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Abstract
A research agenda in software design is outlined, focusing on the role of concepts. The no-
tions of concepts as “abstract affordances” and of conceptual integrity are discussed, and a 
series of small examples of conceptual models is given.

What is Conceptual Integrity?
In the field of software design, there is little agreement to be found amongst experts over ex-
actly how software should be structured, what languages and tools should be used, and so 
on. And yet a handful of general notions—separation of concerns, abstraction, decoupling, 
representation independence, and so on—have received wide approbation and thus repre-
sent the closest we have to some kind of consensus. Amongst these notions, one is of partic-
ular interest because it addresses not only the internals of the software but also the behavior 
experienced by the user, and is thus most relevant to the question of how software should 
be designed in the larger (and more experiential) sense of “design” used in the more estab-
lished design disciplines (such as architecture and industrial design).

This is the notion of “conceptual integrity”, which has been held up not merely as one 
of many criteria for good design, but as the single determinant of success or failure. Fred 
Brooks devoted a large part of his influential book Mythical Man Month [3] to discussing 
this notion (and to our knowledge coined the term), and states, bluntly: “Conceptual integ-
rity is the most important consideration in system design.” Revisiting the book in an after-
word written for an anniversary edition twenty years later, he reiterated: “I am more con-
vinced than ever. Conceptual integrity is central to product quality.”

But what is conceptual integrity? Brooks himself leaves us guessing. At the start of the 
relevant chapter of Mythical Man Month, he tells us “It is better to have a system omit cer-
tain anomalous features and improvements, but to reflect one set of design ideas, than to 
have one that contains many good but independent and uncoordinated ideas.” That’s the 
closest he comes to a definition. In a more recent book, The Design of Design [4], he cites 
the earlier book as one of two sources for the idea of conceptual integrity (the other being 
a book he coauthored on computer hardware architecture [2]), and summarizes the idea 
as a combination of three principles—orthogonality, propriety and generality—although 
strangely these terms are not explained in Mythical Man Month. Instead, he concentrates on 
the implications for team structure, arguing that “the design must proceed from one mind, 
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or from a very small number of agreeing resonant minds”. “If a system is to have conceptual 
integrity,” he tells us, “someone must control the concepts”.

Aware of the risk that this might appear elitist, Brooks admits that this requires an aris-
tocracy of architects, but one “that needs no apology”. Nevertheless, the chapter on concep-
tual integrity in Mythical Man Month is devoted precisely to this apology, and the apparent 
elitism, as Brooks seems to have predicted, did indeed lead to a backlash, represented many 
years later by Eric Raymond’s “The Cathedral and the Bazaar” [20], a manifesto for open 
source development that contrasted “reverent cathedral-building” (as typified by emacs’s 
development) in which the system is “carefully crafted by individual wizards … working 
in splendid isolation” with the “great babbling bazaar of differing agendas and approaches” 
(as typified by Linux) “out of which a coherent and stable system could seemingly emerge 
only by a succession of miracles.” Interestingly, despite countering the central argument of 
Mythical Man Month that increasing the team size has diminishing returns (and otherwise 
quoting Brooks approvingly), Raymond never addresses explicitly Brooks’s argument for 
conceptual integrity—which is especially surprising since one must assume that Raymond’s 
cathedral analogy was inspired by the image of the cathedral of Reims at the very opening 
of Brooks’s chapter!

The central question, then—of what exactly comprises conceptual integrity—seems to 
have been pushed aside in favor of arguments about process. And whether conceptual in-
tegrity is even coupled to team structure is open to question; Dick Gabriel challenges [6] the 
idea that design excellence requires the focus and unanimity of a single mind; indeed, he 
argues that even cathedrals, notably the great basilica in Florence, in contrast to Raymond’s 
characterization, are not produced by (in Raymond’s terms) “individual wizards … working 
in splendid isolation”, but rather are produced by a series of great designers, often in teams, 
each building on the work of others.

Towards a Definition of Conceptual Integrity
Given the apparent lack of consensus about the meaning of the term conceptual integrity, 
we are taking the liberty to invent our own definition. We do not claim that our definition 
captures what software researchers and practitioners mean by it; indeed, the lack of con-
sensus suggests no such definition can exist. But our definition is motivated by an attempt 
to crystallize what is right about the designs that people hold up as exemplars of conceptu-
al integrity (such as the Macintosh computer and the relational database model) and what 
is wrong about the designs that are criticized for lacking conceptual integrity. In that sense, 
our definition is descriptive and not prescriptive, albeit indirectly.

