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Abstract

We consider the problem of translating natu-
ral language text queries into regular expres-
sions which represent their meaning. The mis-
match in the level of abstraction between the
natural language representation and the regu-
lar expression representation make this a novel
and challenging problem. However, a given
regular expression can be written in many se-
mantically equivalent forms, and we exploit
this flexibility to facilitate translation by find-
ing a form which more directly corresponds to
the natural language. We evaluate our tech-
nique on a set of natural language queries
and their associated regular expressions which
we gathered from Amazon Mechanical Turk.
Our model substantially outperforms a state-
of-the-art semantic parsing baseline, yielding
a 29% absolute improvement in accuracy.1

1 Introduction

Regular expressions (regexps) have proven them-
selves to be an extremely powerful and versatile for-
malism that has made its way into everything from
spreadsheets to databases. However, despite their
usefulness and wide availability, they are still con-
sidered a dark art that even many programmers do
not fully understand (Friedl, 2006). Thus, the ability
to automatically generate regular expressions from
natural language would be useful in many contexts.

Our goal is to learn to generate regexps from nat-
ural language, using a training set of natural lan-
guage and regular expression pairs such as the one
in Figure 1. We do not assume that the data includes
an alignment between fragments of the natural lan-
guage and fragments of the regular expression. In-

1The dataset used in this work is available at
http://groups.csail.mit.edu/rbg/code/regexp/

Text Description Regular Expression

three letter word starting with ’X’ \bX[A-Za-z]{2}\b

Figure 1: An example text description and its associated
regular expression.3

ducing such an alignment during learning is partic-
ularly challenging because oftentimes even humans
are unable to perform a fragment-by-fragment align-
ment.

We can think of this task as an instance of
grounded semantic parsing, similar to the work
done in the domain of database queries (Kate and
Mooney, 2006; Zettlemoyer and Collins, 2005;
Kwiatkowski et al., 2010). However, the current
success in semantic parsing relies on two impor-
tant properties of the data. First, while the past
work did not assume the alignment was given, they
did assume that finding a fine grained fragment-
by-fragment alignment was possible. Secondly,
the semantic domains considered in the past were
strongly typed. This typing provides constraints
which significantly reduce the space of possible
parses, thereby greatly reducing the ambiguity.

However, in many interesting domains these two
properties may not hold. In our domain, the align-
ment between the natural language and the regu-
lar expressions often happens at the level of the
whole phrase, making fragment-by-fragment align-
ment impossible. For example, in Figure 1 no frag-
ment of the regexp maps clearly to the phrase “three
letter”. Instead, the regexp explicitly represents the
fact that there is only two characters after X, which is
not stated explicitly by the text description and must
be inferred. Furthermore, regular expressions have

3Our regular expression syntax supports Perl regular expres-
sion shorthand which utilizes \b to represent a break (i.e. a
space or the start or end of the line). Our regular expression
syntax also supports intersection (&) and complement(˜).



([A-Za-z]{3})&(\b[A-Za-z]+\b)&(X.*)
(a)

three letter [A-Za-z]{3}
word \b[A-Za-z]+\b
starting with ’X’ X.*

(b)

Figure 2: (a) shows a regexp which is semantically
equivalent to that in Figure 1, yet admits a fragment-by-
fragment mapping to the natural language. (b) shows this
mapping.

relatively few type constraints.
The key idea of our work is to utilize semantic

unification in the logical domain to disambiguate the
meaning of the natural language. Semantic unifi-
cation utilizes an inference engine to determine the
semantic equality of two syntactically divergent ex-
pressions. This is a departure from past work on se-
mantic parsing which has largely focused on the syn-
tactic interface between the natural language and the
logical form, and on example-based semantic equal-
ity, neither of which utilize the inference power in-
herent in many symbolic domains.

To see how we can take advantage of semantic
unification, consider the regular expression in Fig-
ure 2(a). This regular expression is semantically
equivalent to the regular expression in Figure 1. Fur-
thermore, it admits a fragment-by-fragment map-
ping as can be seen in Figure 2(b). In contrast, as
we noted earlier, the regexp in Figure 1 does not ad-
mit such a mapping. In fact, learning can be quite
difficult if our training data contains only the regexp
in Figure 1. We can, nonetheless, use the regexp in
Figure 2 as a stepping-stone for learning if we can
use semantic inference to determine the equivalence
between the two regular expressions. More gener-
ally, whenever the regexp in the training data does
not factorize in a way that facilitates a direct map-
ping to the natural language description, we must
find a regexp which does factorize and be able to
compute its equivalence to the regexp we see in the
training data. We compute this equivalence by con-
verting each regexp to a minimal deterministic finite
automaton (DFA) and leveraging the fact that mini-
mal DFAs are guaranteed to be the same for seman-
tically equivalent regexps (Hopcroft et al., 1979).

