
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-021 August 15, 2013

Optimal Bidirectional Rapidly-Exploring
Random Trees
Matthew Jordan and Alejandro Perez

Optimal Bidirectional Rapidly-Exploring
Random Trees

Matthew Jordan and Alejandro Perez

Abstract In this paper we present a simple, computationally-efficient, two-tree
variant of the RRT∗ algorithm along with several heuristics.

1 Introduction

Sampling-based planners such as the Rapidly-exploring Randomized Tree (RRT)
[1] and the Probabilistic Road Map (PRM) [2] have been shown to be probabilisti-
cally complete and computationally efficient for many motion planning problems.
The bidirectional (two-tree) [3] variants of the RRT algorithm have been success-
fully applied to complex instances of the motion planning where the platform is
high-dimensional and must search for paths through narrow corridors, usually re-
ferred to as ‘bug traps’, while leveraging the full capabilities of the robot [4]. In
particular, the RRT-Connect algorithm, a bidirectional version of the RRT that at-
tempts to connect both trees with a greedy heuristic, has been empirically observed
to show very fast convergence in these scenarios.

More recently, several algorithms with the asymptotic optimality property, i.e.,
almost sure convergence to the optimal solution, have been presented and inves-
tigated [5]. One of these algorithms, RRT∗, a variant of the RRT algorithm, pro-
vides asymptotically-optimal solutions and requires only a constant factor more
computation [6]. An asymptotically-optimal version of a bidirectional planner is of
great appeal for high-dimensional motion planning problems as it has been empiri-
cally observed to yield great performance in these scenarios. However, the Connect
heuristic [4], i.e., the procedure that connects trees and ultimately produces solu-
tions with minimal coverage of the space, incurs a large computational burden on
asymptotically-optimal planners as they consider logn neighbors at every iteration.

Matthew Jordan and Alejandro Perez
are with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA, USA {jordanm, aperez}@csail.mit.edu

1

2 Matthew Jordan and Alejandro Perez

In this paper, we present a simple, two-tree variant of RRT∗ with several heuris-
tics that greatly improve its computational time. We show that a connecting pro-
cedure that meets the requirements shown by Karaman and Frazzoli [5] is needed
to guarantee asymptotic-optimality. Second, we show that using a ‘one neighbor’
RRT-Connect procedure will result in a non-optimal solution with probability one.
Third, we show that the computational ratio of the approach converges to a constant
factor of that incurred by the RRT-Connect algorithm. Finally, we present various
heuristics that lower this constant ratio without affecting the properties of the algo-
rithm.

2 Related Work

The motion planning problem has been investigated for decades [7]. Despite the
computational challenge of the problem [8], several efficient approaches have been
proposed throughout the years[1], [2], [4], [9]. However, these approaches are fo-
cused on finding a single feasible solution. More recently, algorithms that account
for optimality have received significant attention.

Applying graph search algorithms such as A∗ is one classic technique. The con-
figuration space is discretized off-line and then searched for motion plans [9]. This
approach has been successfully demonstrated on robotic cars [10], as well as on
single-arm [11] and dual-arm [12] instances of the manipulation problem. Although
these provide solutions of good quality in a timely manner, they are complete and
optimal only with respect to the discretization. Moreover, when planning for com-
plex tasks such as manipulation, the dexterity of the platform is sacrificed for com-
putational time.

Another widely-used approach is to optimize or smooth trajectories after they
are obtained. Gradient descent [13], stochastic optimization [14], and shortcutting
heuristics [15] have been applied to trajectories performed by high-dimensional
robot manipulators. However, these approaches are only locally optimal and de-
couple the planning and optimization procedures.