We take conceptual integrity to be a judgment about the concepts embodied in a design. 
By “concepts”, we mean the constructs and notions either that preexisting in the world out-
side the system, such as “bank account” or “airline flight”, or that are invented for the pur-
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pose of structuring the functions of the system, such as “paragraph style” in a word pro-
cessor, or “element group” in a drawing application. These concepts, being essential to the 
design, are both apparent in the interface of the system with the outside world, and in the 
system’s implementation. In contrast, we do not mean by “concept” anything that exists only 
at one level, whether it be in the interface (eg, “scroll bar”) or in the implement (eg, “call-
back”).

Conceptual design for us, therefore, is about the design of behavior, and not the de-
sign of internal software structure. Our contention is that these behavioral concepts are not 
only the major factor in determining ease of use, but also set the stage for the quality of the 
code. Poor interfaces and excessive coupling between modules usually reflect not so much 
an organizational problem at the code level, but rather a more fundamental problem that 
the concepts on which the code abstractions are built are not sufficiently clear and simple.

A design has conceptual integrity, in our view, if the concepts of the design fit together 
to achieve a certain integrity or wholeness: if the concepts together provide a basis for rich 
enough functionality, without needless complexity; if the concepts are largely orthogonal to 
one another, and can be combined to provide a benefit greater than the sum of the benefits 
of the individual concepts; if the concepts are faithful when intended to reflect preexisting, 
external notions, and are intuitive and robust when invented anew.

To some, conceptual integrity is about consistent application of design and implementa-
tion standards and idioms across a system. As Bill Griswold puts it in a wiki contribution 
[8]: “Conceptual integrity is the principle that anywhere you look in your system, you can 
tell that the design is part of the same overall design. This includes low-level issues such as 
formatting and identifier naming, but also issues such as how modules and classes are de-
signed, etc.” This is not what we mean by the term; we might call this instead “stylistic uni-
formity”. We do believe, however, that stylistic uniformity is highly desirable, and is likely 
to be easier to achieve when the design has conceptual integrity (in our sense of the term).

Our definition of conceptual integrity might be criticized for lacking its own integrity; 
arguably, it says only that the concepts are well chosen and fit together nicely. We intend in 
our research to redress this flaw by making these judgments more precise. But, following 
Griswold, we would like to find a characterization of conceptual integrity, some kind of rule 
of thumb, that captures something of the spirit of the idea.

One candidate is the following: that integrity of design is evidenced by the seeming in-
evitability of design decisions. In the design of Alloy, our modeling language, we often ap-
plied what we called the “fork-in-the-road principle”, which holds that if (when exploring 
the design space) you reach a fork in the road, where both choices—turning to the left or 
turning to the right—seem equally plausible, you should turn back. If either choice seemed 
equally plausible to the designers at design time, they would surely seem equally plausible 
to users trying to guess how the language is designed (in the case of the language, how to 
form a construct or what its meaning would be), thus making the language error prone and 
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hard to use. Such a fork in the road might be seen as evidence of a lack of integrity; when 
a design has a strong core, later decisions often seem to follow almost inevitably, as a con-
sequence of earlier and more fundamental decisions (and of the principles that they estab-
lished, explicitly or implicitly).

Concepts as Abstract Affordances
In the world of interaction design, the notion of “affordances” (introduced by the psycholo-
gist James Gibson [7] and applied to usability by Donald Norman [16]) has become a pop-
ular and helpful way to think about what makes an object easy or hard to use. The concepts 
in our view of design can be viewed as affordances, but of an abstract sort.

In the world today, we are surrounded by designed objects—tools, appliances, software 
applications, systems, policies and so on—that provide great power at the expense of con-
ceptual complexity. A simple object has no conceptual structure. Rather, it offers affordanc-
es: potentials for action that the object communicates more or less directly to the user. Thus 
a screwdriver affords turning, and a hammer affords banging.

A complex object, in contrast, is less defined by its affordances. Even an old rotary phone 
affords the action of calling only in an abstract sense; to place a call, the user must under-
stand the concepts of dial tone, phone numbers, busy and ringing signals, and so on.

