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Abstract

An overwhelming proportion of the universe (83% by mass) is composed of particles we
know next to nothing about. Detecting these dark matter particles directly, through
hypothesized weak-force-mediated recoils with nuclear targets here on earth, could
shed light on what these particles are, how they relate to the standard model, and
how the standard model fits within a more fundamental understanding.

This thesis describes two such experimental efforts: CDMS 11 (2007-2009) and
SuperCDMS Soudan (ongoing). The general abilities and sensitivities of both exper-
iments are laid out, placing a special emphasis on the detector technology, and how
this technology has evolved from the first to the second experiment. Some topics on
which I spent significant efforts are described here only in overview (in particular the
details of the CDMS II analysis, which has been laid out many times before), and
some topics which are not described elsewhere are given a somewhat deeper treat-
ment. In particular, this thesis is hopefully a good reference for those interested in
the annual modulation limits placed on the low-energy portion of the CDMS II ex-
posure, the design of the detectors for SuperCDMS Soudan, and an overview of the
extremely informative data these detectors produce.

It is an exciting time. The technology I've had the honor to work on the past
few years provides a wealth of information about each event, more so than any other
direct detection experiment, and we are still learning how to optimally use all this
information. Initial tests from the surface and now underground suggest this technol-
ogy has the background rejection abilities necessary for a planned 200kg experiment
or even ton-scale experiment, putting us on the threshold of probing parameter space
orders of magnitude from where the field currently stands.

Thesis Supervisor: Enectali Figueroa-Feliciano
Title: Associate Professor of Physics
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Chapter 1

Observations of Dark Matter

It is traditional to begin with a list of evidences for dark matter. But by now,

dark matter is a concept nearly eighty years old, and sits as a central pillar to our

current understanding of the universe. It would be as useless to defend dark matter's

existence as to defend the spherical earth, the heliocentric solar system, or the big

bang. Instead, this chapter starts from the foundation that dark matter is central to

the workings of the universe at large scales, and lays out a broad-brush answer to the

question 'what do we know about dark matter, and how do we know it?'

1.1 Observations of Astrophysical Objects

1.1.1 Dwarf Galaxies

Dark matter has been observed to form gravitationally-bound structures. Starting at

the smallest observed scale of such structures, our galaxy (and presumably all galax-

ies) are surrounded by smaller objects, so-called mini-halos or dwarf galaxies. These

smallest galaxies are interesting in that they are the most dark-matter-dominated

objects known. Due to their low masses, cooling of the baryons and resulting star

formation are both suppressed, leaving the baryons in the form of diffuse gas. Through

repeated interactions with the central galaxy (and presumably also with other dwarf

galaxies), the diffuse baryonic component is easily stripped away, leaving nearly-bare

13



dark matter bodies. Such 'ultra-faint' dwarf galaxies have been seen [102] using data

from the Sloan Digital Sky Survey (SDSS) [114]. The velocities of the few remaining

stars can be used to infer the strength of the gravitational potential (and thus the

mass of the dwarf galaxy), as

1
(KE) = (PE) (1.1)

2

For the faintest of the ultra-faint galaxies discovered thus far, the mass-to-light ratio

is ~100 times that of typical spiral and elliptical galaxies, and -1000 times that of a

stellar population alone.

1.1.2 Spiral Galaxies

Dark matter's effect on the kinematics of larger galaxies (such as our own) is no less

clear. The rotational velocities of spiral galaxies as a function of radius are easy to

measure, using Doppler shifting of spectral lines. Such a method can be extended

far beyond the radial extent of the stellar population through observations of the

galactic neutral hydrogen (observing the 21 cm transition). Such measurements have

been performed for a large number of galaxies, and these measurement show that

galaxies (universally) exhibit nearly flat rotation curves, i.e., orbital velocity varies

only slightly with radius (as in Figure 1.1.2). Such a rotation curve is indicative of an

enclosed mass linearly proportional to radius, or a density varying as r-2. Because this

trend extends to the outer reaches of the available luminous matter (and presumably

beyond), we are left with the clear understanding that the luminous portion of each

galaxy sits at the center of a much larger, much more massive dark matter 'halo'.

1.1.3 Clusters of Galaxies

We progress to the scale of the largest bound objects: clusters of galaxies. Here,

the virial theorem again allows us to translate from the average velocity of luminous

matter to the strength of the gravitational potential. At these scales, we measure the

proper motions of entire galaxies (rather than individual stars or nebulae) and yet

14
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Figure 1-1: The orbital velocity of stars in the Milky Way as a function of galactic

radius (a so-called 'rotation curve'). For reference, the sun is at ~8.3 kpc. Due to

our disadvantageous observation point inside the distribution, the rotation curve of

our own galaxy is actually one of the least-constrained rotation curves, particularly

at higher radii. This plot compiles the work of many surveys, and was compiled by

Sofue et al [103]. Dips are real, and represent the result of local spiral structure.

again map enormous amount of non-luminous matter binding the galaxies together. It

was in fact these proper motions within clusters which provided the first clear evidence

for dark dark matter (through the work F. Zwicky in 1933 [116]). These proper

motions are not our only observational handle at cluster scales. The extremely large

halos (and deep potential wells) associated with these scales imparts enough kinetic

energy to the intergalactic medium to cause it to glow in x-rays (the temperature

of which can be used, like the galactic velocities, as a probe of the gravitational

potential). A third observational handle is the lensing of background galaxies, and a

fourth observational handle is the SZ effect, the inverse Compton scattering of CMB

photons from hot electrons in the intracluster gas. All these methods of observation

have unrelated systematics, and all are consistent as to the amount and distribution

of dark matter at these scales.

By the way, dark matter halos exhibit an interestingly scale-independence. Dark

matter halos of all scales, from the dwarf galaxies to the largest clusters of galaxies,

15



appear to follow the same radial density function, as

p(r) = (1.2)
r (1 + (1.2

where po is the overall scaling in density, and Rs is a radial scale. This distribution

(the 'NFW profile', after Navarro, Frenk, and White, who discovered the behavior

through simulation) varies as r- at small radius, and r-' at high radius.

1.2 Cosmological Observations

There is one larger scale: that of the universe as a whole. The matter density,

pm, is typically specified in terms of the density parameter, Qm = Pm/pc where

Pc = 3H 2/87rG is the critical density corresponding to a flat universe (and also hap-

pens to be at least extremely close the actual density of the universe). The total

matter density consists primarily of cold dark matter and baryonic matter whose cor-

responding densities are denoted by Qc and Qb, respectively, such that Qm = Q + Qb.

A combination of cosmological measurements indicates that Qm = 0.267±0.025, with

c ~- 5Qb [50]. An explanation of these many measurements is beyond the scope of

this thesis, but here we include just the briefest of summaries:

Big-bang Nucleosynthesis (or BBN) is a theory of how light nuclei (D, 3He, 4He,

and 7 Li) are formed in the hot dense early universe. The amount of these nu-

clei present in the current universe places tight constraints on the duration of

this nucleosynthesis epoch, in turn placing tight constraints on the universe's

expansion history and mass. As an example, one recent measurement of deu-

terium (using Lyman-a absorption of light from background quasars in high-

redshift, metal-poor systems) indicates a deuterium abundance of log(D/H) =

-4.56±0.40, corresponding to a baryon density of Qbh2 = 0.0213 ± 0.0010 [90].

The Cosmic Microwave Background gives us a window to the dynamics of uni-

verse at a somewhat later epoch than BBN(370,000 years after the big bang), a

16
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Figure 1-2: LEFT: Big Bang nucleosynthesis, showing the species fraction as a func-
tion of time (top axis) and temperature (bottom axis) according to the best-fit model
to observational constraints. Taken from [91]. RIGHT: The temperature power spec-
trum from the seven-year WMAP data set, from [64]. Here, the most relevant fitted
cosmological parameters are: Qbh2 = 0.02260±0.00053 and Qeh 2 = 0.1123±0.0035.

time when the universe had cooled to exactly the temperature at which neutral

hydrogen could form, and the density of the universe was still nearly perfectly

uniform. Observed density fluctuations at this epoch (on the level of 1 part in

105) provide a rich data set from which Qm, Qc, and Qb can be inferred.

Large-Scale Structure tests models of the collapse of these early density fluctu-

ations into the galaxies and galaxy clusters we see today. Large data sets

from surveys such as the SDSS [114] can be compared with ever-more-detailed

simulations of structure formation, and the observations and simulations agree

remarkably well. These structural arguments are one of the main observational

clues to the mass of the dark matter particle; assuming dark matter is a thermal

relic (as we will discuss shortly), light particles would have higher kinetic ener-

gies and would not be able to form the small structures (such as dwarf galaxies)

that we observe.

17
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Figure 1-3: Two simulations showing varying amounts of power at small scales (cold
dark matter (left) and warm dark matter (center), along with a comparison of the
matter power spectrum of the two cases, again showing the lack of power at small
scales in the warm dark matter case. All plots taken from [78].

1.3 Summary of what we know

Combining all the observations, we here list all our knowledge about dark matter. It

is quite sobering to see that this sum total can easily fit on a single page.

Dark matter ...

is the majority of the mass of the universe , accounting for ~ 83% of the total

matter density of the universe today. The stars of our galaxy reside within a

much larger, more massive halo of dark matter (with local density 0.3±0.1 GeV/cm 3 [30]).

is at least primarily 'cold' , meaning that its velocity is primarily non-relativistic.

Only slow-moving dark matter can form the gravitationally-bound small-scale

structures that we observe.

has no easy method to dissipate energy. Baryonic matter collapses to form disks

and nebulae and stars precisely because of baryons' ability to radiate energy and

loose kinetic energy. The size of dark matter halos indicates that dark matter

lacks this ability to loose energy gained when falling to a potential well.

is at least nearly collissionless with both itself or baryonic matter. This is most

clear in the example of the Bullet Cluster, but the morphology of dark matter

halos themselves are also dependent on this (at least near) lack of collisions.

18



is at least primarily non-baryonic. The matter power spectrum at both the CMB

epoch and today demands that dark matter must have started collapsing into

overdensities prior to recombination, indicating Dark matter was decoupled

from the photon fluid before baryons were decoupled. BBN synthesis enforces

similarly tight constraints on the baryonic content of the universe.

is stable over cosmological timescales. No observation supports a significantly

varying total dark matter mass fraction; on the contrary, all observations are

consistent with a non-varying dark matter mass.

19



20



Chapter 2

Probing the WIMP Hypothesis

2.1 The Assumption of a Thermal Abundance

Nearly all particle abundances that we see in the universe today are the result of

these species being initially in a thermal equilibrium (in a so-called 'soup' of parti-

cles), balanced at a certain amount by equal rates of creation and annihilation with

other species. As the universe expanded and cooled, the density became so low that

nearly all such creation and annihilation ceased, and, and the abundances set by the

equilibrium in the early universe were 'frozen in'. This is exactly what happened in

BBN, for example, though with so many species freezing out at once, this process is

one of the more complicated examples of the formation of thermal relic abundances.

It is natural to assume that dark matter, too, had its present-day abundance set

by such a thermal freeze-out process, so let's describe this process is some detail.

First, let's give away the punchline: the assumption that the dark matter density

is the result of thermal freeze-out gives us a clue as to the expected annihilation

cross section, which turns out to be in range of magnitudes that seem natural for the

Weak Force. For the rest of this thesis, then, we will be discussing 'WIMPs', Weakly

Interacting Massive Particles.

In the early universe, when the temperature was much higher than the mass of

the WIMP, T >> mX, creation and annihilation processes were in equilibrium, and

the comoving number density of WIMPs, nx, was constant. As the universe cooled

21
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Figure 2-1: A schematic of the freeze-out of dark matter in the early universe, adapted
from [60].

and the temperature fell below T = mX, creation processes became inefficient, and

the number density began to annihilate away exponentially, following the Boltzmann

factor, nX ~,, e m./T. See the shape of the red curve in Figure 2.1. Annihilation,

however, requires two particles to 'find' each other, and becomes extremely ineffi-

cient below some threshold density. As the universe expands, the annihilation rate,

I'ann = (o-anno)nx falls below the Hubble expansion rate, H, and annihilation processes

become inefficient. Heregoann is the WIMP annihilation cross section and v is the

relative velocity of WIMPs. At this point, when the annihilation can no longer occur,

the relic density of WIMPs is 'frozen'. Provided the WIMP is stable on cosmological

time scales, this density remains today.

In such a model, the annihilation cross section, o-anni determines the relic abun-

dance, neq. This abundance is exponentially sensitive to the cross section, with higher

cross sections corresponding to lower relic abundances because the WIMPs can effi-

ciently annihilate for a longer period, delaying freeze out. An approximate calculation

of this relic abundance can relate oann to the measured quantity Qc as

2 3 x 10-"CMas--

1 h 10 (2.1)
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For the observed relic abundance from cosmological measurements (h 2 ~ 0.1) we

roughly estimate annihilation cross sections of -ann 10- 3 7 cm 2 = 0. 1pb, where we

have used that the freeze-out temperature is Tf0 ~ mx/20, implying a typical velocity

at freeze-out of vfO = 3Tfo/2mx ~ 0.3c. Thus the observed relic density is reproduced

for cross sections oann -0.1 pb and masses m r ~ 100GeV/c 2, both typical of weak

scale interactions.

Note that this thermal relic abundance could have given us any scale, but out of

the range of scales from -oc to +oo, the relic abundance points us towards the weak

scale. This is a good hint that the assumption of a thermal freezeout hypothesis is

correct, first, just because at least the model spat out a physically possible scale, but

also because we have many independent reasons to expect new physics to appear at

the weak scale. For example, new physics at the weak scale can address the so-called

'hierarchy problem', the surprising fact that the Higgs mass (and by extension the

mass of all Standard Model particles) is not pulled up to the cutoff scale at extremely

high masses due to quadratic divergences in its radiative corrections. Supersymmetry

is one solution to the hierarchy problem, and supersymmetry additionally provides a

somewhat natural candidate for the dark matter particle: the lightest supersymmet-

ric particle (LSP), the endpoint of the decay of any other supersymmetric particle,

prevented from decaying further (into lighter non-supersymmetric particles) by con-

servation of so-called R-parity. Such supersymmetric models are infinitely variable,

however (there is no supersymmetric model that is any more 'natural' than the others,

especially not that the LHC has recently ruled out much of the cMSSM space), so

assuming supersymmetry does not significantly help confine our wide-open parameter

space.

Because this thesis is entirely targeted at either proving or disproving the WIMP

hypothesis, we omit here any discussion of the many dark matter candidates that

are not thermal freeze-out relics. Suffice it to say that there are in fact many other

models, including Axions, which solve the hierarchy problem in an entirely different

manner.

Generally speaking, there are three possible modes of WIMP detection, as illus-
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Figure 2-2: The three general detection mechanisms for WIMPs, where some level of
weak interaction is assumed.

trated in Figure 2.1. All three of these pathways presumably have some cross section:

creation from standard model particles (at accelerators), annihilation into standard

model particles (in astrophysical regions of overdensity), and recoils off standard

model particles (searched for by CDMS and other direct detection experiments). The

key word here is 'complementarity', meaning that all three of these approaches pro-

vide useful constraints on the space of possible WIMP models, constraints which are

to some degree orthogonal.

2.2 Collider-based Detection

Creation in colliders probe WIMP models up to a particular mass scale, and are

therefore nicely complementary to direct detection (which looses sensitivity at low

masses). Collider searches are complicated, however, by the fact that the WIMP will

not interact with the detector, but will appear only as 'missing' momentum in the

event reconstruction. There are two basic categories of WIMP events to search for.

The lowest-energy event is the direct production of a WIMP pair, with the remaining

balance of energy dissipated immediately before hand as a standard model particle.

A higher-energy event type being searched for is production first of so-called WIMP

'siblings' (or perhaps more aptly, 'parents'), which decay into a WIMP pair and
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Figure 2-3: The two basic pathways by which dark matter (x) can potentially be
probed with particles of the standard model(SM): through 'sibling' creation above
2 msib, and through mono-jet creation with a lower threshold of 2 mx. The mono-jet
signal is one of the easiest tags for a dark matter creation event, and is therefor being
actively searched for at the LHC.

standard-model particles. These ideas are presented visually in Figure 2.2.

The task of the collider experimentalist (interested in discovering WIMPs) is to

list all such possible WIMP signatures, define software triggers to be sure to record

such events, and measure whether the observed rate agrees with the expected rate

from non-WIMP processes, taking into account all the detector systematics. (When

looking for a 'missing' signal, detector systematics are especially tricky). As this is

being written, an army of physicists are busy performing these tasks using ATLAS

and CMS data, and their limits on various production channels become tighter day

by day.

These LHC results already rule out many standard WIMP models up to WIMP

masses of hundreds of GeV and WIMP-nucleon cross sections orders of magnitude

below where direct detection experiments have probed. On the other hand, many

standard WIMP models are very difficult to probe at the LHC. And of course, there

is the third category of models: those which have not yet been thought of. We turn

then, to indirect and direct detection, two routes which are model-independent, in

that they are probing a generic WIMP space.
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2.3 Indirect Detection

Just as coannihilation occurred in the early dense universe (and set the thermal relic

abundance we see today), such coannihilation processes should be continuing even

now in regions where the dark matter density is highest. The rate of such a 2-body

process scales as the density squared, so a search for coannihilation is greatly bene-

fited by observing those objects where the WIMP density is highest. Unfortunately,

these regions are typically also overdensities of baryonic matter, where numerous

complicated radiatiative processes typically occur, potentially masking or imitating

a dark matter coannihilation signature. Any indirect detection search, then, must

necessarily depend on a complete understanding the baryonic physics of the search

region.

The easiest way to be sure the baryonic radiation effects are understood is to

avoid baryons altogether. This has been done, for example, in recent work by the

Fermi-LAT Collaboration [4], looking at gamma ray emission from dwarf spheroidal

galaxies (galaxies of extremely high dark matter content relative to baryonic content,

as mentioned previously). See Figure 2.3. Such studies have ruled out low-energy

WIMPs for certain decay modes but not others.

A second way to avoid the uncertainties inherent in baryonic physics is to con-

strain a search to sharp spectral features, because baryonic radiative processes at high

energies are typically expressed as broad continuum emission. Recently, a hint of a

narrow spectral feature at 130 GeV has been reported [110] (also using Fermi-LAT

data). Greater statistics are necessary before being sure there is a spectral feature,

and then a greater understanding of the relevant baryonic background physics would

be required before such a signal could be confirmed. See Figure 2.3. It should be

noted that the field of indirect detection is punctuated every few years by a new un-

explained spectral hump or peak, and that it is very hard to ever find such a feature

that is unexplainable through baryonic processes.

The third main strategy to avoid baryonic physics is to avoid photons altogether,

and observe dark matter overdensities using the other long-distance messenger par-
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Figure 2-4: An example of dark matter coannihilation cross section limits, produced
by measuring the lack of significant gamma ray flux from dwarf spheroidal galaxies

(using Fermi-LAT). Note that the vertical axis is of units specific to the coannihilation
cross section, and note that different hypothesized decay channels produce limits of
different strengths but the same general scale. The dashed line at 3x 10-2 6cm 3 /s rep-
resents a canonical annihilation cross section value, of the scale necessary to produce
the observed thermal relic abundance. Taken from [4].
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Figure 2-5: An example of a possible dark matter coannihilation spectral signature,
taken from Weniger, 2012 [110]. Shown is a gamma-ray spectrum using photons
from the region surrounding the galactic center, and the spectrum appears to have
an unexplained excess at -130 GeV.
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Figure 2-6: An example of spin-independent WIMP-nucleon cross section limits
placed using neutrino rates from the sun. Taken from [3].

tidle: neutrinos. Neutrino-producing processes are far rarer than photon-producing

processes, and therefor a annihilation signature should be much clearer. The Ice-

Cube experiment, with its enormous cubic kilometer detection volume, can place

interesting limits on a multi-step process: WIMPs are captured by the sun (through

the WIMP-nucleon cross section), collapse to the center of the sun through repeated

interactions over millions or billions of years, and then coannihilate at the sun's cen-

ter to produce heavy standard model particles (such as W+W- pairs or bI pairs)

which have neutrinos in their decay chain. Note that both the coannihilation and

nuclear recoil cross sections are involved in this process. When compared with direct

detection experiments (as in Figure 2.3), the limits are comparable, but include addi-

tional uncertainties and model-dependences. In the special case of a spin-dependent

WIMP-nucleon cross section, the enormous number of H nuclei in the sun pushes

these spin-dependent limits to be much more constrictive than any direct detection

method.
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2.4 Direct Detection

Direct detection, the goal of CDMS, is the detection of (typically, elastic) recoils

of halo WIMPs with particles (typically, atomic nuclei) in detectors here on earth.

Given a generic halo model (consistent with measurements of stellar motions), and a

generic WIMP mass of ~100 GeV, we expect a flux of ~ 5 x 104 particles per cm2 per

second at the earth. Of course, this extremely high flux is countered by an extremely

small WIMP-nucleon scattering cross section (by symmetry, assumed to be similar to

the better-constrained coannihilation cross section), so that this flux has a negligible

effect. However, the balance between this flux and expected WIMP-nucleon cross

section is such that we would expect a rare but observable rate of nuclear recoils in

macroscopic target masses, on the order of one recoil per kg per year.

2.4.1 Expected Signal

Assuming WIMPs have some cross section for elastic scattering off nuclei, and assum-

ing a generic halo model (again, consistent with measurements of stellar motions in

the milky way), we can make generic predictions for the recoils we expect to observe.

The WIMP velocity distribution is characterized by orbital motions, with v~

10'c. The recoil energy for elastic scattering is takes the simple non-relativistic

form
2 2

Erecoji = TN (1 - cosoc) (2.2)
mN

where mN is the target nucleus mass, v is the WIMP velocity (in the target rest

frame), Oc is the scattering angle in the center of mass frame, and y is the reduced

mass (mxmN)/(mx - mT) of the WIMP-target pair. Notice that if we look instead

for WIMP recoils with electrons (me -0.5 MeV), WIMPs with masses much greater

than a GeV cannot efficiently transfer energy. WIMP-induced electron recoils would

have energies less than a single eV, and be nearly impossible to observe. On the other

hand, the rough matching of the WIMP mass to the nuclear mass favors kinematically

the efficient transfer of energy from a WIMP to a nucleus, giving the nucleus energy

of keV scales. The minimum velocity WIMP which can produce a recoil of energy
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Erecoji is

Vmin = MNEre0 il (2.3)
2p2

The differential WIMP-nucleus scattering rate, typically described in the units

[keV kg day]- 1 ('differential rate unit', or 'dru') can be written as

dR _ p * f )I~do-X=R - vo Vf ) (v, Erecarij) dv (2.4)
dErecoil mNmX JVmin _dErecoil I

where p is the local dark matter density and f(v) is the dark matter velocity distri-

bution in the detector rest frame. The differential cross section duxT/dErecoil encodes

the particle physics of the WIMP-target interaction. The differential rate directly

depends on the local WIMP density. A value of p = 0.3GeV/cm 3 is canonical; it

is within the measurement uncertainty from astrophysics, and it is convenient for

all experiments to use a shared halo model (the 'standard halo model', or 'SHM').

Similarly, a Maxwellian velocity distribution (in the galactic rest frame) is assumed,

truncated abruptly at the galactic escape velocity Vesc, as

f (v) = Ae /0 v < Vese (2.5)
0 v > vese

where A is simply a normalizing factor to ensure the integral of the probability dis-

tribution is 1, and vo is the characteristic (most probable) velocity, characteristic of

the circular orbital velocity at the sun's galactic radius. In the SHM, vo = 220km/s.

There is not a similarly canonical escape velocity, but some recent results have em-

ployed a value of Vesc = 544km/s. The velocity of the earth relative to the galactic

rest frame (i.e., relative to the WIMP distribution) is not simply the sun's orbital ve-

locity, but the vector sum of the sun's orbital velocity around the galactic center and

the earth's orbital velocity around the sun. Combining these two velocities together

one can write the earth's time-dependent velocity relative to the halo as

VE = 232 + 15cos 27r t - toys)km s-1 (2.6)
( 365.25days)
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where to = 152.5 days (June 2nd). This few-percent annual modulation in the earth's

velocity with respect to the WIMP velocity distribution should produce a correspond-

ing variation in the recoil spectrum.

In the differential rate equation, then, we are going to assume astrophysical pa-

rameters (which are consistent with measurement), and phrase the results of direct

detection experiments in terms of constraints on the term with the largest uncer-

tainty: the differential scattering cross section. The non-relativistic WIMP-nucleon

scattering differential cross section daxN/dErecoil can be written as the sum of spin-

dependent and spin-independent terms as

daxN mN [uSDF2  Erecoji) + S1F 1 ( Erecoi )] (2.7)
dErecoji 2p v

In direct detection, we can amplify the cross section of a nucleon by coherently scat-

tering off entire atomic nuclei, for which the cross section scales as the number of

nucleons squared. The energy-dependent form factors (FSD(Erecoil) and Fs1(Erecoil))

contain the dependence of the scattering cross section on the momentum transfer,

q = \ 2 mNErecoiI. The two cross sections (o-SD and cy0I) can be written as

JSD _ 32p 2G 2 n]jgD 34L2 GjJ±[ap (Sp) +an(n](28
SI 4 [ f ( A - Z)f 2  _ 4p2(2.8)

-o1= [Zf, + (A - Z %f]24 [ Afp, n]

where Z and A are the atomic number and atomic mass number of the target nucleus,

f, and fn are the spin-independent coupling strengths to protons and neutrons, J is

the nuclear spin, and (Sp) and (Sn) are the expectation values of the proton and

neutron spin for the nucleus. In generic WIMP models, it is typically assumed that

f, f f

For the spin-independent case, and assuming fp a fn, the nuclear form factor is

given by the Fourier transform of the nucleon density, and typically parameterized

ini terms of the momentum transfer q as

F1(Ereci,) (qrn) 2 es2s2  (2.9)
qrn
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where ji is a spherical Bessel function and s (~0.9 fm) is the nuclear skin thickness.

The radius parameter r, is typically taken to be r, = Vc2 + (7/3)7 2a 2 - 5s2 where

c = 1.23A1/ 3 - 0.6 fm and a ~~0.5 fm.

We omit a more detailed discussion of the spin-dependent interactions, except to

say that in this case the A2 scaling is not available, and the majority of generic WIMP

models can be much more easily directly tested through spin-independent means.

Figure 2.4.1 shows the resulting rates for two spin-independent WIMP models for

a variety of nuclei and detector thresholds. Several important points:

* The observed scattering rate is dramatically increased by lowering the threshold.

" Given a threshold above several keV, rates are highest when the nuclear mass

and the WIMP mass are similar.

" Given a threshold below several keV, rates are highest when the nuclear mass

is highest.

" The rate for heavy target nuclei falls off more quickly in energy due to the

suppression of the form factor (the interaction starts becoming non-coherent).

2.4.2 The status of Direct Detection

The field of dark matter direct detection is a vibrant one, in particular WIMP

searches, with many experiments around the world competing to be the first to ob-

serve halo WIMPs through coherent nuclear scattering. In 2010, CDMS II produced

a world-leading limit on the spin-independent cross section, which has since been

superseded by XenonlOO. Both these experiments follow the same basic strategy:

1. Large target mass (exposed to the dark matter flux for long times)

2. Low energy threshold

3. Low electron-recoil background rate

4. Efficient rejection of the remaining electron-recoil backgrounds
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right we show a more typical-mass WIMP (100 GeV), with cross section chosen to be
in the range of current experimental limits. Figure by D. Moore.

If this strategy is implemented perfectly, the result is a large exposure (measured in

mass x time, as kg-days, kg-years, ton-years, etc) in which the only events (remain-

ing after rejection of electron recoils) are nuclear recoil events proportional to the

WIMP-nucleus cross section. Neither CDMS II nor Xenon100 have seen more than

a handful of events in such exposures, and so both experiments phrase such an expo-

sure's scientific result as an upper limit on the WIMP-nucleon cross section. Such an

upper limit is highly dependent on the assumed WIMP mass. An experiment is most

sensitive assuming a WIMP mass similar to the nuclear mass, and less sensitive both

above and below as a result of simple kinematics. Additionally, experiments loose all

sensitivity to WIMP masses producing recoil spectra primarily below the detector's

energy threshold.

As will soon be discussed in much more detail, CDMS II can distinguish electron

recoils from nuclear recoils (and therefor reject them as non-WIMP-induced back-

ground events) by measuring the ratio of ionization and phonon production for each

event. Similarly, Xenon100 distinguishes electron recoils from nuclear recoils by mea-
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Figure 2-8: On the left, a view of the Xenon100 detector, and on the right, the events
observed in the experiment's most recent exposure, displayed in the discriminator vs.
energy plane. The discrimination here is in terms of S2:S1, where S2 is a signal due
to ionization and S1 is a measure of the event's scintillation light. The measured dis-
tribution of nuclear recoils (from calibration data) is shown in pink, and the events of
the source-free exposure are shown in black and match the expectation from electron
recoil backgrounds. Plot taken from [112].

suring the ratio between ionization and scintillation production for each event. In

both cases, the ionization signal is significantly larger in the electron recoil case than

the nuclear recoil case. Other discrimination strategies are used in other experiments,

including a scintillation:phonon ratio and recoil-type-dependent phase changes.

CDMS technology offers extreme background rejection abilities, but experiments

using scintillation have the significant advantage of easily creating more massive target

masses. Xenon100 [112] is now the world-leading experiment, surpassing the limits of

CDMS II for all WIMP masses. At the lowest energies, Xenon100 has yet to publish

a dedicated analysis, but the result from Xenon10 (a smaller predecessor) already

surpassed the level of CDMS II in 2011 [14].

It is highly beneficial for an experiment to have as small a background rate as

possible (remaining after discrimination). The sensitivity of a zero-background ex-

periment scales simply with the exposure. If the experiment allows undiscriminated

backgrounds ('leakage'), then the leakage will presumably scale with the exposure,

and sensitivity to a dark matter signal will scale only as the square root of the expo-

sure.
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In addition to the robust null results of CDMS II and XenonlOO (and, in fact

many other experiments), three experiments have seen event rates they interpret as

inconsistent with backgrounds, and here we briefly summarize each of these results.

2.4.3 CoGeNT

The CoGeNT collaboration operates a 440 g P-type point-contact germanium de-

tector at Soudan Underground Laboratory. This detector offers no electron recoil

discrimination, because it uses employs only one measurement channel (ionization).

The geometry of the point-contact produces a detector with an impressively low ca-

pacitance, leading to an exceptionally low threshold of -2keV, ideal for detecting

low-mass WIMPs. CoGeNT has an ability to reject events occurring near the detec-

tor surfaces, using the fact that such events have a slower rising pulse edge (though

this discrimination becomes less and less possible near threshold).

CoGeNT initially reported a large excess of events near threshold, exponentially

increasing at lower energies as would be expected from a low-mass WIMP recoil spec-

trum [1]. Further data taking confirmed this excess, and further, gave statistically-

limited evidence (- 2.8o) for an annual modulation in the event rate [2]. Subsequent

to the initial understanding, is has been suggested that the majority of the exponential

excess could be due to surface event leakage [67][42] [44]. Additionally, the modulation

signature is inconsistent with realistic halo models (an order of magnitude too high),

inconsistent with the lack of modulation seen in the CDMS II exposure (a topic of

this thesis), and now appears to be inconsistent with the rate seen after doubling the

CoGeNT exposure [43].

2.4.4 CRESST-II

The CRESST-II experiment consists of an array of CaWO4 crystals, and combines

a scintillation measurement with a phonon (more precisely, a temperature) measure-

ment for discrimination of electron recoils. Like CoGeNT, this experiment also sees a

roughly exponentially rising spectrum at low energies (shown in the center of Figure 2-
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Figure 2-9: The CoGeNT spectrum at low energies, both before (black) and after

(red) a break in data-taking. Note that the energy axis assumes an electron recoil
energy scale. In the second half of the exposure, the background peak has decreases

(as expected from the expected half-life values), but the high rate below this peak (in
the region 0.5-1.OkeVee remains high. Taken from [43].

10), and further, the ionization yield of these events strongly implies that they are

of nuclear recoil origin [16]. The CRESST collaboration has performed a combined

likelihood analysis, combining all background distributions in the ionization yield vs.

energy plane (extrapolated from higher energies), and arrive at a > 4o confidence on

the presence of a WIMP-like nuclear recoil excess.

The question in such an analysis (as it is, similarly, for the CoGeNT case or any

non-null result), is 'Are the background rates and distributions known?' It appears

unlikely (from distribution of events in yield) that the excess is a result of electron

recoil events leaking in the ionization yield measurement. Instead, the primary non-

WIMP hypothesis is that the events are true nuclear recoils, but caused by radon

contamination of the surrounding materials (metal clamps that hold the scintillating

crystals in place) and the associated 210Po -+ a+206Pb decays in which the high-energy

a may not be detected, and the 206Pb nucleus may recoil into the target volume.

Simulations of this process performed by the CRESST collaboration predict a flat

spectrum of such events, whereas independent simulations including sputtering and

surface roughness effects indicate that the 2 0 6Pb spectrum could easily be expected to

rise at low energies [72]. Interestingly, SuperCDMS Soudan currently has Pb sources

installed as calibration sources, and we see a similar high rate at low energies in
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Figure 2-10: From left to right, a photograph of a CRESST II scintillation and tem-
perature detector, the spectrum of low-ionization-yield events from the most recent
exposure of CRESS II, combining several such detectors (shown along with a best-fit
model including both a WIMP spectrum and backgrounds, including a flat-spectrum
206Pb contribution) from 2011 [16], and on the right, a possible mechanism for the low
energy excess: a 201Pb recoil spectrum that exponentially increases at low energies (as
seen here in the low-yield portion of 201Pb calibration data at SuperCDMS Soudan).

these recoils (shown in Figure 2-10). Such a spectrum is largely an expression of the

material properties of the material in which the 2 1oPb radon daughters are embedded,

and we wouldn't expect to reproduce the CRESST II situation exactly.

2.4.5 DAMA/LIBRA

The DAMA collaboration has been steadily improving their detector for more than a

decade. The current iteration of the experiment (DAMA/LIBRA) consists of -250 kg

of thallium-doped Nal scintillator crystals of extreme radiopurity. Thanks to this large

mass, the experiment has by far the largest exposure of any of its competitors, with

nearly 1.2 ton-years of exposure collected over 13 annual cycles [27]. Like CoGeNT,

this detector uses only one detection channel (scintillation) through which to observe

events, and therefor has no discrimination between electron recoils and nuclear recoils.

However, thanks to the enormous exposure and long operation, DAMA searches for

(and finds) an annual modulation in the overall rate of events, with a spectrum expo-

nentially increasing at low energies, consistent with the WIMP hypothesis. DAMA's

technology is impressive, both in its extremely low event rate in the low energy re-

gion (<1 event per keVee per kg per day) and its low energy threshold of 2 keVee.

The presence of light nuclear species (Na) in the target mass make the experiment
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Figure 2-11: A view of one of the many detector modules that make up the
DAMA/LIBRA detector (left, encased in Cu), and two views of the observed modu-
lation over many annual cycles (right).

particularly sensitive to light WIMP kinematics.

As seen in Figure 2-11, the modulation effect is clear, with a statistical significance

of 8.90-. Further, the modulation has a phase consistent with the expected phase for a

WIMP-induced modulation signal (to = 144+i8 days for DAMA [27]; to =152.5 days

according to the SHM). The modulation amplitude peaks at the lowest energies and

is absent at higher energies. It occurs only for events interacting in single detectors

(like CDMS and CRESST II, the target mass is made up of multiple independent

detectors) and is absent for events interacting in multiple detectors. To date, no

background model can fully explain the observed modulation.

2.4.6 Where do we stand?

Collider experiments, indirect detection experiments, and direct detection experi-

ments are all advancing steadily through the WIMP parameter space, scanning the

space of possible WIMP masses and weak interaction strengths. Taking just the di-

rect detection experiments alone, we find severe disagreement between several strong

null results and several positive observations, ranging from mere 'hints' to DAMA's

clear ringing signature. CRESST II and CoGeNT could both be easily dismissed

as misunderstood backgrounds, DAMA/LIBRA is harder to escape, and the rough
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Figure 2-12: A view of constraints on WIMP models in the space of spin-independent
WIMP-nucleon cross section (vertical axis) vs. WIMP mass (horizontal axis). In-
cluded here are only those results mentioned in the text; many experiments are omit-
ted for clarity. The 68% bayesian confidence level region for one particular supersym-
metric model (cMSSM) is shown simply to point the reader's eye towards the general
region of space favored more generally by supersymmetric models. Both CDMS II
and Xenon have had dedicated analyses (shown separately) for the low-mass regime.

similarity of the allowed regions at light masses is interesting.

Figure 2-12 shows a few of the direct detection limits mentioned in the text, many

additional experiments have been omitted for clarity.
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Part II

CDMS Detector Physics
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In these chapters, we will follow the flow of energy through a CDMS detector in

general terms, from a recoiling electron or nucleus all the way to a an electrical signal.

We will see how the initial recoiling particle imparts energy to both phonons and e-h

pairs, and how these energy carriers propagate through the crystal and are sensed at

the crystal surfaces. These general explanations are designed to lay the groundwork

for understanding specific applications and optimizations in later chapters.
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Chapter 3

Energy loss by a recoiling particle

As a particle passes through matter, it gives off energy. The physical processes

responsible for this energy loss are not simple, but warrant some discussion because

their resulting partition of deposited energy between charge excitations and lattice

vibrations lies at the very heart of CDMS.

Stopping power Stot (energy loss per unit length, -dE/dx) can be described as

the sum of two terms: the electronic stopping power Se and the nuclear stopping

power Sn.

dE
-x = Stot(E) = Se(E) + Sn(E) (3.1)

Let's take first the case of a recoiling electron. Electrons find it kinematically

impossible to impart significant energy to an atomic nucleus, and therefor Sn(E)

becomes negligible. The electronic stopping power Se, then, dictates the energy loss

of a recoiling electron, and is illustrated in Figure 3-1. We can use this plot of stopping

power to gain a better physical picture of the stopping process. Imagine an electron

with 10 keV of energy. It loses energy at ~10 keV per pm, which already gives us

some physical understanding: the energy of recoiling particles at these low energies

is spread over tiny volumes of the material. As the electron loses energy to other

electrons, eventually the identity of the starting electron is lost and the initial energy

is shared among a population of energetic electrons. This cascade of electrons, each
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Table 3.1: Partition of Energy from an Electronic Cascade in Si and Ge

Egap Ecreate e-h fraction = Eg__

Si 1.21 eV 3.81 eV 0.318
Ge 0.785 eV 2.96 eV 0.265

electron exciting multiple other electrons, gradually spreads the initial energy out

over many electrons, ending only when each electron no longer has enough energy to

excite another (there is some minimum energy an excited charge can have, described

as either a gap energy or ionization energy, depending on the medium). At this

point, the electrons can no longer lose energy to electronic stopping, and either stay

at this last energy, or lose energy in some other fashion. 'Some other fashion' is

strongly dependent on the material. In the case of CDMS, the electrons lose their

last remaining kinetic energy to the crystal lattice in the form of phonons. The end

result of the electronic cascade, then, is some population of electron-hole pairs at the

gap energy (1.21 eV for Si, 0.785 eV for Ge) and some population of phonons. Notice

that electronic stopping power alone dictates the cascade until energies approach eV

scales. This means that as long as the initial recoil energy is much greater than the

minimum charge excitation energy, we should expect the final fractional partition of

energy between charge excitations and phonons to be constant with recoil energy. At

its bare essentials, then, the entire electronic cascade process can be stripped down

to one number: the fraction of initial energy that ends up as charge excitations. This

fraction can be expressed as Egap/Ecreate, where the "creation energy" Ecreate is the

average energy necessary to create an e-h pair (of gap energy Egap). The remaining

energy (1 - Egap/Ecreate) goes into phonon production. Numerical values are given in

Table 3.1. For an electron recoil in Ge, 26.5% of that energy will end up in the form

of e-h pairs, or in other words, -338 e-h pairs per keV of initial recoil energy.

Now let's turn to the case of a recoiling nucleus. The nucleus will cause a similar

cascade of excited particles, but in the nuclear case, the cascade involves not only

excited electrons but also excited nuclei, and at lower energies the nuclear stopping

power dominates. This interesting competition between electronic and nuclear stop-
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Figure 3-1: Stopping power as a function of energy, for an electron passing through

Si. The main features are the so-called "minimum ionizing" energy at -500 keV,
the maximum stopping power energy at ~50 eV, and the transition from electronic
stopping power to phonon stopping power at energies similar to the gap energy.
Adapted from [36]
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ping powers was first well-described by Jan Lindhard in the 1960's[48). He found

that, in the low energy limit, a nuclei's electronic stopping power is proportional to

velocity v as

- Z7/6Z2
Se,Lindhard(E) ~ 87rhao [ I1 v (3.2)

((z2/ 3 + Z2/ 3 )3/2

where ao is the Bohr radius, Z1 and Z 2 are the recoiling and target material nuclear

charges, respectively, and v is the velocity of the recoiling nucleus. It is convenient

when discussing the stopping of nuclei to rephrase discussions in terms of a scaled

dimensionless energy
aM2

Z 1 Z 2e2(Mi + M 2)

and a scaled dimensionless distance

p = RNM2 - 47a 2  M1  (3.4)
(Mi + M2) 2

where a = 0.8853ao(Z 2/3 + Z2/ 3)-1/2 and N is the atomic number density. Rephrasing

stopping power in terms of these new dimensionless quantities, we have a dimension-

less stopping power de/dp which is nearly universal for all nuclei and all stopping

materials. Plugging in numerical factors, and setting Z1 = Z 2 , we arrive at a conve-

nient description of electronic stopping power

e ~ , 0.133 Z2A / = k vc (3.5)

The electronic stopping power is proportional to the square root of the energy (i.e.,

the velocity, as previously stated), and all the complexities of the electronic stopping

are now described by a single parameter k. Plugging in appropriate values for Zi and

A1, we arrive at ksi = 0.146 and kGe = 0.157 for Silicon and Germanium, respectively.

We have already mentioned that the stopping of a nucleus involves a competition

between the electronic and nuclear stopping powers. Sn follows from the atomic cross

section, which is significantly screened by atomic electrons. At high energies, the

Rutherford cross section is applicable, but at lower energies screening weakens the
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cross section significantly. Bohr suggested that the nuclear stopping potential was

roughly constant with energy, an approximation that is still useful. More accurate

descriptions of the atomic cross section (and the resulting nuclear stopping power)

can only be fully described numerically. We skip, therefor, to a visual representation

of Sn, shown along with Se in Figure 3-2.

Let us again interpret a plot of stopping power vs. energy, this time tracing the

story of a recoiling nucleus from Figure 3-2. If the nucleus is initially of a very high

energy, we see that the electronic stopping power dominates. In this high-energy case,

then, the nucleus gives its energy almost entirely to electrons, and these high-energy

electrons interact only with other electrons (as seen from Figure 3-1), and the end

result of the cascade is practically indistinguishable from the electron-recoil case. If,

on the other hand, the nucleus is initially of a lower energy, then the nuclear stopping

potential dominates, and the end result of the nuclear cascade is (in analogy with

the electronic cascade) nuclei which no longer have enough energy to excite other

nuclei. The tipping-point energy (where S, = Se) occurs at c ~ 6A 2Z 4/3 (assuming

a generic value of k =0.15), or an energy of 0.1-10 MeV, depending on the nuclei

involved.

It is important to be clear that the nuclear stopping power is in no way related

to the lattice. In Figure 3-2, one can see that nuclear stopping involves energy scales

as high as an MeV, much higher than lattice binding energies. Nuclear stopping

results from nucleus-nucleus recoils, in which a significant amount of energy is given

off to a single nucleus. In a crystal like Ge or Si, these nuclei are entirely freed from

the crystal lattice. These freed nuclei then excite other nuclei, and contribute to a

nuclear cascade. The nuclear cascade is not as pure as the electronic case, though.