We handle the additional ambiguity stemming
from the weak typing in our domain through the use
of a more effective parsing algorithm. The state of
the art semantic parsers (Kwiatkowski et al., 2011;

Liang et al., 2011) utilize a pruned chart parsing
algorithm which fails to represent many of the top
parses and is prohibitively slow in the face of weak
typing. In contrast, we use an n-best parser which
always represents the most likely parses, and can be
made very efficient through the use of the parsing
algorithm from Jimenez and Marzal (2000).

Our approach works by inducing a combinatory
categorial grammar (CCG) (Steedman, 2001). This
grammar consists of a lexicon which pairs words
or phrases with regular expression functions. The
learning process initializes the lexicon by pairing
each sentence in the training data with the full reg-
ular expression associated with it. These lexical en-
tries are iteratively refined by considering all possi-
ble ways to split the regular expression and all pos-
sible ways to split the phrase. At each iteration we
find the n-best parses with the current lexicon, and
find the subset of these parses which are correct us-
ing DFA equivalence. We update the weights of a
log-linear model based on these parses and the cal-
culated DFA equivalence.

We evaluate our technique using a dataset of sen-
tence/regular expression pairs which we generated
using Amazon Mechanical Turk (Turk, 2013). We
find that our model generates the correct regexp
for 66% of sentences, while the state-of-the-art se-
mantic parsing technique from Kwiatkowski et al.
(2010) generates correct regexps for only 37% of
sentences. The results confirm our hypothesis that
leveraging the inference capabilities of the seman-
tic domain can help disambiguate natural language
meaning.

2 Related Work

Generating Regular Expressions Past work has
looked at generating regular expressions from nat-
ural language using rule based techniques (Ranta,
1998), and also at automatically generating regular
expressions from examples (Angluin, 1987). To the
best of our knowledge, however, our work is the first
to use training data to learn to automatically gener-
ate regular expressions from natural language.

Language Grounding There is a large body of re-
search mapping natural language to some form of
meaning representation (Kate and Mooney, 2006;
Kate et al., 2005; Raymond and Mooney, 2006;
Thompson and Mooney, 2003; Wong and Mooney,



2006; Wong and Mooney, 2007; Zelle and Mooney,
1996; Branavan et al., 2009; Mihalcea et al., 2006;
Poon and Domingos, 2009). In some of the consid-
ered domains the issue of semantic equivalence does
not arise because of the way the data is generated.
The most directly related work in these domains, is
that by Kwiatkowski et al. (2010 and 2011) which is
an extension of earlier work on CCG-based semantic
parsing by Zettlemoyer and Collins (2005). Similar
to our work, Kwiatkowski et al. utilize unification to
find possible ways to decompose the logical form.
However, they perform only syntactic unification.
Syntactic unification determines equality using only
variable substitutions and does not take advantage of
the inference capabilities available in many semantic
domains. Thus, syntactic unification is unable to de-
termine the equivalence of two logical expressions
which use different lexical items, such as “.*” and
“.*.*”. In contrast, our DFA based technique can
determine the equivalence of such expressions. It
does this by leveraging the equational inference ca-
pabilities of the regular expression domain, making
it a form of semantic unification. Thus, the contribu-
tion of our work is to show that using semantic uni-
fication to find a deeper level of equivalence helps to
disambiguate language meanings.

In many other domains of interest, determining
semantic equivalence is important to the learning
process. Previous work on such domains has fo-
cused on either heuristic or example-driven mea-
sures of semantic equivalence. For example, Artzi
and Zettlemoyer (2011) estimate semantic equiva-
lence using a heuristic loss function. Other past
work has executed the logical form on an example
world or in a situated context and then compared the
outputs. This provides a very weak form of semantic
equivalence valid only in that world/context (Clarke
et al., 2010; Liang et al., 2009; Liang et al., 2011;
Chen and Mooney, 2011; Artzi and Zettlemoyer,
2013). In contrast, our work uses an exact, theoret-
ically sound measure of semantic equivalence that
determines whether two logical representations are
equivalent in any context, i.e. on any input string.