Software lies at the extreme end of this spectrum, where conceptual structure dominates. 
Traditional affordances still play a role, but they are rarely associated with actions that had 
significance in the world prior to invention of the software. The actions afforded by the soft-
ware become actions in a conceptual universe, conjured up in the mind of the user by the 
software designer. Sometimes this universe is built by analogy to the real world, and the ac-
tions seem familiar (putting items in a shopping cart, sending mail); at other times the con-
nection to the real world is tenuous and actions only make sense in the designer’s invented 
world (grouping objects, reverting files).

Concepts may therefore be viewed as “abstract affordances”. The Facebook application, 
for example, does not offer affordances in the traditional sense, but it does offer abstract af-
fordances—for “tagging”, “friending”, “posting”, and so on—all of which involve state chang-
es in a conceptual world.

Incidentally, the conceptual structure of software exists not only in the mind of the user 
and designer but also in the code itself. In many software architectures there is an explic-
it model that represents conceptual relationships directly (in a relational database or ob-
ject heap, for example). And in an embedded application (such as a car), while most com-
ponents are oblivious of the structure of the system as a whole, the software controller will 
likely contain distinct representations of the state and condition of other components—
even those it is connected to only indirectly. This seems to be a distinct feature of software 
that makes it fundamentally different from the technologies of other components.
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A Research Program
In the Software Design Group at MIT, we are engaged in a research program to explore con-
ceptual aspects of software design. Our aim is to develop a working theory of conceptual 
design that would account for the basic notions of concepts and conceptual integrity, and 
suggest how they can be applied to improve the quality of software design. Our impression 
is that the best software developers already emphasize the conceptual aspects of their de-
sign work; for them, we hope to provide a language for talking more precisely about what 
they already do, allowing them to articulate their ideas and skills so they can be shared 
more effectively with others. At the same time, we believe there are many software develop-
ers who pay inadequate attention to conceptual design; they rush to implementation, and 
have trouble thinking or talking about software except in terms of low-level code notions. 
Our research goal for this audience is to persuade them of the value of conceptual design, 
and give them a shortcut to the expertise that better software developers have acquired—
in much the same way that the design patterns movement gave novice programmers skills 
with structures that were previously not articulated explicitly.

Our program has several components:
· Studying existing applications. We are studying examples of applications that are exem-

plars of good design, to understand why they work well, and the role that concepts play 
in their success. In addition to studying the products themselves, we plan to talk to de-
signers to understand how they conceive their designs, and how they articulate concep-
tual aspects of design (or choose not to). At the same time, equally importantly, we are 
looking at examples of bad design—namely applications that frustrate users or have seri-
ous reliability or development problems—and analyzing the extent to which poorly cho-
sen (or non-existent) concepts contribute to their failure.

· Cataloging conceptual idioms. We are building a catalog of conceptual idioms that appear 
repeatedly in different settings. One of the reasons that users are able to quickly master 
new and complex applications is that even new functionality is often built from well-un-
derstood idioms. Conversely, when an application fails to use conventional idioms, or in-
cludes “near misses” (in which idioms appear to be used, but deviate in small but surpris-
ing ways), users may struggle to learn how to use it.

· Case studies in redesign. To explore the impact of conceptual design, we are engaging in 
a series of case studies in which we take an application that seems to have serious prob-
lems in its conceptual design, and then rework the design to meet criteria of conceptu-
al integrity. In so doing, we hope (a) to gain experience applying the prescriptive criteria 
that we’re developing in our theory, and (b) to find out to what extent improvements in 
conceptual structure actually lead to improvements in ease of use.

· Theory development. Underpinning all this work, and the ultimate aim of our research, 
is the development of a working theory. This will clarify the basic notions of concepts, 
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concept design and conceptual integrity, and will define criteria for good and bad con-
cept design. We plan to identify appropriate notations for articulating conceptual design, 
extending and refining them as needed. We may also find opportunity for tool develop-
ment, although our emphasis in our research program is methodological and focused 
more on intellectual tools than computational ones.