Most recently, several heuristics that speed up the convergence of asymptotically-
optimal algorithms have been presented. These include, using constantly updated
probabilistic models that serve as sampling distributions [16], relaxing optimality to
produce sparse graphs [17], using branch-and-bound [18], sampling in task space
[19], [20], approximating volumes of free space, and using lazy collision checking
[21]. A bidirectional version of the RRT∗ has been recently presented [22] along
with empirical results that indicate faster convergence to an initial solution and
monotonic refinement of paths in the tree. However, although samples are rejected
with an admissible heuristic, the algorithm still executes all procedures on logn
neighbor nodes and attempts to connect the trees at every iteration regardless of the
computational overhead incurred. Moreover, it is not clear how rejecting samples
affects the exploration of the space, a property that is important for problems with
more than one class of solutions.

Optimal Bidirectional Rapidly-Exploring Random Trees 3

The algorithm presented in this paper is a provably asymptotically-optimal bidi-
rectional approach to the RRT∗ that leverages the rapid convergence of the RRT-
Connect algorithm [4] and employs several heuristics to approximate the running
time of its suboptimal equivalent and improve its convergence rate.

3 Background

3.1 Problem Definition

Let X ⊆ Rd , referred to as the configuration space, be a compact set. The elements
of X are called configurations. Let Xobs⊂X be an open set called the obstacle region
and let xgoal be the goal configuration. The set defined as Xfree := X \Xobs is called
the obstacle-free space. A path in X is a continuous function σ : [0,1]→ X . The
path σ is said to be collision-free, if σ(τ) ∈ Xfree for all τ ∈ [0,1]. The set of all
collision-free paths is denoted by Σfree.

Given an initial configuration xinit, an obstacle region Xobs, and a goal configura-
tion xgoal, the motion planning problem is to find a collision-free path σ : [0,1]→
Xfree that starts from the initial configuration σ(0) = xinit and reaches the goal con-
figuration σ(1) = xgoal.

Let c : Σfree→R≥0 be a cost functional that maps each collision-free trajectory to
a non-negative cost. The optimal motion planning problem is to find a collision-free
path σ∗ : [0,1]→ Xfree that solves the motion planning problem, and minimizes the
cost functional c(·), i.e., c(σ∗) = infσ ′∈Σfree c(σ ′).

3.2 The RRT∗ Algorithm

The RRT∗, first introduced by Karaman and Frazzoli [5], is an incremental sampling-
based motion planning algorithm that provides an asymptotic optimality guarantee,
i.e., almost-sure convergence to optimal solutions. The reader is directed to the orig-
inal publication [5] for details regarding the algorithm.

The primitives of the algorithm are described below.
Sampling: The Sample procedure returns independent uniformly distributed

samples from the obstacle-free space.
Collision Checking: Given a path σ : [0,1]→ X , the CollisionFree(σ) proce-

dure returns true if σ is collision-free, i.e., σ(τ) ∈ Xfree for all τ ∈ [0,1].
Extend: Given two configurations x,x′ ∈ X , the Extend(x,x′) procedure returns a

path σ : [0,1]→ X that connects x and x′, i.e., σ(0) = x and σ(1) = x′. The Extend
procedure used in this paper does so with a straight path, i.e., σ(τ) = (1−τ)x+τ x′
for all τ ∈ [0,1].

4 Matthew Jordan and Alejandro Perez

Nearest Vertex: Given a set V ⊂ X of configurations and a configuration x ∈ X ,
the Nearest(V,x) procedure returns the configuration in V that is closest to x with
respect to the Euclidean norm, i.e., argminx′∈V‖x′− x‖.

Near Vertices: Given a finite set V ⊂ X of configurations and a configuration
x ∈ X , roughly speaking, the Near(V,x) procedure returns the set of all config-
urations in V that are close to x, where we define closeness as follows. Letting
n := |V | be the number of configurations in V , we define Near(V,x) :=

{
x′ ∈ V :

‖x′− x‖ ≤ γ ((logn)/n)1/d }
, where γ is a constant independent of n [5]. In other

words, Near(V,x) is the set of all configurations in V that lie inside a ball of volume
O((logn)/n) centered at x.

Cost Functional: Given a vertex x of the tree maintained by the RRT∗ algorithm,
we let Cost(x) be the cost of the unique path that starts from the root vertex xinit and
reaches x along the vertices of the tree. With a slight abuse of notation, we denote
the cost c(σ) of a path σ : [0,1]→ X as Cost(σ) for notational simplicity.