3 Background

3.1 Finding Regexp Equivalence Using DFAs
Regular expressions can be equivalently represented
as minimal DFAs, which are guaranteed to be equal

function sig. regexp function signature regexp

cons(R,R,...) ab rep*(R) a*
and(R,R,...) [a-b]&[b-c] repminmax(I,I,R) a{3,5}
or(R,R,...) a|b repmin(I,R) a{3,}
not(R) ˜(a) repexact(I,R) a{3}

Figure 3: This shows the signatures of all functions in our
lambda calculus along with their regexp syntax.

for the same regular language (Hopcroft et al.,
1979). The DFA representation of a regular expres-
sion may be exponentially larger than the the orig-
inal regular expression. However, past work has
shown that most regular expressions do not exhibit
this exponential behavior (Tabakov and Vardi, 2005;
Moreira and Reis, 2012), and the conversion pro-
cess is renowned for its good performance in prac-
tice (Moreira and Reis, 2012). Hence, we compare
the equivalence of two regular expressions by con-
verting them to minimal DFAs and comparing the
DFAs. We do this using a modified version of Møller
(2010).4

3.2 Lambda Calculus Representation
To take advantage of the inherent structure of reg-
ular expressions, we deterministically convert them
from a flat string representation into simply typed
lambda calculus expressions. The full set of func-
tions available in our lambda calculus can be seen
in Figure 3. As can be seen from the figures, our
lambda calculus is very weakly typed. It has only
two primitive types, integer (I) and regexp (R), with
most arguments being of type R.

3.3 Parsing
Our parsing model is based on a Combinatory Cate-
gorial Grammar. In CCG parsing most of the gram-
mar complexity is contained in the lexicon, Λ, while
the parser itself contains only a few simple rewrite
rules called combinators.

Lexicon The lexicon, Λ, consists of a set of lexical
entries that couple natural language with a lambda
calculus expression. Our lexical entries contain
words or phrases, each of which is associated with
a function from the lambda calculus we described
in §3.2. For example:

4We set a timeout on this process to catch any cases where
the resulting DFA might be prohibitively large. We use a one
second timeout in our experiments, which results in timeouts
on less than 0.25% of the regular expressions.



with ’bob’ after ’joe’—————— —– ——————– —–
R/R R R\R/R R

λx(.*x.*) bob λxy.(x.*y) joe
————————–(f)

R\R
λy.joe.*y

————————————(b)
R

joe.*bob
———————————————————–(f)

R
.*joe.*bob.*

Figure 4: This shows an example parse.

〈 after, R\R/R:λxy.(x.*y) 〉
〈 at least, R/I/R:λxy.((x){y,}) 〉

Note that the lambda expressions contain type infor-
mation indicating the number of arguments and the
type of those arguments as described in §3.2. How-
ever, this information is augmented with a (/) or a
(\) for each argument indicating whether that argu-
ment comes from the left or the right, in sentence
order. Thus R\R/R can be read as a function which
first takes an argument of type R on the right then
takes another argument of type R on the left, and
returns an expression of type R.

Combinators Parses are built by combining lexical
entries through the use of a set of combinators. Our
parser uses only the two most basic combinators,
forward function application and backward function
application.5 These combinators work as follows:

R/R:f R:g → R:f(g) (forward)
R:f R\R:g → R:g(f) (backward)

The forward combinator applies a function to an ar-
gument on its right when the type of the argument
matches the type of the function’s first argument.
The backward combinator works analogously. Fig-
ure 4 shows an example parse.

4 Parsing Model

For a given lexicon, Λ, and sentence, ~w, there will in
general be many valid parse trees, t ∈ T (~w; Λ). We
assign probabilities to these parses using a standard
log-linear parsing model with parameters θ:

p(t|~w; θ,Λ) =
eθ·φ(t, ~w)∑
t′ e

θ·φ(t′, ~w)

Our training data, however, includes only the cor-
rect regular expression, r, and not the correct parse,

5Technically, this choice of combinators makes our model
just a Categorial Grammar instead of a CCG.

t. The training objective used by the past work in
such circumstances, is to maximize the probability
of the correct regular expression by marginalizing
over all parses which generate that exact regular ex-
pression. Such an objective is limited, however, be-
cause it does not allow parses that generate seman-
tically correct regexps which are not syntactically
equivalent to r, such as those in Figure 2. The main
departure of our work is to use an objective which al-
lows such parses through the use of the DFA-EQUAL

procedure. DFA-EQUAL uses the process described
in §3.1 to determine whether parse t evaluates to a
regexp which is semantically equivalent to r, lead-
ing to the following objective:

O =
∑
i

log
∑

t|DFA-EQUAL(t,ri)

p(t|~wi; θ,Λ) (1)

At testing time, for efficiency reasons, we calcu-
late only the top parse. Specifically, if r = eval(t)
is the regexp which results from evaluating parse t,
then we generate t∗ = arg maxt∈T (~w) p(t|~w; θ,Λ),
and return r∗ = eval(t∗).

5 Learning

Our learning algorithm starts by generating a single
lexical entry for each training sample which pairs
the full sentence, ~wi, with the associated regular ex-
pression, ri. Formally, we initialize the lexicon as
Λ = {〈~wi, R : ri〉 |i = 1 . . . n}. We then run an iter-
ative process where in each iteration we update both
Λ and θ for each training sample. Our initial Λ will
perfectly parse the training data. However it won’t
generalize at all to the test data since the lexical en-
tries contain only full sentences. Hence, in each
iteration we refine the lexicon by splitting existing
lexical entries to generate more granular lexical en-
tries which will generalize better. The candidates for
splitting are all lexical entries used by parses which
generate the correct regular expression, ri, for the
current training sample. We consider all possible
ways to factorize each lexical entry, and we add to
Λ a new lexical entry for each possible factorization,
as discussed in §5.2. Finally, we update θ by per-
forming a single stochastic gradient ascent update
step for each training sample, as discussed in §5.1.
See Algorithm 1 for details.

This learning approach follows the structure
of the previous work on CCG based seman-
tic parsers (Zettlemoyer and Collins, 2005;



Inputs: Training set of sentence regular expression pairs.
{〈~wi, ri〉 |i = 1 . . . n}

Functions:

• N-BEST(~w; θ,Λ) n-best parse trees for ~w using the
algorithm from §5.1

• DFA-EQUAL(t, r) calculates the equality of the regexp
from parse t and regexp r using the algorithm from §3.1

• SPLIT-LEX(T ) splits all lexical entries used by any
parse tree in set T , using the process described in §5.2

Initialization: Λ = {〈~wi, R : ri〉 |i = 1 . . . n}

For k = 1 . . .K, i = 1 . . . n

Update Lexicon: Λ
• T = N-BEST(~wi; θ,Λ)

• C = {t|t ∈ T ∧ DFA-EQUAL(t, ri)}
• Λ = Λ ∪ SPLIT-LEX(C)

Update Parameters: θ
• T = N-BEST(~wi; θ,Λ)
• C = {t|t ∈ T ∧ DFA-EQUAL(t, ri)}
• ∆ = Ep(t|t∈C)[φ(t, ~w)]− Ep(t|t∈T )[φ(t, ~w)]

• θ = θ + α∆

Output: The lexicon and the parameters, 〈Λ, θ〉

Algorithm 1: The full learning algorithm.

Kwiatkowski et al., 2010). However, our domain
has distinct properties that led to three important
departures from this past work.

First, we use the DFA based semantic unifica-
tion process described in §3.1 to determine the set
of correct parses when performing parameter up-
dates. This is in contrast to the syntactic unification
technique, used by Kwiatkowski et al. (2010), and
the example based unification used by other seman-
tic parsers, e.g. Artzi and Zettlemoyer (2011). Us-
ing semantic unification allows us to handle training
data which does not admit a fragment-by-fragment
mapping between the natural language and the reg-
ular expression, such as the example in Figure 2.

Second, our parser is based on the efficient n-best
parsing algorithm of Jimenez and Marzal (2000) in-
stead of the pruned chart parsing algorithm used
by the past work (Zettlemoyer and Collins, 2005;
Kwiatkowski et al., 2010). As we show in §8.2, this
results in a parser which more effectively represents
the most likely parses. This allows our parser to bet-
ter handle the large number of potential parses that
exist in our domain due to the weak typing.

Third, we consider splitting lexical entries used in
any correct parse, while the past work (Zettlemoyer
and Collins, 2005; Kwiatkowski et al., 2010) con-
siders splitting only those used in the best parse. We

must utilize a less constrictive splitting policy since
our domain does not admit the feature weight ini-
tialization technique used in the domains of the past
work. We discuss this in §5.2.1. In the remainder
of this section we discuss the process for learning θ
and for generating the lexicon, Λ.