Describing Conceptual Designs
How should a conceptual design be described? Obviously, the description must be imple-
mentation-independent; it should be easy to understand; it should precise enough to sup-
port objective analysis; and it should be lightweight, presenting little inertia to the explora-
tion of different points in the design space. For these reasons, we have chosen (initially at 
least) to use a standard state machine model of computation, in which named actions (per-
formed by the user or sometimes by the application) produce transitions between abstract 
states. The abstract state space is described by a conventional relational data model, using 
the variant of extended entity-relationship diagrams developed for the Alloy modeling lan-
guage [12]. The actions are crudely specified by naming them, listing their arguments, and 
describing their effects on the state informally. This form of description is pretty conven-
tional; instead, we might have chosen any of the standard “model based” specification lan-
guages (such as Z [21], B [1], VDM [14], or Alloy [12]). Our own preference is for a dia-
grammatic representation of the state space, but it may not be essential.

In our descriptions, concepts correspond to state components. Consider, example, a con-
ceptual model of a word processor. The abstract state might include a set of buffers, each 
consisting of a sequence of paragraphs, each paragraph being a sequence of lines, and each 
line being a sequence of characters. Each of these state components (the sets of buffers, 
paragraphs and lines, and the relations that associate them with each other) can be regarded 
as concepts. Even the simple notion of a character should be regarded as a concept, which 
becomes significant in the context of Unicode and non-Latin languages.

The reader may reasonably ask whether this implies that concepts are no more than state 
components. In our view, concepts have psychological content; they correspond to how us-
ers think about the application. One could construct a state machine model that character-
izes the behavior just as precisely, but whose state components do not correspond to con-
cepts. We would not call such a description a “conceptual model”. For example, our word 
processor might be described not in terms of paragraphs and lines but instead in terms of a 
single sequence of characters that includes special symbols for end-of-paragraph and end-
of-line (or as two sequences, one preceding the cursor and one following it [22]). In this de-
scription the basic concepts are not represented explicitly, but have to be defined in terms 
of the state components (for example, a line being the sequence of characters between two 
end-of-line symbols).
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To connect the abstract state components with the user’s understanding of them as con-
cepts, it is necessary to provide a bridge between the two. To do this, we use Michael Jack-
son’s notion of a “designation” [13]: a necessarily informal statement that acts as a kind of 
recognition rule. For example, in a conceptual model of an application for managing uni-
versity course registrations, we would likely need a designation for the concept of “stu-
dent”. Designations are invariably more challenging (and more interesting) than they first 
appear to be; the students registered for a course, for example, might include not only reg-
ular enrolled students but also special students, visitors, and even staff and faculty mem-
bers. A far more challenging example is provide by the concept of an airline “flight”, which, 
as any frequent flyer knows, is encumbered with all kinds of complexities: a flight need not 
have a single take off and landing, for example (and confusion about the concept of a “di-
rect flight” has been the source of many disappointments for passengers who thought that 
a direct flight had to be non-stop).

A final note on our approach to description: a reviewer of a paper we wrote suggested 
that we might have used state machine diagrams (such as Statecharts [9]) for representing 
the conceptual model instead. But such a notation wouldn’t be suitable for applications with 
richly structured state, where the concepts are primarily about how the state is structured in 
terms of objects and their relationships to one another.

Examples of Conceptual Models
To make these ideas more concrete, let’s look at a few examples of conceptual models, each 
chosen to illustrate one or more key points. In each case, the model is described informally 
in text, and is sometimes accompanied by a diagram in Alloy’s diagrammatic syntax [12], 
a simple notation similar to extended entity relationship diagrams or UML’s object models 
(class diagrams).

Airline flight reservations. Our first example illustrates how a conceptual model provides 
a focus for identifying essential elements of a problem. In a flight reservation system, we 
might assume that a customer books tickets; each ticket provides zero or more journeys; 
each journey consists of one or more flights; and each flight has a departure and arrival air-
port, start and end times, a carrier, and a number (Fig. 1). At this point, we consider wheth-
er this model is sufficiently rich to support the situations we are familiar with. We see im-
mediately that the notion of carrier is inadequate; in a code sharing scheme, the airline 
selling the ticket is not the one flying the plane. So we refine our model to distinguish oper-
ating and marketing carriers. More problematically, we might notice that direct flights are 
not supported. Unlike a non-stop flight, a direct flight might have  intermediate stops, and 
even changes of plane. This realization is more disruptive; we can’t just add a notion of in-
termediate stops (associating flights with airports) because this would not capture the arriv-
al and departure times at those stops. Rather, we should probably invent a new notion, a leg 
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say, making a flight a set of legs, each with its own arrival and departure properties. A non-
stop flight would then have a single leg, and a direct flight may have two or more.