3.3 Bidirectional (two-tree) RRT method

Bidirectional variants of sampling-based algorithms are often applied to problems
with challenging regions such as narrow corridors, ‘bug traps’, or high-dimensional
configuration spaces with numerous obstacles. In very general terms, constructing
opposing trees from xinit and xgoal can lead to paths resulting from their connection
without requiring fine coverage of Xfree. The first bidirectional variant of RRT in the
literature iterated by incrementally extending both trees towards random samples
[1]. Soon after, the RRT-Connect planner was proposed as a much greedier version
of this algorithm. The algorithm employs the Connect heuristic at the end of every
iteration to attempt to create a branch between trees [4]. Although there are no theo-
retical results describing its rate of convergence, it has been observed to very rapidly
provide solutions for high-dimensional instances of the motion planning problem
such as manipulation.

4 Optimal Bidirectional Rapidly-Exploring Random Trees

We present a simple bidirectional variant to the RRT∗ algorithm that is provably
asymptotically-optimal and tailored to approximate the computation time of a stan-
dard bidirectional RRT algorithm. In this section we present the resulting algorithm
along with additional procedures, several heuristics, and modifications tailored to
reduce its computational overhead and increase its convergence rate. These are out-
lined below.

Admissible Heuristic For a vertex x, let c∗x be the cost of the optimal path that
starts at x and reaches the target vertex xtarget. The cost-to-go function serves as an

Optimal Bidirectional Rapidly-Exploring Random Trees 5

equivalent to the admissible heuristic employed by A∗ planning algorithms. This
value is considered to avoid unnecessary procedures that cannot possibly result in
monotonic improvement towards the optimal solution. We use the straight-line Eu-
clidean distance between x and xtarget as our CostToGo function.

Sorting We consider lists of cost, configuration, and path triplets, i.e., triplets of
the form (ci,xi,σi), where ci ∈ R≥0, xi ∈ X , and σi ∈ Σfree. Given a list L of such
pairs, the L.sort() method sorts the elements of L according to their cost in the
ascending order. Sorting vertices within a ball allows us to reduce the number of
collision checking and connecting procedures required when selecting parent ver-
tices and rewiring the tree. The algorithm iterates through the list until a feasible
vertex is found. This allows RRT∗ to match the computational complexity of the
RRT as one operation is performed in the best case, as opposed to the expected

ζdrd
n

µ(Xfree)
n.

Conditional Activation The algorithm only considers a single nearest neighbor
until an initial feasible solution is found. This allows the algorithm to match its time
to initial solution to its suboptimal equivalent and to use the remaining available
time to approximate the optimal solution. More specifically, only vertices returned
by the Nearest procedure are considered. After a connection is made between the
two trees, the algorithm considers all vertices returned by the Near procedures.

Conditional Graph Constructing Procedures The CostToGo procedure is em-
ployed before all graph constructing operations (see Lines 21 and 27 of Algorithm
1, and Line 10 of Algorithm 2). Only operations that can result in possible cost
improvement are executed. This greatly reduces the computational overhead over
a suboptimal planner as it decreases the likelihood that all O(logn) operations are
carried out during each of these graph constructing steps.

Best Case O(1) Collision-checking The collision checking procedure iterates
through a sorted list of (logn) neighbors. Because this list is sorted by global cost,
the procedure can terminate as soon as collision-free edge is found. This results in a
best case of O(1) collision-checking procedures per neighborhood and a worst case
of O(logn).

Conditional Connecting The Connect heuristic allows for rapid convergence to
solutions with minimal coverage of the space. However, due to its greedy behav-
ior, i.e., extending until a connection or obstacle is found, the procedure incurs a
significant computational overhead for optimal planners. The algorithm presented
alleviates this problem in two ways. First, it sorts neighbor nodes based on global
cost before attempting to connect the trees. This allows for a best case of O(1) con-
nection attempts and a wrost case of O(logn). Second, the algorithm only attempts
to connect the trees if it is determined that the resulting path will provide a lower
cost than the current best one in the graph.

