Tools For Innovation: The Design Structure Matrix

Thomas A. Roemer
and Steven Eppinger
Summer 02, 15-761
Outline

- Overview
 - Traditional Project Management Tools and Product Development

- Design Structure Matrix (DSM) Basics
 - How to create
 - Classification

- The Iteration Problem:
 - Increasing Development Speed
 - Sequencing, Partitioning and Simulation

- The Integration Problem:
 - DSM Clustering
 - Organizational Structures & Product Architectures
Classical Project Management Tools

- Gantt Charts
- Graph-based: PERT, CPM, IDEF
Characteristics

- Complex Depiction
- Focus on Work Flows
 - DSM focuses on Information Flows
- Ignore Iterations & Rework
 - Test results, Planned design reviews, Design mistakes, Coupled nature of the process
- Decomposition & Integration
 - Assume optimal Decomposition & Structure
 - Integration of Tasks not addressed
Design Iteration

- Iteration: The repetition of tasks due to new information.
 - Changes in input information (upstream)
 - Update of shared assumptions (concurrent)
 - Discovery of errors (downstream)
- Fundamental in Product development
 - Often times hidden
- Understanding Iterations requires
 - Visibility of information flows
Decomposition and Integration

- **Decomposition:**
 Dividing a complex problem into smaller sub-problems.

- **Integration:**
 Combining sub-problems to achieve set goals.
A Graph and its DSM

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>X</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>F</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIT Sloan
Creating a DSM

- Design manuals
- Process sheets
- Structured expert interviews
 - Interview engineers and managers
 - Determine list of tasks or parameters
 - Ask about inputs, outputs, strengths of interaction, etc
 - Enter marks in matrix
 - Check with engineers and managers
- Questionnaires
Four Types of DSMs

- Activity based DSM
- Parameter based DSM
- Team based DSM
- Product Architecture DSM

Iteration:
- Sequencing
- Partitioning
- Simulation

Integration:
- Clustering
Iteration Focused Tools

Concepts, Examples, Solution Approaches
Sequencing Tasks in Projects

Possible Relationships between Tasks

Dependent (Series)

Independent (Parallel)

Interdependent (Coupled)
Sequencing Algorithm

- Step 1: Schedule tasks with empty rows first
- Step 2: Delete the row and column for that task
- Step 3: Repeat (Go to step 1)
- Step 4: Schedule tasks with empty columns last
- Step 5: Delete the row and column for that task
- Step 6: Repeat (Go to step 4)
- Step 7: All the tasks that are left unscheduled are coupled. Group them into blocks around the diagonal
Task Sequencing Example

Figure 4 at:
http://faculty.erau.edu/ericksol/projects/futurspcrft/kristof/SPfinal.html

Space Shuttle Main Engine
Product Decomposition

Engine Components
Turbo Pump
Corresponding Literature

- Structuring Product Development Processes
 Ahmadi, Roemer & Wang,
 European J. of Operational Research 2001

- Managing Development Risk in Product Design Processes
 Ahmadi & Wang, Oper. Res. 1999

- Time-Cost Trade-Offs in Overlapped Product Development Processes
 Roemer, Ahmadi & Wang, Oper. Res. 2000

- Accelerating Product Development
 Roemer & Ahmadi, In review at Oper. Res.
Finding Coupled Stages

Block Creation

Block Decomposition

Design Time Computation
Dependency Relations in Conceptual Design Block

For this graph, see
Block Decomposition

\[
\min \sum_{i,j \in A} a_{ij} n_{ij} y_{ij}
\]

s.t.

\[
\sum_{m=1}^{M} x_{im} = 1, \quad \forall i
\]

\[
\sum_{i=1}^{N} x_{im} \leq C, \quad \forall m
\]

\[
x_{im} - \sum_{h=m+1}^{M} x_{jh} - y_{ij} \leq 0, \quad \forall i, j, m
\]

\[
x_{im}, y_{ij} \in \{0,1\}, \quad \forall i, j, m
\]

\[
i,j = \text{index for activities, } i,j = 1,2,\ldots,N;
\]

\[
m = \text{index for stages, } m = 1,2,\ldots,M;
\]

\[
A = \text{the set of directed arcs in the design graph;}
\]

\[
a_{ij} = \text{the level of dependency of activity } i \text{ on } j
\]

\[
x_{im} = \begin{cases}
1 & \text{if activity } i \text{ is assigned to stage } m \\
0 & \text{otherwise}
\end{cases}
\]

\[
y_{ij} = \begin{cases}
0 & \text{if arc } ij \text{ is a feedback between stages} \\
1 & \text{otherwise}
\end{cases}
\]

\[
n_{ij} = \begin{cases}
W & (\text{a large number}) \text{ if } a_{ij} = 1 \\
1 & \text{otherwise}
\end{cases}
\]
Resulting Structure for Conceptual Design Block