5.1 Estimating Theta
To estimate θ we will use stochastic gradient ascent,
updating the parameters based on one training exam-
ple at a time. Hence, we can differentiate the objec-
tive from equation 1 to get the gradient of parameter
θj for training example i, as follows:
∂Oi
∂θj

=Ep(t|DFA-EQUAL(t,ri),·) [φj(t, ~wi)]− Ep(t|·) [φj(t, ~wi)]

(2)
This gives us the standard log-linear gradient, which
requires calculating expected feature counts. We de-
fine the features in our model over individual parse
productions, admitting the use of dynamic program-
ming to efficiently calculate the unconditioned ex-
pected counts. However, when we condition on gen-
erating the correct regular expression, as in the first
term in (2), the calculation no longer factorizes, ren-
dering exact algorithms computationally infeasible.

To handle this, we use an approximate gradient
calculation based on the n-best parses. Our n-best
parser uses an efficient algorithm developed orig-
inally by (Jimenez and Marzal, 2000), and subse-
quently improved by (Huang and Chiang, 2005).
This algorithm utilizes the fact that the first best
parse, t1, makes the optimal choice at each deci-
sion point, and the 2nd best parse, t2 must make the
same optimal choice at every decision point, except
for one. To execute on this intuition, the algorithm
first calculates t1 by generating an unpruned CKY-
style parse forest which includes a priority queue
of possible subparses for each constituent. The set
of possible 2nd best parses T are those that choose
the 2nd best subparse for exactly one constituent of
t1 but are otherwise identical to t1. The algorithm
chooses t2 = arg maxt∈T p(t). More generally,
T is maintained as a priority queue of possible nth

best parses. At each iteration, i, the algorithm sets
ti = arg maxt∈T p(t) and augments T by all parses
which both differ from ti at exactly one constituent
ci and choose the next best possible subparse for ci.

We use the n-best parses to calculate an approxi-
mate version of the gradient. Specifically, Ti is the



set of n-best parses for training sample i, and Ci in-
cludes all parses t in Ti such that DFA-EQUAL(t, ri).
We calculate the approximate gradient as:

∆ = Ep(t|t∈Ci;θ,Λ)[φ(t, ~wi)]− Ep(t|t∈Ti;θ,Λ)[φ(t, ~wi)]
(3)

In contrast to our n-best technique, the past
work has calculated equation (2) using a beam
search approximation of the full inside-outside algo-
rithm (Zettlemoyer and Collins, 2005; Kwiatkowski
et al., 2010; Liang et al., 2011). Specifically, since
the conditional probability of t given r does not fac-
torize, a standard chart parser would need to main-
tain the full logical form (i.e. regular expression)
for each subparse, and there may be an exponential
number of such subparses at each chart cell. Thus,
they approximate this full computation using beam
search, maintaining only the m-best logical forms at
each chart cell.

Qualitatively, our n-best approximation always
represents the most likely parses in the approxima-
tion, but the number of represented parses scales
only linearly with n. In contrast, the number of
parses represented by the beam search algorithm
of the past work can potentially scale exponentially
with the beam size,m, due to its use of dynamic pro-
gramming. However, since the beam search prunes
myopically at each chart cell, it often prunes out
the highest probability parses. In fact, we find that
the single most likely parse is pruned out almost
20% of the time. Furthermore, our results in §8
show that the beam search’s inability to represent
the likely parses significantly impacts the overall
performance. It is also important to note that the
runtime of the n-best algorithm scales much better.
Specifically, as n increases, the n-best runtime in-
creases as O(n|~w| log(|~w||P | + n), where P is the
set of possible parse productions. In contrast, as
m is increased, the beam search runtime scales as
O(|~w|5m2), where the |~w|5 factor comes from our
use of headwords, as discussed in §6. In practice,
we find that even with n set to 10, 000 and m set to
200, our algorithm still runs almost 20 times faster.