Note that we are not claiming that the construction of a conceptual model in advance of 
design and implementation will always result in the uncovering of such subtleties. The con-
ceptual model is a live artifact that captures the designer’s evolving ideas, and is valuable 
for recording ongoing complexities that arise during the development and use of a system. 
That said, the act of constructing a model does often bring subtle issues to the fore. Sim-
ple multiplicity questions turn out to be surprisingly thought-provoking: how many carri-
ers does a flight have? how many flight numbers? how many flight numbers can be associ-
ated with one aircraft?

At a more mundane level, the conceptual model defines the vocabulary of a develop-
ment—in this case, the notions of journey, flight and leg, for example—and encourages the 
use of names in the code that match names in the problem description. Lack of consistent 
terminology is rife in software developments and a major cause of unnecessary confusion.

Pasting objects. Our second example illustrates the misconceptions users often have about 
software and how a clear articulation of the conceptual model might clear up confusions. In 
most drawing programs, an object has some pixels, each with a color and its own location 
(Fig. 2). The drawing board consists of some objects, typically in some front to back order-
ing (whose strucure is an interesting but separate issue) and a grid of pixels whose color (if 
any) is determined by the pixel of the object at that location in the frontmost layer. Now a 
novice to Adobe Photoshop will discover that if you select an area in one image, and cut and 
paste it into another, it can be moved around like an object in a drawing program. More-
over, you can paste again, and the new pixels can be moved around independently of those 
previously pasted. But when this user tries to go back and move the pixels pasted the first 
time, there appears to be no way to select them. What has happened is that the user has car-
ried over to Photoshop a conceptual model that does not apply. The Photoshop file is also 
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a set of layers, but there is no notion of object. Pasting a collection of pixels silently adds a 
new layer and pastes those pixels into that layer. Each subsequent pasting therefore looks as 
if an object has been added that can be independently moved around, but only because the 
action that seems to move an object is in fact moving all the pixels in the layer, and that lay-
er only contains the pixels the user associated with an object. In fact, recognizing this prob-
lem, Adobe changed the interface of Photoshop Elements so that a layer can be selected by 
clicking on some pixels appearing only in that layer, thus furthering the illusion of “objects”.

Style. Our third example illustrates conceptual idioms: how the same conceptual struc-
ture arises repeatedly in different applications. We shall describe it first in abstract terms, 
and then give examples. A product contains some elements, each of which has some prop-
erties. The properties of an element are not given directly by the user, though; instead, the 
user selects a style for each element, and chooses properties for the style (the user-defined 
properties in Fig. 3). The implied properties of an element are then determined by the prop-
erties of its style. The merit of this scheme is that the user can keep the properties of a large 
number of elements synchronized by assigning them the same style; changing the proper-
ties of that style will then change the properties of all the elements. As David Wheeler fa-
mously noted: “There is no problem in computer science that cannot be solved by an extra 
level of indirection”.

The best known application of this idiom, which we might call Style, is in word pro-
cessing and typographic layout programs (such as Microsoft Word, Adobe Indesign and 
Apple Pages). The elements are typically paragraphs and individual characters; additional 
complexities include (a) the ability to give elements properties directly, overriding the style 
properties; (b) arranging the styles in a hierarchy, with property inheritance; (c) storing sets 
of styles in stylesheets that can be swapped in and out, replacing the properties of a set of 
styles at once.

Another application of the idiom appears in the notion of a color swatch (Fig. 3, right). 
An Indesign user colors an element by selecting a swatch; changing the color of the swatch, 
it turns out, changes the color of all elements to which that swatch was previously applied. 
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The swatch is therefore a style. Likewise, Powerpoint offers a notion of color scheme, in 
which the user selects colors for different categories of element (such as titles, body text, 
etc). In this case, the styles and the mapping of elements to styles is predefined. Apple’s col-
or palette, used across applications, appears at first glance to offer a similar mechanism, but 
while the user can select a swatch to color an element, and can create and delete swatches, 
there is no way to change the color of an existing swatch.

