI ELUA+ Cali Colvedin î i octi ca	PUWEUIIS
r		THER WAL CROUPS COURSE VECTORS	PUWEUI14
L		INERMAL GROUP; SUURLE VELIUR;	PUWEULIS
		$DU \ge 1 = 1, N$	PUWE0116
		S(1)=0.0	POWE0117
		2(1)=0.0	POWE0118
		DO 26 J=1,N	POWE0119
		S(I)=S(I)+F3(I,J)*PSI1(J)+F4(I,J)*PHI(2,J)	POWE0120
	26	Z(I)=Z(I)+T(I,J)*PSI1(J)	POWE0121
	27	Z(I)=Z(I)+CHI(2)*S(I)	POWE0122
С		THERMAL FLUX:	POWE0123
		CALL SOLV3D(N,L2,PSI2,Z)	POWE0124
С		CALCULATION OF THE EIGENVALUE:	POWE0125
		SUM1=0.0D0	POWE0126
		SUM2=0.0D0	POWE0127
		DO 28 I=1,N	POWE0128
		SUM2=SUM2+PSI1(I)*PSI1(I)+PSI2(I)*PSI2(I)	POWE0129
	28	SUM1=SUM1+PSI1(I)*PHI(1,I)+PSI2(I)*PHI(2,I)	POWE0130
		LAMDA=SUM2/SUM1	POWE0131
		LAMSTR(ICOUT)=LAMDA	POWE0132
		ERRLAM=DABS(LAMDA-LAMB4)	POWE0133
С		PUT PSI1 AND PSI2 INTO BIGGER PSI:	POWE0134
		DO 30 I=1,N	POWE0135
		PSI(1,I) = PSII(I)	POWE0136
	30	PSI(2,1)=PSI2(1)	POWE0137
C		POINT BY POINT SIMULTANEOUS RELAXATION FLUX ITERATION:	POWE0138
		X=ALPHA	POWE0139
C		DO NOT RELAX DURING THE FIRST THREE ITERATIONS:	
-		IF (ICOUT (F_3)) X=1.0	POWE0141
C		CALCULATE THE NEW GROUP FLUX ITERATES AND GROUP ERRORS:	PUME0141
-		D0 40 IG=1.2	POWE0142
		D0 40 I = 1.N	
			PAGE 271
			FAUL ZIL

	40	PSI(IG.I)=PHI(IG.I)+X*(PSI(IG.I)/LAMDA-PHI(IG.I))	POWE0145
	τv	CALL NORMAL (PSI . N)	POWE0146
		DO 39 IG=1.2	POWE0147
		FRRMAX(IG)=0.0	POWE0148
		SQ(IG)=0.0	POWE0149
	ſ	DO 38 I = 1.N	POWE0150
		FRROR(IG,I) = DABS((PSI(IG,I)) - PHI(IG,I)) / PSI(IG,I))	POWE0151
		IF (FRROR(IG.I).GT.ERRMAX(IG)) ERRMAX(IG)=ERROR(IG,I)	POWE0152
		SO(1G) = SO(1G) + FRROR(1G, 1) * 2	POWE0153
ſ		UPDATE THE FLUX ITERATE:	POWE0154
v	38	PHI(IG,I) = PSI(IG,I)	POWE0155
	39	SO(IG) = DSORT(SO(IG))	POWE0156
C		NORMALIZE PST GROUPS TO UNITY:	POWE0157
•		CALL NORM2(PSI, TRUPHI,N)	POWE0158
		IF (IFT.EQ.0) GO TO 37	POWE0159
		DLAM=LAMDA-TRULAM	POWE0160
		DO 36 IG=1,2	POWE0161
		DPHI(IG)=0.0	POWE0162
		DO 35 I=1,N	POWE0163
	35	DPHI(IG)=DPHI(IG)+(PSI(IG,I)-TRUPHI(IG,I))**2	POWE0164
	36	DPHI(IG)=DSQRT(DPHI(IG))	POWE0165
	37	IF (IPLOT.NE.2) GO TO 45	POWE0166
С		THE FOLLOWING IS FOR NICELY PLOTTING THE GROUP FLUX HISTORY.	POWE0167
		DO 41 IG=1,2	POWE0168
		DO 41 I=1,N	POWE0169
	41	ERROR(IG,I)=PSI(IG,I)	POWE0170
С		ERROR NOW CONTAINS THE NEW NORMALIZED FLUX ITERATE PHI.	POWE0171
		JK=IK	POWE0172
		IF (IK.EQ.O) JK=5	POWE0173
		DO 42 IG=1,2	POWE0174
		DO 42 I=1,N	POWE0175
		IF (DA3S(ERROR(IG,I)-PHISTR(IG,I,JK+1)).GE.0.01) GO TO 43	POWE0176
	42	CONTINUE	POWE0177
С		FLUX HAS NOT CHANGED ENOUGH FOR PLOTTING.	POWE0178
		GU TU 45	POWE0179
C		SAVE THE NORMALIZED FLUX FOR PLOTTING:	POWE0180
			PAGE 272

	43	1K=1K+1	POWE0181
		IN(IK)=ICOUT	POWE0182
		TE3(IK)=ERRLAM	POWE0183
		DO 44 IG=1.2	POWE0184
		TE1(IG,IK)=ERRMAX(IG)	POWE0185
		TE2(IG.IK)=SQ(IG)	POWE0186
		$DO 44 I = 1 \cdot N$	POWE0187
	44	$PHISTR(IG \cdot I \cdot IK + 1) = FRROR(IG \cdot I)$	POWEO188
	•••	IF (IK-NE-5), GO TO 45	POWE0189
С		PLOT THE LAST FIVE SAVED FLUXES:	POWE0190
-		CALL PHIPLT(5)	POWE0191
		IK=0	POWE0192
	45	CONTINUE	POWE0193
С		ERRUR CRITERIA FOR ACCEPTANCE OF CONVERGENCE.	POWE0194
		IFLAG1=0	POWE0195
		IFLAG2=0	POWE0196
		IFLAG3=0	POWE0197
С		STORE THE ERRORS FOR COMPARISON:	POWE0198
C		ERROR BETWEEN ITERATION EIGENVALUES:	POWE0199
		ERLAM(ICOUT)=ERRLAM	PDWE0200
		DO 46 IG=1,2	POWE0201
С		MAXIMUM ERROR BETWEEN ITERATION FLUXES:	POWE0202
		EFSTR(IG,ICOUT)=ERRMAX(IG)	POWE0203
С		MEAN SQUARE ERROR BETWEEN ITERATION FLUXES:	POWE0204
		EFMSTR(IG,ICOUT)=SQ(IG)	POWE0205
С		MEAN SQUARE ERROR BETWEEN THE ITERATION FLUX AND GIVEN TRUE FLUX:	POWE0206
		PHICUN(IG,ICOUT)=DPHI(IG)	POWE0207
	46	CONTINUE	POWE0208
С		ERROR BETWEEN THE ITERATION EIGENVALUE AND GIVEN TRUE EIGENVALUE:	POWE0209
		LAMCON(ICOUT)=DLAM	POWE0210
		IF ((ERRMAX(1).LT.EPS1).AND.(ERRMAX(2).LT.EPS1)) IFLAG1=1	POWE0211
		IF ((SQ(1).LT.EPS2).AND.(SQ(2).LT.EPS2)) IFLAG2=1	POWE0212
		IF (ERRLAM.LT.EPS3) IFLAG3=1	POWE0213
		IFLAG4=IFLAG1*IFLAG2*IFLAG3	POWE0214
~		IF (IFLAG4-EQ-1) GO TO 50	POWE0215
C		UIHERWISE CUNTINUE THE ITERATION.	POWE0216
		PAG	SE 273

C

		Ι ΛΜΒΔ=Ι ΔΜΪ)Δ	POWE0217
		GO(TO(20))	POWE0218
	50	CONTINUE	POWE0219
C	20	CONVERGENCE ACCOMPLISHED.	POWE0220
č		NORMALIZE THE CONVERGED FLUX VECTOR:	POWE0221
C		CALL NORMAL (PHT.N)	POWE0222
c		PLOT ANY LEFT OVER FLUX HISTORY PLOTS:	POWE0223
Č		TE ((1P) T = EQ.2) = AND (IK = NE = Q)) CALL PHIPLT(IK)	POWE0224
r		BOUNDRY CONDITION INSERTIONS.	POWE0225
<u> </u>			POWE0226
c		LER ALLOWS B.C. INSERTIONS FOR YES AND NO CONVERGENCE:	POWE0227
C	55	IE (IBC - EQ - 4) = GO TO 90	POWE0228
		$IF (IBC_NE_3) GO TO 60$	POWE0229
		PHI(1,KR+1)=0	POWE0230
		PHI(2.KR+1)=0.	POWE0231
		GO TO 90	POWE0232
	60	DO 70 I=1.N	POWE0233
		J=N+1-I	POWE0234
		PHI(1, j+1) = PHI(1, j)	POWE0235
	70	PHI(2, J+1)=PHI(2, J)	POWE0236
		IF (IBC.EQ.5.OR.IBC.EQ.7) GO TO 71	POWE0237
		PHI(1,1)=0.0	POWE0238
		PHI(2,1)=0.0	POWE0239
		GO TO 72	POWE0240
	71	PHI(1,1)=PHI(1,2)	POWE0241
		PHI(2,1)=PHI(2,2)	POWE0242
	72	IF (IBC.NE.1) GO TO 73	POWE0243
		PHI(1,KR+1)=0.0	POWE0244
		PHI(2,KR+1)=0.0	POWE0245
		GO TO 90	POWE0246
	73	IF (IBC.LT.6) GO TO 90	POWE 0247
		PH1(1,KR+1)=PHI(1,KR)	POWE0248
		PHI(2,KR+1)=PHI(2,KR)	POWE0249
	90	IF (IER.EQ.1) GO TO 102	POWE0250
		RETURN	POWE0251
C		NO CONVERGENCE ACCOMPLISHED:	POWE0252
			PAGE 274

•

	100 CONTINUE	POWE0253
С	NORMALIZE THE UNCONVERGED FLUX:	POWE0254
	CALL NORMAL (PHI,N)	POWE0255
	ICOUT=ICOUT-1	POWE0256
	WRITE (6,101) ICOUT	POWE0257
•	101 FORMAT (1H1, POWER METHOD DID NOT CONVERGE FOR THIS CASE AFTER ,	POWE0258
	X I4, ITERATIONS. ///, IX, 'EXECUTION TERMINATED ')	POWE0259
	IER=1	POWE0260
	GO TO 55	POWE0261
	102 CONTINUE	POWE0262
С	FOR PRINTING OUT THE EIGENVALUE HISTORY AND THE FINAL FLUX SHAPE:	POWE0263
	IPLOT=1	POWE0264
	JPLOT=1	POWE0265
	RETURN	POWE0266
	END	POWE0267

)

```
SOLV0001
      SUBROUTINE SOLV3D(N,A,X,Y)
      SOLVES THE N DOUBLE PRECISION MATRIX EQUATIONS: A*X = Y.
                                                                                     SOLV0002
С
                                                                                     SOLV0003
      FOR X - GIVEN THE N BY N TRIDIAGONAL MATRIX A
С
                                                                                     SOLV0004
С
      AND THE SOURCE VECTOR Y.
         METHOD IS FORWARD ELIMINATION FOLLOWED BY BACKWARD SUBSTITUTION.
                                                                                     SOLV0005
С
                                                                                     SOLV0006
         CF - WACHPRESS, PAGE 23.
C
                                                                                     SOLV0007
      REAL*8 A. X. Y. H. P. D
                                                                                     SOLV0008
      DIMENSION A(26,26), X(26), Y(26), H(26), P(26)
                                                                                     SOLV0009
      IF (A(1,1).EQ.0.0) GO TO 10
                                                                                     SOLV0010
      H(1) = -A(1,2)/A(1,1)
                                                                                     SOLV0011
      P(1) = Y(1) / A(1, 1)
                                                                                     SOLV0012
      DO 1 M=2,N
                                                                                     SOLV0013
      D=A(M,M)+A(M,M-1)+H(M-1)
                                                                                     SOLV0014
      IF (D.EQ.0.0) GO TO 20
                                                                                     SOLV0015
      P(M) = (Y(M) - A(M, M-1) * P(M-1)) / D
                                                                                     SOLV0016
      IF (M.EQ.N) GO TO 1
                                                                                     SOLV0017
      H(M) = -A(M, M+1)/D
                                                                                     SOLV0018
    1 CONTINUE
                                                                                     SOLV0019
      X(N) = P(N)
                                                                                     SOLV0020
      DO 2 I=2, N
                                                                                     SOLV0021
      M=N+1-I
                                                                                     SOLV0022
    2 X(M) = P(M) + H(M) * X(M+1)
                                                                                     SOLV0023
      RETURN
         IN CASE OF ANY IMPENDING ZERO DIVISORS:
                                                                                     SOLV0024
С
                                                                                     SOLV0025
   10 WRITE (6,11)
   11 FORMAT ("OFIRST ELEMENT OF A, A(1,1), IS ZERO.",/,
                                                                                     SOLV0026
                                                                                     SOLV0027
         5X. BETTER FIX IT BOSS. )
     X
                                                                                     SCLV0028
      GO TO 30
                                                                                     SOLV0029
   20 WRITE (6,21) M
   21 FORMAT ("OZERO DIVISOR ENCOUNTERED IN EQUATION M =", I3, ". ",/,
                                                                                     SOLV0030
                                                                                     SOLV0031
         5X, BETTER FIX IT BOSS. )
     X
                                                                                     SOLV0032
   30 WRITE (6.31)
                                                                                     SOLV0033
   31 FORMAT ("DEXECUTION TERMINATED.")
                                                                                     SOLV0034
      CALL EXIT
                                                                                     SOLV0035
      RETURN
                                                                                     SOLV0036
      END
                                                                                 PAGE 276
```

SUBROUTINE NORMAL(PHI,N)	NORL0001
C NORMALIZES THE GROUP FLUXES TO ONE. NOT BOTH GROUPS.	NORL0002
REAL*8 PHI(2,26), A	NORL 0003
A=DABS(PHI(1,1))	NORLOOO4
DO 1 IG=1,2	NORL 0005
DO 1 I=1, N	NORL0006
IF (DABS(PHI(IG,I)).GT.A) A=DABS(PHI(IG,I))	NORLOOO7
1 CONTINUE	NORL0008
DO 2 IG=1,2	NORL 0009
DO 2 I=1,N	NORL0010
2 PHI(IG,I)=PHI(IG,I)/A	NORL 0011
RETURN	NORLO012
END	NORL 0013

		SUBROUTINE DHIDIT()	PHIP0001
	C.	PLOTS THE GROUP FLUX HISTORY, WITH UP TO 5 GROUP FLUXES PER PLOT.	PHIP0002
	č	FAST AND THERMAL GROUP FLUXES ARE PLOTTED SEPERATELY.	PHIP0003
	č	I IS THE NUMBER OF FLUXES TO BE PLOTTED.	PHIP0004
	č	L IS BETWEEN 1 AND 5.	PHIP0005
	v	IMPLICIT REAL +8 (A-H-O-Z)	PH1P0006
		COMMON /B1/ IBC	PHIP0007
		COMMON /B2/ KR.N	PHIP0008
		COMMON (B5/ \$126), A(26.6), B(26.6)	PHIP0009
		COMMON /BS/ TE1(2.5) TE2(2.5) TE3(5) IN(5)	PH1P0010
		COMMON /ED/ EDS1_EDS3	PHIP0011
		COMMON /EXTR/ PHISTR(2.26.6)	PHIP0012
		DINENSION SYMBOL (5)	PHIP0013
		INTEGER SYMBOL /*.*.*.*.**********/	PHIP0014
		KR1=KR+1	PHIP0015
	C	SET UP B.C. CONDITIONS	PHIP0016
	Ŭ	$IE (IBC_0EP_04) = GO TO 5$	PH1P0017
		IF (IBC.EQ.3) GO TO 3	PHIP0018
		DO 2 IG=1.2	PHIP0019
		DO 2 K=1.L	PHIP0020
		DO 1 I=1.N	PH1P0021
		J=N+1-I	PHIP0022
		1 PHISTR(IG,J+1,K+1)=PHISTR(IG,J,K+1)	PHIP0023
		2 PHISTR(IG, 1, $K+1$)=0.	PHIP0024
		3 IF (IBC.EQ.2) GO TO 5	PHIP0025
		DO 4 IG=1,2	PHIP0026
		DO 4 K=1.L	PHIP0027
7		4 PHISTR(IG,KR1,K+1)=0.	PHIP0028
		5 CONTINUE	PHIP0029
	C	FLUXES IN PHISTR HAVE BEEN NORMALIZED IN POWER.	PHIP0030
	č	PUT THE FAST FLUX IN A, AND THE THERMAL FLUX IN B:	PHIP0031
	•	L1=L+1	PHIP0032
		DO 10 K=1.L1	PHIP0033
		DO 10 I = 1.KR1	PHIP0034
		A(I,K) = PHISTR(I,I,K)	PHIP0035
		10 $B(I,K)=PHISTR(2,I,K)$	PHIP0036
			PAGE 278

С	PLOT THE L FAST FLUX SHAPES ON ONE GRAPH:	PHIP 0037
-	CALL PRTPLT(0, A, KR1, L1, KR1, 0, 26, 6, 2)	PHIP0038
	WRITE (6,20)	PHIP0039
	20 FORMAT (/, 'OFAST FLUX ITERATION HISTORY PLOT.',/)	PHIP0040
	WRITE (6,30)	PHIP0041
	30 FORMAT (PHIP0042
	X • OKEY: 1,5X, SYMBOL 1,5X, ITERATION NUMBER: 1,7X, ERROR CRITERIA,	PHIP0043
	X 11X, "ERROR", 13X, "TOLERANCE")	PHIP0044
	DO 35 I=1,L	PHIP0045
	35 WRITE (6,40) SYMBOL(I), IN(I), TE1(1, I), EPS1, TE2(1, I), EPS2,	PHIP0046
	X TE3(1), EPS3	PHIP0047
	40 FORMAT (/,12X,A1,15X,I3,16X,"FLUX",14X,1PD15.5,5X,1PD15.5,/,	PHIP0048
	X 47X, MEAN SQ. FLUX, 5X, 1PD15.5, 5X, 1PD15.5, /,	PHIP0049
	X 47X, "EIGENVALUE", 8X, 1PD15.5, 5X, 1PD15.5)	PHIP0050
C	PLOT THE L THERMAL FLUX SHAPES ON THE OTHER GRAPH:	PHIP0051
	CALL PRTPLT(0, B, KR1, L1, KR1, 0, 26, 6, 2)	PHIP0052
	WRITE (6,50)	PHIP0053
	50 FORMAT (/, 'OTHERMAL FLUX ITERATION PLOT.',/)	PHIP0054
	WRITE (6,30)	PHIP0055
	DO 55 I=1,L	PHIP0056
	55 WRITE (6,40) SYMBOL(I),IN(I),TE1(2,I),EPS1,TE2(2,I),EPS2,	PHIP0057
	X TE3(I),EPS3	PHIP0058
	RETURN	PHIP0059
	END	PHIP0060

	SUBROUTINE OUTPUT	OUTP0001
С	PRINTS THE RESULTS OF THE METHOD.	OUTP0002
•	IMPLICIT REAL*B (A-H.L-Z)	OUTP0003
	COMMON /B1/ IBC.IPLOT.JPLOT.IPUNCH	OUTP0004
	COMMON /B2/ KR.N	OUTP 0005
	COMMON /84/ PHI (2,26), PSI(2,26), LAMDA, ICOUT	OU TP 0006
	COMMON /ER/ EPS1.EPS2.EPS3	OUTP 0007
	COMMON /ESTR/ LAMSTR(300), EFSTR(2,300), EFMSTR(2,300), ERLAM(300)	OUTP0008
	COMMON /TRUE/ TRUEAM. TRUPHI(2.26). PHICON(2.300). LAMCON(300). IFT	OUTP 0009
	INTEGER N	OUTP0010
	KRO=KR-1	OUTP0011
	KR1=KR+1	OUTP0012
	WRITE (6,1)	OUTP0013
	1 FORMAT ("IRESULTS OF THE MULTIGROUP METHOD:")	OUTP0014
	WRITE (6,10) ICOUT	OUTP0015
	10 FORMAT 1//, PROBLEM TERMINATED AFTER', 15,	OUTPOO16
	X • OUTER (POWER) ITERATIONS TO: *)	OUTP0017
	WRITE (6,20) LANDA	OUTPOO18
	20 FORMAT (/,10X, LAMDA = ',1PE21.14)	OUTP0019
С	PRINT OUT EIGENVALUES.	OUTPOO20
	CALL PLOT	OUTP 0021
	WRITE (6,30)	OUTP0022
	30 FORMAT ("IRESULTS AFTER PROBLEM TERMINATION:",/,	OUTP 0023
	X 'ONUMBER',5X, THERMAL FLUX POINTS',5X, FAST FLUX POINTS')	OUTP0024
	WRITE (6,50) (K, PHI(2,K), PHI(1,K), K=1, KR1)	OUTP0025
	50 FORMAT (15, 1PE26.7, 1PE21.7)	OUTP0026
	IF (IPUNCH.EQ.I) CALL PUNCH	OUTP0027
С	CALCULATE THE FINAL TO EXPECTED FLUX RATIOS:	0UTP0028
C	NORMALIZE BOTH PHI GROUP FLUXES FOR TRUPHI COMPARISON:	OUTP 0029
	CALL NORM2(PHI, TRUPHI, KR1)	OUTP0030
	K1=1	OUTP0031
	K2=KR1	OUTP0032
	IF (IBC.LE.2) K1=2	OUTP0033
	IF ((IBC.EQ.1).OR.(IBC.EQ.3)) K2=KR	OUTP0034
	DO 60 IG=1,2	OUTP0035
	IF (IBC.LE.2) PSI(IG,1)=1.0	OUTP0036
		PAGE 280

(

IF ((IBC.EQ.1).OR.(IBC.EQ.3)) PSI(IG,KR1) = 1.0	OUTP0037
I = 0	OUTP0038
DO 60 K=K1,K2	OUTP0039
I = I + 1	OUTP0040
60 PSI(IG,K)=PHI(IG,K)/TRUPHI(IG,I)	OUTP0041
WRITE (6,70) (I,PSI(2,I),PSI(1,I),I=1,KR1)	OUTP0042
70 FORMAT ("IRATIOS OF THE TERMINATED GROUP FLUX TO THE E	EXPECTED GROU OUTPOO43
XP FLUX: 1,//,	OUTP0044
X 10X, - AN INDICATION OF THE ACCURACY OF THE CONVERG	GENCE - +,///, OUTP0045
X * K',12X, THERMAL RATIO',15X, FAST RATIO',//,(IS	5,2E25.10)) OUTP0046
C PRINT OUT THE STORED ITERATION ERRORS:	OUTP0047
WRITE (6,110) ÉPS1, (EFSTR(2,1), I=1, ICOUT)	DUTP0048
WRITE (6,111) EPS1,(EFSTR(1,I),I=1,ICOUT)	OU TP 0049
WRITE (6,112) EPS2, (EFMSTR(2,I), I=1, ICOUT)	OUTP0050
WRITE (6,113) EPS3, (EFMSTR(1,1), I=1, ICOUT)	OU TP 005 1
WRITE (6,114) EPS3,(ERLAM(I),I=1,ICOUT)	OUTP0052
110 FORMAT ("IMAXIMUM NORMALIZED ERRORS BETWEEN THE THERMA	AL FLUX ITERA DUTP0053
XTIONS: ',	OUTP0054
X 25X, TOLERANCE USED = 1, 1PE12.4, //, (1P5E20.5))	OUTP0055
111 FORMAT ("IMAXIMUM NORMALIZED ERRORS BETWEEN THE FAST F	LUX ITERATIO OUTP0056
XNS: ,	OUTP0057
X 25X, TOLERANCE USED = 1, 1PE12.4, //, (1P5E20.5))	OUTP0058
112 FORMAT ("IMEAN SQUARE NORMALIZED ERROR BETWEEN THE THE	ERMAL FLUX IT OUTP0059
XERATIONS: ,	OUTP0060
X = 18X, TOLERANCE USED = 1, 1PE12.4, //, (1P5E20.5))	OUTP0061
113 FORMAT ("IMEAN SQUARE NORMALIZED ERROR BETWEEN THE FAS	ST FLUX ITERA OUTPO062
XTIONS:",	OUTP 0063
X 18X, TOLERANCE USED = ', 1PE12.4, //, (1P5E20.5))	DU TP 0064
114 FORMAT ("IERROR BETWEEN THE ITERATION EIGENVALUES:",	OUTP 0065
X 28X, 'TOLERANCE USED = ', 1PE12.4, //, (1P5E20.5))	OUTP0066
C PRINT OUT THE GIVEN TRUE EIGENVALUE AND FLUX:	OUTP0067
IF (IFT.EQ.O) RETURN	OUTP0068
WRITE (6,115) TRULAM, ((TRUPHI(3-J,I),J=1,2),I=1,N)	OUTP0069
115 FORMAT (*1THE GIVEN TRUE EIGENVALUE:*,//,15X,	DUTP0070
X • TRULAM =•,E22.14,///,	OUTP0071
X 'OTHE GIVEN MULTIGROUP FLUXES: ',//,	OUTP 0072
	PAGE 281

 $\overline{}$

	X 13X. THERMAL . 16X. FAST .//. (2D2C.1C))	OUTP0073
C	PRINT OUT THE STORED CONVERGENCE ERRORS:	OUTP0074
Ţ.,	WRITE (6.120) (PHICON(2.1), I=1.ICOUT)	OUTP0075
	WRITE (6.121) (PHICON(1.1), I=1, ICOUT)	OUTP0076
	WRITE (6.122) (LAMCON(I).I=1.ICOUT)	OUTP0077
	120 FORMAT (IMEAN SQUARE ERROR BETWEEN THE THERMAL ITERATION FLUX AND	DUTP007 8
	X THE GIVEN TRUE THERMAL FLUX: +//+(1P5E20.5))	OUTP0079
	121 FORMAT ("IMFAN SQUARE ERROR BETWEEN THE FAST ITERATION FLUX AND TH	0UTP0080
	XF GIVEN TRUE FAST FLUX: • // • (1P5E20.5))	OUTP0081
	122 FORMAT ("IERROR BETWEEN THE ITERATION EIGENVALUES AND THE GIVEN TR	OUTP0082
	$x_{HE} = FIGENVALUE: 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.$	OUTP 0083
	RETURN	OUTP0084
	FND	OUTP0085

.

	SUBROUTINE PLOT	PL0T0001
С	PLOTS OUT THE EIGENVALUE HISTORY AS A TABLE AND A GRAPH,	PLOT0002
C	AS WELL AS PLOTTING OUT THE FINAL MULTIGROUP FLUX SHAPES.	PLOT0003
	IMPLICIT REAL*8 (A-H,L-Z)	PLOT0004
	COMMON /B1/ IBC, IPLOT, JPLOT, IPUNCH	PLOT0005
	COMMON /B2/ KR	PLOT0006
	COMMUN /B4/ PHI(2,26), PSI(2,26), LAMDA, ICOUT	PLOT0007
	COMMON / 85/ 8(300,2)	PLOT0008
	COMMON /ESTR/ LAMSTR(300)	PLOT0009
	DIMENSION C(26,3)	PLOT0010
C	IN ORDER TO SAVE SOME SPACE:	PLOT0011
	EQUIVALENCE (B(1),C(1))	PLOT0012
	WRITE (6,1) (LAMSTR(I),I=1,ICOUT)	PLOT0013
	1 FORMAT ("OTABLE OF EIGENVALUES DURING THE POWER ITERATION:",	PLOT0014
	X //,(1P5E25.14))	PLOT0015
	IF (JPLUT.EQ.0) GO TO 20	PLOT0016
	DO 10 I=1,ICOUT	PLOT0017
	B(I,1)=I	PLOT0018
	10 B(I,2)=LAMSTR(I)	PLOT0019
	CALL PRTPLT(1,B,ICOUT,2,ICOUT,0,300,2,1)	PLOT0020
	WRITE (6,11)	PL 0T 0021
	11 FORMAT ("OPLOT OF THE EIGENVALUE HISTORY THROUGH THE ITERATIONS.")	PL0T0022
	20 IF (IPLOT.EQ.O) RETURN	PL0T0023
	KR1=KR+1	PLOT0024
	DO 30 I=1,KR1	PL0T0025
	C(I,1)=I	PLOTO026
	C(I,2)=PHI(1,I)	PL0T0027
	30 C(I,3)=PHI(2,I)	PLOT0028
	CALL PRTPLT(2,C,KR1,3,KR1,0,26,3,2)	PLOT0029
	WRITE (6,31)	PLOT0030
	31 FURMAT ("OFINAL CONVERGED CONNECTING FLUX POINTS; F(K).",//,	PLOT0031
	X 5X, "FAST FLUX: .*,/,5X, "THERMAL FLUX: -")	PLOT0032
	RETURN	PL0T0033
	END	PLOT0034

	SUBROUTINE PUNCH	PNCH0001
C	PUNCHES OUT INPUT AND OUTPUT DATA.	PNCH0002
-	COMMON /B2/ KR	PNCH0003
	COMMON / B4/ F(2,26)	PNCH0004
	REAL*8 F	PNCH0005
	KR1=KR+1	PNCH0006
	WRITE (7,1) KR, (F(1,1),F(2,1),I=1,KR1)	PNCH0007
1	FORMAT (15./.(2E20.7))	PNCH0008
-	WRITE (6,100)	PNCH0009
100	FORMAT (///, ' THE OUTPUT HAS BEEN PUNCHED OUT ONTO CARDS ')	PNCH0010
	RETURN	PNCH0011
	END	PNCH0012

•

	SUBROUTINE NORM2(PSI,TRUPHI,N)	NOR20001
C	NORMALIZES BOTH ENERGY GROUPS OF PSI TO 1.0.	NOR20002
C	DITTO FOR TRUPHI ON THE FIRST CALL.	NOR20003
	REAL*8 PSI(2,26), TRUPHI(2,26), A(2)	NOR20004
	DATA K /0/	NOR20005
	K=K+1	NOR20006
С		NOR20007
	$DO \ 1 \ IG=1.2$	NOR20008
	A(IG) = DABS(PSI(IG.1))	NOR20009
	$DO = I = I \cdot N$	N0820010
	$IE (DABS(PSI(IG, I)), GI_A(IG)) = A(IG) = DABS(PSI(IG, I))$	N0R20011
	1 CONTINUE	NOR20012
	DO = 2 + 16 = 1.2	NOR20013
	DO 2 I = 1.N	N0820014
	$2 \text{ PSI}(16, 1) \neq \text{PSI}(16, 1) / A(16)$	NOR20015
	IE (K_NE_I) RETURN	NOR20015
	DO 5 IG=1.2	N0820017
	$\Delta(16)=0$	NOR20018
	DO 5 I=1.N	NOR20019
	$1 \in (TRHPHI(IG,I), GT, A(IG)) = A(IG) = TRHPHI(IG,I)$	NGR20020
	5 CONTINUE	N0R20021
	00.6 16=1.2	NOR20021
	DO = 10 - 112	NOR20022
	4 TOHDWITTC IN-TOHDWITTC IN/ATTC	NOR20023
	DETION	NOR20024
		NUKZUUZO

SUBROUTINE PRTPLT(NO,B,N,N,NL,NS,KX,JX,ISP)	PRTP0001
A TOCHTICH TO CURROUTING PRIDIT PREVIOUCLY LICTER	
* IDENTICAL ID SUBRUUTINE PRIPLI PREVIOUSLY LISTED	IN PRUGRAM REF2G• PRTP0003 PRTP0004
RETURN	PRTP 0005
END	PRTP0006

C C C
F.3. SOURCE LISTING of Program CUBIC

Figure F.3. Structure of Program CUBIC.