Note that throughout the relevant energy range, there is some non-negligible chance

of an electronic excitation (as seen in Figure 3-2). This excited electron will never

excite a nucleus and contribute back to the nuclear cascade, so there is a small but

significant one-way flow of energy from the excited nuclear population into an excited

electron system.

At the end of the electronic cascade, electrons loose their remaining energy in the
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Figure 3-2: Stopping powers as a function of energy, experienced by a nucleus passing
through a material. Using the scaled energy e and scaled distance p, the nuclear
stopping power becomes nearly universal. The electronic stopping power depends
weakly on atomic species. In addition to the semiconductor target materials used in
CDMS (Si and Ge), xenon is also shown, to emphasize the generality of these stopping
power expressions. Note that the lowest energy scales, where electronic and nuclear
stopping gives way to phonon stopping, are not displayed.
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form of phonons as they lower to the gap energies. A similar process occurs at the

end of the nuclear cascade, but with the difference that there is no Egp, meaning

that the conversion of energy from eV-scale recoiling nuclei into phonons is much

more efficient. The only inefficiency in converting the nuclear cascade's energy into

phonons is the storing of energy in the form of lattice defects, to be discussed shortly.

To this point, the discussion of electronic and nuclear stopping powers is entirely

generic to any nucleus losing energy to any material, as long as energies above -10 eV

are considered. At the very end of the electronic and nuclear cascades, energy dissi-

pation is dependent on the electron shells and inter-atomic bondings of the material,

characteristics that have not entered into our discussion of S" and Se at all. At these

molecular energy scales, a multitude of physical processes become available to the

experimentalist wishing to distinguish nuclear and electron recoils.

Unfortunately, any derivation connecting the intuitive stopping powers to the final

resulting partition between phonons and e-h pairs depends on numerically solving

integral equations (which already contain numerical functions to describe the nuclear

cross section), and does not add any significant physical intuition. Such a derivation

is skipped, then, in favor again of a visual representation, shown for both Ge and Si

in Figure 3-3. "Ionization yield" is a commonly used metric, describing the fraction

of recoil energy energy appearing in the form of charge excitations, normalized such

that the ionization yield of an electron recoil equals 1. Nuclear recoils, then, have a

ionization yield somewhere between zero and one, and a simple fit to the numerical

solution can be written as

- k - g(e)
Y~e) =(3.6)1 + k - g(e)

where k and c are defined as before, and

g(e) ~ 36015 + 0.760- + (37)

Before going further, let us take a moment to specify the energy range over

which such a description is valid. At the high energy range, the kei/ 2 description
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Figure 3-3: The fraction of event energy finally being expressed in the form of e-h
pairs is here shown in several different ways. In the top frame, the resulting e-h pair
energy is shown as a function of event energy, for both electron and nuclear recoils. In
the middle frame, the same information as plotted, but as a fraction of total energy
deposited. In the bottom frame, this fraction has been normalized by the electron
recoil case, as is the CDMS convention.
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of electronic stopping power fails when electronic stopping reaches a maximum near

v r (e2/h)Z2/3 . This velocity corresponds to E r10i3 (or higher) and occurs at ener-

gies well above the range interesting for dark matter. At the other energy extreme,

the ionization yield expression given above fails at low energies only as we approach

the threshold energies for creating free electrons and nuclei (at eV energy scales).

This is in fact a limiting threshold for the best ionization-based detectors, where a

low-energy event may only excite a single electron. In the semi-conductor targets of

CDMS, however, such physical thresholds occur well below the noise thresholds of

the charge and phonon sensors themselves.

A complexity that has received much attention in recent years is that the effect of

a crystal lattice on the competition between nuclear and electronic stopping powers.

Such spacial correlations between atoms were ignored completely in the derivation

of both the nuclear or electronic stopping powers. The most important result of

these spacial correlations is the so-called "channeling" effect, wherein a recoiling ion

travels along a channel in the lattice, and only low incidence-angle nuclear stopping

occurs, boosting the electronic stopping fraction and the resulting ionization yield.

As originally pointed out by Lindhard, the channeling effect can be expected to play

a significant role for the case of a free ion incident on a material (when the ion has

some probability of starting its path in a channel) but a much smaller role for the

case of a nucleus recoiling away from its original position at a lattice site, when the

ion is necessarily starting its path at a significant angle to the channel direction.

Interestingly, a detailed theoretical treatment has recently found that such effects

(in addition to being of negligible importance) are also strongly dependent on the

temperature of the lattice, as seen in Figure 3-4.

We have emphasized how the partition of energy between the nuclear cascade

and the electronic cascade is generic, described for all materials by Lindhard theory.

The material-dependent properties occur when the cascades reach the atomic and

molecular energy scales. The cascades in Si and Ge deposit the vast majority of

their energy into the phonon and e-h pair systems. However, the nuclear cascade

energy is not converted entirely into phonons; some amount is stored permanently

51



0.003 0.0015G
0.002 Si 0.001Ge

a 0.001 0.0007
S0.7 - 0.0005 900 -c

0.0005 
0.0003

0.0003 40mIC 0.0002 40

0.0015 0.00015
0.0001- 0.0001

1 10 100 1000 104  1 10 100 1000 104 105

E (keV) E (keV)

Figure 3-4: Fraction of nuclei involved in channeling, measured by passing some
threshold traveling distance, as a function of energy and temperature for Si (left)
and Ge (right). Note that a very small fraction of the nuclear cascade is involved
(< 1%). Note also that the trend with temperature is not monotonic. There are two
competing effects: a vibrating lattice more easily allows a bounded nucleus to be in
a channel when it recoils, but a non-vibrating lattice more easily allows channeling
once the nucleus recoils. This plot is from Bozorgnia et al. [31].

in the crystal as defects in the crystal lattice. Lattice defects have higher potential

energy than a perfect lattice, but can be stable. Just like e-h pairs, these defects

can be thought of has having creation energies (typically several eV) and final stable

('gap') energies (typically ~eV). The fraction of nuclear recoil energy ending up in

the form of lattice defects is not well known. Simulation work by Nordlund et al. [89]

and measurements by the CDMS and Edelweiss collaborations [26] seem to suggest

that as much as 10% of the energy lost to nuclear stopping power ends up as lattice

defects (rather than phonons). Traditionally, CDMS thinks of the recoil energy as

being initially partitioned between electron-hole pairs and phonons; understanding

this third energy sink (and its energy dependence) could be vital to better calibrating

the energy of nuclear recoil events.

The nuclear recoil can be thought of as melting a small volume of the crystal,

and some portion of this small volume will remain amorphous (and thus, storing

some small amount of energy). A 10 keV nucleus, initially melts thousands of atoms

(lattice binding energy is a measly 0.156 eV per atom) surrounding the initial recoil

position. Simulations by Nordlund et al. [89] (shown in Figure 3-5) show that this

initial melted lattice persists ~5 ps in Ge (-1 ps in Si).

One final point. The goal of Lindhard's work was to create a general description of
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Figure 3-5: The results of atomic collision cascade simulations, adapted from Nord-
lund et al. [89]. On the left, the number of above-melting-energy atoms as a function
of time is shown for a 10 keV nuclear recoil. In the center, the spacial distribution
of above-melting-energy atoms is shown for an example 10 keV Ge nuclear recoil,
at the time of peak melt volume. The bounding box is ~20 nm on a side. On the
right, the location of the resulting crystal lattice defects for the same event is shown.
Squares show the locations of vacancies and circles show the locations of interstitials
(two types of defects). It can be seen that in some region, the an amorphous state
dominates. Some later diffusion and merging of these lattice defects may occur.

nuclear stopping processes in all materials, not to treat the specifics of our particular

circumstance, crystaline Si and Ge. It is reassuring, then, to know that Lindhard's

description has been robustly experimentally verified, as seen in Figure 3-6.
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Figure 3-6: Nuclear recoil charge yield measurements in both Ge (left) and Si (right).
Dashed lines represent the expectation from the Lindhard description. For Ge, a
slightly better agreement with the measurements in the literature can be described
using a fitted function (solid black line, for which k=0.235 and a linear slope parameter
Y = (0.795)YLindhard is added). These measurements are taken from many authors[39,
40, 38, 65, 66, 84, 97, 23, 20, 101, 100, 25, 96, 115, 57, 45], and the plot is from a
CDMS paper on nuclear recoil ionization yield currently in preparation, to appear in
NIMA.
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Chapter 4

Electrons and Holes

We have discussed how many e-h pairs have been created by the recoil of a particle,

without stopping to discuss the nature and properties of this resulting excited state.

Ge and Si are both semiconductors, meaning that there exists a small energy gap

between the electron ground state energy and the first excited state (and the start of

the conduction band). These gap energies are a reflection of the interatomic spacing,

and thus vary with the temperature of the material, as seen in Figure 4-1, reaching

maxima at T=0. Another important result of near-zero temperatures is that the

occupancy of the excited state approaches zero. In the CDMS situation, then, the

carriers are 'frozen out'. With no charges above the Fermi level, the semiconductors

behave as insulators, because no charge carriers propagate (except those that have

been excited to the valence band by an event).

The allowed electron states are functions not only of momentum magnitude, but

of momentum vector with respect to the crystal lattice. Both Si and Ge form diamond

cubic lattices, with similar primitive cell dimensions of 0.543 nm (Si) and 0.566 nm

(Ge). The repeating spacial patterns produce repeating patterns in the momentum

space available to excited electrons and holes. The resulting momentum space can be

thought of as the Fourier transform of the spacial lattice, and is called the 'reciprocal'

lattice.

Just as there is a primitive cell in the spacial description, there is a primitive cell

in the momentum space description, called the first Brillouin zone. The Brillouin zone
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Figure 4-1: Gap energy as a function of temperature for Si and Ge, adapted from
Varshni [106].

for a diamond cubic lattice is shown in Figure 4-2, and can be used as a directional

version of the more familiar E-vs-k representation of a semiconductor's energy levels

(the dispersion relation) shown in Figure 4-3. Here, k is the usual wave vector, defined

as k = 27/A. An interesting difference occurs between the otherwise similar Ge and

Si cases; the minimum gap energy in Ge occurs at point L, whereas in Si it occurs

near point X.

In both Ge and Si, the lowest-energy excited state for electrons happens to be at

k #4 0, whereas the lowest-energy excited state for holes happens to be at k = 0. This

electron-hole difference has several important ramifications, the first being that holes

and electrons typically have different momenta, and electron-hole recombination will

require a difference in momentum be carried away by some 3rd party (a phonon).

Because this is a 3-body interaction, the cross section for this process is accordingly

quite low, with the important result that losing charge carriers to recombination (at

least, in the crystal bulk) is a process so rare as to be completely ignored.

The second important ramification of the electron's non-zero k first excited state is

that electron propagation follows certain preferred directions (while hole propagation

follows simply from the direction of the force). An electron's non-isotropic behavior
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Figure 4-2: The Brillouin zone for a diamond cubic lattice, with points of special
symmetry labeled according to the standard notation. Note that only one instance of
each of these points is labeled (but, for example, there are six X points and eight L
points). The outline of the diamond cubic primitive cell in the more intuitive spacial
sense is also shown as a surrounding cube. Finally, the Z direction (typically, the
direction of the electric field) is labeled according to the CDMS convention.
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Figure 4-3: The allowed states for Ge and Si in an E vs k plane. Note that labeling
of k directions from Figure 4-2 is similarly used here. The minimum gap in Ge lies
along the L (otherwise known as [111]) directions, and the minimum gap in Si lies
near the X (otherwise known as [100]) directions. From[61].
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can be treated most simply by retaining F = ma but changing mass m from a scalar

mass (as in the hole case) to a 3 x 3 tensor mass, corresponding to a different mass

in different directions. The standard notation for this tensor effective mass is m*,

defined as

[m*-1 ]ij = h-2 (4.1)
akiokj

where we will now denote energy as e to avoid confusion with the electric field. One

can see that this mass definition flows directly from taking derivatives of deBroglie

relation e = h2k2/2m in various directions. The vector basis for this tensor notation

is typically chosen to be three orthogonal lattice directions (note that these directions

are not typically orthogonal in real space). If the coordinates are chosen to be the L-

valley [111] direction and two lattice directions orthogonal to it (and call this crystal

basis [11 , ]), then the velocity of an electron in a Ge lattice with an external field

applied can be written

vlm-1 0 0 EllVl 2e[Er(e)] 1 
42vi = 3kBT 0 mI 0 (4.2)

v1L 0 0 m E-L

where, for electrons in Ge, mil=1. 5 8 me and mI=0.081me. Here an energy-dependent

'relaxation' rate T(e) is used to represent the resistivity of the material. The prac-

tical effect of the non-isotropic mass (note that the degree of this non-isotropicity is

m1.58/0.081~19.5) is that the first excited state of the electron has certain preferred

directions of propagation. A force in one direction adds momentum preferentially

along certain lattice directions. Adding momentum to the perpendicular directions

requires a proportionally much larger amount of energy. At the low field strengths of

CDMS, electrons can be assumed to be in the lowest-energy conduction-band only,

meaning that Ge electrons strongly prefer the momentum directions prescribed by

what are called the L "valleys".

As field strength increases, the momentum given to the electron at each scattering

event increases, increasing the probability of a scattering event that may scatter the

58



E

0

0

Electron Positions at Surface
(starting position of [0,0,1 .27cm])

X position [m]

Figure 4-4: Here we see show one practical implication of the effective mass tensor
discussed in the text. On the left is a cartoon of the resulting effect of this valley
structure on the trajectories of charges in a Ge detector with electric field applied in
the -Z direction. Here, electron trajectories are shown in blue and hole trajectories
are shown in red. The plot on the right (courtesy of K. McCarthy) is the result of
an electron propagation monte carlo simulation, showing the position of electrons as
they reach the surface. The four main L valley populations can be seen, as well as
a diffuse cloud representing electrons that have undergone at least one scatter from
one L valley to another.
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electron from one valley to another (most likely, from one L valley to another L

valley). At field strengths greater than about 10V/cm, inter-valley scattering becomes

so common that the electrons can be thought of as simply following the electric field

lines (at least at macroscopic scales).

We have emphasized the situation of electrons in a Ge crystal with a field ori-

ented in the [100] direction. If the field is instead oriented in the [111] direction, the

propagation (still in the L valleys) is much more similar to the field direction (the

propagation is less oblique). Electrons in Si propagate preferentially in the [100] di-

rections. The practical effects of using either [111] or [100] crystals have been explored

by the author in [74].

4.1 Charge Loss Processes

In order to accurately measure ionization yield, charges need to propagate to the top

and bottom surfaces. If some portion of the charge does not reach the surface, then

the ionization yield will be underestimated, and an electron recoil can leak into the

yield typical of nuclear recoils. This is obviously a big deal! In fact, understanding

and tagging electron recoils with poor charge collection has been a primary focus of

the CDMS collaboration for many years.

There are three main types of charge loss: sidewall, top-bottom surface, and bulk.

4.1.1 Sidewall trapping

The energy band structure of a semiconductor is only easily described when the lattice

can be treated as infinitely repeating in all directions. At the bare cylindrical surfaces

forming the sidewalls of the substrates, this is clearly not the case, and the energy

levels become much harder to predict. The dangling bonds of the lattice effectively

become an extremely thin layer of amorphous, rather than crystalline, structure.

Amorphous Ge and Si typically have higher gap energies than their crystalline coun-

terparts. The extreme irregularity and thinness of the side wall surfaces however,

results in a highly irregular band structure (and spacial topology) in which drifting
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holes and electrons can very easily find a trapping site. For this reason, one can think

of the bare sidewalls as effectively 100% efficient at trapping. Any charge that touches

the side wall (remember that electrons in Ge have significant oblique propagation) are

effectively lost, and any event at high radius will have a significantly reduced yield

(even down to Y=0, as we shall see in later chapters). Presumably, the trapping

efficiency of the sidewall varies with the lattice orientation, i.e., the [110] portions of

the sidewall may trap more or less than the [100] portions, but since any trapping

ruins the yield measurement, this is an unstudied subtlety.

4.1.2 Top-Bottom surface interactions

The top and bottom surfaces of the substrate, where sensors are laid down, have been

highly polished in preparation for fabrication, and are much less prone to trapping.

Where bare polished Ge (or Si)surfaces exist, the monte carlo requires a significant

amount of charge transport along this surface in order to match the data, confirming

that these surfaces are very different from the rough sidewalls. The trapping on the

top and bottom surfaces is dominated instead by interactions with the deposited

metal layers of the sensors.

In the bulk, the initial plasma of holes and electrons is quickly separated by the

external applied field. At the very initial moments after an event, however, self-

interactions within the plasma dominate, and the propagation is not directional but

nearly purely diffusive. If this diffusive plasma is formed close to a metal layer (within

a ~10 tm length scale), carriers of both charges can diffuse to the surface metal, where

there is no energy gap, and nothing stopping the carriers from recombining. Recom-

bination is the enemy; we need to collect net charge not both holes and electrons.

This back-diffusion has been an active field of study in the collaboration for many

years. (T. Shutt famously observed, when such back-diffusion was first observed in

the early 1990's, that it would be a significant problem, and may take 'months' to

solve.)

The main method for reducing the back-diffusion is to add an amorphous layer

(of slightly higher bandgap) between the crystal substrate and the metal layers. This
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higher bandgap represents a potential barrier to the diffusion process, and has been

seen to prevent some amount of the back-diffusion. Given enough time, the charges

may tunnel through the potential barrier due to the external field. For Ge substrates,

an aSi layer is employed for this purpose, which has the added benefit of assisting in

the metal layers' adhesion.

This back-diffusion barrier unfortunately reduces but does not eliminate the effect

of the so-called 'dead layer'. The tagging of events near the top and bottom surfaces,

has been a major focus of both CDMS analysis efforts and design efforts.

4.1.3 Bulk trapping

In addition to trapping at the surfaces of the crystal, charge carriers can also be

trapped within the bulk of the crystal itself. This trapping is only important when

charges are asked to drift long distances by a very weak electric field, but this is pre-

cisely the situation we find ourselves in (especially with the newest detector designs).

Extensive work on understanding these bulk trapping processes has been done by

collaboration member K. Sundkvist, and I will not attempt to summarize his work

here, only to that there are many possible trapping processes in the bulk and that

this is an area of active study.

CDMS Ge bulk trapping rates as a function of electric field strength are shown in

Figure 4-5.

4.1.4 Crystal neutralization

When charges have collected in either the bulk or external surfaces, the drift field of

the crystal is significantly reduced, and also altered in direction. A weakened field

promotes more trapping in a runaway process, and the detector will become unusable

('deneutralized'). The time scales for these processes can range from minutes to

days. How, when, and where the charges accumulate depends (in ways that are

subtle and not well understood) on the substrate, its fabrication history, and its

operation history. Of course, we would like to maximize the useful time before the
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Figure 4-5: Results from a CDMS Ge trapping rate measurement, from [100]. Note

that trapping becomes most important at low fields, and that holes and electrons

have differing trapping rates.

crystal becomes deneutralized, so understanding these processes is another area of

active research.

Both Si and Ge substrates can be neutralized through the use of infrared photons.

For this purpose, all CDMS detectors have LEDs installed near the substrates, and

the substrates are illuminated on a regular basis (or whenever effects of charge trap-

ping are observed). It is unknown exactly how the photons neutralize the crystal.

Especially mysterious is that the photons penetrate only very slightly (< 1mm), but

the photons somehow neutralize the bulk of the crystal. The working theory is that

the photons excite charge carriers, which then diffuse and cause the neutralization

process. Neutralization is always performed in a grounded state, so that these charge

carriers can efficiently drift towards charged trapping sites and efficiently neutralize

the crystal.

4.2 Sensing charges: The Shockley Ramo theorem

The naive (in fact, false) understanding of how charges are sensed in a detector like

CDMS is that the biased electrodes attract charge to the electrode, the charge enters

the metal, and a current is produced. In reality, what the electrodes sense is the
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movement of the charges as they drift, and in fact whether the charge enters the

metal at the end of this drift process is largely immaterial to the signal amplitude.

The Shockley Ramo theorem describes the electric current induced by a charge

moving near an electrode. Such a current can be thought of as the instantaneous

change in the number of of electric field lines which terminate on the electrode.

Quantitatively, the instantaneous current I induced on a given electrode due to an

electron's motion is given by:

I = e(Zeiectrode - 6) (4.3)

where V' is the electron velocity and Eelectrode is the electric field at the electron's

position, due only to the sensing electrode (setting all other conductors to ground).

This field is importantly not the drift field, but is simply a description of the elec-

trode's sensitivity as a function of position, which happens to have the same units

and equation as an electric field. To calculate this sensitivity, we set the electrode

bias to unity voltage and all other conducting surfaces to ground, and then calculate

the electric field of the resulting situation. This "field" describing sensitivity is some-

times called the "weighting field", or more commonly in the CDMS collaboration, the

"Ramo field".

In CDMS, we read out the electrode current on timescales (slightly) too slow for

the instantaneous current to be useful. Instead, we simply measure the total (integral)

current induced by the total drift process. Importantly, each electrode senses the

movement of both holes and electrons (whereas in an ionization detector, the ions'

drift is of a completely different single microsecond time scale, and typically goes

unobserved). This makes the charge signal approximately independent of z-position.

For a single charge carrier drifting from point b to point c, the integral version of the

Shockley Ramo theorem becomes

I I = (-e)[Vramo(b) - Vramo(c)] (4.4)

In the CDMS situation, where holes and electrons are created and sensed in pairs,
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we can imagine an event starting at point b, where a hole drifts to point a and an

electron drifts to point c

I = (-e)[ramo(b) - Vramo(C)) + (+e)(Vramo(b) - Vramo(a)] = e[Vramo(C) - Vramo(a)]

(4.5)

The final charge signal, then, is seen to be simply proportional to the number of

charge carriers created, and to the proportion of the Ramo voltage the charge carriers

successfully cross without trapping.
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Chapter 5

Phonons

We have already mentioned that phonons are copiously produced at the endpoint of

both the electronic cascade (in the final collapse to the gap energy) and the nuclear

cascade (where nearly all the nuclear cascade energy is transferred). Just as in the

case for a semiconductor's electrons and holes, phonons exist at energies and momenta

prescribed by the repeating structures of the lattice. In fact, because we are dealing

with the same diamond-cubic lattice as before, we can carry over our understanding

of the reciprocal (momentum) space primitive cell, and define a first Brillouin zone

as before, with directions of special symmetry again denoted F, L, X, etc.

Phonons can be categorized as either acoustic or optical based on what type of

mode is excited.

Acoustic phonons are the more familiar vibration modes, characterized by the fact

that neighboring atoms vibrate in phase with each other. In the long-wavelength

limit they are simply sound waves (hence the name). Acoustic phonons come

in both longitudinal and transverse modes.

Optical phonons involve modes of vibration within the unit cell, in which neighbor-

ing atoms can be out of phase. Because they involve sub-cell structure, they are

typically higher in frequency than acoustic phonons. In certain ionic crystals

(but not so in the covalently bonded Si and Ge), such optical phonon modes

are easily excitable by incident photons, hence the name.
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Figure 5-1: Dispersion relations for a variety of phonon modes in both Ge and Si.
Theory curves are from [109], data points are from [88]. Approaching the F point, we
see that there are three acoustic modes (corresponding to the one longitudinal and
two transverse directions) along with higher-energy optical modes.

Phonon group velocity vg = Bwk/Ok depends on both momentum and momentum

direction. At low energies (k low, wavelength A long), the dispersion relation is linear,

and the phonon group velocity is wa (where a is the lattice spacing), independent of

energy. Because group velocity changes slowly with frequency, a 'packet' of low-energy

phonons can propagate long distances through the lattice without losing their phase

relations. At high energies (k high, A approaching a), this coherence fails.

Because Ge and Si share the same lattice structure, their dispersion relations

appear nearly identical in Figure 5-1, simply scaled by a factor reflecting their differing

atomic masses and lattice spacing. Phonon frequencies are sometimes written in a

dimensionless form Q which normalizes for these differences, as

Q = 27r ,2a (5.1)
e~ 2

where p is the reduced mass of the lattice's unit cell and a is the lattice spacing as

before. This expression comes from the work of Kucher, see [71]. It can be seen that

low-energy phonons in Si have a group velocity approximately four times that of Ge.

Now that we have some background on the nature of the phonons in our situation,

let us continue the story of an event. Both the nuclear and electronic cascades end
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with the production of copious phonons, and both chains dump their power mostly

into the highest-energy (optical) phonon modes.

It is the nearly perfect electrostatic symmetry of the lattice that supports the exis-

tence of e-h excited states over long time scales. The same lattice, however, exhibits a

much lower level of symmetry to vibrational excitations, leading to shorter lifetimes.

Both Ge and Si are elements composed of many naturally-occuring isotopes of slightly

different masses, and these isotopes are arranged randomly within the lattice. This

imperfection creates a scattering cross section, strongest for the shortest wavelengths.

High energy phonons exhibit high isotopic scattering rates (T -1 = [36.7 x 10-4

for Ge)[105], resulting in a highly diffusive propagation, with short mean free path

lengths (at long wavelengths, mfp = [5.4 km/s]ri = [1.5 x 10"4 m/s 4 ]v- 4 ). There is

an additional manner in which the lattice can be imperfect: if the lattice is perturbed

by a second phonon. This opens up the door to phonon-phonon scattering processes

(Umklapp scattering), which most likely plays a significant role at the very initial

stages of an event, when energy density is still high.

Phonons not only scatter, but as they scatter they constantly decay, splitting into

two lower-energy phonons. In Ge, such anharmonic decay occurs on a time scale given

by T = [1.61 x 10- 55]v5 [85]. In other words, we are seeing a third cascade process

(after the nuclear and electronic cascades): the phonon cascade. There are two main

differences here in the phonon situation: 1) this cascade involves macroscopic length

scales, dispersing energy far from the event location, and 2) the only bottom to the

phonon cascade lies at zero energy. As can be seen from the dispersion relation in

Figure 5-1, there is no 'gap'; phonons can relax all the way to zero energy. The only

limitation to the phonon cascade is the (enormous) heat capacity of the crystal itself.

Left to their own devices, the phonon energy of the event will finally reach a thermal

equilibrium (at phonon energies of peV scales). Of course, we do hope to sense the

phonon energy before it has been thermalized; and the strategy to do this is the topic

of the next chapter.

Combining the energy-dependent mean free path and the energy-dependent decay

rate, we can forget about the number of phonons and think of the phonon energy den-
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Figure 5-2: The phonon cascade and quasi-diffusion, shown as mean-free-path vs.
frequency. Phonons start in the lower right corner (high energy, short mean free

paths) and cascade to the upper left corner (low energy, mean free path limited by
crystal size). The meaning of 2dAI will be explained in the next chapter; for now

simply understand that phonons with energy below this level will not be sensed.
Phonons are largely sensed within a specific energy window: between the beginning

of ballistic propagation and the crossing to sub-Al-gap energies.
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sity as diffusing out from the event location, with a mean free path (and propagation

velocity) that is increasing with time. This diffusion with a time-dependent mean

free path length is typically termed 'quasi-diffusion'. To give a sense of scale, optical

phonons decay to 1 THz acoustic phonons in several microseconds, and in these first

several microseconds the energy diffuses r1 mm. Then, in the following tens to hun-

dreds of microseconds, the mean free path between scatters approaches the crystal

dimensions. At this point, reflection off of the crystal boundary is the dominating

kinematic effect, and we refer to the phonons as having reached the ballistic limit.

The phonon evolution, then, can be thought of in three main stages:

1. In the immediate vicinity of the event location, high-energy (optical) phonons

rapidly downconvert to lower-energy phonons, held in a tight volume (but grad-

ually expanding) by their short (but gradually lengthening) mean free path

lengths.

2. Phonons are released from this tight volume as they reach lower energies and

longer mean free path lengths.

3. These ballistic phonons propagate freely through the entire crystal, reflecting

spectrally off the crystal walls, and spreading the phonon energy density (nearly)

uniformly throughout the crystal, as the downconverting slowly continues, even-

tually reaching a thermal distribution.

One last general comment about phonons should be made, and that is that the

direction of k and the direction of propagation are not generally the same. As seen

in the example of Si in Figure 5-3, the differing group velocities in different directions

can cause so-called 'caustics' to appear, where in phonon wavefronts from a range

of k angles pile up on each other in real space. Such effects are no doubt occurring

in CDMS, focusing the ballistic phonons in certain directions. Such effects, however,

have not been clearly observed in CDMS, due partly to poor position resolution, and

partly due to the fact that the majority of CDMS's phonons are sensed long after the

first reflection off the crystal surface.
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Figure 5-3: Caustics in ballistic phonons in Si, as understood and measured by
Wolfe et al. [111]. One can see how variations in group velocity with lattice an-
gle can cause pile-ups in real space. The Wolfe group has made many interesting
measurements of such effects, including the experimental result on the right, in which
three pulses of ballistic phonons were created (0.38ps appart) on one side of a [100]
Si substrate, and these phonons were sensed with a high spacial resolution on the
opposite side. Such images are constructed not by a highly pixelated readout, but by
a single sensor and a varied event position.

5.1 Luke Phonons

We have discussed how phonons are sourced at the end of the nuclear and electronic

cascades. In fact, there is a quite significant second source of phonons as yet unmen-

tioned, produced by the so-called "Neganov-Luke effect".

As holes and electrons are pulled through the crystal by the electric field, work is

being done. The charge excitations are constantly interacting with the lattice as they

drift. In a classical view, one can think of the charges as being freely accelerated by

the field, and then recoiling off the lattice in a way as to give off momentum, and then

accelerated by field again. Given a particular field strength, the combination of exter-

nal field acceleration and lattice-induced deceleration produce a stocastic equilibrium

drift state, characterized by an average drift velocity Vd (a sort of terminal velocity),

an average drift power, and a distribution of resulting phonon frequencies. To give

some sense of scale, Censier et al. [37] have measured drift velocities in our situation

(high-purity Ge, low field strength, [100] orientation, 10s of mK) to be Vd =1.67x 104

m/s for holes, and Vd =2.37x10 4 m/s for electrons [at 20 mK and 0.5 V/cm].

The potential energy of a field would normally be transferred to a charge's kinetic
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energy. Here, because the kinetic energy is kept low (typically 10s of meV) by the

lattice interactions, we can assume that all the potential energy lost by the charge

through drift has been expressed as phonons. Thus, if we imagine nh holes and ne

electrons drifting, starting from the middle of some total potential difference AVt,

Elke = neeA Ve + nheAVh = ne(AVe + AVh) - neAVtot (5.2)

Note that the total power is independent of where in the crystal the event charges

start. If holes and electrons are created in equal number, then only that number and

the total voltage difference matter. (This is a similar situation to the charge signal

discussed earlier).

Although they release the same amount of total phonon power, holes and electrons

produce differing phonon spectra as they propagate (a direct result of their differing

effective masses and terminal velocities). These Luke phonon initial spectra (remem-

ber, Luke phonons will downconvert just like any phonon) are note well-measured, and

have instead been modeled from first principles. The Luke spectrum from electron

propagation will be somewhat lower in energy than the spectrum from hole propa-

gation (given the same field strength). K. Sundqvist [104] has produced simulations

predicting the acoustic phonon fraction for holes and electrons, and G. Wang [107]

has published analytic descriptions of the initial spectrum of acoustic phonons, as

seen in Figure 5-4.

Luke phonons are different from the phonons originating with the nuclear and

electronic cascades (we will call these the 'primary' phonons) in several ways. Luke

phonon production depends not just on the energy of the event, but on the potential

difference of the detector (which can be tuned by the experimenter). Luke phonons

are created along the path of the charge drift, rather than at the recoil position.

They are created significantly in the ballistic regime rather than the diffusive regime,

meaning that they largely skip the initial slowly-propagating diffusive stage (more

quickly reaching phonon sensors). And, that portion of Luke phonons that are ini-

tially ballistic will retain their original momentum direction (until reaching a surface),
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Figure 5-4: On the left, adapted from K. Sundqvist [104] is displayed a prediction
for the fraction of Luke phonon energy initially expressed as acoustic (lower-energy)
phonons, as a function of drift field, for both holes (red) and electrons (blue) in
germanium. On the right, at a specific low field strength (3 V/cm), we see an analytic
approximation for the initial Luke phonon energy spectrum, again for both holes and
electrons, from the work of G. Wang [107].

meaning that if a charge is propagating toward a top surface, the Luke phonons from

that propagation will similarly be directed (generally) towards the top surface. Luke

phonons are clearly very information-rich (more on that in later chapters).

5.2 Recombination Phonons

When electrons and holes are first created, they have two types of potential energy:

the energy of the gap and the energy imparted by the externally applied voltage. The

energy of the external field is transferred to Luke phonons during the drift process.

The gap energy is transferred to recombination phonons when the charge carriers

reach the metal layers at the surface and drop in energy. Thus, the energy stored in

the charge carriers is eventually transferred to the phonon system, emanating from

the surfaces. This means the entire recoil energy (minus some small lattice defect

energy) eventually ends up in the phonon system. The total phonon energy released

by an event can be grouped as

E Pot = Eprimary + Erecombination + ELuke = Erecoji + ELuke (5.3)
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Chapter 6

Concentrating and Sensing Phonon

Energy

As discussed in the previous chapter, both primary and Luke phonons gradually

down-convert, and would eventually settle into a thermal distribution. Several dark

matter detection efforts (EDELWEISS, and the early BLIP version of CDMS) work

by sensing this temperature change in the target mass using a thermometer in contact

with the target. This strategy has the advantage of simplicity (not to be overlooked!)

but has two main disadvantages:

1. Given an event of a particular energy, a large target volume (with a large heat

capacity C) will have a correspondingly low final temperature increase, as AT =

E/C. Both a large target mass and a low energy threshold are vital to direct

detection, and the thermal approach puts these two goals in opposition.

2. Thermalization is a process of taking energy of high information content, spread-

ing that energy over as many available degrees of freedom as possible, and to

the highest-entropy (lowest information-content) state possible. If we could

measure the phonons before the second law of thermodynamics takes over, then

we could hope to extract all kinds of information, including the position of the

event, the precise timing of the event, and ideally event the recoil type (nuclear

or electron recoil) of the event.
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This chapter describes the method used by CDMS detectors to absorb the phonon

energy athermally, before the huge target heat capacity plays any role, and before

much of the event information is lost.

The basic requirements of any such strategy would be

1. a long-lived excited state, with a characteristic energy in a specific range: much

higher than the thermal phonon energies, but low enough as to be excitable by

the majority of ballistic phonons.

2. an efficient process of converting phonons into that excited state.

3. an efficient process of transporting and concentrating that converted energy into

some appropriate sensor.

These are the topics of the next three sections.

6.1 Bogoliubov Quasiparticles

The excited states used by CDMS are so-called Bogoliubov quasiparticles (sometimes

referred to as Bogoliubov-deGennes quasiparticles), a discussion of which will require

first some explanation of superconductivity; the realm in which these quasiparticles

exist. A theoretical understanding of superconductivity is a rather recent develop-

ment, first laid out by Bardeen, Cooper, and Schrieffer in 1957 [21].

In a normal metal at absolute zero, energy is minimized by eliminating all phonons,

and lowering all electron momenta to the minimum allowed by the Pauli exclusion

principle, the Fermi momentum. In a superconductor, a different state minimizes

the total energy, in which pairs of electrons are locked together through a phonon

exchange force into a quasiparticle referred to as a Cooper pair. These electrons have

momenta above the Fermi surface, the total kinetic energy is certainly not minimized,

but the total energy is (non-intuitively) lower than the alternative. The electrons

have lowered their potential energy by falling into this phonon-mediated bonding. It

is still rather unintuitive to think of a state with non-zero kinetic energy to be the
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Figure 6-1: Entropy of aluminum, as a function of temperature, for both the normal
and superconducting phases, after [68]. (The normal phase can be achieved below Tc
through the application of a magnetic field.)

ground state of a system. More intuitive is thinking in terms of entropy, as pictured

in Figure 6-1: due to the additional bonds present (in this case, phonon-mediated

electron-electron bonds), the superconducting state is a more ordered state compared

the normal one, and if a material possesses a lattice capable of joining two electrons

into a Cooper pair, it will. It so happens that a high degree of order must already be

present in the system for such a delicate electron-lattice dance to occur at all. The

first Cooper pair bonds together at the material's "critical" temperature Tc, and more

and more Cooper Pairs are paired as the temperature decreases. This understanding

also tells us that the phase transition occurring at Tc is a second order transition,

where no latent heat is required.

The occupation of energy levels in a metal is dictated by their Fermi statistics.

A Cooper pair on the other hand is a quasiparticle of net spin zero, and thus obeys

instead a bosonic statistics, meaning that an infinite number of Cooper pairs can

occupy a common ground state. This collective many-particle ground state can be

described by a single wavefunction, and it is the phase coherence of the pairs that is

the origin of the perfectly zero resistance. It so happens that this Cooper pair ground

state energy is equal to the Fermi energy. Imagine electrons in a superconductor with

slightly more or slightly less momentum than the Fermi momentum. Such states

77



1 :E
00.8- Z

Z
<0.6

0.4 W

0.2- ----- -- -Z

0 0.2 0.4 0.6 0.8 1 00 1

T/Tc F k E/A

Figure 6-2: Some description of the superconducting gap A. On the left, the gap
energy temperature dependence, which in these generalized dimensionless units takes
the form for all superconductors. In the middle, the 3rd significant dispersion relation
in this thesis, that of single electron states in a superconductor, showing the gap
energy (very analogous here to the semiconductor gap). On the right, the density of
single electron states, above and below the gap energy (normalized by the normal-
metal density of states).

are quickly swept up by the many-particle ground state; in fact some range tA is

a forbidden energy range, producing a gap of 2A (straddling the Fermi energy). As

seen in Figure 6-2, A(T) rises rapidly from zero just below Tc, while at the lowest

temperatures, A(T) is nearly constant. At T = 0, the value of A is proportional to

the Tc of the material, or more specifically: A(T-0) = 1.764kBTc. This relation makes

some intuitive sense, because only electrons with an energy of order kBTc could be

expected to play a role in a phenomenon that has a threshold of Tc. For Al near

T=0 (i.e., in the CDMS context), A = 170peV, and the ground state energy of a

Bogoliubov quasiparticle is 2A = 340peV.

Bogoliubov quasiparticles are not simply electrons with a certain amount of energy,

but a coherent superposition of a hole and an electron state. The superposition is

characterized by a mixing angle (the 'Bogoliubov angle'). As the energy approaches

the EF, this mixing becomes a maximum. A is small, and so Bogoliubov quasiparticles

in CDMS (near the gap energy) are best considered neutral particles. The lifetime of

the quasiparticle (Tqp) is proportional to the density of quasiparticles in the material

(remember, the ground state is the Cooper pair), and is therefore quite long at near-

zero temperature, where the density of thermally-excited quasiparticles is similarly

near-zero.
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6.2 The Quasiparticle-Phonon Cascade

In CDMS, some portion of the Ge surface is covered in thin Al films, and phonon

energy incident on these films is transferred to quasiparticle excitations, with some

efficiency depending on the energy of the phonon, the minimum excitation energy

(2AA1 = 340peV), and the thickness of the film (in CDMS, Al thicknesses are typically

hundreds of nanometers).

The process of quasiparticle creation is yet another cascade process. Here, the

incoming phonon typically has an energy significantly higher than the minimum ex-

citation energy. The initial quasiparticles relax to lower energies through phonon

emission, and these phonons can easily have enough energy for additional quasiparti-

cle creation. The cascade, then, is a combined quasiparticle-phonon cascade (phonons

have a quasiparticle 'stopping power', and quasiparticles in turn have a phonon 'stop-

ping power'), resulting in some population of ground-state quasiparticles and some

population of phonons of sub-gap energies.

Using the quasiparticle density of states

P(E) = (6-1)FT2 -(A) 2

we can write an expression for the initial energy distribution of quasiparticles created

by phonons as

PQp(E) = P(E)P(Q-E) I E( - E) (6.2)

where E is the quasiparticle energy, Q is the phonon energy. Q and E are subject to

the constraint that 2A < E < Q - E. Similarly, quasiparticles relax through phonon

emission, and these phonons follow an initial energy distribution given by

p ~(2A) 2

P4(Q) = Q2P(E-Q) (I - -rn) (6.3)

where 0 < Q < E.

Throughout this quasiparticle-phonon cascade, phonons can 'leak' from the alu-
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minum back into the Ge and propagate through the crystal. If the film is thicker,

this leakage is smaller. 'Thick' and 'thin' are relative to the characteristic phonon

interaction length in Al at T=O, which is ~ 720 nm [32], which can be thought of as

the approximate scale for the volume in which the cascade occurs.

Assuming the incident phonon energy is much greater than 2AAl, and assuming

zero phonon leakage back into crystal, Klein [69] finds that a quasiparticle cascade in

Al divides the energy as 55% quasiparticles and 45% sub-gap phonons. P. Brink [32]

has extended this towards lower energy incident phonons (where the quasiparticle

efficiency goes to zero). In the CDMS case, where phonon leakage is significant, Al

quasiparticles capture something less than half of an incident phonon's energy.

6.3 Concentrating Quasiparticles I: Gap Energies

As mentioned, Bogoliubov quasiparticles are essentially chargeless, which means these

excited states are much harder to manipulate than holes and electrons. Varying the

voltage in the crystal is what draws holes and electrons towards the electrodes; how

can we vary the potential energy of the Bogoliubov quasiparticles, to pull them into

a sensor, if they have no charge?

Remember that the superconducting gap energy depends on the transition tem-

perature of the material, specifically 2A(To) = 3.528kBTc. If we could somehow vary

the Tc, then we could create a potential energy gradient, much like an electric poten-

tial gradient, and this is in fact the trick CDMS uses to pull quasiparticles from the

Al film into the sensor.

The gradient is formed by using two materials: Al (an initial material with a high

Tc) and W (a 'trap' material with a low Tc).

Al Tc = 1.180K - 2AAI = 340peV

W Te ~ 80mK 2Aw 20peV

The basic idea is that diffusion propagates the Al quasiparticles to the Al-W interface,

some of the quasiparticles cross the interface, lower in energy to 2Aw, and cannot
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cross back into the high-gap Al. Of course, this is a simplistic picture.

First, a word of explanation about tungsten. Tungsten exists in phases: a and #.

a-tungsten is a body-centered cubic structure, and is the most stable form (it has the

lowest potential energy). #-tungsten forms what is called an 'A15 cubic' structure, in

which each cubic face is filled with two central atoms instead of only one. #-tungsten
is of a slightly higher potential energy, but is metastable, and the two phases can

coexist in a mixture (at least, in the thin-film case of CDMS, not so in the bulk

case), with material properties dependant on the a:0 ratio. a-tungsten has a low

Tc (15mK), while /-tungsten has an unusually high Tc (~600mK for a 40nm film),

and CDMS delicately balances the a:# ratio during fabrication to achieve the desired

tungsten Tc of ~ 8OmK. For details of this tuning, see [62]. This tuning remains the

most delicate step of the CDMS fabrication process.

Tungsten with two phases in a mixture behaves like one material. It has one T,

because the particles of superconductivity (Cooper pairs and Bogoliubov quasiparti-

cles) are extended objects with characteristics reflective of material properties larger

than the W crystal grain size. This scale is the coherence length, and extends to

~100 nm in Al [33] and -340 nm in W [62]. These scales are largely a function of the

material's Fermi velocity (remember that both Cooper pairs and Bogoliubov quasi-

particles are at approximately the Fermi energy). For our purposes, the coherence

length has two main practical effects:

* In W, the Tc is a single value for the mixture of lattice types.