6 Matthew Jordan and Alejandro Perez

Lazy Vertex Contraction The algorithm lazily contracts vertices in the current
best paths in the graph. The process of improving a single path is often times re-
ferred to as ‘smoothing’ or ‘shortcutting’ [15]. However, the algorithm presented
contracts various parts of a graph as the algorithm iterates. Note that this procedure
is different from improving a single path. We use the term vertex contraction as is
done in the graph theory literature [23]. The procedure randomly selects two ver-
tices within a connected path in our graph, and checks to see whether or not a linear
obstacle free path exists between the two. Vertices are contracted if such an edge
exists.

Branch-and-bound: The branch-and-bound algorithm is used for many do-
mains in optimization and artificial intelligence [24]. In our approach, the algo-
rithm works by keeping track of all vertices with additive costs larger than the cost
of the best solution in the graph and periodically removing them from the trees.
More specifically, let V ′ denote the set of vertices x in Ta to be removed, then
V ′ = {x ∈V |Cost(x)+CostToGo(xgoal) > cbest}.

4.1 Optimal Bidirectional Rapidly-Exploring Random Trees

The resulting algorithm is presented in Algorithm 1. Two trees are maintained.
These are denoted as Ta and Tb. In the first phase, Ta iterates by sampling a new
configuration xrand from Xfree (Line 5–9), extending towards it from the nearest ver-
tex in the tree (Lines 10–11), and computing the set Xnear of all vertices that are close
to the resulting xnew (Line 12). In the second phase, the algorithm proceeds to cal-
culate a parent vertex for xnew (Lines 13–25) and to attempt to rewire the branches
in Xnear (Lines 26–31). These operations are carried out as described by Karaman
and Frazzoli [5] with slight modifications that invoke the heuristics described above
(Lines 18, 21, 27).

After the current tree is finished with an RRT∗ iteration, it attempts to connect
the closest vertex in the opposing tree, xconnect, to the resulting vertex, xnew. The
ConnectGraph procedure is a variant of the Connect heuristic [4] tailored to prov-
ably result in a connected graph [25]. The procedure is described in Algorithm 2.
Vertices xi and xf are taken as input. These are evaluated as a typical RRT∗ iteration
where xf plays the role of xrand. A set of vertices is calculated from the opposing tree
(Lines 4–8). At this point, the algorithm goes through the sorted list and attempts to
connect to the vertex on the other tree only if the resulting solution is of cost lower
than the current best, cbest. Finally, the algorithm updates its current best solution
if necessary, prunes the tree with the BranchAndBound procedure described above,
and swaps the trees.

Optimal Bidirectional Rapidly-Exploring Random Trees 7

Algorithm 1: Optimal Bidirectional RRT (xinit,xgoal)
V ←{xinit,xgoal}; E← /0;1
Ta← (xinit,E); Tb← (xgoal,E);2
cbest ← ∞;σbest← /0;3
for i = 1 to N do4

p← UniformSample([0,1]);5
if p < PT S then6

xrand← SampleTaskSpace;7
else8

xrand← Sample;9

xnearest← Nearest(Ta,xrand);10
xnew← Steer(xnearest,xrand);11
Xnear← Near(Ta,xnew);12
Lnear← /0;13
for xnear ∈ Xnear do14

σnear← Steer(xnear,xnew);15
cnear← Cost(xnear)+Cost(σnear);16
Lnear← Lnear∪ ((cnear,xnear,σnear));17