C	PROGRAM CUBIC:		CUBI 0001
C	TWO GROUP PROPOSED METHOD USING CUBIC HERMITE BASIS FUNCTIONS.		CUBI0002
	CALL TIMING (II)		CUBI 0003
	CALL SYNTH		CUBI0004
	CALL TIMING (14)		CUBI 0005
	CALL POWER		CUBI0006
	CALL TIMING (16)		CUB10007
	CALL CURENT		CUBI 0008
	CALL TIMING (17)		CUBI0009
	CALL OUTPUT		CUBI0010
	CALL TIMING (18)		CUBI 0011
С	TIMING EXECUTION		CUBI0012
	WRITE (6,30)		CUBI0013
30	FORMAT (1H1, TIMING PROGRAM EXECUTION: ",/)		CUBI0014
	J=I4-I1		CUBI0015
	WRITE(6,701) J		CUBI0016
	J=16-14	,	CUBI0017
	WRITE(6,704) J		CUBI0018
	J=17-16		CUBI 0019
	WRITE(6,706) J		CUBI 00 20
	J=18-17		CUBI0021
	WRITE(6,707) J		CUBI0022
701	FORMAT (1H , SYNTH HAS TAKEN', 16, 100 SECONDS.')		CUBI0023
704	FORMAT (1H , POWER HAS TAKEN', 16, 100 SECONDS.')		CUBI 0024
706	FORMAT (1H , CURENT HAS TAKEN', 15, 1/100 SECONDS.')		CUBI 0025
707	FORMAT (1H , OUTPUT HAS TAKEN', 15, 1/100 SECONDS.)		CUBI0026
	CALL TIMING (120)		CUBI 0027
	J=I20-I1		CUBI 0028
	WRITE(6,720) J		CUBI 0029
720	FORMAT (1H0, THIS RUN HAS TAKEN', 16, 7/100 SECONDS TO RUN.')		CUBI0030
	STOP		CUBI 0031
	END		CUBI0032

	SUBROUTINE SYNTH	SYNT0001
C	PROPOSED CUBIC HERMITE SYNTHESIS METHOD:	SYNT0002
C * *	* * * * * * * * * * * * * * * * * * * *	* * SYNT0003
C	ADJOINT QUANTITIES OF VARIBLES ARE DENOTED BY 7 RATHER THAN *.	SYNT0004
C	THUS: PHI7 (RATHER THAN PHI*) IS THE ADJOINT OF PHI. ETC.	SYNT0005
	IMPLICIT REAL*8 (A-H,K-Z)	SYNT0006
	COMMUN /B1/ IBC, IPLOT, JPLOT, IPUNCH, ISEE	SYNT0007
	COMMON /B2/ KR, NN	SYNT0008
	COMMON /B3/ LT(50,6,2), FT(50,6,4), T(50,6)	SYNT 0009
	COMMON /B5/	SYNT0010
	X KAUL2,25),KAIL2,25),KA2L2,25),KA3L2,25),KA4L2,25),KA5L2,25),	SYNT0011
	X KA6(2,25),KB0(2,25),KB1(2,25),KB2(2,25),KB3(2,25),KB4(2,25),	SYNT0012
	X KB5(2,25),KB6(2,25),LA0(2,25),LA1(2,25),LA2(2,25),LA3(2,25),	SYNT0013
	X LA4(2,25),LA5(2,25),LA6(2,25),PO(2,25),P1(2,25),P2(2,25),	SYNT0014
	X P3(2,25), P4(2,25), P5(2,25), P6(2,25), Q0(2,25), Q1(2,25),	SYNT0015
	X Q2(2,25) ,Q3(2,25) ,Q4(2,25) ,Q5(2,25) ,Q6(2,25) ,R0(2,25) ,	SYNT0016
	X R1(2,25) ,R2(2,25) ,R3(2,25) ,R4(2,25) ,SR0(1,25),SR1(1,25),	SYNT0017
	X SR2(1,25), SR3(1,25), SR4(1,25), SR5(1,25), SR6(1,25), KCO(1,25),	SYNT0018
	X KC1(1,25),KC2(1,25),KC3(1,25),KC4(1,25),KC5(1,25),KC6(1,25),	SYNT0019
	X KD0(1,25),KD1(1,25),KD2(1,25),KD3(1,25),KD4(1,25),KD5(1,25),	SYNT0020
	X KD6(1,25),	SYNT0021
	X PO(2,25), PH(2,25), PO7(2,25), PH7(2,25), DO(2,25), DH(2,25),	SYNT0022
	X CO(2), CH(2), TITLE(20), ITF(25), KTF(25)	SYNT0023
	COMMON /CHIF/ CHI(2)	SYNT0024
	COMMON /XAXIS/ HX, HR(25)	SYNI0025
	COMMON /BH/ X(101), H(101)	SYNT0026
	COMMON /ER/ EPS1, EPS2, EPS3	SYNT0027
	DIMENSION PHI(2,101), PHI7(2,101), CUR(2,101), CUR7(2,101)	SYNT0028
	DIMENSION A(2,100),F(2,100),D(2,100),S(2,100),DI(2,100),XU(2,100)	SYNT0029
C	IN ORDER TO SAVE SPACE:	SYNT0030
	EQUIVALENCE (XU(1),LT(1)), (A(1),LT(201)), (F(1),LT(401)),	SYNT0031
	X (DI(1),FT(1)), (D(1),FT(201)), (S(1),FT(401))	SYNT0032
	REAL TITLE	SYNT0033
	INTEGER KR,K,KS,KS1,KRO,NN,NUMITF,KTF,N	SYNT0034
	READ (5,200) TITLE	SYNT0035
200	FORMAT (20A4)	SYN10036
		PAGE 290

		WRITE (6,201) TITLE	SYNT0037
	201	FORMAT (1H1,20A4,//)	SYNT0038
C		READ IN THE NUMBER OF REGION TRIAL FUNCTIONS AND TYPE OF B.C.S.	SYNT0039
C		AS WELL AS THE TOLERANCES AND THE OUTPUT TYPES DESIRED:	SYNT0040
		READ (5,1) KR, IBC, EPS1, EPS2, EPS3, IPLCT, JPLOT, IPUNCH, ISEE, ITW, ITC	SYNTOO41
	1	FORMAT (215,3010.3,615)	SYNT0042
		IF (IBC.EQ.3) IBC=2	SYNT 0043
C		READ IN THE TYPE-NUMBER OF EACH TF REGION:	SYNT0044
		READ (5,100) (ITF(I),I=1,KR)	SYNT0045
	100	FORMAT (2512)	SYNT0046
C		READ IN THE FISSION YEILDS FOR EACH GROUP:	SYNT0047
С		AND THE MATRIX NORMALIZATION PARAMETER: THETA (DEFAULT = 1.0):	SYNT0048
		READ (5,101) CHI(1), CHI(2), THETA	SYNTO049
	101	FORMAT (3F10.5)	SYNT0050
		IF (THETA.EQ.0.0) THETA=1.0	SYNT0051
		KRO=KR-1	SYNT0052
		WRITE (6,2) KR, IBC, ISEE, ITW, ITC	SYNT0053
	2	FORMAT ("DONE DIMENSIONAL TWO GROUP CUBIC SYNTHESIS PROGRAM:",//,	SYNT0054
		X 5X, NUMBER OF COARSE MESH REGIONS: KR = ', I2,/,	SYNT0055
		X 5X, BOUNDARY CONDITION NUMBER: IBC = ', I2,/,	SYNT0056
		X 5X, AMOUNT OF OUTPUT REQUESTED: ISEE = ', 12, //,	SYNT0057
		X 5X, TYPE OF WEIGHTING FUNCTIONS: ITW = ', 12, /,	SYNT0058
		x = 5x, 'TYPE UF CURRENT FUNCTIONS: ITC = ', 12, //,	SYNI0059
		X 5X, REGIONAL INPUT MATERIAL PROPERTIES AND FLUX SHAPES FULLOW',	SYNT0060
		$X /_{1} 5 X_{1} + 1 SEE > 0 \cdot \cdot //_{1}$	SYNT0061
		X 5X, "FLUX SHAPES ARE LINEAR IN EACH INDICATED SUBREGIUN.")	SYNT0062
		IF (IIC-EQ-0) WKITE (6,16)	SYNI0063
		IF (IIU-EW-I) - WRITE (0;17) FORMAT JEW ACHERGINE ARE CONSTANT IN FACH INDICATED CHORECIGN AN	STNI UUG4
	16	FURMAL (5%, CURRENTS ARE CUNSTANT IN EACH INDICATED SUBREGIUN.")	SYNT0065
	11	FURMAL (5%, "LURKENIS ARE LINEAR IN EACH INDICATED SUBREGIUN.")	STNI UU66
		IF (IIW-EW-U) WKITE (O;LO)	STNIUUGI
	11/	IF LINGEWOIDS WHILE LOTITS - FLUX-1 / FY INFIGUTING CURRENT -	STNIUUOS
	110	FURMAN (//JDA)*WEIGHIING FLUA = FLUA;*//JDA)*WEIGHIING GURKENN = - Venddent IA	
	117	ACURRENT (7.57 INFIGUTING ENDY - ADIOINT CHUY-1 / SY INFIGUTING CHUD	STN1UUTU SVNTDO71
	111	FURMAL (//J/A) WEIGHIING FLUA - AUJUINI FLUA) 9/9/A/ WEIGHIING CURK Vent - Adimini (Hddent I)	STATOUTI STATOUTI
		AENI - AUJUINI CURRENTA'I	DAGE 291

}

	WRITE (6,20) EPS1.EPS2.EPS3.IPLOT.JPLOT.IPUNCH	SYNT0073
	20 FORMAT (//, 'OTOLERANCES TO POWER ARE : EPS1 = ', 1PD10.3,/,	SYNT0074
	$X = 28X_{2} + EPS2 = +, 1PD10_{2}, 28X_{2} + EPS3 = +, 1PD10_{2}, 28X_{2}$	SYNT0075
	X 'OOUTPUT PARAMETERS TO POWER ARE: IPLOT = ', I1,/,	SYNTOO76
	$X = 34X \cdot JPLOT = \cdot I1 \cdot / \cdot 34X \cdot IPUNCH = \cdot I1$	SYNT 0077
	WRITE (6.22) CHI(1), CHI(2), THETA	SYNT0078
	22 FORMAT (/. OFISSION YIELDS ARE: CHI(1) = F10.5./.	SYNT0079
	$X = 22X \cdot CHI(2) = \cdot F10.5 \cdot / \cdot$	SYNT0080
	X 'OINPUT THETA PARAMETER (FOR MATRICES) =',D15.7)	SYNT0081
	IF ((KR.LE.2).AND.(IBC.EQ.1)) CALL ERROR(1.KR)	SYNT0082
	IF (KR.GT.25) CALL ERROR(2.KR)	SYNT0083
	IF (EPS1.LT.1.0E-16) CALL ERROR(6,1)	SYNT0084
	IF (EPS2.LT.1.0E-16) CALL ERROR(6,2)	SYNT0085
	IF (EPS3.LT.1.0E-16) CALL ERROR(6,3)	SYNT0086
	IF ((IBC.LT.1).OR.(IBC.GT.4)) CALL ERROR(7,IBC)	SYNT0087
С	DUMMY NORMAL VECTOR XU = UNITY. (FOR THE INTEGRATION FUNCTIONS)	SYNT0088
	DO 21 $IG=1,2$	SYNT0089
	DO 21 II=1,100	SYNT 0090
	21 XU(IG,II)=1.0	SYNT0091
	ITCO=2	SYNT0092
	ITC1=2	SYNT 0093
	IF (ITC.EQ.1) GO TO 23	SYNT0094
	ITCO=0	SYNT0095
	ITC1=1	SYNT0096
С	COUNTER OF THE NUMBER OF TYPE-NUMBERS OF EACH TF REGION:	SYNT0097
	23 NUMITF=1	SYNT0098
	HX=0.0	SYNT0099
С	BEGIN TO READ IN THE TF REGION DATA AND FILL THE ARRAYS,	SYNT0100
С	DEPENDING DN THE TYPE-NUMBER OF EACH TF REGION.	SYNT0101
	DO 50 I=1,KR	SYNT0102
	IF (ITF(I).EQ.NUMITF) GO TO 110	SYNT0103
С	FILL THE ARRAYS FROM OLD TF REGION TYPES:	SYNT0104
	J=ITF(I)	SYNT0105
	CALL REPEAT(I,KTF(J))	SYNT0106
	GO TO 50	SYNT0107
С	READ IN THE TF REGION'S DATA FOR NEW TF REGION TYPE-NUMBERS:	SYNT0108
		PAGE 292

		SYNT0109
		SYNT0110
~	DEAD THE SUBDECTON NUMBED AND THE NUMBER OF REGIONS IN THE SUBREGION:	SYNT0111
ι	READ THE SUBREGION NUMBER AND THE NUMBER OF REGISTO IN THE COLOUR	SYNT0112
	KEAU (J)II (N) NJ TE (MC OT 100) CALL EDDOD(2.1)	SYNT0113
	IF (KS.61.100) CALL ERRORISTI	SYNT0114
~	KSI=KS+1 CHECK FOD IMDDODED SECTENCING OF INDHI DATA:	SYNT0115
L	CHECK FUR IMPROPER SEQUENCING OF INFOT DATAS	SYNT0116
~	IF (ISNESK) - CALL EKKUK(4)I/ DEAD IN THE CERMETRY AND THE MATERIAL PROPERTIES:	SYNTO117
L	READ IN THE GEOMETRY AND THE MATCHIAL PROPERTIES.	SYNT0118
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	SYNT0119
	X = A(2)JJJ(2)JJJ(2)JJ(2)JJ	SYNT0120
c	S FURMAL (SFLU-S)4010-S47 JOA JOLO-S7	SYNT0121
L	PEAD (5.4) (DHI(1.1), CHR(1.1), PHI7(1.1), CHR7(1.1), J=1.KS1)	SYNT0122
	PEAD (5,4) (PHT(2,1),CUR(2,1),PHT7(2,J),CUR7(2,J),J=1+KS1)	SYNT0123
	A EDDMAT (4020.7)	SYNT0124
	1 = (11 + 60, 1) = 60 = 10 = 120	SYNT0125
C	FORM WEIGHTING FUNCTIONS FROM THE GIVEN FUNCTIONS:	SYNT0126
Ŭ	DO 119 1G=1.2	SYNT0127
	DO 119 J=1.KS1	SYNT0128
	PHI7(IG.J)=PHI(IG.J)	SYNT0129
	119 CUR7(IG,J) = -CUR(IG,J)	SYNTO130
	120 IF (ITC.E0.1) GO TO 5	SYNT0131
C.	FORM THE REGION CONSTANT CURRENTS FROM THE FLUXES:	SYNT0132
Ť	DO 7 IG=1,2	SYNT0133
	$DO_{4} = 1.4$ S	SYNT0134
	CUR(IG, J) = -D(IG, J) + (-PHI(IG, J) + PHI(IG, J+1))/H(J)	SYNT0135
	6 CUR7(IG, J)=+D(IG, J)*(-PHI7(IG, J)+PHI7(IG, J+1))/H(J)	SYNTO136
	CUR(IG,KS1)=0.0	SYNT0137
	7 CUR7(IG,KS1)=0.0	SYNT0138
С	WRITE OUT THE INPUT INFORMATION IF ISEE .GE.2:	SYNT0139
	5 IF (ISEE.LE.1) GO TO 14	SYNT0140
	WRITE (6,10) K,KR,KS,(J,X(J),X(J+1),H(J),A(1,J),F(1,J),D(1,J),	SYNTO141
	X = S(1,J),A(2,J),F(2,J),D(2,J),J=1,KS)	SYNIO142
	10 FORMAT ('IINPUT MATERIAL PROPERTIES FOR REGION NUMBER ', I3,	SYNT 0143
	X •, DF THE •, I3, • USED.•, //,	SYNIU144
		PAGE 293

	X 5X, THIS REGION IS DIVIDED INTO ', I3, HOMOGENEOUS SUBREGIONS A	SYNT0145
	XS FOLLOWS: 1//,	SYNT0146
	X 5X. FAST GROUP CONSTANTS APPEAR FIRST: 1//1	SYNTO147
	X • SUBREGION #•,5X, 'INTERNAL BOUNDARIES', 10X, 'WIDTH', 3X,	SYNT0148
	X • TOTAL CX (1/CM) •, 3X, • FISSION CX (1/CM) •, 6X, • DIFFUSION (CM) •,	SYNT0149
	X 4X. SCATT.CX (1/CM) ./.	SYNT0150
	$X = 5X \cdot I \cdot I X \cdot X (I) \cdot 9X \cdot X (I+1) \cdot I X \cdot H (I) \cdot I X \cdot A (IG, I) \cdot I X$	SYNTO151
	X *F(IG.I)*.13X.*D(IG.I)*.14X.*S(1.I)*.//.	SYNT0152
	X (16.3F15.4.4D20.8./.51X.3D20.8))	SYNT0153
	DO 15 IG=1.2	SYNT0154
	15 WRITE (6.11) IG.K.KR.(J.X(J).PHT(IG.J).CUR(IG.J).PHI7(IG.J).	SYNT0155
	X = CUR7(IG.J).J=1.KS1)	SYNT0156
	11 FORMAT ("IINPUT TRIAL FUNCTIONS FOR GROUP", 12, " FOR REGION", 13,	SYNTO157
	X • OUT OF THE • 13. • USED: • • / / •	SYNT0158
	X INDEX 5X. COORD 16X. FLUX 13X. CURRENT 8X, WEIGHT FLUX ,	SYNT0159
	X 5X. WEIGHT CURRENT .//. (16.F10.5.4D20.7))	SYNTO160
	14 CONTINUE	SYNT0161
С	END OF THE IN-OUT SECTION:	SYNT0162
Č	DEFINING MISC. ARRAYS FOR THE INTEGRATION FUNCTIONS:	SYNT0163
C	LEGNTH OF THE SUBREGION: HT	SYNTO164
	HT=X(KS1)-X(1)	SYNTO165
	HR(K)=HT	SYNT0166
	HX=HX+HR(K)	SYNTO167
С	INVERSE OF THE D ARRAYS:	SYNT0168
	DO 13 $J=1,KS$	SYNT0169
	$DI(1, J) \neq 1./D(1, J)$	SYNTO170
	13 $DI(2,J)=1./D(2,J)$	SYNTO171
С	FORMATION OF THE INTEGRATION FUNCTIONS:	SYNTO172
	CALL BHSET(KS)	SYNTO173
С	DO FOR ALL ENERGY GROUPS:	SYNT 0174
	DO 50 IG=1,2	SYNTO175
	KAO(IG,K)=GIF(O,IG,PHI7,IG,A,PHI,KS,2)	SYNT0176
	KAl(IG,K)=GIF(1,IG,PHI7,IG,A,PHI,KS,2)	SYNT0177
	KA2(IG,K)=GIF(2,IG,PHI7,IG,A,PHI,KS,2)	SYNT0178
	KA3(1G,K)=GIF(3,IG,PHI7,IG,A,PHI,KS,2)	SYNT0179
	KA4(IG,K)=GIF(4,IG,PHI7,IG,A,PHI,KS,2)	SYNT0180
		PAGE 294

KA5(IG,K)=GIF(5,IG,PHI7,IG,A,PHI,KS,2)	SYNT0181
KAG(IG, K) = GIF(G, IG, PHI7, IG, A, PHI, KS, 2)	SYNT0182
KBO(IG, K) = GIF(O, IG, PHI7, IG, F, PHI, KS, 2)	SYNT0183
KB1(IG,K)=GIF(1,IG,PHI7,IG,F,PHI,KS,2)	SYNT0184
KB2(IG, K) = GIF(2, IG, PHI7, IG, F, PHI, KS, 2)	SYNTO185
KB3(IG, K)=GIF(3, IG, PHI7, IG, F, PHI, KS, 2)	SYNT0186
KB4(IG,K)=GIF(4,IG,PHI7,IG,F,PHI,KS,2)	SYNTO187
KB5(IG, K)=GIF(5, IG, PHI7, IG, F, PHI, KS, 2)	SYNT0188
KB6(IG, K)=GIF(6, IG, PHI7, IG, F, PHI, KS, 2)	SYNTO189
LAO(IG,K) = GIF(O, IG, CUR7, IG, DI, CUR, KS, ITCO)	SYNT0190
A1(IG,K)=GIF(1,IG,CUR7,IG,DI,CUR,KS,ITCO)	SYNT0191
LA2(IG.K)=GIF(2, IG, CUR7, IG, DI, CUR, KS, ITCO)	SYNT0192
LA3(IG,K)=GIF(3,IG,CUR7,IG,DI,CUR,KS,ITCO)	SYNT0193
LA4(IG.K)=GIF(4,IG,CUR7,IG,DI,CUR,KS,ITCO)	SYNT0194
LA5(IG,K)=GIF(5,IG,CUR7,IG,DI,CUR,KS,ITCO)	SYNT0195
LA6(IG,K)=GIF(6,IG,CUR7,IG,DI,CUR,KS,ITCO)	SYNT0196
PO(IG,K)=GIF(0,IG,PHI7,IG,XU,CUR,KS,ITC1)/HT	SYNTO197
P1(IG,K)=GIF(1,IG,PHI7,IG,XU,CUR,KS,ITC1)/HT	SYNT0198
P2(IG,K)=GIF(2,IG,PHI7,IG,XU,CUR,KS,ITC1)/HT	SYNT0199
P3(IG,K)=GIF(3,IG,PHI7,IG,XU,CUR,KS,ITC1)/HT	SYNT0200
P4(IG,K)=GIF(4,IG,PHI7,IG,XU,CUR,KS,ITC1)/HT	SYNT0201
P5(IG,K)=GIF(5,IG,PHI7,IG,XU,CUR,KS,ITC1)/HT	SYNT0202
P6(IG,K)=GIF(6,IG,PHI7,IG,XU,CUR,KS,ITC1)/HT	SYNT0203
QO(IG,K)=GIF(O,IG,PHI,IG,XU,CUR7,KS,ITC1)/HT	SYNT0204
Q1(IG,K)=GIF(1,IG,PHI,IG,XU,CUR7,KS,ITC1)/HT	SYNT0205
Q2(IG,K)=GIF(2,IG,PHI,IG,XU,CUR7,KS,ITC1)/HT	SYNT0206
Q3(IG,K)=GIF(3,IG,PHI,IG,XU,CUR7,KS,ITC1)/HT	SYNT0207
Q4(IG,K)=GIF(4,IG,PHI,IG,XU,CUR7,KS,ITC1)/HT	SYNT0208
Q5(IG,K)=GIF(5,IG,PHI,IG,XU,CUR7,KS,ITC1)/HT	SYNT0209
Q6(IG,K)=GIF(6,IG,PHI,IG,XU,CUR7,KS,ITC1)/HT	SYNT0210
RO(IG, K) = GIF(0, IG, PHI7, IG, D, PHI, KS, 2)/HT **2	SYNTO211
R1(IG,K)=GIF(1,IG,PHI7,IG,D,PHI,KS,2)/HT**2	SYNT0212
R2(IG,K)=GIF(2,IG,PHI7,IG,D,PHI,KS,2)/HT**2	SYNT0213
R3(IG,K)=GIF(3,IG,PHI7,IG,D,PHI,KS,2)/HT**2	SYNT0214
R4(IG,K)=GIF(4,IG,PHI7,IG,D,PHI,KS,2)/HT**2	SYNTO215
STORE THE TERMINAL POINTS FOR LATER USE:	SYNT0216
	PAGE 295

	PO(IG.K)=PHI(IG.1)	SYNT0217
	PO7(IG.K)=PHI7(IG.1)	SYNTO218
	PH(IG,K)=PHI(IG,KS1)	SYNT0219
	PH7(IG.K)=PHI7(IG.KS1)	SYNT0220
	DO(IG.K) = D(IG.1)	SYNT0221
	DH(IG.K)=D(IG.KS)	SYNT0222
	$IF (K_{\bullet}EP_{\bullet}1) = CO(IG) = CUR(IG_{\bullet}1)$	SYNT0223
	IF (NUMITE-1.EQ.ITF(KR) AND.ITC.EQ.Q) CH(IG)=CUR(IG,KS)	SYNT0224
	IF (NUMITE-1.EQ.ITF(KR).AND.ITC.EQ.1) CH(IG)=CUR(IG,KS1)	SYNT0225
	FOR THE OFF DIAGONAL MATRIX ELEMENTS:	SYNT0226
	$IF (IG_{0}FO_{0}2), GO TO 50$	SYNT0227
	SRO(1,K) = GIF(0,2,PHI7,1,S,PHI,KS,2)	SYNT0228
	SR1(.1-K) = GIF(1-2-PHI7-1-S-PHI-KS-2)	SYNT0229
	SR2(1.K)=GIF(2.2.PHI7.1.S.PHI.KS.2)	SYNT0230
	SR3(1.K)=GIF(3.2.PHI7.1.S.PHI.KS.2)	SYNT0231
	SR4(1,K)=GIF(4,2,PHI7,1,S,PHI,KS,2)	SYNT0232
	SR5(1,K)=GIF(5,2,PHI7,1,S,PHI,KS,2)	SYNT0233
	SR6(1,K)=GIF(6,2,PHI7,1,S,PHI,KS,2)	SYNT0234
	KCO(1,K) = GIF(0,1,PHI7,2,F,PHI,KS,2)	SYNTO235
	KC1(1,K)=GIF(1,1,PHI7,2,F,PHI,KS,2)	SYNT0236
	KC2(1,K)=GIF(2,1,PHI7,2,F,PHI,KS,2)	SYNT0237
	KC3(1,K)=GIF(3,1,PHI7,2,F,PHI,KS,2)	SYNT0238
	KC4(1,K)=GIF(4,1,PHI7,2,F,PHI,KS,2)	SYNT 0239
	KC5(1,K)=GIF(5,1,PH17,2,F,PH1,KS,2)	SYNT0240
	KC6(-1,K) = GIF(6,1,PHI7,2,F,PHI,KS,2)	SYNTO241
	KDO(1,K)=GIF(0,2,PHI7,1,F,PHI,KS,2)	SYNT0242
	KD1(1,K)=GIF(1,2,PH17,1,F,PHI,KS,2)	SYNTO243
	KD2(1,K)=GIF(2,2,PHI7,1,F,PHI,KS,2)	SYNT0244
	KD3(1,K)=GIF(3,2,PHI7,1,F,PHI,KS,2)	SYNT0245
	KD4(1, K) = GIF(4, 2, PHI7, 1, F, PHI, KS, 2)	SYNT0246
	KD5(1,K)=GIF(5,2,PHI7,1,F,PHI,KS,2)	SYNT0247
	KD6(.1,K) = GIF(6,2,PHI7,1,F,PHI,KS,2)	SYNT0248
50	CONTINUE	SYNT0249
	NUMITE=NUMITE-1	SYNT0250
	WRITE (6,51) NUMITE	SYNT0251
51	FORMAT ("ITHERE ARE ONLY", I3, " DIFFERENT TRIAL FUNCTION REGIONS.")	SYNT0252
		PAGE 296