" A W-Al bilayer will have an intermediate Tc (at least, within ± ~ 100 nm of

the interface).

With W, Al, and a W-Al bilayer, then, we can easily achieve three distinct quasi-

particle energies, and we can arrange them so that the quasiparticles get trapped in

sequentially lower-gap materials. At each step down in gap energy, the quasiparticles

give off phonons, and the phonon-quasiparticle cascade discussed earlier is repeated

(with some phonon leakage, as before).

In addition to the material properties, we can vary the gap energy by varying the
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Figure 6-3: A depiction of the physical structures of the quasiparticle gap (bottom)
and their resulting quasiparticle energies (top). Quasiparticles in the aluminum film
gradually diffuse to regions of lower gap energy (right) and become trapped.

temperature of the material. In CDMS, the sensor consists of W with a bias current

flowing through it that heats the electron system up to the tungsten Tc. Referring

back to Figure 6-2, we see that as we increase temperature to Tc, the gap energy

goes smoothly to 0. This positive thermal gradient serves as the last step down in

quasiparticle energy.

Note that more gradual the gradient, the more adiabatic the transition (quasipar-

ticles lower in energy without releasing phonons and starting a quasiparticle-phonon

cascade) and the steeper the gradient, the more energy-conserving the transition.

These trapping ideas are displayed schematically in Figure 6-3.

What is accomplished by the creation and concentration of Bogoliubov quasipar-

ticle excited states is something quite remarkable: phonon energy from a huge volume

has been concentrated into a sensor volume - 10 billion times smaller.
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6.4 Concentrating Quasiparticles II: Diffusion

Here, we lay out a simple model for the diffusion of energy through the Al and into

the W, following closely the understanding of M.Pyle in [92] and [93].

As previously stated, quasiparticles diffuse, and the quasiparticle density nqp

therefor follows the diffusion equation

Onq
t - DAtVnqp (6.4)

at

characterized by a single number, the diffusion constant DAl, with units of [length 2

time- 1]. Similarly, there exists a diffusion constant Dw for the tungsten case. Unfor-

tunately, this is an overly optimistic model, for two reasons:

Trapping The quasiparticle recombination rate is small enough as to be negligi-

ble, but quasiparticles can find film defects (with lower gap energies), where

the quasiparticle has some probability of trapping. (Presumably, the trapped

quasiparticle eventually recombines, but this is beside the point.) Our Al, W,

and Al-W bilayer films each have some trapping time scale (TtrapAl, TtrapW, and

TtrapAl/W). The simple diffusion equation becomes fqP = DVn, "-qp. A moreat qP Ttrap'

natural quantity in practical terms is the trapping length scale, ltrap =VDTtrap.

Crossing impedence If a quasiparticle is successful enough to diffuse to the Al-W

interface, there is still a barrier to crossing over this interface. The physical

origins of this barrier are unclear, but the most likely explanation is a layer

of oxide. CDMS goes to great lengths to avoid an oxide layer growing on

the Al before the W is deposited. Specifically, all Al is covered with a thin

W layer immediately after deposition. The 'active' W layer (which forms the

TESs) is then laid on top of this initial layer. The current best-guess is that

there is in fact an oxide layer separating these two W layers. We can quantify

this crossing impedance using a dimensionless transmission probability fAlw

(where the number of crossing particles is equal to the number of incident

particles times fAl/w). The boundary condition prescribed by this description
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Figure 6-4: The 1998 test device for determining diffusion parameters, described more
fully in the text.

is -DAIVngp -=- [fAl/wogp/2]nq,, where s~ is the unit vector pointing into the

W and og, is the mean quasiparticle velocity.

In 1998, CDMS designed and ran a special test device (shown in Figure 6-4)

specifically to measure the diffusion characteristics of our Al and W films. This

device has been called a 'banana' device, due to the shape of the energy partition

plot. When an event occurs in the Al but very close to one W sensor, quasiparticle

diffusion deposits much of the energy into that one sensor. When an event occurs

more in towards the middle of the Al, the energy is more equally partitioned between

the two sensors, and the overall amount of energy is reduced by quasiparticle trapping

in the Al. Notice, also, that even when an event occurs very close to one of the sensors,

there is some amount of sharing. This sharing is only possible because of a significant

crossing impedance.

The diffusion parameters that best fit the data were 'trapAl 180 ± 10p~m and

fAiw =0.0025 i 0.0005, and with the addition of timing information, DAl = 100 ±

109, TtrapAl 3.2 ± lyus. Applying these results to understanding and designing

other sensors is difficult, though, for the following reasons:

1. It is not known whether the quasiparticle mean free path in Al is limited by

internal scattering or surface scattering. The guess is that diffusion is limited
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by film thickness, meaning that the diffusion constant scales as film thickness

hA1, and ltrapAl = VhAi/150nm[180 ± 10pm].

2. Even normalizing for thickness, there may be little correlation between the DAl

of the 1998 test device and the DA1 of other Al films. It is known from RRR

measurements (comparing resistivity at two drastically different temperatures)

that CDMS Al films (and presumably the Al-W interface as well) are of widely

variable quality.

3. The diffusion characteristics of both the Al-W overlap region and the W itself

are poorly constrained by the 1998 device, which was designed primarily to test

Al properties. It is thought that 1 trapW << ltrapAl and that ltrapAl/W should be

between the two, but this is far from certain. A comparison of two detector

designs that varied the Al-W overlap dimension provides a lower limit that

1trapAl/W > 25pm, with large uncertainties.

Another important thing to understand is that the Al of the 1998 device appears to

have a much shorter quasiparticle trapping timescales than what is achieved by other

research groups. As one example, the CRESST collaboration fabricated similar test

devices and measured rtrapAl ~ 100As [49) (thirty times better). The main difference

here could be the fact that CDMS deposits Al through a sputtering technique (with

smaller crystal grain sizes), whereas other groups use e-beam deposition (with larger

crystal grain sizes). We are limited to sputtering by our desire to deposit the Al and

the W in the same (CDMS-dedicated) machine (the 'Balzers').

M. Pyle has spent considerable effort understanding the effects of material prop-

erties and geometries on the efficiency of the diffusion process, and I encourage the

interested reader to his thesis. Such models are of only limited utility on future design

work, unfortunately, until the model parameters are more reliably known.

We have mentioned many reasons to be depressed about quasiparticle diffusion

in CDMS: the diffusion parameters are largely unconstrained, and those that we do

know are not encouraging. So that we don't leave this topic still feeling so negative,

here are the positives:
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Figure 6-5: The main constraints on the quasiparticle diffusion process: trapping in
Al, the Al-W bilayer, and the (superconducting portion of the) W. The transmission
impedance is not an energy loss itself, but its effect is to increase trapping in the Al.

Figure 6-6: A scanning electron microscope image of an Al-W interface from CDMS
II.
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1. The only way to go is up! The 1998 device was fabricated before the Balzers was

a CDMS-dedicated facility and before the W etch had been better optimized.

It seems plausible (although not proven) to assume that there are now fewer

impurities in our Al, and the W is now removed from the Al more completely.

Any pocket of W on the Al surface could lower the local Tc, creating a trapping

site.

2. Material properties (and the properties of various geometrical effects) are cur-

rently being thoroughly studied by Jeff Yen at Stanford. The results of these

studies will hopefully not only pin down the unknown material constants, but

also test many geometrical effects.

3. Even with all the trapping, the diffusion process is observed to be fairly efficient

(more on this in later chapters).

6.5 Transition Edge Sensors

We have followed the flow of energy from recoiling electron or nucleus all the way

to quasiparticles and electrons cascading towards thermal equilibrium in microscopic

tungsten calorimeters. These sensors are amazing devices themselves, and deserve far

more discussion that we will present here. In its simplest description, a Transition

Edge Sensor (TES) is a superconductor which is kept in the middle of its (sharp)

transition between zero and finite resistance, meaning that a tiny amount of extra

heat can dramatically change the superconductor's resistivity. This technology is one

of the most sensitive calorimetry techniques available. Understanding and optimizing

TESs for a variety of energy ranges and environments is a complex and fruitful area

of research, but here we lay out only the barest of descriptions. Excellent resources

for a deeper discussion include a review article by Irwinet al. [63], the thesis of E.

Figueroa [541, and the recent thesis M. Pyle [92]. (Because the following discussion

follows entirely from these references, citations are omitted.)
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Figure 6-7: A cartoon summarizing the flow of energy through a CDMS detector,
highlighting the cascade processes and the long-lived excited states. Note that after
all the flowing of energy, there are essentially four places the energy can flow to:
thermalization in the substrate (most of the energy), thermalization in the TES, the
creation of lattice defects (in the case of a nuclear recoil), and the trapping of e-h
pairs in lattice defects. Notice, too, that all these processes have run their course on
a millisecond timescale after the recoil.
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Figure 6-8: Two representations of a tungsten transition edge. On the left, we show
a measurement (from the Cabrera Group) of a sensor resistance as a function of tem-
perature (at near-zero bias current). On the right, we illustrate the R(T,I) surface for
a typical CDMS channel. For a given substrate temperature, the blue line represents
those bias conditions available to the system as the bias current is varied. For a given
bias condition (blue dot), we label To, 1o, 6T, and H1, as referred to in the text.

First, we should intuitively understand the magic of how a TES is kept in the

middle of its phase transition. As mentioned earlier, the TES (or at least, the electrons

in the TES) are heated above the temperature of the surrounding thermal bath (i.e.,

the substrate it is sitting on). This heat comes from a current which is flowing through

the TES, which in turn is caused by the application of a constant potential placed

across the TES (the TES is 'voltage-biased'). Imagine placing a small amount of

heat 6P into the TES. The resistance will go up, which (at our fixed voltage) will

then reduce the current, which will reduce the electrical heating and return the TES

to its original resistance. The other direction is also true: a small amount of heat

is removed, the resistance will decrease, the electrical heating will increase, and the

resistance will recover its original value. This basic idea is called 'electro-thermal

feedback'.

Voltage biasing (and the resulting electro-thermal feedback) naturally biases a

TES within its transition in a stable manner. Even more impressive, it can easily

accomplish this trick for many sensors with difference Tc biased in parallel with the

same voltage (the CDMS situation). We have mentioned how our tungsten Tc is
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Figure 6-9: The TES input circuit, in sequentially more realistic representations. On
the left is shown the most basic idea: a TES is voltage-biased in its transition. In
the center, we see the introduction of an inductor to enable an inductively-coupled
readout circuit. And on the right, we add in the mechanism by which we achieve
a voltage-biased state: we current-bias with a low-resistance shunt in parallel to the
TES (and inductor). The center illustration is the Thevenin-equivalent representation
of the realistic circuit to the right, with load resistance RL = RSH + RPAR, and bias
voltage V = IBIASRSH-

delicately balanced during fabrication (through the mixture of two phases). In fact,

there always exists some amount of Tc variation across the face of a detector (fre-

quently, the gradient is radial from center to edge of the substrate). Assuming the

difference in Tc is not too great, given a constant voltage, each TES will naturally

settle into a current specific to that sensor's Tc. By the way, the melding of quasipar-

ticle trapping and an electrothermally-stabilized TES as in CDMS is referred to as

a 'QET' (Quasiparticle-trap-assisted Electrothermal-feedback TES), at least within

the collaboration.

Let's add a little meat to that qualitative description of the feedback mechanism,

and describe both the thermal and electrical natures of the TES as a pair of coupled

differential equations.

First, a simple heat description will read

dT
C = -Pbath + Poule + Pinput (6.5)

dt

where C is the heat capacity of the TES, and the three powers are the heat flowing

from the TES to the bath, the Joule heating from the current through the TES, and

the heat flowing into the TES from the quasiparticle cascades. It should be stressed
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that the thermal system we are discussing is the electron system, which is not at all

in equilibrium with the lattice of the TES at these temperatures. The Pbath is really

the heat flowing within the TES from the electron system to the phonon system (and

then to the substrate lattice), and can be written as Pbath = K(T 5 
- T5th)

Second, a simple electrical description will read

dI
L = V - IRL - IR(TI) (6.6)

dt

where L is the inductance, V is the bias voltage, I is the current through the TES,

and R(T,I) describes the TES resistance as a function of temperature and current.

Let us look at the solutions to these coupled equations in the small signal limit,

where we linearize about the stable bias point described by [Ro, To, 1o].

To expand R(T,I) about the equilibrium position, we simply write

OR OR
R(TI) Ro+ 6T + 61 (6.7)

where the two derivatives (that describe the steepness of the transition with temper-

ature and current) are commonly referred to as a and #, defined as

ToR oOR

Ro OT Ro 01 0

so that R(T,I), expanded about the equilibrium point, now reads

Ro RoCT
R(TI) . Ro + a-6T + 0-6I (6.8)

Continuing the linearization, the heat flow into the bath can be written as Pbath e

Pbatho + G6T, where G = 5KT4 . Similarly, the Joule heating power becomes

Pioule = 12R - Piouieo + 21oRo61 + a Po e6T +0 Po''"61 (6.9)
TO Io

It will serve us later to group together the dimensionless Pgo as the 'low fre-

quency loop gain parameter', L, which tells us the relative magnitude of Joule heating
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power vs. bath cooling power. In other words, given a small heat input, L tells us

if the subsequent cooling is largely the effect of an increased resistance and lowered

Joule heating (large L) or is largely the effect of conduction to the bath (small 1).

Plugging in the linearizations, Equations 6.6 and 6.5 become

doI = [-RL-Ro(1+3) 61 -i -'CG] 6T + []6
t IU [L IT +L L (6.10)

d6T = IoRo(2+3) 1 + G(-1 inu
cit Ic + [c 6T + i] 6Pinput

Several time scales are evident here. The simple thermal time scale T = C/G

appears, telling us the rate of temperature decrease, assuming that the other powers

(the input power and the electrothermal feedback) are zero. Another timescale, the

electrical timescale (basically, L/R), can be seen by setting L to zero, where only

electrical properties matter, and the current decays with time constant

L
Tel -RL + Ro(1+ (6.11)

Another decay constant can be seen in the limit of perfect current biasing (H1 - 0),

where the temperature decays with the time constant

C 1 r
T G -1 1-12 (6.12)

Notice that TI can easily be negative (L > 1), indicative of a non-stable system.

Rewriting the system of equations once more, this time in a matrix format,

-1 ,G 6 6V
- = Tel IoL + (6.13)
dt ( T Io0o0(2+)) --1 6T 6P*pu

Note that Equation 6.13 becomes homogeneous when 6 Pnput and 6V are zero.

TES dynamics, as described even by this clearly simplified small-signal limit in Equa-

tion 6.13, are rich with complexity. Instead of duplicating derivations easily found

in the literature, we here simply quote some results directly useful to the CDMS

circumstance, without derivation.
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First, given a 6-function Pipt, the electrical and thermal time constants combine

to prescribe an electrothermal feedback time constant given by

Tetf = T (6.14)
'C + 1

In the limit of weak feedback (small L), the electrothermal feedback time scale is

just the thermal time constant T (=C/G). In the limit of strong feedback (large C),

the electrothermal feedback time scale is fast, greatly boosting the bandwidth of the

device.

Second, we state the primary beauty of a TES, its extreme energy resolution. The

resolution, described using the full width half maximum, can be written as

LXEFW HM = 2 22 nkBT 2 4kBTOPJouleOTetf (6.15)

This expression assumes a pulse that is shorter than the sensor time constant

(Tetf). This is not the case in CDMS, where the event energy reaches the TES over

time scales in the hundreds of microseconds, longer than the electrothermal feedback

time scale, which is typically on the order of tens of microseconds or less. In the

CDMS situation, where Tinput > Tetf, Equation 6.15 becomes

A EFWHM = 2 21n2 4kBT0 Joule0rinput (6.16)

We see that we pay a resolution price for extending the signal over a longer timescale

(intuitively, we have had more time for more noise to enter into the measurement).

Matt Pyle points out in his recent thesis that by reducing the Tc, we can drastically

increase retf, better matching the sensor time scale to the signal time scale, and that

for Tinpt > Tetf, resolution scales as AEFWHM oC T3. This is a promising direction

for future work, as can be seen from the extrapolation in Figure 6-10.

One significant caveat should be discussed before we wrap up our discussion. We

have assumed that the TES electron system can be described by some temperature
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Figure 6-10: Resolution scaling with operating temperature. From the thesis of M.
Pyle.

To, but in fact some amount of temperature difference exists within the TES, the

magnitude of which depends largely on the thermal conductivity within the TES.

If TES sensors are longer than some maximum length

E. 7 = r2Lor
£max W2 L(6.17)

where LLor = 25 nWQ/K 2 relates electrical conductivity to (electrical) thermal con-

ductivity (in the Wiedemann-Franz Law), E is the tungsten electron-phonon coupling

constant (-0.32 nW/pm3 K5), and p, is the normal resistivity of W, then the ther-

mal coupling from one end of the TES to the other is so weak as to result in phase

separation. Within the TES, there will exist some boundary between normal and

superconducting portions, and the situation is much more complicated than as de-

scribed by all the discussions up to this point. Although the voltage biasing still

supports the TES in a stable way, a heat input will increase the resistance by increas-

ing the spacial extent of the normal portion boundary. Similarly, fluctuations in this

phase boundary introduce a new and quite significant noise term.
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6.6 Now we are ready

We have, in as brief a fashion as possible, summarized the main physical processes

relevant to a CDMS detector. A recoiling electron or nucleus deposits energy in the

target in some ratio of phonons and e-h pairs. The e-h pairs are drifted through

the use of an electric field and this movement is sensed by surface electrodes. The

phonons, including Luke phonons created by the drifting charges, decay in energy,

lengthen in scattering length, and eventually propagate entirely ballistically. When

these phonons encounter an Al surface, they create quasiparticle excitations of the

superconducting state, which then diffuse (aided by an energy gradient) into transition

edge sensors, where the energy is finally thermalized, and where even a tiny input

energy creates a significant and measurable signal. Let us now start discussing the

specifics of CDMS II, and its successor, SuperCDMS.
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Part III

CDMS II
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Chapter 7

Detectors for the CDMS II

Experiment

Figure 7-1: The charge-sensing surface of a mounted CDMS II detector (ZIP).
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Figure 7-2: The general shape of a CDMS II crystal and channel divisions. Also
indicated are the coordinate directions x, y, and z, referred to throughout this thesis.

7.1 Introduction

The design and testing of the detectors for CDMS II was before my time. We discuss

the design here in order to understand the stepping-off point for designing the Super-

CDMS detectors several chapters from now, and also because a basic understanding

of the detector is of course necessary in order to understand the CDMS II analysis

work.

The general layout of the detector is illustrated in Figure 7-2. Four phonon chan-

nels (named 'PA', 'PB', 'PC', and 'PD') divide the 'top' surface into four quadrants.

Each phonon channel is made up of an array of QETs in parallel, as we will soon

discuss. On the 'bottom' side of the detector, two charge electrodes ('Qi' and 'Qo' for

'inner' and 'outer') sense drifting charges and help veto high-radius events. The top

surface is at 0 Volts, the bottom surface at +3 Volts, creating a drift field of 3 V/cm.

The crystal thickness is approximately 1 cm (although polishing and sometimes

re-polishing led to some variation), and the crystal radius is 3.81 cm (1.50 inches).

The cylindrical boundaries are marked by several 'flats' (the largest are at +y) for

ease of handing during the fabrication process, and to indicate the crystal lattice

orientation. All crystals were oriented such that [100] pointed in the z direction (the

easiest orientation to grow the huge boules from which these substrates were cut).

Each detector is held by a hexagonal copper housing, which holds the detector

and a digital interface board ('DIB') to which the detector channels are wirebonded
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Figure 7-3: The arrangement of Si (orange) and Ge (green) detectors into five towers
of six detectors each. Courtesy of Matt Fritts.

and from which the channels are connected to readout boards some distance away at

higher temperature stages.

Both Si and Ge substrates were used, and the complete CDMS II array consisted

of five towers of six detectors each, as illustrated in Figure 7-3. The detectors are

referred to by their position, for example, the 3rd detector from the top of tower 5 is

'T5Z3'.

What is that 'Z'? CDMS detectors are often called 'ZIPs' for Z-sensitive Ionization

and Phonon detectors, emphasizing their ability to determine an event's position in

Z. Various versions of ZIPs have been run over the years, the CDMS II ZIPs are

sometimes referred to as 'oZIPs'.

7.2 Charge

The Qi and Qo electrodes were attached to FET amplifier circuits, shown schemati-

cally in Figure 7-4. The noise expected from this circuit (and additional components

at room temperature) is shown (blue curve) in Figure 7-5, along with the measured

noise for a particular representative detector.

For a given charge channel, pulses are all of identical shape, prescribed by the

L/R time constant of the readout circuit (much slower than the charge propagation

time). In frequency space, these pulses have most of their power below -5 kHz

(the distribution in frequency space matches that of Johnson noise in Figure 7-5).
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Figure 7-4: Simplified schematic of the CDMS charge amplifier. Values for the par-
ticular components are Rb = Rfb = 40 MQ, Cfb = 1 pF, C,.ray ~ 75 pF, and Cc
300 pF. The detector capacitance Cd is 93 pF for channel Qi and 36 pF for Qo.
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Figure 7-5: Representative charge noise for the Qi channel of detector T1Z5 during
r123. The FET noise amplitude has been tuned to 0.44 nV/vdIz to fit the data.
Notice that the model fails significantly at low frequencies ($5 kHz). Courtesy of Jeff
Filippini.
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Figure 7-6: The drift potential, the Qi Ramo potential, and the Qo Ramo potential,
zoomed in to the outermost -cm of radius. Two events are shown, an 'ear' event in
red, and a 'funnel' event in blue. Electrons propagate down, holes propagate up. The
dashed lines represent the path of electrons in Si, where there electrons propagate in
the [100] direction. For further discussion, refer to the text.

Unfortunately, there is also large (and unexplained) noise plateau in this same low

frequency range. This excess low frequency charge noise is presumably part of the

readout electronics design, and has been a persistent issue, significantly degrading

our charge energy resolution.

There are two complications to the measured charge amplitudes. First, the drift

field and the gradient of an individual electrode's Ramo potential can point in different

(even opposite) directions, leading to a negative signal in the electrode. Second, the

oblique propagation in Ge means that electrons follow neither the drift potential nor

the ramo potential, but some third direction prescribed by the [100] orientation of

the crystal lattice. This is illustrated in Figure 7-6.

The most common type ,of event is full charge signal on Qi and no signal on Qo.

As you move to higher radius, the charge signal (the amount of drift work done by the

electrode) is handed off to Qo. At high radius and high Z (blue event in Figure 7-6),

there is significant electron trapping on the sidewall, leading to a reduced signal in

both electrodes. Within the collaboration, we call these events 'funnel' events. At

very high radius and low Z, the electrons propagate in the correct direction when

viewed from the Qo electrode's potential, but in the wrong direction when viewed

from the Qi electrode's potential. This means the electrons produced a negative Qi
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signal (the work done by Qi on the electrons is negative). If there is significant hole

trapping on the sidewall, then the total Qi signal is negative (and the Qo signal is

suppressed). We call such events 'ear' events.

Looking at Figure 7-7, we see in the upper right the Qo signal vs. the Qi signal for

some "Ba calibration data (i.e., all events would be of yield 1 if the charge collection

were complete). Ignore the mismatches axes units. To the right, these inner and

outer charge energies have been normalized by the measured phonon energy, which

collapses most events onto the straight line of complete charge collection (Qi+QO=1).

Two populations become clear in this plot, however, and the correspond to the two

cases illustrated in Figure 7-6. Below, we have performed a simple charge propagation

monte carlo simulation (the simulations have become much better since this plot was

made) to better understand where in the crystal these ear and funnel events originate.

Note that the creation of a funnel population is dependent on significantly oblique

electron propagation, which produces significant electron sidewall trapping. For this

reason, the funnel population only appears in Ge detectors; Si detectors exhibit an

ear but no funnel.

The two channels are (weakly) capacitively coupled, which means that a large

signal in one channel will create a small response in the other (having nothing to do

with charges propagating and inducing currents). This effect can easily be corrected

for, though, one just needs to square off the plot shown in the upper right of of

Figure 7-7, so that the pure Qi and pure Qo populations lay along the axes.

That is all there is to the CDMS II charge measurement. One final remark: looking

at Figure 7-6, one can see that the effect of the electron trapping would have been

much reduced if we had biased the electrodes negatively, so that the holes (which

simply follow the field lines) were attracted to the electrodes, instead of the electrons

(which have a high probability of drifting into the sidewall and being trapped). This is

fundamentally from the asymmetry of the ramo potential: much of the ramo potential

difference occurs close to the electrode. Far from the electrode, if a charge traps or

doesn't trap, the signal is affected very little. In fact, this negative (hole-attracting)

bias state was the intention all along, and how the detectors were run at test facilities.
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Xtalk-corrected qo vs. xtak, posilon-corected q, T4Z2 Run 123
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Figure 7-7: Charge partition plot for Ba133 calibration data of T4Z2 during r123.
The expected position of the 356 keV line is highlighted in red. This same charge
information, normalized by phonon energy, is displayed to the right, where various
features indicative of specific physical regions are apparent. A monte carlo simulation
was performed, and these specific physical regions were mapped out below. For further
discussion, refer to the text.
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Figure 7-8: Because the funnel is a result of the oblique propagation into the sidewall,
the angle of the sidewall (with respect to the crystal lattice) varies the signal seen as
charges drift in the Ramo potentials. Effectively, the angle formed by the electrons
in Figure 7-6 is a minimum when the sidewall and the lattice are aligned (-180, 90,
0, 90), and a maximum when the sidewall and the lattice are 45 degrees offset. The
effect of the (lattice-aligned) major flats at ±90 degrees is clearly seen. Data selection
for this plot of T1Z5 "Ba data was simply quality cuts and that ionization yield was
between 0.3 and 0.75. Plot courtesy of Walter Ogburn.
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For multiple years, the big mystery was 'what is this funnel structure, and why do

we see it at Soudan but not the test facilities?'. If the bias state had been correct

during the CDMS II exposure, then we would have had noticeably higher fiducial

volume fractions (a small improvement 6r at high radius adds as r2 + 6r) and greater

exposure. This is just the first of several errors we'll come across... hindsight is 20-20!

7.3 Phonons

The design of the array of QETs in such a detector has several design drivers. Here

we list the most practically relevant:

Low Heat Capacity Intuitively, if we put the same amount of heat into a smaller

piece of W, it will have a larger affect on the resistance, and thus make for a

better signal-to-noise. Additionaly, the Tetf time scale lengthens with low heat

capacity, bringing the sensor time scale more in line with the (comparatively

slow) phonon arrival time scale and further increasing the signal-to-noise of the

device (eliminating signal and noise at high frequencies where we have no signal).

Heat capacity scales linearly with the W volume. More precisely, it scales with

the volume of electrons in the W sample that are free to accept some small

energy. For this reason, superconducting W does not count towards this heat

capacity; W heat capacity depends only on the non-superconducting volume,

and the boundary between superconducting and 'transition' W lies somewhere

in the thermal gradient between the cold Al-W bilayer and the biased TES.

In practical terms, the design goal here is then to minimize the volume of W

between the TES and the Al fin.

Impedance Matching of the TES array to the the readout circuit (the SQUID

circuit). Given the particular SQUIDs in the CDMS electronics, this dictates

a resistance when biased in the transition of ~200 mQ. We typically bias at

about 1/3 of the way up the transition edge (for the most linear response and so

as to avoid saturation), so the normal resistance of the array can be about 3x
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higher, or ~600 mQ. Again, this is specific to the SQUID circuit and nothing

more general. Also, note that there is some small amount of wiggle room here

since we can vary the resistance simply by varying the bias point (realizing that

a will decrease if we push that point too far down the transition).

Maximize the resistance of each TES so that, given a specific array resistance

of TESs in parallel, that array can contain a maximum number of TESs. The

more TESs are in the array, the easier it is to well cover the crystal surface.

The TES phase separation length scale £max should not be exceeded.

The geometry of the Al-W overlap should maximize quasiparticle transmission.

The Al fins should be large so as to maximize phonon absorption in order to

quickly absorb the phonons while they are most information-rich, before they

randomize through multiple surface interactions.

The Al fins should be short (i.e., no Al should be much farther than ftrapAl from

the Al-W overlap) in order to not absorb phonon energy somewhere where it

will not be measured. The ratio between 'active' and 'passive' metal coverage

directly feeds into the energy resolution of the device.

The array inductance should be low because it sets an L/R electrical timescale,

which should be fast enough to capture all the timing information that we are

interested in. Typically, L/R is much shorter than the rising edge time scale of

the phonon pulses, so this design constraint is typically not a challenge. Note

that typically L/R< retf, so L/R sets the limit primarily on rising edge timing

information and Tetf sets a limit primarily on falling edge timing information.

The design must be robust to small fabrication flaws. This is actually the most

important of all the design motivators: of course, the design absolutely must

be easy to fabricate and fabricate well. Practically, this sets constraints on the

smallest feature size, and the minimum spacings between features.
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Figure 7-9: Simplified circuit diagram of a CDMS II phonon channel. The TES
biasing circuit on the left serves to voltage-bias the TES array, keeping the array
in its transition. The readout circuit on the right amplifies the TES current signal
through the use of an inductively-coupled SQUID. Specific values for CDMS II are
RTES ~ 200mQ, Reh = 25mQ, Rfb = 1200Q, and Li = 250nH(=100Lfb).

We will now continue to lay out these design drivers, both their motivation and

how to achieve them. To aid in this discussion, we show in Figure 7-10 a series of

steps in the evolution of the CDMS II QET array, showing how these design drivers

have been implemented.

The very first QET designed by the collaboration is shown on the left, and illus-

trates many mistakes that were avoided in later designs. First and foremost, the TES

was of extreme length (800 pm), and therefor severely phase-separated. Plugging the

W normal resistivity measured in CDMS films (p, = 1.2 x 10-6Qm), a likely value

for the transition steepness (a = 300), the measured value of the electron-phonon

coupling constant in W (E = 3.2 x 108Wm- 3K-5), and a typical Tc of 80 mK, we

arrive at a phase separation length scale of

emax VaT p

. ir2 (2.44x 10-
8
WQK-

2
)

V300(3.2x 108 Wm- 3 K- 5 )(0.080K) 3 (1.2x 1O-7Qm) (71)
2 00 pm

One can see that later designs kept this general scale in mind.
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Figure 7-10: Five versions of a CDMS-II-style QET layout array, tracing the evolution of the concept. Grey is Al, dark blue
or black is W. A distance from the Al-W overlap of 1.5trapAl is shown in pink, assuming the Al quality matches the 1998
banana device, and EtrapAl scales with the square root of the thickness. For these five designs, the Al film thickness was
[60,100,150,300,300]nm, corresponding to 1 .5ftrapAj distances of [170,220,170,380,380]pm, respectively. All QETs (upper row)
are to the same relative scale, as are the three views of QET arrays (lower row). From left to right are illustrated the first
QET design (Stanford runs 9-15), a later QET design (Stanford runs 31-34), a preliminary oZIP design, the final oZIP design
(as used in CDMS II), and lastly a further evolution of the design ('mZIP'). Further discussion in the text. Significantly drawn
from the theses of M.Pyle and T.Saab.
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Naively, one would think that the thermal phase separation length scale would

depend entirely on how strong the thermal link is between one end of the TES and

the other; in other words, a thicker fatter TES should have a shorter Emax. In reality,

however, the stronger thermal coupling is offset by the larger current biasing the

larger TES. The phase separation length is a material property rather than geometric

property, and which can be increased only through the following strategies:

1. Reducing a. Unfortunately, because this strategy is essentially just lowering

the sensitivity of the TES to changes in temperature, reducing a also pay a

significant penalty in threshold and resolution. In fact, I should mention here

that currently our a values are very poorly known. They could be anywhere

from - 125 to ~ 500, depending on what method one uses to measure them,

which puts a similarly large uncertainty in our predicted Cmax. Depressingly,

our collaboration has never once made a non-phase-separated device, and we

have always had reduced sensitivity as a result.

2. Reducing the Tc. Because Cmax oc T 3/ 2 , and because thermal Johnson noise

goes down with Tc also, reducing Tc is clearly a powerful strategy. We are

limited here in the design by the operating temperature of the fridge. In or-

der to have low thermal fluctuation noise between the bath and the TES, we

want the W electron temperature to be significantly above the bath (W lattice)

temperature, which is typically -40 mK at Soudan.

Referring again to the first-ever QET, we can see a second major flaw. The Al-

W overlap region was efficient at trapping quasiparticles because no Al was very

far from the Al-W overlap, but it was extremely inefficient at transmitting those

quasiparticles from the Al-W overlap to the TES. The thin linear overlap presumably

has a quite variable gap energy, which could easily trap quasiparticles at local minima.

Additionally, any Al-W bilayer will have a significantly shorter fetap than a simple Al.

If you want to diffuse a quasiparticle a certain distance, it is most efficient to have as

much of that distance be pure Al as possible.
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Skipping over some intermediate designs, the second QET shown in Figure 7-10

is much improved. The TES is now short, much less phase-separated. The Al-W

overlap is shorter, too, for less trapping. Here, the largest clear flaw is the extreme

length of the W connection between the Al-W overlap and the TES. It is true that

this W contributes needlessly to an increased heat capacity, but the main problem is

just the wasted space near the TES. Matt Pyle has called the area surrounding the

TES "beachfront property", because this is the most valuable area on the detector

face, area where any Al present would be maximally efficient. In this second design,

the beachfront property is left entirely empty.

The third (huge) QET has fully developed this beachfront property; the inner edge

of the Al is pushed as close to the TES as possible, and the W connector between

the overlap and the TES is as short as possible, both given fabrication constraints.

This third QET has Al fins so large that an array of such QETs is 'close-packed',

resulting in a maximized Al surface coverage of near 100%. Unfortunately, given the

finite EtrapAl (here, the Al thickness is 150nm, SO £trapAl ~~ 180pm), only a fraction of

this Al is active Al, and a great majority of the Al area is passive. A bare metal-free

surface would in fact result in an array with much superior energy resolution, because

a phonon incident on this bare surface would reflect and then later be absorbed (on

active Al) on its second (or third, or fourth...) interaction with a surface.

Assuming we know EtrapAl, what is the optimal length for an Al fin? In Figure 7-10,

the pink dashed lines represent a distance of 1.5 ,trapAl, because this was the rough rule

of thumb that was understood for many years. Note that the 1. 5etrapAl distance is seen

to constantly increase in the evolution of CDMS I-style QETs; here we are assuming

etrapAl is proportional to the film thickness (though this hasn't been proven in the

CDMS case). Matt Pyle has a quantitative argument[92] for an optimal fin length

of 1.1EtrapAl, assuming energy resolution is the figure of merit. The energy-resolution

optimization serves as a minimum-length case, then. As we increase the length from

there, we very gradually lose energy resolution while linearly increasing the absorption

rate, and thus the timing and position information content. How we optimize this fin

length, then, depends on what information we are trying to extract from the phonon
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signal. If energy is all-important, then the fin length should be perhaps 1.E ltrapAi,

if instead we want to capture as many phonons on their first surface interaction as

possible, then the fin length should be close-packed fin length, and if we want both

energy and other information, then the length should be intermediate. Thus, we

arrive back at something like the 1.5ftrapAl rule of thumb, as a way to balance Al

efficiency and Al coverage.

This optimization between coverage and efficiency is the improvement between the

third QET design and the fourth QET design; in the fourth design the Al coverage is

much decreased (- 100% -+ ~ 35%) but the active-to-passive ratio is vastly increased

(~ 3 : 10 -~- 9 : 10). An incident phonon only has a 35% chance of finding Al on

its first first surface interaction, but this phonon's energy has a high probability of

eventually reaching the TES (or, at least, higher than the earlier design). The 4th

design in Figure 7-10 was that used for the CDMS II experiment, the topic of the

next several chapters.

While CDMS II collected data, design work continued on making the CDMS II

idea better and better. This strategy reached its apex with the so-called 'mZIP'

illustrated at the right of Figure 7-10. The 'm' stands for 'maximized', because the

Al fins were finally placed such that each TES had a maximum amount of active Al

coverage. Note that, in CDMS II, only about one third of the area within the 1.5ftrapAl

distance was filled in with Al. Again taking advantage of our 20-20 hindsight, the

entire CDMS II experiment could have had better energy resolution, 3 x better timing

information, and all-around significantly improved scientific reach if we (continuing

the beachfront property philosophy) squeezed as much aluminum as close to the

TES as possible, as the mZIP design does. There is, in fact, still a small design flaw

even in the mZIP QET. Because the width of these fins decreases towards the TES,

the quasiparticle diffusion towards the TES is suppressed by that width, and the fin

diffusion efficiency is somewhat suppressed, implying a fin length somewhat shorter

than the 1.5etrapAl rule of thumb.

We have just spent quite some time discussing the fin length. Any such discus-

sion should be taken with the huge grain of salt, however, that we only measured
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CtrapAl once, and it presumably varies significantly from depending on subtle details

of the deposition (sputtering) process. So, we shouldn't think too hard about this

optimization until we have a better idea of what ftrapAl actually is.

One of the design drivers mentioned above is that the array resistance has a lower

bound set by the SQUID impedance. With this lower limit on the array's (biased)

resistance of -200 m, we in effect have created an upper limit on the number of

TESs we can place in parallel in a single channel. In fact, it is this limit on the density

of TESs on the detector face that forces us to think about Al fin length at all. Ideally,

we would just have a low-impedance SQUID loop, a matched low-impedance QET

array composed of a huge number of QETs, and then we could have extremely short

(zero-trapping) Al fins that still provide near complete Al coverage. In other words, if

the SQUID impedance were low enough, we would have significantly increased energy

resolution and timing information, without compromise.

But, this is not the situation we find ourselves in. The SQUID loop should be

lower-impedance in the future (at SNOLAB), but for now the only way to increase

the QET density is to increase the resistance of each TES. Unfortunately, we are up

against a wall here, too. The TES dimensions are bounded in all three dimensions.

In the direction of current flow, it is the phase separation length (-200pm) that

sets the length. The film thickness is set by fabrication (limited by the shortest

possible deposition in the Balzers) to be no thinner than 40nm. This film thickness

results in a sheet resistance of ~ 3.3Q/sq, by the way. The last dimension, width,

is similarly constrained by fabrication capabilities. In CDMS II and before, optical

stepper photolithography was used to pattern the W, resulting a smallest feature

size of ~ 1pm. After CDMS II, the stepper strategy was discarded for a full-wafer

strategy using with lower patterning resolution, resulting in a smallest feature size

of ~ 2.4pm. This is why there are fewer QETs per area between CDMS II (the 4th

design in Figure 7-10) and the mZIP (5th design). The TESs have become wider,

thus of lower resistance, and so fewer can be placed per channel.

In general then, we have no freedom at all in the dimensions of the TES. We push

the design in all three directions towards higher resistance, till we meet one of the
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Figure 7-11: Diagram and SEM of the CDMS II QET, to illustrate the interface
between the TES and the fins. Dimensions are in microns.

afor-mentioned upper or lower limits. we push TES array designs against all three

of these constraints, in order to maximize the resistance per TES, thus maximizing

the number of TESs per channel, and thus maximizing the instrumented (active Al)

surface area. We push the fabrication towards thin films and narrow patterning, and

we tempt fate by hoping the Tc and a of the film result in an Emax slightly longer

than the design length. In CDMS II, the TES is 40nmx1tmx250pm.

Figure 7-11 shows a zoomed in view of the CDMS II QET, where we can better

see the interface between the Al fins and the TES. One can see the extremely narrow

(1[tm) TES is actually dwarfed by the tungsten of the fin overlap and the fin connector.

The idea is that we want to minimize the (electrical) conductivity of the TES, but we

want to maximize the (quasiparticle) conductivity of the overlap and connector. The

overlap is the full width of the fin (50pm) in order to have the maximum length to the

step down in gap energy (to boost the probability of quasiparticle finding that step).

Once the quasiparticle is in the Al-W overlap, it is very easy to trap, so no portion

of the overlap is very far from the next step down (only 3.5pm to the monolayer W

with a lower gap energy). The length of the 'neck' of the connector (6tm) is as short

as possible, set by fabrication constraints.
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In other words, the fin connector sounds reasonably well designed to maximize

quasiparticle diffusion. Remember, that the trapping length scale in both the Al-W

overlap and the bare W are largely unknown, so a detailed optimization is impossible.

On the other hand, because we have made the fin connector large and strongly

coupled to the TES, the fin connector should be expected to have some strong in-

fluence on the TES dynamics. For example, the heat capacity of the TES should be

increased by that portion of the W which is close enough to the TES to still have some

unpaired electrons (and hence some electron heat capacity). The electron system of

the fin connector has a temperature influenced by its three thermal links:

1. As just stated, given the wide 'neck' (and lack of any material interface barrier)

the connector is strongly thermally coupled to the TES.

2. The W and the Al fin are both metal, so presumably their electron systems are

in thermal contact to some degree (though we learned from the banana device

that there is some very significant interface barrier here).

3. The electron system of the fin connector and the bath (the lattice system of the

fin connector) have a thermal link to the bath g of magnitude VE(Teec -

Tlattice), where Vwns is the volume of the (non-superconducting) tungsten.

Importantly, the volume of the fin connector actually dominates the total W volume.

This makes the phase separation issue much worse, a fact that was not fully under-

stood in the CDMS II design process. Intuitively, a localized Joule heating in the

TES has two pathways through which to flow: it can spread out within the TES

through the thermal conductivity of the TES's electron system with itself gw or it

can exit the electron system into the lattice system through the thermal conductivity

of the electrons to the lattice (bath) gb. The phase separation length scale is pro-

portional to the ratio of these two thermal conductivities. If the heat goes to the

lattice rather than spreading out within the TES, then the phase separation effect

is amplified. Notice that both of the relevant conductivities are here expressed as

material quantities of the tungsten (rather than total quantities for a given TES).

114



gw can be obtained from tungsten's resistivity, following the Wiedemann-Franz law

gw = LLorT/pnl, where p, is the normal state resistivity of tungsten (1.2 x 10-7Qm)

and LLor is the Lorenz constant (r 2k3- 1 e-2 = 25nWQK 2 ). Assuming T>> T

then go can expressed near the bias point as ET- 1, where the electron temperature

Te is T0 at the TES, and gradually lower with distance from the TES.

The phase separation length scale can be written as

gw _ Lor 2 LLor 2
"Yb " g(L - 1) [nET (L - 1 [ pnE T, (

assuming that we are in the strong electrothermal feedback regime (L >> 1) and

Tb is significantly lower than Te. Adjusting for the fins, g -+ gb Z (where VTES

is the volume of the TES and Vwns is the total total (non-superconducting) W vol-

ume (mostly in the fins, in CDMS II). Note that gw does not change, because this

conductivity is only along the TES. Adjusting Equation 7.2, then, we have

Cmax -+ fmax VTES (7.3)
Vwns

Quickly running through the dimensions from Figure 7-11, we see that the TES is only

~1/8 of the non-overlap W volume. Some large fraction f,, of the fin connector is

non-superconducting, and the baseline phase separation length at 80 mK was 200pm,

so
1

Emax = [200[tm] 1 (7.4)

Worst case (fn, -1), the CDMS II fin connectors reduce the phase separation length

at 80 mK to only -70pum! Of course, if we realize that some amount of W with be

superconducting from the proximity effect, and nearly all of the W will have a lower

temperature than 80 mK, our fn, fudge factor should probably be significant, perhaps

1/2, pushing the phase separation length back up to ~140pm. In any case, this all

goes to show that we were certainly phase separated in CDMS II, and we certainly

need to fight more aggressively for more thermally uniform TESs in future designs.
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7.4 QET Efficiency

As energy flows from the phonon system into quasiparticles in the fins, and then fi-

nally cascading into the TES, there are many inefficiencies. Phonons can be absorbed

by passive metal, particularly metal on the electrode surface, where the energy will

go unmeasured. If the phonon is absorbed in an active Al fin, the initial phonon-

quasiparticle cascade only converts about 55% of the energy into quasiparticles. Sim-

ilar losses occur in the phonon-quasiparticle cascades when quasiparticles diffuse to

lower-gap regions, and drop from 2 AAI to 2 AAl-W, and then again when they drop

to 2Aw. Also significant are trapping losses in both the Al and the Al-W bilayer. All

these efficiencies are independent and the final efficiency is the simple product. The

overall efficiency, then, must be quite low.