Lnear.sort();18
for (cnear,xnear,σnear) ∈ L do19

if CollisionFree(σnear) then20
if cnear +CostToGo(xnear) < cbest then21

xmin← xnear;22
V ←V ∪ (xnew);23
E← E ∪ ((xmin,xnew));24
break;25

for (cnear,xnear,σnear) ∈ L do26
if Cost(xnew)+ cnear < Cost(xnear) then27

if CollisionFree(σnear) then28
xoldparent← Parent(E,xnear);29
E← E\((xoldparent,xnear));30
E← E ∪ ((xnew,xnear));31

xconnect← Nearest(Tb,xnew);32
(csol,σsol)← ConnectGraphs(Tb,xconnect,xnew);33
if csol < cbest then34

cbest← csol;35
σbest← σsol;36

p← UniformSample([0,1]);37
if p < PVC then38

RandomVertexContraction(σbest);39

BranchAndBound(Ta,Tb);40
SwapTrees(Ta,Tb);41

return Ta,Tb = (V,E).42

8 Matthew Jordan and Alejandro Perez

Algorithm 2: ConnectGraphs(Tb,xi,xf)
xnew← Steer(xi,xf);1
Xnear← Near(Tb,xnew);2
Lnear← /0;3
for xnear ∈ Xnear do4

σnear← Steer(xnear,xf);5
cnear← Cost(xnear)+Cost(σnear)+Cost(xf);6
Lnear← Lnear∪ ((cnear,xnear,σnear));7

Lnear.sort();8
for (cnear,xnear,σnear) ∈ L do9

if cnear +CostToGo(xnear) < cbest then10
if CollisionFree(σnear) then11

E← E ∪ ((xnear,xconnect));12
σconnect← GeneratePath(xnear,xconnect);13
return (cnear,σconnect);14

return NULL15

5 Analysis

In this section the properties of the algorithm presented are evaluated. First, the
probabilistic completeness and exponential decay of the probability of failure are
considered. Second, the optimality properties are shown. Finally, the computational
complexity of the bidirectional RRT and the bidirectional RRT∗ are compared.

5.1 Probabilistic Completeness

As shown by LaValle and Kuffner, RRT is probabilistically complete and exponen-
tially converges to a uniform distribution over Xfree [1]. It has also been shown that
these same properties are present in the bidirectional version of RRT [4]. Addi-
tionally, Karaman and Frazzoli have shown that the optimal variants of this algo-
rithm, i.e., RRG, RRT∗, inherit these properties as well. The proposed connecting
procedure meets the requirements needed for connected graph construction [25]
and asymptotically-optimal trees [5]. Therefore, the result follows directly from the
probabilistic completeness of RRT, bidirectional RRT, and RRT∗.

5.2 Asymptotic Optimality

In this section, we analyze the optimality of two algorithms. It is shown that a bidi-
rectional version of an asymptotically-optimal algorithm, in this case, a two-tree
version of RRT∗ constructed with the Connect heuristic [4], will converge to a solu-

Optimal Bidirectional Rapidly-Exploring Random Trees 9

tion of non-optimal cost almost surely. Additionally, it is shown that the algorithm
presented in this paper will converge to the optimal solution with probability one.

Theorem 1 (Non-optimality of a nearest neighbor Bidirectional RRT∗) A two-
tree method of RRT∗ that employs the Connect heuristic [4] on the nearest neighbor
is not asymptotically optimal.

The proof of this theorem is similar to that of Theorem 33 by Karaman and Fraz-
zoli [5]. Clearly, each tree follows the RRT∗ procedure when adding branches to the
tree. However, the Connect heuristic [4] attempts to create an edge from a vertex in
Tb to the locally nearest vertex in Ta, i.e., additive costs incurred by vertices within
radius rn = γALG(logn

n)1/d are not considered when choosing a parent. Therefore,
the resulting vertices and their corresponding branches are identical to those ob-
tained by an RRT iteration where the newest vertex in Ta, xnew, corresponds to the
sample. In fact, solutions are only obtained by following this procedure. Therefore,
every path will contain at least one branch whose construction does not meet the re-
quirements specified by Karaman and Frazzoli for asymptotically-optimal planners,
i.e., PRM∗, RRG, RRT∗.