	WRITE $(5,52)$ (1.ITE(I).I=1.KR)	SYNT0253
	52 FORMAT (/, OTABLE OF THE TRIAL FUNCTION NUMBER TYPES: 1,//,	SYNTO254
	x 3x. TE REGION 4X. REGION TYPE-NUMBER'.//.	SYNT 0255
	$\mathbf{X} = (17, 12\mathbf{X}, 17)$	SYNT0256
r	TO PRINT OUT THE /R5/ ARRAYS:	SYNT0257
C	TE (TSEE GE.2) CALL DRTOUT(1)	SYNT 0258
r	DETERMINATIONS OF THE B.C. OPTION PARAMETERS:	SYNT0259
č	NN IS THE BLOCK SIZE OF THE POWER MATRICES.	SYNT0260
C	NAL-2×KD	SYNT0261
c	EDIMATION OF THE COFFEIGIENT VECTORS:	SYNT0262
C C	ETHING THE NATRICES FOR DOWER:	SYNT 0263
	END RATH ÉNERCY CRAIDS:	SYNT0264
C	DD = 60 = 1.2	SYNT 0265
ſ	THE MATRIX ROW INDEX:	SYNTO266
v		SYNT 0267
C	FOR ALL THE INTERIOR COEFFICIENTS:	SYNT0268
C	DD = 60 K=2.KR	SYNTO269
	I = I + 1	SYNT0270
	56 J=K-1	SYNT 0271
	$V=1_{*}/(PH7(IG_{*}J)*PO(IG_{*}J))$	SYNT0272
	V1=1./(PH7(IG,J)*PH(IG,J))	SYNT0273
	$V_{2=1}/(PU7(IG,K)*PO(IG,K))$	SYNT0274
	V3=1./(PO7(IG,K)*PH(IG,K))	SYNTO275
	LT(I,1,IG)=(3.*KA2(IG,J)-2.*KA3(IG,J)-9.*KA4(IG,J)+12.*KA5(IG,J)	SYNT0276
	X -4.*KA6(IG,J)-(3.*LA2(IG,J)-2.*LA3(IG,J)-9.*LA4(IG,J)+12.*	SYNT0277
	X LA5(IG, J)-4. *LA6(IG, J))-(6.*P1(IG, J)-6.*P2(IG, J)-18.*P3(IG, J)	SYNT0278
	X +30.*P4(IG,J)-12.*P5(IG,J))-(18.*Q3(IG,J)-30.*Q4(IG,J)+12.*	SYNT 0279
	X Q5(IG,J))={36.*R2(IG,J)=72.*R3(IG,J)+36.*R4(IG,J)))*V	SYNT0280
	LT(I,2,IG)=(-3.*KA3(IG,J]+8.*KA4(IG,J)-7.*KA5(IG,J)+2.*KA6(IG,J)	SYNT 0281
	X -(-3.*LA3(IG,J)+8.*LA4(IG,J)-7.*LA5(IG,J)+2.*LA6(IG,J))	SYNT0282
	X -(-6.*P2(IG,J)+18.*P3(IG,J)-18.*P4(IG,J)+6.*P5(IG,J))	SYNT0283
	X -(3.*Q2(IG,J)-14.*Q3(IG,J)+17.*Q4(IG,J)-6.*Q5(IG,J))	SYNT 0284
	X -(6.*R1(IG,J)-30.*	SYNT0285
	X R2(IG,J)+42.*R3(IG,J)-18.*R4(IG,J)))*V*HR(J)/D0(IG,J)	SYNT0286
	LT(I,3,IG)=(9.*KA4(IG,J)-12.*KA5(IG,J)+4.*KA6(IG,J)-(9.*LA4(IG,J)	SYNT0287
	X -12.*LA5(IG,J)+4.*LA6(IG,J))-(18.*P3(IG,J)-30.*P4(IG,J)+12.*	SYNT0288
		PAGE 297

```
P5(IG, J))+(18.*Q3(IG, J)-30.*Q4(IG, J)+12.*Q5(IG, J))
                                                                              SYNT0289
X
    +36.*R2(IG,J)-72.*R3(IG,J)+36.*R4(IG,J))*V1 +
                                                                              SYNT0290
X
    (KAD(IG,K)-6.*KA2(IG,K)+4.*KA3(IG,K)+9.*KA4(IG,K)-12.*KA5(IG,K)
                                                                              SYNT0291
Х
    +4.*KA6(IG,K)-(LAO(IG,K)-6.*LA2(IG,K)+4.*LA3(IG,K)+9.*LA4(IG,K)
                                                                              SYNT0292
X
                                                                              SYNT0293
    -12.*LA5(IG,K)+4.*LA6(IG,K))+6.*P1(IG,K)-6.*P2(IG,K)-18.*
X
    P3(IG,K)+30.*P4(IG,K)-12.*P5(IG,K)-(6.*Q1(IG,K)-6.*Q2(IG,K)
                                                                              SYNT 0294
X
                                                                              SYNT0295
    -18.*Q3(IG,K)+30.*Q4(IG,K)-12.*Q5(IG,K))+36.*R2(IG,K)-72.*
X
                                                                              SYNT0296
    R3(IG,K)+36. *R4(IG,K))*V2
X
                                                                              SYNT 0297
 LT(I,4,IG)=(3.*KA4(IG,J)-5.*KA5(IG,J)+2.*KA6(IG,J)-(3.*LA4(IG,J)
    -5.*LA5(IG,J)+2.*LA6(IG,J))-(6.*F3(IG,J)-12.*P4(IG,J)+6.*
                                                                              SYNT0298
Х
    P5(IG,J))-(-6.*Q3(IG,J)+13.*Q4(IG,J)-6.*Q5(IG,J))-(
                                                                              SYNT 0299
X
                                                                              SYNT0300
   -12.*R2(IG,J)
Х
    +30. #R3(IG, J)-18. #R4(IG, J))) #V1#HR(J)/DH(IG, J)
                                                                              SYNT0301
Х
                                                                              SYNT0302
    + (-KA1(IG,K)+2.*KA2(IG,K)+2.*KA3(IG,K)-8.*KA4(IG,K)+7.*
Х
    KA5(IG,K)-2.*KA6(IG,K)-(-LA1(IG,K)+2.*LA2(IG,K)+2.*LA3(IG.K)
                                                                              SYNT0303
X
                                                                              SYNT0304
    -8.*LA4(IG,K)+7.*LA5(IG,K)-2.*LA6(IG,K))-6.*P2(IG,K)+18.*
Х
    P3(IG,K)-18,*P4(IG,K)+6,*P5(IG,K)-(Q0(IG,K)-4.*Q1(IG,K)+14.*
                                                                              SYNT0305
Х
                                                                              SYNT0306
    Q3(IG.K)-17.*Q4(IG.K)+6.*Q5(IG.K)+6.*R1(IG.K)-30.*R2(IG.K)
X
    +42. *R3(IG,K)-18.*R4(IG,K))*V2*HR(K)/D0(IG,K)
                                                                              SYNT0307
Х
 LT(1,5,IG)=(3.*KA2(IG,K)-2.*KA3(IG,K)-9.*KA4(IG,K)+12.*KA5(IG,K)
                                                                              SYNT0308
    -4.*KA6(IG,K)-(3.*LA2(IG,K)-2.*LA3(IG,K)-9.*LA4(IG,K)+12.*
                                                                              SYNT0309
X
    LA5(1G,K)-4.*LA6(IG,K))+18.*P3(IG,K)-30.*P4(IG,K)+12.*P5(IG,K)
                                                                              SYNT0310
X
                                                                              SYNT0311
Х
    +(6.*01(IG.K)-6.*02(IG.K)-18.*03(IG.K)+30.*04(IG.K)-12.*
                                                                              SYNT0312
    Q5(IG,K))-(36.*R2(IG,K)-72.*R3(IG,K)+36.*R4(IG,K)))*V3
X
 LT(1,6,1G)=(KA2(IG,K)-KA3(IG,K)-3.*KA4(IG,K)+5.*KA5(IG,K)-2.*
                                                                              SYNT0313
    KA6(IG,K)-(LA2(IG,K)-LA3(IG,K)-3.*LA4(IG,K)+5.*LA5(IG,K)-2.*
                                                                              SYNT0314
х
    LA6(IG,K))+6.*P3(IG,K)-12.*P4(IG,K)+6.*P5(IG,K)-(-2.*Q1(IG,K)+
                                                                              SYNT0315
X
                                                                              SYNT0316
    3.*Q2(IG,K)+6.*Q3(IG,K)-13.*Q4(IG,K)+6.*Q5(IG,K))-12.*R2(IG,K)
X
                                                                              SYNT0317
    +30.*R3(IG,K)-18.*R4(IG,K))*V3*HR(K)/DH(IG,K)
X
 FT(1,1,1G)=(3.*KB2(IG,J)-2.*KB3(IG,J)-9.*KB4(IG,J)+12.*KB5(IG,J)
                                                                              SYNT0318
                                                                              SYNT0319
    -4.*KB6(IG.J))*V
X
 FT(1,2,IG)=(-3.*KB3(IG,J)+8.*KB4(IG,J)-7.*KB5(IG,J)+2.*KB6(IG,J))
                                                                              SYNT0320
                                                                              SYNT0321
X
   *V*HR(J)/DO(IG,J)
 FT([,3,IG)=(9.*KB4(IG,J)-12.*KB5(IG,J)+4.*KB6(IG,J))*V1
                                                                              SYNT0322
    +(KB0(IG,K)-6.*KB2(IG,K)+4.*KB3(IG,K)+9.*KB4(IG,K)
                                                                              SYNT0323
X
                                                                              SYNT0324
X
    -12.*KB5(IG,K)+4.*KB6(IG,K))*V2
                                                                          PAGE 298
```

FT/1,4,1()=(3,*KB4(1(,1)-5,*KB5(1(,1)+2,*KB6(1(,1)))	SYNT0325
$x = *V1 * HR(1) / DH(IG_1) + (-KB1(IG_K) + 2.*KB2(IG_K) + 2.*KB3(IG_K))$	SYNT0326
x -8,*KB4(IG,K)+7,*KB5(IG,K)-2,*KB6(IG,K))*V2*HR(K)/D0(IG,K)	SYNT0327
FT(1,5,1G)=(3,*KB2(1G,K)-2,*KB3(1G,K)-9,*KB4(1G,K)+12,*KB5(1G,K)	SYNT0328
$x = -4_* \times B6(16.K) \times V3$	SYNT0329
$FT(I_{6}, I_{6}) = (KB2(I_{6}, K) - KB3(I_{6}, K) - 3, *KB4(I_{6}, K) + 5, *KB5(I_{6}, K))$	SYNT0330
Y = -2. * KB61 IG.K) * V3 * HR(K) / DH(IG.K)	SYNT0331
IE (16, E0, 2) = 60 TO 57	SYNT0332
$T(I_{1}) = (3, *SR2(IG_{1})-2, *SR3(IG_{1})-9, *SR4(IG_{1})+12, *SR5(IG_{1}))$	SYNT 0333
y = -4 + SR(16, 1))/(9H7(2, 1)) + PO(1, 1))	SYNT0334
T(1,2) = = (-3, *SR3(16,1)+8, *SR4(16,1)-7, *SR5(16,1)+2, *SR6(16,1))	SYNT 0335
$ = \frac{1}{2} + \frac$	SYNT0336
T(1,3) = = (9, *SR4(16, J) - 12, *SR5(16, J) + 4, *SR6(16, J))	SYNT0337
X /(PH7(2.J)*PH(1.J))	SYNT0338
x +(SR0[1G.K]-6.*SR2[IG.K]+4.*SR3[IG.K]+9.*SR4[IG.K]	SYNT0339
x = 12 + SR5(IG - K) + 4 - * SR6(IG - K))/(P07(2 - K) + P0(1 - K))	SYNT0.340
T(I,4) = (3.*SR4(IG,J)-5.*SR5(IG,J)+2.*SR6(IG,J))	SYNT 0341
X *HR(J)/(PH7(2,J)*PH(1,J)*DH(1,J))	SYNT0342
x +(-SR1(IG,K)+2.*SR2(IG,K)+2.*SR3(IG,K)	SYNT0343
X -8.*SR4LIG.K)+7.*SR5(IG,K)-2.*SR6(IG,K))*HR(K)	SYNT0344
X /(P07(2.K)*P0(1.K)*D0(1.K))	SYNT0345
T(1.5) = (3.*SR2(IG,K)-2.*SR3(IG,K)-9.*SR4(IG,K)+12.*SR5(IG,K)	SYNT0346
X -4.*SR6(IG,K))/(P07(2,K)*PH(1,K))	SYNT 0347
T(I,6) = (SR2(IG,K) - SR3(IG,K) - 3. + SR4(IG,K) + 5. + SR5(IG,K)	SYNT0348
X -2.*SR6(IG,K))*HR(K)/(PO7(2,K)*PH(1,K)*DH(1,K))	SYNT 0349
FT(I,1, 3)=(3.*KD2(IG,J)-2.*KD3(IG,J)-9.*KD4(IG,J)+12.*KD5(IG,J)	SYNT0350
X = -4.*KD6(IG,J))/(PH7(2,J)*PO(1,J))	SYNT0351
FT(1,2, 3)=(-3.*KD3(IG,J)+8.*KD4(IG,J)-7.*KD5(IG,J)+2.*KD6(IG,J))	SYNT0352
X +HR(J)/(PH7(2,J)+PO(1,J)+DO(1,J))	SYNT0353
FT(1,3, 3)=(9.*KD4(IG,J)-12.*KD5(IG,J)+4.*KD6(IG,J))	SYNT0354
X /(PH7(2,J)*PH(1,J))	SYNT0355
X + (KDD(IG,K)-6.*KD2(IG,K)+4.*KD3(IG,K)+9.*KD4(IG,K)	SYNT0356
X -12.*KD5(IG,K)+4.*KD6(IG,K))/(P07(2,K)*P0(1,K))	SYNT0357
FT(1,4, 3)=(3.*KD4(IG,J)-5.*KD5(IG,J)+2.*KD6(IG,J))	SYNT0358
X *HR(J)/(PH7(2,J)*PH(1,J)*DH(1,J))	SYNT0359
X + (-KD1(1G,K)+2.*KD2(1G,K)+2.*KD3(1G,K)	SYNT0360
-	PAGE 299

X -8.*KD4(IG,K)+7.*KD5(IG,K)-2.*KD6(IG,K))*HR(K)	SYNT0361
X /(PO7(2,K)*PO(1,K)*DO(1,K))	SYNT 0362
FT(1,5, 3)=(3.*KD2(IG,K)-2.*KD3(IG,K)-9.*KD4(IG,K)+12.*KD5(IG,K)	SYNT0363
X -4.*KD6(IG,K))/(PO7(2,K)*PH(1,K))	SYNT0364
FT(1,6, 3)=(KD2(IG,K)-KD3(IG,K)-3.*KD4(IG,K)+5.*KD5(IG,K)	SYNT0365
X -2.*KD6(IG,K))*HR(K)/(P07(2,K)*PH(1,K)*DH(1,K))	SYNT0366
FT(1,1, 4)=(3.*KC2(IG,J)-2.*KC3(IG,J)-9.*KC4(IG,J)+12.*KC5(IG,J)	SYNT0367
X = -4.*KC6(IG.J)/(PH7(1.J)*PC(2.J))	SYNT0368
FT(1,2, 4)=(-3.*KC3(IG,J)+8.*KC4(IG,J)-7.*KC5(IG,J)+2.*KC6(IG,J))	SYNT0369
X +HR(J)/(PH7(1,J)+PO(2,J)+DO(2,J))	SYNT0370
$FT(I_{,3}, 4) \neq (9, *KC4(IG_{,J}) - 12, *KC5(IG_{,J}) + 4, *KC6(IG_{,J}))$	SYNT0371
X /(PH7(1.J)*PH(2.J))	SYNT0372
X + (KCO(IG,K) - 6.*KC2(IG,K) + 4.*KC3(IG,K) + 9.*KC4(IG,K)	SYNT0373
X -12.*KC5(IG,K)+4.*KC6(IG,K))/(P07(1,K)*P0(2,K))	SYNT0374
FT(1,4, 4)=(3.*KC4(IG,J)-5.*KC5(IG,J)+2.*KC6(IG,J))	SYNT0375
X *HR(J)/(PH7(1,J)*PH(2,J)*DH(2,J))	SYNT0376
X + (-KC1(IG,K) + 2. * KC2(IG,K) + 2. * KC3(IG,K)	SYNT0377
X -8.*KC4(IG,K)+7.*KC5(IG,K)-2.*KC6(IG,K))*HR(K)	SYNT0378
X /(P07(1,K)*P0(2,K)*D0(2,K))	SYNT0379
FT(I,5, 4)=(3.*KC2(IG,K)-2.*KC3(IG,K)-9.*KC4(IG,K)+12.*KC5(IG,K)	SYNT0380
X -4.*KC6(IG,K))/(PO7(1,K)*PH(2,K))	SYNT0381
FT(1,6, 4)=(KC2(IG,K)-KC3(IG,K)-3.*KC4(IG,K)+5.*KC5(IG,K)	SYNT0382
X -2.*KC5(IG,K))*HR(K)/(PD7(1,K)*PH(2,K)*DH(2,K))	SYNT0383
57 I=I+1	SYNT0384
LT(I,1,IG)=(KA2(IG,J)-KA3(IG,J)-3.*KA4(IG,J)+5.*KA5(IG,J)-2.*	SYNT0385
X KA6(IG,J)-(LA2(IG,J)-LA3(IG,J)-3.*LA4(IG,J)+5.*LA5(IG,J)-2.*	SYNT0386
X LA6(IG,J))-2.*P1(IG,J)+3.*P2(IG,J)+6.*P3(IG,J)-13.*P4(IG,J)+6.	* SYNT0387
X P5(IG,J)-(6.*Q3(IG,J)-12.*Q4(IG,J)+6.*Q5(IG,J))-12.*R2(IG,J)	SYNT0388
X +30.*R3(IG,J)-18.*R4(IG,J))*V*HR(J)/DH(IG,J)	SYNT0389
LT(I,2,IG)=(-KA3(IG,J)+3.*KA4(IG,J)-3.*KA5(IG,J)+KA6(IG,J)	SYNT0390
X - (-LA3(IG,J)+3.*LA4(IG,J)-3.*LA5(IG,J)+LA6(IG,J))+2.*P2(IG,J)	SYNT 0391
X -7.*P3(IG,J)+8.*P4(IG,J)-3.*P5(IG,J)-(Q2(IG,J)-5.*Q3(IG,J)	SYNT0392
X +7.*Q4(IG,J)-3.*Q5(IG,J))-2.*R1(IG,J)+11.*R2(IG,J)-18.*	SYNT 0393
X R3(IG,J)+9.*R4(IG,J))*V*HR(J)*HR(J)/(D0(IG,J)*DH(IG,J))	SYNT0394
LT(I,3,IG)=(3.*KA4(IG,J)-5.*KA5(IG,J)+2.*KA6(IG,J)-(3.*LA4(IG,J)	SYNT0395
X -5.*LA5(IG,J)+2.*LA6(IG,J))-6.*P3(IG,J)+13.*P4(IG,J)-6.*	SYNT 0396
	PAGE 300

Y	P5(IG, 1)+(6, *03(IG, 1)→12, *04(IG, 1)+6,*05(IG, J))-(-12,*R2(IG, J)	SYNT0397
Ŷ	+30. *R3(IG.J) - 18. *R4(IG.J)) *V1*HR(J)/DH(IG.J)	SYNT 0398
Ŷ	+ (-KA) (IG.K) +2.*KA2(IG.K)+2.*KA3(IG.K)-8.*KA4(IG.K)+7.*	SYNT0399
Ŷ	$K_{A5}(IG_{K}) - 2 * K_{A6}(IG_{K}) - (-1A)(IG_{K}) + 2 * LA2(IG_{K}) + 2 * LA3(IG_{K}) - 8$	SYNT0400
Ŷ	*1 A4(IG.K)+7.*1 A5(IG.K)-2.*1 A6(IG.K))+P0(IG.K)-4.*P1(IG.K)+14.*	SYNT0401
Ŷ	$P_3(I_G,K) + 17 + P_4(I_G,K) + 6 + P_5(I_G,K) - (-6 + 02(I_G,K) + 18 + 03(I_G,K))$	SYNT0402
Ŷ	-18, *04(16,K)+6, *05(16,K))+6, *R1(16,K)-30, *R2(16,K)+42,*	SYNT0403
Ŷ	$R_3(IG_*K) = 18^{+} * R_4(IG_*K) * V 2 * HR(K) / DO(IG_*K)$	SYNT0404
îт	(1 - 4 - 1G) = (K A A (1 G - 1) - 2 - *K A 5 (1 G - 1) + K A A (1 G - 1) - (1 A 4 (1 G - 1) - 2 - *	SYNT0405
Y	1 A5(16, 1) + (A6(16, 1)) - 2 * P3(16, 1) + 5 * P4(16, 1) - 3 * P5(16, 1) - (-2 *	SYNT 0406
Ŷ	(3/16, 1) + 5 + 64/16, 1) - 3 + 85(16, 1) + 4 + 82(16, 1) - 12 + 83(16, 1) + 9 + 8	SYNT0407
Ŷ	$R_4(IG, 1)) * V (* (HR(1)/DH(IG, 1)) * * 2$	SYNT0408
Ŷ	$+ (K \Delta 2 (IG_* K) - 4_* K \Delta 3 (IG_* K) + 6_* K \Delta 4 (IG_* K) - 4_* K \Delta 5 (IG_* K) + K A 6 (IG_* K)$	SYNT0409
Ŷ	-(1 A2(IG, K)-4, *1 A3(IG, K)+6, *1 A4(IG, K)-4, *LA5(IG, K)+LA6(IG, K))	SYNT0410
Ŷ	-P1(IG.K)+6. *P2(IG.K)-12. *P3(IG.K)+10.*P4(IG.K)-3.*P5(IG.K)	SYNT0411
x	-(-01(IG.K)+6.*02(IG.K)-12.*03(IG.K)+10.*04(IG.K)-3.*05(IG.K))	SYNT0412
x	+RO(IG.K)-8. *R1(IG.K)+22. *R2(IG,K)-24.*R3(IG,K)+9.*R4(IG,K))*	SYNT0413
x	V2*(HR(K)/DO(IG.K))**2	SYNT0414
LT	(I.5.IG)=(-3.*KA3(IG,K)+8.*KA4(IG,K)-7.*KA5(IG,K)+2.*KA6(IG,K)	SYNT0415
χ	-(-3.*LA3(IG.K)+8.*LA4(IG,K)-7.*LA5(IG,K)+2.*LA6(IG,K))	SYNT0416
x	+3.*P2(IG.K)-14.*P3(IG,K)+17.*P4(IG,K)-6.*P5(IG,K)+(-6.*	SYNT0417
X	Q2(IG.K)+18.*Q3(IG,K)-18.*Q4(IG,K)+6.*Q5(IG,K))-(6.*R1(IG,K)	SYNT0418
x	-30, *R2(IG,K)+42, *R3(IG,K)-18, *R4(IG,K)))*V3*HR(K)/D0(IG,K)	SYNT0419
LT	(I.6, IG)=(-KA3(IG,K)+3.*KA4(IG,K)-3.*KA5(IG,K)+KA6(IG,K)	SYNT0420
X	-(-LA3(IG,K)+3.*LA4(IG,K)-3.*LA5(IG,K)+LA6(IG,K))	SYNT0421
X	+P2(IG,K)-5.*P3(IG,K)+7.*P4(IG,K)-3.*P5(IG,K)-(2.*Q2(IG,K)	SYNT0422
X	-7.*Q3(IG,K)+8.*Q4(IG,K)-3.*Q5(IG,K))-2.*R1(IG,K)+11.*R2(IG,K)	SYNT0423
X	-18.*R3(IG,K)+9.*R4(IG,K))*V3*HR(K)*HR(K)/(D0(IG,K)*DH(IG,K))	SYNT0424
FT	(I,1,IG)=(KB2(IG,J)-KB3(IG,J)-3.*KB4(IG,J)+5.*KB5(IG,J)	SYNT0425
X	-2.*KB6(IG,J))*V*HR(J)/DH(IG,J)	SYNT0426
FT	(1,2,1G)=(-KB3(1G,J)+3.*KB4(1G,J)-3.*KB5(1G,J)+KB6(1G,J))	SYNT0427
X	*V*HR(J)*HR(J)/(DO(IG,J)*DH(IG,J))	SYNT0428
FT	(I,3,IG)=(3.*KB4(IG,J)-5.*KB5(IG,J)+2.*KB6(IG,J))	SYNT0429
X	*V1*HR(J)/DH(IG,J)+(-KB1(IG,K)+2.*KB2(IG,K)+2.*KB3(IG,K)	SYNT0430
X	-8.*KB4(IG,K)+7.*KB5(IG,K)-2.*KB6(IG,K))*V2*HR(K)/D0(IG,K)	SYNT0431
FT	$(I_{1}, 4_{1}, I_{G}) = (KB4(I_{G}, J) - 2_{*}KB5(I_{G}, J) + KB6(I_{G}, J))$	SYNT0432
		PAGE 301

X *V1*(HR(J)/DH(IG.J))**2+(KB2(IG.K)-4.*KB3(IG.K)+6.*KB4(IG.K)	SYNT0433
X -4.*KB5(IG.K)+KB6(IG.K))*V2*(HR(K)/D0(IG,K))**2	SYNT 0434
FT(1,5,1G)=(-3,*KB3(1G,K)+8,*KB4(1G,K)-7,*KB5(1G,K)+2,*KB6(1G,K))	SYNT0435
X *V3*HR(K)/DO(IG.K)	SYNT0436
FT(1,6,IG)=(-KB3(IG,K)+3.*KB4(IG,K)-3.*KB5(IG,K)+KB6(IG,K))	SYNT0437
X *V3*HR(K)*HR(K)/(DO(IG.K)*DH(IG.K))	SYNT0438
IF (IG-EQ-2) GO TO 60	SYNT0439
$T(I \cdot 1) = (SR2(IG \cdot J) - SR3(IG \cdot J) - 3 \cdot SR4(IG \cdot J) + 5 \cdot SR5(IG \cdot J)$	SYNT0440
X = -2.*SR6(IG.J))*HR(J)/(PH7(2,J)*PC(1,J)*DH(2,J))	SYNT0441
T(I,2) = (-SR3(IG,J)+3*SR4(IG,J)-3*SR5(IG,J)+SR6(IG,J))	SYNT0442
X +HR(J) ++2/(PH7(2.J) +PO(1.J) +DO(1.J) +DH(2.J))	SYNT0443
$T(I \cdot 3) = (3 \cdot SR4(IG \cdot J) - 5 \cdot SR5(IG \cdot J) + 2 \cdot SR6(IG \cdot J))$	SYNT0444
X +HR(J)/(PH7(2,J)*PH(1,J)*DH(2,J))	SYNT0445
X + (-SR1(IG,K)+2.*SR2(IG,K)+2.*SR3(IG,K)	SYNT0446
X -8.*SR4(IG,K)+7.*SR5(IG,K)-2.*SR6(IG,K))*HR(K)	SYNT0447
X /(PU712,K)*PO(1,K)*DO(2,K))	SYNT0448
$T(I_{1},4) = (SR4(IG_{1},J)-2.*SR5(IG_{1},J)+SR6(IG_{1},J))$	SYNT0449
X *HR(J)**2/(PH7(2,J)*PH(1,J)*DH(2,J)*DH(1,J))	SYNT 0450
X + (SR2(IG,K)-4.*SR3(IG,K)	SYNT0451
X +6.*SR4(IG,K)-4.*SR5(IG,K)+SR6(IG,K))	SYNT0452
X *HR(K)**2/(PO7(2,K)*PO(1,K)*DO(2,K)*DO(1,K))	SYNT0453
T(I,5)=(-3.*SR3(IG,K)+8.*SR4(IG,K)-7.*SR5(IG,K)+2.*SR6(IG,K))	SYNT 0454
X *HR(K)/(PO7(2,K)*PH(1,K)*DO(2,K))	SYNT 0455
T(I,6)=(-SR3(IG,K)+3.*SR4(IG,K)-3.*SR5(IG,K)+SR6(IG,K))	SYNT0456
X *HR(K)**2/(PO7(2,K)*PH(1,K)*DO(2,K)*DH(1,K))	SYNT 0457
FT(I,1, 3)=(KD2(IG,J)-KD3(IG,J)-3.*KD4(IG,J)+5.*KD5(IG,J)	SYNT0458
X -2.*KD6(IG,J))*HR(J)/(PH7(2,J)*PC(1,J)*DH(2,J))	SYNT 0459
FT(I,2, 3)=(-KD3(IG,J)+3.*KD4(IG,J)-3.*KD5(IG,J)+KD6(IG,J))	SYNT0460
X *HR(J)**2/(PH7(2,J)*PO(1,J)*DO(1,J)*DH(2,J))	SYNT0461
FT(1,3, 3)=(3.*KD4(IG,J)=5.*KD5(IG,J)+2.*KD6(IG,J))	SYNT0462
X *HR(J)/(PH7(2,J)*PH(1,J)*DH(2,J))	SYNT0463
X + (-KD1(IG,K)+2.*KD2(IG,K)+2.*KD3(IG,K)	SYNT0464
X -8.*KD4(IG,K)+7.*KD5(IG,K)-2.*KD6(IG,K))*HR(K)	SYNT0465
X /(P07(2,K)*P0(1,K)*D0(2,K))	SYNT0466
FT(1,4, 3)=(KD4(IG,J)-2.*KD5(IG,J)+KD6(IG,J))	SYNT0467
X *HR(J)**2/(PH7(2,J)*PH(1,J)*DH(2,J)*DH(1,J))	SYNT0468
	PAGE 302

x + (KD2/16,K)-4,*KD3(16,K)+6,*KD4(16,K)	SYNT0469
x = -4. *KD5(1G.K) + KD6(1G.K) + HR(K) * 2	SYNT0470
$x = /(p_07/2, K) * p_0(1, K) * 0.0(2, K) * 0.0(1, K))$	SYNT0471
$ET(I_{0}5, 3) = (-3, *KD3(IG_{0}K) + 8, *KD4(IG_{0}K) - 7, *KD5(IG_{0}K) + 2, *KD6(IG_{0}K))$	SYNT0472
x = x + P(K) / (P = 7 / 2 K) * P(1 / K) * P(2 K)	SYNT 0473
FT(1,6, 3) = (-K)3(1G,K) + 3 + K D4(1G,K) - 3 + KD5(1G,K) + KD6(1G,K))	SYNT0474
$v = \pm P(x) \pm 2/(P07(2, x) \pm P(1, x) \pm P(1, x) \pm P(1, x))$	SYNT0475
FT(1,1, 4) = (KC2(1G, 1) - KC3(1G, 1) - 3, *KC4(1G, 1) + 5, *KC5(1G, 1)	SYNT0476
v = -2 + x(6/(6, 1)) + HP(1)/(2H7(1, 1)) + P((2, 1) + DH(1, 1))	SYNT047
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	SYNT0478
$= \{1,1,2,1,4,1,4,0,1,1,1,4,0,1,2,1,4,0,1,2,1,4,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1$	SYNT0479
$X = \frac{1}{2} $	SYNT048
FILIDJ 41=(3+************************************	SYNT048
$\mathbf{x} = \mathbf{x} - \mathbf{x} - \mathbf{x} + \mathbf{x} - \mathbf{x} + $	SYNT048
$\mathbf{X} = \{\mathbf{x}_{1}, \mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{2}, \mathbf{x}_{1}, \mathbf{y}_{2}, \mathbf{x}_{2}, \mathbf{x}_{$	SYNT048
$X = -0.4 \times 0.4 \times 1.0 \times 1.4 \times 1.0 \times$	SYNT048
$E_{T}(T = A = A) - (VCA(TC = 1) - 2 + KC5(TC = 1) + KC6(TC = 1))$	SYNT048
Y = +UD/11+++2//047(1,1)+0H(2,1)+0H(1,1)+0H(2,1))	SYNT048
$x = +(k(2)(1G_*K) - 4_*K(3)(1G_*K) + 6_*K(2)(1G_*K))$	SYNT048
$\mathbf{x} = -\mathbf{x} + \mathbf{x} +$	SYNT048
$\mathbf{x} = \mathbf{y} + \mathbf{x} + + $	SYNT048
$\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k$	SYNT049
$y = \pm 40 (k) / (0.7) (1.k) \pm 04 (2.k) \pm 0.0 (1.k) $	SYNT049
$ET(1 \land \land) = (-k) = (-$	SYNT049
$Y = \frac{1}{2} $	SYNT049
A THREE CONTINUE	SYNT049
TE LIRC ED AL CO TO 63	SYNT049
C 7EDD FLUY COFFETCIENTS ON THE LEFT:	SYNT049
	SYNT049
$V_{2-1} / (0.07/16.1) \times 0(16.1))$	SYNT049
$V_2 = 1 \cdot / (PO(T(10)1) + PO(T(0)1))$	SYNT049
1 T (1, 4, 1G) = (K A2 (TG, 1) - 4, *K A3 (TG, 1) + 6, *K A4 (TG, 1) - 4, *K A5 (TG, 1)	SYNT050
$Y = \frac{1}{4} \times $	SYNT050
$y = \pm (A_{1} + E_{1}) = D1 (IC, 1) + (- *D2 (IC, 1) - 12 - *D3 (IC, 1) + 10 - *P4 (IC, 1))$	SYNT050
$Y = -2 \times p5(16, 1) = (-0)(16, 1) + 6 \times (0)(16, 1) - 12 \times (0)(16, 1) + 10 \times (0)(16, 1)$	SYNT050
v = -3 + 05(16, 1) + 00(16, 1) - 8 + 81(16, 1) + 22 + 82(16, 1) - 24 + 83(16, 1)	SYNT050
$\mathbf{v} = \mathbf{v} + \mathbf{w} + \mathbf{v} + $	PAGE 303