Articulating conceptual model idioms should have the same kind of advantages that 
design patterns brought to programming. They give us a way to talk precisely and clearly 
about complex notions, and to compare and evaluate instantiations. We can observe, for ex-
ample, that both the Powerpoint and Apple color palette schemes are strictly less expressive, 
for different reasons, than Indesign’s color swatch scheme.

Moreover, designers should be aware that partial or quirky instantiations of idioms are 
suspect, and can confuse and frustrate users. For example, another widely used and well 
known idiom might be called Folder, in which a collection of resources is placed in a tree of 
folders. Here are two examples of instantiations in which the normal features of this idiom 
are violated. In Adobe Lightroom, photos may be placed in collections; these appear to be 
like directories, but it turns out that a collection cannot be placed inside another collection, 
but only within a collection set (which itself can be placed inside a collection set, but can-
not contain photos). In all IMAP clients, mail folders can form a tree of arbitrary depth. In 
some, however, mail messages can only be placed in folders that are leaves of the tree (that 
is, do not contain other folders).

Trash. Our fourth example illustrates the peril of over-generalization. Our critique of 
Lightroom’s instantiation of the Folder idiom might be formulated as the observation that 
the distinction between collections and collection sets is artificial, and a single more gen-
eral concept might be better. Finding opportunities for generalization is an important part 
of conceptual design, but it brings risks. In Apple Mail, messages that have been deleted, 
saved as drafts, or sent, are placed into folders that are, for the most part, no different from 
user-created folders. This has several unpleasant consequences, the most serious of which 

Fig. 3: Style idiom (left) and instantiation (right)
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is this: the trash folder, containing deleted messages, records only the times of sending and/
or receipt, and does not record the time at which a message was deleted. If an old message 
is inadvertently deleted, it may disappear into the trash; the user cannot sort the deleted 
messages by time of deletion to find recently deleted messages. The same issues arises with 
Apple’s trash folder at the operating system level.

Incidentally, the Macintosh trash has a conceptual model that is arguably out-dated. It 
was conceived at a time when computers had only one persistent storage device, so the con-
cept of a single trashcan made sense. With the advent of multiple drives, the conceptual 
model was not elaborated. This produces the following dilemma. You insert a USB keyring 
into your laptop, and attempt to copy some files to it. The operating system complains of in-
adequate space, so you delete some files. This makes no difference, however, since the dele-
tion does not actually remove the files, but instead marks them as trashed (that is, moved 
to the trash). To remove them, you must ‘empty the trash’, but this operation will remove all 
the files that have been marked as deleted on the laptop’s hard drive as well. The conceptu-
al model seems to be simply inadequate to support a common task; the only remedy is to 
break through the abstraction barrier and execute a Unix rm command on the offending 
files (which may be found in distinct trash folders, one per drive, indicating that the con-
ceptual model was at least elaborated at this lower level).

JavaScript Prototypes. Our fifth example shows that conceptual models can capture es-
sential design concepts in programming languages. In our software engineering course at 
MIT [11], the key concepts of JavaScript (the type hierarchy, objects and slots, namespaces, 
environments and closures, etc) are described using small conceptual models. Here, we il-
lustrate the use of a conceptual model to explain a small but non-trivial feature.

A JavaScript object may have been constructed with a function (using the keyword new); 
if so, the function is said to be the constructor of the object. Note that the model diagram 
(Fig. 4) shows the set of functions to be a subset of the set of objects; this implies, in partic-
ular, that a function may itself have a constructor. Every object has some set of slots, each 
consisting of a property (a string) and a value (another object). Any object that has a con-

Fig. 4: JavaScript prototypes, slots and constructors
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structor also has a prototype; when you look up a property of an object, the value, if any, is 
obtained first by examining the object’s slots, and then, if no matching property is found, 
the properties of its prototype, and so on, up the prototype chain until a matching slot is 
found or an object is reached without a prototype.

This is all relatively straightforward. The tricky part is understanding how the prototype 
object is assigned. It turns out that if a function has a slot with the property name “proto-
type”, then any object constructed with that function will acquire the object in that slot at 
the time of construction as its prototype.