Walter Ogburn used CDMS II phonon pulse amplitudes to estimate this efficiency.

Tracing the total combined amplification of the room temperature electronics, the

SQUID circuit, and finally the turns ratio in the inductive coupling, one can calculate

the actual current flowing through the TES, which then can be converted into an input

power into the TES. In the first 12 detectors fabricated for CDMS II, the best Ge

detector had a total measured efficiency of 2.7%, and the best Si detector had a total

measured efficiency of 3.7%. In retrospect, this difference between Ge and Si, which

is still seen in current devices, is real, and is most likely due to the transmission

efficiency of phonons into the Al (which is apparently higher for Si).

Efficiencies in the single digits may sound depressing, but let's think again of

what we have done. The phonon energy from a ~250g object has been absorbed

before it thermalizes, in a few hundred ps, and transferred to an array of microscopic

calorimeters with a total calorimeter mass of - 1p tg, approaching a concentration

factor of one billion. Achieving this level of energy concentration is something to be

amazed by, even with a 2.7% efficiency.
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Figure 7-12: Plots by Walter Ogburn, showing the an event in all four phonon chan-
nels, after the absolute calibration has been applied (such that the units are thermal
power into the TES). Taking the integral of such pulses to find the total energy input,
one can compare the event energy (for this study, all events were -100 keV), with
the total heat in the TES, which turned out to be -2.7 keV. Both plots here are for
T2Z5, the most efficient Ge detector from the first two towers.
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Chapter 8

CDMS II Analysis

This is the first of several chapters discussing CDMS II analysis (this chapter, then

the main analysis, then the low energy analysis). Many theses have already been

written that give thorough general discussions of these topics. My goal, rather than

to simply rehash the same material, will be to highlight things I am proud of, things

I think are interesting, or things that are relevant to understanding the situation of

the later SuperCDMS detector (Part 3).

The basic questions for this chapter are

1. What information do we expect to be encoded in the pulse data of a CDMS II

event (four phonon pulse and two charge pulses)?

2. How can we best extract useful reduced quantities from that pulse data?

3. How can we manipulate those reduced quantities to best get at the fundamental

physical description of an event (position, energy, charge yield)?

8.1 CDMS II Pulses

We start with charge, the far simpler case. As previously mentioned, every charge

pulse has exactly the same shape. We do not sample the channels at high enough of a

frequency to watch the charges drift, we only see the total integral amount of induced

current in the electrodes. For the two channels, then, we have only three real pieces
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of information: amplitude in Qi, amplitude in Qo, and the charge starttime (the two

channels will have nearly identical starttimes, again from the low sampling rate).

The four phonon channels, on the other hand, contain a wealth of information.

In fact, the primary challenge of CDMS II analysis was disentangling the many over-

lapping types of information coded into the phonon pulses.

Phonons propagate slowly enough (particularly in the initial diffusive stages of an

event) that there should be some delay after the (for our purposes, instantaneous)

charge start time before the phonon pulses start to rise out of the noise floor. Not

only would we expect a charge-phonon delay, but we should expect similar arrival

time delays from channel-to-channel.

Phonons are absorbed quickly enough at the surface that we expect the total

amplitude of the phonon pulse in nearby ('primary') channels to be significantly

larger than the phonon pulses in the other three channels. This does not depend

on the phonons being absorbed in their first or second surface interaction, because

of the diffusive nature of the phonons. Imagine an event occurring near a surface

with partial Al coverage. If the phonons have a short mean free path, they will

interact with the local surface many times, eventually being absorbed. Because of

the quasidiffusive propagation, 'solid angle' arguments don't dictate relative phonon

absorption by different channels, rather the question is largely 'how long is the mean

free path (inversely, how frequent are surface interactions) when the phonons reach

that channel?'

Luke phonons should be expected to make their presence known, also. Firstly,

the production of Luke phonons will add extra energy to the phonon signal that we

measure, so that

Ptot Pprimary + PLuke = Pprimary + [Neh]eVbias (8.1)

with Vias in CDMS II being 1V (over a thickness of 1 cm). So, the amount of Luke

phonon production depends on the charge yield of the event. Mapping from Pot

(what we measure) to Pprimary (the energy of the recoil, what we are interested in
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knowning) requires that Neh (i.e., the ionization yield) be measured.

Taking the example of an electron recoil in Ge, a 10 keV events will produce

r~_J3,380 e-h pairs (with some variation predicted by the Fano statistics of the electronic

cascade process). With Vbias = 3V, then

PtotER =10 keV + [3, 380]e3V = 10 keV + 10 keV (8.2)

and we see that an electron recoil (of in fact any energy) has Pprimary = PLuke. This

balance is not a coincidence; the 3V bias state was actually chosen specifically such

that the charge trapping would be minimized without allowing PLuke to dominate the

phonon signal. Note that for a nuclear recoil,

PtotNR = 10 keV + Y(10keV)[3,3801e3V 10 keV + Y(10keV)10 keV (8-3)

where Y(OkeV) is the ionization yield for a nuclear recoil at 10 keV. Remember that

Y = 1 for electron recoils (by definition).

Luke phonons have more effects than simply adding on to the total phonon signal.

Because they are emitted along the entire length of the charge propagation path,

presumably some Luke phonons will be created very close to the phonon sensors and

will therefor 'jump start' the observed pulse. Luke phonons are also emitted at lower

energies than primary phonons, and thus should be expected to reach the surfaces

first for that reason as well.

We have already mentioned several effects that alter the rising edge slope: the

closeness of the event to the channel (in x, y, and z), and the amount of luke phonons

produced. Surface events are a special case in two ways: the phonon cascade is

accelerated here, both by the surface of the Ge (because the lattice no longer exists,

the phonon must change, and necessarily in a downconverting direction) and any

metal layer present (where the phonon downconversion process can similarly proceed

much faster). The a-Si layer, too, possibly speeds up the downconversion. In short,

if high-energy diffusive phonons are created near a surface, they become ballistic

faster than in the bulk, so we expect surface events to have different phonon pulse
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shapes. (We also, because of charge trapping at the surface, would expect the Luke

contribution and thus Ptt to be somewhat suppressed.

The rising edge is determined by proximity to sensors, the Luke contribution,

and surface effects. What determines the falling edge shapes? During the running

of CDMS II, it was thought that TES dynamics (i.e., Teft) played a significant roll

in shaping the falling edge of the pulse. In hindsight, though, it seems that the

falling slope in CDMS II was defined largely by the phonon input power (like the

rising edge). At late times (hundreds of ps), when the phonons are entirely ballistic,

this input power is a simple exponential (the rate of phonons being absorbed by the

Al is proportional to the total rate of phonon surface interactions, which is simply

proportional to the total number of phonons). At earlier times, while the phonons

are diffusive, the absorption rate is proportional not only to the number of phonons,

but also inversely proportional to the square root of the mean free path of those

phonons. So, we should expect an initially steep but mellowing exponential decay

(while surface interactions per phonon are extremely frequent) stabilizing to some

fixed slower exponential decay once the downconversion has reached the ballistic

state.

As we have emphasized several times previously, the phonon system contains the

most information at the start of an event, and information is gradually lost as the

phonons diffuse, interact, and homogenize inside the crystal. The rising edge of

the pulse, therefor, is where we will pull all the useful phonon timing information.

The combined result of the position, yield, and surface-interaction effects is hard to

predict, and we won't try... let's just define some quantities that describe pulses, and

see what the observable results of all these physical effects turn out to be.

8.2 Optimal Filtering

We have already mentioned that we will need some measures of phonon timing, par-

ticularly on the rising edge, but let's take a step back for a moment and just ask

'what is the optimal way to measure the amplitude of a pulse'?
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Figure 8-1: A typical CDMS II event. Notice the short timescale of the charge pulse
rise (representing the drift time of the charge carriers), the significant delay before the
primary phonon channel(s) start to rise (representing the initial slow quasidiffusion
of phonons) and the quite significant delay and smaller amplitude of the non-primary
phonon channels. Adapted from a plot by Jeff Filippini.

CDMS makes frequent use of so-called 'optimal filtering' to measure pulse ampli-

tudes. The basic idea here is that pulse information inhabits certain frequencies, the

noise that gets in the way of precise measurement inhabits certain frequencies, and we

can maximize energy resolution by weighting frequencies according to the expected

signal-to-noise of that frequency. Suffice it to say that CDMS II optimal filtering

consists of

Inputs

" A raw trace containing both noise and signal.

" A template for the noise, which is typically just some measured noise traces. The

frequencies are assumed to have no phase correlations, so this noise template

can be simply the PSD of the noise.

" A template for the signal, which is typically just some averaged combination of

pulses (averaged, in order to eliminate the noise). Note that here, the frequen-
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cies are importantly correlated, to give the pulse its overall shape in the time

domain.

Outputs

" A pulse amplitude.

" A pulse start-time.

* A chisq measure of the similarity of the data trace to the pulse template.

Given a signal template A(t) and a noise power spectral density J(f), the signal

takes the form S(t) = aA(t) + N(t), where a is the signal amplitude and N(t) is noise

in the time domain satisfying J(f) =(N 2 (f )) (where the notation N represents the

Fourier transform of N). We want to vary a to find the description that best fits

the data. The quantity we want to minimize in this fitting procedure is a frequency-

domain X2  a written as

X2(a) = S- - ae 2 itfA1 2  (8.4)
n i
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which, when minimized, results in a best-fit amplitude d of

& = A " (8.5)

Notice that this equation for & is simple to compute. We are essentially applying a

'filter' of the form Z, S (divided by a constant).

This finds the optimal value of a, but we actually hope to minimize X2 in the 2D

space of a and to. We won't prove this fact here (see J. Filippini's or S. Golwala's

theses) but the values of to which extremize X2(a, to) are also the values of to that ex-

tremize &(to). It turns out (again, we won't show this either) that computing X2(a, to)

is quite computationally difficult, so instead, CDMS has traditionally computed & for

many values of to, and then choose the maximum &(to) (rather than the minimum

X2. Foreshadowing: notice that in the case of multiple extrema, the maximum d(to)

can correspond to any of the multiple minima of x 2 (not necessarily the smallest

minimum).

Another important caveat: notice that we have specifically mentioned that we

expect phonon pulse shape variation, but that the optimal filter strategy depends

on a pulse template of a specific shape. Pulses of slightly different shapes (but the

same total integral) will be assigned somewhat different amplitudes by the optimal

filter. This is not the case for charge, where the pulse shapes are nearly identical for

each pulse, shaped by the readout electronics rather than the detector. Rather than

averaging together a variety of different pulse shapes, the CDMS II phonon pulse

template was an analytical function: a double-exponential defined by a rising and

falling time constant, as A(t) = Aa(1 - et/Tris )e"t/TJ .

Using the optimal filter strategy, each CDMS II inner charge channel has a res-

olution of -250-500 eV, depending on detector. The combined signal from the four

phonon channels if of resolution -100-500 eV. These resolutions also vary from run to

run, depending on noise conditions. There is a trend that the later towers have worse

phonon resolution (for unknown reasons) and silicon detectors have better phonon

resolution (due to a closer match between the faster pulse shape in Si and the -etf of
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Figure 8-3: Optimal filter energy resolutions for CDMS II, for total phonon energy
(left) and inner charge energy (right). Circles indicate germanium detectors, crosses
are silicon detectors. Plotted by D. Moore.

the sensors). A summary of resolutions is shown in Figure 8-3

8.3 Energy and Ionization Yield

The two optimal filter charge amplitudes can be combined (taking account of crosstalk)

into a total charge amplitude, and the four phonon amplitudes can be combined into

a total phonon amplitude. For the phonon measurement, if one combines the four raw

pulses together before applying the phonon optimal filter, both the standard noise

and the position-variation noise are reduced.

These quantities in electrical units must be scaled by calibration factors before

they become energies. The foundation of this calibration is a '33Ba gamma source,

particularly its 356 keV peak. As shown in Figure 8-4, the charge signal showed some

variation in amplitude with position, an effect that has never been fully understood.

The effect is easily corrected for, however, using phonon-based position measures.

The phonon channels are similarly scaled such that, given a statistically significant

amount of issBa events, each of the four channels contains roughly 1/4 of the scaled

phonon energy, and the overall sum is scaled to a keV scale using the 356 keV line.

The measured phonon energy is of course the sum of of the recoil energy and the
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Figure 8-4: Two important steps in the calibration of the charge amplitude. On the
left, we show the variation of charge amplitude with y position (determined through
phonon relative timing between channels). A correction spline is fitted to the 356 keV
peak as a function of position (in x also, not shown). The right plot shows the scaled
1 33Ba calibration data, both before (green) and after (black) this position correction,
with several gamma lines indicated. Both plots by J. Filippini.

Luke phonon energy. To obtain the recoil energy from our measurements, then, we

subtract PLuke from P 0t, as

Vb
Precoi = Pot - PLuke - Ptot - Qtot E r (8.6)

Echarge

where Qtot is the sum of the two charge channel energies, Vb is the bias voltage

(typically 3V), and Echarge is an energy per Coulomb of charge. If the charge fiducial

cut is applied, meaning that no energy is deposited in the outer charge channel, then

the charge noise can be reduced by using the signal from only the inner channel, as

Precoil = Ptot - Qinner Vb (8.7)
Echarge
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8.4 Phonon-Based Position

The 'Z' in 'ZIP' emphasizes the position-measuring ability of the four independent

phonon channels to determine event position within the crystal. Of course, since the

four channels are arranged in an x-y array, the measurement of position in x and y

is far superior to the measurement in z, but some z-position ability does exist, as we

will see.

The four individual phonon optimal filter amplitudes can be compared, to judge

position based on phonon energy partition. For an x position, we compare the fraction

in the right two channels with the left two channels, and similarly for y.

x partition = (pc-pd)-(pa-pb) (8.8)
pa+bp+pc+pd

y partition = (pa~pd)-(pb+pc) (8.9)
pa+bp+pc+pd

A radial partition quantity can be defined as r partition = V(x partition)2 + (y partition) 2.

The arrival time of the phonon pulse at the four phonon channels (relative delay)

can be similarly compared to measure x-y position. The 20% time on each phonon

pulse was found to give the best signal-to-noise on this position measurement. In the

primary channel, the 20% point seems to be determined by the Luke phonon arrival

time, whereas in non-primary channels, the 20% point reflects the slow diffusion of

the primary component. X and y positions based on delay were derived comparing

the primary channel with the neighboring channel (in either x or y). For example,

given an event with primary channel A,

x delay = A20%- D 20% (8.10)

y delay = B20% - A20% (8.11)

(similarly for each of the other three quadrants). A radial delay can be defined as
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rdelay = V(x delay) 2 + (y delay) 2 and a radial angle can be similarly defined.

The partition space and the delay space are illustrated in the upper portion of

Figure 8-5. Notice that the outermost events (in red) are not at the outermost

portions of the distributions. This scary 'foldback' in the two spacial quantities can

be unfolded by combining partition and delay information, as seen in the lower portion

of the figure.

Let's try to make sense of the shape we see in the lower-right of Figure 8-5. At low

radius, timing and partition both trace the true radial position, as naively expected.

As radial position increases, the first effect to appear is an artificial decrease in par-

tition radius, i. e., phonon energy is more shared with non-primary channels than

expected. Our understanding is that the phonons from high-radius events reflect off

the sidewall, thereby becoming more evenly distributed in the crystal. The folding

back in delay space is a smaller effect; it starts being evident at a somewhat higher

radius, and is a smaller magnitude than the foldback in partition. The understanding

here is that not only are the phonons reflecting off the sidewall, but, because they

reach the sidewall while still of high energy (diffusive), they downconvert due to side-

wall interactions. Because they become ballistic sooner, they reach the non-primary

channels sooner, and the delay between channels is suppressed. The curvature of the

shape in Figure 8-5, then, involves the interplay of many aspects of phonon physics

in the detector: downconversion in the bulk, downconversion at the sidewall, and

varying propagation velocities with energy.

We have focused on understanding how the radial position maps onto Figure 8-5

and why. Beautifully, the third dimension of position, z, can also be extracted from

this partition-delay space (though with worse fidelity). Let's compare an event near

the phonon surface to one near the charge surface (but at the same x-y position).

Near the phonon surface, the partition will be maximized because the phonons will

be highly diffusive at the sensors and therefor highly absorbed by the Al. The phonons

from the charge-side event, on the other hand, will have significantly downconverted

on their 1cm voyage to the sensors, and will be fairly ballistic by that time, more eas-

ily spreading throughout the crystal and producing a lower partition effect. In other
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words, the phonon side is more partitioned and the charge side is less partitioned.

In order to separate Z using a partition-delay space, though, these two quantities

must behave differently, and in fact partition and delay are anti-correlated in Z. The

phonon-side event will have a suppressed delay and the charge-side event will have an

enhanced delay. In the primary channel, any Z position will have the same 20% time,

because the primary pulse 20% time is is dominated by the Luke contribution (pro-

duced nearly instantaneously with the event, at all Z, because of charge propagation.

The phonons from the recoil itself, on the other hand, dominate the non-primary

channels rise time, and these phonons take longer to reach those phonon channels

from the charge side than from the phonon side (just due to the distance of travel).

Till now, we have been discussing phonon quantities of "aBa calibration, which,

like the vast majority of CDMS background events, are gammas. The partition and

timing quantities change when the luke phonon population is smaller (i. e., for nuclear

recoils or for surface events with significant trapping) and also for events extremely

near the surface (within a micron or so), where the initial phonon downconversion is

altered by the surface.

Phonon-Side Surface Events have an exaggerated x-y partition, due to their ex-

tremely high phonon energies at the sensor, leading to extremely short mean

free path lengths and extremely high absorption rates. The interactions with

the surface also speed up the downconversion, meaning that those phonons that

are not immediately absorbed propagate quickly to the non-primary channels,

shrinking the timing difference and reducing the delay radius.

Charge-Side Surface Events similarly have accelerated downconversion, leading

to faster (ballistic) expansion. These phonons reach the non-primary channels

faster, reducing the radial delay.

Nuclear Recoil Events have reduced Luke contribution, changing the 'shrimp' plot

in many ways. In the most general terms, though, the width of the shrimp is

increased due to an exaggeration of the Z-dependent effects. This is because

Luke phonons are emitted at all Z, so suppressing this Z-independent portion
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of the phonons frees the recoil phonons (emitted at a particular Z) to dominate

the observed characteristics.

These effects are illustrated in a cartoon, Figure 8-6.

At no point in the data analysis do we map these partition and delay quantities to

actual physical position. This is of course possible, especially with the aid of a monte

carlo simulation, but adds no new information or additional discrimination potential

to the analysis.

8.5 Normalization by position

As should be clear by now, phonon physics of diffusion and downconversion create

a great many position-dependent effects within a CDMS II detector. This is both a

blessing and a curse; events within several microns of the top and bottom surface in

z (dangerous for their reduced charge yield) can hope to be tagged by their position-

dependent phonon physics, but this difference must be deconvolved with the equally

large differences in phonon physics due to x and y variations.

We have discussed how phonon and charge physics creates differences in high-

radius events. There are additional (and sometimes equally important) position de-

pendencies arising from from spacial variation in the QET array. The transition

temperature of the TES sensors is a very delicate parameter, very sensitive to slight

differences in the mixture of the two phases of W, the thickness of W, impurities,

tension in the W film, and any other even subtler effect that can be imagined. It is

impossible to keep the T0 exactly the same over the surface of the detector, which

means that the heat capacity, saturation energy, electrothermal feedback time Tetf,

and other important characteristics vary over the detector surface.

Determining if an event is at high radius (and therefor potentially of suppressed

yield) is easy, using the outer charge electrode as a veto. Determining if an event is of

extreme Z (the only other source of yield suppression is hard in this detector, and the

focus of much of the analysis. The only way to distinguish these extreme-Z surface

events from other events is based on their pulse shape, as seen in Figure 8-7. But
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In the upper left, the electron recoil distribution is shown, labeled by position within
the detector. In the upper right, nuclear recoil and surface event populations are
added to the cartoon, showing their differing distributions. The lower row shows the
test results from detector G31 at Berkeley, showing electron recoils, nuclear recoils,
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133

j



1.0

Surface

4-- Bulk
0

0 0.5-

0.

t
0

L
0

0 10 20 30 40
Time [ps]
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these subtle variations in pulse shape are at least as great as the differences caused

by x-y positional variation. We have to normalize by x-y position, so that the subtle

z-position differences are all that remain. Then, we can cut on our z-position variable

to have a clean sample of non-surface events on which to perform our dark matter

search.

How do we normalize by x-y position? For a thorough explanation, see the thesis

of Z. Ahmed. Here, we describe the steps qualitatively:

1. Use electron recoil calibration data to populate the [x partition, y partition, r

delay] space (illustrated in the lower left of Figure 8-5).

2. Define a metric in this space (a definition for distance). Basically, the idea is to

define a weighting between r delay and x-y partition. If we call this weighting

fdel, then the metric will be d = \/(Axpart.)2 + (Aypart.) 2 + (Ardel./fdeI) 2 .

3. For each event in the calibration data, find the nearest neighbors in the [x

partition, y partition, r delay] space using the defined metric.

4. For each event in the calibration data, use the nearest neighbors to define an
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average value for the quantity you are trying to xy-normalize, and create a

normalization factor for this [x partition, y partition, r delay] position, such

that the average value of the nearest neighbors, times the normalization factor

is some (arbitrary) xy-normalized value.

The result of this procedure is a mapping between each position in [x partition,

y partition, r delay] space (appearing in the calibration data) and a normalization

factor for that position. Each quantity that one might want to normalize (basically,

our discriminators: yield and pulse shape quantities) requires its own map between

position and normalization factor, but the hardest step (determining the set of nearest

neighbors for each calibration event) is shared. Once these mappings have been made

using ("Ba gamma) calibration data, data from the WIMP-search (no calibration

source) periods can be normalized by first finding the nearest event appearing in the

calibration data, and then applying that event's (that position's) calibration factor.

There are several subtleties that deserve mention, since this normalization process

was so central to the CDMS II analysis.

First, we should emphasize again that we are not trying to normalize by 3-D

position, but by x-y position. If an event's nearest neighbors contain a significant

number of surface events, then we will normalize out the very differences we are

trying to uncover. It's delicate! For this reason, the number of nearest neighbors

(relative to the total number of events in the calibration data) used to determine

the calibration factors (i.e., the spacial extent of the averaging) plays an important

roll in determining the usefulness of the x-y calibration. The optimization of this

number of nearest neighbors was performed simply by varying the number and seeing

which value gave the best surface discrimination, resulting in an optimized value of

~5 events per 1000 events in the data sample. Typical calibration data samples were

on the oder of 1e5 events.

A second subtlety is the improvement of the method by including energy in the

nearest-neighbor space. This new metric quantity then, is

d = V(Axpart.)2 + (Aypart.) 2 + (Ardel./fdel + (AE/fE) 2 (8.12)
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There are clear variations in pulse shape (and also phonon energy as measured using a

shape-dependent optimal filter strategy) with energy, and these energy-dependencies

can be naturally folded in with the position-dependencies into one single normaliza-

tion step. One of the main causes for energy-dependence in CDMS is TES saturation

(typically, the very local saturation of some small portion of a channel's array), but

timing parameters too can be significantly energy-dependent simply because they are

harder and harder to measure at low signal-to-noise (more on this later). Altogether,

then, the x-y-E normalization strategy follows from three parameters: the two weight-

ings in the metric (Eede and E) and the number of nearest neighbors. A description

of the optimization of these three parameters will appear soon in published form.

The third and last major subtlety is the selection of the calibration data from

which the calibration factors are defined. We select this sample using all available

data quality cuts, as well as a selection in yield to specifically eliminate surface events

from the sample. Yield is a very position-dependent quantity, so this initial selection

is very rough. In fact, what is done, is the initial sample (selected using rough yield

cuts) is used to create table of normalization constants, and then these normalization

constants are applied to the calibration data, and then the selection in yield is fur-

ther refined. We have essentially checked the calibration sample for self-consistency

her, asking the question 'does each event have roughly the same yield as its nearest

neighbors?", eliminating any event from the calibration sample for which this is not

the case.

8.6 Improving the delay-based position measures

We have emphasized how normalizing the discrimination quantities by their position

(and energy) is vital to the analysis, so the success of our analysis then depends on

how well we can measure position. The optimal filter strategy employed for both

the total charge and phonon energies, as well as the individual channel amplitudes

(for position through energy partition) works extremely well. Phonon timing, on the

other hand, is much harder to measure. Essentially, timing measurements are based
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on only the few time bins of the rising edge, whereas the amplitude is based on the

whole pulse, so there is simply less information available upon which to make the

measurement.

The charge start time is assumed to be the event time (for practical purposes), and

is determined using the optimal filter strategy. The 10%, 20%, and 40% points on the

four phonon pulses (usually relative to the charge start time) are derived using a very

simple strategy, in the time domain, called 'walking'. First, the pulse is smoothed

using a low-pass Butterworth filter. Then, starting from the peak of the pulse, an

algorithm walks towards earlier times, and records the first time at which the pulse

goes below each percentage (40%, 20%, etc).

This strategy works well, assuming two conditions: the amplitude of the noise

is much smaller than the amplitude of the pulse, and the slope of the rising edge is

relatively steep. If either of these two conditions fails, then the rising edge will be

non-monotonic, and the walk algorithm will find the first instance of a 20% point

at the position of a random downward fluctuation from the noise, rather than at a

point more accurately representative of the rising edge timing. See Figure 8-10 for

an illustration of this pathology.

Naively, this pathology is telling us to smooth the pulses more, by decreasing

the cutoff to the low-pass filter. But notice that the rising edge slope of primary

pulses would start to loose its distinctive (and vitally important to the analysis)

steep shape if we decrease this low-pass filter for all pulses. We need, then, some

strategy where we filter each trace according to a low-pass filter that is tailored to

the pulse. This was done for runs 125-128 by taking a wide variety of pulses, both

primary and non-primary, at high and low energies, and asking the question "what

is the highest cutoff frequency for which the rising edge is monotonic, as a function

of pulse amplitude over noise?" A clear trend was seen, and an empirically-defined

function was created, mapping pulse amplitude (normalized by noise amplitude) to

filter cutoff. These new pulse-specific filter definitions worked wonderfully on the

low-energy non-primary pulses (which determine the delay position used in position

normalization), and had little effect on the primary pulses of any energy (the timing
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of which were well-measured by both strategies).
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Figure 8-10: The derivation of phonon delay quantities, illustrated using a Butter-
worth filter with a 50kHz cutoff. At top is the inner charge channel (used to define
the charge start time) and below are the four phonon channels (black is the raw data,
blue is after application of the filter). The derived 20% times are indicated with
red crosses. The same event is shown on both the left and the right (zoomed in on
the rising edge). Channel C is the primary phonon channel (well-measured using a
50kHz cutoff), and channel A is the opposite channel (poorly-measured using a 50kHz
cutoff).
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Figure 8-11: The same event as in Figure 8-10, but with the pulse-specific filter
applied before finding the 20% times. The filter applied to the primary pulse is
nearly unchanged; the filter applied to the non-primary channels greatly suppressed
the high-frequency content. The 'signal-to-noise' quantity is simply the ratio between
the pulse amplitude and the noise rms (as measured by the first 500 bins of the trace,
the 'prepulse' data). This 'signal-to-noise' quantity is then mapped into a Butterworth
cutoff frequency using an empirically-defined mapping function.
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Figure 8-12: The 20% delay time as a function of energy is shown for a small pop-
ulation of "Ba calibration events. Each event has four different 20% delay times,
shown in the four separate plots: delay in the event's primary channel, in the event's
opposite channel, and in the two 'side' channels. Blue crosses represent the delay
times with a constant 50kHz cutoff Butterworth filter applied, and the larger red
dots represent the same quantity as derived using a pulse-height-dependent filter cut-
off. Notice there is very little difference in the primary channel (with a fast rising
edge and a high signal-to-noise) but a very significant difference at low energies in
the opposite channel (with a slow rising edge and a low signal-to-noise). Notice also
that there is a small number of poorly measured events at low energies, but these can
be cut by enforcing that they delay must be positive.
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8.7 Turning energy, yield, and pulse shape into a

dark matter limit

The data preparation is clearly a complicated procedure. The raw pulses have been

digitized, filtered, optimal-filtered, calibrated, and position-normalized. We haven't

even mentioned the data quality cuts, of which there are many. The huge amount of

information the detectors provide for analysis is both a blessing and a curse. Once

the data has been put into a polished form by the above procedures, then cuts are

defined in yield and pulse shape, in such a way as to maximize the acceptance of

nuclear recoils while minimizing the leakage of electron recoils, thus maximizing the

scientific reach of the exposure. This final step of cut definition and optimization has

been described quite fully in many other CDMS II theses (for example, by Z. Ahmed

or M. Fritts), and here we simply summarize the results, based on the published

report.

CDMS II operated an array of 30 detectors (19 Ge and 11 Si) in a low-radioactivity

installation in the Soudan Underground Laboratory, Minnesota, USA [10]. The depth

of the experimental facility (713 meters below the surface) greatly reduces the rate of

background events from particle showers induced by cosmic rays. Nearly all remaining

events from this source were identified using a layer of plastic scintillator surround-

ing the detector volume. Inner layers of lead and polyethylene further shielded the

detectors against environmental radioactivity. Data taken during four periods of sta-

ble operation between July 2007 and September 2008 were analyzed for this work.

Due to their greater sensitivity to spin-independent WIMP scattering, only Ge detec-

tors were used to search for WIMP scatters. After excluding periods of poor detector

performance, a total exposure to WIMPs of 612 kg-days was considered for this work.

8.7.1 Summary of WIMP selection criteria

The data selection criteria (cuts) that define the WIMP acceptance region were de-

veloped using calibration sets of electron and nuclear recoils obtained during regular
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in situ exposures of the detectors to 13 3Ba and 2 5 2Cf sources.

Candidate WIMP scatters were required to be within 2o of the mean ionization

yield of nuclear recoils and at least 3c- away from the mean ionization yield of electron

recoils, have recoil energy between 10 and 100 keV, and have ionization energy at least

4.5- above the noise level. They were further required to occur within the ionization

fiducial volume and satisfy data quality criteria. An electron recoiling in the first few

pm of the detector surface (a surface event) has ionization yield similar to that of a

nuclear recoil, but has faster phonon timing. We thus require that a candidate event

have phonon timing that is characteristic of a nuclear recoil. Finally, since WIMPs

are expected to interact only once in the experimental apparatus, a candidate event

was required to have energy deposition consistent with noise in the other 29 detectors

(single-scatter event) and to have no significant activity in the surrounding scintillator

shield from -185 to +20 ps relative to the event trigger.

After detector calibration, we defined a series of criteria to identify candidate

WIMP-scattering events. WIMP candidates were required to deposit 10-100 keV

of energy in a single detector, have the ionization and phonon characteristics of a

nuclear recoil and have no identifiable energy deposition in the rest of the array or in

the scintillator shield.

All 30 detectors were used to identify particle interactions, but only the Ge de-

tectors were used to search for WIMP scatters. Five Ge detectors were not used for

WIMP detection because of poor performance or insufficient calibration data; four

more detectors were similarly excluded during subsets of the four data-taking periods.

For this exposure, we did not complete the full analysis for WIMP scatters in the Si

detectors due to their lower sensitivity to coherent nuclear elastic scattering; the Si

detectors are used only to identify multiple-scatter events.

Periods of poor detector performance were identified and excluded from analysis on

a detector-by-detector basis. Data-quality criteria were developed using Kolmogorov-

Smirnov tests performed on an array of parameter distributions. Special effort was

made to exclude periods of poor detector "neutralization" by monitoring the ion-

ization yield distribution. At the low temperatures required to operate the phonon
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sensors, impurities and defects in the crystal detector substrate can produce isolated

charge "trapping centers." Our detectors required regular neutralization of these

trapping centers [10] to maintain full ionization collection. After applying these data

quality selections, the total exposure to WIMPs considered for this work was 612

kg-days.

8.7.2 Nuclear recoil selection

Nuclear recoils from the elastic scattering of neutrons emitted by the 252 Cf source

were used to define the ionization yield acceptance region. The acceptance region

was taken to be the 2c- band about the mean neutron ionization yield (2o- nuclear

recoil band) and varied as a function of recoil energy (Fig. 8-15). These nuclear

recoils were also used to develop the surface event rejection cut and measure the

signal efficiency, as described below.

8.7.3 Surface event rejection

The sum of the rise time of the largest phonon pulse with its delay relative to the

ionization signal was empirically found to provide the best discrimination between

surface events and nuclear recoils. We optimized this cut using nuclear and surface

electron recoils from the 25 2Cf and 1 33Ba calibration exposures. Surface-event rejection

criteria based on this discriminator were tuned on the calibration data by maximizing

the expected sensitivity for a 60 GeV/c 2 mass WIMP. Figure 8-14 shows a key step

in the setting of each detector's timing cut threshold, and Figure 8-15 demonstrates

our surface-event rejection capability on the calibration data.

Despite the great discrimination power of this experiment, a small expected rate of

misidentified background events remains. In the exposure considered here we expected

to misclassify 0.8 ± 0.1(stat)±0.2(syst) surface electron recoils as WIMP candidates.

We also expect neutrons produced by cosmic rays and radioactivity to generate an

average of ~ 0.1 nuclear recoils, which would be indistinguishable from WIMP scat-

ters.
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Figure 8-13: The run 123 electron recoil and nuclear recoil +2a yield bands, overlain

on 15 2Cf calibration data from run 123. Yield bands were defined separately for each
run. Adapted from a figure by J. Filippini.

8.7.4 Signal efficiency

The fractional acceptance (efficiency) of our analysis cuts for nuclear recoils was

measured as a function of energy using both neutron-calibration and WIMP-search

data. The fiducial volume estimate was corrected for the systematic effects of neu-

tron multiple-scattering by using Monte Carlo simulations. Our efficiency for signal

events has a maximum of 34% at 20 keV. It falls to ~25% both at 10 keV, due to

ionization threshold and flaring of the electron-recoil band; and at 100 keV, due to a
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Figure 8-14: For each of the Ge detectors used to set the r125-r128 limit, the timing
cut threshold was tuned separately (to maximize the total exposure while minimizing
the total leakage. Notice that the cut setting (indicated with a square) for each of the
detectors occurs at points of equal slope for all detectors. This is not a coincidence;
the slope of the exposure-vs-leakage curve is the important quantity in optimally
setting this cut position for many detectors.

drop in fiducial volume. After all selection criteria, the spectrum-averaged equivalent

exposure for a WIMP of mass 60 GeV/c 2 is 194.1 kg-days. The efficiency at various

stages of cut application is shown in Fig. 8-16.

8.7.5 Data blinding

To avoid unconscious bias, we performed a Oblind analysisO in which the exact

selection criteria were defined without prior knowledge of the content of the signal

region or its vicinity. Immediately following event reconstruction and calibration,

we excluded from study all events in the entire exposure satisfying the following

criteria: single-scatter events with no coincident activity in the scintillator shield
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and ionization yield within the 30- nuclear band. All events in this "masked" group

(which includes all potential WIMP candidate events) were automatically removed

from the data files distributed to collaboration members, and so had no effect on

the development of the analysis criteria. The masked events which did not meet the

WIMP-selection criteria defined earlier in this work were restored to the analysis in the

final stages of development for the surface-event cut and the surface event background

estimate. Any candidate WIMP events remained hidden until all selection criteria

were finalized and the choice of statistical technique for the limit calculation (Yellin

optimum interval [113]) was made. On November 5, 2009, the entire data set was

"unblinded": all remaining masked events were restored to analysis.

8.7.6 Results

We observed two candidate events at recoil energies of 12.3keV and 15.5keV, as

can be seen in Figure 8-17. These events occurred during periods of nearly ideal

experimental performance, were separated in time by several months, and took place

in different detectors. These candidates match the expectations for WIMP scattering

events, but the probability to have observed two or more background events in this

exposure is 23%. The results of this analysis thus cannot be interpreted as significant

evidence for WIMP interactions, nor can we reject either event as a WIMP scatter.

These data constrain the spin-independent scattering cross section between WIMPs

and nucleons to be less than 7.0 x 10-" cm 2 (3.8 x 10- 44 cm 2 when combined with

CDMS II's previous results) for a WIMP of mass 70 GeV/c 2 1. While this work rep-

resents a doubling of our exposure, the observation of two candidate events leaves

the combined upper limit nearly unchanged below 60 GeV/c 2 but allows for a modest

strengthening in the limit above this mass.

'We calculate the 90% confidence level upper limit based on standard galactic halo assumptions
[76] and in the presence of two events at the observed energies. We use the optimum interval method
[113] with no background subtraction. A combined limit was also calculated by combining these
data with all previous results from Soudan [6], including all candidates and with efficiency weighted
by the exposure of each analysis. The abrupt features in these curves are consequences of threshold-
crossings at which intervals containing one or more events could enter into the optimum interval
computation. An improved estimate of our detector masses was used for the reported exposure
calculation and applied retroactively to our previous CDMS II result.
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8.7.7 Background estimates

Expected neutron background

Neutrons with energies of several MeV can generate single-scatter nuclear recoils that

are indistinguishable from possible dark matter interactions. We consider two major

sources of background neutron events: cosmic-ray muons interacting in or near the

experimental apparatus (cosmogenic neutrons) and radioactive processes in materials

making up and surrounding the apparatus (radiogenic neutrons).

The location of the Soudan Underground Laboratory, beneath a rock overbur-

den equivalent to 2090 meters of water, greatly mitigates the background rate due

to cosmogenic neutrons. Nearly all of the remaining cosmogenic neutrons are iden-

tified (vetoed) by coincident activity in the scintillator shield. Three such vetoed

single-scatter nuclear recoil events were observed in this exposure, whereas none had

been seen in previous CDMS II data. We used Monte Carlo simulations to esti-

mate the remaining background from unvetoed cosmogenic neutrons. Simulations of

muon-induced particle showers and subsequent neutron production were performed

with Geant4 [5, 12] and FLUKA [52, 22]. Good agreement was found between both

simulation packages in the predicted ratio of unvetoed to vetoed neutrons, as well

as in the ratio of single- to multiply-scattering neutrons, but their predictions of the

absolute event rate differed. We thus took as our background estimate the product of

the observed number of vetoed single-scatter nuclear recoils (three) with the ratio of

unvetoed to vetoed single-scatter nuclear recoils determined from Molte Carlo. This

resulted in a more conservative estimate than that produced by either package on its

own. This procedure, combined with corrections for efficiency and exposure time, pre-

dicts 0.04+8(stat) unvetoed, cosmogenically-produced, single-scatter nuclear recoils

in the reported data.

Our estimate of the radiogenic neutron background due to spontaneous fission

and (a, n) processes was informed by measurements of samples of our shielding and

detector materials, which were screened for U and Th daughters using high-purity

Ge gamma counters. We also derived an independent estimate of the contamination
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levels of U and Th from a fit of the electromagnetic spectrum observed by our exper-

iment to a Monte Carlo simulation. The combined estimate of contamination levels,

together with the assumption of secular equilibrium, were used as input to a detailed

Geant4 simulation that propagated the resulting neutrons through the experimental

setup. The estimated radiogenic neutron background is between 0.03 and 0.06 events

and is dominated by U spontaneous fission in the Cu cans of the cryostat. The ra-

diogenic neutron background originating from the surrounding rock is estimated to

be negligibly small in comparison to other sources.

Expected surface event background, prior to unblinding

The number of misidentified surface events was estimated by multiplying the observed

number of single-scatter events failing the timing cut inside the 2o- nuclear-recoil band

by the expected ratio of events passing the timing cut to those failing it (the "pass-fail

ratio"). This ratio was estimated using a combination of three methods with differing

statistical and systematic errors:

1. The first method computed the pass-fail ratio from events that reside within

the 2o- nuclear-recoil band and multiply scatter in vertically adjacent detectors

(multiple-scatter events).

2. The second method uses multiple-scatter events surrounding the 2o- nuclear-

recoil band (wide-band events). Wide-band events have different distributions

in energy and in detector face (ionization- or phonon- side) from nuclear-recoil

band events, affecting the pass-fail ratio. To account for these differences, the

pass-fail ratio of these events was corrected using the face and energy distribu-

tions of events observed in the nuclear-recoil band that failed the timing cut.

3. A third, independent estimate of the pass-fail ratio was made using low-yield,

multiple-scatter events in 133Ba calibration data, again adjusted for differences

in energy and detector-face distributions.

All three estimates were consistent with each other and were thus combined to obtain

an estimate prior to unblinding of 0.6±0.1(stat) surface events misidentified as nuclear
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recoils.

8.7.8 Expected surface event background, after unblinding

After unblinding, a detailed study motivated by one of our candidate events revealed

that an approximation made during the ionization pulse reconstruction degrades the

timing-cut rejection of a small fraction of surface events with ionization energy below

-6 keV. Such events are more prevalent in WIMP-search data than in the data sets

used to generate the estimate of misidentified surface events prior to unblinding. A

refined calculation, which accounted for this reconstruction degradation, revised the

surface-event estimate to 0.8 t 0.1(stat)±0.2(syst) events from the prior estimate of

0.6 t 0.1(stat). The systematic uncertainty in this final estimate is dominated by the

uncertainty in our assumption that the pass-fail ratio for multiple scatter events is

the same as that for single scatter events.

8.7.9 Discussion of results

Additional information on the unblinded data

Figure 8-17 shows events on all detectors after all selection criteria have been applied,
except the yield and timing cuts. Candidate events appear in the signal region of

detectors T1Z5 (at 12.3keV) and T3Z4 (at 15.5keV). The dates and local times

of the two candidate events are October 27, 2007 at 14:41 CDT (T1Z5 event) and

August 5, 2007 at 20:28 CDT (T3Z4 event). Both occur during periods of good

experimental performance. The candidate event observed with detector T3Z4 suffers

from the ionization reconstruction effect described in the previous paragraph, which

increases the possibility for it to be a surface event.

Varying the timing cut

To quantify the proximity of these events to the surface-event rejection threshold,

we varied the timing cut threshold of the analysis. Reducing the revised expected

surface-event background to 0.4 events would remove both candidates while reducing
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the WIMP exposure by 28%. No additional events would be added to the signal region

until we increased the revised estimate of the expected surface-event background to

1.7 events. The corresponding limits that are obtained with these cut values are shown

in Fig. 8-20. The figure also shows that while the allowed surface-event background

chosen by the blind analysis gives, on average, the best expected limit over the range

shown, the actual observed limit is never more than 15% higher in the range of 0.1

to 6 expected surface events.

8.8 What have we learned from CDMS II?

Figure 8-20 shows how (as intelligently as we could) we found a happy medium

between a large exposure (but significant leakage of surface events) and confidence of

having a zero-background experiment (but a much-reduced exposure). If we ran the

experiment another year, or two, or ten, the exposure would not increase linearly with

time, because the timing cut threshold would need to be more and more constrictive

(due to the larger and larger integrated amount of surface events).

Although it is true that CDMS II was able to make background-free exposures,

it is not at all true that the experiment was not back-ground limited. In fact, the

total amount of exposure was severely limited by the fact that the surface event pulse

shapes were only distinguishable from bulk nuclear recoils in rather subtle ways,

with imperfect discrimination. Looking at Figure 8-16, one can see that the timing

cut, necessary to eliminate the surface event background, cut our exposure in half.