X +9.*R4(IG.1))*V2*(HR(1)/D0(IG.1))**2	SYNT0505
LT(1,5,IG)=(-3.*KA3(IG,1)+8.*KA4(IG,1)-7.*KA5(IG,1)+2.*KA6(IG,1)	SYNT0506
X -(-3.*LA3(IG,1)+8.*LA4(IG,1)-7.*LA5(IG,1)+2.*LA6(IG,1))	SYNT0507
X +3.*P2(IG,1)-14.*P3(IG,1)+17.*F4(IG,1)-6.*P5(IG,1)+(-6.*	SYNT0508
X Q2(IG,1)+18.*Q3(IG,1)-18.*Q4(IG,1)+6.*Q5(IG,1))-(6.*R1(IG,1)	SYNT0509
X -30.*R2(IG,1)+42.*R3(IG,1)-18.*R4(IG,1)))*V3*HR(1)/D0(IG,1)	SYNT0510
LT(1,6,IG)=(-KA3(IG,1)+3.*KA4(IG,1)-3.*KA5(IG,1)+KA6(IG,1)	SYNT0511
X -(-LA3(IG,1)+3.*LA4(IG,1)-3.*LA5(IG,1)+LA6(IG,1))+P2(IG,1)	SYNT 0512
X -5.*P3(IG,1)+7.*P4(IG,1)-3.*P5(IG,1)-(2.*Q2(IG,1)-7.*Q3(IG,1)	SYNT0513
X +8.*04(IG,1)-3.*05(IG,1))-2.*R1(IG,1)+11.*R2(IG,1)-18.*R3(IG,1)	SYNT0514
X +9.*R4(IG,1))*V3*HR(1)*HR(1)/(D0(IG,1)*DH(IG,1))	SYNT0515
FT(1,4,IG)=(KB2(IG,1)-4.*KB3(IG,1)+6.*KB4(IG,1)-4.*KB5(IG,1)	SYNT0516
X +KBb(IG,1))*V2*(HR(1)/D0(IG,1))**2	SYNT0517
FT(1,5,IG)=(-3.*KB3(IG,1)+8.*KB4(IG,1)-7.*KB5(IG,1)+2.*KB6(IG,1))	SYNT0518
X *V3*HR(1)/DO(IG,1)	SYNT0519
FT(1,6,IG)=(-KB3(IG,1)+3.*KB4(IG,1)-3.*KB5(IG,1)+KB6(IG,1))	SYNT0520
X *V3*HR(1)*HR(1)/(DO(IG,1)*DH(IG,1))	SYNT0521
IF (16.EQ.2) GO TO 61	SYNT0522
T(1,4)=(SR2(IG,1)-4.*SR3(IG,1)+6.*SR4(IG,1)-4.*SR5(IG,1)	SYNT0523
X +SR6(IG,1))*HR(1)**2/(PO7(2,1)*PO(1,1)*DO(2,1)*DO(1,1))	SYNT0524
T(1,5)=(-3.*SR3(IG,1)+8.*SR4(IG,1)-7.*SR5(IG,1)+2.*SR6(IG,1))	SYNT0525
X *HR(1)/(PO7(2,1)*PH(1,1)*DO(2,1))	SYNT0526
T(1,6)=(-SR3(IG,1)+3.*SR4(IG,1)-3.*SR5(IG,1)+SR6(IG,1))	SYNT0527
X *HR(1)**2/(PO7(2,1)*PH(1,1)*DO(2,1)*DH(1,1))	SYNT 0528
FT(1,4, 3)=(KD2(IG,1)-4.*KD3(IG,1)+6.*KD4(IG,1)-4.*KD5(IG,1)	SYNT0529
<pre>X +KD6(IG,1))*HR(1)**2/(P07(2,1)*P0(1,1)*D0(2,1)*D0(1,1))</pre>	SYNT0530
FT(1,5, 3)=(-3.*KD3(IG,1)+8.*KD4(IG,1)-7.*KD5(IG,1)+2.*KD6(IG,1))	SYNT0531
X *HR(1)/(P07(2,1)*PH(1,1)*D0(2,1))	SYNT0532
FT(1,6, 3)=(-KD3(IG,1)+3.*KD4(IG,1)-3.*KD5(IG,1)+KD6(IG,1))	SYNT0533
X +HR(1)++2/(PO7(2,1)+PH(1,1)+DO(2,1)+DH(1,1))	SYNT0534
FT(1,4, 4)=(KC2(IG,1)-4.*KC3(IG,1)+6.*KC4(IG,1)-4.*KC5(IG,1)	SYNT0535
X +KC5(IG,1))*HR(1)**2/(PO7(1,1)*PO(2,1)*DO(1,1)*DO(2,1))	SYNT0536
FT(1,5, 4)=(-3.*KC3(IG,1)+8.*KC4(IG,1)-7.*KC5(IG,1)+2.*KC6(IG,1))	SYNT0537
X *HR(1)/(PU7(1,1)*PH(2,1)*DO(1,1))	SYNT0538
FT(1,6, 4)=(-KC3(IG,1)+3.*KC4(IG,1)-3.*KC5(IG,1)+KC6(IG,1))	SYNT0539
X *HR(1)**2/(PO7(1,1)*PH(2,1)*DO(1,1)*DH(2,1))	SYNT0540
	PAGE 304

•

1

	61 CONTIN	JE	SYNT0541
	GO TO	65	SYNIU542
С .	ZER	D CURRENT COEFFICIENTS ON THE LEFT:	SYN10543
	63 K=1		SYN10544
	I = 1		SYNT0545
	DO 64	16=1,2	SYNT0546
	V2=1./	(PO7(IG,K)*PO(IG,K))	SYNT0547
	V3=1./	(PO7(IG,K)*PH(IG,K))	SYNT0548
	LT(I+4	• [G] =	SYNT 0549
	X (KA	Q(IG.K)-6.*KA2(IG,K)+4.*KA3(IG,K)+9.*KA4(IG,K)-12.*KA5(IG,K)	SYNT 0550
	X +4.	*KA6(IG,K)-(LAO(IG,K)-6.*LA2(IG,K)+4.*LA3(IG,K)+9.*LA4(IG,K)	SYNT0551
	X -12	*LA5(IG,K)+4.*LA6(IG,K))+6.*P1(IG,K)-6.*P2(IG,K)-18.*	SYNT0552
	X P3(IG,K)+30. *P4(IG,K)-12.*P5(IG,K)-(6.*Q1(IG,K)-6.*Q2(IG,K)	SYNT0553
	X -18	.*Q3(IG,K)+30.*Q4(IG,K)-12.*Q5(IG,K))+36.*R2(IG,K)-72.*	SYNT0554
	X R3(IG,K)+36.*R4(IG,K))*V2 -CO(IG)/PO(IG,1)	SYNT0555
	LT(1,5	, IG)=(3.*KA2(IG,K)-2.*KA3(IG,K)-9.*KA4(IG,K)+12.*KA5(IG,K)	SYNT 0556
	X -4.	*KA6(IG,K)-(3.*LA2(IG,K)-2.*LA3(IG,K)-9.*LA4(IG,K)+12.*	SYNT0557
	X LA5	(IG,K)-4.*LA6(IG,K))+18.*P3(IG,K)-30.*P4(IG,K)+12.*P5(IG,K)	SYNT0558
	X +(6	.*Q1(IG,K)-6.*Q2(IG,K)-18.*Q3(IG,K)+30.*Q4(IG,K)-12.*	SYNT0559
	X Q5(IG,K))-(36.*R2(IG,K)-72.*R3(IG,K)+36.*R4(IG,K)))*V3	SYNT 0560
	LT(1.6	,IG) = (KA2(IG,K)-KA3(IG,K)-3.*KA4(IG,K)+5.*KA5(IG,K)-2.*	SYNT0561
	X KA6	(IG,K)-(LA2(IG,K)-LA3(IG,K)-3.*LA4(IG,K)+5.*LA5(IG,K)-2.*	SYNT0562
	X LA6	(IG,K))+6.*P3(IG,K)-12.*P4(IG,K)+6.*P5(IG,K)-(-2.*Q1(IG,K)+	SYNT0563
	X 3.*	Q2(IG,K)+6.*Q3(IG,K)-13.*Q4(IG,K)+6.*Q5(IG,K))-12.*R2(IG,K)	SYNT0564
	X +30	<pre>*R3(IG,K)-18.*R4(IG,K))*V3*HR(K)/DH(IG,K)</pre>	SYNT0565
	FT(1,4	, IG) =	SYNT0566
	X +(K	BO(IG,K)-6.*KB2(IG,K)+4.*KB3(IG,K)+9.*KB4(IG,K)	SYNT0567
	X -12	•*KB5(IG,K)+4.*KB6(IG,K))*V2	SYNT0568
	FT(1.5	, IG) = (3. *KB2(IG,K)-2. *KB3(IG,K)-9. *KB4(IG,K)+12. *KB5(IG,K)	SYNT0569
	X -4	*KB6(IG.K))*V3	SYNT0570
	FT(1.6	,IG) = (KB2(IG,K)-KB3(IG,K)-3.*KB4(IG,K)+5.*KB5(IG,K)	SYNT0571
	X -2.	*KB6(IG,K))*V3*HR(K)/DH(IG,K)	SYNT0572
	IF (10	•E0.2) GO TO 64	SYNT 0573
	T(1.4)		SYNT0574
	X +(S	RO(IG,K)-6.*SR2(IG,K)+4.*SR3(IG,K)+9.*SR4(IG,K)	SYNT0575
	X -12	<pre>*\$R5(1G,K)+4.*\$R6(IG,K))/(PO7(2,K)*PO(1,K))</pre>	SYNT0576
			PAGE 305

	T(1.5) =(3.*SR2(IG.K)-2.*SR3(IG.K)-9.*SR4(IG.K)+12.*SR5(IG.K)	SYNT0577
2	<pre>x -4.*SR6(IG.K))/(P07(2.K)*PH(1.K))</pre>	SYNT0578
	T(I,6) = (SR2(IG,K) - SR3(IG,K) - 3. *SR4(IG,K) + 5. *SR5(IG,K)	SYNT0579
3	<pre>K -2.*SR6(IG.K))*HR(K)/(P07(2.K)*PH(1.K)*DH(1.K))</pre>	SYNT 0580
•	FT(1.4. 3)=	SYNT0581
;	K = +(KDO(IG,K)-6,*KD2(IG,K)+4,*KD3(IG,K)+9,*KD4(IG,K)	SYNT0582
	-12.*KD5(IG.K)+4.*KD6(IG.K))/(P07(2.K)*P0(1.K))	SYNT0583
	FT(1.5, 3) = (3.*KD2(IG.K) - 2.*KD3(IG.K) - 9.*KD4(IG.K) + 12.*KD5(IG.K)	SYNT0584
2	-4.*KD6(IG.K))/(P07(2.K)*PH(1.K))	SYNT 0585
	FT(1.6. 3)=(KD2(IG.K)-KD3(IG.K)-3.*KD4(IG.K)+5.*KD5(IG.K)	SYNT0586
;	x = -2.*KD6(IG.K))*HR(K)/(PO7(2.K)*PH(1.K)*DH(1.K))	SYNT0587
•	FT(1.4. 4)=	SYNT0588
	X + (KCO(IG,K)-6.*KC2(IG,K)+4.*KC3(IG,K)+9.*KC4(IG,K)	SYNT0589
	<pre>X -12.*KC5(IG,K)+4.*KC6(IG,K))/(P07(1,K)*P0(2,K))</pre>	SYNT0590
	FT(1,5, 4)=(3.*KC2(IG,K)-2.*KC3(IG,K)-9.*KC4(IG,K)+12.*KC5(IG,K)	SYNT 0591
	X -4.*KC6(IG,K))/(PO7(1,K)*PH(2,K))	SYNT 0592
	FT(1,6, 4)=(KC2(IG,K)-KC3(IG,K)-3.*KC4(IG,K)+5.*KC5(IG,K)	SYNT0593
2	<pre>x -2.*KC6(IG,K))*HR(K)/(PO7(1,K)*PH(2,K)*DH(2,K))</pre>	SYNT 0594
64	CONTINUE	SYNT 0595
	FIX UP THE TWO FIRST COLUMN ENTRIES TO MATCH F(1) (NOT G(1)):	SYNT 0596
	DO 70 IG=1,2	SYNT0597
	DO 70 I=2,3	SYNT0598
	LT(I,2,IG)=LT(I,1,IG)	SYNT0599
	FT(1,2,IG)=FT(1,1,IG)	SYNT0600
	IF (1G.EQ.2) GO TO 70	SYNT0601
	T(I,2)=T(I,1)	SYNT0602
	FT(1,2, 3)=FT(1,1, 3)	SYNT0603
	FT(1,2, 4)=FT(1,1, 4)	SYNT0604
70	CONTINUE	SYNT0605
65	I=2*KR	SYNT0606
	J=KR	SYNT0607
	K=KR	SYNT0608
	IF (IBC.EQ.2.OR.IBC.EQ.4) GO TO 74	SYNT0609
	ZERO FLUX COEFFICIENTS ON THE RIGHT:	SYNT0610
	DO 72 IG=1,2	SYNT0611
	V=1./(PH7(IG,J)*PO(IG,J))	SYNT0612

С

V1=1./(PH7(IG.1)*PH(IG.1))	SYNT0613
$1 T (I_1) + I_0 = [KA2 (I_0, 1) - KA3 (I_0, 1) - 3 + KA4 (I_0, 1) + 5 + KA5 (I_0, 1) - 2 + 4$	SYNT0614
$X = KA6(IG_{0}, I) - (IA2(IG_{0}, I) - IA3(IG_{0}, I) - 3 + IA4(IG_{0}, I) + 5 + IA5(IG_{0}, I) - 2 + 1A3(IG_{0}, I) - 1A3(IG_{0}, I) - 3 + IA4(IG_{0}, I) + 5 + IA5(IG_{0}, I) - 2 + 1A3(IG_{0}, I) - 1A3(IG_{0}, I) - 1A3(IG_{0}, I) - 3 + 1A4(IG_{0}, I) + 5 + 1A5(IG_{0}, I) - 2 + 1A3(IG_{0}, I) - 1A3(IG_{0}, I)$	SYNT0615
$X = [A6(IG_{*})] - 2_{*}*P1(IG_{*}) + 3_{*}*P2(IG_{*}) + 6_{*}*P3(IG_{*}) - 13_{*}*P4(IG_{*}) + 6_{*}*$	SYNT0616
$X = \frac{95}{16} + \frac{10}{16} + $	SYNT 0617
X = +30.283(16.1) + 18.284(16.1) + V + HR(1) / DH(16.1)	SYNT0618
$ T(I_{2}, I_{G}) = (-KA3(I_{G}, I) + 3 * KA4(I_{G}, I) - 3 * KA5(I_{G}, I) + KA6(I_{G}, J)$	SYNT0619
$x = -(-1.43(IG_{\bullet},1)+3,*1.44(IG_{\bullet},1)-3,*1.45(IG_{\bullet},1)+1.46(IG_{\bullet},1))+2,*P2(IG_{\bullet},1)$	SYNT 0620
$X = -7.*P3(IG_{-1})+8.*P4(IG_{-1})+3.*P5(IG_{-1})-(02(IG_{-1})-5.*03(IG_{-1}))$	SYNT0621
X = +7.*04(10.1) - 3.*05(10.1)) - 2.*R1(10.1) + 11.*R2(10.1) - 18.*	SYNT0622
$X = R_3(1G_{\bullet}, 1) + 9_{\bullet} + R_4(1G_{\bullet}, 1) + V + HR(1) + HR(1)/(DO(1G_{\bullet}, 1) + DH(1G_{\bullet}, 1))$	SYNT0623
$ T(1,3,1G) = (KA4 1G,1) - 2_* KA5 1G,1) + KA6(1G,1) - (A4(1G,1) - 2_*)$	SYNT0624
$x = 1.45(IG_{*}J) + 1.46(IG_{*}J) + 2.*P3(IG_{*}J) + 5.*P4(IG_{*}J) - 3.*P5(IG_{*}J) - (-2.*)$	SYNT 0625
$x = 0.3(1G_{\bullet}J) + 5_{\bullet} * 0.4(1G_{\bullet}J) - 3_{\bullet} * 0.5(1G_{\bullet}J) + 4_{\bullet} * R2(1G_{\bullet}J) - 12_{\bullet} * R3(1G_{\bullet}J) + 9_{\bullet} * 10^{-1}$	SYNT0626
X = R4(IG, J)) * V * (HR(J)/DH(IG, J)) * 2	SYNT0627
$FT(I_1,I_6) = (KB2(IG_1) - KB3(IG_1) - 3_* KB4(IG_1) + 5_* KB5(IG_1)$	SYNT0628
$X = -2_{*} \times B6(IG_{*}J) \times V \times HR(J)/DH(IG_{*}J)$	SYNT0629
FT(1,2,IG)=(-KB3(IG,J)+3.*KB4(IG,J)-3.*KB5(IG,J)+KB6(IG,J))	SYNT0630
X *V*HR(J)*HR(J)/(DO(IG,J)*DH(IG,J))	SYNT0631
FT(I,3,IG) = (KB4(IG,J)-2.*KB5(IG,J)+KB6(IG,J))	SYNT0632
X *V1*(dR(J)/DH(IG,J))**2	SYNT0633
IF (IG.EQ.2) GO TO 72	SYNT0634
T(I, 1) = (SR2(IG, J) - SR3(IG, J) - 3 + SR4(IG, J) + 5 + SR5(IG, J)	SYNT0635
X -2.*SR6(IG,J))*HR(J)/(PH7(2,J)*PC(1,J)*DH(2,J))	SYNT0636
T(I,2)=(-SR3(IG,J)+3.*SR4(IG,J)-3.*SR5(IG,J)+SR6(IG,J))	SYNT0637
X *HR(J)**2/(PH7(2,J)*PU(1,J)*DH(2,J)*DO(1,J))	SYNT0638
T(I,3) = (SR+(IG,J)-2.*SR5(IG,J)+SR6(IG,J))	SYNT0639
X *HR(J)**2/(PH7(2,J)*PH(1,J)*DH(2,J)*DH(1,J))	SYNT0640
FT(I,1, 3)=(KD2(IG,J)-KD3(IG,J)-3.*KD4(IG,J)+5.*KD5(IG,J)	SYNT0641
X -2.*KD6(IG,J))*HR(J)/(PH7(2,J)*PC(1,J)*DH(2,J))	SYNT0642
FT(1,2, 3)=(-KD3(IG,J)+3.*KD4(IG,J)-3.*KD5(IG,J)+KD6(IG,J))	SYNT0643
X *HR(J)**2/(PH7(2,J)*PO(1,J)*DH(2,J)*DO(1,J))	SYNT0644
FT(I,3, 3) = (KD4(IG,J) - 2. * KD5(IG,J) + KD6(IG,J))	SYNT0645
X *HR(J)**2/(PH7(2,J)*PH(1,J)*DH(2,J)*DH(1,J))	SYNT 0646
FT(1,1, 4)=(KC2(IG,J)-KC3(IG,J)-3.*KC4(IG,J)+5.*KC5(IG,J)	SYNT0647
X -2.*KC6(IG,J))*HR(J)/(PH7(1,J)*PC(2,J)*DH(1,J))	SYNT0648
	PAGE 307

	FT(I,2, 4)=(-KC3(IG,J)+3.*KC4(IG,J)-3.*KC5(IG,J)+KC6(IG,J))	SYNT0649
	X +HR(J)**2/(PH7(1,J)*PO(2,J)*DH(1,J)*DO(2,J))	SYNT0650
	FT(1,3, 4)=(KC4(IG,J)-2.*KC5(IG,J)+KC6(IG,J))	SYNT0651
	X *HR(J)**2/(PH7(1,J)*PH(2,J)*DH(1,J)*DH(2,J))	SYNT0652
	72 CONTINUE	SYNT0653
С	FIX UP THE LAST TWO COLUMNS TO MATCH G(K+1) (NOT F(K+1)):	SYNT0654
	I 1=2*KR-2	SYNT0655
	12=11+1	SYNT0656
	DO 73 IG=1,2	SYNT0657
	DO 73 I=I1,I2	SYNT0658
	LT(1,5,1G)=LT(1,6,1G)	SYNT0659
	FT(1,5,1G)=FT(1,6,1G)	SYNT0660
	IF (IG.EQ.2) GO TO 73	SYNT0661
	T(1,5)=T(1,6)	SYNT0662
	FT(1,5, 3)=FT(1,6, 3)	SYNT0663
	FT(1,5, 4)=FT(1,6, 4)	SYNT0664
	73 CONTINUE	SYNT0665
	GO TO 80	SYNT0666
С	ZERD CURRENT COEFFICIENTS ON THE RIGHT:	SYNT0667
	74 DO 62 IG=1,2	SYNT0668
	V=1./(PH7(IG,K)*PO(IG,K))	SYNT0669
	V1=1./(PH7(IG,K)*PH(IG,K))	SYNT0670
	LT(I,1,IG)=(3.*KA2(IG,K)-2.*KA3(IG,K)-9.*KA4(IG,K)+12.*KA5(IG,K)	SYNT0671
	X -4.*KA6(IG,K)-(3.*LA2(IG,K)-2.*LA3(IG,K)-9.*LA4(IG,K)+12.*	SYNT0672
	X LA5(IG,K)-4.*LA6(IG,K))-(6.*P1(IG,K)-6.*P2(IG,K)-18.*P3(IG,K)	SYNT0673
	X +30.*P4(IG;K)-12.*P5(IG;K))-(18.*Q3(IG;K)-30.*Q4(IG;K)+12.*	SYNT0674
	X Q5(IG,K))-(36.*R2(IG,K)-72.*R3(IG,K)+36.*R4(IG,K)))*V	SYNT 0675
	LT(1,2,1G)=(-3.*KA3(IG,K)+8.*KA4(IG,K)-7.*KA5(IG,K)+2.*KA6(IG,K)	SYNT0676
	X -{-3.*LA3(IG,K)+8.*LA4(IG,K)-7.*LA5(IG,K)+2.*LA6(IG,K))-{-6.*	SYNT0677
	X P2(IG,K)+18.*P3(IG,K)-18.*P4(IG,K)+6.*P5(IG,K))-(3.*Q2(IG,K)	SYNT0678
	X -14.*Q3(IG,K)+17.*Q4(IG,K)-6.*Q5(IG,K))-(6.*R1(IG,K)-30.*	SYNT0679
	X R2(1G,K)+42.*R3(IG,K)-18.*R4(IG,K)))*V*HR(K)/D0(IG,K)	SYNT0680
	LT(I,3,IG)=(9.*KA4(IG,K)-12.*KA5(IG,K)+4.*KA6(IG,K)-(9.*LA4(IG,K)	SYNT0681
	X -12.*LA5(IG,K)+4.*LA6(IG,K))-(18.*P3(IG,K)-30.*P4(IG,K)+12.*	SYNT0682
	X P5(IG,K))+(18.*Q3(IG,K)-30.*Q4(IG,K)+12.*Q5(IG,K))	SYNT0683
	X +36.*R2(IG,K)-72.*R3(IG,K)+36.*R4(IG,K))*V1 +CH(IG)/PH(IG,KR)	SYNT0684
		PAGE 308

FT(I,1,IG)=(3,*KB2(IG,K)-2,*KB3(IG,K)-9,*KB4(IG,K)+12,*KB5(IG,K)	SYNT0685
X -4.*KB5(IG,K))*V	SYNT0686
FT(I,2,IG)=(-3.*KB3(IG,K)+8.*KB4(IG,K)-7.*KB5(IG,K)+2.*KB6(IG,K))	SYNT0687
$X = *V * HR(K) / DO(IG_{*}K)$	SYNT0688
FT(I,3,IG)=(9.*KB4(IG,K)-12.*KB5(IG,K)+4.*KB6(IG,K))*V1	SYNT 0689
IF (IG.EQ.2) GO TO 62	SYNT 0690
T(I+1)=(3.*SR2(IG+K)-2.*SR3(IG+K)-9.*SR4(IG+K)+12.*SR5(IG+K)	SYNT0691
X -4.*SR6(IG,K))/(PH7(2,K)*PO(1,K))	SYNT0692
T(1,2)=(-3,*SR3(IG,K)+8,*SR4(IG,K)-7,*SR5(IG,K)+2,*SR6(IG,K))	SYNT0693
X *HR(K)/(PH7(2.K)*PO(1.K)*DO(1.K))	SYNT0694
$T(I_{*}3) = (9_{*}SR4(IG_{*}K) - 12_{*}SR5(IG_{*}K) + 4_{*}SR6(IG_{*}K))$	SY NT 0695
X = /(PH7(2.K)*PH(1.K))	SYNT 06 96
FT(1,1, 3)=(3,*KD2(IG,K)-2,*KD3(IG,K)-9,*KD4(IG,K)+12,*KD5(IG,K)	SYNT0697
X -4.*KD6(IG,K))/(PH7(2,K)*PO(1,K))	SYNT 0698
FT(I,2, 3)=(-3.*KD3(IG,K)+8.*KD4(IG,K)-7.*KD5(IG,K)+2.*KD6(IG,K))	SYNT0699
X *HR(K)/(PH7(2,K)*PO(1,K)*DO(1,K))	SYNT0700
FT(I,3, 3)=(9.*KD4(IG,K)-12.*KD5(IG,K)+4.*KD6(IG,K))	SYNT 0701
X /(PH7(2,K)*PH(1,K))	SYNT0702
FT(1,1, 4)=(3.*KC2(IG,K)-2.*KC3(IG,K)-9.*KC4(IG,K)+12.*KC5(IG,K)	SYNT0703
X -4.*KC6(IG,K))/(PH7(1,K)*PO(2,K))	SYNT0704
FT(I,2, 4)=(-3.*KC3(IG,K)+8.*KC4(IG,K)-7.*KC5(IG,K)+2.*KC6(IG,K))	SYNT0705
X *HR(K)/(PH7(1,K)*PO(2,K)*DO(2,K))	SYNT0706
FT(I,3, 4)=(9.*KC4(IG,K)-12.*KC5(IG,K)+4.*KC6(IG,K))	SYNT0707
X /(PH7(1,K)*PH(2,K))	SYNT0708
62 CONTINUE	SYNT0709
80 CONTINUE	SYNT0710
INCLUDE THETA AND PHI (PHI = -1) IN THE MATRIX FORMATIONS:	SYNT0711
THE ABOVE EQUATIONS ARE DERIVED USING PHI = -1 .	SYNT0712
PHIPHI=+1.0D0	SYNT0713
IF (THETA.NE.1.0) CALL MATFIX(THETA,PHIPHI)	SYNT 0714
TO PRINT OUT THE /B3/ MATRICES:	SYNT0715
IF (ISEE.GE.2) CALL PRTOUT(2)	SYNT0716
RETURN	SYNT0717
END	SYNT0718