This kind of conceptual model fulfills a different role; it allows us to map out a collection 
of intertwined concepts, and to address potential confusions. For example, the object in the 
prototype slot of a function is not its prototype object; changing which object is in the pro-
totype slot of a function will not affect which objects are the prototypes of objects previous-
ly constructed; modifying the object in the prototype slot of a function, however, will affect 
the prototypes of objects previously constructed. (The model diagram is particularly unsat-
isfying in this case; it doesn’t even show that the prototype slot of a function has the proto-
type string as its property, let alone capturing these mutability issues. Interestingly, textual 
notations such as Alloy can capture the invariant but not the mutability aspect, at least with-
out specifying the exact effects of operations.)

Apache security. Our sixth example revisits the earlier theme (from the pasting example) 
of mismatched conceptual models in a more critical setting. A web application in Apache 
typically consists of some script files and some data files. In the Apache configuration files, 
a web developer can list which files the web server is allowed to serve in response to HTTP 
requests. By indicating that only the script files and not the data files should be served, we 
can prevent secret data from being served directly to users; instead, access to data files con-
taining sensitive information will have to be accessed by scripts. An inexperienced devel-
oper might reasonably assume that these configuration settings ensure that only his scripts 
can access his data, and so long as the scripts are written carefully, sensitive data will not be 
leaked.

This conceptual model is wrong, however, because it fails to account correctly for how 
scripts obtain access to data files. A script runs (by default) with the privilege of the web 
server; if a sensitive file is to be readable by a script, it must give permission to the web serv-
er to read it. Now the problem is that a script belonging to another user on the same system 
will run with the same privilege. So all an attacker need do to read the contents of a sensitive 
file is obtain an account on the machine, and write a script that accesses the file. A web ap-
plication that held private student data at MIT suffered from exactly this vulnerability [15].

Sometimes conceptual model mismatches arise because an application is ported from 
one context to another, with a change in conceptual model. In the Unix file system, a file’s 
protection is independent of its location; when a file is moved, it carries its permission bits 
with it. In AFS, however, a file’s protection is determined by the access controls of its parent 
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directory. The SSH application was designed under the assumptions of a Unix file system, 
and stores both of a user’s keys—private and public—in the same .ssh directory. A user who 
installs keys in the standard Unix manner will expose not only the public key, but the pri-
vate key too (since the directory must be world readable, to allow the SSH daemon to access 
the public key prior to authentication).

Organizational Policy. As a seventh and final example, we illustrate the use of conceptu-
al modeling to simplify an organizational policy. Many software systems operate in social 
contexts in which policies and protocols must be reflected in the software design. Compa-
nies that build large enterprise systems call these the “as-is business process” and will often 
advocate changing to a new business process that will make the software easier to build and 
more effective. Even when software is not involved, conceptual models can be used to im-
prove how an organization works.

Our example is taken from the doctoral degree requirements in computer science at MIT. 
A student is required to take courses to acquire some breadth, according to a set of rules 
specified by a table (Fig. 5), which can be summarized as follows. There are three groups, 
each with a set of options; the student must select one option from each of two groups, and 
two options from the other group. Some options are mutually exclusive, and some may only 
be used as the second option in a group. Finally, there is an unstated rule that none of the 
chosen options may be for the same course.

These rules comprise a conceptual model that is actually more complex than it needs to 
be. It can be reformulated as follows. There is a set of courses, each of which is associated 
with zero, one or more areas. Some courses conflict with each other. A student must take 
4 courses in total, including one course in each area, and no pair of course in the selection 
may conflict. With this reformulation, we can see that the whole concept of a second option 
in a group was a needless complication; the notion probably arose because it seemed natu-
ral to assign courses to groups according to their subject matter, even if the assignment had 
no significance for limiting the selection.

This example might seem pedantic. But this was exactly how the rules were implemented 
in a web application used to check them, and the reformulation has allowed a much simpler 
and cleaner implementation. (Incidentally, the equivalence of the two conceptual models is 
not obvious, and actually requires some side conditions to hold—for example, that any op-

Fig. 5: MIT computer science degree course requirements
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tion appearing in a group must be a second-course-only option if there is another option, 
for the same course, appearing in another group.)

Afterword: A Counter-Cultural Agenda
On the one hand, this research agenda seems to align with a broad interest amongst soft-
ware practitioners and researchers in software design. In a series of talks that the author has 
given about this work to date, the response from audiences has been remarkably enthusias-
tic. Almost everybody, it seems, is interested in the question of what constitutes the essence 
of usability, and to date nobody has challenged us on the primacy of conceptual design.