5.2 Lexical Entry Splitting

Each lexical entry consists of a sequence of n
words aligned to a typed regular expression func-
tion, 〈w0:l, T : r〉. Our splitting algorithm considers
all possible ways to split a lexical entry into two new

cons

Parent Tree Child Tree

b
.

rep*o b
.

rep*

cons

.
rep*x

.
rep* b o b

cons
Original Tree

(a) (b) (c)
Figure 5: The tree in (a) represents the lambda expression
from the lexical entry 〈with bob, R:.*bob.*〉. One pos-
sible split of this lexical entry generates the parent lexical
entry 〈with, R/R:λx.(.*x.*)〉 and the child lexical en-
try, 〈bob, R:bob〉, whose lambda expressions are repre-
sented by (b) and (c), respectively.

lexical entries such that they can be recombined via
function application to obtain the original lexical en-
try. This process is analogous to the syntactic unifi-
cation process done by Kwiatkowski et al. (2010).

We first consider all possible ways to split the
lambda expression r. The splitting process is most
easily explained using a tree representation for r, as
shown in Figure 5(a). This tree format is simply a
convenient visual representation of a lambda calcu-
lus function, with each node representing one of the
function type constants from Figure 3. Each split,
s ∈ S(r), generates a child expression sc and a par-
ent expression sp such that r = sp(sc). For each
node, n, in r besides the root node, we generate a
split where sc is the subtree rooted at node n. For
such splits, sp is the lambda expression r with the
sub-expression sc replaced with a bound variable,
say x. In addition to these simple splits, we also con-
sider a set of more complicated splits at each node
whose associated function type constant can take
any number of arguments, i.e. or, and, or cons. If
C(n) are the children of node n, then we generate a
split for each possible subset, {V |V ⊂ C(n)}. Note
that for cons nodes V must be contiguous. In §6 we
discuss additional restrictions placed on the splitting
process to avoid generating an exponential number
of splits. For the split with subset V , the child tree,
sc, is a version of the tree rooted at node n pruned
to contain only the children in V . Additionally, the
parent tree, sp, is generated from r by replacing all
the children in V with a single bound variable, say
x. Figure 5 shows an example of such a split. We
only consider splits in which sc does not have any
bound variables, so its type, Tc, is always either R
or I . The type of sp is then type of the original ex-
pression, T augmented by an additional argument of
the child type, i.e. either T/Tc or T\Tc.

Each split s generates two pairs of lexical entries,



one for forward application, and one for backward
application. The set of such pairs of pairs is:

{( 〈w0:j , T/Tc : sp〉 , 〈wj:l, Tc : sc〉),
(〈w0:j , Tc : sc〉 , 〈wj:l, T\Tc : sp〉)|
(0 ≤ j ≤ l) ∧ (s ∈ S(r))}

5.2.1 Adding New Lexical Entries
Our model splits all lexical entries used in parses

which generate correct regular expressions, i.e.
those in Ci, and adds all of the generated lexical
entries to Λ. In contrast, the previous work (Zettle-
moyer and Collins, 2005; Kwiatkowski et al., 2010)
has a very conservative process for adding new lex-
ical entries. This process relies on a good initial-
ization of the feature weights associated with a new
lexical entry. They perform this initialization using
a Giza++ alignment of the words in the training sen-
tences with the names of functions in the associated
lambda calculus expression. Such an initialization
is ineffective in our domain since it has very few
primitive functions and most of the training exam-
ples use more than half of these functions. Instead,
we add new lexical entries more aggressively, and
rely on the n-best parser to effectively ignore any
lexicon entries which do not generate high probabil-
ity parses.

6 Applying the Model

Features To allow inclusion of head words in our
features, our chart cells are indexed by start word,
end word, and head word. Thus for each parse pro-
duction we have a set of features that combine the
head word and CCG type, of the two children and
the newly generated parent. Additionally, for each
lexical entry 〈~wi, R : ri〉 ∈ Λ, we have four types of
features: (1) a feature for 〈~wi, R : ri〉, (2) a feature
for ~wi, (3) a feature for R : ri, and (4) a set of fea-
tures indicating whether ~wi contains a string literal
and whether the leaves of ri contain any exact char-
acter matches (rather than character range matches).

Initialization In addition to the sentence level ini-
tialization discussed in §5 we also initialize the lex-
icon, Λ, with two other sets of lexical entries. The
first set is all of the quoted string literals in the natu-
ral language phrases from the training set. Thus for
the phrase, “lines with ’bob’ twice” we would add
the lexical entry 〈 ’bob’, R:bob 〉. We also add lex-
ical entries for both numeric and word representa-
tions of numbers, such as 〈 1, R:1〉 and 〈 one, R:1〉.