C C

С

C	SUBROUTINE ERROR(I,J) ANNOUNCES INPUT ERRORS AND TERMINATES PROGRAM EXECUTION: 60 TO 41.2.3.4.5.6.7.8.9).1	ERR00001 ERR00002 ERR00003
1	WRITE (6.101)	FRRD0004
•		ERROOOD5
2	WRITE (6,102) J	ERR00006
-	GO TO 10	ERR00007
3	WRITE (6,103) J	ERR00008
	GO TO 10	ERR00009
4	WRITE (6,104) J	ERR00010
	GO TO 10	ERR00011
5	WRITE (6,105) J	ERR00012
	GO TO 10	ERR00013
6	WRITE (6,106) J	ERR00014
	GO TO 10	ERR00015
7	CONTINUE	ERR00016
8	CONTINUE	ERR00017
9	CONTINUE	ERRO0018
10	WRIFE (6,110)	ERRO0019
101	FURMAT ("IMUSI HAVE > 2 SUBREGIONS FUR ZERU FLUX B.C.S. INVALID.")	ERR00020
102	FORMAT ('INUMBER OF SUBREGIONS =',13,' > 25. INVALID.')	ERR00021
103	FURMAI ("ISUBREGIUN NUMBER", 13, "HAS > 100 SECTIONS. INVALID.")	ERKUUUZZ
104	FURMAL ("IINPUL ERRUR IN REGION SEQUENCING AT REGION", 15, ".")	ERRU0023
105	$FURMAI = \{1, 1, 2, 1\} = 0. IN REGIUN I = 1, 13, 1. INVALID. 1$	EKKUU024
106	FURMAL ("LIHE IULERANCE: EPS", 11, " IS < 1.0E-10. INVALID.")	EKKU0025
107	FURMAL ("IBUUNDRY CUNULFIUN UPITUN =",12," < 1 UR > 4. INVALID.")	
110	CALL EVIT	
	DETION	
		EKKUUUSU

•

S	UBROUTINE REPEAT(K,L)	REPE0001
Š	ETS THE /B5/ ARRAYS (K) EQUAL TO PAST STORED ARRAYS (L):	REPE0002
I	MPLICIT REAL*8 (A-Z)	REPE0003
C	OMMON /B5/	REPE0004
Х	KAQ(2,25),KA1(2,25),KA2(2,25),KA3(2,25),KA4(2,25),KA5(2,25),	REPE0005
Х	KA6(2,25),KB0(2,25),KB1(2,25),KB2(2,25),KB3(2,25),KB4(2,25),	REPE0006
X	KB5(2,25),KB6(2,25),LA0(2,25),LA1(2,25),LA2(2,25),LA3(2,25),	REPE0007
Х	LA4(2,25),LA5(2,25),LA6(2,25),PO(2,25),P1(2,25),P2(2,25),	REPE0008
Х	P3(2,25), P4(2,25), P5(2,25), P6(2,25), Q0(2,25), Q1(2,25),	REPE0009
Х	Q2(2,25),Q3(2,25),Q4(2,25),Q5(2,25),Q6(2,25),R0(2,25),	REPE0010
Х	R1(2,25), R2(2,25), R3(2,25), R4(2,25), SR0(1,25), SR1(1,25),	REPE0011
Х	SR2(1,25), SR3(1,25), SR4(1,25), SR5(1,25), SR6(1,25), KCO(1,25),	REPE0012
Х	KC1(1,25),KC2(1,25),KC3(1,25),KC4(1,25),KC5(1,25),KC6(1,25),	REPE0013
X	KD0(1,25),KD1(1,25),KD2(1,25),KD3(1,25),KD4(1,25),KD5(1,25),	REPE0014
Х	KD6(1,25);	REPE0015
Х	PO(2,25) ,PH(2,25) ,PU7(2,25),PH7(2,25),DO(2,25) ,DH(2,25)	REPE0016
C	OMMON /XAXIS/ HX,HR(25)	REPE0017
I	NTEGER K,L,G	REPE0018
н	R(K)=HR(L)	REPE0019
н	X=HX+HR(K)	REPE0020
D	$0 \ 10 \ G=1,2$	REPE0021
K	AO(G,K)=KAO(G,L)	REPE0022
K	A1(G,K)=KA1(G,L)	REPE0023
K	A2(G,K)=KA2(G,L)	REPE0024
K	A3(G,K)=KA3(G,L)	REPE0025
K	A4(G,K)=KA4(G,L)	REPE0026
K	A5(G,K)=KA5(G,L)	REPEOO27
K	A6(G,K)=KA6(G,L)	REPE0028
K	BO(G,K)=KBO(G,L)	REPE0029
K	B1(G,K)=KB1(G,L)	REPE0030
K	B2(G,K)=KB2(G,L)	REPE0031
K	B3(G,K)=KB3(G,L)	REPE0032
K	B4(G,K)=KB4(G,L)	REPED033
K	B5(G,K)=KB5(G,L)	REPEOO34
K	B6(G,K)=KB6(G,L)	KEPEUU35
L	AO(G,K)=LAO(G,L)	KEPEUU36
		PAGE SIL

LA1(G,K)=LA1(G,L)	REPE0037
LA2(G,K)=LA2(G,L)	REPE0038
LA3(G,K)=LA3(G,L)	REPE0039
LA4(G,K)=LA4(G,L)	REPE0040
LA5(G,K)=LA5(G,L)	REPE0041
LA6(G,K)=LA6(G,L)	REPE0042
$PO(G \cdot K) = PO(G \cdot L)$	REPE0043
$P1(G\cdot K)=P1(G\cdot L)$	REPEO044
P2(G.K) = P2(G.L)	REPEO045
P3(G.K) = P3(G.L)	REPEOD46
$P4(G_K) = P4(G_L)$	BEPEOD47
P5(G.K)=P5(G.L)	REPEOO48
$P6(G\cdot K) = P6(G\cdot L)$	REPEO049
$OO(G \cdot K) = OO(G \cdot L)$	REPE0050
$01(G \cdot K) = 01(G \cdot L)$	REPE0051
Q2(G.K) = Q2(G.L)	REPEO052
03(G.K) = 03(G.L)	REPE0053
Q4(G,K)=Q4(G,L)	REPE0054
Q5(G,K)=Q5(G,L)	REPE0055
Q6(G,K) = Q6(G,L)	REPE0056
RO(G,K)⇒RO(G,L)	REPE0057
$R1(G,K) \Rightarrow R1(G,L)$	REPE0058
R2(G,K) = R2(G,L)	REPE0059
R3(G,K) = R3(G,L)	REPE0060
R4(G,K) = R4(G,L)	REPE0061
IF (G.EQ.2) GO TO 5	REPE0062
SRO(G,K) = SRO(G,L)	REPE0063
SR1(G,K)=SR1(G,L)	REPE0064
SR2(G,K)=SR2(G,L)	REPE0065
SR3(G,K)=SR3(G,L)	REPE0066
SR4(G,K)=SR4(G,L)	REPE0067
SR5(G,K)=SR5(G,L)	REPE0068
SR6(G,K)=SR6(G,L)	REPE0069
KCO(G,K) = KCO(G,L)	REPECO70
KC1(G,K)=KC1(G,L)	REPE0071
KC2(G,K)=KC2(G,L)	REPE0072

	KC3(G,K)=KC3(G,L)
	KC4(G,K)=KC4(G,L)
	KC5(G,K)=KC5(G,L)
	KC6(G,K)=KC6(G,L)
	KDO(G,K) = KDO(G,L)
	KD1(G,K)=KD1(G,L)
	KD2(G,K)=KD2(G,L)
	KD3(G,K)=KD3(G,L)
	KD4(G,K)=KD4(G,L)
	KD5(G,K)=KD5(G,L)
	KD6(G,K)=KD6(G,L)
5	CONTINUE
	PO(G,K)=PO(G,L)
	P07(G,K)=P07(G,L)
	PH(G,K)=PH(G,L)
	PH7(G,K)=PH7(G,L)
	DO(G,K)=DO(G,L)
	DH(G,K)=DH(G,L)
10	CONTINUE
	RETURN
	END

REPE0073 REPE0074 REPE0075 REPE0076 REPE0077 REPE0078 REPE0079 REPE0080 REPE0081 REPE0082 REPE0083 REPE0084 REPE0085 REPE0086 **REPE0087 REPE0088 REPE0089 REPE0090 REPE0091 REPE0092 REPE0093**

SUBROUTINE BHSET(K) C SETS UP THE /BH/ ARRAYS FOR GIF: IMPLICIT REAL*8 (A-H,L-Z) COMMON /BH/ X(101), H(101), Z(101) DO 1 I=1,K 1 Z(I)=X(I)-X(1) RETURN END BHSE0001 BHSE0002 BHSE0003 BHSE0004 BHSE0005 BHSE0006 BHSE0007 BHSE0008

DOUBLE PRECISION FUNCTION GIF(N,G1,F,G2,C,G,K,ITC)	GIF 0001
	GIF 0002
* IDENTICAL TO SUBROUTINE GIF PREVIOUSLY LISTED IN PROGRAM LINEAR.	GIF 0003
	GIF 0004
RETURN	GIF 0005
END	GIF 0006

С С С

DOUBLE PRECISION FUNCTION FACT(N) C COMPUTES N FACTORIAL: FACT=1.0D0 IF (N.LE.1) RETURN DO 1 I=2,N 1 FACT=FACT*DFLOAT(I) RETURN END

/

FACT0001 FACT0002 FACT0003 FACT0004 FACT0005 FACT0006 FACT0007 FACT0008

	SUBPOUTINE MATEIX (THEATA, PHI)	MATF0001
ſ	MODIEYS THE MATRIX FLEMENTS OF THE /B3/ MATRICES BY THEATA AND PHI.	MATF0002
ů C	PROPER CHOICE OF THEATA PROVIDES EASIER INVERSION OF THE MATRICES.	MATF0003
ů C	MATRIX SOLUTION SHOULD BE INDEPENDENT OF PHI. HOWEVER:	MATF0004
C	USE OF PHI > O RESULTS IN POSITIVE DEFINITE MATRICES.	MATF0005
C	COMMON /RI/ IRC	MATF0006
	COMMON /B2/ KR.NN	MATF0007
)	COMMON / B3/ A(50.6.7)	MATF0008
	DEAL #8 A. THEATA DHI Y.Y.7	MA TF0009
		MATF0010
	DO = 10 + 1 = 1.7	MATF0011
	$DO_5 = I = 2 \cdot NO$	MATF0012
		MATF0013
	Y=1.000	MATF0014
	I = (MOD(1,2), EQ, 0) = GO TO 1	MATF0015
	X=THΕΔΤΔ*ΡΗΙ	MATF0016
	Y=PHI	MATF0017
	1 DO 2 M=2+6+2	MATF0018
	$2 A(I \cdot M \cdot L) = X * A(I \cdot M \cdot L)$	MATF0019
	DO 3 M=1.5.2	MATF0020
	3 A(I.M.L) = Y * A(I.M.L)	MATF0021
	5 CONTINUE	MATF0022
C.	BUUNDARY CONDITION EQUATIONS:	MATF0023
•	X=1.0D0	MATF0024
	Y=1.0D0	MATF0025
	Z=THEATA	MATF0026
	IF (IBC.GT.2) GO TO 6	MATF0027
	X=THEATA*PHI	MATF0028
	Y=PHI	MATF0029
	Z=X	MATF0030
	6 A(1,4,L)=X*A(1,4,L)	MATF0031
	A(1,5,L)=Y*A(1,5,L)	MATF0032
	A(1,6,L)=Z*A(1,6,L)	MATF0033
	X=1.0D0	MATF0034
	Y=THEATA	MATF0035
	Z=X	MATF 0036
		PAGE 317

	IF (IBC.EQ.2.OR.IBC.EQ.4)	GO TO 7	MATF0037
	X=PHI		MATF0038
	Y=THEATA*PH1		MATF0039
	Z=Y		MATE 0040
7	A(NN, 1, L) = X * A(NN, 1, L)		MATF0041
	A(NN,2,L)=Y*A(NN,2,L)		MATF0042
	A(NN,3,L)=Z*A(NN,3,L)		MATF0043
10	CONTINUE		MATF0044
	RETURN		MATF0045
	END		MATF0046

SUBROUTINE PRTOUT(IP)	PRT00001
C IP = 1 PRINTS OUT THE / B5/ ARRAYS USED IN MATRIX FORM	ATIONS. PRT00002
C IP = 2 PRINTS OUT THE / B3/ MATRICES GIVEN TO POWER.	PRT00003
IMPLICIT REAL*8 (A-H.K-Z)	PRT00004
COMMON /B2/ KR. N	PRT00005
COMMON /B3/ L1(50,6), L2(50,6), F1(50,6), F4(50,6), F3(50,	6), PRT00006
X F2(50,6), T(50,6)	PRT00007
COMMON /B5/	PRT00008
X KA0(2,25), KA1(2,25), KA2(2,25), KA3(2,25), KA4(2,25), KA5(2	2,25), PRT00009
X KA6(2,25),KB0(2,25),KB1(2,25),KB2(2,25),KB3(2,25),KB4(2	2,25), PRT00010
X KB5(2.25).KB6(2.25).LA0(2.25).LA1(2.25).LA2(2.25).LA3(2	2.25), PRT00011
X = [A4(2,25), A5(2,25), A6(2,25), P0(2,25), P1(2,25), P2(2,25)]	,25), PRT00012
X = P3(2,25) + P4(2,25) + P5(2,25) + P6(2,25) + Q0(2,25) + Q1(2)	25) , PRT00013
X 02(2,25) +03(2,25) +04(2,25) +05(2,25) +06(2,25) +R0(2	25), PRT00014
X R1(2,25) R2(2,25) R3(2,25) R4(2,25) SR0(1,25) SR1(1	1,25), PRT00015
X SR2(1,25), SR3(1,25), SR4(1,25), SR5(1,25), SR6(1,25), KC0(1)	1,25), PRT00016
X KC1(1,25),KC2(1,25),KC3(1,25),KC4(1,25),KC5(1,25),KC6(1	1,25), PRT00017
X KD0(1,25),KD1(1,25),KD2(1,25),KD3(1,25),KD4(1,25),KD5()	1,25), PRT00018
X KD6(1,25),	PRT00019
X PO(2,25), PH(2,25), PU7(2,25), PH7(2,25), DO(2,25), DH(2	,25) PRT00020
COMMON /XAXIS/ HX, HR (25)	PRT00021
INTEGER KR. G. N. K	PRT00022
GO TO (1001,1002), IP	PRT00023
C KA'S:	PRT00024
1001 WRITE (6,10)	PRT00025
DO 11 G=1,2	PRT00026
11 WRITE (6,100) (G,K,KAO(G,K),KA1(G,K),KA2(G,K),KA3(G,K),KA	4(G,K), PRT00027
X = KA5(G,K), KA6(G,K), K=1, KR)	PRTD0028
C KB ⁺ S:	PRT00029
WRITE (6,20)	PRT00030
DO 21 G=1,2	PRT00031
21 WRITE (6,100) (G,K,KBO(G,K),KB1(G,K),KB2(G,K),KB3(G,K),KB	4(G,K), PRT00032
X = KB5(G,K), KB6(G,K), K=1, KR)	PRT00033
С КС*S:	PRT00034
WRITE (6,22)	PR T0 00 35
G=1	PRT00036
	DAGE 319

C KD'S: WRITE (6,24) G=1 25 WRITE (6,100) (G,K,KD0(G,K),KD1(G,K),KD2(G,K),KD3(G,K),KD4(G,K), X KD5(G,K),KD6(G,K),K=1,KR) C LA'S: WRITE (6,30) DO 31 G=1,2 31 WRITE (6,100) (G,K,LA0(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0038
WRITE (6,24) PRTO G=1 PRTO 25 WRITE (6,100) (G,K,KD0(G,K),KD1(G,K),KD2(G,K),KD3(G,K),KD4(G,K), PRTO X KD5(G,K),KD6(G,K),K=1,KR) PRTO C LA*S: PRTO DO 31 G=1,2 PRTO 31 WRITE (6,100) (G,K,LA0(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), PRTO X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0039
G=1 25 WRITE (6,100) (G,K,KD0(G,K),KD1(G,K),KD2(G,K),KD3(G,K),KD4(G,K), X KD5(G,K),KD6(G,K),K=1,KR) C LA ⁴ S: WRITE (6,30) DO 31 G=1,2 31 WRITE (6,100) (G,K,LA0(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0040
25 WRITE (6,100) (G,K,KDO(G,K),KD1(G,K),KD2(G,K),KD3(G,K),KD4(G,K), PRTO X KD5(G,K),KD6(G,K),K=1,KR) PRTO C LA*S: PRTO WRITE (6,30) PRTO D0 31 G=1,2 PRTO 31 WRITE (6,100) (G,K,LA0(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), PRTO X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0041
X KD5(G,K),KD6(G,K),K=1,KR) PRTO C LA*S: PRTO WRITE (6,30) PRTO DO 31 G=1,2 31 WRITE (6,100) (G,K,LA0(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), PRTO X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0042
C LA'S: WRITE (6,30) DO 31 G=1,2 31 WRITE (6,100) (G,K,LA0(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0043
WRITE (6,30) PRTO DO 31 G=1,2 PRTO 31 WRITE (6,100) (G,K,LAO(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), PRTO X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0044
DO 31 G=1,2 31 WRITE (6,100) (G,K,LAO(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), PRTO X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0045
31 WRITE (6,100) (G,K,LAO(G,K),LA1(G,K),LA2(G,K),LA3(G,K),LA4(G,K), PRTO X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0046
X LA5(G,K),LA6(G,K),K=1,KR) PRTO	0047
	0048
C SR*S: PRTO	0049
WRITE (6,40) PRTO	0050
G=1 PRTO	0051
41 WRITE (6,100) (G,K,SRO(G,K),SR1(G,K),SR2(G,K),SR3(G,K),SR4(G,K), PRTO	0052
X SR5(G,K),SR6(G,K),K=1,KR) PRTO	0053
C PIS: PRTO	0054
WRITE (6,50) PRTO	0055
DO 51 G=1,2 PRTO	0056
51 WRITE (6,100) (G,K,PO(G,K),P1(G,K),P2(G,K),P3(G,K),P4(G,K), PRTO	0057
X P5(G,K), P6(G,K), K=1, KR PRTO	0058
C Q'S: PRTO	0059
WRITE (6,60) PRTO	0060
DO 61 G=1,2 PRTO	0061
61 WRITE (6,100) (G,K,Q0(G,K),Q1(G,K),Q2(G,K),Q3(G,K),Q4(G,K), PRTO	0062
X Q5(G,K),Q6(G,K),K=1,KR) PRTO	0063
	0064
WRITE (6,70) PRIU	0065
	0066
$\frac{11 \text{ WKITE } \{b_1 \text{ UI}\} \cdot \{b_3 \text{ K}\} \text{ KU}\{b_3 \text{ K}\} \text{ KI}\{b_3 \text{ K}\} $	0067
C BUUNDARY VALUES: PRIU	0068
	0069
	0070
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0071
	0012

.

RETURN	PRT00073
1002 WRITE (6,90)	PRT00074
WRITE (6,110) ((L1(I,J),J=1,6),I=1,N)	PRT00075
WRITE (6,91)	PR T00076
WRITE (6,110) ((L2(I,J),J=1,6),I=1,N)	PRT00077
WRITE (6,92)	PRT00078
WRITE (6,110) ((F1(I,J),J=1,6),I=1,N)	PR TO 0079
WRITE (6,93)	PRT00080
WRITE (6,110) ((F2(I,J),J=1,6),I=1,N)	PRTO0081
WRITE (6,94)	PRTOO082
WRITE (6,110) ((F3(I,J),J=1,6),I=1,N)	PRT00083
WRITE (6,95)	PRT00084
WRITE (6,110) ((F4(I,J),J=1,6),I=1,N)	PRT00085
WRITE (6,96)	PRT00086
WRITE (6,110) ((T(I,J),J=1,6),I=1,N)	PR 100087
10 FORMAT ("1 G",4X,"K",7X,"KAO(G,K)",7X,"KA1(G,K)",7X,"KA2	2(G,K)', PRT00088
X 7X, "KA3(G,K)", 7X, "KA4(G,K)", 7X, "KA5(G,K)", 7X, "KA6(G,K)"	PRT00089
20 FORMAT (*1 G*,4X,*K*,7X,*KBO(G,K)*,7X,*KB1(G,K)*,7X,*KB2	2(G,K)', PRT00090
X 7X,*KB3(G,K)*,7X,*KB4(G,K)*,7X,*KB5(G,K)*,7X,*KB6(G,K)*	PRT00091
22 FORMAT ("1G",4X,"K",7X,"KCO(G,K)",7X,"KC1(G,K)",7X,"KC2	2(G,K)*, PRT00092
X 7X, 'KC3(G,K)', 7X, 'KC4(G,K)', 7X, 'KC5(G,K)', 7X, 'KC6(G,K)'	•,/) PRT00093
24 FORMAT (*1 G*;4X;*K*;7X;*KDO(G;K)*;7X;*KD1(G;K)*;7X;*KD1	2(G,K)", PRT00094
X 7X, 'KD3(G,K)', 7X, 'KD4(G,K)', 7X, 'KD5(G,K)', 7X, 'KD6(G,K)'	•,/) PRT00095
30 FORMAT ("1 G",4X,"K",7X,"LAO(G,K)",7X,"LA1(G,K)",7X,"LA2	2(G,K)', PRT00096
X 7X,"LA3(G,K)",7X,"LA4(G,K)",7X,"LA5(G,K)",7X,"LA6(G,K)	•,/) PRT00097
40 FORMAT ("1 G";4X;"K";7X;"SRO(G;K)";7X;"SR1(G;K)";7X;"SR2	2(G,K)', PRT00098
X 7X, 'SR3(G,K) ', 7X, 'SR4(G,K)', 7X, 'SR5(G,K)', 7X, 'SR6(G,K)'	',/) PRT00099
50 FORMAT (11 G',4X, K',8X, PO(G,K)',8X, P1(G,K)',8X, P2(G	,K) , 8X , PRTO0100
X	PRTO0101
60 FORMAT (*1 G',4X,*K',8X,*Q0(G,K)',8X,*Q1(G,K)*,8X,*Q2(G	,K),8X, PRT00102
X 'Q3[G,K]!,8X,"Q4[G,K]",8X,"Q5[G,K]",8X,"Q6[G,K]",/)	PRTO0103
70 FORMAT (*1 G*,4X,*K*,8X,*R0(G,K)*,8X,*R1(G,K)*,8X,*R2(G	,K), 8X , PRTO0104
X 'R3(G,K)',8X,'R4(G,K)',/)	PRT00105
80 FORMAT ("1 G",4X,"K",8X,"PO(G,K)",8X,"PH(G,K)",7X,"PO7((G,K)',7X, PRT00106
X *PH7(G,K)*,8X,*D0(G,K)*,8X,*DH(G,K)*,10X,*HR(K)*,/)	PRT00107
100 FORMAT (215,7D15.7)	PR 100108
	PAGE 321

101	FORMAT	(215,5015	.7)
90	FORMAT	(*1MATRIX	L1:',/)
91	FORMAT	(*1MATRIX	L2:*,/)
92	FORMAT	(IMATRIX	F1: !,/)
93	FORMAT	(IMATRIX	F2: ,/)
94	FORMAT	("IMATRIX	F3: 1,/)
95	FORMAT	(IMATRIX	F4:*,/)
96	FORMAT	(INATRIX	T: ',/)
110	FORMAT	(6D20.10)	
	RETURN		

END

PRT00109 PRT00110 PRT00111 PRT00112 PRT00113 PRT00114 PRT00115 PRT00116 PRT00117 PRT00118 PRT00119
```
POWE0001
      SUBROUTINE POWER
     SOLVES THE 2*N MULTIGROUP EQUATIONS: M*PHI = (1/LAMDA)*F*PHI
                                                                                   POWE0002
С
                                                                                   POWE0003
      BY THE FISSION SOURCE POWER METHOD
С
                                                                                   POWE0004
      USING SIMULTANEOUS OVERRELAXATION.
С
                                                                                   POWE0005
С
         WHERE: M AND F ARE DOUBLE PRECISION 2N BY 2N BLOCK MATRICES;
C
                 PHI IS THE 2N FLUX (FAST AND THERMAL) VECTOR.
                                                                                   POWE0006
         AND:
                                                                                   POWE0007
С
                   L1*PHI1 = CHI1*(F1*PHI1 + F2*PHI2)
С
        -T*PHI1 + L2*PHI2 = CHI2*(F3*PHI1 + F4*PHI2)
                                                                                   POWE0008
        METHOD FOLLOWS WACHPRESS, PAGE 83. SOLUTION BY GROUP ITERATION.
                                                                                   POWE0009
С
                                                                                   POWE0010
      IMPLICIT REAL*8 (A-H,L-Z)
                                                                                   POWE0011
      COMMON /B1/ IBC, IPLOT, JPLOT, IPUNCH, ISEE
                                                                                   POWE0012
      COMMON /B2/ KR.N
      COMMON /B3/_L1(50,6),L2(50,6),F1(50,6),F4(50,6),F3(50,6),F2(50,6),
                                                                                   POWE0013
                                                                                   POWE0014
                  T(50,6)
     Х
                                                                                   POWE0015
      COMMON / B4/ PHI(2,52), PSI(2,52), LAMDA, ICOUT
     COMMON /B5/ S(52), ERROR(2,52), Z(52), G(50,6), GT(50)
                                                                                   POWE0016
                                                                                   POWE0017
      COMMON /B6/ TE1(2,5), TE2(2,5), TE3(5), IN(5)
                                                                                   POWE0018
      COMMON /CHIF/ CHI(2)
                                                                                   POWE0019
      COMMON /XAXIS/ HX, HR(25)
                                                                                   POWE0020
      COMMON /ER/ EPS1, EPS2, EPS3
                                                                                   POWE0021
      COMMON /FSTR/ PHISTR(2,26,6)
      COMMON /ESTR/ LAMSTR(300), EFSTR(2,300), EFMSTR(2,300), ERLAM(300)
                                                                                   POWE0022
      COMMON /TRUE/ TRULAM, TRUPHI(2,52), PHICON(2,300), LAMCON(300), IFT
                                                                                   POWE0023
                                                                                   POWE0024
      DIMENSION PSI1(52), PSI2(52), SQ(2), DPHI(2), ERRMAX(2)
                                                                                   POWE0025
      INTEGER N, NN
                                                                                   POWE0026
         DEFAULT OPTIONS FOR THE TRUE EIGENVALUE AND FLUX-CURRENT VECTOR:
С
                                                                                   POWE0027
      TRULAM=1.0
                                                                                   POWE0028
      DO 5 1G=1,2
                                                                                   POWE0029
      DO 4 I=1.N
                                                                                   POWE0030
      TRUPHI(IG,I)=1.0
                                                                                   POWE0031
      IF (MOD(I,2),EQ.1) TRUPHI(IG,I)=0.0
                                                                                   POWE0032
    4 CONTINUE
                                                                                   POWE0033
      IF (IBC.EQ.1) TRUPHI(IG.N)=0.0
                                                                                   POWE0034
      IF (IBC.EQ.4) TRUPHI(IG,1)=1.0
                                                                                   POWE0035
    5 CONTINUE
                                                                                   POWE0036
C
         DEFAULT OPTIONS FOR POWER PARAMETERS:
                                                                               PAGE 323
```

		ALPHA=1.25	POWE0037
		LAMDA=1.0	POWE0038
		DO 555 IG=1,2	POWE0039
		IF (IBC.NE.4) GO TO 551	POWE0040
		DO 550 I=1,N	POWE0041
		PHI(IG,I)=1.0	POWE0042
		IF (MOD(1,2).EQ.1) PHI(IG,1)=0.0	POWE0043
	550	CONTINUE	POWE 0044
		PHI(IG,1)=1.0	POWE0045
		GO TO 555	POWE0046
	551	X=3.1415926/HX	POWE0047
		IF (IBC.NE.1) X=X/2.0	POWE0048
		PHI(IG,1)=-X	POWE0049
		SUM1=0.0	POWE0050
		DO 552 K=2,KR	POWE0051
		I=2*K-2	POWE0052
		J=I+1	POWE0053
		SUM1=SUM1+HR(K+1)	POWE0054
		PHI(IG,I)=DSIN(SUM1*X)	POWE0055
	552	PHI(IG,J)=-X*DCOS(SUM1*X)	POWE0056
		PHI(IG,N)=1.0	POWE0057
		IF (IBC.EQ.1) PHI(IG,N)=X	POWE0058
	555	CONTINUE	POWE0059
С.		READ IN THE TRUE (EXPECTED) EIGENVALUE AND FLUX VECTOR (MINUS O BC'S):	POWE0060
		IFT=0	POWE0061
		READ (5,500,END=501) TRULAM, (TRUPHI(1,I),I=1,N)	POWE0062
		READ $(5,503,END=501)$ (TRUPHI(2,I),I=1,N)	POWE0063
		IFT=1	POWE0064
_	500	FORMAT (E25.14,/,(4E20.10))	POWE 0065
C		READ IN: OVERRELAXATION PARAMETERS ; ALPHA (OUTER ITERATION)	POWE0066
C		INITIAL GUESS AT EIGENVALUE; LAMDA	POWE0067
ι		INITIAL NURMALIZED FLUX ; PHI(I-N)	POWE0068
	201	KEAU (5,506,ENU=510) ALPHA	PUWE 0069
		KEAU (), DUZ, ENU=DIU) LAMUA	PUWE0070
		KEAU (5,503) (PHI(1,1),1=1,N)	PUWE0071
		KEAU (0,003) (PH1(2,1),1=1,N)	PUWE0072