Proof (Sketch) As shown by Muthukrishnan and Pandurangan [25], a random geo-
metric graph with n vertices constructed by connecting all vertices within a distance
dn = γ ′(logn/n)1/d will result in a connected graph with probability one as n→ ∞
if γ ′ > γ1 where γ1 is a lower bound. They also show that if γ ′ < γ1, the resulting
graph will be disconnected almost surely [25]. Edges between both graphs are con-
structed with the Connect procedure [4], which considers a single vertex. This is
equivalent to constructing an edge in a graph with γ ′ = 0. Therefore, γ ′ < γ1. As
shown by Karaman and Frazzoli, asymptotic optimality is only obtained if the tree
is constructed from an RRG that converges to a connected graph [5]. When γ ′ = 0,
the probability that a connected graph is returned as n→ ∞ is zero [25]. Therefore,
P({limn→∞ σ ′Ta,Tb

= σ∗Ta,Tb
}) = 0. �

Theorem 2 (Asymptotic optimality of Bidirectional RRT∗) If γALG ≤ (2(1 +
1/d))1/d((µ(X f ree))/εd)1/d , ALG is asymptotically optimal.

Proof (Sketch) The proof of this theorem follows directly from Theorem 38 by
Karaman and Frazzoli [5]. At the end of every iteration, each tree attempts to cre-
ate an edge from a vertex within radius rn = γALG(logn

n)1/d to the most recent
vertex in the opposing tree. Indeed, this procedure is equivalent to an RRT∗ iter-
ation where the vertex in the opposing tree assumes the role of xrand. Therefore, the
P({limn→∞ σ ′Ta,Tb

= σ∗Ta,Tb
}) = 1 result follows directly from Lemmas 56, 71, and

72 by Karaman and Frazzoli [5].
�

10 Matthew Jordan and Alejandro Perez

5.3 Computational Complexity

In this section, the computational complexity of the bidirectional RRT is compared
to that of bidirectional RRT∗. It is shown that these algorithms converge to a con-
stant number of calls to the collision checking, nearest neighbor search, and exten-
sion procedures per iteration.

Theorem 3 (Computational ratio of bidirectional RRT and bidirectional RRT∗)
There exists a constant φ such that limsupn→∞ E[MBiRRT∗

n
MBiRRT

n
]≤ φ .

This result follows directly from Theorem 18 by Karaman and Frazzoli [6]. The
ratio of steps performed by the RRT and RRT∗ algorithms converges to a constant.

More specifically, There exists a constant φ such that limsupn→∞ E[MRRT∗
n

MRRT
n

] ≤ φ .

As shown by Karaman and Frazzoli with Lemma 42 [5], the expected number of
vertices in a ball of radius rn centered at vertex xn is no more than ζdrd

n
µ(Xfree)

n. The
two-tree versions of RRT and RRT∗ employ an extra procedure at every iteration
to attempt connecting the trees. This procedure incurs the same computational cost
of a single-tree iteration where the extension step size parameter is large enough,
i.e., η ≥ diam(Xfree). Therefore, the computational cost is trivially inherited from
Theorem 18. �

6 Conclusion

Incremental sampling-based planners with the asymptotic optimality property have
been successfully applied for various robotic applications. Most recently, there is
increased interest in the development of heuristics that very rapidly converge to
initial solutions allowing monotonic improvements within specified time budgets.
Two-tree methods have been empirically observed to yield great performance in
high-dimensional scenarios. Therefore, an asymptotically-optimal version of a bidi-
rectional planner is of great appeal to motion planning for mobile manipulation.

This paper presented a simple, two-tree variant of the RRT∗ algorithm along with
several heuristics and modifications that greatly improve its computational time.
We showed that our connecting procedure guarantees asymptotic-optimality and
showed that using a ‘one neighbor’ RRT-Connect procedure will result in a non-
optimal solution with probability one. Finally, we showed that the computational
ratio of the approach converges to a constant factor of that incurred by the RRT-
Connect algorithm.

Additional information such as videos, images, data, extra material, and stand-
alone code will be made available at

http://people.csail.mit.edu/aperez/obirrt.

Optimal Bidirectional Rapidly-Exploring Random Trees 11

References

1. S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” International Journal
of Robotics Research, vol. 20, pp. 378–400, May 2001.