Clearly, the CDMS II strategy suffers from a significant problem, one that requires a

significant technological change in order to probe smaller cross sections.
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Figure 8-15: The power of the primary background discrimination parameters, ion-
ization yield and phonon timing, is illustrated for a typical detector using in situ
calibration sources. Shown are bulk electron recoils (red points), surface electron
events (black crosses) and nuclear recoils (blue circles) with recoil energy between
10 and 100 keV. Top: Ionization yield versus recoil energy. The solid black lines
define bands that are 2- from the mean nuclear-recoil yield. The sloping magenta
line indicates the ionization energy threshold while the vertical dashed line is the
recoil energy analysis threshold. The region enclosed by the black dash-dotted lines
defines the sample of events that are used to develop surface-event cuts. Bottom:
Normalized ionization yield (number of standard deviations from mean of nuclear re-
coil band) versus normalized timing parameter (timing relative to acceptance region)
is shown for the same data. Events to the right of the vertical red dashed line pass
the surface-event rejection cut for this detector. The red box is the WIMP signal
region.
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each WIMP-selection cut shown. The solid curve shows the overall efficiency of this
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Figure 8-17: Normalized ionization yield (number of standard deviations from mean
of nuclear recoil band) versus normalized timing parameter (timing relative to accep-
tance region) for all events and with all cuts applied except for yield and timing. Each
panel shows the data taken with the indicated detector. Data for all detectors that
were used in this reported WIMP search are shown. Events that pass the phonon
timing cut are shown with round markers. The red boxes indicate the signal region
for that detector. The blue histograms shows the expected distributions for nuclear
recoils in each detector, as measured by the calibration data.
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Figure 8-18: Ionization yield versus recoil energy for events consistent with all signal
criteria, excluding yield and timing. The top (bottom) plot shows events for detector
T1Z5 (T3Z4) (see SOM text for detector nomenclature). The solid red lines indicate
the ionization yield acceptance region. The vertical dashed line represents the recoil

energy threshold and the sloping magenta dashed line is the ionization threshold.
Events with phonon timing characteristics consistent with our selection criteria are
shown with round markers. The candidate events are the round markers between the
red lines.
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Figure 8-19: Experimental upper limits (90% confidence level) and theoretical al-
lowed regions for the WIMP-nucleon spin-independent cross section as a function of
WIMP mass. The red (upper) solid line shows the limit obtained from the exposure
analyzed in this work. The solid black line shows the combined limit for the full data
set recorded at Soudan. The dotted line indicates the expected sensitivity for this
exposure based on our estimated background combined with the observed sensitivity
of past Soudan data. Prior results from CDMS [6], XENON10 [17], and ZEPLIN III
[73] are shown for comparison. The shaded regions indicate allowed parameter space
calculated from certain Minimal Supersymmetric Models [47, 94].
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Figure 8-20: The observed 90% C.L. upper limit, at a WIMP mass of 70 GeV/c 2, as a
function of predicted misidentified surface event background. The solid square shows
the observed limit from the choice of timing cut value used in the blind analysis,
which corresponds to the indicated misidentified surface event prediction. The open
squares show the limits that would have been observed for other choices of timing cut
value. The blue dashed lines mark the transitions at which additional background
events would appear. The red curve is generated by taking the median of many limits,
each of which is obtained by drawing a value from a Poisson distribution with mean
value given by the corresponding value of predicted misidentified surface events.
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Chapter 9

CDMS II at Low Energies

The 10 keV threshold used in the standard analysis of CDMS II is a threshold on

the detector's ability to measure subtle timing differences between bulk and surface

phonon pulses. Measuring pulse shapes is hard. The charge and phonon energies,

on the other hand can be well-measured significantly below the 10 keV threshold,

thereby giving CDMS II yield discrimination down to -2 keV. This -2-10 keV range

represented an untapped reserve of exposure with significant (yield-only, no pulse

shape) discrimination, and is in fact the only place to search in the CDMS II exposure

for WIMPs with masses less than ~20 GeV/c 2 . The standard 10 keV threshold serves

well, therefor, for a test of the WIMP models predicted by cMSSM, but is not ideal

for a test of the light-WIMP models that have been offered as explanations of the

low-energy excesses in CoGeNT and CRESST-II, or the modulation signal seen by

DAMA/LIBRA.

David Moore led an effort to analyze this sub-10 keV portion of the CDMS II

exposure, building on similar work by Ray Bunker and Walter Ogburn. By eliminating

the timing cut from the analysis, we must accept significant backgrounds. On the

other hand, we gain significant exposure (remember that the timing cut cut the

exposure by almost a half). Because David Moore recently wrote a thesis largely

about this low-threshold analysis, we will not try to summarize his work here to any

level of detail. We simply point out several aspects of the low-threshold analysis that

are relevant to understanding the low-threshold modulation analysis (the topic of the
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next chapter).

Because the analysis was known in advance to be background limited, only those

detectors with the lowest backgrounds were analyzed. In this analysis, backgrounds in

the nuclear recoil yield band are largely the result of leakage of events into the band

due to poorly-measured charge pulse amplitudes (i.e., the result of charge noise),

and so the detectors for this analysis were selected largely on the basis of charge

noise amplitude. Phonon noise was also a relevant consideration, in that the trigger

threshold of the detector is set by the phonon noise. Eight germanium detectors were

selected, and the resulting total exposure (before fiducial volume and yield band cuts)

of the low-energy analysis was 241 kg-days.

At high energies, where the largest contribution to yield uncertainty is positional

variation in the phonon measurement, it is natural to present events in the yield vs.

energy plane. When charge channel noise becomes the dominating contributor to yield

uncertainty, the data is easier to interpret when the charge and phonon measurements

are entirely separated, as in Figure 9-1, where the axes are charge energy on the y

axis and phonon energy on the x axis.

9.1 keVee and keVnr

The largest difference in the low-energy analysis is that the event energies are scaled

from the phonon energy alone, rather than combining a phonon measurement and a

charge measurement to estimate the Luke phonon contribution (and subtract it off

to obtain the recoil energy). This change in strategy is intended to improve the recoil

energy resolution, which, if the charge signal were used, would be dominated by charge

noise (in the Luke phonon estimation). The cost paid to improve the noise is that we

must assume a Luke phonon contribution, based on assuming a yield for the event. At

low energies, then, we have less information than at high energies, and resort to the

keVee and keVnr scales more typically used by single-channel experiments, assuming

either the Luke contribution for yield = 1 or the energy-dependent yield of a nuclear

recoil, respectively.
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Figure 9-1: The charge energy'
definitions overlain on electron
from 2 52Cf calibration (blue).
that the phonon energy axis is
quantity: the sum of the recoil

vs. phonon energy space, with t2u ER and NR band
recoils from 13 3Ba calibration (red) and nuclear recoils
Notice the noise 'blob' surrounding zero, and notice
here in terms of total phonon energy (the measured
and Luke contributions). Plot from D. Moore.
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Compared with single-channel experiments, however, we do have the advantage

that we can use both channels in situ to determine the correct keVee and keVnr

scalings. These scalings (the ionization yields) are difficult to determine event-by-

event at low energies, but easy to determine for distributions of calibration data.

This measured mean nuclear recoil yield has escaped the poor charge noise (we have

overcome it with statistics) while giving us a in situ scaling between the measured

total phonon energy and an inferred nuclear recoil energy.

Let's discuss that general strategy in a little more detail. Assuming an event is

an electron recoil, the recoil energy, Erecoji, in units of keVee is given by

Po
Erecoi 2 $ (9.1)

where we have used that

eVb
Erecoil(Ptot) = Pot - eVbNQ = Pot -- E Q (9.2)

where eVb/c = 1 for V = 3.0 V. The charge energy EQ is calibrated such that the

recoil energy for an electron recoil equals the charge energy (and yield has the simple

expression EQ/Erecoil)-

The factor of 1/2 appearing in Equation 9.1 is different for the case of nuclear

recoils, because of the reduced Luke contribution. Yield varies with energy for nuclear

recoils, so this Luke contribution is similarly energy-dependent, based on measured

charge yield for the nuclear recoil population. The mean ionization energy for nuclear

recoils, pQ,NR(Ptot) is determined over the energy range from 2-100 keV using the

distribution of nuclear recoils in 2 52Cf calibration data, as fully described in the thesis

of D. Moore. Assuming an event is a nuclear recoil, the measured phonon energy can

be mapped to the recoil energy (in units of keVnr) as

Erecoii(Ptot) = Ptot - pQ,NR(Ptot) (9.3)

The calibration of both EQ and Pot at low energies is performed using the 7 1 Ge
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activation lines at 1.3 and 10.4 keV. These sharp electron recoil lines both have a

half-life of 11.4 days, appearing most strongly after calibration by the 2 5 2Cf neutron

source. The calibration of IQ,NR(Ptot) is performed by fits to the nuclear recoil band

in the EQ vs Erecoji plane, where Erecji is derived in the standard way, subtracting off

the poor-resolution estimation of the Luke contribution. The fits to the nuclear recoil

yield bands were parameterized by a power law of the form pQ,NR(Erecoil) = AErecoui

specific to each detector.

It should be noted that these fits to the measured CDMS yield bands (upon which

our low-energy NR energy scale depends) are in significant tension with the literature,

particularly at the lowest energies. The smaller-than-expected pQ,NR(Erecoii) at low

energies observed by CDMS could be explained in two basic ways:

Suppressed charge collection for nuclear recoils at low energies is the most nat-

ural explanation, but would require a charge-suppression mechanism specific

to charges produced by a nuclear recoil. It could be imagined that perhaps

electron-hole recombination is enhanced in the denser initial charge ball created

by nuclear recoils, and that this enhancement is not evident in other experiments

due to CDMS's extremely low drift field. This is very speculative idea, yet to

be tested. If charge collection is suppressed, then the measured pQ,NR(Erecoil)

is the correct one to use for estimating the Luke contribution.

Over-estimation of the phonon energy for nuclear recoils at low energies could

produce the same yield vs. energy curve. Perhaps the pulse-shape-dependent

optimal filter is to blame, although preliminary work indicates this is not the

case. It is hard to imagine a way to over-estimate an energy, but if this is in

fact what is happening, then any statements we make using the nuclear recoil

energy scale would be conservative, in the sense that they would be probing

energies actually smaller than the estimated energies (by a factor of 5-20% at

2 keV, depending on detector).

For more details on this, as on all low-energy topics, refer to the recent thesis of D.

Moore, and also to an article dedicated to understanding our nuclear recoil energy
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scale due to be published quite soon.

This disagreement between our measured yield and the expected yield from Lind-

hard theory results in some unknown systematic uncertainty in the the production

of Luke phonons. This uncertainty, however, is not a large practical concern for two

reasons:

" The two cases above can be summarized as CDMS either creating an unbiased

energy scale or over-estimating the energy scale. In other words, the statements

made my CDMS at low energies are safe: we are, at worst, making weaker

statements about low energies that we might be able to.

" The uncertainties are not in the total energy scale, but in the magnitude of the

Luke phonon contribution, which, for nuclear recoils at these low energies, is

only ~15% of the total phonon energy. Any uncertainties in the Luke phonon

contribution, therefor, are scaled by a similar percentage as applied to the total

energy scale.

9.2 Analysis of the low-energy spectrum

As described in the thesis of D. Moore, once the NR and ER energy scales are in

place, it is a straightforward process to follow the same general procedure as in the

standard CDMS II analysis of defining quality cuts, defining charge fiducial volume

cuts, defining nuclear recoil yield band cuts (optimized in this case at -0.5c- to +1.25o

to maximize exposure while minimizing leakage), measuring the total efficiency (of

both the analysis cuts and the hardware trigger) and finally to arrive at a sample of

low-energy 'candidate events' (illustrated in Figure 9-2) and the detector-by-detector,

efficiency-weighted exposure. We can combine the candidates and exposures to create

spectra for each individual detector or the combined exposure. We can also combine

the candidates and the exposures within the optimum-interval method (as in the

standard analysis), and arrive at a 90% confidence upper limits on the WIMP-nucleon

cross section as seen in Figure 9-3.
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Figure 9-2: The charge energy vs. phonon energy space, with -0.5 to +1.25 o NR
band definitions (width indicating range of definitions for various runs) overlain on
the low background data of the CDMS II exposure used in the low-energy analysis.
The 2 keV analysis threshold is indicated with a dashed line. Notice that the phonon
energy axis is here in terms of recoil energy, assuming the Luke contribution of a
nuclear recoil. Plot from D. Moore.
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Figure 9-3: The low-mass WIMP region, in cross-section vs mass, highlighting the
90% CL exclusion limit for the CDMS II low-energy analysis (thick black curve),
and how it relates to other experimental results in this mass range. Similar exclu-
sion limits from other analyses are also shown: a CDMS II exposure with a 10 keV
threshold (dash-dotted), a low-threshold analysis from the shallow site [11] (dashed),
XENON 100 [18] (green, solid), and a low-threshold analysis of the XENON10
data [15] (red, solid). Allowed regions are shown for CoGeNT [2] (orange, filled),
DAMA/LIBRA [98] (gray, filled), and CRESST- II [16] (cyan, filled). An alterna-
tive calculation of the CoGeNT allowed region after subtracting the expected surface
event background [[67], [42]] (orange, dotted) is also shown, as well as an alternative
calculation of the DAMA/LIBRA allowed region which allows for larger quenching
factors at low energy [58] (gray, dotted). Plot from D. Moore.
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CDMS II is in strong contradiction with CoGeNT, unless (as in [67] and [42]) only

some small fraction of the CoGeNT spectrum is WIMPs (the rest of the excess repre-

senting some surface background). The two limits from Xenon have some significant

uncertainties in this comparison due to uncertainties in the nuclear recoil scintillation

yield at low energies, and perhaps some target-dependent behaviors could make a

hypothetical WIMP spectrum appear differently in CoGeNT (Ge), DAMA/LIBRA

(Na and I), and CRESST (0 and W), but it is difficult to reconcile the difference

between the rates seen in CoGeNT and CDMS II, due to their identical target mate-

rials (unless, as previously stated, only some small fraction of the CoGeNT spectrum

is from WIMP recoils).
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Chapter 10

Search for Annual Modulation in

CDMS II

10.1 Motivation

Possible experimental signals from DAMA/LIBRA [28, 29], CoGeNT [1, 2] and CRESST-

II [16] have led to significant recent interest in WIMPs with masses -10 GeV/c 2 and

spin-independent WIMP-nucleon cross sections ~1041-10~ 4 0 cm 2 (e.g. [59, 56, 70,

24]).

The WIMP scattering rate is expected to annually modulate due to the rela-

tive motion of the earth through the local dark-matter halo [46]. The presence of

an annually modulating component in the observed interaction rate can identify a

WIMP signal in the presence of significant unmodulated backgrounds. This modula-

tion signature is especially useful for WIMPs with masses ~10 GeV/c 2 which would

primarily produce recoils with energies just above the detection threshold, where the

rejection of backgrounds that can mimic a WIMP signal is less powerful. Both the

DAMA/LIBRA [28, 29] and CoGeNT [1, 2] experiments claim evidence for such a

modulating signal in their data. The CoGeNT and DAMA allowed regions are illus-

trated in Figure 10-3, as well as several exclusion limits.

If, as recently suggested, only a small fraction of the low-energy excess events in

CoGeNT are due to WIMPs, then constraints from CDMS II may be avoided [59, 42].
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220 km/s

Figure 10-1: The relevant geometry and velocities relevant to the annual modulation
effect. In this cartoon, earth is in the position it would be in September, a phase of
243.5 days.
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Figure 10-2: Two views of the annual modulation and its effect on a hypothetical
spectrum. We assume a generic a generic light-WIMP model, with mX = 10 GeV/c 2

and spin-independent nucleon cross section -s, = 1 x 10-40 cm 2 . The first view shows
the expected spectrum at the maximum (red) and minumum (blue) phase times of
the year (as well as the yearly average spectrum, in black dashed). Note the point at
~1 keV at which the phase of the modulation flips sign. In the lower plot, we show
the same total spectrum as above, but also the amplitude of the modulation only
(green). We also show the fractional modulation (grey), which approaches 100% at
the highest-energy portion of the spectrum.
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Figure 10-3: A plot from Foxet al. 156], showing the strong tension between the limits
set by the CDMS II low-threshold analysis (blue) and the Xe-100 standard analysis
(green) with the CoGeNT allowed region (solid red) and the DAMA/LIBRA allowed

region (solid orange). A CoGeNT allowed region drawn using only the CoGeNT
modulation is also shown (red dashed). All of these allowed regions and limits assume

a spin-independent dark matter-nucleon scattering process, and a standard Maxwell-
Boltzmann halo with escape velocity Vesc = 550 km/s and velocity dispersion vo =

220 km/s. Notice that the CoGeNT modulation alone prefers a higher-mass WIMP
than the CoGeNT spectrum. (The spectral information dominates the combined

spectrum+modulation allowed region, shown.)
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In this case, if CoGeNT's annual modulation is due to WIMPs, the fractional variation

is several times larger than expected for a "standard" halo with a Maxwellian velocity

distribution [59, 67]. In addition, the energy spectrum of the modulation extends to

higher energies than expected for a standard halo [56, 67, 99, 51]. Such large modula-

tion fractions and hard spectra might be possible if the halo exhibits (non-standard)

local substructure [59, 67, 56]. To test such a scenario, this chapter searches for a

corresponding annual modulation in the CDMS II germanium data. This analysis

does not cover the full energy range of the CoGeNT modulation, restricting itself to

energies above 5 keVnr (which, due to quenching [77, 76], corresponds to 1.2 keVee in

the standard CoGeNT energy scale [41]). Because germanium serves as the target

material for both CDMS II and CoGeNT, these results provide a check of whether

the reported modulating signal is due to WIMPs that is less model-dependent than

recent results from XENON10 [15] and XENON100 [18].

10.2 The CDMS II dataset

The data analyzed here were collected over nearly two annual cycles, from Octo-

ber 2006 to September 2008, using all 30 Z-sensitive Ionization and Phonon (ZIP)

detectors installed at the Soudan Underground Laboratory [9, 6, 7]. Data-quality

and detector selection criteria are identical to the previous analysis of the low-energy

CDMS II nuclear-recoil spectrum in [8]. Only the 8 germanium detectors with the

lowest trigger thresholds were used to search for WIMP interactions, while all 30

detectors were used to veto events with interactions in multiple detectors.

Following [8], the nuclear-recoil energy scale is based on the phonon measurement,

which is corrected by ~20% to take into account the fraction of the total phonon

signal arising from the Neganov-Luke phonons [86, 79] generated by the charge-carrier

drift across the detectors. The Neganov-Luke phonon contribution for nuclear recoils

in 2 52Cf calibration data was directly measured for the recoil-energy range of this

analysis. As in [8], the phonon energy scale for electron recoils was conservatively

calibrated, ensuring to the 90% C.L. that the 1.3 and 10.4 keV activation-line energies
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were not underestimated.

The maximum energy considered in this analysis was 11.9keVnr, matching the

highest energy observable by the CoGeNT "LG" (low gain) channel [41]. Because

time-dependent variations in the CDMS trigger thresholds could mimic or hide a

modulation in the event rate, the energy threshold for this analysis was conservatively

chosen to be 5keVnr, high enough that events are triggered with essentially perfect

efficiency. To avoid bias, trigger efficiency was measured throughout the exposure,

using events for which at least one other detector triggered. For the 5-11.9 keVnr

energy range, combining all detectors and all time bins yielded 4350 events in this

unbiased sample, only 3 of which failed to trigger. These missed triggers were each

in a different detector and were uniformly spaced throughout the considered energy

range.

Because CDMS II uses a phonon-based energy scale (at these low energies), and

CoGeNT uses an ionization-based energy scale, quenching causes the two experi-

ments to exhibit different mappings between energies assuming nuclear recoils (such

as the energy range of this analysis, 5.0-11.9keVnr) and energies assuming electron

recoils. For electron recoils with the same total phonon signal in the CDMS II

experiment, the equivalent recoil-energy interval is 3.0-7.4keVee, due to the larger

Neganov-Luke phonon contribution. Analogously, for electron recoils with the same

total ionization signal in the CoGeNT experiment, the equivalent recoil-energy inter-

val is 1.2-3.2keVee, where we apply CoGeNT's measured ionization yield for nuclear

recoils [41, 19].

10.3 Event selection

Detector stability was monitored throughout data taking with quality cuts, removing

periods of abnormal detector performance [6, 7]. For consistency with previous work,

we followed [8] and removed data taken during the 20 days following exposure of

the detectors to a neutron calibration source. The CDMS WIMP-search data are not

continuous over the nearly two years of exposure considered here, but include gaps due
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to neutron calibrations, warming of the detectors, and data periods removed due to

data-quality diagnostics. Since data-quality diagnostics remove individual detectors,

different detectors serve as WIMP-search detectors for different times. Figure 10-4

shows the history of exposure for the period considered on a detector-by-detector

basis. The detectors were arranged in five "towers," and are identified by their tower

number (Ti-T5) and by their (top-to-bottom) ordering within the tower (Z1-Z6).

III
Run # - Run 123 Run 124 Run 125 Run 126 Run 127 Run 128 -

Bin # - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -

T1Z2 - -

T1Z5 - -

T2Z3 - -

T2Z5 -

T3Z2 - -
T3Z4 - -

T3Z5 - -

T3Z6 --

01/2007 07/2007 01/2008 07/2008

Detector-Specific Live Periods

Excluded Due to Cf Calibration

Figure 10-4: The CDMS II exposure, displaying the detectors and time bins used in this
analysis. For each time bin, a detector is colored blue if this detector's data was used in
this analysis. Divisions between "runs" represent at least partial warm-ups of the dilution
refrigerator used to cool the detectors. In order to avoid the effects of Ge activation, 20-day
periods were omitted (red) following each 252Cf calibration time.

After removing these time periods, a total of 241 kg days raw exposure were con-

sidered, as in the previously published low-energy analysis [8]. To allow checks for

stability to be applied to multiple-scatter events, an additional cut was introduced

to eliminate electronics "glitch" events, for which phonon pulses were detected above

threshold in more than 15 detectors simultaneously.

Events inconsistent with WIMP interactions were rejected. Since modulation of

data-selection cut efficiencies could mimic or hide a modulation in the event rate, se-

lection criteria were designed to have constant acceptance with time, and any residual

modulation in the cut efficiencies was constrained using events sampled throughout

the data taking period. Since WIMPs have a negligibly small probability of inter-

acting more than once in the apparatus, events with energy deposited in more than
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a single detector ("singles cut") or in the active scintillator veto ("veto cut") were

removed. The glitch cut, veto cut and singles cut have a combined efficiency >97%,

with negligible time-dependent variation.

Events were further required to have ionization signals consistent with noise in

the outer charge electrode of the detector ("Q-inner cut"). To search for a nuclear-

recoil signal of WIMP origin, the ionization energy was required to be within ±2o

of the mean of the energy-dependent nuclear-recoil distribution from calibration data

("nuclear-recoil cut") in the main analysis described below. This ionization-based

selection increases the sensitivity of this analysis to a modulating signal relative to the

more restrictive ionization-based selection used in [8], provided that backgrounds do

not modulate. These wider nuclear recoil bands, and candidate events selected for this

analysis, are illustrated in Figure 10-5. To explore different physics or instrumental

origins of a potential signal, we also applied our modulation analysis to two additional

event samples consisting of either single-scatter or multiple-scatter events with no

ionization-based nuclear-recoil cut. The quality, glitch, veto and Q-inner cuts were

always maintained.

10.4 Statistical Treatment

These various cuts result in an efficiency E (t, E, d) that depends on the time t, the

deposited energy E and the detector d. With notations following the descriptions

above, the total efficiency for our primary "WIMP-candidate" sample can be written

as

E (t, E, d) =EglitchEtriggerEsingles (d) Eveto X (10.1)

6 Qinner (t, E, d) ENuclearRecoil (t, E, d) ,

where we have explicitly identified the dependence on time t, energy E and detector d

for each of the cuts. For the event samples that remove the nuclear-recoil and singles

cuts, the corresponding efficiencies, Esingles and ENuclearRecoil, are ignored.
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Figure 10-5: Event selection for the eight detectors employed by this analysis, shown in an

ionization-energy vs. phonon-energy plane. The energy range of this analysis is indicated

by thick green lines, along with borders between smaller energy bins. In this and following

plots, the 5-11.9 keVnr range has been subdivided into three equal parts: [5-7.3 keVnr],
[7.3-9.6 keVnr], and [9.6-11.9 keVnr]. All events shown have passed data-quality cuts, as

well as the veto cut and the Q-inner cut. Crosses represent events registering in multiple

detectors ("multiples"), filled markers represent events registering in only one detector

("singles"), and colored markers represent singles lying within the i2o- nuclear-recoil bands,
defined through 25 2 Cf calibration independently for each detector and run. The edges of

these run-by-run nuclear-recoil band definitions are also indicated.
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In the lower portion (5-7.3 keVnr) of the energy range considered, the rate of

nuclear-recoil candidate events measured in this analysis is 0.28±0.03 [keVnr kg day]-1,

while the maximum-likelihood estimate for the CoGeNT modulation amplitude is

0.35 [keVnr kg day]-'. The corresponding numbers for the entire energy interval con-

sidered are 0.15±0.01 [keVnr kg day]- 1 for CDMS and 0.16 [keVnr kg day]-- for Co-

GeNT. In both cases, a modulation of the magnitude observed by CoGeNT would

require a modulation fraction in CDMS of ~100%.

We test whether the Q-inner and nuclear-recoil cut efficiencies are sufficiently

constant using calibration data collected throughout the time period used in the

analysis. For each cut, for a given time interval -y, and detector d, we measure P d

events passing the cut and Fd failing. Note that the time intervals of the efficiency

data are not coincident with the low-background time intervals, but are suitably

distributed over the whole data-taking period. We then maximize the likelihood

appropriate for a binomial distribution

= y dE (1 - E,)(10.2)
yd

The efficiencies syd are written as

E-d = Ed {1 + A cos [w (t, - #)]}, (10.3)

where w = 27r/365.24 day- 1 . For the chosen cut and energy interval we fit for

the detector-dependent unmodulated efficiency Ed, the detector-independent relative

modulation amplitude A, and the phase # (measured from Jan. 1st), while requiring

the efficiency to be <1. We generate 104 artificial realizations of the model under

consideration, and determine the confidence regions for the modulation and phase

using the Feldman-Cousins method [53]. This analysis indicates that the maximum

efficiency modulation allowed by our experimental measurement of the nuclear-recoil

cut efficiency is 1.2% at the 90% C.L. In the case of the Q-inner cut, this upper limit

is 2.3%.
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In order to estimate the modulation in the observed event rate, we bin events into

16 time intervals, labeled by #, of -25 days each. We denote the center of each time

bin as tp3 and its width as At3. The number of events observed in the time interval #
in detector d is ny3d. We construct a likelihood using the expected Poisson distribution

for the n3d

= e--d (pAI3d)"ld, (10.4)
/3,d

where factorial terms have been omitted for convenience. In this equation, pU/3d is the

expected number of events

A3d = fd + M cos [w (to - #} md/3df/3dAt/3AE, (10.5)

where Fd is the unmodulated rate in detector d, M is the modulation amplitude,

md is the mass of detector d, E3d is the appropriate efficiency using Eq. 10.1, f3d is

the live-time fraction appropriate for the detector and time interval, At3 is the time

interval width, and AE is the energy interval width.

Since the efficiency modulation allowed by the fits to Eq. 10.3 is much smaller

than the physics effect we are testing, we need not add an additional term fef (/3d)

in the likelihood, which would take into account such uncertainties in Eq. 10.3.

Figure 10-7 shows residual rates for WIMP candidate events, after subtracting the

best-fit constant rates Fd (found with modulated rate M fixed at 0). Using a Feldman-

Cousins approach, we test modulation models [M, #] on the WIMP candidates, which

consist of all events satisfying the data-selection cuts described above.

10.5 Conclusions

Figure 10-8 shows that our observed WIMP-candidate event rate is consistent with

a constant value. All modulated rates in this energy range with amplitudes greater

than 0.06 [keVnr kg day]-1 are excluded at the 99% C.L.

For comparison, a similar analysis was carried out using the publicly available Co-

GeNT data [41]. Our analysis of CoGeNT data is consistent with previously published
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Figure 10-6: Event rate (nuclear recoil band singles, 5-11.9 keVnr) as a function of time for
each of the eight detectors used in this analysis. The best-fit rates for each detector (ld),
assuming zero modulation amplitude (M), are indicated in green.
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Figure 10-7: Residual event rate as a function of time, for three event populations: multi-
ples (top), singles (middle), and singles in the nuclear-recoil band (bottom), as defined in
the text. Two energy ranges are shown, in the left and right columns. Because the multiples
and singles populations are dominated by electron recoils, an electron-recoil energy scale
has been used for these rates. At the bottom, the rate of CDMS II nuclear-recoil band
events is shown for the 5.0-11.9 keVnr interval (dark blue), after subtracting the best-fit
unmodulated rate, I'd, for each detector. The horizontal bars represent the time bin extents,
the vertical bars show tlo- statistical uncertainties (note that one CDMS II time bin is of
extremely short duration). The CoGeNT rates (assuming a nuclear-recoil energy scale) and
maximum-likelihood modulation model in this energy range (light orange) are shown for
comparison. The CDMS exposure starts in late 2007, while the CoGeNT exposure starts
in late 2009.18
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Figure 10-8: Allowed regions for annual modulation of CoGeNT (light orange) and the
CDMS II nuclear-recoil sample (dark blue), for the 5.0-11.9 keVnr interval. In this and the
following polar plot, a phase of 0 corresponds to January 1st, the phase of a modulation
signal predicted by generic halo models (152.5 days) is highlighted by a dashed line, and
68% (thickest), 95%, and 99% (thinnest) C.L. contours are shown.
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Figure 10-9: Amplitude of modulation vs. energy, showing maximum-likelihood fits where

the phase has been fixed and the modulated rates M have been determined for both Co-

GeNT (light orange circles, vertical bars denoting the 68% confidence intervals) and CDMS
(dark blue rectangles, with vertical height denoting the 68% confidence intervals). The

phase that best fits CoGeNT (106 days) over the full CoGeNT energy range is shown on

the left; the phase expected from interactions with a generic WIMP halo (152.5 days) is

shown on the right. The upper horizontal scales show the electron-recoil-equivalent energy

scale for CoGeNT events. The 5-11.9keVnr energy range over which this analysis overlaps

with the low-energy channel of CoGeNT has been divided into 3 equal-sized bins (CDMS)
and 6 equal-sized bins (CoGeNT). In the right plot, we also show the DAMA modula-

tion spectrum (small grey circles), following the method of Fox et al. [55], for which we

must assume both a WIMP mass (here, mx=10 GeV/c 2 ) and a Na quenching factor (here,
qNa = 0.3). Lower WIMP masses or higher quenching factors can push the DAMA modu-

lated spectrum towards significantly lower energies. No attempt has been made to adjust

for varying energy resolutions between the experiments.
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analyses [59, 56, 67]. The nuclear recoil energy scale followed the prescription [1] of

the CoGeNT collaboration to relate the ionization energy (calibrated using electron-

recoils) to the nuclear recoil energy

EQ = (0.19935)E(" 4 , (10.6)

good over the energy range 0.2 keVnr < ENR ,10 keVnr.

Figure 10-9 shows the modulated spectrum of both CDMS II and CoGeNT, as-

suming the phase (106 days) which best fits the CoGeNT data over the full CoGeNT

energy range. Compatibility between the annual modulation signal of CoGeNT and

the absence of a significant signal in CDMS is determined by a likelihood-ratio test,

which involves calculating A = 0/C1 , where LO is the combined maximum likelihood

of the CoGeNT and CDMS data assuming both arise from the same simultaneous

best-fit values of M and #, while Li is the product of the maximum likelihoods when

the best-fit values are determined for each dataset individually. The probability dis-

tribution function of -2 ln A was mapped using simulation, and agreed with the x 2

distribution with two degrees of freedom, as expected in the asymptotic limit of large

statistics and away from physical boundaries. The simulation found only 82 of the

5x 103 trials had a likelihood ratio more extreme than was observed for the two ex-

periments, confirming the asymptotic limit computation which indicated 98.3% C.L.

incompatibility between the annual-modulation signals of CoGeNT and CDMS for

the 5.0-11.9 keVnr interval.

10.6 Testing other event populations

We extend this analysis by applying the same method to CDMS II single-scatter

and multiple-scatter events without applying the ionization-based nuclear-recoil cut.

These samples are both dominated by electron recoils. Figure 10-10 shows the con-

fidence intervals for the allowed modulation amplitudes and phases for these two

samples, both of which are consistent with no modulation. For the energy range cho-
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Figure 10-10: Confidence limits on the amplitude and phase of annual modulation for two
electron-recoil-dominated data samples: multiple scatters (light blue) and single scatters
(dark red), as defined in the text for the interval 3.0-7.4 keVee. These events are of the
same total phonon energy (recoil + Neganov-Luke) as the nuclear-recoil band events of the
main modulation analysis shown in Fig. 10-8, of 5.0-11.9 keVnr.

sen for this analysis, there is not significant overlap with the corresponding CoGeNT

energy range under the hypothesis of an electron-recoil modulation. Our minimum

electron-equivalent energy is 3 keVee compared to a 3.2 keVee maximum energy for the

CoGeNT low-energy channel. Consequently, this analysis cannot exclude the possi-

bility of the modulation observed by CoGeNT being the result of electron recoils.

The absence of modulation in the single-scatter and multiple-scatter events indicates

the absence of strong systematic effects in our data.

10.7 Results for smaller energy ranges
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Figure 10-11: Confidence limits on the relative amplitude and phase of annual modulation
in the nuclear-recoil band cut efficiency (black) and the Q-inner cut efficiency (grey). Three
different energy bins are shown, along with the total energy range (lower right). Contours
are 68, 95, and 99%.
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5 - 7.3 keVnr x/2 (-Apr.1)

1.8 - 2.5 keVee (CoGeNT)
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2.5 - 3.2 keVee (CoGeNT) 1.2 - 3.2 keVee (CoGeNT)
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Figure 10-12: Feldman-Cousins allowed regions in a polar projection of modulated rate M
vs. <. for CDMS singles passing the nuclear-recoil cut (dark blue) and for the CoGeNT data
(light orange). Three different energy bins are shown, along with the total energy range
(lower right). Contours are 68, 95, and 99%.
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Figure 10-13: Feldman-Cousins allowed regions in a polar projection of modulated rate M

vs. <p for two event populations dominated by electron recoils: multiples (light blue) and

singles (dark red). Three different energy bins are shown, along with the total energy range

(lower right). Contours are 68, 95, and 99%.
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Chapter 11

Detectors for the SuperCDMS

Soudan Experiment

Figure 11-1: A mounted iZIP4 detector.
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11.1 Introduction

We saw from the discussion of CDMS II that the main limitation of CDMS technology

is the suppressed ionization yield of near-surface events. When an event occurs within

a micron (or so) or a surface (either a bare surface or metal surface), the electrons

and holes have the opportunity to recombine (either in the amorphous lattice of the

bare surface or in the metal layer which has no energy gap at all), thus reducing the

measured ionization yield, and making the surface electron recoil look very much like

a nuclear recoil. In CDMS II, subtle differences in phonon pulse shape were used

to offer some amount of surface event rejection ( 1:200 leakage for surface events in

the NR band), but in order to gain this (still imperfect) rejection ability, we had to

harshly cut on the data, eliminating half of the exposure and thus half of the scientific

reach.

While CDMS II collected data underground at Soudan, detector design work con-

tinued at the surface. The basic detector design remained unchanged, and three

incremental changes were implemented into what became known as the 'mZIP' (for

'maximized'):

1. The crystal thickness was increased from 10 mm to 25.4 mm (1 inch). The

strategy here is simply to increase the bulk volume (exposure) while keeping

the top and bottom surface area (source of potential leakage) unchanged.

2. The partition of phonon channels was improved to give better radial position

information. A four-channel design was still employed, but instead of four

quadrants, one channel became an outer ring (and the remaining three channels

split the inner region into equal thirds). With inner-outer phonon information,

the radial event position was much easier to measure (no more 'shrimp').

3. The QETs were better optimized for larger Al surface coverage, potentially re-

sulting in better signal-to-noise on the subtle phonon pulse shape quantities

that drove the surface-event discrimination. This QET improvement was tem-

pered, though, by a necessary increase in TES width (from the switch form an
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EV-align to full-wafer photolithography), which decreased the total number of

QETs allowed per channel (to match the desired impedance).

The improvements of the mZIP over CDMS II detectors were significant, but the

experiment was still be left largely in the same position: exposures would be limited

in their reach by the necessity of a harsh surface-event cut based on dangerously

subtle phonon pulse shape characteristics. This chapter is about a major leap in

technology, which attacks the problem of low-yield surface events using a completely

different strategy and succeeds in eliminating these surface events from the exposure

completely, increasing the detector efficiency while dramatically decreasing the danger

of surface event leakage.

11.2 The Interleaved Strategy

Let's begin by looking at Figure 11-2, a simplified cross-section through this new type

of detector, with the top and bottom surfaces at the top and bottom of the figure.

Notice the alternating voltages placed at both top and bottom surfaces. One surface

alternates between positively-biased electrodes and ground lines, and the other surface

alternates between negatively-biased electrodes and ground lines). Near the surface,

field lines terminate on the biased electrode and the grounded metal (on the same

side), whereas in the bulk, the electric field is as it was in CDMS II: smooth and

uniform, connecting the top surface and the bottom surface.

This is the foundation of the iZIP ('i' for 'interleaved): Events in the bulk field

region produce nearly symmetric charge signals (comparing charge signals from the

top and bottom surfaces), whereas events in the surface field region will produce

extremely asymmetric charge signals. For an idealized surface event in this detector,

no charge at all will leak out of this surface field region and the opposite side will

record no charge signal at all. This change in the electric field (and change from a

one-sided to a two-sided charge sensing strategy) results a near-perfect surface event

veto, solving the major difficulty of CDMS II.

In addition to the surface event veto, the interleaved strategy has many other
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Figure 11-2: The general idea of the interleaved strategy, illustrated here in schematic
form for clarity. We are looking at a cross-section through a detector, with the Z axis
running top-bottom. Spaced at intervals across the top and bottom surfaces is a
pattern of alternating biased and grounded metal surfaces (opposite bias on the two
surfaces). The overall effect is a smooth uniform bulk field running from one side to
the other, terminating on the biased electrodes, with a surface field region (colored
pink here) with significantly radial direction, and field lines terminating at both ends
on the same side. When charge is deposited in the bulk, it produces nearly symmetric
charge signals in the electrodes on the opposite sides; when charge is deposited near
the surface, it produces a charge signal on one side but no charge escapes the surface
field to produce a signal in the opposite-side electrode.
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benefits, which we get essentially for free:

Two-sided phonon readout has long been a goal of CDMS, but setting up a circuit

which both biases TESs (in their transitions) and biases the QET aluminum (to

produce a bulk drift field) is a challenging task. In the interleaved design, we

have QETs at ground on both top and bottom surfaces (these are the grounded

metal layers between the bias lines in the cartoon), and yet still have a bulk

drift field (produced entirely by the biased, interleaved electrodes).

Strong, horizontal surface fields should raise the yield of surface events by par-

tially overcoming the effects of surface trapping.

Localized Luke phonon production now occurs predominantly in the near-surface

(high field) regions, rather than uniformly along the charge drift paths as in

CDMS II. The fact that Luke phonons are always produced in the same place,

irrelevant of event Z position, and the fact that Luke production is spatially

separated from the recoil position, make the Luke contribution separable from

the recoil contribution in phonon pulse shapes, and makes both contributions

more informative.

We will come back and discuss each of these points more in this and the next

chapter.

11.3 Evolution of the concept

The interleaved strategy is intuitive enough to have been thought of long ago (and

perhaps it was), but CDMS is using this strategy only after learning of the work by

P.N. Luke, at Lawrence Berkeley Laboratory. Beginning with a paper published in

1995 [81], Luke laid out the basic strategy of interleaving surface electrodes to create

electrodes which are sensitive to whether an event is in a smooth bulk field region

or in a surface field region. A figure from this first paper is shown in Figure 11-

3. Luke based his concept on the idea of a Frisch grid, in which the bulk Ramo

field is weakened (and the surface Ramo field is strengthened) by the placing of a
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Figure 11-3: Figures from Lukeet al. [81], showing two device schematics (top) in
which charge (Q) drifts in the x direction towards a sensing electrode (or two) on the
far right. On the left, the Frisch grid strategy is illustrated, in which a grounded metal
grid distinguishes the bulk region (low drift field, low ramo potential, low induced
charge on the electrode) from the surface region (high drift field, high ramo potential,
high induced charge on the electrode). On the right, the Frisch grid is essentially just
moved to the surface, but also instrumented, forming two interleaved electrodes (A
and B). The charge induced on A and B (qA and qB) by the drift is shown below, as
well as a difference signal (qA- qB).

grounded mesh some distance into the detection medium (allowing only a portion

of the electrode's field lines to reach the bulk). Of course, the Frisch grid strategy

is much easier to implement in a gas or liquid detector (such as a TPC) than in a

solid-state device like CDMS, but the basic idea of moving the Ramo sensitivity from

the bulk to the surface by terminating field lines on an extra shaping element are the

same.

The CDMS collaboration saw great potential in this strategy for tagging surface

events (long ago recognized as the limiting factor for larger exposures), and altered

Luke's design to place electrodes on both surfaces, interwoven with strings of (OV)

QET sensors. This switch from a device in which two electrodes are on one side

to a device in which the electrodes are on opposite sides (but still interwoven with

something to alter their Ramo potentials) is the only way in which the Frisch-Luke
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basic strategy was altered.

The first CDMS device with interwoven electrodes and QET 'ribbons' was fabri-

cated and tested in 2006, presented at the Low Temperature Detectors 11 conference

that year [34], and one side of the mask design is shown in Figure 11-4. This device

was constructed during the collaboration's transition from the stepper process (a grid

of many small exposures) and the existing full-wafer exposure process. The Al was

put patterned using a full-wafer mask, whereas the TESs were placed using a small

5mm square mask as in CDMS II. The device had the same number of channels as a

standard CDMS II detector (or the mZIP), but arranged in such a way as to cover

both sides: the two charge channels corresponded to the two sides, and each side was

split in half into two phonon channels (where the sides were rotated at 90 degrees

to each other, to give something like the quadrant layout of CDMS II when the two

sides are combined).

The 2006 device was important in that it proved the basic concept of combining

the yield discrimination of CDMS II with a charge-based fiducial cut in Z. Experience

with this design also pointed pointed out the several weaknesses of the interleaved

strategy:

* The interleaved design is inherently fragile. In practice, the 2006 device suffered

from both charge and phonon opens and shorts that significantly degraded the

device's usefulness. It is basically a problem of lowering the dimensionality; in

CDMS II and in the mZIP design, both the charge and phonon sensors were

essentially planes, and in the iZIP design, both the charge and phonon sensors

became essentially lines. In retrospect, the iZIP1 QET ribbon (see FIgure 11-5)

was well designed in theory, but terribly designed in practice in that it did not

take into account the fabrication errors that unavoidably occur when patterning

an entire wafer face. The ribbon placed Al elements at both the TES bias

voltage and grown in close proximity to each other, leading to a multitude of

shorts within the ribbon. But, even with an improved QET design, the linearity

of the structures poses a hurdle.
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" The capacitance of the charge channels is increased dramatically as a result of

being interleaved with the grounded QET ribbons, increasing the charge noise

and decreasing the charge energy resolution (and hence, the usefulness of yield

as a discriminator). This capacitance constraint is why there must be some

significant bare substrate surface separating the interleaved structures.