502 FORMAT (E25.14)	POWE0074
503 FORMAT ((4E20.10))	POWE0075
510 CONTINUE	POWE0076
C STORING FOR PRINTING THE MULTIGROUP FLUX SHAPE.	POWE0077
K=0	POWE0078
IF (IBC.EQ.4) K=1	POWE0079
DO 11 IG=1,2	POWE0080
DD 10 I=1, KR	POWE0081
II=I+K	POWE0082
10 $PHISTR(IG,II,2) = PHI(IG,2*I)$	POWE0083
IF $(IBC \cdot EQ \cdot 4)$ PHISTR $(IG \cdot 1 \cdot 2)$ = PHI $(IG \cdot 1)$	POWE0084
C FILL RUNNING COORD IN PHISTR	POWE0085
KR1 = KR + 1	POWE0086
DO 11 $I = 1, KR1$	POWECO87
11 PHISTR(IG,I,1)=DFLOAT(I)	POWE0088
C IK IS THE FLUX PLOTTING COUNTER.	POWE0089
IK=1	POWE0090
C STORES THE ITERATION NUMBER FOR FLUX HISTORY PLOTTING:	POWE0091
IN(1)=0	POWE0092
C STORES TEMPORARY ERRORS FOR FLUX HISTORY PLOTTING:	POWE0093
TE1(1,1)=0.	POWE0094
TE1(2,1)=0.	POWE0095
TE2(1,1)=0.	POWE0096
TE2(2,1)=0.	POWEC097
TE3(1)=0.0	POWE0098
C EIGENVALUE OF THE PREVIOUS ITERATION:	POWE0099
LAMB4=LAMDA	POWE0100
C THE MAXIMUM NUMBER OF ALLOWED ITERATIONS: ICMAX	POWE0101
ICMAX=300	POWE0102
C PRINT OUT THE POWER METHOD PARAMETER INFORMATION:	POWE0103
WRITE (6,700) ICMAX,ALPHA,LAMDA,(PHI(1,I),I=1,N)	POWE0104
WRITE (6,701) (PHI(2,1),I=1,N)	POWE0105
700 FORMAT ("1EXECUTING MULTIGROUP FISSION SOURCE POWER ITERATION METH	POWE0106
XOD.",///,	POWE0107
X 5X, MAXIMUM NUMBER OF ALLOWABLE ITERATIONS: 1,/,	POWE0108
	PAGE 325

 \sim

	$X = 10X_{9} \cdot 1CMAX = *_{9} \cdot 14_{9} / / _{9}$	POWE0109
	X 5X, OUTER ITERATION RELAXATION PARAMETER: 1,/,	POWE0110
	$X = 10X_{3} + ALPHA = +, F7.3_{3}//_{3}$	POWE0111
	X 5X, 'INITIAL GUESS AT EIGENVALUE: ',/,	POWE0112
	X 10X, LAMBDA = ', E22.14, //,	POWE0113
	X 5X, INITIAL GUESS AT THE GROUP FLUX SHAPE CONNECTION POINTS: ,	POWE0114
	X //,8X,"FAST GROUP:",/,	POWE0115
	X 10X, F(K) S = 4E25.14, /, (18X, 4E25.14))	POWE0116
701	L FORMAT ("0",7X, "THERMAL GROUP:",/,	POWE0117
	X 10X, F(K) 'S =', 4E25.14, /, (18X, 4E25.14))	POWE0118
C	BEGIN ITERATION LOOP.	POWE0119
	ICOUT=0	POWE0120
C	ICOUT IS THE OUTER ITERATION COUNTER.	POWE0121
20) ICOUT=ICOUT+1	POWE0122
	IF (ICOUT.GT.ICMAX) GO TO 100	POWE0123
C	SOLVE FOR THE NEW GROUP FLUX VECTORS: PSI:	POWE0124
C	THE GROUP FLUX ITERATES:	POWE0125
	DO 21 I=1,N	POWE0126
	PSI1(I)=PHI(1,I)	POWE0127
21	PSI2(I)=PHI(2,I)	POWE0128
C	THE FAST ITERATION SOURCE S:	POWE0129
	CALL VPRDD(F1,PSI1,S,N)	POWE0130
	CALL VPROD(F2,PSI2,Z,N)	POWE 0131
	DO 22 I=1,N	POWE0132
22	2 S(I)=CHI(1)*(S(I)+Z(I))	POWE0133
C	FAST FLUX:	POWE0134
_	CALL SOLVE(L1,PSI1,S,N,G,GT)	POWE0135
C	THE THERMAL ITERATION SOURCE S:	POWE0136
	CALL VPROD(F3,PSI1,S,N)	POWE0137
	CALL VPROD(F4, PSI2, Z, N)	POWE0138
	DO 25 I=1,N	POWE0139
25	5 S(I)=CHI(2)*(S(I)+Z(I))	POWE0140
	CALL VPROD(T,PSI1,Z,N)	POWE0141
	DO 27 1=1,N	POWE0142
27	S(1) = S(1) + Z(1)	POWE0143
C	IHERMAL FLUX:	POWE0144
		PAGE 326

			CALL SOLVELLO DELO S N. C. CT.)	POWE0145
	C		CALCULATION OF THE EIGENVALUE:	POWE0146
	Ŭ			POWE0147
				POWE0148
			$DO \ge 8$ I=1.N	POWE0149
			S(IM) = S(IM) + PS(I)(T) + PHT(1, I)	POWE0150
•	ć	28	SUM2=SUM2+PSTI(I)*PSTI(I)	POWE0151
		20	$D_{1} = 29$ I=1.N	POWE0152
			SUN1 = SUN1 + PSI2(T) + PHI(2,T)	POWE0153
		29	SUM2 = SUM2 + PST2(T) + PST2(T)	POWE 0154
		_ /		POWE0155
			LANSTR (ICOUT) =1 AMDA	POWE0156
			ERRIAM=DABS(IAMDA-IAMB4)	POWE0157
	C		PUT PSI1 AND PSI2 INTO BIGGER PSI:	POWE0158
	•		D0 30 I=1.N	POWE0159
			PSI(1,I) = PSII(I)	PDWE0160
		30	PSI(2,I)=PSI2(I)	POWE0161
	С		PUINT BY POINT SIMULTANEOUS RELAXATION FLUX ITERATION:	POWE0162
			X=ALPHA	POWE0163
	C		DO NOT RELAX DURING THE FIRST THREE ITERATIONS:	POWE0164
			IF (ICOUT.LE.3) X=1.0	POWE0165
	С		CALCULATE THE NEW GROUP FLUX ITERATES AND GROUP ERRORS:	POWE0166
			DO 40 IG=1,2	POWE0167
			DO 40 $I=1,N$	POWE0168
			PSI(IG,I)=PHI(IG,I) + X*(PSI(IG,I)/LAMDA-PHI(IG,I))	POWE0169
		40	CONTINUE	POWE0170
	C		NORMALIZE THE FLUX ITERATE (ONE GROUP):	POWE0171
			CALL NORMAL (PSI,N)	POWE0172
			NN=N	POWE0173
			IF (IBC.EQ.1) NN=N-2	POWE0174
	C		NORMALIZED ERRORS OF THE FLUX CNLY:	POWE0175
			DO 39 1G=1,2	POWE0176
			ERRMAX(IG)=0.0	POWE0177
			SQ(IG)=0.0	POWE0178
			IF (IBC.NE.4) GO TO 37	POWE0179
			ERROR(IG,1)=DABS((PSI(IG,1)-PHI(IG,1))/PSI(IG,1))	POWE0180
				PAGE 327

		ERRMAX(IG)=ERROR(IG,1)	POWE0181
		SQ(IG)=ERRUR(IG,1)**2	POWE0182
	37	DO 38 I=2,NN,2	POWE0183
		ERROR(IG,I)=DABS((PSI(IG,I)-PHI(IG,I))/PSI(IG,I))	POWE0184
		IF (ERROR(IG,I).GT.ERRMAX(IG)) ERRMAX(IG)=ERROR(IG,I)	POWE0185
	38	SQ(IG) = SQ(IG) + ERROR(IG, I) + 2	POWE0186
	•	SQ(IG)=DSQRT(SQ(IG))	POWE0187
С		UPDATE THE FLUX ITERATE:	POWE0188
		DO 39 I=1,N	POWE0189
	39	PHI(IG,I)=PSI(IG,I)	POWE0190
		IF (IFT.EQ.0) GO TO 31	POWE0191
		DLAM=LAMDA-TRULAM	POWE0192
		DO 36 IG=1,2	POWE0193
		DPHI(IG)=0.0	POWE0194
		DO 35 I=1,N	POWE0195
	35	DPHI(IG)=DPHI(IG)+(PSI(IG,I)-TRUPHI(IG,I))**2	POWE0196
	36	DPHI(IG)=DSQRT(DPHI(IG))	POWE0197
	31	IF (IPLOT.NE.2) GO TO 45	POWE0198
С		THE FOLLOWING IS FOR NICELY PLOTTING THE GROUP FLUX HISTORY.	POWE0199
		CALL NORM2(PSI, TRUPHI, N)	POWE0200
		K=0	POWE020ľ
		IF (IBC.EQ.4) K=1	POWE0202
		KBC=KR	POWE0203
		IF (IBC.EQ.1) KBC=KR-1	POWE0204
		IF (IBC.EQ.4) KBC=KR+1	POWE 0205
		DO 41 IG=1, 2	POWE0206
		DU 41 I=1,KR	POWE0207
		II=I+K	POWE0208
	41	ERROR(IG,II)=PSI(IG,2*I)	P0WE0209
		IF (IBC.EQ.4) ERROR(1,1)=PSI(1,1)	POWE0210
		IF (IBC.EQ.4) ERROR(2,1)=PSI(2,1)	POWE0211
С		ERROR NOW CONTAINS THE NEW NORMALIZED FLUX ITERATE PHI.	POWE0212
		JK=IK	POWE0213
		IF (IK.EQ.0) JK=5	POWE0214
		DO 42 IG=1,2	POWE0215
		DO 42 I=1,KBC	POWE0216
			PAGE 328

.

		00450217
	IF (DABS(ERROR(IG,I)-PHISTR(IG,I,JK+I)).GE.U.01) GU TU 45	PUNEUZII DOWEO219
42	LUNIINUE	
C	FLUX HAS NUT CHANGED ENUUGH FUR PLUTTING.	
~	GU IU 45 Ande the Normalized Club For Diotting	
C	SAVE THE NURMALIZED FLUX FUR PLUTTING:	PONLUZZI DOWEO222
43		
	TE3(IK)=ERRLAM	
	DU 44 I6=1,2	
	TE1(IG,IK)=ERRMAX(IG)	PUNEUZZO
	TE2(IG,IK)=SQ(IG)	PUWEUZZI
	DO 44 I=1,KBC	PUWEUZZO
44	PHISTR(IG,I,IK+1)=ERRUR(IG,I)	PUNEU229
	IF (IK.NE.5) GO TO 45	PUWEU23U
C	PLOT THE LAST FIVE SAVED FLUXES:	PUWEUZJI
	CALL PHIPLT(5)	PUWEUZ32
	I K=0	PUWEU233
45	CONTINUE	PUWEU234
C	ERROR CRITERIA FOR ACCEPTANCE OF CUNVERGENCE.	PUWEU233
	IFLAG1=0	PUWEU230
	IFLAG2=0	PUWEU237
	IFLAG3=0	PUWEU238
C	STORE THE ERRORS FOR COMPARISON:	PUWEU239
C	ERROR BETWEEN ITERATION EIGENVALUES:	PUWE0240
	ERLAM(ICOUT)=ERRLAM	PUWEU241
	DO 46 IG=1,2	PUWEU242
C	MAXIMUM ERROR BETWEEN ITERATION FLUXES:	PUWE0243
	EFSTR(IG,ICOUT)=ERRMAX(IG)	PUWEU244
C	MEAN SQUARE ERROR BETWEEN ITERATION FLUXES:	PUWEU245
	EFMSTR(IG,ICOUT)=SQ(IG)	PUWE0246
С.	MEAN SQUARE ERROR BETWEEN THE ITERATION FLUX AND GIVEN TRUE FLUX:	PUWE0247
	PHICON(IG,ICOUT)=DPHI(IG)	PUWEU248
46	CONTINUE	PUWE0249
C	ERROR BETWEEN THE ITERATION EIGENVALUE AND GIVEN TRUE EIGENVALUE:	PUWE0250
	LAMCON(ICOUT)=DLAM	PUWE0251
	IF ((ERRMAX(1).LT.EPS1).AND.(ERRMAX(2).LT.EPS1)) IFLAG1=1	PUWE0252
	PAG	E 329

		IF ((SQ(1).LT.EPS2).AND.(SQ(2).LT.EPS2))	IFLAG2=1	POWE0253
		IF (ERKLAM.LI.EPS3) IFLAG3=1		POWE0254
		IFLAG4=IFLAG1*IFLAG2*IFLAG3		POWE0255
~		IF (IFLAG4.EQ.I) GU IU 50		POWE0256
ί		UTHERWISE CUNTINUE THE ITERATION.		POWE0257
		LAMB4=LAMDA		POWE0258
		GO TO 20		POWE0259
-	50	CONTINUE		POWE0260
C		CUNVERGENCE ACCOMPLISHED.		POWE0261
C				POWE0262
С		NORMALIZE THE CONVERGED FLUX VECTOR:		POWE0263
		CALL NORMAL(PHI,N)		POWE0264
С		PLUT ANY LEFT OVER FLUX HISTORY PLOTS:		POWE0265
_		IF ((IPL)T.EQ.2).AND.(IK.NE.0)) CALL PHIPLT(IK)	POWE0266
С		BOUNDRY CUNDITION INSERTIONS.		POWE0267
		IER=0		POWE0268
С		IER ALLOWS B.C. INSERTIONS FOR YES AND NO	CONVERGENCE:	POWE0269
	55	DO 70 IG=1,2		POWE0270
		PHI(IG, N+2) = 0.0		POWE0271
		DO 60 $I=1, N$		POWE0272
		J=N+1-I		POWE0273
	60	PHI(IG, J+1) = PHI(IG, J)		POWE0274
		IF (IBC.NE.4) GO TO 65		POWE0275
		PHI(IG,2)=0.0		POWE0276
		GO TO 70		POWE0277
	65	PHI(IG,1)=0.0		POWE0278
		IF (IBC.NE.1) GO TO 70		POWE0279
		PHI(IG, N+2) = PHI(IG, N+1)		POWE0280
		PHI(IG,N+1)=0.0		POWE0281
	70	CONTINUE		POWE0282
	90	IF (IER.EQ.1) GO TO 102		POWE0283
		RETURN		POWE0284
С		NU CONVERGENCE ACCOMPLISHED:		POWE0285
	100	CONTINUE		POWE0286
С		NORMALIZE THE UNCONVERGED FLUX:		POWE0287
		CALL NORMAL(PHI,N)		POWE0288
				PAGE 330

х. х

ICOUT = ICOUT - 1	POWE0289
WRITE (6.101) ICOUT	POWE0290
101 FORMAT (1H1. POWER METHOD DID NOT CONVERGE FOR THIS CASE AFTER',	POWE0291
X 14. ITERATIONS. * . // . 1X. * EXECUTION TERMINATED *)	POWE0292
IFR=1	POWE0293
60 TO 55	POWE0294
	POWE0295
C FOR PRINTING OUT THE EIGENVALUE HISTORY AND THE FINAL FLUX SHAPE	POWE0296
IPI ()T=1	POWE0297
.1P1 ()T=1	POWE0298
RETURN	POWE0299
END	POWE0300

	SUBROUTINE VPROD(A,X,S,N)	VPR00001
C	FORMS THE VECTOR S = PRODUCT OF NXN MATRIX A AND VECTOR X:	VPR00002
C	WHERE A IS THE CUBIC HERMITE (1,6) STORAGE MATRIX.	VPR00003
	REAL*8 A(50,6),X(50),S(50)	VPR00004
	DO 1 I = 1, N	VPR00005
	S(I)=0.0	VPR00006
	DO 1 M=1,6	VPR00007
	K=2*(1/2)+M-3	VPR00008
	IF ((K.LT.1).OR.(K.GT.N)) GO TO 1	VPR00009
	S(I)=S(I)+A(I,M)*X(K)	VPR00010
	1 CONTINUE	VPR00011
С		VPR00012
	RETURN	VPR00013
	END	VPR00014

	SUBROUTINE SOLVE(A,X,Y,N,G,Z)	SOL V0001
C	SOLVES A*X = Y USING CHOLESKY'S METHOD OF FACTORAZATION	SOLV0002
C	FOR POSITIVE DEFINITE REAL AND SYMMETRIC MATRICES A.	SOLV0003
Ċ	REFERENCE: FOR SYTHE & MOLER.	S0LV0004
Č	G AND Z ARE TEMPORARY WORK AREAS.	SOLV0005
Č	MODIFIED FOR THE CRAZY CUBIC HERMITE (1,6) MATRICES:	SOLV0006
-	IMPLICIT REAL*8 (A-H,O-Z)	SOLV0007
	DIMENSION A(50,6),G(50,6),X(50),Y(50),Z(50)	SOLVOO08
С	FURM THE MATRIX FACTORAZATION TO G:	SOLV0009
	CALL FORMG(A,G,N)	SOLV0010
С	SOLVE: G*Z = Y:	SOLV0011
	CALL LOWTRI(G,Z,Y,N)	SOLVOO12
С	FORM G AS SYMMETRIC MATRIX:	SOLV0013
	CALL SYMG(G,N)	SOLVOO14
C	SOLVE: G-TRANSPOSE*X = Z:	SOLVOO15
	CALL UPPTRI(G,X,Z,N)	SOLVOO16
	RETURN	SOLV0017
	END	SOLVOO18

	SUBROUTINE FURMG(A,G,N)	FORM0001
C	FURMS MATRIX G FROM A:	FORMOOO2
	IMPLICIT REAL*8 (A-H,O-Z)	FORM0003
	DIMENSION A(50,6),G(50,6)	FORM0004
	DO 20 J=1,N	FORM0005
	K=3+MOD(J,2)	FORM0006
	K0=K-1	FORMO007
	L0=1	FORMO008
	IF (J.LE.3) LO=2	FORMO009
	IF (J.EQ.1) LO=4	FORMOO10
	SUM=0.0	FORM0011
	IF (LO.GT.KO) GO TO 2	FORMOO12
	DO 1 L=L0,K0	FORMO013
j	L SUM=SUM+G(J,L)**2	FORMO014
	2 SUM=A(J,K)-SUM	FORMO015
	IF (SUM.LT.0.0) GO TO 100	FORMO016
	G(J,K)=DSQRT(SUM)	FORMOO17
	IF (J.EQ.N) GO TO 20	FORMO018
	I1=J+1	FORMO019
	I 2= J+6-K	FORMOO20
	IF (12.GT.N) 12=N	FORMOO21
	M=2	FORMO022
	IF (K.EQ.3) M=3	FORMO023
	DO 10 I=I1,I2	FORMO024
	SUM= 0. 0	FORM0025
	L0=1	FORMO026
	IF (I.LE.3) LO=2	FORMO027
	MO=M-1	FORM0028
	IF (LO.GT.MO) GO TO 7	FORMOO29
	DO 5 L=L0,M0	FORMO030
	JL=L	FORMOO31
	$IF (M \cdot EQ \cdot 2) JL = 3$	FORM0032
	5 $SUM=SUM+G(I,L)*G(J,JL)$	FORM0033
-	7 G(I,M)=(A(I,M)-SUM)/G(J,K)	FORM0034
	IF (M.EQ.3) M=1	FORM0035
10	D CONTINUE	FORM0036
		PAGE 334

20 CONTINUE	FORM0037
RETURN	FORM0038
100 WRITE (6.101) J.K	FORMO039
101 FORMAT (LOFRROR IN FORMG: !.//.	FORM0040
x = 5x + A(4, 12, 4, 4, 12, 4) < 0.0(4, 1/)	FORM0041
x 5x, CHOLESKY METHOD HAS EATLED. './/.	FORM0042
X 5X, MATRIX A MAY NOT BE POSITIVE DEFINITE OR SYMMETRIC "./	/, FORM0043
X JOEXECUTION TERMINATED 1)	FORMO044
	FORM0045
DETIDN	FORM0046
END	FORMO047

/

SYMG0001
SYMG0002
SYMG0003
SYMG0004
SYMG0005
SYMG0006
SYMG0007
SYMG0008
SYMG0009
SYMG0010
SYMG0011
SYMG0012
SYMG0013
SYMG0014
SYMG0015
SYMG0016
SYMG0017
SYMG0018
SYMG0019

LOWT0002 LOWT0003 LOWT0004
LOWT0003 LOWT0004
LOWT0004
LOWT0005
LOWT0006
LOWT0007
LOWT0008
LOWT 0009
LOWT0010
LOWT0011
LOWT0012
LOWT0013
LOWT 0014
LOWT0015
LOWT 0016
LOWTO017

•

	SUBROUTINE UPPTRI(G,X,Z,N)	UPPT0001
	SOLVES: $G * X = Z$; FOR X	UPPT0002
	WHERE G IS NXN UPPER TRIANULAR.	UPPT0003
	REAL*8 G(50,6),X(50),Z(50),SUM	UPPT0004
	DO 10 J=1,N	UPPT0005
	I=N+1-J	UPPT0006
	K=3+MOD(1,2)	UPPT0007
	K1=K+1	UPPT 0008
	SUM=0.0	UPPT0009
	LT=2*(1/2)	UPPT 0010
	DO 5 M=K1,6	UPPT0011
	L=LT+M-3	UPPT0012
	IF ((L.LT.1).DR.(L.GT.N)) GO TO 5	UPPT0013
	SUM=SUM+G(I,M)*X(L)	· UPPT0014
5	CONTINUE	· UPPT0015
10	X(I) = (Z(I) - SUM) / G(I,K)	UPPT 0016
	RETURN	UPPT0017
	END	UPPT0018

`

PAGE 338

C C

	SUBROUTINE NORMAL(PHI,N)	NORLOOO1
С	NORMALIZES THE GROUP FLUXES AND CURRENTS BY THE LARGEST FLUX VALUE:	NORL0002
-	COMMON /B1/ IBC	NORL0003
	REAL*8 PHI(2,52), A	NORL 0004
	NN=N	NORL0005
	IF (IBC_EQ.1) NN=N-2	NORL0006
	A=0,0	NORLOOO7
	IF (IBC.NE.4) GO TO 5	NORL 0008
	A=DABS(PHI(1.1))	NORL0009
	IF (DABS(PHI(2,1)).GT.A) A=DABS(PHI(2,1))	NORL 0010
	5 DO 1 IG=1,2	NORL0011
	DO 1 I = 2.NN.2	NORL 0012
	IF (DABS(PHI(IG,I)).GT.A) A=DABS(PHI(IG,I))	NORLOO13
	1 CONTINUE	NORL0014
	DO 2 IG=1,2	NORL0015
	DO 2 I = 1, N	NORL0016
	2 $PHI(IG, I)=PHI(IG, I)/A$	NORLOO17
	RETURN	NORL0018
	END	NORLOO19

	SUBROUTINE PHIPLT(L)	PH1P0001
С	PLUTS THE GROUP FLUX HISTORY, WITH UP TO 5 GROUP FLUXES PER PLOT.	PHIP0002
С	FAST AND THERMAL GROUP FLUXES ARE PLOTTED SEPERATELY.	PH1P0003
С	L IS THE NUMBER OF FLUXES TO BE PLOTTED.	PHIP0004
С	L IS BETWEEN 1 AND 5.	PHIP0005
	IMPLICIT REAL*8 (A-H,O-Z)	PHIP0006
	COMMON /B1/ IBC	PH I P 0007
	COMMUN /B2/ KR, N	PHIP0008
	COMMON / B5/ A(26,6), B(26,6)	PH1P0009
	COMMUN /B6/ TE1(2,5),TE2(2,5),TE3(5),IN(5)	PHIP0010
	COMMON /ER/ EPS1, EPS2, EPS3	PHIP0011
	COMMUN /FSTR/ PHISTR(2,26,6)	PHIP0012
	DIMENSION SYMBUL(5)	PHIP0013
	INTEGER SYMBOL /*.*,*-*,*+*,***/	PHIP0014
	KR1=KR+1	PHIP0015
C	SET UP B.C. CONDITIONS	PH1P0016
	IF (IBC.EQ.4) GO TO 5	PHIP0017
	IF (IBC.EQ.3) GO TO 3	PHIP0018
	DO 2 IG=1,2	PHIP0019
	DO 2 K=1,L	PHIP0020
	$DO 1 I = 1_{3}KR$	PHIP0021
	J=KR+1-I	PHIP0022
	1 PHISTR(IG,J+1,K+1)=PHISTR(IG,J,K+1)	PHIP0023
	2 PHISTR(IG,1,K+1)=0.	PHIP0024
	3 IF (IBC.EQ.2) GO TO 5	PHIP0025
	DO 4 1G=1,2	PHIP0026
	DO 4 K=1,L	PHIP0027
	4 PHISTR(IG,KR1,K+1)=0.	PHIP0028
	5 CONTINUE	PHIP0029
C	FLUXES IN PHISTR HAVE BEEN NORMALIZED IN POWER.	PHIP0030
С	PUT THE FAST FLUX IN A, AND THE THERMAL FLUX IN B:	PHIP0031
	L1=L+1	PHIP0032
	DO 10 K=1,L1	PHIP0033
	DO 10 I=1,KR1	PHIP0034
	A(I,K)=PHISTR(1,I,K)	PHIP0035
	10 B(I,K)=PHISTR(2,I,K)	PHIP0036
		PAGE 340

C	PLOT THE L FAST FLUX SHAPES ON ONE GRAPH:	PH1P0037
-	CALL PRTPLT(0, A, KR1, L1, KR1, 0, 26, 6, 2)	PHIP0038
	WRITE (6,20)	PHIP0039
	20 FORMAT (/, 'OFAST FLUX ITERATION HISTORY PLOT.',/)	PHIP0040
	WRITE (6.30)	PHIP0041
	30 FORMAT (PHIP0042
	X 'OKEY: ', 5X, 'SYMBOL', 5X, 'ITERATION NUMBER: ', 7X, 'ERROR CRITERIA',	PHIP0043
	X 11X, 'ERROR', 13X, 'TOLERANCE')	PHIP0044
	DO 35 1=1,L	PHIP0045
	35 WRITE (6,40) SYMBOL(I), IN(I), TE1(1, I), EPS1, TE2(1, I), EPS2,	PHIP0046
	X TE3(I),EPS3	PHIP0047
	40 FORMAT (/,12X,A1,15X,I3,16X, "FLUX",14X,1PD15.5,5X,1PD15.5,/,	PHIP0048
	X 47X, MEAN SQ. FLUX, 5X, 1PD15.5, 5X, 1PD15.5, /,	PHIP0049
	X 47X, "EIGENVALUE", 8X, 1PD15.5, 5X, 1PD15.5)	PHIP0050
С	PLOT THE L THERMAL FLUX SHAPES ON THE OTHER GRAPH:	PHIP0051
	CALL PRTPLT(0, B, KR1, L1, KR1, 0, 26, 6, 2)	PHIP0052
	WRITE (6,50)	PHIP0053
	50 FORMAT (/, 'OTHERMAL FLUX ITERATION PLOT.',/)	PHIP0054
	WRITE (6,30)	PHIP0055
	DO 55 I=1,L	PHIP0056
	55 WRITE (6,40) SYMBOL(I),IN(I),TE1(2,I),EPS1,TE2(2,I),EPS2,	PHIP0057
	X TE3(I),EPS3	PHIP0058
	RETURN	PHIP0059
	END	PHIP0060

,

	SUBROUTINE CURENT	CURE0001
C	FORMS THE SEPERATE FLUX AND CURRENT VECTORS	CURE0002
С	FROM THE COMBINED ELEMENTS OF PHI.	CURE0003
C	THEN: FLUX=PHI; CURRENT=CUR.	CURE0004
	COMMON /B2/ KR,N	CURE0005
	COMMON /B4/ PHI(2,52),CUR(2,52)	CURE0006
	REAL*8 PHI,CUR	CURE0007
	KR1=KR+1	CURE0008
	DO 2 IG=1,2	CURE0009
	DO 1 K=1,KR1	CURE0010
1	CUR(IG,K)=PHI(IG,2*K)	CURE0011
	DO 2 K=1,KR1	CURE0012
2	PHI(IG,K)=PHI(IG,2*K-1)	CURE0013
	RETURN	CURE 0014
	END	CURE0015