We add these last two types of lexical entries be-
cause learning them from the data is almost impos-
sible due to data sparsity. Lastly, for every individual
word in our training set vocabulary, we add an iden-
tity lexical entry whose lambda expression is just a
function which takes one argument and returns that
argument. This allows our parser to learn to skip
semantically unimportant words in the natural lan-
guage description, and ensures that it generates at
least one parse for every example in the dataset. At
test time we also add both identity lexical entries for
every word in the test set vocabulary as well as lex-
ical entries for every quoted string literal seen in the
test queries. Note that the addition of these lexical
entries requires only access to the test queries and
does not make use of the regular expressions (i.e.
labels) in the test data in any way.

Parameters We initialize the weight of all lexical
entry features except the identity features to a default
value of 1 and initialize all other features to a default
weight of 0. We regularize our log-linear model us-
ing the L2-norm and a λ value of 0.001. We use a
learning rate of α = 1.0, set n = 10, 000 in our n-
best parser, and run each experiment with 5 random
restarts and K = 50 iterations. We report results
using the pocket algorithm technique originated by
Gallant (1990).

Constraints on Lexical Entry Splitting To prevent
the generation of an exponential number of splits,
we constrain the lexical entry splitting process as
follows:• We only consider splits at nodes which are at most

a depth of 2 from the root of the original tree.
• We limit lambda expressions to 2 arguments.
• In unordered node splits (and and or) the result-

ing child can contain at most 4 of the arguments.

These restrictions ensure the number of splits is
at most an M-degree polynomial of the regexp size.
The unification process used by Kwiatowski et al.
(2010) bounded the number of splits similarly.

7 Experimental Setup

Dataset Our dataset consists of 824 natural language
and regular expression pairs gathered using Amazon
Mechanical Turk (Turk, 2013) and oDesk (oDesk,
2013).6 On Mechanical Turk we asked workers to

6This is similar to the size of the datasets used by past work.



generate their own original natural language queries
to capture a subset of the lines in a file (similar to
UNIX grep). In order to compare to example based
techniques we also ask the Mechanical Turk work-
ers to generate 5 positive and 5 negative examples
for each query. On oDesk we hired a set of pro-
grammers to generate regular expressions for each
of these natural language queries. We split our data
into 3 sets of 275 queries each and tested using 3-
fold cross validation. We tuned our parameters sep-
arately on each development set but ended up with
the same values in each case.

Evaluation Metrics We evaluate by comparing the
generated regular expression for each sentence with
the correct regular expression using our DFA equiv-
alence technique. As discussed in §3.1 this met-
ric is exact, indicating whether the generated regu-
lar expression is semantically equivalent to the cor-
rect regular expression. Additionally, as discussed
in §6, our identity lexical entries ensure we generate
a valid parse for every sentence, so we report only
accuracy instead of precision and recall.

Baselines We compared against six different base-
lines. The UBL baseline uses the published code
from Kwiatkowski et al. (2010) after configuring
it to handle the lambda calculus format of our reg-
ular expressions.7 The other baselines are ablated
and/or modified versions of our model. The Beam-
Parse baselines replace the N-BEST procedure from
Algorithm 1 with the beam search algorithm used
for parsing by past CCG parsers (Zettlemoyer and
Collins, 2005; Kwiatkowski et al., 2010).8 The
StringUnify baseline replaces the DFA-EQUAL proce-
dure from Algorithm 1 with exact regular expres-
sion string equality. The HeuristicUnify baselines
strengthen this by replacing DFA-EQUAL with a smart
heuristic form of semantic unification. Our heuristic
unification procedure first flattens the regexp trees
by merging all children into the parent node if they
are both of the same type and of type or, and, or
cons. It then sorts all children of the and and or
operators. Finally, it converts both regexps back to
a flat string and compares these strings for equiva-
lence. This process should more effective than any

7This was done in consultation with the original authors.
8we set the beam size to 200, which is equivalent to the past

work. With this setting, the slow runtime of this algorithm al-
lowed us to run only two random restarts.

Model Percent Correct
UBL 36.5%

BeamParse-HeuristicUnify 9.4%
BeamParse-HeuristicUnify-TopParse 22.1%

NBestParse-StringUnify 31.1%
NBestParse-ExampleUnify 52.3%
NBestParse-HeuristicUnify 56.8%

Our Full Model 65.5%

Table 1: Accuracy of our model and the baselines.

form of syntactic unification and any simpler heuris-
tics. The ExampleUnify baseline represents the per-
formance of the example based semantic unification
techniques. It replaces DFA-EQUAL with a procedure
that evaluates the regexp on all the positive and neg-
ative examples associated with the given query and
returns true if all 10 are correctly classified. Finally,
BeamParse-HeuristicUnify-TopParse uses the same
algorithm as that for BeamParse-HeuristicUnify ex-
cept that it only generates lexical entries from the
top parse instead of all parses. This more closely
resembles the conservative lexical entry splitting al-
gorithm used by Kwiatkowski et al.