" In order to lower the capacitance of the electrodes, the surface area of the QETs,

and hence the detector's ability to measure phonon timing and pulse shape, is

significantly reduced. In defining the width of the QET ribbon, there is an

unavoidable choice to make between better phonon signal-to-noise or better

charge signal-to-noise.

* A two-sided charge readout and a two-sided phonon readout necessitates more

channels than CDMS II or the mZIP. With one charge channel on the top and

one on the bottom, there was no 'outer' charge channel on either side, which let

in so many high-radius backgrounds that the vetoing of extreme-z backgrounds

was overshadowed. Additionally, the 'outer' phonon channels of the mZIP had

to be discarded in order to obtain at least some level of x-y position information.

As with the benefits of the interleaved strategy, these weaknesses too will be discussed

more in the coming pages.

One imaginary weakness that de-motivated the collaboration from pursuing the

iZIP strategy more actively was the fear of the 'saddle points' in the fields (as in

Figure 11-2), where the field of the opposite side electrodes and the near side elec-

trodes and QET ribbons exactly cancel each other out, leading to a region of zero

field directly under each QET ribbon. It was thought that this was an extremely

dangerous situation to allow in a detector, potentially leading to both electron-hole

recombination and charge trapping. It was the Edelweiss collaboration, inspired by

the CDMS device presented in 2006, which fabricated the first device to show that

these saddle points are not a significant issue in 2008 [35], showing a surface event

rejection better than 1:104. It was at this point that CDMS decided to forcefully

pursue the interleaved strategy.
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Figure 11-4: Side 1 of the iZIP1, with Al in blue and W in purple. Some Al features
are apparent here that were temporary alignment marks, later removed during the
a-Si etch.
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Figure 11-5: The first QET ribbon, as designed for the iZIP1 in 2006. Al is grey, W
is dark blue.

We will skip the intermediate designs (no offense intended!) and discuss the

motivations and resulting design decisions represented in the current generation of

iZIPs (versions 4 and 5), currently running at Soudan.

11.4 Channel Partition

How many charge and phonon channels are necessary for an iZIP, and how should they

be arranged on the detector faces? For SuperCDMS Soudan, we were constrained to

use the existing CDMS II readout electronics (an issue that will come up again) which

assumed each detector consisted of four phonon channels and two charge channels.

From the 2006 device, it was clear this was not enough. The minimum number of

charge channels per detector is 3 (a veto outer channel on a single side, preferentially

the hole collection side, as was intended in CDMS II). This necessarily means involving

the readout electronics of two CDMS II detectors, and for simplicity of triggering,

it was decided to not share CDMS II readout groupings between multiple detectors.

This leaves us with four charge channels and 8 phonon channels worth of readout per

detector, so we might as well take advantage of the glut.

As illustrated in Figure 11-6, the charge channels essentially just duplicated the

CDMS II (or mZIP) partition on the top and bottom (we now have two outer charge

sensors) and duplicated the mZIP phonon partition on both the top and bottom (we

now have two outer phonon sensors). Already, we can see that this design will have

as one of its main strengths an extreme position-sensitivity. This partition gives us
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four channels measures of radial energy partition (inner-outer on the top and bottom

in both charge and phonon systems). The inner three phonon channels on one side

give us x-y position information, and in this design we have that measurement, too,

duplicated on both sides (notice the 60 degree turn between the top and bottom side

channel divisions to further boost this x-y sensitivity).

Figure 11-6: The partitioning of the sensors into channels. The left plot shows the ar-
rangement of the four charge channels (inner/outer on side 1 and side 2) and the right
plot shows the arrangement of the eight phonon channels (inner/outer, with the inner
channels divided into thirds). Importantly, the 8 phonon channels are constrained to
each contain the same number of QETs (and hence have the same resistance), which,
if we want roughly constant Al surface coverage, leads to a constraint that the phonon
channels be of nearly equal area.

11.5 Charge Channels

The charge channels are simply metal lines on the surface, connected to charge ampli-

fying FETs (some distance away, at a higher temperature stage). The charge channels

are defined almost entirely by a single attribute: capacitance. In the limit where the

detector capacitance dominates the total capacitance of the channel (i.e., detector

capacitance is larger than the capacitance of the striplines connecting the detector to

the FETs), charge channel resolution scales as the square root of the channel capaci-

tance. The three variables relevant to the design, then, are just the three geometrical

quantities: the width of the electrode lines, the width of the QET ribbon, and the

spacing between them.
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Note that capacitance is not the only attribute that varies with these geometrical

variables. As the electrode width increases (the area of the biased metal), the surface

field weakens and the bulk field strengthens. At the same time, the depth and strength

of the ramo potentials (and resulting sensitivities to drifting charges) shifts from being

nearly entirely in the surface region (thin electrodes) to being more evenly distributed

(fat electrodes). And of course, the electrodes are phonon sinks (passive Al), so we

pay a price in phonon signal to noise simply from phonon losses if the electrodes are

a significant fraction of the Al surface area.

Back to capacitance for a moment. Capacitance is simply a description of the

geometry, and the geometry of the iZIP is just slightly too complex to easily write

down an analytical description. If we simplify the geometry slightly (as shown in

Figure 11-7) by assuming that both the electrodes and QET ribbons have circular

cross sections (instead of being extremely flat), then we can write an approximate

description.

Eo D

0 0 0 0 0 0 0 0
ri r2

EGe

Figure 11-7: The simplified surface geometry, used as a starting point for writing
down an approximate expression for iZIP capacitance. r1 and r2 are radii.

By Gauss' Law, the electric field outside a simple wire can be written as E =

A/(21rEr), where A is the linear charge density along the wire. If we approximate the

iZIP field as the superposition of the field resulting from placing +A on the charge

rails and the field resulting from placing -A on the ground rails (this approximation

should hold in our case, where ri and r 2 are much smaller than D), then the voltage
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difference between the two lines becomes simply

/2r2 A - A r2AV= -j E-dr = - 2 i dr = 2 7rIn (-) (11.1)

In our case, we need to ad up the AV components not just in an electrode-ground

pair, but between all electrodes and all grounds. We choose a starting pair (labeling

them as "0") and add up the contributions of both the electrodes and grounds to the

left and the electrodes and grounds to the right, as

AV = An D-(r2 (11.2)

27re (r1~ )~ 2

+2 ((rn±)J i

A D 1)Dri

+ AInD
27rc r2

+A n 2mD - r1

=127rE ((2m - 1)D - r2

00 A (2m + 1)D - r1
+ E In

=127re 2mD - r2

+ E A In (2|ml + 1)D - r2

M=127e 2|m|D - r1

-E A n 2|m|JD -r2

m=-- 27rE (21m| - 1)D - r1

where the individual lines of the expression represent the voltage drop due to charge

on the "0" ground line, on the "0" electrode line, on all ground lines to the right, on

all electrodes to the right, on all ground lines to the left, and to all electrodes to the

left. Collecting terms and simplifying, we arrive at

AV= A In [ -- +) n -D) +4 ln 2m + (11.3)
27c ri r2 M-=1 (2m

which can be converted easily into a capacitance per area as

27re
in(D/ri) + ln(D/r 2 ) + 4 E' in[(2m + 1)/2m]
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The foundation on Gauss' Law allows us to set e to be simply an equal share of the

two materials, as c = (Eo + EGe)/2. If we set the charge line width to some minimum

(set by fabrication) and the QET ribbon width to some approximate minimum (set

by our desire to have some Al coverage and the rough scale of the ~ 200pm TESs),

then the main free parameter is D, the separation distance. Figure 11-8 shows the

capacitance of both electrodes on one side of a 76.2 mm crystal. A spacing of 1.6mm

was chosen, to give a rough scale of ~ 80pF for the iZIP4 (8pi electrode width) and

105pF for the iZIP5 (40p electrode width).

Charge Sensor Capacitance, in pF
(assuming 38.1mm substrate radius and 260 im QET ribbons)

3

2.8

c:1.8

a 0-8
0.6

OA

0 10 20 30 40 50
Charge Line Width [Rm]

Figure 11-8: The total charge sensor capacitance (inner channel + outer channel) for
one side of 38.1mm-radius iZIP, as calculated by the analytic approximation discussed
in the text. It is seen that expected capacitances are in the range of tens to hundreds
of pF. The design parameters for the iZIP4 (8pm charge lines) and iZIP5 (40pm
charge lines) are indicated.

By the way, this increase in electrode width is the main difference between the iZIP

v4 and v5, and was intended to both boost the bulk electric field strength (to lower

bulk trapping rates) and allow the Ramo potential of the electrode to have greater

sensitivity to charges drifting in the crystal bulk (to increase sensitivity to charges

even if they do trap before reaching the surface). With our operating experience so
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Electrode Width [pum] Emax [V/cm] Apor. [pm2 ] EuIk [V/cm] C [pF] fpassive

8 3700 100 0.46 127 0.01
20 2500 56 0.50 140 0.07
40 2100 28 0.55 151 0.16
100 1600 13 0.62 175 0.35

Table 11.1: Several design characteristics as a function of electrode width, assuming
the top and bottom electrodes are biased at ±2V (typical for the iZIP), the electrode-
ribbon spacing constant at 1.6 mm, and the ribbon width constant at ~200pm. The
meaning of the design characteristics is briefly described in the text.

far, the practical difference achieved by this electrode widening seems to have offered

only slight practical value.

Assuming that the separation distance D as a fixed parameter, the optimization

of the bias electrode width is a complicated business, involving

The maximum field strength Emax , which occurs at the electrode edge, and de-

termines the voltage onset of charge breakdown (i.e., the maximum bias volt-

age).

The cross-sectional area of polarized Ge Apo,. , surrounding the biased electrode,

which shields the electrode and lowers the induced signal.

The strength of the bulk field Elk , which may be very important to avoid

charge trapping and promote charge stability.

The total side capacitance C , which causes a noise term that scales as V/, as

previously mentioned.

The fraction of the surface Al that is in the electrodes fpassive , and therefor

robbing the phonon sensors of valuable phonons.

A summary of these effects as a function of electrode width is summarized in Ta-

ble 11.1, based on a finite element model by M. Pyle.

The finite element model used by M. Pyle suffered from a low spacial resolution,

and therefor thicker electrodes (4pm instead of the real value of 350nm). An improved

finite element method was employed (using COMSOL modeling software) without
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Qil Qol Qi2 Qo2
Qil 69.8 2.81 1.48 0.648
Qol 2.81 36.9 0.648 0.646
Qi2 1.48 0.648 69.8 2.81
Qol 0.648 0.646 2.81 36.9

Table 11.2: The capacitance matrix for the iZIP5 (electrode width of 40Pm), in pF.
The total capacitances are 69.8 pF for each inner channel and 36.9 pF for each outer
channel (leading to a combined side total electrode capacitance of 101 pF).

this limitation, in order to calculated channel by channel capacitances. The resulting

capacitance matrix is shown in Table 11.2, and agrees surprisingly well with the the

basic analytic approach, and somewhat less well with the low-resolution finite element

method.

In the end, we have perhaps over emphasized the importance of electrode capaci-

tance, because we are likely dominated by other sources of charge noise, further up in

the channel electronics. At the Berkeley test facility, iZIP4 detector G48 was observed

to have a charge resolution (using an optimal filter) of 288±20 eV, quite similar to

the value obtained for the CDMS II and mZIP charge channels, of radically different

geometry.

11.6 Shaping the drift field at high radius

We have seen that we expect the bulk drift field to be uniform and of amplitude

~0.5 V/cm (much weaker than the CDMS II field strength of 3 V/cm). This field

is uniform in the center of the detector, but at high radius can include some radial

component as a result of the edge of the crystal, the ending of the alternating surface

patter, and the geometry of the surrounding materials (primarily a grounded copper

housing, but partly too any detectors immediately above or below).

The radial components of the high-radius field are clearly important, because

they can either increase or decrease the amount of sidewall trapping depending on

how these fields are shaped. The two geometrical parameters available to CDMS in

shaping this high-radius field are the distance between the crystal and the grounded
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housing (which tends to push field lines into the crystal) and the width of the out-

ermost electrode line (which tends to boost the high-radius field and create a field

more dominated by the Z direction). Some illustration of this basic idea is shown

in Figure 11-9, where the spacing between the crystal and the grounded housing is

slowly increased, keeping all other parameters fixed.

0.2mm 0.7mm 1.1mm 2.3mm 10.0mm

Figure 11-9: A cross-sectional view through the same iZIP design as the radial size
of the housing is increased from left to right (distance between the crystal and the
housing is indicated above each view). The farther the housing, the more z-oriented
the high-radius field lines.

11.7 QET Arrays 1: continuing the goals of CDMS II

We move from the geometry of the charge sensors to the geometry of the phonon

sensors, the QET ribbon. Much of the QET ribbon optimization remains the same

from CDMS II. We want to maximize active Al area, while minimizing passive Al

area. Relatedly, we want to keep the Al fin lengths short (< 1 .5ftrapAl ~ 380 pm

assuming Al thickness of 350 nm). We want the TES length to be just barely less

than the phase separation length (- 200pm for a Tc of 80 mK), which is suppressed

from that value by the volume of W in the Al-W overlap region. We want the volume

of the W in the Al-W overlap region to be small so that the TES does not extend

larger than the phase separation length (emax ~ V 7 /2), and additionally so that the

W has a small heat capacity. On the other hand, we would want the Al-W overlap to

be large to increase the transmission probability for quasiparticles from the Al into

the W, known to be one of the major sources of inefficiency in the QET.

207



Voltage
003 1.0

0.8

0.6

000.

-0.2

-0.4

-0.6

-0.8
-0.002

-1.0
-0.os on os 0.02 0023 003 003s 0.04

radius [m]

Figure 11-10: A cross-section through an iZIP5, showing the voltage in the crystal (and
between the crystal and a grounded Cu housing). The geometry is assumed to be axisym-
metric here to reduce the calculation down to two dimensions. Note the smoothness of
the bulk field region, and also that the detector is biased at t2V, but the coloring and
equipotential contours only extend to ±1V. Much of the voltage difference occurs very near
the electrodes. The outermost charge lines are significantly thicker than the others, pushing
the equipotential contours deeper into the crystal at higher radius.
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This thesis does not contain an in-depth optimization of all these competing inter-

ests, largely because we are still lacking the measurements necessary to understand

the optimization. We do not know what ftrapAl is with any certainty, or any of the

other quasi-particle diffusion parameters, so we do not really know the optimal fin

length, the optimal Al-W overlap length, etc. We also do not know how much of the

Al-W overlap contributes to the heat capacity and phase separation length degrada-

tion (though something along the lines of 'half' seems to fit all the data). We have

not learned much about these fundamental design parameters since the design work

for CDMS II a decade ago, which means that the iZIP QETs will look much the same

as before. The only difference from the CDMS II optimization is that the minimum

feature size has increased (due to the full-wafer patterning) to 2 .4 pm, decreasing the

resistance of a single TES, and decreasing the number of parallel QETs per channel

(keeping the biased-state resistance fixed at -200mQ to match the readout electron-

ics).

With a maximum TES length £max of ~220pm, a minimum TES width of 2.4pm, a

W film sheet resistance of ~ 3.3Q/sq, and an operating channel resistance of -200mQ,

we arrive at the number of QETs per channel: 458. Given the spacing decisions made

based on reducing the electrode capacitance, the total length of each phonon channel

turns out to be 41 cm (impressively long!) which results in a QET spacing along the

ribbon of just under a millimeter, at 895pm. Note that this is not too far distant

from twice the 1 .5trapAl fin length of 325pm, meaning that the ribbon largely be

composed of QETs themselves, rather than sparsely spaced QETs connected with

long bias rails.

We are largely running blind when optimizing the Al-W overlap region, but this

region has gradually evolved through trial and error since CDMS II. Most signifi-

cantly, the area of the overlap has been minimized for two reasons: so as to minimize

contributions to phase separation, and so as to minimize trapping in both the W and

the Al-W overlap region, both of which have shorter (but unknown) trapping lengths

as compared to Al. The overlap width was set to 4.5pam.

The absolute efficiency of the iZIP QETs (fraction of the total phonon energy
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reaching the TES) was calculated by H. Chagani and M. Pyle, and found to be

~ 12% for the iZIP4 (detector G48). This is remarkably better than the ~ 3% of

CDMS II, despite the similarly-sized Al fins and significantly lower total active surface

coverage (- 6.2% per side). The size of this improvement in efficiency is somewhat

surprising, therefor, and should probably be attributed to either the reduced Al-W

overlap area (resulting in reduced trapping in that region) or improved fabrication

procedures (or, most likely, some combination of the two).

In addition to the efficiency of the quasiparticle diffusion, another measurable ef-

fect of reducing the Al-W overlap area is the changed TES electrothermal feedback

time constant, Tetf. In an iZIP2 (G3D) which happened to be fabricated with sides

exhibiting very different Tc values (-46 and -107 mK), Tetf was measured by observ-

ing the phase-offset portion of the device's complex impedance. At the very lowest

frequencies, electrothermal feedback is perfect, and the input increase in power is off-

set by an equal and opposite (phase = -r) response. As the frequency increases, the

current response starts to lag behind the input power, and the frequency at which

this lagging starts is a measure of the electrothermal feedback time constant. (At

higher frequencies, inductances of the readout loop dominate, and the phase offset

becomes positive.) For this iZIP design, retf was found to be -25ps and -40pLs for

the low-Tc and high-Tc sides, respectively.

11.8 QET Arrays 2: new constraints brought on

by interleaving

The only phonon channel design goals that are fundamentally new for the iZIP are

* The QET ribbon width, which should be small so as not increase the charge

channel capacitance.

" The QET ribbon length and internal fill factor, which should be short and 'filled

in' respectively, to lower the ribbon's inductance (so as not to increase the L/R

electrical time constant of the SQUID readout).
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Figure 11-11: The estimation of retf by looking at the low-frequency complex
impedance (here, the phase offset) of the phonon channels. Channels with two sig-
nificantly differing Tc values are shown here, leading to the differing values of Tetf

despite identical geometries.

Lets discuss each of these issues a little more.

We have emphasized both the importance of the general surface geometry (charge

line width, QET ribbon width, charge-QET separation distance) in setting the elec-

trode capacitance, and thus the fundamental noise limit of the charge measurement.

Of course, we have also mentioned that other noise issues upstream from the detector

appear to be dominating, but let's still treat the question of electrode capacitance

seriously. The width of the QET ribbon should be minimized in order to lower the

electrode capacitance, and should be maximized in order to increase the active Al sur-

face area and maximize the phonon pulse shape signal-to-noise. In practical terms,

we decided on an acceptable electrode capacitance (this is the priority, because it is

charge information that defines the all-important fiducial volume in both R and Z)

and then set the QET ribbon width accordingly. Unfortunately, this means the QET

ribbon suffers from the same problem as in CDMS II: there are areas near the TES

(where super-efficient 'beachfront property' Al could be placed) that remain unin-

strumented due to the ribbon width constraint. The maximum ribbon width (near

the TES itself) is 308tm and in an effort to further lower capacitance, the ribbon is

much narrower in the gaps between QETs. For calculating capacitance, the 'average
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width' can be used, -200pm. The constraint of low capacitance has effectively forced

us to reduce the total Al surface area on the top and bottom surfaces down to only

~ 6.2%.

Just as for capacitance, inductance is a purely geometrical characteristic. The

inductance of an iZIP phonon channel is naturally high, because the inductance of

parallel lines increases as the square of the length (and remember that the phonon

channel is a surprising 41 cm long). We can write down an analytic expression for

inductance per length if we first make the simplifying geometrical assumption (as we

did for calculating the electrode capacitance) that the phonon rails are simple wires

of circular cross section (radius r), separated by a distance w from surface to surface.

In this case, the flux per unit length becomes

j = = 2 Bdy = 2 j dy =" ln (-) (11.5)
r r 27xy 7r r

and the inductance per unit length is simply

f = In (11.6)

To give a sense of magnitude, this inductance-per-length becomes -10 nH/cm after

rough numbers are put in.

We have an inductance per length, but we do not simply multiply this by the

channel length. Some signal is put into this channel at the maximum length, some at

the minimum length (where the effective detector inductance for that input is zero).

We already see a good reason to minimize detector inductance: different areas of the

detector will be put through a low-pass filter with different cutoffs, determined by

where along the length QET ribbon the even happens to be. If we forget about local

information for the time-being, and imagine the phonons hitting the entire channel

at once, then the effective inductance goes as length squared.

Two geometrical strategies can be employed to reduce the inductance: decrease

the length, and decrease the gap width w. First, the length can be shortened by

changing how the 41 cm is arranged. Instead of a 41 cm line, the inductance can

212



be reduced simply by covering the same surface area with two 20.5 cm 'branches'.

This is effectively what was done in the iZIP4/5, except that the two branches were

joined at their tips (for added fabrication robustness) so that each channel is actually

a loop of QETs, effectively cutting the inductance in half (L ~ f2 -+ L ~ 2(f/2)2 =

(1/2)f2). Additionally, the inductance is proportional to the amount of flux passing

between the rails, which is proportional to the non-metal 'white space' area between

the rails. Efforts were made to push the rails together and fill in the inter-rail area

with conductor (Al). This is totally consistent with both our desire to push the rails

together for capacitance reasons and our desire to fill the region between the rails

to obtain high phonon absorption. The resulting inductance per phonon channel

in the iZIP4/5 is estimated at ~20nH, meaning that the inductance of the readout

electronics dominates. The channel inductance will be much more important once the

SNOLAB readout electronics (with a lower inductance) are used, but in the future the

non-metal area between rails will also be significantly reduced (as will be discussed

in the SNOLAB section).

11.9 Fabrication Robustness

The iZIP4/5 was designed not as a test device, but for actual mass production and

deployment at Soudan. Fabrication robustness was one of the main goals of the

design, so that detectors could be quickly and easily fabricated for the experiment.

Laying down the device layers and patterning them is a difficult job. Several types

of microscopic problems can occur, including isolated bubbles in the photoresist , iso-

lated scratches on either a substrate or a fabricated layer, or a patch can simply flake

off. Aluminum, in particular, is a fragile material and has poor adhesion qualities,

making it difficult to work with. For this reason, whenever possible, aluminum in the

design was overlain with tungsten as a sort of rigid support. This was done on the

bond pads, on the electrode lines, and even on the rails between QETs (even though

this deadens some small portion of otherwise active Al).

On the other hand, if the W completely covered the Al rail, any gaps in the Al
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Figure 11-12: Several views of the iZIP4.3 phonon sensors. At top is shown the
'ribbon' of QETs. Included are two 'safety' bond pads, to repair opens in case of
fabrication errors. Also, note the use of W to strengthen the Al rails between QETs.
At center is shown a single QET (length of central fin: 327pm). At bottom is shown
the TES (~ 2.4pmx220pm) and the fin-TES interface structures. Compare to the
similar figure from the CDMS II detector chapter. Grey is Al, dark blue is W, and
light green is the underlying a-Si layer.
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rail would no longer be visible. For the phonon channels, it is the superconducting

path through the Al that really biases and reads out the QETs, so the Al continuity

is extremely important to inspect after fabrication is complete. The phonon channel

rails had an Al width of 14pm and a W width of only 7pm, to try and balance

the competing goals of strength and inspectability. The electrodes were similarly

half-covered, though the superconducting Al continuity was less important.

Figure 11-13: A photomicrograph, showing the importance exposing a significant
amount of Al. All three layers of the line are visible here: a-Si, then Al, then W.
Here, the Al layer has a small gap (a fabrication error), which can only be seen where
the W is not overlain. Because the Al open can be seen, it is easy to fix with an Al
wirebond (between two 'safety' pads, visible at the top of Figure 11-12).

The QET underwent a revision from v4.3 to v4.4 in which the far ends of the

Al fins were arranged such that voltage differences between adjacent structures was

minimized, as in Figure 11-14.

11.10 The Array of Detectors for SuperCDMS Soudan

To take advantage of the existing readout electronics at Soudan, consisting of 30x4

phonon channels and 30x2 charge channels, 15 detectors were prepared for instal-

lation (15x8 phonon channels and 15x4 charge channels). These 15 detectors were

arranged into five towers of three detectors each, leading to a total Ge mass of 8.95 kg
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Figure 11-14: An improved fin design (starting in iZIP4.4) in which Al structures
(fins and rails) have only small voltage differences with adjacent structures. Compare
to Figure 11-12.

.7
I J

Figure 11-15: Side 1 of the iZIP4. Here, Al is blue, W is purple, and a-Si is green.
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(masses vary from 580 g to 610 g depending on level of surface polishing).

In a display of confidence in the detectors' surface event rejection capabilities, two

weak 2 0Pb sources are installed within the cryostat so that we have a large exposure

of surface events, similar to a ton-scale experiment, and can make measurements of

beta rejection which are limited neither by muon backgrounds (as is the case at the

surface) or by statistics. These two sources are at the top and bottom of Tower 3,

one above T3Z1 and one below T3Z3. These sources were produced by exposing Si

wafers to radon-contaminated air over the course of weeks, letting the OPb gradually

accumulate, while regularly measuring the Si wafer radioactivity. The obtained rate

of beta emission is ~1 decay per minute. Although the rate is astronomically higher

than any we expect in an actual WIMP search run, these radon-daughter sources

otherwise exactly replicate the most dangerous backgrounds we expect to see.

The next chapter is a first look at the rejection ability of these surface recoils.

217



Elect. Impurity Etch Pit Mass [g]
Tc [mK] RNormal [] Width Level Density i4.9g

[pm] [cm- 3 ] [cm- 2

T1Z1 ?, 87, 87, 87 >1, 0.65, 0.65, 0.70 40 4x101 0  5000 609.5
(G41) 114, 100, 101, 100 0.75, 0.60, 0.70, 0.65
T1Z2 75, 78, 78, 78 0.85, 0.75, 0.70, 0.85 8 4.4 x 1010 3890 609.5
(G42) 82, 80, 78, 80 0.80, 0.80, 0.80, 0.70
T1Z3 86, 87, 87, 87 0.70, 0.70, 0.70, 0.65 40 6 x 101 0  3890 597.4
(G43) 113, 100, 99, 98 0.75, 0.65, 0.65, 0.65
T2Z1 76, 80, 79, 80 0.48, 0.50, 0.41, 0.51 40 4x109  597.4
(G24S) 98, 94, 95, 94 0.58, 0.51, 0.54, 0.56
T2Z2 70, 79, 77, 78 40 591.3
(G53) 93, 85, 86, 85
T2Z3 83, 85, 85, 85 0.65, 0.61, 0.51, 0.57 40 8x10 10  3132 579.1
(G2E) 101, 94, 95, 94 0.62, 0.54, 0.58, 0.53
T3Z1 88, 91, 91, 91 0.70, 0.65, 0.70, 0.65 8 603.4
(G48) 109, 101, 101, 101 0.65, 0.55, 0.55, 0.60
T3Z2 91, 92, 93, 91 0.75, 0.60, 0.65, 0.70 8 7x101 0  5900 591.3
(G47) 107, 96, 99, 99 0.60, 0.50, 0.50, 0.55
T3Z3 87, 89, 89, 89 0.75, 1.00, 0.65, 0.65 8 2x10' 0  6720 609.5
(G52) 103, 97, 96, 98 0.75, 0.60, 0.80, 0.60
T4Z1 88, 90, 88, 90 0.55, 0.45, 0.45, 0.45 40 1.1 x 1010 5110 597.4
(G21P) 104, 97, 97 97 0.60, 0.85, 0.70, 0.70
T4Z2 89, 92, 91, 92 0.85, 0.75, 0.80, 0.80 8 8 x 101 0  4312 597.4
(G50) 106, 101, 101, 100 0.65, 0.64, 0.55, 0.70
T4Z3 83, 86, 86, 86 ?, 0.70, ? 0.70 40 2.5x 109 5290 594.3
(G200) 100, 95, 95, 94 0.70, 0.65, 0.60, 0.63
T5Z1 71, 75, 75, 75 0.65, 0.55, 0.60, 0.60 8 579.1
(G51) 82, 79, 77, 78 0.65, 0.60, 0.55, 0.60
T5Z2 63, 70, 68, 71 0.80, 0.65, 0.75, 0.75 8 3x109  6470 606.5

(G19N) 96, 88, 88, 88 0.70, 0.75, 0.50, 0.75
T5Z3 83, 84, 84, 84 0.64, 0.62, 0.62, 0.63 40 591.3
(G7F) 100, 91, 91, 90 0.60, 0.62, 0.49, 0.60

Table 11.3: Summary of the basic measured physical properties of the 15 SuperCDMS
Soudan detectors (transition temperature, normal resistance, electrode line width,
substrate impurity level, substrate etch pit density, and substrate mass). The Tc and
RN values are listed for each of the eight phonon channels, as Side 1 (A,B,C,D) then
Side 2 (A,B,C,D). The electrode width was changed from the iZIP4 (8pm width) to
the iZIP5 (40pm width) in an effort to increase the charge stability (and the resulting
time between LED flashing). The impurity levels and etch pit densities are two
measures of crystal purity (an etch pit density test reveals the density of certain lattice
dislocations). The mass was inferred from the crystal thickness, itself measured by
how many spacers were necessary when mounting the crystal in a housing. Thickness

(and mass) varies as a result of varying amounts of polishing.
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Figure 11-16: The SuperCDMS Soudan 'tower' structure, holding three iZIPs (base)
and connecting them to the first stage of readout electronics (SQUIDs and FETs)
at higher temperature stages. This structure is suspended from the upper portions
during operation.
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Figure 11-17: An exploded view of the 15-detector array making up the SuperCDMS
Soudan experiment. There are 5 towers of 3 detectors. Within each tower, the
detectors are rotated 60 degrees relative to each other. Tower 3 is unique in that
210Pb sources are installed at the top and bottom of tower, exposing the top surface
of the top detector (T3Z1) and the bottom surface of the bottom detector (T3Z3).
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Figure 11-18: A batch of 6 iZIPs, fabricated specifically to test the fabrication
throughput. These detectors were fabricated using Si substrates (as indicated by the
sidewall labeling), and are interesting to study in their own right for comparison with
the Ge detectors.
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Chapter 12

Analysis of iZIP4/5 Data

This chapter draws primarily on the analysis of one particular iZIP4 detector (G48,

aka T3Z1), sometimes using data from testing at Berkeley, and sometimes using

data obtained after its installation underground at Soudan. This detector makes an

excellent example case because it has been more thoroughly inspected than any other

iZIP, partly because it was in the first fabrication batch of iZIP4/5 detectors for

SuperCDMS Soudan.

In addition to 133Ba gamma sources and 252 Cf neutron sources external to the

cryostats at both sites, this detector has been exposed to rigorous surface event re-

jection tests, necessitating the installation inside the cryostats of sources of non-

penetrating radiation. At Berkeley, this consisted of a 109Cd beta source, facing the

top surface of the detector, collimated through a regularly spaced grid of holes. At

Soudan, the surface events are the result of a non-collimated Si wafer that had been

exposed to radon-contaminated air, imparting a 210Pb contamination into the sub-

strate. As illustrated in Figure 12-1, the 21oPb decay chain has many products. Most

important for this analysis are the betas at 15 keV, 61 keV, and 1.1 MeV, as well as

the 206Pb nuclei which recoil at 103 keV and below as a result of alpha emission. The

overall rates are not high for this source; the rate in T3Z1 is ~71 betas/hour and -16
2 0 6Pb nuclei per hour.

At the time of writing (summer, 2012), the Soudan installation is busy collecting

more data and greater statistics, and the collaboration is busy creating improved

223



21 b I., - 22.26 y at %A I 15 kV

U11161 V

a 4.52 MeV -3 2

amPb

Figure 12-1: The 21oPb decay chain.

analysis methods, so this chapter should be thought of as something like a 'first look',

rather than anything like a final word.

12.1 Overview

Much of the analysis infrastructure from CDMS II carries over quite well to the iZIP

case. All eight phonon channels and all four charge channels are interpreted using an

optimal filter to obtain raw pulse amplitudes. The charge pulse amplitudes are then

calibrated (while correcting for capacitively-coupled crosstalk) using 133Ba calibration

data. The eight phonon optimal filter amplitudes are first calibrated relative to each

other by aligning the eight Echan/Etot distributions, such that the average deposition

in each channel is approximately 1/8 of the total. A small improvement to this

relative calibration strategy can be achieved if instead of aligning the means of the

distributions, we align the low- Echan/Etot edges. This means setting equal each

channel's fractional energy deposition when the channel is non-primary, which should

avoid the effects of local saturation and channel geometry (each phonon channel has

the same collection area, but we would still expect a primary event in the outer

channels to absorb less energy than a primary event in the inner channels). This

relative calibration consists of 7 scalars. An eighth number provides the absolute

scaling, converting the optimal filter amplitudes (in electrical units) to energy units

(keV). This last step is performed by minimizing the difference between the phonon
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energy and the charge energy (which has already been calibrated using 133Ba lines),

implicitly using the assumption that the 1 33Ba events (gammas) are of fixed ionization

yield. With the four charge amplitudes (two from each side), we can select only

those events in the crystal bulk, and with a charge energy and a phonon energy

we can construct an ionization yield, and then the job is done: a well-measured

yield and a well-defined fiducial cut are the two ingredients to a perfect detector.

Notice that no timing information is used at any stage, only charge and phonon pulse

amplitudes. This makes the analysis significantly easier and more robust than the

CDMS II analysis.

Now that we have listed the two key ingredients to a clean nuclear recoil sample: a

fiducial volume definition and a yield definition, let's discuss each of these ingredients

in turn.

12.2 Charge-Based Fiducial Volume Definition

In CDMS II, we did have a charge-based fiducial volume, but only in the radial

direction. We eliminated all events that registered any amount of induced charge

on the outer charge channel. The iZIP fiducial volume definition consists of three

simultaneous cuts (an event must pass all three cuts to be considered in the fiducial

volume), and two of these cuts are basically the same idea as CDMS II: "did the

event produce a significant amount of induced charge in the outer charge

channel?" The ramo potentials of the new geometry (which describe the electrode's

sensitivity to drifting charges) now are largely limited to the near-surface field region

(meaning drifting charges must reach this region in order to produce a significant

signal). On the other hand, we now have the luxury of asking this radial question

twice for each event, once on the electron side and once on the hole side. The third

fiducial volume cut is the so-called 'symmetry' cut, as laid out in Figure 11-2, asking

the question "did the event register approximately equal amounts of induced

charge on the top and bottom sides?". There are two ways in which an event

could be side-asymmetric: either the event occurs in the surface field region (where no
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charge escapes to drift to the opposite side) or the event could suffer from significant

asymmetric trapping. Of course, it's always possible for an event to suffer from equal

trapping of holes and electrons, but this is a rare coincidence. In summary: To be

considered in the the fiducial volume, an event must satisfy all of the following three

criteria:

* Most of its hole-side collection must be in the inner charge channel.

e Most of its electron-side collection must be in the inner charge channel.

* Charge collection must be roughly equal on the hole side and the electron side.

We need now to define 'most' and 'roughly'. More specifically, the three-cut

fiducial volume definition depends on setting four cut thresholds: a threshold between

inner and outer on the hole side, a threshold between inner and outer on the electron

side, and two thresholds separating the side-symmetric population from the side 1

population and the side 2 population. All four of these thresholds can be thought of

as angles and as (sometimes fuzzy) thresholds in real space, as seen in Figure 12-2.

Notice how, in Figure 12-2, a symmetric cut of any threshold will eliminate a large

population of events near the outer sidewall, for which one of the charge carriers is

trapped (on the side wall) more than the other. In a way, these are almost exactly

the events we want to be cutting: not just based on position, but based on whether

significant trapping has occurred. Of course, it is always possible that trapping could

be symmetric, and this population (that we earlier described as depending on a coin-

cidence to exist) is the only low-yield population not cut by the otherwise extremely

powerful symmetry cut. The two radial cuts, then, can be made much looser than in

CDMS II (thereby gaining fiducial volume efficiency), because we are now eliminating

high-radius events in three ways simultaneously.

The setting of these four fiducial volume cut thresholds was performed (detector-

specific, for T3Z1) by scanning the 4-dimensional cut position space, and finding the

point in that four-parameter space which maximizes the fiducial volume (measured by

the rate of acceptance of neutrons from 252Cf calibration) while keeping leakage at zero
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Figure 12-2: The basic fiducial volume definition for an iZIP. From left to right, we
define a Side 1 angle, a Side 2 angle, and a Symmetry angle. The lower row displays
results from a Monte Carlo study (slices through the crystal, R on the horizontal
axis, Z on the vertical axis), showing the predicted measured values for these angles
at different positions. The crystal slice is through the crystal lattice direction of
maximally-oblique electron propagation, meaning that the electrons spread towards
both low and high radius maximally. In this simulation, the detector is biased such
that holes propagate towards Side 1 and electrons propagate towards Side 2 (and this
difference in carrier type is clearly visible in the simulation plots).
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Figure 12-3: The radial charge fiducial cuts (black lines), superimposed on 13 3 Ba and
"OPb calibration data, colored by ionization yield. Events below the black lines pass
each cut. Note that most events lie exactly along the horizontal axis. Note also the
higher population of 'shared' events as measured using the electron side, as expected
by the electrons' oblique propagation.

(measured by the number of combined 133Ba and 21OPb electron recoil events leaking

into the wide ±3o nuclear recoil yield band). The result of this optimization can be

seen in Figure 12-3 (radial cuts for both sides) and Figure 12-4 (the side-symmetry

cut).

12.3 Phonon Energy

12.3.1 The Phonon Absorption Rate

The phonon pulses of an iZIP are dramatically different from the phonon pulses we

saw in CDMS II, as can be seen in the top portion of Figure 12-5. iZIP pulses are

characterized by a dramatic channel-to-channel variation in the pulse shape in the

first - 200ps or so, paired with an equally dramatic channel-to-channel similarity in

amplitude during a long (much longer than CDMS II) slow decay. These pulse shapes

are an expression of newly position-dependent behaviors in the iZIP design, and are a

direct result of 1) the production of luke phonons almost entirely in the near-surface
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Figure 12-4: The side-symmetry fiducial cut (black lines), superimposed on 133 Ba and
21OPb calibration data, colored by ionization yield. Events between the black lines

pass each cut. To highlight the symmetric band, both radial fiducial cuts have been

forced in the event selection. Note that the edge of the symmetric band is sharp (and
near perfect symmetry) on one side, but falls off more gradually (and farther from

perfect symmetry) on the other side. This is a result of the asymmetric trapping rates

of holes (collected near-perfectly on side 2 here) and electrons (collected with some

variable amount of trapping on side 1 here). The dashed black line at 454 is shown

simply to highlight this slight asymmetry. Some low-yield events pass this fiducial

volume definition (as can be seen in this plot), but none of the low-yield events are

as low in yield as the nuclear recoil band.
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high-field region, and 2) the significantly reduced Al coverage (and therefor phonon

absorption rate) in the iZIP (necessary to reduce the electrode capacitance).

In Figure 12-6, we show dozens of channel-summed pulses (signals from all eight

channels are combined, after being relatively calibrated) from positions all over the

detector. It can be seen that the huge pulse shape variation seen channel-by-channel

is impressively canceled out when all the channels are summed, leaving only a small

residual variation either upwards or downwards during the first - 100ps.

The long fall time of these pulses is simply a reflection (pun intended) of the high

likelihood of a phonon incident on the surface to encounter a bare Ge surface (94%

on the top and bottom surfaces) instead of an Al surface, where the phonon could be

absorbed (6%). The taller (1 inch rather than 1cm) metal-free sidewalls only decrease

this absorption rate further. We are left with a phonon absorption time constant in

the iZIP4/5 of ~ 720ps (this number was closer to ~ 2 0 0ps in CDMS II). Note that

this absorption rate only applies after the phonons have reached ballistic frequencies

(more on this later).

12.3.2 The Nonstationary Optimal Filter

What happens when we naively apply the optimal filter strategy of CDMS II to these

pulses? The lower half of Figure 12-5 gives us some intuition. The PSDs for several

iZIP pulse shapes are shown (scaled arbitrarily), along with the phonon noise. Notice

that the PSDs for the 'sharper' or 'smoother' pulses are substantially different in the

amount of power around 10 kHz, but that the total power for all pulse shapes is still

highest at the lowest frequencies. It is these low frequencies that supply power to the

long rfall = 720ps decay, and it is thus this decaying portion of the pulse that we

want to find the amplitude of. Looking at the noise, though, there is a similar rise

at low frequencies (terrible 1/f noise from the readout electronics is a problem both

at the Berkeley test facility, where this data was taken, and at Soudan). Thinking

of the optimal filter naively as signal/noise in this space, we would expect the filter

to de-emphasize the lowest frequencies (where most of the pulse power lies), instead

emphasizing the frequencies between 1-10 kHz, where the signal-noise amplitude is
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Figure 12-5: Phonon pulses from the three inner channels of side 1 of G48, selected to

be at low energies (20-30 keV) so that TES saturation would not play a role, grouped
by position using phonon partition quantities, normalized according to amplitude at

late times, and then finally averaged to form noise-free pulse shapes. These pulse

shapes are shown in the time domain at top, and as a PSD below, along with the

measured noise PSD in each channel.
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Figure 12-6: On the left is shown the total phonon pulse (sum of all phonon channels)
for many events from detector G9F, an iZIP2 with somewhat reduced surface coverage
than an iZIP4/5, and therefor longer falltimes. Note the extreme similarity of all total
pulses after ~ 200ps, and the small but significant variations before that, both above
and below a modeled pulse shape (black solid curve). In the central plot, these
two pulse attributes are separated into a 'signal' template (black) and a 'coherent
noise' template which can take either positive or negative amplitudes (blue). On
the right is shown the power spectral distribution of the standard phase-coherent
(stationary) noise (black) and this new phase-coherent (non-stationary) 'noise' from
position dependence (blue). The non-stationary noise is here scaled for a 100 keV
event, relative to the stationary noise. The PSD is all the information needed to
describe the stationary noise, but all the phase information necessary to describe
the non-stationary noise is not displayed. Note that the non-stationary noise has a
significantly different shape than the stationary noise, and will cause an optimal filter
to de-weight higher frequencies (at a specific time in the pulse, as determined by the
template phase information). Plots after M. Pyle.
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the highest.

I have tried to motivate what we have seen practically: the simplest optimal filter

strategy weights the peaked portion of the pulse (which is extremely variable and tells

us very little about the pulse energy) and deweights the lowest frequencies of the pulse

(where the real energy information lies). Optimal filters are best suited to a signal

which always matches the signal template; here in the iZIP, the pulse shapes vary

widely, and the optimal filter strategy seems to fail. As recently noted (and shown in

Figure 12-6), the total summed phonon pulses suffer this position-dependent shape

variation much less than the channel-by-channel pulses, but the amount of variation

still remaining causes significant (and unnecessary) degradation in the phonon energy

resolution.

The elegant solution to applying an optimal filter to this variable signal (applied to

CDMS by M. Pyle) is to tell the optimal filter what that position-dependent variation

looks like, and call it a phase-correlated noise. In the CDMS II optimal filter, all noise

was assumed to be uncorrelated in phase, but here we are trying to describe a 'noise'

which is really a pulse in time (all contained within that first - 100ps). The optimal

filter for this strategy, then, has three inputs: a stationary (phase-uncorrelated) noise

template which describes the real noise, a non-stationary (phase-correlated, higher

frequencies) noise template which describes the position-dependent variation, and a

non-stationary (phase-correlated, lower frequencies) noise template which describes

the position-independent pulse template, the best-fit amplitude of which is the end

goal.