	SUBROUTINE OUTPUT	OUTP0001
С	PRINTS THE RESULTS OF THE METHOD.	OUTP0002
-	IMPLICIT REAL*8 (A-H.L-Z)	OUTP0003
	COMMON /B1/ IBC.IPLOT.JPLOT.IPUNCH	0UTP0004
	COMMON /B2/ KR•N	OUTP 0005
	COMMON /B4/ PHI (2.52). CUR (2.52). LAMDA. ICOUT	OUTP0006
	COMMON /85/ PSI(2+26)	OUTP0007
	COMMON /FR/ FPS1.FPS2.EPS3	OUTP0008
	COMMON /ESTR/ LAMSTR(300), EFSTR(2,300), EFMSTR(2,300), ERLAM(300)	OUTP0009
	COMMON /TRUE/ TRULAM, TRUPHI(2,52), PHICON(2,300), LAMCON(300), IFT	OUTP0010
	INTEGER N	OUTP0011
	KRO=KR-1	OUTP0012
	KR1=KR+1	OUTP0013
	WRITE (6,1)	OUTP0014
	1 FORMAT ("IRESULTS OF THE MULTIGROUP METHOD:")	OUTP0015
	WRITE (6,10) ICOUT	OUTP0016
	10 FURMAT (//, PROBLEM TERMINATED AFTER, 15,	OUTP0017
	X • OUTER (POWER) ITERATIONS TO: *)	OUTP0018
	WRITE (6,20) LAMDA	OUTP0019
	20 FORMAT (/,10X, LAMDA = ',1PE21.14)	OUTP 0020
C	PRINT OUT EIGENVALUES.	OUTP0021
	CALL PLOT	OUTP0022
	WRITE (6,30)	OUTP0023
	30 FORMAT ("IRESULTS AFTER PROBLEM TERMINATION:",/,	0UTP0024
	X 'OINDEX',8X, 'THERMAL FLUX',11X, 'FAST FLUX',5X,	001P0025
	X 'THERMAL CURRENT', 8X, 'FAST CURRENT',/)	OUTP0026
	WRITE (6,50) (K,PHI(2,K),PHI(1,K),CUR(2,K),CUR(1,K),K=1,KR1)	001P0027
	50 FORMAT (16,4D20.7)	00120028
	IF (IPUNCH.EQ.1) CALL PUNCH	0UTP0029
С	PRINT OUT GROUP NORMALIZED RESULTS:	00120030
	DO 52 IG=1,2	00720031
	A=0.0	00120032
	DO 51 I=1,KR1	UU IP0033
	IF (PHI(IG,I).GT.A) A=PHI(IG,I)	00120034
	51 CONTINUE	00120035
	DO 52 I=1,KR1	00120036
		PAGE 343

PHI(IG,I)=PHI(IG,I)/A	OUTP0037
52 $CUR(IG,I)=CUR(IG,I)/A$	0UTP0038
WRITE (6,55) (K,PHI(2,K),PHI(1,K),CUR(2,K),CUR(1,K),K=1,KR1)	OUTP0039
55 FORMAT (//, 'OGROUP NORMALIZED RESULTS: ',//,(16,4D20.7))	OUTP0040
C CALCULATE THE FINAL TO EXPECTED FLUX RATIOS:	OUTP0041
K1=1	0UTP0042
K2=KR1	OUTP0043
IF (IBC.LE.2) K1=2	0UTP0044
IF ((IBC.EQ.1).OR.(IBC.EQ.3)) K2=KR	OUTP0045
DO 60 IG=1,2	OUTP0046
IF (IBC.LE.2) $PSI(IG,1)=1.0$	OUTP0047
IF $((1BC \cdot EQ \cdot 1) \cdot OR \cdot (1BC \cdot EQ \cdot 3))$ PSI(IG + KR1) = 1.0	OU TP 0048
I=0	0UTP0049
DO 60 K=K1,K2	OUTP0050
I=I+2	OUTP0051
60 PSI(IG,K)=PHI(IG,K)/TRUPHI(IG,I)	OUTP0052
WRITE (6,70) (I,PSI(2,I),PSI(1,I),I=1,KR1)	OUTP0053
70 FORMAT ("IRATIOS OF THE TERMINATED GROUP FLUX TO THE EXPECTED GROU	OUTP0054
XP FLUX: ",//,	OUTP0055
X 10X, - AN INDICATION OF THE ACCURACY OF THE CONVERGENCE -*,///,	OU TP 0056
X • K•,12X, • THERMAL RATIO•,15X, • FAST RATIO•,//,(15,2E25.10))	OUTP0057
C PRINT OUT THE STORED ITERATION ERRORS:	OUTP0058
WRITE (6,110) EPS1, (EFSTR(2,I), I=1, ICOUT)	OU TP 0059
WRITE (6,111) EPS1,(EFSTR(1,I),I=1,ICOUT)	OUTP0060
WRITE (6,112) EPS2, (EFMSTR(2,I),I=1,ICOUT)	OUTP 0061
WRITE (6,113) EPS3,(EFMSTR(1,I),I=1,ICCUT)	OUTP0062
WRITE (6,114) EPS3,(ERLAM(I),I=1,ICOUT)	OUTP 0063
110 FORMAT ("1MAXIMUM NORMALIZED ERRORS BETWEEN THE THERMAL FLUX ITERA	OU TP 0 064
XTIONS: ",	OUTP 0065
X = 25X, TOLERANCE USED = 1, 1PE12.4, //, (1P5E20.5))	OUTP0066
111 FORMAT ("IMAXIMUM NORMALIZED ERRORS BETWEEN THE FAST FLUX ITERATIO	OUTP 0067
XNS: *,	0UTP0068
X = 25X, TOLERANCE USED = 1, 1PE12.4, //, (1P5E20.5))	OUTP0069
112 FORMAT (*1MEAN SQUARE NORMALIZED ERRCR BETWEEN THE THERMAL FLUX IT	OUTP0070
XERATIONS: ",	OUTP0071
X = 18X, TOLERANCE USED = 1, 1PE12.4, //, (1P5E20.5))	OUTP0072
	PAGE 344

	113 FORMAT (FINEAN SQUARE NORMALIZED ERROR BETWEEN THE FAST FLUX ITERA	OUTP0073
	XTIONS: .	OUTP0074
	$x = 18x \cdot 101 \text{ FRANCE USED} = 1 \cdot 1012 \cdot 4 \cdot 1/ \cdot (10520 \cdot 5))$	OU TP 0075
	114 FORMAT ("IFREOR BETWEEN THE ITERATION EIGENVALUES:",	OUTP0076
	$x = 28x \cdot 101 \text{ FRANCE HSED} = 1 \cdot 10 \text{ FL2} \cdot 4 \cdot 1/ \cdot (100 \text{ FL2})$	OU TP 0077
	IF (IFT_FQ.Q) RETURN	OUTP0078
c	PRINT OUT THE GIVEN TRUE FIGENVALUE AND FLUX:	OUTP0079
Č	WRITE (6.115) TRULAM. ((TRUPHI($3-J.I$). $J=1.2$). $I=1.N$)	0UTP0080
	115 FORMAT ("ITHE GIVEN TRUE FIGENVALUE:".//.15X.	OUTP0081
	X = TRHIAM = [-F22, 14.///.	OUTP0082
	X OTHE GIVEN MULTIGROUP ELUXES: •//•	OUTP0083
	x 13x. THERMAL . 16X. FAST .//. (2D20.10))	OUTP0084
С	PRINT OUT THE STORED CONVERGENCE ERRORS:	OUTP0085
•	WRITE (6,120) (PHICON(2,1), I=1, ICOUT)	OUTP0086
	WRITE (6,121) (PHICON(1,1), I=1, ICOUT)	OUTP0087
	WRITE (6,122) (LAMCON(I), I=1, ICCUT)	OUTP0088
	120 FORMAT ("INEAN SQUARE ERROR BETWEEN THE THERMAL ITERATION FLUX AND	OUTP0089
	X THE GIVEN TRUE THERMAL FLUX: ",//,(1P5E20.5))	OUTP0090
	121 FORMAT ("IMEAN SQUARE ERROR BETWEEN THE FAST ITERATION FLUX AND TH	OUTP0091
	XE GIVEN TRUE FAST FLUX: *,//,(1P5E20.5))	OUTP0092
	122 FORMAT ("LERROR BETWEEN THE ITERATION EIGENVALUES AND THE GIVEN TR	OUTP0093
	XUE EIGENVALUE: •,//,(1P5E20.5))	OUTP0094
С		OUTP0095
	RETURN	OUTP 0096
	END	OUTP0097

		SUBROUTINE PLOT	PLOT0001
	C	PLOTS OUT THE EIGENVALUE HISTORY AS A TABLE AND A GRAPH,	PLOT0002
	C	AS WELL AS PLOTTING OUT THE FINAL MULTIGROUP FLUX SHAPES.	PL0T0003
		IMPLICIT REAL*8 (A-H,L-Z)	PLOT0004
		COMMON /B1/ IBC, IPLOT, JPLOT, IPUNCH	PLOT0005
		COMMON /B2/ KR	PLOT0006
		COMMON /B4/ PHI(2,52), PSI(2,52), LAMDA, ICOUT	PL0T0007
		COMMON /85/ 8(300,2)	PLOT0008
		COMMUN /ESTR/ LAMSTR(300)	PLOT0009
		DIMENSION C(26,3)	PLOT0010
1	С	IN ORDER TO SAVE SOME SPACE:	PLOT0011
		EQUIVALENCE (B(1),C(1))	PLOT0012
		WRITE (6,1) (LAMSTR(I),I=1,ICOUT)	PLOT0013
		1 FORMAT ('OTABLE OF EIGENVALUES DURING THE POWER ITERATION:',	PLOT0014
		X //,(1P5E25.14))	PLOT0015
		IF (JPLOT.EQ.O) GO TO 20	PLOT0016
		DO 10 I=1,ICOUT	PLOT0017
		B(I, 1) = I	PL 0T 0018
		10 B(I,2)=LAMSTR(I)	PLOT0019
		CALL PRTPLT(1,B,ICOUT,2,ICOUT,0,300,2,1)	PLOTOO20
		WRITE (6,11)	PL0T0021
		11 FORMAT ("OPLOT OF THE EIGENVALUE HISTORY THROUGH THE ITERATIONS.")	PLOT0022
		20 IF (IPLOT.EQ.O) RETURN	PLOT0023
		KR1=KR+1	PLOT0024
		DO 30 I=1,KR1	PLOT0025
		C(1,1)=1	PLOT0026
		C(I,2)=PHI(1,I)	PLOT0027
		30 C(I,3)=PHI(2,I)	PLOT0028
		CALL PRTPLT(2,C,KR1,3,KR1,0,26,3,2)	PLOT0029
		WRITE (6,31)	PLOT0030
		31 FORMAT ("OFINAL CONVERGED CONNECTING FLUX POINTS; F(K).",//,	PL0T0031
		X 5X, FAST FLUX: .',/,5X, THERMAL FLUX: -')	PL0T0032
		RETURN	PLOT0033
		END	PL0T0034

PNCH0001
PNCH0002
PNCH0003
PNCH0004
PNCH0005
PNCH0006
PNCH0007
PNCH0008
PNCH0009
PNCH0010
PNCH0011
PNCH0012

	SUBROUTINE NORM2(PSI,TRUPHI,N)	NOR20001
C	NORMALIZES BOTH ENERGY GROUP FLUXES IN PSI TO 1.0:	NOR20002
С	DITTO FOR TRUPHI ON THE FIRST CALL.	NOR20003
	COMMON /B1/ IBC	NDR20004
	REAL*8 PSI(2,52), TRUPHI(2,52), A(2)	NOR20005
	DATA K /0/	NOR20006
	K=K+1	NOR20007
	NN=N	NOR20008
	IF (IBC.EQ.1) NN=NN-2	NDR20009
	DO 1 IG=1,2	NOR20010
	A(IG)=0.0	NOR20011
	IF (IBC.NE.4) GO TO 7	NOR20012
	A(IG)=DABS(PSI(IG,1))	NOR20013
	7 DO 1 I=2,NN,2	NOR20014
	IF (DABS(PSI(IG,I)).GT.A(IG)) A(IG)=DABS(PSI(IG,I))	NOR20015
	1 CONTINUE	NOR20016
	DO 2 IG=1,2	NOR20017
	DO 2 I=1,N	NDR20018
	IF (A(IG).EQ.0.0) GO TO 2	NOR20019
	PSI(IG,I)=PSI(IG,I)/A(IG)	NOR20020
	2 CONTINUE	NOR20021
	IF (K.NE.1) RETURN	NOR20022
	DO 5 IG=1,2	NOR20023
	A(IG)=0.	NOR20024
	IF (IBC.NE.4) GO TO 8	NOR20025
	A(IG)=DABS(TRUPHI(IG,1))	NOR20026
	8 DO 5 I=2,NN,2	NOR20027
	IF (TRUPHI(IG,I).GT.A(IG)) A(IG)=TRUPHI(IG,I)	NOR20028
	5 CONTINUE	NOR20029
	DO 6 IG=1,2	NOR20030
	DO 6 I=1, N	NOR20031
	IF (A(IG).EQ.0.0) GO TO 6	NOR20032
	TRUPHI(IG,I)=TRUPHI(IG,I)/A(IG)	NOR20033
	6 CONTINUE	NOR20034
	RETURN	NOR20035
	END	NOR20036
		PAGE 348

SUBROUTINE PRTPLT (NO, B, N, M, NL, NS, KX, JX, ISP)	PRTP0001
* IDENTICAL TO SUBDOUTINE DOTDET DESVIOUSLY LISTED IN DROCRAM REE2C.	PRTPOOOZ
+ IDENTICAL TO SUBRUCHINE PRIFET PREVIOUSET EISTED IN PROGRAM REF20.	PR TP 0004
RETURN	PRTP0005
END	PRTP0006

C C C

.

F.4. SOURCE LISTING of Program ANALYZE

•

Figure F.4. Structure of Program ANALYZE. Not including the M.I.T. SC-4020 Subroutine Package.⁵⁴

		,
· · · ·		ANAL 0001
L C	PRUGRAM ANALIZES Data Analysis and Compadison DDOCDANS	ANAL 0002
<u>ل</u>	DIMENSION ND/2001 CHI(2), $P(Q, 26)$, $F(2, 201)$, $G(2, 201)$, $H(1000)$.	AN AL 0003
	v = v(1001), PHI(2,1001), SE(2,1000), D(2,1000).	ANAL0004
	$x = \frac{10017}{1001} x = \frac{10017}{1001} = \frac{10007}{1001} = \frac{10007}{10000} = 100$	ANAL 0005
	X = (2) (0) (1) (0) (1) (0) (2) (0) (1) (0) (1) (0) (2) (0) (1) (0) (2) (0) (1) (0) (2) (0) (1) (0) (2) (0) (1) (0) (1) (0) (2) (0) (1) (0)	AN AL 0006
<u> </u>	A = AS(IUUII) NSR(J) ZO(J) NNN(ZO) THETA IS DESIDED SHOW THAT THE SUPPORT (A) = THETA * G. FAR FACH K.	ANAL 0007
L C	THETA IS DEPINED SUCH THAT THE CORRENT TOT - THETA + OF TOR EACH RE	ANAL 0008
Ĺ	DU FUK THE 3 FLUX DATA DLUCKS.	
	DU 10 11=1,3 DEAD IN THE MATERIAL C INDUT DATA DI CCK.	
Ĺ	KEAU IN THE MATERIALS INPUT DATA DEUCN.	
•	LALL DATAIN(II) METHUDINKINKINKINKINKINKINKINKINKINKINKINKINKI	
C	READ IN THE CUNVERGED FLUX PUINTS DATA DEUCN.	
<u>^</u>	CALCH ATE THE DETAILED FLUX SHADES!	
L	LALLULATE THE DETAILED FLUX SHAPES.	
	IF (MEINUDERWEZ) GU IU 4. CALL CALCULUTT METHOD NV ND NDNV ND N.Y.H.YS.DHI.SE.D.CHI.	
	LALL LALGULATTA E CY	
	GUIUD A CALL CALCHELTT METHODINKIND, NONKIND, N.Y.H.YS.DHT.SE.D.CHT.	ANAL 0019
	4 CALL CALGUELIIIMEINUUINKINKINKINKINKINKINKINKINKINKINKINKINKI	ANAL 0020
·	A INCLASSION THE CLUY DOINTS INTO NE OISTINCT REGIONS:	ANAL 0021
ι L	IKANSFUKM INE FLUX FUINIS INTO NA DISTINCI NEDIONSU	AN AL 0022
6	D LALL REFURMATE THE DOUED IN EACH OF THE NK DECTONS FOR FACH FULLY:	ANAL 0023
L	CALLULATE THE PUWER IN EACH OF THE AN REGIONS FOR EACH TEONY	ANAL 0024
	LALL KPUWEK(II) MEINUU) NKINP INIKI UISTIU CHIIIHLIMINARIII OINI	ANAL 0025
6	A NON ANT A THE DECTON DOWEDS AND THE FILLY DOI NTS BY TOOMER)	ANAL 0026
L	NUKMALIZE INE REGIUN PUWERS AND THE FLOA FOINTS DI THOWERT	AN AL 0027
c	CALL PUNNUKILI; METRUD; INF, INF, AUGA, IF CALLA CAME THECE DECHLTC EAD DIATTINC +	ANAL 0028
L.	CALL CAVE/IT NV N V II NR VR UR NC VC UC)	ANAL 0029
		ANAL 0030
r	NODMALTZE THE ELHY RESHITS TOGETHER FOR FACH GROUP TO 1.0:	ANAL0031
L	NURMALIZE THE FEUR REGULTS TUGETHER TOR EACH OROUT TO 1400	ANAL 0032
19. ¹	DOINT OUT THE DOWED AND ADDAV DECINTCY	ANAL0033
L	CALL OUTDUT INE FUNER AND ANNAL REJULIS. CALL OUTDUT INK N.Y.H.NR.YR.HR.NC.YC.HC.NSP.R.	ANAL 0034
C	DEAD IN THE DIGITING INFORMATION AND DIGT THE RESULTS ON THE SC 4020	ANAL 0035
L.	CALL SCREATINE FLUTTING INFORMATION AND FLUT THE RESOLTS ON THE SC TOP	ANAL0036
	UALE SUPLOI LINKS HEAD THUD ADD UDDING ACTICS	PAGE 352

WRITE (6,20) 20 FORMAT (/, "ONDR MAL PROGRAM TERMINATION.") STOP END

ANAL0037 ANAL0038 ANAL0039 ANAL0040

	SUBROUTINE DATAIN(IT.METHOD.NK.NR.NRNK.NP.N.X.PHI.SF.C.CHI.THETA,	DATA0001
	x NAP-H)	DATA0002
ſ	READS IN THE MATERIAL DATA INPUT BLOCKS:	DATA0003
v	DIMENSION NP(200) . K(200) . L (200) . ITF(200) . KTF(200) . CHI(2) .	DATA0004
	x x(1001).PHI(2.1001).SF(2.1000).D(2.1000).H(1000).	DATA0005
	x NRNK (25)	DATA0006
C	DATA BLOCK ID CARDS:	DATA0007
Č	READ (IT.20) METHOD. NK. NR. NAP	DATA0008
C	NRNK = NUMBER OF NR REGIONS PER EACH NK REGION:	DATA0009
v	IF $(NR_{\bullet}NF_{\bullet}NK)$ READ $(IT_{\bullet}20)$ $(NRNK(I)_{\bullet}I=1,NK)$	DATA0010
	20 FORMAT (1615)	DATA0011
	XSTART=0.0	DATA0012
	K(1) = 1	DATA0013
	READ (1T-11) NR	DATA0014
	READ $(IT+12)$ $(ITF(I), I=1, NR)$	DATA0015
	READ (IT, 17) CHI(1), CHI(2), THETA	DATA0016
	IF (THETA.EQ.O.) THETA=1.	DATA0017
	NUMITF=1	DATA0018
	DO 10 I=1,NR	DATA0019
	IF (ITF(I).LT.NUMITF) GO TO 2	DATA0020
С	NEW REGION DATA:	DATA0021
	NUMITF=NUMITF+1	DATA0022
	KTF(NUMITF-1)=I	DATA0023
	READ (IT,13) NS	DATA0024
	IF (NS.EQ.O) NS=1	DATA0025
	NP(I)=NS+1	DATA0026
	IF (I.NE.1) = K(I) = K(I-1) + NP(I-1)	DATA0027
	L(I)=NP(I)	DATA0028
	IF (I.NE.1) L(I)=L(I-1)+NP(I)	DATA0029
	KO=K(I)	DATA0030
	LO=L(I)	DATA0031
	L1=L0-1	DA TA 0032
	L2=L0-2	DATA0033
	IF (NS.GT.1) READ (IT,14) (X(J),H(J),SF(1,J),D(1,J),	UATA0034
	X SF(2,J),D(2,J),J=K0,L2)	DATA0035
	READ (IT,15) X(L1),X(L0),H(L1),SF(1,L1),D(1,L1),SF(2,L1),D(2,L1)	DATA0036
		PAGE 354

	XSTART=XSTART-X (KO)	DATA0037
	DO 1 J=KO, LO	DATA0038
	$1 \times (J) = \times (J) + \times START$	DATA0039
	XSTART=X(LO)	DATA0040
	IF (IT.EQ.3) GO TO 10	DATA0041
	READ (IT,16) (PHI(1, J), J=K0,L0)	DATA0042
	READ (IT.16) ($PHI(2, J), J=K0, L0$)	DATA0043
	GO TO 10	DATA0044
C	OLD REPEATED REGION DATA:	DATA0045
•	2 M=ITF(1)	DATA0046
	M=KTF(M)	DATA0047
	NP(I) = NP(M)	DATA0048
	K(I) = K(I-1) + NP(I-1)	DATA0049
	L(I) = L(I-1) + NP(I)	DATA0050
	KO=K(I)	DATA0051
	L0=L(I)	DATA0052
	L1=L0-1	DA TA 0053
	K M=K (M)	DATA0054
	IB=KO-KM	DATA0055
	XSTART=XSTART-X (KM)	DATA0056
	DO 5 J=K0,L0	DATA0057
	NJ=J-IB	DATA0058
	X(J)=X(NJ)+XSTART	DATA0059
	H(J)=H(NJ)	DATA0060
	DO 5 IG=1,2	DATA0061
	D(IG,J)=D(IG,NJ)	DATA0062
	SF(1G,J)=SF(IG,NJ)	DATA0063
	PHI(IG,J)=PHI(IG,NJ)	DATA0064
	5 CONTINUE	DATA0065
	XSTART=X(LO)	DA TA 0066
	10 CONTINUE	DATA0067
	11 FORMAT (/,15)	DATA0068
	12 FORMAT (2512)	DATA0069
	13 FORMAT (5X,15)	DATA0070
	14 FORMAT (F10.5,10X,F10.5,10X,2E10.3,/,40X,2E10.3)	DATA0071
	15 FORMAT (3F10.5,10X,2E10.3,/,40X,2E10.3)	DATA0072
		PAGE 355

,

16 FORMAT (E20.7)	DATA0073
17 FORMAT (3F10.5)	DATA0074
N=I (NR)	DATA0075
IF (IT.NE.3) RETURN	DATA0076
D0.50 I=1.N	DATA0077
D0 50 IG=1.2	DATA0078
50 $PHI(IG.I)=1.0$	DATA0079
RETURN	DATAOO80
FND	DATA0081

	SUBROUTINE SYNPTS(IT, METHOD, NK, NR, F, G)	SYNP0001
C	READS IN CONVERGED FLUX AND CURRENT POINTS:	SYNP0002
	DIMENSION F(2,201),G(2,201)	SYNP0003
	JT=IT+10	SYNP0004
	READ (JT,1) NR	SYNP0005
	1 FORMAT (15)	SYNP0006
	NR1=NR+1	SYNP0007
	IF (METHOD.NE.1) GO TO 10	SYNP0008
C	FOR LINEAR SYNTHESIS:	SYNP0009
	IF (IT.NE.3) READ (JT,2) (F(1,I),F(2,I),I=1,NR1)	SYNP0010
	IF (IT.EQ.3) READ (JT,3) (F(1,I),I=1,NR1),(F(2,I),I=1,NR1)	SYNP0011
	2 FORMAT (2E20.7)	SYNP0012
	3 FORMAT (E20.7)	SYNP0013
	GO TO 20	SYNP0014
	10 READ (JT,11) (F(1,I),G(1,I),F(2,I),G(2,I),I=1,NR1)	SYNP0015
	11 FORMAT (4E20.7)	SYNP0016
	20 RETURN	SYNP0017
	END	SYNP0018

	SUBROUTINE CALCUL(IT.METHOD.NK.NR.NRNK,NP.NU,XU,U,XS,PHI,SF,D,CHI,	CALL0001
	x THETA, F, G)	CALL0002
C.	CALCULATES THE FLUX TRIAL FUNCTION U FOR LINEAR SYNTHESIS:	CALL0003
v	DIMENSION NP(200).XU(1001),U(2,1001),PHI(2,1001),SF(2,1000),	CALLOOO4
	x D(2,1000).CHI(2).F(2,201).G(2,201).XS(1001).NRNK(25)	CALL0005
	I SYNTH=20	CALL0006
c	EOR EACH KITH REGION:	CALLOOO7
C		CALL0008
		CALL0009
		CALL 0010
		CALL0011
	L = L L + L	CALL 0012
		CALL0013
	DU = I = I = I = 0	CALL0014
	$\frac{1}{10} + \frac{10}{10} + \frac{10}{10} = \frac{10}{10} + \frac{10}{10} + \frac{10}{10} = \frac{10}$	CALL0015
	IF (PHI(IU;LL).EQ.U.U. FHI(IU;LL)-I.U.U.U.	CALL 0016
~	/ CUNIINUE	CALL0017
C	FUK ALL PUINTS IN THIS RECIUN.	CALL0018
	DU 10 I=LJLL	CALL0019
		CALL 0020
		CALL 0021
	$X = \{X \cup \{N\} = X \cup \{1\} \} \mid \{X \cup \{1\} = X \cup \{1\} \} \mid \{1\} \cup \{1$	CALL 0022
	$IF ((K_{\bullet}EQ_{\bullet}I)_{\bullet}ANU_{\bullet}(ISTNIH_{\bullet}EQ_{\bullet}ZI_{\bullet}UK_{\bullet}ISTNIH_{\bullet}EQ_{\bullet}Z4I) = X=0.0$	CALL 0023
	IF ((K.EQ.NR).AND.(ISYNIH.EQ.22.UK.ISTNIH.EQ.241) A-0.0	CALL 0024
	DO 1 IG=1,2	CALL 0025
	$1 \cup (IG_{1}N) = PHI(IG_{1}I) + (F(IG_{1}K) + (I_{2}-X)/PHI(IG_{1}L))$	
	X +F(IG,K+1)*X/PHI(IG,LL))	CALL0020
	10 CONTINUE	CALLUUZI
	20 CONTINUE	CALL0020
	NU=N	CALLUU29
	RETURN	CALLU030
	END	CALL0031

,

N
	SUBROUTINE CALCUC(IT, METHOD, NK, NR, NRNK, NP, NU, XU, U, XS, PHI, SF, D, CHI,	CALC0001
	X THETA,F,G,NAPT)	CALCO002
C	CALCULATES THE FLUX TRIAL FUNCTION U FOR CUBIC HERMITE SYNTHESIS:	CALC 0003
C	NAP = # UF ADDITIONAL POINTS TO BE CALCULATED IN EACH REGION	CALC0004
C	AND IS NEGATIVE IF NAP APPLIES ONLY TO THE FIRST REGION.	CALC0005
	DIMENSION NP(200),XU(1001),U(2,1001),PHI(2,1001),SF(2,1000),	CALC0006
	X D(2,1000),CHI(2),F(2,201),G(2,201),XS(1001),NRNK(25)	CALCO007
	NAP=NAPT	CALC0008
	NL=0	CALCO009
	DO 50 K=1,NR	CALCO010
	50 NL=NL+NP(K)	CALC 0011
C	FOR EACH KITH REGION:	CALC0012
	N=0	CALC0013
	LL=0	CALCOO14
	DO 20 K=1,NR	CALCO015
	L=LL+1	CALCOO16
	LL=LL+NP(K)	CALCOO17
	H=XS(LL)-XS(L)	CALCOO18
	DO 7 1G=1,2	CALC0019
	IF (PHI(IG,L) - EQ.0.0) PHI(IG,L) = 1.0E-6	CALC0020
	$IF (PHI(IG,LL) \cdot EQ \cdot 0 \cdot 0) PHI(IG,LL) = 1 \cdot 0E - 6$	CALC0021
	7 CUNTINUE	CALC0022
Ĺ	FUR ALL PUINTS IN THIS REGION:	CALCO023
	DU 10 I=L,LL	CALC0024
		CALC0025
	XU(N) = XS(1)	CALCOO26
	X = (XU(N) - XS(L)) / (XS(LL) - XS(L))	CALC 0027
	DU 1 1G=1,2	CALC0028
	1 U(IG,N)=PHI(IG,I)*(F(IG,K)*(13.*X**2+2.*X**3)/PHI(IG,L)	CALC0029
	X ++(1G,K+1)*(3.*X**2-2.*X**3)/PHI(1G,LL)	CALC0030
	X +H*(G(1G,K)/(D(1G,L)*PHI(1G,L))*(-X+2.*X**2-X**3)	CALC0031
	X +G(1G,K+1)/(D(1G,LL-1)*PH1(1G,LL))*(X**2-X**3))*(HETA)	CALC0032
	NAPP=IABS(NAP)	CALC0033
	IF (NAP-EQ-O) GO TO 10	CALC0034
	IF (I-EQ-LL) GO TO 10	CALC0035
	UX=LXSLI+1)-XSLI))/FLUAT(NAPP+1)	CALC0036
		PAGE 359

.