2. L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automa-
tion, vol. 12, no. 4, pp. 566–580, 1996.

3. S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press, 2006.
Available at http://planning.cs.uiuc.edu/.

4. J. J. K. Jr. and S. M. Lavalle, “Rrt-connect: An efficient approach to single-query path plan-
ning,” in Proc. IEEE Intl Conf. on Robotics and Automation, pp. 995–1001, 2000.

5. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” In-
ternational Journal of Robotics Research, June 2011.

6. S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal motion plan-
ning,” in Robotics: Science and Systems (RSS), (Zaragoza, Spain), June 2010.

7. T. Lozano-Perez and M. A. Wesley, “An algorithm for planning collision-free paths among
polyhedral obstacles,” Communications of the ACM, vol. 22, no. 10, pp. 560–570, 1979.

8. J. Canny and J. H. Reif, “New lower bound techniques for robot motion planning problems,”
in IEEE Symp. on Foundations of Computer Science (FoCS), (Los Angeles, CA), pp. 49–60,
October 1987.

9. M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime search in dynamic
graphs,” J. Artificial Intelligence, vol. 172, pp. 1613–1643, Sept. 2008.

10. M. Likhachev and D. Ferguson, “Planning long dynamically-feasible maneuvers for au-
tonomous vehicles,” Int’l J. of Robotics Research, vol. 28, pp. 933–945, August 2009.

11. B. Cohen, G. Subramanian, S. Chitta, and M. Likhachev, “Planning for manipulation with
adaptive manipulation primitives,” in Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA), May 2011.

12. B. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for dual-arm manipulation
with upright orientation constraints,” in IEEE International Conference on Robotics and Au-
tomation, May 2012.

13. N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “CHOMP: Gradient optimization tech-
niques for efficient motion planning,” in Proc. IEEE Int’l Conf. on Robotics and Automation
(ICRA), pp. 489–494, May 2009.

14. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP: Stochastic tra-
jectory optimization for motion planning,” in Proc. IEEE Int’l Conf. on Robotics and Automa-
tion (ICRA), May 2011.

15. K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator trajectories using optimal
bounded-acceleration shortcuts,” in IEEE Conference on Robotics and Automation (ICRA),
May 2010.

16. M. Kobilarov, “Cross-entropy motion planning,” International Journal of Robotics Research,
2012.

17. A. Dobson, A. Krontiris, and K. E. Bekris, “Sparse roadmap spanners,” in Workshop on the
Algorithmic Foundations of Robotics (WAFR), June 2012 2012.

18. S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Real-time motion planning using
the RRT∗,” in IEEE Conference on Robotics and Automation (ICRA), April 2011.

19. A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions using a task-space voronoi
bias,” in Proceedings of the 2009 IEEE international conference on Robotics and Automation,
ICRA’09, (Piscataway, NJ, USA), pp. 2892–2898, IEEE Press, 2009.

20. J. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of time-optimal off-road vehicle
maneuvers using the RRT∗,” in IEEE Conference on Decision and Control (CDC), 2011.

21. A. Perez, S. Karaman, M. Walter, A. Shkolnik, E. Frazzoli, and S. Teller, “Asymptotically-
optimal path planning for manipulation using incremental sampling-based algorithms,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2011.

12 Matthew Jordan and Alejandro Perez

22. B. Akgun and M. Stilman, “Sampling heuristics for optimal motion planning in high dimen-
sion,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’11),
September 2011.

23. S. S. Skiena, Implementing discrete mathematics : combinatorics and graph theory with Math-
ematica. Redwood City (Calif.), Menlo Park (Calif.), Reading (Mass.): Addison-Wesley publ,
1990.

24. J. Clausen, “Branch and bound algorithms - principles and examples,” 2003.
25. S. Muthukrishnan and G. Pandurangan, “The bin-covering technique for thresholding random

geometric graph properties,” in Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’05, (Philadelphia, PA, USA), pp. 989–998, Society for Industrial
and Applied Mathematics, 2005.