Introducing this non-stationary 'noise' term significantly complicates both the

description of the optimal filter (I will not reproduce the expression here) and the

computation time necessary for its application to raw traces. But, given the iZIP

situation (energy information primarily at lower frequencies, noise primarily at lower-

frequencies, position-dependence in the high signal-noise higher frequencies), the non-

stationary optimal filter has been seen to significantly improve both the resolution

and the pulse-shape-independence of the phonon energy measurement (as can be seen

in Figure 12-7).
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Figure 12-7: At top, 109Cd spectra (surface events selected using an asymmetric charge
cut), showing both the peak widths and positions, deriving an amplitude from a raw
pulse in several different ways: integral, channel-by-channel stationary-noise optimal
filter (and summing the resulting energies), summed-pulse stationary-noise optimal
filter (i.e., applying an optimal filter to the total trace), and the summed-pulse non-
stationary optimal filter. Notice that the nonstationary optimal filter not only gives
the sharpest peaks, but also best reproduces the mean value of the integral (pulse-
shape-independent) energy estimator. The offset is caused by simpler optimal filters
over-emphasizing the high frequencies and therefor over-estimating the amplitude of
highly peaked pulses. This is emphasized in the lower plot, where various energy esti-
mators are compared with the (pulse-shape-indepeiident) integral quantity (coloring
is the same).
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By the way, the traditional (stationary) optimal filter, which accidentally empha-

sizes the higher frequency portions of the pulse (i.e., the peak of the pulse) is actually

ideal for constructing channel-by-channel partition quantities, where the peakiness of

a pulse exaggerates differences between primary and non-primary channels, and thus

boosts the partition signal-to-noise.

12.3.3 Recoil Energy and Yield

We now have four well-measured charge energies (one for each channel) and one

well-measured phonon energy (the non-stationary optimal filter value for the total

detector). How do we combine them into a recoil energy and a yield?

We have effectively made the charge energy measurement twice, once with the

sum of the electron-side channels and once with the sum of the hole-side channels.

Which measurement is the right one? The side with the maximum charge amplitude

will always be the better measurement, suffering from less charge trapping, and it

is this maximum side measurement that is used to measure the charge energy. Of

course, the maximum side is usually the hole side, but not always.

We have a charge energy measurement, now we need to use the charge signals to

estimate the Luke phonon production (so that we can subtract it from the phonon

energy to obtain the recoil energy). Imagine first the case of a bulk symmetric event.

Its Luke production will be something between the value assuming the hole side

charge measurement and the value assuming the electron side charge measurement.

The portion of an event's energy that is symmetric (and crosses the full 4V difference)

is the minimum of the two side measurements, and the Luke energy produced by these

symmetrically propagating charges is:

ELukeSym = 2 x min[Q1, Q2] (12.1)
3eV

On the other hand, if the event occurs in the near-surface region, less Luke production

occurs, because the total voltage difference transited by the charge carriers is only

half as great (for example, ±2V to OV). We estimate the contribution of Luke energy
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from asymmetrically-propagating charges as

ELukeAsym = Qi - Q21 (12.2)
3eV

and the total Luke energy is simply the sum of the symmetric and asymmetric es-

timations. Most events are either symmetric or asymmetric, but some events have

contributions from both terms.

Finally, we arrive at the yield quantity

charge _ max(Q1,Q2)
recoil Ephnon - ELukeSym - ELukeAsym

12.4 Data Quality

Because the rejection of electron-recoil events using yield and charge fiducial volume

cuts is so easy, any leakage events seen will most likely be the result of failures in the

data quality cuts. This is exactly where we want to be: all the information needed

for perfect discrimination is in the pulse data, we just need to make sure that we are

correctly turning those pulses into reduced quantities. The definition of what makes

an event well-measured is where all the subtlety of the analysis lies. Here, we list the

various quality cuts applied so far at Soudan, but these will surely be added to and

further refined in the future.

Good Series During datataking, onsite and offsite shift members tag each series

as 'good' or 'questionable' or 'bad' based on data quality diagnostics plots or

separate knowledge as the health of the DAQ. In recent analyses, all series listed

as either 'good' or 'questionable' have been included.

Flashtime It is important to ensure that the detector has been flashed with LEDs

recently so that charge collection (i.e. yield) is not in a degraded state. In

recent analyses, a 3-hour time limit since last LED flashing has been enforced.

Charge bias For simplicity, all data has been taken recently with only a single bias

direction ('+/-' rather than '-/+')
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Charge and Phonon x2 The quality of fit for the optimal filters (for phonon, both

stationary and nonstationary versions) offer a powerful rejection of any pulse

that does not match the standard event pulse shape (pathologies caught by these

cuts include various types of noise triggers, electronic glitches, and multiple-

scatters).

Charge and phonon prepulse The standard deviation of the portion of the trace

before the trigger can be used to flag either unusual noise conditions or a pileup

event (i.e., a trigger while the baseline is still falling after a previous event).

Glitch The glitch cut, as it's currently implemented, removes events in which a non-

physical number of detectors contain pulses above a certain amplitude. This is

usually the result of an electronic glitch, rather than a real many-detector scat-

ter. The definition of this cut is still in flux. Ideally, we will eliminate glitches

through their pulse shape, perhaps by defining an optimal filter template for

glitches and cutting on its associated fit x 2 .

Veto Coincidence Events within 50ps of a veto trigger are removed. 'Veto' here

refers to the experiment-surrounding scintillator veto, intended to tag muon

events.

Multiples Dark matter will never recoil in more than one detector, so this is an

important discrimination cut. It also is a data quality cut, which has been seen

to catch certain types of detector-to-detector cross talk.

12.5 Basic Discrimination Ability

Plots visually representing the discrimination of surface events (based on combined

yield and chage-based fiducial volume) in T3Z1 at Soudan are shown in Figures 12-

8,12-9,12-10,12-11, and 12-12.

After application of the charge-based fiducial volume cut (radial side 1 & radial

side 2 & side symmetric), the nuclear recoil passage fraction was ~ 0.63, integrated
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over the 8-100 keV energy range. Only a very small amount of 2 2Cf calibration data

has so far been taken, so there are large statistical uncertainties in this number. There

is also a systematic uncertainty, caused by some unknown amount of contamination

of low-yield electron recoils in the nuclear recoil sample. These near-surface electron

recoils will certainly be cut by the fiducial cuts, artificially lowering the nuclear recoil

sample's passage efficiency.

Estimating the leakage rate of electron recoils through the combined yield and

fiducial volume cuts is hard for the happy reason that no leakage has yet been seen.

Yield discrimination alone for bulk electron recoils can be taken as perfect. The beta

and 206Pb nuclei surface events similarly show no leakage through the fiducial volume

cuts. As can be seen most clearly in the yield vs. charge z partition plane of Figure 12-

12, the 20'Pb population appears to be approaching the symmetric nuclear recoil 'box'

in the charge partition axis, but this is to be expected (surely, once more statistics are

taken, some 201Pb recoils will be correctly measured to be charge-symmetric events).

The expected 201Pb background rate is extremely low, however (the associated alpha

rate at Soudan has been measured at 0.07+0.01 per inner channel per day), so any

leakage (again, not yet seen) from 201Pb nuclei is not a real concern.

The real question we want to ask is 'what is the leakage rate of betas?' So far in

T3Z1, in 37.6 days of exposure to the 210Pb source, we have obtained 79,059 surface

events, of which an estimated 64,511 are believed to be betas based on their yield.

To distinguish betas from 206 recoils, we are simply drawing a line in the sand at

yield=0.4 (betas above, 20 6Pb recoils below 0.4).

With a recoil energy threshold of 8 keV, and 79,059 surface events

collected, zero leakage into the signal region was seen, implying an upper

limit on the beta leakage rate (above 8 keV) of < 2.9 x 10- 5 at the 90%

confidence level.

Although a longer exposure at Soudan may push this discrimination limit further

down, the confusion between 206 Pb recoils and beta recoils will eventually restrict the

experiment's capacity to measure a beta-only discrimination ability. It is expected

that many events currently appearing close to the signal region will be excluded with
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future quality cuts.

12.6 Position from phonon energy partition

In the previous section, we stated the conclusions of a simple iZIP analysis. Given a

definition of ionization yield and fiducial volume, we have an efficiency (~63%) and

a leakage (< 2.9 x 10-). We call this a simple analysis because we have used only

a fraction of the information available to us about each event. We have essentially

performed the thermal measurement, where all the many types of phonon information

available to us have been ignored, and only one phonon-derived number (the total

phonon energy) has been used. But, we went to so much trouble to design a detector

which collects phonons athermally. The rest of this chapter discusses the measured

information content of these athermal phonons, and how phonon information alone

can be used to determine both the fiducial volume and yield. We have so much infor-

mation for each event, in other words, that we can perform the entire discrimination

analysis twice, once based on the charge measurement for position and yield, and

once based on the phonon measurement for position and yield.

The low Al surface coverage of the iZIP (6.2%) is both a blessing and a curse. It

is a curse because it draws the pulse shape out to millisecond time scales, far longer

than the ideal range of the TES (also making pile-up more likely). It is a blessing

because the low probability of phonon absorption per phonon surface interaction acts

as a natural filter, separating phonons that are of extremely short mean free path near

the surface (which, will recoil against the surface over and over again, and therefor

be efficiently absorbed) from low-energy ballistic phonons (which will recoil against a

surface only once, most likely recoiling off a bare Ge surface, and then only much later,

after propagating the macroscopic distance of the crystal thickness, finding another

surface and another chance for absorption). The low surface coverage, then, leaves

the highly-efficient absorption of high-energy phonons unchanged, but dramatically

slows down the absorption of low-energy ballistic phonons. This separation of the

two types is clearly seen in Figure 12-5.
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Figure 12-8: Charge Side 2 vs Side 1, showing the result of Side 1 exposure to a 2 iOPb
source. Along with the Side 1, Symmetric, and (sparse) Side 2 populations, several
other features are visible, including the 45.6 keV gamma population penetrating from
the Side 1 surface into the bulk, and the 10 keV (bulk) Ge activation line. The two
radial fiducial cuts have been applied here, to visually accentuate these features.
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Figure 12-9: The yield vs. recoil energy plane for an iZIP at Soudan for which Side
1 is exposed to a 2 10Pb source (exactly the same data as in Figure 12-8, with the
radial fiducial cuts similarly applied). Many expected features from the source are
seen: the tail of the 1.1 MeV beta population, a 103 keV 20 6Pb population and its
tail (at yield of ~'.0.2), the 45.6 keV gamma population (at yield of 1), beta lines at
61 and 15 keV, and the 10.3 keV Ge activation line (at yield of 1). Charge-symmetric
electron recoil and nuclear recoil i2o- bands are shown in black, as fitted to '3 Ba
and 25 Cf calibration data, respectively. Coloring in this plot is by (log) density.
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Figure 12-10: Same as Figure 12-9, but with all three charge-based fiducial volume
cuts defined (inner side 1, inner side 2, and side-symmetric). The surface event
populations have all but disappeared, and no 2 0 Pb events (either betas or nuclei)
appear with in the ±2o nuclear recoil band. The 2 keV charge threshold is abrupt
here because the charge fiducial volume cuts are defined such that they pass all events
below that threshold.
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Figure 12-11: These plots are the same as Figures 12-9 and 12-10, but in the space
of charge energy vs. phonon energy (and zoomed in to lower energies). The neutron
calibration population is shown underneath in light grey.

Coupled with these naturally different absorption rates, the iZIP surface field

produces a population of highly energetic, highly diffusive Luke phonons right near

the surface, right where they will have a minimal mean free path lengths and therefor

a maximal absorption rate. Luke phonon energy is produced in proportion to the

voltage traversed, and in an iZIP this voltage difference occurs largely in the near-

surface (~1mm) region (as seen in Figure 12-13. Not only is the majority of Luke

energy produced in this region (near the QETs), but the Luke phonons given off in a

high-field region are of significantly higher energy (and therefor much shorter mean

free path length) than the Luke phonons given off in the low-field bulk. This is shown

graphically in Figure 12-14.

Because charges propagate either in side-symmetric or side-asymmetric paths, that

means Luke Phonons, which result directly from charge propagation, must similarly

be produced in either side-symmetric or side-asymmetric proportions. Just as we

define a symmetry band in a space of charge side 1 signal vs side 2 signal, we can

define a symmetry band in a space of phonon side 1 vs side 2 signal, as seen in

Figure 12-15. Luke phonons are only a fraction of the total phonon energy, so no

events are entirely single-sided and entirely asymmetric (as was the case for charge
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Figure 12-12: The plane of the two primary discriminators of an iZIP: ionization
yield on the vertical axis vs. charge symmetry on the vertical axis. A low-energy
threshold of 7 keV (recoil) is enforced here. The nuclear recoil yield varies in this
view (combining a wide range of energies), so the 'box' is shown simply through a
population of neutrons from calibration, in light grey. As in previous plots, color
indicates simply the (log) density of events in the plane of the plot. The high-
yield symmetric electron recoil population is seen at top center, along with the far-
dominating surface event populations (near z-partition of 1) of betas (yield~0.7)
and lead recoils (yield~0.2). Notice that the 'stragglers' in charge z-partition are of
high yield. Charge energy (and thus, signal-to-noise of the z-partition measurement)
decreases with yield, leading to the much wider surface event z-partition blob at lower
yield than higher yield.
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Figure 12-13: The electric field strength as a function of position within an iZIP5

(40pm electrode line widths). Regions with electric field strengths greater than

2 V/cm are uniformly colored red. In the region immediately surrounding the elec-

trodes, this electric field strength can reach a hundred times that value. These plots

can be thought of as showing where in the crystal the Luke phonons of an event are

produced.
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Figure 12-14: A simplified view of Luke phonon production for a symmetric event. A

dashed line indicates the approximate boundary between short-wavelength diffusive

phonons and long-wavelength ballistic phonons. In this model, holes and electrons
propagate through a 0.5 V/cm bulk for half the width, and then propagate through
a thin (0.55mm) region of 20 V/cm near the surfaces (of course, as seen in Figure 12-
13, the real surface field is far from constant). This simplified model, though, shows
several features we expect in the real situation: the electrons emit phonons at lower

frequencies (i.e. more ballistic) than the holes emit, the total Luke phonon energy
emitted in the near-surface region dominates the Luke phonon energy emitted in the

bulk, and the Luke phonons emitted in the surface region are largely diffusive at
creation (whereas the Luke phonons emitted in the bulk region are largely ballistic at
creation). These Luke phonon spectra were derived using expressions from Wang et

al. [108].
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events), but there is still a clear gap in the distributions between the bulk-field events

and the surface-field events.

Interestingly, the fidelity of this surface vs. bulk separation in Z actually im-

proves at lower energies (as seen especially in the bottom side events in Figure 12-

16). Surface events produce Luke phonons over a very small volume of the crystal

(the electrode-ground spacing is only 1.2 mm), and this focused local energy tends

to saturate the QETs near the event location, flattening the pulse shape and sup-

pressing the measured phonon pulse amplitude and the measured phonon z-partition.

At lower energies, where QETs saturate less, the measured phonon energy is some-

what higher, and the separation between surface and bulk in z-partition is somewhat

greater. Already we are seeing that the strength of the phonon-based approach lies at

the low-energy regime, where the extreme sensitivity of TESs can be taken advantage

of.

Notice that we are simply remeasuring exactly the same propagation of charges

twice now: once by observing their induced charge on the electrodes, and again by

observing their resulting Luke phonons. As expected by the fact these two effects

are produced by exactly the propagation of exactly the same charges, the charge

measurements and the (Luke) phonon measurements are highly correlated, as seen in

Figure 12-17. There is one significant hitch to the clean observation of Luke phonons:

they are only a fraction of the total phonon energy created by an event, and the

presence of primary phonons to some extent masks the beauties of the Luke phonon

position measurement. This is particularly the case when the yield is low (and Luke

phonons are a smaller fraction of the total). With a reduced Luke energy, the phonon

z-partition for nuclear recoils is based largely on primary phonons, and therefor the

z-partition distribution for bulk events is less symmetric (i.e., wider in z-partition),

the beautiful bulk-surface separation seen in Figure 12-15 and Figure 12-16 is no

longer present, and the bulk nuclear recoil population overlaps (somewhat) with the

surface electron recoil population (as seen in FIgure 12-19).

So far we have been discussing the phonon information of z-position, and we have

mentioned how low-yield events have a broader partition distribution (are less side-
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Figure 12-15: The phonon energy measured in Side 1 vs. Side 2. In this and the fol-
lowing plots, Soudan 210Pb data has been combined with Soudan 133Ba data (gammas
in both the bulk and the surface) to show the full distributions of electron recoils.
Note that a yield cut (yield must be above 0.4) has been imposed on both samples
to eliminate the surface 20 6Pb nuclear recoils. Note also that only one bias (Side 1:
+2V) is shown in these plots. The 10.3 keV activation line is the clearest feature
observed here. Compare with the charge-based versions of this plot in Figure 12-4
and Figure 12-8.
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Figure 12-16: The same information as in Figure 12-15, but projected differently.
Here, the horizontal axis is the recoil energy (estimated using the nonstationary
optimal filter phonon energy subtracting off the Luke energy estimated from the
charge measurement) and the vertical axis is phonon z-partition, defined as (Side1-
Side2)/(Side1+Side2). Notice how the separation of the surface population increases
at lower energies, indicating that the higher energy surface events are suffering from
underestimated primary-side amplitudes caused by local saturation of the TESs.
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Figure 12-17: Here, the vertical axis is the same as Figure 12-16, but the horizon-
tal axis is the charge z-partition, defined similarly as (Sidel-Side2)/(SideI+Side2).
Notice the strong correlation between the two measurements, but with a higher de-
gree of separation in charge. Notice how the charge signal is perfectly symmetric
only when the z position (as measured using the phonon z-partition) is strongly to-
wards the electron-collection side. Notice, too, how the 'straggling' population of
events between the symmetric and asymmetric population is common to both charge
and phonon z-partition. Lastly, notice how (most clearly visible in the low-statistics
Side 2 population), surface events vary only slightly in charge partition but vary
significantly in phonon partition (presumably indicative of different rates of phonon
absorption depending on event location within the surface structures).
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Figure 12-18: The same as Figure 12-12, but this time using phonon z-partition in-
stead of charge z-partition. In broad strokes, the phonon distributions are the same
as the charge distributions, but less distinct due largely to the presence of non-Luke
phonons. The bulk nuclear recoil population has a much wider phonon z-partition dis-
tribution than the bulk electron recoil population, because the Luke phonons (which
the side-symmetric collection of which pushes the bulk events towards symmetric par-
tition values) are much reduced in the nuclear recoil case. Here, as in Figure 12-12,
a loose radial cut in charge has been applied, the surface event tails toward symme-
try are reduced under tighter radial cuts. Further, if loose versions of both phonon
and charge fiducial volume cuts are applied, outliers due to mismeasurement can be
reduced.
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Figure 12-19: Charge-symmetric Ba calibration data: black, Charge-symmetric Cf
calibration data from the NR band: green. (Charge-asymmetric Ba calibraion data:
blue) Notice the wider phonon Z partition for nuclear recoils, resulting from their
fractionally smaller Luke phonon population.
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symmetric). The opposite is true in radial partition, as seen in Figure 12-20. In

phonon radial partition, the Luke phonons tend to exaggerate the partition quanti-

ties, because the Luke contribution focuses the phonon energy in the channels directly

above and below the events (the 'primary' channel), while the recoil phonons spread

out more spherically (ignorant of the field direction). The lower the Luke contribu-

tion, the more radially 'shared' the total phonon energy is, and the less extreme the

measurement of radial (or x-y) partition. This is unfortunate, because it means the

events at highest radius (with low yield due to charge trapping on the sidewall) will

have a suppressed phonon radial partition measurement.

12.7 Ionization yield from phonon pulse shape

The partition of energy between channels has been seen to clearly distinguish bulk

events from surface events in both radius and Z. In this section, we show how the

other half of the measurement, ionization yield, can be measured directly using the

rising edge slope of the pulse, which in an iZIP is a direct measure of the Luke:Primary

ratio.

12.7.1 Review of Phonons in a iZIP Detector

" Primary phonons produced by the recoil event itself are initially highly en-

ergetic (v >1 THz, ie f < ~ 100pm). If the event occurs far from a sensor

surface, the diffusive behavior slows the arrival at the surface and lengthens

the eventual mean free path, slowing the absorption rate at that surface. If

the event occurs near a sensor surface, there is little delay in arrival, and the

comparatively short mean free path increases a the rate of absorption at that

surface.

" Neganov-Luke phonons[87, 80] are created as charge carriers are drifted by

the electric field. Such phonons are created very soon after the event time (the

charge drift time is ~ 1 ps). In the low field of the detector bulk, Neganov-
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Figure 12-20: Yet another plot showing phonon z-partition on the vertical axis, this
time with phonon radial partition on the horizontal axis. This is something like a
cross-sectional view through the detector, with the central fiducial (high yield) portion
of the crystal at the left center, surrounded at top, right, and bottom, by the top
surface, outer sidewall, and bottom surface (all regions of suppressed yield). The
location of the 2 1OPb source is clearly visible through its associated population of side
1 and side-wall betas. Notice how the sidewall betas, however, are at an unfortunately
reduced radial partition value (compared with their high yield neighbors at slightly
lower event radius), indicative of how suppressed Luke phonon production weakens
phonon radial (or x y) position information. Radial partition here is defined as (outer
s1 + outer s2)/(sum of all channels).
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Figure 12-21: Here, two different types of radial information are plotted vs each other.
The horizontal axis is the same as in Figure 12-20: the fraction of the phonon energy
absorbed by the outer channels. The vertical axis is a radius as measured by the
partition only among the inner six phonon channels, similar as was done among the
quadrants of CDMS II. Going out from the center, first the inner-channel partition

becomes more and more extreme, then, when events are at a high radius, going to
higher radius makes the inner channel partition less extreme (the inner channels all
end up equally non-primary). Starting at high radius and moving in, the inner-outer

partition gradually becomes more and more inner, then stays fixed at the same value

(the 'inner event' value) for all positions within some inner radius. Notice that here,
just like in CDMS II, surface events always have a more extreme value than bulk
events, either extremely inner or extremely outer.
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Luke phonons are emitted with low energies and correspondingly ballistic free

paths, whereas the majority of Neganov-Luke phonons are produced in the

strong near-surface fields at higher frequencies (-300 GHz and -700 GHz for

electrons and holes) with correspondingly short mean free paths (-1.8 cm and

-600 pm)[108, 75] and fast absorption rates.

These three phonon populations combine together to produce the observed phonon

pulses and their associated rising and falling timing characteristics. A recoil occur-

ring in the crystal bulk will produce a roughly side-symmetric signal of near-surface

Neganov-Luke phonons, which will arrive at both the top and bottom surfaces at fast

times (-1 < t < -5 ps) and are absorbed rapidly by these surfaces. Primary

phonons will reach the top and bottom surfaces more gradually, as quasi-diffusive

propagation allows ( -1 < t <~15 ps). These primary phonons will have shorter

mean free paths (and will be more quickly absorbed) at the closer surface, and will

have longer mean free paths (and will be more slowly absorbed) at the further surface.

The initial phonon energy spectrum and subsequent rate of absorption in a QET

surface depend then on three major event characteristics: 1) the distance between

the event and the surface as compared with the downconversion rate of the primary

phonons, 2) the initial quantity of charge carriers produced, and 3) the starting po-

sition of these charges within the varied field geometry. Here we describe a simple

toy model for relative scales of the three phonon populations. There is a large un-

certainty (parameterized here as a, where 0 < a < 1) in the creation efficiency of

relaxation phonons, due to an unknown Ge-Al crossing transmittance (which is per-

haps quite low for charges at drift velocity) and also due to the sensitivity of the

subsequent cascade process to subtleties of the local Al and Ge environment. The

total phonon energy can be described in terms of an event's recoil energy through a

simple model,

Ephonon = Eprimary + Eluke (12.4)

(1 - Egap/C)Erecoil + (eAV/c)EecoiI
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Figure 12-22: Example phonon pulses from calibration runs with a SuperCDMS

Soudan detector. The four side 1 QET channels are summed and shown in blue

(dark grey); the side 2 channels are summed and shown in red (light grey). All eight

events shown are of similar total phonon energy (-50 keV), and are located at dif-

ferent positions along the central axis of the cylindrical crystal (as determined by

relative weighting among the eight phonon channels). Surface 1 and surface 2 events

were selected using an additional a requirement that the charge signals from the two

sides be strongly asymmetric.

Plugging in the appropriate charge carrier creation efficiencies (C), voltage differ-

ences, germanium gap energy of 0.75 eV, and what essentially amounts to a guess

for the relaxation phonon creation efficiency (a) of 0.1, we arrive at three different

[ballistic:diffusive] phonon ratios for three different event types: bulk electron recoils

[1:1.8] ; surface electron recoils [1:0.9] ; and bulk nuclear recoils [1:0.5]. These differ-

ences in phonon population magnitudes, convolved with a reweighting should produce

observable effects on the shape and timing of SuperCDMS phonon pulses.

12.7.2 Time-Domain Pulse Fits

The understanding of phonon populations given in the previous section predicts cer-

tain shape characteristics as a function of both proximity to the absorbing surface

and quantity of charge carriers (and resulting Neganov-Luke production). Looking

at recent calibration data (Figure 1), we do see such behaviors, confirming our un-

derstanding.

To make use of these phonon pulse shape variations as event type discrimina-
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tors(distinguishing electron recoil and near-surface recoils from nuclear recoils), we

first reduce the raw traces to a small number of simple quantities, and then combine

these quantities in a way that accommodates the large position-dependent variation.

First, each of the raw traces from the detector's eight QET channels were fit using

the following functional form:

(t-Tfast) - (t-Tfast) -(t-Tgl0 ) -(t-TgpW)

P(t) = Afast (\1 - C Rfast ) e Ffast +- Asl - e RS1O ) e Fslow

where the total pulse is treated as the sum of a "fast" pulse and a "slow" pulse,

with rising and falling time constants Rfast, Rszow, Ffast, and Fsjo0 , and start time

offsets Tfast and Tho.. The fast pulse can be thought of as the contribution of highly-

diffusive quickly-absorbing phonons, while the slow signal can be thought of as the

contribution of more ballistic slowly-absorbing phonons, but the quasi-diffusive nature

means that in reality there is not a simple two-category distinction. The falling time

constant Fs1 ow of the slow pulse was observed to be nearly identical for every event,

and was set to 755 ps, the observed rate of absorption of the late-time uniform bath of

low energy phonons. [83] Each event's resulting 7 fit parameters for each of 8 phonon

channels were further reduced by summing the fits for each side and then finding key

points (10%, 20%, 30%, etc.) along the rising and falling edges of these side-summed

fits.

The partition of energy between the eight channels also contains significant dis-

crimination information (in addition to position information). The amplitude of each

channel's pulse was obtained using an optimal filter, in which a template pulse of

fixed shape was scaled to best match the amplitude of the (variable shape) phonon

pulse. These measured amplitudes, then, are shape-dependent. Distributions of some

example partition and pulse shape quantities are shown in Figure 2.

12.7.3 Discrimination Ability Using Pulse Shape

As a very first look at discrimination based on phonon pulse shape characteristics, we

here show a simple example of bulk electron recoil (ER) vs bulk nuclear recoil (NR)

discrimination using only one pulse shape characteristic: the 40%-to-70% risetimes.
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Figure 12-23: Example phonon discrimination quantities. On the left, an example
of partitioning between channels is shown. The vertical axis is an axial partition
quantity (sidel - side2)/(sidel + side2), and the x axis is a similarly defined radial
partition quantity. On the right, the time difference (in pus) between the 40% and
70% points on the rising edge of the side 1 summed pulse (x axis) and side 2 summed
pulse (y axis) are shown. In both plots, calibration events are colored using a charge-
signal-based categorization as either bulk electron recoils (blue or dark grey), bulk
nuclear recoils (green or light grey), or side 1 electron recoils (black). The total
phonon energy for these events are between 7 and 20 keV recoil energy, where recoil
energy has been scaled from total phonon energy using a nuclear recoil assumption
for all events.
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Figure 12-24: A simple look at pulse shape discrimination between bulk nuclear recoils
and bulk electron recoils, using 40%-to-70% risetimes. Nuclear recoils are green (light
grey); electron recoils are blue (dark grey). For discussion, see text.

This simple discrimination example serves as a lower bound on the abilities one might

expect when using a combined analysis of all phonon pulse quantities.

We first construct ER and NR populations. Identical charge-based fiducial volume

cuts are enforced on both populations, and measured [charge:phonon] energy ratios

are used to categorize events as either ER or NR. After these two populations have

been defined, a new pulse shape discrimination quantity is constructed using the 40%-

to-70% risetimes (for side 1 and side 2) for each event: "radius" = ([40%-to-70% side

1]2 + [40%-to-70% side 2]2)1/2. One can see in Figure 2 that this combined quantity

is largely position-independent.

Figure 3 shows a histogram of this timing quantity, plotting only the lowest en-

ergies inspected in this analysis (7 < Erecjil < 20 keV, defined by assuming that all

events are nuclear recoils and scaling the total phonon energy accordingly). Although

the ER and NR distributions overlap somewhat, there are no slow ER outliers to the

statistics available in the calibration dataset. The right panel of Figure 3 shows the

NR acceptance fraction vs ER leakage fraction as one varies a 1D cut threshold. Dis-

crimination better than 1:103 is seen, and it is further seen that this discrimination

shows no degradation with energy down to at least 7 keV Eecoui.
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Although significant pulse shape discrimination ability has been demonstrated,

phonon-only discrimination is only beginning to show its promise. The simple analy-

sis performed here can be improved in many ways, and looking further on the horizon,

this rough analysis using a detector optimized for charge-electrode-based discrimina-

tion suggests that a detector optimized specifically for phonon-only discrimination

could take advantage of the extreme sensitivity of transition edge sensors to extend

event-by-event discrimination well below the typical CDMS low energy threshold of

~10 keV (set by charge readout noise). Such phonon-only discrimination capabilities

should be possible if detectors are specifically optimized for this goal, through the

reduction of TES internal thermal fluctuation noise[13], and also through an increase

in pulse shape differences themselves by increasing the total phonon-absorbing Al

area of the QETs.

This pulse shape analysis was very preliminary in many ways, but shows tremen-

dous promise. There is an enormous amount of extremely useful information in the

shape of iZIP phonon pulses, newly available with the spacial separation of primary

and Luke phonon production. There is a lot of low-hanging fruit here, waiting for

another graduate student.

12.8 Surface Event Yield

Even if we threw away the iZIP's ability to define a perfect fiducial volume, the

yield of surface betas alone is high enough for much better rejection than all handles

combined could do for CDMS II. This has been something of a surprise, and there are

tantalizing hints that we could boost the surface event yield even higher if we ever

have need to.

Let's begin by looking at Figure 12-25, which shows the results of 21oPb cali-

bration (with no fiducial volume cuts applied) in two very similar detectors: the an

Edelweiss II detector, and T3Z1 at Soudan. We have not mentioned Edelweiss yet

at all, but they are a European collaboration progressing very much in parallel to

CDMS. Their detectors are Ge as well, and similarly have a surface event rejection
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Figure 12-25: Surface event yield for two different detectors, an Edelweiss II detector
on the left, and a SuperCDMS Soudan detector (T3Z1) on the right. Both detectors
have been exposed to a 2 ioPb source. Edelweiss II plot from [95]. No fiducial volume
cuts are placed on either set of data. In CDMS, some TES saturation occurs in the
high energy range (starting around 200 keV), leading to somewhat underestimated
recoil energies and somewhat overestimated ionization yield. Events below this do
not seem to suffer from significant saturation effects.

through interleaved electrodes. The main difference between Edelweiss and CDMS

is that instead of using QETs, Edelweiss makes a thermal yield measurement, sim-

ply using a thermometer (a very sensitive NTD thermometer) to measure the tiny

temperature increase of the large Ge substrate. But this difference just means the

two experiments collect differen amounts of phonon information; they both collect

the same amount of phonon energy, and thus we would naively not expect the two

experiments to differ substantially in their ionization yield measurements.

Instead, we see dramatic differences. The (penetrating) gamma line at 45.6 keV

is of yield=1 in both detectors, but the the suppression of surface beta yield in

CDMS is roughly half the level we see in Edelweiss, and in Edelweiss, the 20 6Pb

recoils exhibit complete charge trapping. The difference between the two experiments

(it is assumed) is largely due to differences in the surface. In the space between

the electrode lines and the QET ribbons in CDMS, there is only a bare polished Ge
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surface. Between the electrode lines of Edelweiss II, there is a thin layer of amorphous

Si. It seems we have strong evidence, in comparing the two experiments, that a bare

polished crystaline surface has the least amount of charge trapping associated with

it (or, equivalently, a thin amorphous layer is quite effective at encouraging either

recombination or trapping).

Now that we have made many iZIPs, we can compare various detectors of our

own. Several iZIPs were tested at Berkeley using a 109Cd beta source (exposing

only one side, as at Soudan). It was observed that all three detectors had nearly

identical surface yield when biased such that holes were collected on the electrodes

(yield~0.85), but that the detectors showed varying beta yield when biased such that

electrons were collected on the electrodes. One detector exhibited an electron-biased

surface yield that was nearly unchanged (at y-0-.8), and the other two detectors

exhibited an electron-biased surface yield that was significantly degraded (at y~0.7).

Given these small statistics (three detectors), we cannot know for certain, but it is

interesting to note that the one detector with impressively high electron-biased surface

yield was also the one detector with a P-type substrate (the others were N-type). It

would not be at all surprising for such a difference in doping to significantly affect

the polarization of the Ge immediately surrounding the electrodes, or to significantly

affect any barrier potential present near the semiconductor-metal interface. We await

tests of additional P-type crystals to be sure.

An additional (and equally unexpected) determiner of beta yield perhaps should

have been expected. It was observed that the angle of the electrodes and ribbons

(equivalently, the orientation of the surface field) with respect to the crystal lattice is

a strong determiner of surface event yield, as shown in Figure 12-27 and Figure 12-

28. Depending on the angle, hole-biased surface yield varies from ~0.75 to -0.8, and

electron-biased surface yield varies even more dramatically, from -0.65 to -0.75. I

say this effect perhaps should have been expected, because as soon as the effect was

seen, it became clear what was happening (an illustration is shown in Figure 12-29).

The oblique propagation of electrons is either in line or not in line with the near-

surface field direction. Yield is maximized when the L-valley propagation and the
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Figure 12-26: Surface event yield for three different detectors, using 10 9Cd calibration

data taken at Berkeley. Dashed lines indicate the source side +2V bias state (i.e.,
electron collection) and solid lines indicate the source side -2V bias state (i.e., hole
collection). Red is G3D, blue is G41, and green is G48. G41 and G48 show signifi-
cantly lower yield when biased in the electron collection state, while G3D (the only
P-type crystal) shows only slight suppression.

electric field are maximally aligned. In future designs, we could imagine boosting

surface yield by thinking carefully about the orientation of the surface field with

respect to the crystal lattice.

Lastly, it should also be mentioned that there exists a population of surface events

for which the phonon measurement is significantly suppressed (in all channels), leading

to a yield greater than 1 (as high as 1.3). This can be seen, for example, in the side 1

surface event population in Figure 12-12. We haven't seen such phonon suppression

previously in CDMS II-style devices, perhaps because we simply haven't previously

looked at surface events with such high statistics, or perhaps in previous designs

our surface yield was so low that the combination of both effects (suppressed phonon

measurement and suppressed charge measurement) meant the yield was not high. We

don't really need to understand effects that push backgrounds away from our signal

region, but it would always be nice to understand our detectors. There are two (not

mutually-exclusive) explanations for this surface event phonon-undermeasurement:

* These events are very shallow and directly under an electrode line, leading to

significant phonon absorption in the tiny (passive) Al electrode rail (while the
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Figure 12-27: On the left, we show the collimator used in testing at Berkeley to
produce a grid of 109Cd exposure points. On the right, we show the average yield
of surface events (events failing the charge-symmetry cut), by position, for the two
different bias states (note the differing coloring scales).
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Figure 12-28: A strong correlation is seen between the relative angle between the
crystal lattice and the yield of charge-asymmetric events. On the left, histograms of
yield for surface events are shown, for both bias states, by angle, and the mean yield
values are shown for both biases on the right.
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Figure 12-29: A cartoon illustrating the relative lattice-electrode orientation at min-

imum yield (left) and maximum yield (right). Red lines indicated the path of holes
(simply following the electric field lines), and blue lines indicate the path of electrons

(assuming the field is weak enough such that they propagate obliquely).

phonons are still in their extremely short mean-free-path state, and therefor

highly likely to be absorbed).

e These events are very shallow and directly under a QET, leading to a significant

phonon absorption the single QET and an extremely saturated single TES.

Both possibilities represent a way in which some fraction of phonon energy could be

trapped in passive Al (in the second case, the Al is passive only because it is connected

to a saturated TES that contributes very little to the signal).

12.9 Summary

The iZIP represents a significant leap in CDMS detector technology. The CDMS II

demonstrated a leakage-free rejection of bulk electron-recoils, and now this free-

dom from leakage events has been extended to all electron recoils, bulk or surface.

CDMS II depended on subtle pulse-shape differences to produce final results; the

iZIP analysis is comparatively easy. The entire analysis can be performed using only

amplitude quantities, and the cuts can be placed in natural gaps in the event dis-

tributions, so that neither the background leakage nor the nuclear recoil exposure

are delicately dependent on the placement of these cuts. Simply put, the interleaved
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strategy has succeeded above and beyond our most optimistic expectations.
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Chapter 13

Detectors for SuperCDMS

SNOLAB

SuperCDMS Soudan can be viewed as simply a proof-of-principle of the extreme

background rejection abilities of the iZIP design. Full implementation of this strategy

in a large target mass is the goal of the next version of CDMS, SuperCDMS SNOLAB,

the planning for which is well under way.

The iZIP4/5 represents a great leap forward, but there are several comparatively

small ways in which the detector could still be improved for SNOLAB. First and

foremost, bigger is better when it comes to direct detection. The mass goal for

SuperCDMS SNOLAB is 200 kg, which, if composed of iZIP4/5s, would require the

fabrication and operation of more than 300 detectors. We are no longer afraid of the

large surface area this represents, but the complexity of the experiment grows with

the number of detectors (and channels). The SNOLAB detectors, then will be larger,

with a radius of 100 mm, a thickness of 33.3 mm, and a resulting Ge mass of 1.38 kg

(compared with the iZIP4/5: 76 mm radius, 25 mm thickness, and 0.62 kg mass).

This more than doubling of individual detector mass will mean

" Fewer detectors need to be fabricated and tested (~144 instead of -320)

" Fewer channels will need to be connected to room temperature (1728 phonon,

576 charge, compared with 2576 phonon, 1288 charge using the iZIP4/5)
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* A higher fraction of the target mass will be in the fiducial volume (- 73%

instead of - 63%)

The SNOLAB iZIP is more than a simple scaling up of the iZIP4/5, however. With

the freedom of essentially starting over from the ground up, the readout electronics

have been redesigned. Noise on the charge measurement should be significantly re-

duced by replacing the JFET amplifier with newly available high-electron-mobility

transistors (HEMTs), which exhibit significantly reduced 1/f noise.

On the phonon readout, the SQUID array for SNOLAB has a significantly re-

duced input inductance, which allows the efficiency of the phonon measurement to be

dramatically improved. Remember that in order to cover a detector surface, we want

to maximize the number of QETs (connected in parallel) in each channel, but that

as we thus lower the channel resistance, we eventually run up against the constraint

that the Lsquid/Rchannel time constant cannot grow too large. The new low-inductance

SQUID arrays allow us to lower the channel resistance, and increase the number of

QETs per channel, thus significantly increasing the signal amplitude. Remember,

too, that we we made the TESs extremely long (perhaps too long, longer then their

phase separation lengths) in an effort to increase the resistance of each TES, thereby

being able to pack more TESs (more active surface coverage) per channel. The low-

inductance SQUID arrays, then allow us to both pack more QETs in per channel and

reduce the TES length to phase-homogeneous lengths.

There is even a third advantage to the lower resistance of the new SQUIDs. Re-

member that in previous iZIPs, the QETs are spaced almost a millimeter apart along

the ribbon, much longer than the quasiparticle trapping length scale. Because the

rails that connect the QETs together are basically phonon sinks (where the energy

can be trapped but cannot reach a TES), there is a strong motivation to reduce the

size of these rails (so that only a small fraction of the phonon energy is lost to them).

This produces a tension between optimizing the detector for lowest-possible phonon

losses (narrow rails), and optimizing the detector for lowest-possible rate of phonon

'opens' (wide, robust rails). We no longer must choose between these two options

at SNOLAB. As seen in Figure 13-1, the optimal QET ribbon geometry undergoes a
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'phase change' when the spacing of TESs along the ribbon is lower than the 1.5EtrapAl

rule-of-thumb fin length. At SNOLAB, no portion of the.phonon ribbon will be pas-

sive; the rails have become a shared, highly efficient fin, and there are no longer

any narrow Al features. The ease of producing consistent Al continuity is extremely

important for SNOLAB, with the much larger number of detectors.

-200pm

Figure 13-1: A preliminary version of the SNOLab detector's QET ribbon, showing
the newly 'close-packed' design.

The last major change for SNOLAB is the phonon channel partition. To retain

a excellent position sensitivity over the now much larger volume, the baseline design

for SNOLAB has 6 phonon channels per side, arranged as an outer ring, a central

bull's eye, and the remaining gap divided into fourths (as can be seen in Figure 13-2).

The two sides are offset by 45 degrees, such that the boundaries of the four middle

channels lie in the middle of the opposite side channels (similar to the 60 degree

side-offset in the iZIP4/5).

The operating resistance allowed by the new SQUID array is 50mQ, a little more

than three times lower than at Soudan. How exactly to partition this factor of three

between more TESs (i.e., shorter fins) and lower-resistance TESs (i.e., lower TES

noise) is still being worked out, but one possible design could be to set the TES

length at 125 pim and the electrode-ribbon spacing at 1.6 mm, which would result in

a -1,000 QETs per channle, a QET spacing along the ribbon of ~300 pm, and a fin

length of 150pm (less than half that of the iZIP4/5).

Although the efficiency of the fins should be extremely high, the total active Al

surface area will be no greater than in the past, due to the same electrode capacitance
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Figure 13-2: Side 1 of the iZIP6: a preliminary version of the SNOLab detector (top)
and a photo of the first iZIP6 fabricated (bottom). The spacing of the TESs along the
QET ribbon structures is much larger than it will be in the final SNOLAB detector,
increasing the detector resistance to match the existing readout electronics.
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constraint as in previous designs. In fact, with the larger surface area, the electrode

capacitance is similarly (unavoidably) increased. Figure 13-3 shows the capacitance

of the combined charge channels of one side of a 100 mm detector, as a function

of electrode-to-ribbon spacing and the electrode width. A spacing of 1.6mm keeps

the phonon relatively homogenous across the surface, while limiting the electrode

capacitance to less than 200 pF (only weakly dependent on electrode width), nearly

double the iZIP4/5 value.

Charge Sensor Capacitance, in pF
(assuming 50mm substrate radius and 260tm QET ribbons)
3

2.8

2.6

2.4

2.2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0 10 20 30 40 50
Charge Line Width [pm]

Figure 13-3: The capacitance of one side of a 100 mm detector, as a function of
electrode width and electrode-ribbon spacing, assuming a ribbon width of 260 pm.

The detector design shown in Figure 13-2 is called the iZIP6, and is not the SNO-

LAB design, but instead the a mockup of the SNOLAB design that is of phonon

channel resistance suitable to the existing readout electronics (meant to test the de-

tector concept while the SNOLAB electronics are still being perfected). Presumably,

the SNOLAB design (iZIP7) will look much the same, only spacing the QETs more

densely along the ribbons.
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CDMS II SuperCDMS SuperCDMS
Soudan SNOLAB

Mass per Detector [kg] 0.25 [Ge] 0.62 1.38
Number of Detectors 19 [Ge] 15 ~144
Total Ge Mass [kg] 4.75 8.98 -200

Fiducial Mass Fraction 0.37 0.63 ~0.73
Fiducial Mass [kg] 1.75 5.66 ~150

Phonon Channels per Det 4 8 12
TES Length [pm] 250 220 -150

Al Fin Length [tm] 380 327 -150
QET Efficiency ~ 3% ~12% ~ 20%?