8 Results

Our model outperforms all of the baselines, as
shown in Table 1. The first three baselines –
UBL, BeamParse-HeuristicUnify, and BeamParse-
HeuristicUnify-TopParse– represent the algorithm
used by Kwiatkowski et al. Our model outperforms
the best of these by over 30% in absolute terms and
180% in relative terms.

The improvement in performance of our model
over the NBestParse-StringUnify, NBestParse-
ExampleUnify and NBestParse-HeuristicUnify
baselines highlights the importance of our DFA
based semantic unification technique. Specifi-
cally, our model outperforms exact string based
unification by over 30%, example based semantic
unification by over 13% and our smart heuristic
unification procedure by 9%. These improvements
confirm that leveraging exact semantic unification
during the learning process helps to disambiguate
language meanings.

8.1 Effect of Additional Training Data
Table 2 shows the change in performance as we in-
crease the amount of training data. We see that our
model provides particularly large gains when there



%age of Data 15% 30% 50% 75%
NBestParse-
HeuristicUnify

12.4% 26.4% 39.0% 45.4%

Our Model 29.0% 50.3% 58.7% 65.2%

Relative Gain 2.34x 1.91x 1.51x 1.43x

Table 2: Results for varying amounts of training data.
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Figure 6: This graph compares the set of parses repre-
sented by the n-best algorithm used in our model to the
set of parses represented by the beam search algorithm
used by the past work. Note that our n-best algorithm
represents 100% of the top 10000 parses.

is a small amount of training data. These gains de-
crease as the amount of training data increases be-
cause the additional data allows the baseline to learn
new lexical entries for every special case. This re-
duces the need for the fine grained lexicon decom-
position which is enabled by our DFA based unifica-
tion. For example, our DFA based model will learn
separate lexical entries for “line”, “word”, “starting
with”, and “ending with”. The baseline instead will
just learn separate lexical entries for every possible
combination such as “line starting with”, “word end-
ing with”, etc. Our model’s ability to decompose,
however, allows it to provide equivalent accuracy to
even the best baseline with less than half the amount
of training data. Furthermore, we would expect this
gain to be even larger for domains with more com-
plex mappings and a larger number of different com-
binations.

8.2 Beam Search vs. N-Best

A critical step in the training process is calculating
the expected feature counts over all parses that gen-
erate the correct regular expression. In §4 we dis-
cussed the trade-off between approximating this cal-
culation using the n-best parses, as our model does,
verses the beam search model used by the past work.
The effect of this trade-off can be seen clearly in Fig-
ure 6. The n-best parser always represents the n-best

parses, which is set to 10,000 in our experiments. In
contrast, on the first iteration, the beam search algo-
rithm fails to represent the top parse almost 20% of
the time and represents less than 15% of the 10,000
most likely parses. Even after 10 iterations it still
only represents 70% of the top parses and fails to
represent the top parse almost 10% of the time. This
difference in representation ability is what provides
the more than 30% difference in accuracy between
the BeamParse-HeuristicUnify version of our model
and the NBestParse-HeuristicUnify version of our
model.

9 Conclusions and Future Work

In this paper, we present a technique for learning
a probabilistic CCG which can parse a natural lan-
guage text search into the regular expression that
performs that search. The key idea behind our ap-
proach is to use a DFA based form of semantic uni-
fication to disambiguate the meaning of the natural
language descriptions. Experiments on a dataset of
natural language regular expression pairs show that
our model significantly outperforms baselines based
on a state-of-the-art model.

We performed our work on the domain of reg-
ular expressions, for which semantic unification is
tractable. In more general domains, semantic uni-
fication is undecidable. Nevertheless, we believe
our work motivates the use of semantic inference
techniques for language grounding in more general
domains, potentially through the use of some form
of approximation or by restricting those domains in
some way. For example, SAT and SMT solvers have
seen significant success in performing semantic in-
ference for program induction and hardware veri-
fication despite the computational intractability of
these problems in the general case.
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