	$DD = 1 \cdot NAPP$	CALC0037
		CALCOO38
	$V_{11}(N) = V_{11}(N-1) + 0 Y$	CALC0039
	$y = 1 y_1(y_1) - y_2(1, 1) - 1 (y_2(1, 1) - x_2(1, 1))$	CALC0040
	$\mathbf{A} = \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}$	CALC0041
	5 U/TC N)=DUT/TC T)=/F(TC.K)=/13.*X**2+2.*X**3)/PHT(TC.)	CALCO042
	$ = \frac{1}{2} \frac$	CALC0043
	$X = \frac{1}{10} \frac{1}{1$	CAL C0044
	$X = +\Pi + \{0\{10,10,10\}, 0\}, 0\}, 0\} = 1 + \mu + \mu$	CALC0045
		CALC0046
		CALC0047
	IF (NAPP-EQ-U) GU TU ID	CALC0048
~	IF (II.EQ.II. GU IU ID CHIETING OF AND D ADDAYS TO CONDENSATE FOR NAD INF. O:	CAL C0049
ι	SHIFTING SF AND U ARRATS TO COMPENSATE FOR MAR and o	CALCOOSO
		CALC0051
		CAL C0052
		CALC0053
	$K_{\perp} = K_{\perp} + L$	CALC0054
	IF (NI-DI-NK) - GU IU OU	CALC0055
		CALC0056
	DO SE LEI NDE	CALC0057
	$UU 55 J=I_1 NP 5$	CALCODS8
		CALC0059
	11=1+NNP DD 55 10-1 2	CALCO060
	UU DD 16=1;2 CELIC 11)-SELIC I)	CALC0061
	SF(10)111=SF(10)11	CALC0062
	55 U(10)11/=U(10)1/ (0. NL = NL INNO	CALC0063
	DU NL=NL+NNP	CALC0064
		CAL C0065
		CALC0066
		CALC0067
		CAL C0068
	NAPPI=NAPP+1	CALC0069
	UU OD J=I; NAPPI	CALC0070
		CA1C0071
	UU 07 10=172 CE/10 1 - CE/10 11	CALC0072
	SELLOJE1-SELLOJILI	PAGE 360

65	D(IG.1)=D(IG.II)	CALC0073
70	CONTINUE	CALC0074
15	NP(K)=NP(K)+NAPP	CALC0075
	IF (NAP.LT.O) NAP=0	CALCO076
20	CONTINUE	CALCCO77
	NU=N	CALCOO78
	RETURN	CALC 0079
	END	CALCOO80

	SUBROUTINE REFORM(IT, METHOD, NK, NR, NRNK, NP, N, X, U, SF, D)	REF00001
С	REFORMS THE NR GIVEN REGIONS INTO NK DESIRED REGIONS:	REF00002
	DIMENSION NP(200),X(1001),U(2,1001),SF(2,1000),D(2,1000),NRNK(25)	REF00003
	IF (NK.EQ.NR) RETURN	REF00004
С	IT SHOULD BE 3 ONLY.	REF00005
C	DELETE ALL DOUBLE ENTRIES WITHIN EACH NK DATA BLOCK:	REF00006
	M=-1	REF00007
	I=0	REF00008
	DO 5 K=1.NK	REF00009
	L=NRNK(K)	REF00010
	DO 4 J=1.L	REF00011
	I = I + 1	REF00012
	M=M+2	REF00013
	X(I) = X(M)	REF00014
	DO 4 IG=1,2	REF00015
	U(IG,I)=U(IG,M)	REF00016
	SF(IG,I)=SF(IG,M)	REF00017
	4 D(IG,I)=D(IG,M)	REF00018
	I=I+1	REF00019
	X(I) = X(M+1)	REF00020
	DO 5 IG=1,2	REF00021
	5 U(IG,I)=U(IG,M+1)	REF00022
	N=I	REF00023
С	NP(K) = # OF FLUX POINTS IN REGION K = # NS SUBREGIONS + 1:	REF00024
	DO 10 K=1,NK	REF00025
	10 NP(K) = NP(K) + NRNK(K) - 1	REF00026
	NR=NK	REF00027
	RETURN	REF00028
	END	REF00029

.

	SUBROUTINE KPOWER(IT,METHOD,NK,NP,N,X,U,SF,D,CHI,THETA,NAP,F,G,	KP0W0001
	X H, NSR, R, T POWER)	KP0W0002
С	CALCULATES THE POWER IN EACH REGION BY INTEGRATIONS:	KPCW0003
	DIMENSION NP(200),X(1001),U(2,1001),SF(2,1000),D(2,1000),CHI(2),	KP0W0004
	X F(2,201),G(2,201),H(1000),R(9,26),NSR(3,26)	KP0W0005
	TPOWER=0.0	KP0W0006
	IF (IT.NE.1) GO TO 20	KP0W0007
C	FOR THE HOMOGENEOUS CASE:	KP0W0008
C	ASSUMING THAT NP IS ALWAYS 2 AND THUS D'S ARE CONSTANT.	KPCW0009
	DO 10 K=1,NK	KP0W0010
	M=2*K-1	KP0W0011
	NSR(IT,K)=1	KPCW0012
	R(IT,K)=0.0	KP0W0013
	DO 8 1G=1,2	KPCW0014
	IF (METHOD.NE.1) GO TO 5	KP0W0015
С	LINEAR FLUX:	KP0W0016
	R(IT,K)=(F(IG,K)+F(IG,K+1))*H(M)*SF(IG,M)/2.0+R(IT,K)	KP0W0017
	GO TO 8	KP0W0018
С	CUBIC FLUX:	KP0W0019
	5 R(IT,K)=((F(IG,K)+F(IG,K+1))*H(M)/2.0+THETA*(-G(IG,K)	KP0W0020
	X /D(IG,M)+G(IG,K+1)/D(IG,M))*H(M)**2/12.0)*SF(IG,M)+R(IT,K)	KP0W0021
	8 CONTINUE	KPGW0022
	10 TPOWER=TPOWER+R(IT,K)	KPGW0023
	RETURN	KP0W0024
С	SYNTHESIS OR REFERENCE DETAILED FLUX CASE:	KPGW0025
	20 M = -1	KP0W0026
	DO 50 K=1,NK	KPCW0027
	M=M+1	KP0W0028
	NS=NP(K)-1	KP0W0029
	NSR(IT,K)=NS	KP0W0030
	R(IT,K)=0.0	KPCW0031
	DO 40 J=1,NS	KP0W0032
	M=M+1	KP0W0033
	DO 40 IG=1,2	KP0W0034
	40 $R(IT,K) = (U(IG,M) + U(IG,M+1)) * (X(M+1) - X(M)) * SF(IG,M)/2.0 + R(IT,K)$	KP0W0035
	50 IPOWER=IPOWER+R(IT,K)	KP0W0036
		PAGE 363

RETURN END

.

KP0W0037 KP0W0038

SUBROUTINE POWNOR(IT, METHOD, NK, NP, N, X, U, R, TPOWER)	POWN0001
NORMALIZES THE FLUXES AND REGION POWERS BY TPOWER:	POWN0002
DIMENSIUN NP(200),X(1001),U(2,1001),R(9,26)	POWN0003
DO 1 K=1, NK	POWN0004
1 R(IT+3,K)=R(IT,K)/TPOWER	POWN0005
DO 2 IG=1,2	POWN0006
DO 2 K=1, N	POWNOOO7
2 U(IG,K)=U(IG,K)/TPOWER	POWN0008
RETURN	POWN0009
END	POWN0010
	<pre>SUBROUTINE POWNOR(IT,METHOD,NK,NP,N,X,U,R,TPOWER) NORMALIZES THE FLUXES AND REGION POWERS BY TPOWER: DIMENSION NP(200),X(1001),U(2,1001),R(9,26) DO 1 K=1,NK 1 R(IT+3,K)=R(IT,K)/TPOWER DO 2 IG=1,2 DO 2 K=1,N 2 U(IG,K)=U(IG,K)/TPOWER RETURN END</pre>

	SUBROUTINE SAVE(IT,NK,N,X,U,NB,XB,UB,NC,XC,UC)	SAVE0001
С	SAVES THE FLUX DISTRIBUTIONS IN THE IT LOOP BY PLACING:	SAVE0002
Ċ	IT = 1: HOMOGENEOUS RESULTS IN UC;	SAVE0003
č	IT = 2: SYNTHESIS RESULTS IN UB;	SAVE0004
Ċ.	IT = 3: REFERENCE RESULTS IN U.	SAVE0005
•	DIMENSION X(1001).U(2.1001).XB(1001).UB(2.1001).	SAVE0006
	$x = xC(1001) \cdot UC(2 \cdot 1001)$	SAVE0007
	$IE (IT_NE_1) = 60 TO 2$	SAVE0008
C	HOMOGENEOUS RESULTS:	SAVE0009
Ŭ	DO I I = 1.N	SAVE0010
	XC(1) = X(1)	SAVE0011
	DO(1) IG=1.2	SAVE0012
	1 UC(IG.I) = U(IG.I)	SAVE0013
	NC=N	SAVE0014
	RETURN	SAVE0015
	2 IF (IT.EQ.3) RETURN	SAVE0016
C	SYNTHESIS RESULTS:	SAVEO017
-	DO 3 1=1,N	SAVE0018
	XB(1) = X(1)	SAVE0019
	DO 3 IG=1,2	SAVE0020
	3 UB(IG,I)=U(IG,I)	SAVE0021
	NB=N	SAVE0022
	RETURN	SAVE0023
	END	SAVE0024

	SUBROUTINE RELNOR(NK,N,X,U,NB,XB,UB,NC,XC,UC)	RELN0001
С	NURMALIZES THE SET OF U, UB, UC; TO UNITY FOR EACH GROUP:	RELN0002
	DIMENSION X(1001),U(2,1001),XB(1001),UB(2,1001),	RELN0003
	X XC(1001),UC(2,1001)	RELN0004
	DIMENSION A(2), B(2), C(2), Z(2,3)	RELN0005
	CALL MAX(N,U,A)	RELN0006
	CALL MAX(NB,UB,B)	RELNOOO7
	CALL MAX(NC,UC,C)	RELN0008
	DO 1 IG=1,2	RELN0009
	Z(IG, 1) = A(IG)	RELNO010
	Z(IG,2)=B(IG)	RELNO011
	1 Z(IG,3)=C(IG)	RELNO012
	CALL MAX(3,Z,A)	RELN0013
	CALL DIV(N,U,A)	RELNO014
	CALL DIV(NB,UB,A)	RELNO015
	CALL DIVINC, UC, A)	RELNO016
	RETURN	RELNO017
	END	RELNO018

	SUBROUTINE MAX(N.U.A)	MAX 0001
C	FINDS THE MAXIMUM POSITIVE ELEMENT OF U FOR EACH GROUP:	MAX 0002
-	DIMENSION U(2,1001),A(2)	MAX 0003
	DO 1 IG=1,2	MAX 0004
	A(IG)=0.	MAX 0005
	DO 1 I=1.N	MAX 0006
	IF $(U(IG,I),GT,A(IG))$ $A(IG)=U(IG,I)$	MAX 0007
	1 CONTINUE	MAX 0008
	RETURN	MAX 0009
	END	MAX 0010

SUBROUTINE DIV(N,U,A)	DIV 0001
C DIVIDES A INTO U FOR EACH GROUP:	DIV 0002
DIMENSION U(2,1001),A(2)	DIV 0003
DO 1 IG=1,2	DIV 0004
DO 1 I = 1, N	DIV 0005
$1 \cup (IG, I) = \cup (IG, I) / A(IG)$	DIV 0006
RETURN	DIV 0007
END	DIV 0008

•

	SUBROUTINE OUTPUT(NK,N,X,U,NB,XB,UB,NC,XC,UC,NSR,R)	OUTP0001
С	PRINTS OUT THE ANALYSIS RESULTS:	OUTP0002
-	DIMENSION X(1001),U(2,1001),XB(1001),UB(2,1001),	OUTP0003
	X XC(1001),UC(2,1001),R(9,26),NSR(3,26)	OUTP0004
C.	SUM UP THE REGION RAW POWERS AND REGION FRACTIONAL POWERS:	OUTP0005
•	DD = 5 I I = 1.6	OUTP0006
	$IE (IT_{+}E_{-}3) = 0$	OU TP0007
	R(II, 26) = 0.0	OUTP0008
	DO 5 K=1.NK	OUTP0009
	IF (IT_LE_3) NSR(IT_26)=NSR(IT_26)+NSR(IT_K)	OUTP0010
	5 R(1T.26) = R(1T.26) + R(1T.K)	OUTP0011
C	THE PERCENT NORMALIZED DIFFERENCES OF THE REGION FRACTIONAL POWERS:	OUTP 0012
•	DO 60 K=1.NK	OUTP0013
	DO 50 IT=7.9	OUTP0014
	50 R(IT K) = 0.0	OUTP0015
	IF (R(6,K).EQ.0.0) GO TO 60	OUTP0016
	$R(7,K) = (R(6,K) - R(4,K)) + 100 \cdot / R(6,K)$	OUTP0017
	$R(8,K) = (R(6,K) - R(5,K)) + 100 \cdot / R(6,K)$	OUTP0018
	IF (R(5,K).EQ.0.0) GO TO 60	OUTP0019
	R(9,K)=(R(5,K)-R(4,K))*100./R(5,K)	OUTP0020
	60 CONTINUE	OUTP 0021
С	THE PERCENT NORMALIZED DIFFERENCES OF THE TOTAL RAW POWER PRODUCED:	OUTP0022
	R(7,26)=(R(3,26)-R(1,26))*100./R(3,26)	OUTP0023
	R(8,26)=(R(3,26)-R(2,26))*100./R(3,26)	OUTP0024
	$R(9,26) = (R(2,26) - R(1,26)) + 100 \cdot / R(2,26)$	OU TP 0025
	WRITE (6,10) NK, (K, (NSR(IT, K), R(IT, K), IT=1,3), K=1, NK)	OUTP 0026
	10 FORMAT ("IRESULTS OF THE INTEGRATED POWER IN EACH OF THE", I3,	OUTP0027
	X • REGIONS: • , ///,	OUTP 0028
	X • OCALCULATED POWER LEVELS, AND NUMBER OF SUBREGIONS PER REGION:	OUTP0029
	X ',//,3X, 'REGION:',10X, 'HOMOGENIZED RESULTS:',5X,	OUTP0030
	X • SYNTHESIZED RESULTS: •,7X, • REFERENCE RESULTS: •,//,	OUTP0031
	X (I10,10X,I3,E17.7,18,E17.7,I10,E15.7))	OUTP0032
	WRITE (6,12) (NSR(IT,26),R(IT,26),IT=1,3)	OUTP0033
	12 FORMAT (/,3X, TOTALS: ,10X, I3, E17.7, I8, E17.7, I10, E15.7)	OUTP 0034
	WRITE (6,20) (K, (R(IT,K), IT=4,6), K=1, NK)	OUTP0035
	20 FORMAT 1//, JFRACTIONAL POWER LEVELS: ,//, 3X, REGION: ,10X,	OUTP 0036
		PAGE 370

X HUMDGENEOUS RESULTS: ,5X,	OUTP0037
X 'SYNTHESIZED RESULTS:',7X, 'REFERENCE RESULTS:',//,	OUTP0038
X (110,5X,3E25.7))	OUTP0039
WRITE (6,11) (R(IT,26),1T=4,6)	OUTP0040
11 FORMAT (/,3X,"TOTALS:",5X,3E25.7)	OUTP0041
WRITE (6,30) (K,(R(IT,K),IT=7,9),K=1,NK)	0UTP0042
30 FORMAT (//, 'OFRACTIONAL POWER NORMALIZED PERCENT ERRORS:',//,	OUTP0043
X 3X, REGION: 1, 14X, REF-HOMO)/REF % ,	0UTP0044
X 8X, (REF-SYNTH)/REF %', 5X, '(SYNTN-HOMO)/SYNTH %',//,	OUTP0045
X (110,5X,3E25.7))	OUTP0046
WRITE (6,40) (R(IT,26),IT=7,9)	OUTP0047
40 FORMAT (//, 'ORAW PRODUCTION POWER NORMALIZED PERCENT ERRORS: ',//,	OUTP0048
X 24X, (REF-HUMO)/REF %",	OUTP0049
X 8X, '(REF-SYNTH)/REF %', 5X, '(SYNTN-HOMO)/SYNTH %',//,	OUTP0050
X (15X, 3E25.7))	OUTP0051
RETURN	OUTP0052
END	OUTP0053

)

SUBROUTINE SCPLOT(NK.N.X.U.NE.XB.UB,NC.XC.UC)	SCPL0001
C READS IN PLOTTING INFORMATION AND PLOTS THE FLUX COMPARISONS:	SCPL0002
COMMON /SC/ TITLE(20),XINCH,YINCH,NCELL,WCELL,NLL,XL(100)	SCPL0003
COMMUN /MAX/ XMIN, XMAX, YMIN, YMAX	SCPL0004
COMMON /RASTER/ IXS, IYS, IXE, IYE, IXT, IYT, IXLX, IYLX,	SCPL0005
X IXLY, IYLY(3), LH, LW, IS, IR	SCPL0006
COMMON /MARGIN/ ML, MR, MB, MT	SCPL0007
DIMENSION X(1001), U(2,1001), XB(1001), UB(2,1001), XC(1001),	SCPL0008
X UC(2,1001)	SCPL0009
READ (5.1.END=20) TITLE	SCPL0010
READ (5.4.END=20) XINCH. YINCH	SCPL0011
C NEGATIVE NCELL SPECIFIES THAT THE LAST CELL IS A HALF CELL:	SCPL0012
READ (5,3,END=20) NCELL, WCELL	SCPL0013
READ (5,3,END=5) NLL, (XL(I),I=1,7)	SCPL0014
IF (NLL.GT.7) READ (5,4) (XL(I), I=8, NLL)	SCPL0015
1 FORMAT (20A4)	SCPL0016
3 FORMAT (110,7F10.5)	SCPL0017
4 FORMAT (8F10.5)	SCPL0018
GO TO 10	SCPL0019
5 NLL=0	SCPL0020
10 WRITE (6,11) TITLE	SCPL0021
11 FORMAT ("LEXECUTING GENERAL ANALYSIS AND FLUX PLOTTING PROGRAM:",	SCPL 0022
X //,5X, TITLE OF PLOTTING RUN IS: ',20A4, ' ')	SCPL0023
XMIN=0.0	SCPL0024
XMAX=WCELL*FLOAT(NCELL)	SC PL 0025
IF (NCELL.LT.O) XMAX=WCELL*(FLOAT(-NCELL)-0.5)	SCPL0026
YMIN=0.	SCPL0027
YMAX=1.0	SCPL0028
WRITE (6,13) NCELL,WCELL,XMIN,XMAX,YMIN,YMAX,NLL	SCPL0029
13 FORMAT ('OREACTOR GEOMETRY PARAMETERS:',/,5X, NCELL =', I5,/,	SCPL0030
X 5X, WCELL = ,F10.5,/,5X, XMIN = ,F10.5,/,5X, XMAX = ,F10.5,/,	SCPL0031
X 5X, YMIN = , F10.5, /, 5X, YMAX = , F10.5, /,	SCPL0032
X = 5X, NLL = 1, 15	SCPL0033
IF (NLL.GT.O) WRITE (6,14) (XL(I),I=1,NLL)	SCPL0034
14 FORMAT (5X, '(XL(I), I=1, NLL) = ',/,(1CX, 10F10.5))	SCPL0035
CALL SETUP	SCPL0036
	PAGE 372

CALL PLOT(N,X,U,NB,XB,UB,NC,XC,UC) 20 RETURN END

SCPL0037 SCPL0038 SCPL0039

	SUBROUTINE SETUP	SETU0001
С	FINDS THE RASTER LOCATIONS FOR THE GRID CORNERS, LABELS, AND TITLE	SETU0002
č	ENTIRE PLOTTING AREA (INCLUDING LABELS) IS XINCH X YINCH.	SETU0003
•	COMMON /SC/ TITLE(20),XINCH, YINCH, NCELL, WCELL, NLL, XL(100)	SETU0004
	COMMON /RASTER/ IXS.IXS.IXE.IYE.IXT.IYT.IXLX.IYLX.	SETU0005
	x IXLY.IYLY(3).LH.LW.IS.IR	SETU0006
	COMMON /MARGIN/ ML·MR·MB·MT	SETU0007
C	SET THE LETTER SIZE FOR THE LABELS AND TITLES:	SETU0008
Ŭ	1 H=2	SETU0009
	LW=2	SETU0010
	IS=5×L #+3	SETU0011
	IR=7*LH+5	SETU0012
C	PLOTTING AREA:	SETU0013
Č	ONE INCH = 137 RASTERS. PLOTTING AREA IS 1023 RASTERS SQUARE.	SETU0014
•	IXE=X1NCH*137.+0.5	SETU0015
	IYE=YINCH*137.+0.5	SETU0016
	IF (IXE.GT.1020) IXE=1020	SETU0017
	IF (IYE.GT.1020) IYE=1020	SETU0018
	IXS=(1023-IXE)/2.+1	SETU0019
	IYS=(1023-IYE)/2+1	SETU0020
	IXE=IXS+IXE-1	SETU0021
	IYE=IYS+IYE-1	SETU0022
C	COORDS FOR THE LETTERS ARE FOR THEIR CENTERS:	SETU0023
C	TITLE (UPPER LEFT CORNER):	SETU0024
	I X T = 8	SETU0025
	IYT=1014	SETU0026
C	X AXIS LABEL	SETU0027
	IXLX=(IXS+60+IXE-6*IS)/2+1+8	SETU0028
	IYLX=IYS + 10	SETU0029
С	Y AXIS LABELS (FOR EACH FLUX PLOT TYPE):	SETU0030
	IXLY=IXS + 10	SETU0031
	IYLY(1)=(IYS+43+IYE-20*IS)/2+1 +4	SETU0032
	IYLY(2)=(IYS+43+IYE-23*IS)/2+1 +4	SETU0033
	IYLY(3)=(IYS+43+IYE-26*IS)/2+1 +4	SETU0034
C	SET MARJIN SPACING FOR GRID:	SETU0035
	$ML = IXS + 2 \times 18 - 1$	SETU0036
		PAGE 374

•

MR=1023-IXE	SETU0037
MB=IYS + 2*18 -1	SETU0038
MT=1023-1YE	SETU0039
RETURN	SETU0040
END	SETU0041

. ,

	SUBROUTINE PLOT (NA.XA.UA.NB.XB.UB.NC.XC.UC)	PLOTO001
C	USES MIT-IPC'S SC-4020 SUBROUTINE PLOTTING PACKAGE.	PLOT0002
C C	PLOTS THE COMPARISON FLUX DISTRIBUTIONS:	PLOTO003
č	KEY: HOMOGENFOUS - DASHED LINE.	PLOTO004
ů C	SYNTHESIS - SOLID LINE.	PLOTO005
c c	REFERENCE - DOTTED LINE.	PL0T0006
Ŭ	COMMON /RASTER/ IXS.IXS.IXE.IYE.IXT.IXT.IXLX.IYLX.	PLOTO007
		PLOT0008
	DIMENSION XALLOOLL.UA(2.1001).XB(1001).UB(2.1001).	PL0T0009
	$x = x(1001) \cdot u(2 \cdot 1001) \cdot x(1001) \cdot T(1001)$	PLOTO010
ſ		PLOTOO11
C	$CA(1 - STRIDV(1 M 7788 - 6571 \cdot 9 \cdot 2)$	PLOT 0012
	DD FOR FACH ENERGY GROUP:	PLOT0013
0	00 10 16=1.2	PLOT0014
	NTH=1	PLOT0015
	CALL GRID	PLOT0016
	IF (IG.E0.1), CALL RITE2V(IXLY, IYLY(1), 1024, 90, 1, 20, NTH,	PLOTOO17
	X 'NORMALIZED FAST FLUX', N)	PLOT0018
	IF (IG.EQ.2) CALL RITE2V(IXLY, IYLY(2), 1024, 90, 1, 23, NTH,	PLOT0019
	X INDRMALIZED THERMAL FLUX ,N)	PL0T0020
C	HOMOGENEOUS RESULTS:	PLOT0021
•	CALL PUT(IG, NC, XC, UC, N, X, T)	PLOT0022
	CALL ADJUST(N,X,T,1)	PL 0T 0023
	CALL LINE(N,X,T,1)	PLOT0024
C	SYNTHESIS RESULTS:	PL 0T 0025
	CALL PUT(IG,NB,XB,UB,N,X,T)	PLOTO026
	CALL ADJUST(N,X,T,O)	PLOTO027
	CALL LINE(N,X,T,O)	PLOT0028
C	REFERENCE RESULTS:	PLOT0029
	CALL PUT(IG,NA,XA,UA,N,X,T)	PL0T0030
	CALL ADJUST(N,X,T,2)	PL0T0031
	CALL LINE(N,X,T,2)	PL0T0032
	10 CONTINUE	PLOT0033
	CALL PLTND(NTH)	PLOT0034
	WRITE (6,20) NTH	PLOT0035
	20 FORMAT ("1",15," SC 4020 PLOTS HAVE BEEN PLOTTED.")	PLUT 0036
		PAGE 376

RETURN END PLOT0037 PLOT0038

PAGE 377

.

(

	SUBROUTINE PUT(IG, NA, XA, UA, N, X, T)	PUT 0001
C	TRANSFERS NA, XA, UA OF IG INTO N, X, T:	PUT 0002
-	DIMENSION XA(1001), UA(2, 1001), X(1001), T(1001)	PUT 0003
	N=NA	PUT 0004
	DO I I=1.N	PUT 0005
	X(I) = XA(I)	PUT 0006
1	$T(I) = UA(IG \cdot I)$	PUT 0007
-	RETURN	PUT 0008
	END	PUT 0009

	SUBROUTINE GRID	GR ID 0001
С	SETS UP A NEW FRAME AND PLOTS THE GRID	GR ID0002
C	AS WELL AS RUN TITLE, LABLES, AND LIGHT LINES.	GR I DOOO3
	COMMON /SC/ TITLE(20),XINCH, YINCH, NCELL, WCELL, NLL, XL(100)	GRID0004
	COMMON /MAX/ XMIN, XMAX, YMIN, YMAX	GRID0005
	COMMON /RASTER/ IXS,IYS,IXE,IYE,IXT,IYT,IXLX,IYLX,	GR ID0006
	X IXLY,IYLY(3),LH,LW,IS,IR	GR ID0007
	COMMON /MARGIN/ ML, MR, MB, MT	GRID0008
	DATA IT /1/	GRID0009
	IT=IT+1	GR 100010
	IF (11.GT.3) IT=3	GRID0011
	NTH=1	GR ID0012
	IF (IT.GT.2) GO TO 10	GRID0013
	CALL CHSIZV(LW,LH)	GR ID0014
	CALL RITSTV(IS, IR)	GRID0015
	CALL SETMIV(ML, MR, MB, MT)	GRID0016
	10 CALL GRIDIV(IT,XMIN,XMAX,YMIN,YMAX,WCELL,0.1,1,0,-1,-1,5,3)	GRID0017
	CALL PRINTV(80,TITLE,IXT,IYT,1)	GR I D0018
	CALL RITE2V(IXLX,IYLX,1024,0,1,6,NTH,'X (CM)',N)	GRID0019
	20 IF (NLL-EQ-0) / GO TO 5	GRID0020
	IY1=IYV(YMIN)	GRID0021
	IY2=IYV(YMAX)	GR ID 0022
	DO 1 I=1, NLL	GR ID0023
	IX=IXV(XL(I))	GRID0024
	1 CALL LINEV(IX,IY1,IX,IY2)	GR ID0025
	5 RETURN	GR ID0026
	END	GRID0027

	SUBROUTINE ADJUST(N.X.Y.L)	ADJU0001
C	ADJUSTS THE X AND Y ARRAYS BY DELETING ANY (X,Y) POINTS	ADJU0002
ĉ	WITHIN OR FOUAL TO NR RASTERS DISTANCE OF EACH OTHER.	ADJU0003
č	HOPFFULLY ELIMINATES DARK SPOTS ON THE PLOTS.	ADJU0004
č	I = 0; SOLID LINE PLOTTING: NR = 2.	ADJU0005
č	I = 1: DASHED I INE PLOTTING: NR = 2; INCRV(10,5).	ADJU0006
č	1 = 2: DUTTED LINE PLUTTING: NR = 4: INCRV(2.2).	ADJU0007
•	DIMENSION $X(1)$, $Y(1)$	8000ULDA
		ADJU0009
	IE (1.E0.2) NR=4	AD JU 0010
	TE (N.I.E.1) RETURN	ADJU0011
		ADJU0012
	$\mathbf{X} = \mathbf{I} \mathbf{X} \mathbf{Y} (\mathbf{X} (1))$	ADJU0013
	$I \times I = I \times V (\times (1))$	ADJU0014
	DO 1 I = 2.N	ADJU0015
	$I \times 2 = I \times V (X (I))$	ADJU0016
	I Y 2 = I Y V (Y (I))	ADJU0017
	ID = SORT (FLDAT((IX2 - IX1) + +2 + (IY2 - IY1) + +2)) + 0.5	ADJU0018
	IF (ID.LE.NR) GO TO 1	ADJU0019
	K=K+1	ADJU0020
	X(K) = X(1)	ADJU0021
	Y(K) = Y(I)	ADJU0022
	$I \times I = I \times 2$	ADJUQ023
	IY1=IY2	ADJU0024
	1 CONTINUE	ADJU0025
	N=K	ADJU0026
	RETURN	ADJU0027
	END	ADJU0028

SUBROUTINE LINE(N,X,Y,K) LINE0001 С PLOTS: A LINE (K=0), OR A DASHED LINE (K=1), OR A DOTTED LINE (K=2) LINE0002 С THROUGH Y(X) DATA POINTS. LINE0003 DIMENSION X(1), Y(1) LINE0004 IX1=IXV(X(1))LINE0005 IY1=IYV(Y(1))LINE0006 DO 10 I=2,N LINE0007 IX2=IXV(X(I))**LINE0008** IY2=IYV(Y(I))LINE0009 IF (K.NE.O) GO TO 1 LINE0010 С SOLID LINE PLOT: LINE0011 CALL LINEV(IX1, IY1, IX2, IY2) LINE0012 GO TO 5 **LINE0013** С DOTTED OR DASHED LINE PLOT: **LINE0014** 1 IF (K.EQ.1) CALL INCRV(10,5) **LINE0015** IF (K.EQ.2) CALL INCRV(2,2) **LINE0016** CALL DOTLNV(IX1,IY1,IX2,IY2) **LINE0017** 5 I X1=I X2 **LINE0018** 10 IY1=IY2LINE0019 RETURN LINE0020

END

3 A

PAGE 381

LINE0021