Phonon Energy Resolution [eV] 180 200 <100?
Trigger Threshold [eV] -2000 -3000 ~500?

Capacitance (One Side) [pF] 130 100 ~180
Charge Energy Resolution [eV] 300 450 < 300

Bulk ER Leakage
Yield only < 1 x 10- 6  < 1 x 10- 6  < 1 x 10-6

Phonon only ~ 1 x 10- 1  < 2 x10- 4  ~ 1 x 10- 5 ?

Surface ER Leakage
Yield only ~ 2 x 10-1 1 x 10-3 ~1 x 10-3

Charge only NA < 2 x 10- < 2 x 10-
Phonon only 2.5 x 10-2 < 1 x 10-4 < 1 x 10-4

Total ~ 5 x 10-3 < 2 x 10- < 2 x 10-

Surface rejection threshold [keV] 10 .8 ~2?
Experimental Reach [zb] 40 ~--5 -0.08

(os at m = 60 GeV) (~2 years) (~2 years) (-4 years)

Table 13.1: Overview comparison of detector characteristics for CDMS II, Super-
CDMS Soudan, and (plans for) SuperCDMS SNOLAB. Some of the SuperCDMS
Soudan numbers are still tentative, and most of the SuperCDMS SNOLAB num-
bers are tentative. Some SuperCDMS Soudan leakage rates are taken from testing
at Berkeley, where higher-statistics surface event samples were collected (with the
downside that muon-induced neutron events occur). Note that many of the expected
SNOLAB improvements are the result not only of detector improvements, but signif-
icant improvements to the readout electronics.
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Chapter 14

The Future of Direct Detection

14.1 Towards Larger Targets

Sensitivity to generic WIMP models, such as those predicted by supersymmetric

theories (10 GeV< mx < 1 TeV), is largely a function of target mass. The larger

the target mass, the greater the sensitivity to such 'high mass' models (assuming a

near-zero background rate). Figure 14-1 shows the dramatic improvements in this

scaling up of background-free targets, as well as projections into the future for several

experiments currently being developed.

Because the CDMS (and the similar Edelweiss) detectors are modular in nature,

a thorough testing of background rejection (such as is being performed at Soudan

right now) can be performed on a single detector, and this same rejection ability can

be safely assumed for the set of many such detectors. In other words, if we were to

measure a bulk ER rejection of 1 x 10- and a surface ER rejection of < 1 x 10-5 in

T3Z1 at Soudan (as we expect to achieve in the coming months), then it is we can

feel very confident building 200 kg experiment, knowing the rejection abilities (and

remaining fiducial volume) of the 200 kg in advance. The SuperCDMS projections

in Figure 14-1, then, are very safe bets. It will, however, take a substantial period of

time (-2 years) to fabricate the -144 detectors necessary for the payload.

The biggest unknown for scaling up the CDMS mass is not whether the plans

are technologically possible, but whether they are practically. CDMS has a stated
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Figure 14-1: A general overview of the sensitivity of direct detection experiments over
time to the generic WIMP mass of ~60 GeV, grouped into general categories of 'single-
channel Ge' (germanium targets with charge measurement only), 'dual-channel Ge'

(germanium targets like CDMS, with ER discrimination), and 'Dual-channel noble
liquid' (like Xenon and LUX, experiments that have weak ER discrimination but large
target volumes). General historical trends for the three categories are indicated, along
with claims made by several collaborations as to their projected sensitivities. Notice
that the noble liquid collaborations anticipate an enormous gain in sensitivity from
extreme radio-purity Xe and the exponential benefits of shielding.
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goal for SuperCDMS SNOLAB of fabricating six working detectors per month, a

rate which has recently been demonstrated (see Figure 11-18). Additionally, a new

fabrication pipeline has been developed by collaborators at Texas A&M, which has

recently demonstrated an ability to fabricated detectors not only quickly, but better

(in terms of both To homogeneity across the surface and between detectors, and in

terms of Al film quality). The detector fabrication rate and quality necessary for a

larger target mass has been effectively proven.

Noble liquid targets posses the advantage of a single massive target volume, which

makes the scaling up to larger masses exponentially easier. Noble liquids have the

additional advantage that the surface area (where the majority of backgrounds lie)

scales more slowly than the target mass. Particularly in liquid xenon, electron recoils

from the surrounding vessel (the highest sources are typically found near the photo-

multiplier tubes) penetrate only cm length scales into the target, meaning that the

central volume is well shielded from the surface contaminants. On the other hand,

the electron-recoil rejection abilities of noble liquid experiments is many orders of

magnitude worse than in CDMS. In discrimination space, the centroid of the nu-

clear recoil population lies on the tail of the electron recoil distribution. This means

eliminating the tiny rate of electron recoil backgrounds in the central volume is of

extreme importance. In the most recent exposure of Xenon100, for example, had an

impressively low background rate of 5.3±0.6 x 10-3 [keV kg day] 1, but even this

low rate necessitated severe discrimination cuts to produce a background-free nuclear

recoil sample. The remaining fiducial volume was only 34 kg, and the nuclear recoil

efficiency of this volume (after discrimination cuts) was only - 50% at 10 keV (better

below this energy, worse above) [112].

With poor background discrimination, then, the biggest unknown for noble liquids

heading forward is not whether a high-mass target volume can be successfully built

and instrumented, but the technological question of whether the xenon purity neces-

sary for such scales is achievable. For the a LZ experiment, with a 7 ton (fiducial)

xenon target mass, an intrinsic background of - 1 x 10-7 [keV kg day]- 1 is assumed

in the projection shown in Figure 14-1, dominated by the #-decay of xenon itself (the
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isotope 13 7Xe) [82]. For these large volumes, high purity is also essential for efficient

drifting of the electrons through the length of the detector.

14.2 Towards Lower Thresholds

The main thrust of direct detection experiment R&D is towards larger and larger

target volumes, while keeping the energy threshold fixed at ~ 5 - 30 keV. But with

no hints of supersymmetry yet observed by the LHC, one of the primary motivations

of this 'high mass' (mx >10 GeV) hypothesis is significantly weaker, and there is

growing interest in exploring the 'low mass' (m.x <10 GeV) parameter space. For

low masses, large swaths of parameter space can be explored for the first time by

relatively low-mass targets, if the energy thresholds could be significantly reduced.

CDMS-style technology is uniquely suited to the low energy regime, thanks both

to the extreme sensitivity of the TES sensors themselves, and to the low energy-

per-quantum of both the charge (semiconductor instead of ionization) and phonon

channels. It is actually somewhat embarrassing, then, that CDMS is not dominating

the field at low energies. We now discuss three ways in which CDMS-style technology

could be optimized for lower-energy reach.

14.2.1 TES Sensitivity

As previously mentioned, the energy resolution of a TES scales as the operating tem-

perature to the third power. Phonon energy resolution in the iZIP4/5 is ~200eV (at

Tc ~ 90mK). One side of an iZIP was fabricated with a Tc of -65 mK (accidentally),

and surface testing showed a one-sided energy resolution of -40eV, already quite im-

pressive. Reducing the Tc further (purposefully, this time) can produce extreme

rewards. Even a moderate reduction in Tc to 30 mK (still well above the temper-

atures attainable by commercially available dilution refrigeration) should result in

energy resolutions <10 eV. This T 3 scaling is by far the easiest way to improve TES

sensitivity; we have not yet considered here the incremental but important improve-

ments easily attainable by shortening the TESs below their phase separation length or
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Figure 14-2: TES energy resolution as a function of Tc. From the thesis of M. Pyle.

increasing the absorption rate so that the pulse length better matches the TES time

constants. Dramatically reduced thresholds through moderate TES improvements

seem easily within reach.

14.2.2 Phonon Absorption Rate and QET Efficiency

Because TES noise can be so dramatically reduced, it is tempting to imagine a de-

tector designed as a phonon-only device, free of the irreducible noise of the charge

measurement (from unavoidable capacitive couplings). We have shown how, in the

iZIP4/5, both yield and fiducial volume can already be defined with some success us-

ing phonon measurements alone. If we are to design a detector specifically designed

for this strategy, QET efficiency becomes even more important.

First, there is the Al surface coverage. In a phonon-only device, the surface

field region would still be useful for defining a fiducial volume (as in Figure 12-15

or Figure 12-16), but tight constraint on capacitance would be released, allowing

for larger QETs and a higher Al surface coverage. A faster transfer of the phonon

energy into the TESs would mean that much more information could be captured. In

the iZIP4/5 (and presumably the iZIP6/7), only about 1/5 of the phonon energy is

captured before the phonons form a homogeneous bath in the crystal. If our goal is

not just phonon energy measurement, but to measure all the information contained in

phonon timing (event position, event yield, event multiplicity), then faster absorption
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Figure 14-3: A cartoon showing (left) the manner in which W step coverage limits the
Al fin thickness (and the Al fin's resulting phonon absorption efficiency and quasi-
particle trapping length fmtrp), and (right) the 'W-first' strategy, which allows Al of
any thickness.

through larger Al surface coverage is vital.

Second, the current QET technology is still far short of the theoretically possi-

ble efficiency of ~ 50% (set by the phonon-quasiparticle cascade efficiency). One of

the main limitations to our current technology is the fabrication necessity of placing

the W layer on top of the Al fin layer. This limits the Al thickness (and hence the

phonon absorption rate, the efficiency of the phonon-quasiparticle cascade, and the

quasiparticle mean free path), because the thin W layer must have good step coverage

between the Al-W overlap region and the W monolayer region. If the Al is too thick

(thicker than the current -300nm), then the W is discontinuous between the overlap

and the monolayer, and no quasiparticles can diffuse from the overlap to the TES.

The solution to this is simple in concept: eliminate the W step coverage altogether

by depositing (and patterning) the W first and the Al second, as in Figure 14.2.2. Of

course, there are very good reasons we don't do this already, principally the fear of

accidentally leaving some residual contaminants on top of the TES after fabrication

(the current fabrication path lays down the TES tungsten last). With a new fabri-

cation pathway at Texas A&M, however, much in the fabrication recipe deserves a

second look.

14.2.3 Luke Amplification

The last technique for extending the low-energy reach of CDMS technology unfortu-

nately means giving up any ER-NR rejection ability (at least, on an event-by-event

basis), and essentially only measures the charges produced by an event. The extreme
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sensitivity of the TESs can be paired with our ability to scale Luke phonon produc-

tion (through scaling the drift field). Typically, we scale the drift field amplitude so

that the Luke phonons for an electron recoil are equal in energy to the 'prompt' or

'primary' phonons produced at the recoil site itself. If we boost the drift field from

where it currently stands (- V/cm) to strength orders of magnitude higher (perhaps

-100 V/cm), we increase (linearly with total voltage difference) the production of

Luke phonons. Although it is essentially a one-channel measurement (the prompt

phonons are swamped by the Luke phonons), a tiny energy deposited in the form of

e-h pairs can be amplified into a much larger, much easier to sense, phonon signal.

This strategy could be implemented in specially-optimized detectors, or it could

be implemented in currently-existing detectors. Tests of this strategy are currently

taking place at Soudan using the installed iZIP4/5 detectors, where stable running

has been achieved up to 30 V/cm (for such tests, the QET ribbons and electrodes are

at the same voltage, meaning there is only a bulk field strength, no surface region).

At this bias, noise in the phonon measurement roughly doubles, but the signal has

been amplified by a factor of ~24 compared to the prompt signal (as compared with

the CDMS II factor of 2). For clarity, we can write the phonon energy of an event as

Ephonons = Erecoil X 1 + Vbias - Erecoji X I 1 (14.1)
C _ I ER _

where c is the creation energy of an electron-hole pair, eER is that value for an electron,

recoil in Ge (3 eV), and Y is the ionization yield for the event (1 for electron recoils,

energy dependent for nuclear recoils).

With the observed noise and amplification at Soudan, we should be able to run

existing detectors with a single-channel threshold of an impressively low ~85 keVee.

Notice that we are using the language of an electron-equivalent energy scale here,

where we have assumed that the event is an electron recoil. The equivalent nuclear

recoil threshold is significantly higher (applying a yield of 0.15, this threshold rises to

~460 keVnr. Still quite low, though!

We have lost event-by-event discrimination power, but notice two things that help
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Figure 14-4: Recent measurements at Soudan, using the 60 keV line from a mAm
source to show the Luke-effect scaling at four Vbias values (left) and the retention
of excellent energy resolutoin even at high Luke-amplification values (right). Some
TES saturation occurs at the highest Vbias values, leading to some non-linearity in
the measurement (though not in the Luke phonon production itself). Data and plots
taken from R. Basu Thakur.

us:

* Because electron recoils are amplified by a factor of ~ 7 (1/YNR) more than

nuclear recoils, the rate of electron recoils within a particular energy window is

now r~7 times less than before (compared to the rate of nuclear recoil events).

In a sense, not only has the Luke effect amplified all events, it has 'swept up

and away' the electron recoil events.

" Although event-by-event discrimination is lost, a beautiful statistical discrimi-

nation technique has been gained. By varying the bias voltage and observing

how the spectrum scales (either as Vbias/ER or Vbias/CNR), it can be determined

if the distribution represents an electron recoil or nuclear recoil population.

It is tentatively planned to run some fraction of SuperCDMS Soudan in this

70V Luke-amplification mode for some fraction of the exposure. A projection of

the sensitivity of a relatively small exposure (2 iZIPs for 2 months) is shown in

Figure 14.2.3.
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Figure 14-5: The expected sensitivities of some future experiments (together with ex-
isting limits and allowed regions, as in Figure 2-12). The results of the two main
strategies are evident: increasing target mass pushes sensitivities toward smaller
cross sections, decreasing detector threshold pushes sensitivities toward lower WIMP
masses. The projection labeled 'SuperCDMS Soudan @70V' simulates the sen-
sitivity of two iZIP4/5 detectors running at Vb=70V (threshold of -460 keVnr), a
77 kg-day exposure, including a (totally undiscriminated) electron recoil background
as predicted by extrapolating electron recoil background rates from measured val-
ues. Such an exposure will likely be taken over the coming months (Fall 2012). The
projection labeled '100 eV Threshold' assumes a hypothetical exposure of 4 kg-yr
(fid.) using a low-threshold Ge detector with perfect phonon-only fiducial volume
definition and electron recoil rejection. The 100 eV threshold should be obtainable
through a relatively moderate drop in Tc, to ~40 mK. Assumptions used in the
high-mass projections are taken from recent conference proceedings, and can be sum-
marized as LUX: 30,000 kg-day (fid.) with a 45% efficiency and a 5 keV threshold,
SuperCDMS SNOLAB: 420 kg-year (fid.) with a 92% efficiency and a 10 keV
threshold, XenonlT: 3 ton-year (fid.) with a 45% efficiency and a 2 keV threshold
LZ: 5,000 ton-days (fid.) with a 50% efficiency
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14.3 Final Thoughts

As can be seen in Figure 14-1, the field of direct detection has been progressing ex-

ponentially for the past 15 years, starting with CDMS I in 1998. Only time will say

what technology will be used to first probe cross sections orders of magnitude from

where we now stand, but one thing is certain: we will probe those cross sections, and

it won't be long. Perhaps some day not too many years down the road, graduate

students will be writing their theses comparing the measurement systematics of mul-

tiple observed WIMP signals, and finally piecing together a clearer understanding of

particle physics and the nature of the universe.

284



Bibliography

[1] C. E. Aalseth et al. Results from a Search for Light-Mass Dark Matter with
a P- type Point Contact Germanium Detector. Phys. Rev. Lett., 106:131301,
2011.

[2] C. E. Aalseth et al. Search for an Annual Modulation in a p-Type Point Contact
Germanium Dark Matter Detector. Phys. Rev. Lett., 107:141301, 2011.

[3] R. Abbasi, Y. Abdou, T. Abu-Zayyad, M. Ackermann, J. Adams, K. Andeen,
J. A. Aguilar, M. Ahlers, D. Altmann, J. Auffenberg, X. Bai, M. Baker, S. W.
Barwick, R. Bay, J. L. Bazo Alba, K. Beattie, J. J. Beatty, S. Bechet, J. K.
Becker, K.-H. Becker, M. Bell, M. L. Benabderrahmane, S. BenZvi, P. Zarzhit-
sky, and M. Zoll. Multiyear search for dark matter annihilations in the sun with
the amanda-ii and icecube detectors. Phys. Rev. D, 85:042002, Feb 2012.

[4] M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, L. Baldini, J, Ballet,
G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R. D. Bland-
ford, E. D. Bloom, E. Bonamente, A. W. Borgland, J. Bregeon, M. Brigida,
P. Bruel, R. Buehler, T. H. Burnett, S. Buson, G. A. Caliandro, and R. A.
Cameron. Constraining dark matter models from a combined analysis of milky
way satellites with the fermi large area telescope. Phys. Rev. Lett., 107:241302,
Dec 2011.

[5] S. Agostinelli et al. GEANT4: A simulation toolkit. Nucl. Instrum. Meth.,
A506:250-303, 2003.

[6] Z. Ahmed et al. Search for Weakly Interacting Massive Particles with the
First Five-Tower Data from the Cryogenic Dark Matter Search at the Soudan
Underground Laboratory. Phys. Rev. Lett., 102:011301, 2009.

[7] Z. Ahmed et al. Dark matter search results from the cdms ii experiment.
Science, 327(5973):1619-1621, 2010.

[8] Z. Ahmed et al. Phys. Rev. Lett., 106:131302, 2011.

[9] D. S. Akerib et al. Exclusion limits on the WIMP nucleon cross-section from
the first run of the Cryogenic Dark Matter Search in the Soudan underground
lab. Phys. Rev. D, 72:052009, 2005.

285



[10] D. S. Akerib et al. Exclusion limits on the wimp-nucleon cross section from
the first run of the cryogenic dark matter search in the soudan underground
laboratory. Phys. Rev., D72(5):052009, 2005.

[11] D. S. Akerib et al. Low-threshold analysis of cdms shallow-site data. Phys. Rev.
D, 82(12):122004, Dec 2010.

[12] John Allison et al. Geant4 developments and applications. IEEE Trans. Nucl.
Sci., 53:270, 2006.

[13] A. Anderson, S. Leman, M. Pyle, E. Figueroa-Feliciano, K. McCarthy,
T. Doughty, M. Cherry, and B. Young. Simulations of noise in phase-separated
transition-edge sensors for supercdms. Journal of Low Temperature Physics,
167:135-140, 2012. 10.1007/s10909-012-0555-1.

[14] J. Angle, E. Aprile, F. Arneodo, L. Baudis, A. Bernstein, A. I. Bolozdynya,
L. C. C. Coelho, C. E. Dahl, L. Deviveiros, A. D. Ferella, L. M. P. Fernandes,
S. Fiorucci, R. J. Gaitskell, K. L. Giboni, R. Gomez, R. Hasty, L. Kastens,
J. Kwong, J. A. M. Lopes, N. Madden, A. Manalaysay, A. Manzur, D. N. McK-
insey, M. E. Monzani, K. Ni, U. Oberlack, J. Orboeck, G. Plante, R. Santorelli,
J. M. F. Dos Santos, S. Schulte, P. Shagin, T. Shutt, P. Sorensen, C. Winant,
and M. Yamashita. Search for Light Dark Matter in XENON1O Data. Physical
Review Letters, 107(5):051301, July 2011.

[15] J. Angle et al. Phys. Rev. Lett., 107:051301, 2011.

[16] G. Angloher et al. Results from 730 kg days of the CRESST-II Dark Matter
Search. arXiv:1109.0702v1, 2011.

[17] E. Aprile et al. New Measurement of the Relative Scintillation Efficiency of
Xenon Nuclear Recoils Below 10 keV. Phys. Rev., C79:045807, 2009.

[18] E. Aprile et al. Phys. Rev. Lett., 107:131302, 2011.

[19] P. Barbeau. Ph.D. thesis, U. Chicago, 2009.

[20] P.S. Barbeau, J.I. Collar, and P.M. Whaley. Design and characterization of
a neutron calibration facility for the study of sub-key nuclear recoils. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment, 574(2):385 - 391, 2007.

[21] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Microscopic theory of supercon-
ductivity. Phys. Rev., 106:162-164, Apr 1957.

[22] Giuseppe Battistoni et al. The FLUKA code: Description and benchmarking.
AIP Conf. Proc., 896:31-49, 2007.

286



[23] L Baudis, J Hellmig, H.V Klapdor-Kleingrothaus, Y Ramachers, J.W Ham-
mer, and A Mayer. High-purity germanium detector ionization pulse shapes of
nuclear recoils, interactions and microphonism. Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 418:348 - 354, 1998.

[24] P. Belli et al. Phys. Rev. D, 84:055014, 2011.

[25] A. Benoit, L. Berge, J. Blumer, A. Broniatowski, B. Censier, A. Chantelauze,
M. Chapellier, G. Chardin, S. Collin, X. Defay, M. De Jesus, H. Deschamps,
P. Di Stefano, Y. Dolgorouky, L. Dumoulin, K. Eitel, M. Fesquet, S. Fiorucci,
J. Gascon, G. Gerbier, C. Goldbach, M. Gros, M. Horn, A. Juillard, R. Lem-
rani, A. de Lesquen, M. Luca, S. Marnieros, L. Mosca, X.-F. Navick, G. Nollez,
E. Olivieri, P. Pari, V. Sanglard, L. Schoeffel, F. Schwamm, and M. Stern. Mea-
surement of the response of heat-and-ionization germanium detectors to nuclear
recoils. Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, 577(3):558 - 568,
2007.

[26] A. Benoit, L. Bergl@, J. BlI?mer, A. Broniatowski, B. Censier, A. Chantelauze,
M. Chapellier, G. Chardin, S. Collin, X. Defay, M. De JI@sus, H. Deschamps,
P. Di Stefano, Y. Dolgorouky, L. Dumoulin, K. Eitel, M. Fesquet, S. Fiorucci,
J. Gascon, G. Gerbier, C. Goldbach, M. Gros, M. Horn, A. Juillard, R. Lem-
rani, A. de Lesquen, M. Luca, S. Marnieros, L. Mosca, X.-F. Navick, G. Nollez,
E. Olivieri, P. Pari, V. Sanglard, L. Schoeffel, F. Schwamm, and M. Stern. Mea-
surement of the response of heat-and-ionization germanium detectors to nuclear
recoils. Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment, 577(3):558 - 568,
2007.

[27] R. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. D'Angelo, H. L. He,
A. Incicchitti, H. H. Kuang, X. H. Ma, F. Montecchia, F. Nozzoli, D. Prosperi,
X. D. Sheng, R. G. Wang, and Z. P. Ye. New results from DAMA/LIBRA.
European Physical Journal C, 67:39-49, May 2010.

[28] R. Bernabei et al. First results from DAMA/LIBRA and the combined results
with DAMA/Nal. Eur. Phys. J., C56:333-355, 2008.

[29] R. Bernabei et al. New results from DAMA/LIBRA. Eur. Phys. J. C, 67:39-49,
May 2010.

[30] J. Bovy and S. Tremaine. On the local dark matter density. ArXiv e-prints,
May 2012.

[31] Nassim Bozorgnia, Graciela B. Gelmini, and Paolo Gondolo. Channeling in
direct dark matter detection ii: channeling fraction in si and ge crystals. Journal
of Cosmology and Astroparticle Physics, 2010(11):028, 2010.

287



[32] P.L. Brink. Non-equilibrium superconductivity induced by x-ray photons. PhD
thesis, Oxford University, 1995.

[33] P.L. Brink. personal communication, 2012.

[34] P.L. Brink, B. Cabrera, J.P. Castle, J. Cooley, L. Novak, R.W. Ogburn, M. Pyle,
J. Ruderman, A. Tomada, B.A. Young, J. Filippini, P. Meunier, N. Mirabol-
fathi, B. Sadoulet, D.N. Seitz, B. Serfass, K.M. Sundqvist, D.S. Akerib, C.N.
Bailey, M.R. Dragowsky, D.R. Grant, R. Hennings-Yeomans, and R.W. Schnee.
First test runs of a dark-matter detector with interleaved ionization electrodes
and phonon sensors for surface-event rejection. Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 559(2):414 - 416, 2006. Proceedings of the 11th Interna-
tional Workshop on Low Temperature Detectors : LTD-11 (11th International
Workshop on Low Temperature Detectors).

[35] A. Broniatowski, X. Defay, E. Armengaud, L. BergA@, A. Benoit, 0. Besida,
J. BlAlmer, A. Chantelauze, M. Chapellier, G. Chardin, F. Charlieux, S. Collin,
0. Crauste, M. De Jesus, P. Di Stefano, Y. Dolgorouki, J. Domange, L. Du-
moulin, K. Eitel, J. Gascon, G. Gerbier, M. Gros, M. Hannawald, S. HervA@,
A. Juillard, H. Kluck, V. Kozlov, R. Lemrani, A. Lubashevskiy, C. Marrache,
S. Marnieros, X.-F. Navick, C. Nones, E. Olivieri, P. Pari, B. Paul, S. Rozov,
V. Sanglard, S. Scorza, S. Semikh, M.-A. Verdier, L. Vagneron, and E. Yaku-
shev. A new high-background-rejection dark matter ge cryogenic detector.
Physics Letters B, 681(4):305 - 309, 2009.

[36] Blas Cabrera. Oblique propagation. Presented at CDMS Detector Monte Carlo
Workshop, 2009.

[37] B. Censier. Etude et optimisation de la voie ionisation dans lOexperience edel-
weiss. Ph.D. Thesis, IPN Orsay, 2006.

[38] C. Chasman, K. W. Jones, H. W. Kraner, and Werner Brandt. Band-gap effects
in the stopping of ge 2 * atoms in germanium. Phys. Rev. Lett., 21:1430-1433,
Nov 1968.

[39] C. Chasman, K. W. Jones, and R. A. Ristinen. Measurement of the energy
loss of germanium atoms to electrons in germanium at energies below 100 key.
Phys. Rev. Lett., 15:245-248, Aug 1965.

[40] C. Chasman, K. W. Jones, R. A. Ristinen, and J. T. Sample. Measurement
of the energy loss of germanium atoms to electrons in germanium at energies
below 100 key. ii. Phys. Rev., 154:239-244, Feb 1967.

[41] J. Collar. private communication, 2011.

[42] J. I. Collar. Talk at TAUP 2011 Workshop, Munich, Germany, Sep. 5-9, 2011.

288



[43] J. I. Collar. Talk at IDM2012 Conference, Chicago, IL, July 2012.

[44] J. I. Collar and N. E. Fields. A Maximum Likelihood Analysis of Low-Energy
CDMS Data. ArXiv e-prints, April 2012.

[45] Brian L. Dougherty. Measurements of ionization produced in silicon crystals by
low-energy silicon atoms. Phys. Rev. A, 45:2104-2107, Feb 1992.

[46] Andrzej K. Drukier, Katherine Freese, and David N. Spergel. Detecting cold
dark-matter candidates. Phys. Rev. D, 33:3495-3508, 1986.

[47] John R. Ellis, Keith A. Olive, Yudi Santoso, and Vassilis C. Spanos. Update on
the direct detection of supersymmetric dark matter. Phys. Rev., D71:095007,
2005.

[48] Lindhard J. et al. K. Dan. Viderask. Selsk., Math. Fys. Medd, 33 and 36(10
and 36), 1963 and 1968.

[49] M. Loidl et al. Quasiparticle diffusion over several mm in cryogenic detectors.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 465(2 - 3):440 - 446, 2001.

[50] R. Keisler et al. Astrophys. J., 743:28, 2011.

[51] M. Farina, D. Pappadopulo, A. Strumia, and T. Volansky. Can CoGeNT and
DAMA modulations be due to Dark Matter? JCAP, 11:10, November 2011.

[52] A. Fasso, A. Ferrari, J. Ranft, and P. R. Sala. CERN-2005-010, 2005.

[53] Gary J. Feldman and Robert D. Cousins. Unified approach to the classical
statistical analysis of small signals. Phys. Rev. D, 57:3873-3889, Apr 1998.

[54] E. Figueroa-Feliciano. Theory and development of position-sensitive quantum
calorimeters. PhD thesis, Stanford University, 2001.

[55] P. J. Fox, J. Liu, and N. Weiner. Integrating out astrophysical uncertainties.
Phys. Rev. D, 83(10):103514, may 2011.

[56] Patrick J. Fox et al. A cogent modulation analysis. arXiv:1107.0717v2, 2011.

[57] G. Gerbier, E. Lesquoy, J. Rich, M. Spiro, C. Tao, D. Yvon, S. Zylberajch,
P. Delbourgo, G. Haouat, C. Humeau, F. Goulding, D. Landis, N. Madden,
A. Smith, J. Walton, D. 0. Caldwell, B. Magnusson, M. Witherell, B. Sadoulet,
and A. Da Silva. Measurement of the ionization of slow silicon nuclei in silicon
for the calibration of a silicon dark-matter detector. Phys. Rev. D, 42:3211-
3214, Nov 1990.

[58] D. Hooper et al. Consistent dark matter interpretation for cogent and
dama/libra. Phys. Rev. D, 82(12):123509, Dec 2010.

289



[59] Dan Hooper. The empirical case for 10 gev dark matter. arXiv:1201.1303v1,
2012.

[60] Dan Hooper and Stefano Profumo. Dark matter and collider phenomenology
of universal extra dimensions. Physics Reports, 453(2i4):29 - 115, 2007.

[61] Ioffe Physico-Technical Institute. New semiconductor materials. characteristics
and properties. Electronic archive: www.ioffe.ru/SVA/NSM/.

[62] K. Irwin. Phonon-mediated particle detection using superconducting tungsten
transition-edge-sensors. PhD thesis, Stanford University, 1995.

[63] K.D. Irwin and G.C. Hilton. Transition-edge sensors. In Christian Enss, editor,
Cryogenic Particle Detection, volume 99 of Topics in Applied Physics, pages
81-97. Springer Berlin / Heidelberg.

[64] N. Jarosik, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, M. Halpern,
R. S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. Larson, M. Limon, S. S.
Meyer, M. R. Nolta, N. Odegard, L. Page, K. M. Smith, D. N. Spergel, G. S.
Tucker, J. L. Weiland, E. Wollack, and E. L. Wright. Seven-year Wilkinson
Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic
Errors, and Basic Results. Astrophysical Journal Supplement, 192:14, February
2011.

[65] K. W. Jones and H. W. Kraner. Stopping of 1- to 1.8-key 73Ge atoms in
germanium. Phys. Rev. C, 4:125-129, Jul 1971.

[66] K. W. Jones and H. W. Kraner. Energy lost to ionization by 254-ev 73Ge atoms
stopping in ge. Phys. Rev. A, 11:1347-1353, Apr 1975.

[67] Chris Kelso, Dan Hooper, and Matthew R. Buckley. arXiv:1110.5338v1, 2011.

[68] C. Kittel. Introduction to solid state physics, 8th edition. 2005.

[69] C.A. Klein. Bandgap dependence and related features of radiation ionization
energies in semiconductors. Journal of Applied Physics, 39(4):2029-2038, 1968.
cited By (since 1996) 162.

[70] Joachim Kopp, Thomas Schwetz, and Jure Zupan. arXiv:1110.2721v1, 2011.

[71] T.I. Kucher.

[72] M. Kufniak, M. G. Boulay, and T. Pollmann. Surface roughness interpretation
of 730 kg days CRESST-II results. ArXiv e-prints, March 2012.

[73] V. N. Lebedenko et al. Result from the First Science Run of the ZEPLIN-III
Dark Matter Search Experiment. Phys. Rev., D80:052010, 2009.

290



[74] S. Leman, S. Hertel, P. Kim, B. Cabrera, E. Do Couto E Silva, E. Figueroa-
Feliciano, K. McCarthy, R. Resch, B. Sadoulet, and K. Sundqvist. Comparison
of cdms [100] and [111] oriented germanium detectors. Journal of Low Temper-
ature Physics, 167:1106-1111, 2012. 10.1007/s10909-011-0427-0.

[75] S. W. Leman. Review Article: Physics and Monte Carlo Techniques as Relevant
to Cryogenic, Phonon and Ionization Readout of CDMS Radiation-Detectors.
ArXiv e-prints, September 2011.

[76] J. D. Lewin and P. F. Smith. Review of mathematics, numerical factors, and
corrections for dark matter experiments based on elastic nuclear recoil. As-
tropart. Phys., 6:87-112, 1996.

[77] J. Lindhard et al. K. Dan. Vidensk. Selsk., Mat.-Fys. Medd., 33:10, 1963.

[78] M. R. Lovell, V. Eke, C. S. Frenk, L. Gao, A. Jenkins, T. Theuns, J. Wang,
S. D. M. White, A. Boyarsky, and 0. Ruchayskiy. The haloes of bright satel-
lite galaxies in a warm dark matter universe. Monthly Notices of the Royal
Astronomical Society, 420:2318-2324, March 2012.

[79] P. N. Luke. Voltage-assisted calorimetric ionization detector. J. Appl. Phys.,
64:6858-6860, December 1988.

[80] P. N. Luke. Voltage-assisted calorimetric ionization detector. Journal of Applied
Physics, 64(12):6858 -6860, dec 1988.

[81] P. N. Luke. Single-polarity charge sensing in ionization detectors using coplanar
electrodes. Applied Physics Letters, 65(22):2884 -2886, nov 1994.

[82] D. Malling. Talk at IDM2012 Conference, Chicago, IL, July 2012.

[83] K. McCarthy, S. Leman, A. Anderson, D. Brandt, P. Brink, B. Cabrera,
M. Cherry, E. Do Couto E Silva, P. Cushman, T. Doughty, E. Figueroa-
Feliciano, P. Kim, N. Mirabolfathi, L. Novak, R. Partridge, M. Pyle, A. Reiset-
ter, R. Resch, B. Sadoulet, B. Serfass, K. Sundqvist, and A. Tomada. Validation
of phonon physics in the cdms detector monte carlo. Journal of Low Tempera-
ture Physics, 167:1160-1166, 2012. 10.1007/s10909-012-0474-1.

[84] Y. Messous, B. Chambon, V. Chazal, M. De Jesus, D. Drain, C. Pastor,
A. de Bellefon, M. Chapellier, G. Chardin, E. Gaillard-Lecanu, G. Gerbier,
Y. Giraud-Heraud, D. Lhote, J. Mallet, L. Mosca, M.-C. Perillo-Isaac, C. Tao,
and D. Yvon. Calibration of a ge crystal with nuclear recoils for the development
of a dark matter detector. Astroparticle Physics, 3(4):361 - 366, 1995.

[85] M. E. Msall and J. P. Wolfe. Phonon production in weakly photoexcited semi-
conductors: quasidiffusion in ge, gaas, and si. Phys. Rev. B, 56:9557-9564,
Oct 1997.

[86] B. Neganov and V. Trofimov. Otkryt. Izobret., 146:215, 1985.

291



[87] B. S. Neganov and V. N. Trofimov. Journal of Experimental and Theoretical
Physics, 28:328, 1978.

[88] G. Nilsson and G. Nelin. Study of the homology between silicon and germanium
by thermal-neutron spectrometry. Phys. Rev. B, 6:3777-3786, Nov 1972.

[89] K. Nordlund, M. Ghaly, R. S. Averback, M. Caturla, T. Diaz de la Rubia, and
J. Tarus. Defect production in collision cascades in elemental semiconductors
and fcc metals. Phys. Rev. B, 57:7556-7570, Apr 1998.

[90] M. Pettini, B. J. Zych, M. T. Murphy, A. Lewis, and C. C. Steidel. Deuterium
abundance in the most metal-poor damped Lyman alpha system: converging
on Qb,oh2. Monthly Notices of the Royal Astronomical Society, 391:1499-1510,
December 2008.

[91] M. Pospelov and J. Pradler. Big Bang Nucleosynthesis as a Probe of New
Physics. Annu. Rev. Nucl. Part. Sci., 60:539, 2010.

[92] M. Pyle. Optimizing the design and analysis of cryogenic semiconductor dark
matter detectors for maximum sensitivity. PhD thesis, Stanford University,
2012.

[93] M. Pyle, P.L. Brink, B. Cabrera, J.P. Castle, P. Colling, C.L. Chang, J. Coo-
ley, T. Lipus, R.W. Ogburn, and B.A. Young. Quasiparticle propagation in
aluminum fins and tungsten tes dynamics in the cdms zip detector. Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 559(2):405 - 407, 2006.
ice:title Proceedings of the 11th International Workshop on Low Tempera-
ture Detectorsi /ce:titleZ ice: subtitle LTD- 11 /ce:subtitleq xocs:full-name 11th
International Workshop on Low Temperature Detectorsi /xocs:full-nameZ.

[94] Leszek Roszkowski, Roberto Ruiz de Austri, and Roberto Trotta. Implications
for the Constrained MSSM from a new prediction for b - spy. JHEP, 07:075,
2007.

[95] V. Sanglard and Edelweiss Collaboration. EDELWEISS-II Dark Matter search:
Status and first results. Journal of Physics Conference Series, 203(1):012037,
January 2010.

[96] A. R. Sattler. Ionization produced by energetic silicon atoms within a silicon
lattice. Phys. Rev., 138:A1815-A1821, Jun 1965.

[97] A. R. Sattler, F. L. Vook, and J. M. Palms. Ionization produced by energetic
germanium atoms within a germanium lattice. Phys. Rev., 143:588-594, Mar
1966.

[98] C. Savage, G. Gelmini, P. Gondolo, and K. Freese. Compatibility of dama/libra
dark matter detection with other searches. Journal of Cosmology and Astropar-
ticle Physics, 2009(04):010, 2009.

292



[99] T. Schwetz and J. Zupan. Dark matter attempts for CoGeNT and DAMA.
JCAP, 8:8, August 2011.

[100] T. Shutt, B. Ellman, P. D. Barnes, A. Cummings, A. Da Silva, J. Emes,
Y. Giraud-Heraud, E. E. Haller, A. E. Lange, R. R. Ross, J. Rich, B. Sadoulet,
G. Smith, W. Stockwell, C. Stubbs, N. Wang, S. White, B. A. Young, and
D. Yvon. Measurement of ionization and phonon production by nuclear recoils
in a 60 g crystal of germanium at 25 mk. Phys. Rev. Lett., 69:3425-3427, Dec
1992.

[101] E. Simon, L. Berge, A. Broniatowski, R. Bouvier, B. Chambon, M. De Jesus,
D. Drain, L. Dumoulin, J. Gascon, J.-P. Hadjout, A. Juillard, 0. Martineau,
C. Pastor, M. Stern, and L. Vagneron. Sicane: a detector array for the measure-
ment of nuclear recoil quenching factors using a monoenergetic neutron beam.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 507(3):643 - 656, 2003.

[102] J. D. Simon and M. Geha. The Kinematics of the Ultra-faint Milky Way
Satellites: Solving the Missing Satellite Problem. The Astrophysical Journal,
670:313-331, November 2007.

[103] Y. Sofue, M. Honma, and T. Omodaka. Unified Rotation Curve of the Galaxy
- Decomposition into de Vaucouleurs Bulge, Disk, Dark Halo, and the 9-kpc
Rotation Dip -. Publications of the Astrophysical Society of Japan, 61:227-,
February 2009.

[104] K. Sundqvist and B. Sadoulet. Detectors of the cryogenic dark matter search:
Charge transport and phonon emission in ge ?100? crystals at 40Emk. Journal
of Low Temperature Physics, 151:443-447, 2008. 10.1007/s10909-007-9666-5.

[105] S. Tamura and H. J. Maris. Spontaneous decay of ta phonons. Phys. Rev. B,
31:2595-2598, Feb 1985.

[106] Y.P. Varshni. Temperature dependence of the energy gap in semiconductors.
Physica, 34(1):149 - 154, 1967.

[107] G. Wang. Phonon emission in germanium and silicon by electrons and holes in
applied electric field at low temperature. Journal of Applied Physics, 107, 2010.

[108] G. Wang. Phonon emission in germanium and silicon by electrons and holes
in applied electric field at low temperature. Journal of Applied Physics,
107(9):094504 -094504-7, may 2010.

[109] Siqing Wei and M. Y. Chou. Phonon dispersions of silicon and germanium from
first-principles calculations. Phys. Rev. B, 50:2221-2226, Jul 1994.

[110] Christoph Weniger. A tentative gamma-ray line from dark matter annihila-
tion at the fermi large area telescope. Journal of Cosmology and Astroparticle
Physics, 2012(08):007, 2012.

293



[111] J. Wolfe. Imaging electron-phonon interactions - a retrospective. Klemen's
Award Talk at Phonons 2010.

[112] XENON100 Collaboration, E. Aprile, M. Alfonsi, K. Arisaka, F. Arneodo,
C. Balan, L. Baudis, B. Bauermeister, A. Behrens, P. Beltrame, K. Bokeloh,
E. Brown, G. Bruno, R. Budnik, J. M. R. Cardoso, W.-T. Chen, B. Choi,
D. Cline, A. P. Colijn, H. Contreras, J. P. Cussonneau, M. P. Decowski,
E. Duchovni, S. Fattori, A. D. Ferella, W. Fulgione, F. Gao, M. Garbini,
C. Ghag, K.-L. Giboni, L. W. Goetzke, C. Grignon, E. Gross, W. Hampel,
F. Kaether, H. Kettling, A. Kish, J. Lamblin, H. Landsman, R. F. Lang, M. Le
Calloch, C. Levy, K. E. Lim, Q. Lin, S. Lindemann, M. Lindner, J. A. M.
Lopes, K. Lung, T. Marrodan Undagoitia, F. V. Massoli, A. J. Melgarejo Fer-
nandez, Y. Meng, A. Molinario, E. Nativ, K. Ni, U. Oberlack, S. E. A. Orrigo,
E. Pantic, R. Persiani, G. Plante, N. Priel, A. Rizzo, S. Rosendahl, J. M. F.
dos Santos, G. Sartorelli, J. Schreiner, M. Schumann, L. Scotto Lavina, P. R.
Scovell, M. Selvi, P. Shagin, H. Simgen, A. Teymourian, D. Thers, 0. Vitells,
H. Wang, M. Weber, and C. Weinheimer. Dark Matter Results from 225 Live
Days of XENON100 Data. ArXiv e-prints, July 2012.

[113] S. Yellin. Finding an upper limit in the presence of unknown background. Phys.
Rev., D66:032005, 2002.

[114] D. G. York, J. Adelman, J. E. Anderson, Jr., S. F. Anderson, J. Annis, N. A.
Bahcall, J. A. Bakken, R. Barkhouser, S. Bastian, E. Berman, W. N. Boroski,
S. Bracker, C. Briegel, J. W. Briggs, J. Brinkmann, R. Brunner, S. Burles,
L. Carey, M. A. Carr, F. J. Castander, B. Chen, P. L. Colestock, A. J. Connolly,
J. H. Crocker, I. Csabai, P. C. Czarapata, J. E. Davis, M. Doi, T. Dombeck,
D. Eisenstein, N. Ellman, B. R. Elms, M. L. Evans, X. Fan, G. R. Federwitz,
L. Fiscelli, S. Friedman, J. A. Frieman, M. Fukugita, B. Gillespie, J. E. Gunn,
V. K. Gurbani, E. de Haas, M. Haldeman, Harris, and SDSS Collaboration.
The Sloan Digital Sky Survey: Technical Summary. The Astronomical Journal,
120:1579-1587, September 2000.

[115] P. Zecher, D. Wang, J. Rapaport, C. J. Martoff, and B. A. Young. Energy
deposition of energetic silicon atoms within a silicon lattice. Phys. Rev. A,
41:4058-4061, Apr 1990.

[116] F. Zwicky. Helv. Phys. Acta., 6:110, 1933.

294