For this graph, see
Lead Time Estimation

Exp. Iterations
\[\| \mu_{ji} \| = (I - P)^{-1} \]

Activity Duration
\[T_i = t_i + e^{-1/\beta_i} \sum_{n=1}^{\mu_{ii}-1} \left[t_i^0 + \left(t_i - t_i^0 \right) e^{-\lambda_i n} \right] \]

Stage Duration
\[T = \sum_{i=1}^{k} T_i \]

Markov Chain

MIT Sloan
Decomposition and Duration

Block Duration vs. Decomposition Degree (Number of Process Stages)
Stage Size and Duration
DSM Simulation

- Task A requires input from task C
- Perform A by assuming a value for C’s output
- Deliver A’s output to B
- Deliver B’s output to C
- Feed C’s output back to A
 - Check initial assumption (made by A)
- Update assumption and repeat task A.
Simulating Rework

R is the probability that Task A will be repeated once task C has finished its work.

$R = 0.0$: There is 0 chance that A will be repeated based on results of task C.
$R = 1.0$: There is 100% probability that A will be repeated based on results of task C.
Second Order rework is the rework associated with forward information flows that is triggered by feedback marks.

First order rework: Output of task C causes task A to do some rework

2nd order rework: Consequently there is a chance tasks depending on A (e.g. task B) will also be repeated.
Simulating Rework Impact

$I = 0.0$: If task A is reworked due to task C results, then 0% of task A’s initial duration will be repeated.

$I = 1.0$: If task A is reworked due to task C results, then 100% of task A’s initial duration will be repeated.
Simulation Results

- DSM contains rework probabilities and impacts
- Cost and time add up
- Many runs produce a distribution of total time and cost
- Different task sequences can be tried

Gantt Chart with Iteration

- Typical Gantt chart shows monotone progress
- Actual project behavior includes tasks stopping, restarting, repeating and impacting other tasks

Lessons Learned: Iteration

- Development is inherently iterative.
- Understanding of coupling is essential.
- Iterations improve quality but consumes time.
- Iteration can be accelerated through:
 - Information technology (faster iterations)
 - Coordination techniques (faster iterations)
 - Decreased coupling (fewer iterations)
- Two Types of Iteration:
 - Planned Iterations (getting it right the first time)
 - Unplanned iterations (fixing it when it’s not right)
Integration Focused Tools

Concepts, Examples, Solution Approaches
Team Selection

- Team assignment is often opportunistic
 - “We just grab whoever is available.”
- Not easy to tell who should be on a team
- Tradition groups people by function
- Info flow suggests different groupings
- Info gathered by asking people to record their interaction frequency with others
Clustering a DSM

No Dependency Low Hi
Alternative Arrangement
Overlapped Teams

No Dependency Low Hi
GM’s Powertrain Division

- 22 Development Teams into four System Teams
 - Short block: block, crankshaft, pistons, conn. rods, flywheel, lubrication
 - Valve train: cylinder head, camshaft and valve mechanism, water pump and cooling
 - Induction: intake manifold, accessory drive, air cleaner, throttle body, fuel system
 - Emissions & electrical: Exhaust, EGR, EVAP, electrical system, electronics, ignition
Lessons Learned: Integration

- Large development efforts require multiple activities to be performed in parallel.
- The many subsystems must be integrated to achieve an overall system solution.
- Mapping the information dependence reveals an underlying structure for system engineering.
- Organizations and architectures can be designed based upon this structure.
Conclusions

- The DSM supports a major need in product development:
 - documenting information that is exchanged
- It provides visually powerful means for designing, upgrading, and communicating product development activities
- It has been used in industry successfully
DSM Web Page

- http://web.mit.edu/dsm/
- It contains
 - A tutorial
 - Links to other DSM sites
 - Over 100 references of DSM literature
 - Analysis tools
Suggested Reading

“Innovation at the Speed Of Information”

By Steven D. Eppinger

HBR January 2001