On the other hand, there is a respect in which this agenda is deeply counter-cultural. 
Both research and teaching in software engineering have always emphasized “hard” over 
“soft” topics. In a typical software engineering or programming course, for example, almost 
no attention is paid to questions of how to actually design the behavior of software, or how 
to design a good interface, or how to decouple modules from one another. Instead, empha-
sis tends to be placed on topics that can be readily formalized, or which involve concrete 
technical notions. So rather than explaining how to use languages, we focus on their syntax 
and semantics; instead of explaining how to design modules, we focus on modularity mech-
anisms and namespaces; instead of talking about degrees of confidence in software correct-
ness, we focus on definitions of test coverage criteria; and so on. Research conferences in 
software engineering seem to be moving away from fundamental questions in software de-
sign and development to a lower-level, more technical focus on tools, testing and analysis.

A drive in the software engineering community towards greater emphasis on empirical 
studies [24, 23] drastically exacerbated this problem, in our opinion. While the desire for 
more quantitative and more empirical research was well intended, the result of this drive 
was a widespread adoption of a dogmatic viewpoint amongst researchers that devalued in-
tellectual enquiry. A research paper that presented a new idea, argued for it compellingly, 
and illustrated it with carefully constructed examples (designed to embody the essence of 
the problem) was no longer regarded as academically respectable, since it lacked “empirical 
validation”. It seems unlikely that many of the great (and most influential papers) in soft-
ware engineering, such as Parnas’s paper on modular decomposition [18], could be pub-
lished in a top conference today. Also, there seems to be much less enthusiasm amongst re-
searchers for the kind of informal writing about software development that Dijkstra and 
Hoare engaged in extensively (such as [5]) and which had so much influence on the field.

Of course, this is not to say that we want lots of speculative papers with weak arguments. 
The problem, rather, is that we no longer seem willing even to consider intellectual argu-
ments that lack empirical backing, as if we have lost the confidence to judge ideas for their 
intrinsic merit and the quality of the argumentation.

The result of this empirical trend seems to be a general dumbing down of the field. Pro-
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gramme committees have less patience for careful arguments and favor the collecting of 
data and the construction of tools over intellectual contributions. Although the empiricists 
hoped that a call for data might open a reconsideration of cultural assumptions, almost the 
opposite seems to have occurred: it is now harder to question conventional wisdom since 
the bar for any criticism has been raised so high. And perhaps worst of all, researchers have 
been side-tracked by a perceived need to perform “empirical studies”, often involving inex-
perienced student developers working on toy systems, giving a spurious sense of validation, 
or going through the motions of collecting data without any clear hypothesis [19]. And, de-
spite all this effort and the publication of collections of studies [such as 17], we seem to be 
no closer to a useful empirical assessment of any of the fundamental ideas of the field.

Consequently, although we expect our research agenda to be exciting and engaging, to 
resonate with the intuition and passion of developers, and to connect us to the larger com-
munity of design researchers, we don’t expect it to be easy to publish or obtain funding. 
While the most important questions seem to us to be methodological and philosophical 
(what is a concept? what makes a concept good or bad?), our research culture will likely 
look for value in more technical areas, such as formalization of notations, analysis tools, 
and construction of code.

A proposal to the National Science Foundation for this project was rejected earlier this 
year. No doubt much of the blame falls on us for failing to explain and articulate our aims 
and plans well enough. Nevertheless, the reviews seemed to reflect these culture biases. As 
the panel summary stated:

The proposal does not make clear the linkage between models and implementations. 
How would these formal notations for concepts help in realizing code? … The examples 
are compelling, but there needs to be stronger evidence that formal concept notations 
could translate into better implementations. The panel suggests linking the ideas on con-
cept notations to code, giving a sense of what the notation could be, and what analyses 
would be enabled by the proposed formal notation.
Fortunately, while the field of software engineering seems to be moving away from de-

sign, the community of researchers in other fields who focus on design as a topic in its own 
right are gaining ground. A new university in Singapore—the Singapore University of Tech-
nology and Design—has been established with the aim of making design central in the en-
gineering curriculum (and our project has been funded in part by a grant from the univer-
sity’s International Design Center [10]).
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